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A STUDY OF THE EFFECT OF PRESSURE GRADIENT
ON THE EDDY VISCOSITY AND MIXING LENGTH
FOR INCOMPRESSIBLE EQUILIBRIUM TURBULENT BOUNDARY LAYERS

Prepared By:

W. J. Glowacki
S. W. Chi

ABSTRACT: The purpose of this study was to improve the accuracy of
turbulent boundary layer calculations by finding an expression for

the turbulient shear stress which more accurately accounts for the
effect of the freestream pressure gradient, Shear stress, eddy
viscosity, and mixing length distributions corresponding to a number
of turbulent boundary layers were calculated by substituting experimentily
measured velocity profile data into the governing equations expressing
conservation of mass and momentum., Distributions were obtained

for five incompressible, two-dimensional boundary layers which have
conatant values of the pressure gradient parameter B, where B is
defined as (boundary layer displacement thickness) x (freestream pressure
gradient) #+ (shear stress at the wall). Such flows are referred to as
equilibriur flows. The five equilibrium flows cover the range from
moderate aw.erse pressure gradient to strong favorable pressure
gradient. Where comparison is possible, the caiculated distributions
agree quite well with measured ones. The calculated results show that
the mixing length representation is superior for equilibrium flows

and that the gradient of the mixing length in the fully turbulent
region varies significantly with the pressure gradient parameter B.
The mixing length gradient used in current formulas does not include
this pressure gradient effect and corresponds to the value obtained
for zero pressure gradient (constant pressure) flows. Results for

a flow in which 8 is changing rapidly show that the mixing length
gradient lags behind that expected on the basis of the local value

of B, reflecting the upstream flow history. The observed B8

dependence of the mixing length gradient was tested for the two
adverse pressure grvadient equilibrium flows using two finite-
difference boundary layer computation procedures, the Cebeci-Smith
procedure and one developed for this study. The inclusion of the

B dependence affected the computed skin friction distribution
significantly, greatly improving the agreement between the measured
anc calculated distributions. When used with a continuous (rather
than a two-layer) mixing length formula, the observed B dependence
leads to nearly perfect agreement with the experimental results.
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CHAPTER 1
INTRODUCTION

The accurate prediction of turbulent boundary layer
growth is of importance for a great number of fluid-dynamic
problems. In recent years, substantial improvements have
been made in the numerical procedures used to calculate
turbulent boundary layers. Unfortunately, these improvements
have not been matched by equivalent improvements in the
physics input required for the numerical calculations. As
will be described in more detail below, the purpose of this
study is to improve the required physics input.

1.1 BACKGROUND

1.1.1 1 d -i dm d

The instantaneous motion of a turbulent fluid is
governed by the Navier-Stokes equations which express the
conservation of momentum and the continuity equation which
expresses the conservation of mass for the flow. However,
these equations for the instantaneous motion are extremely
difficult to solve. Moreover, it is usually the mean motion
of the fluid that is of interest. Therefore, equations
governing the mean motion are obtained from the instantaneous

equations by replacing the instantaneous value of each

L




|

NOLTR 74-105

variable by the sum of its mean value and its instantaneous
fluctuation from the mean value, and then averaging the
equations over a suitable time period. However, this
procedure introduces a turbulent stress tensor, whose
components are the time-averages of the products of the
fluctuating velocity components and are often called the
Reynolds stresses. For most two-dimensional turbulent
boundary layers, the only important component is *he turbulent
shear stress —pu'v’', although for some flows the normal stress
component -9377 can also be important. In these expressions,
p is the fluid density and u' and v' are the fluctuating
velocity components along and normal to the flow direction.
To eliminate the need for the turbulent shear stress
distribution through the boundary layer, the partial
differential equations governing the mean motion c¢f the fluid
are frequently integrated in the direction normal to the flow
to give an ordinary differential equation in terms of
integral boundary layer parameters and the shear stress at
the wall. Although such integral approaches still require
additional input in the form of auxiliary equations or
empirical relations, they are usually easy to solve and many
have been in use for years. However, today integral methods
no longer offer any real advantage over differential methods
which give a more detailed description of the boundary layer
and are easily adapted to many different types of flow
situations. In the proceedings [ 1] of a conference on the

computation of turbulent boundary layers held at Stanfo.d
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University in 1968, Reynolds discussed the different elements
which have been used to introduce physics into turbulent
boundary layer calculations, including various forms of the
equations of motion, equations of state for turbulence,
equations for the velocity profile and equations relating the
wall shear stress to the mean flow properties. He then
classified many of the calculation methods then in use
according to the form of the physics input used*.

The physics input required for most differential
methods of calculating two-dimensional, incompressikle
turbulent boundary layers is the turbulent shear stress
distribution specified in the form appropriate to the
particular method. As Reynolds points out, the differential
methods may be divided into two groups, according to the
treatment of the turbulent shea:r stress. The mean-field
(also called mean-velocity-field) methods assume that the
turbulent shear stress can be related directly to the local
mean flow properties, usually the mean rate of strain. The
turbulent-field methods relate the turbulent shear stress to
the turbulence of the flow usually through the turbulent
kinetic energy. According to the evaluation committee at
the Stanrcord conference [ 1], the most successful mean-field

methods were those of Cebeci and Smith [1,2] and Mellor and

*In addition, the proceedings contain fairly complete
descriptions and comparative ratings of the various methods,
together with a compilation of most of the good velocity
profile data measured in two-dimensional, incompressible
turbulent boundary layers.
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Herring [ 1], while the most successful turbulent-field
method was that of Bradshaw and Ferriss [1,3].

Although the turbulent-field methods can more properly
account for the upstream turbulence history, the mean-field
methods are simpler to use, require less sophisticated
assumptions toc specify the turbulent shear stress, and give
quite good results for a wide range of flow conditions.

Thus, it is most likely that the variety of different methods
for specifying the turbulent shear stress now in use will
continue to be used until the nature of turbulence is more
fully underatood and expressed in a usable mathematical form.
Even then, the longer computing times that will most probably
be required for the more complete treatments will necessitate
the use of simpler, approximate treatments, at least, for
most engineering applications. The success of mean-field
methods and their intermediate position between the older
integral methods and newer more detailed methods make mean-

field methods a2 prime candidate for this role.

1.1.2 Eddy vi i d Mi e h_Conc
Most mean-field methods relate the turbulent shear
stress T, (=-pW) to the mean rate of strain -g—;- using an
eddy viscosity € or a mixing length £, defined through the

relations

TT = peg-‘-'- (1.1)
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where p I8 the fluid density, u is the mean velocity in the
flow direction (along the wall), and y is the direction
normal to the wall. The concept of an eddy viscosity is due
to Boussinosq [ 4] who introduced it in analogy to the
kinematic viscosity v wnich relates the laminar shear stress
‘l'L to the same rate of strain. However, unlike the kinematic
viscosity v, the eddy viscosity is not a physical property of
the fluid. I+ is simply a postulated proportionality
constant between the turbulent shear stress and the rate of
strain. On the other hand, the mixing length as introduced
by Prandtl [ 5] has a more physical interpretation. 1In
analogy with the mean free path used in the kinetic theory of
gases, Prandtl visualized the mixing length as a mean
distance transverse to the flow direction that a small mass
(or lump) of fluid moves before the change in its mean
velocity is equal to the mean transverse fluctuation in the
flow (see Schlichting [ 6] for fuller details).

Schlichting considers Prandtl's mixing length to have an
essential superiority over Boussinesq's eddy viscosity in
that the mixing length, although still not a property of the
fluid, is at least a purely local function. However, these
analogies between the behavior of turbulent flow and the
molecules of a gas are valid only if the "mean free path" of

the turbulent eddies is small compared with the distance over
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which the mean velocity gradient changes appreciably. As
Bradshaw [ 7] points out, it is becoming more obvious that
turbulent boundary layers are dominated by large eddies

whose size typically is of the samz order as the boundary
layer thickness and that, for such large eddies, the
analogies that led to the eddy viscosity and mixing length
concepts are unlikely to be valid. Moreover, Champagne,
Harris, and Corrsin [ 8] point out that even for the simplest
conceivable shear flow, homogeneous turbulence maintained by
a uniform mean shear, the principal axes of the turbule:t
stress tensor and the strain-rate tensor are not aligned, so
that the defining equations for the eddy viscosity (1.1) and
the mixing length (1.2) do not accurately reflect the
physical situation. For boundary layers and channel flow,
the misalignment is even greater. Only in the plane wake far
from the symmetry axis are the principal axes of the two

tensors nearly aligned.

1.1.3 Eddy Viscosity and Mixing Length Formulas
Although the validity of the eddy viscosity and mixing

length concepts may be highly questionable, there is no
question about the ability of eddy viscosity and mixing
length formulas to predict fairly accurately the behavior of
turbulent boundary layers under a wide range of flow
conditions. For example, Cebeci and Smith and associates
have modified and extended their combined eddy viscosity-

mixing length approach, applying it to incompressible and

o — e . e L e e e
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compressible boundary layers, with and without heat transfer
and mass addition, with rather good results [1,2,9-15]. The
combined eddy viscosity-mixing length approach is a result of
the widespread practice of using two-layer models to
represent the eddy viscosity and the mixing length distribu-
tions through the boundary layer. One formula is used in the
inner (wall) region and another in the outer region with the
boundary between the two regions being the point where the
inner and outer formulas give the same value. From equations
(1,1) and (1.2), it is seen that the eddy viscosity and the

mixing length are related by

e=£“

u
g;l (1.3)

Thus, a mixing length formula is easily used in what other-
wise might be called an eddy viscosity approach.
Some of the more successful combinations used for the

Stanford conference [ 1] are the following:

Ng-Pat - din
% - I, SRS b
inner £=0.435y [1 exp( 35.39 JD—)] (1.4)
= .0 .
outer L=0 9Y0.99 (1.5)

Cebeci-Smith

dp,

= p - Y [Iw,Pey

inner Lt=0.4y |1 exp( v\ 5 3 p) (1.6)
outer ¢.;=0.0168u(_,_.5*[1+5.5(?5)6]-1 (1.7)
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Mellor-Ferring

_ vy * e fo (1.8)
inner € -—W where 0.41\) -

outer E~¢€ +v=0.016ue6* (1.9)

In these expressions, 1 is the total shear stress, T, is the

wall shear stress is the value of y at which the flow

» ¥0,99
velocity u equals 99% of its freestream value Uy Py is the
freestream pressure, and § and §* are the boundary layer and
displacement thicknesses, respectively.

It is seen that the inner mixing length formulas used

E by Ng, Patankar, and Spalding and by Cebeci and Smith are
quite similar, both bheing slight variations of the modified

form of the Prandtl mixirg length

z=o.4y[1-exp(-2L6V "p_w )] (1.10)

proposed by Van Driest [16] to account for viscous damping at

the wall. Because the Van Driest formula was derived for

constant freestream pressure flows, Ng, Patankar, and Spalding

it ol il

replace the wall shezr stress 1,, PY the local shear stress 1

1 to account for non-ze2ro freestream pressure gradients. Cebeci
E and Smith do essentially the same thing, but use a simple
expression for t which is a good approximation very near the

; wall where the Van Driest damping factor has an influence.

In the outer region, Ng, Patankar, and Spalding use a constant

mixing length, while Mellor and Herring use a constant eddy

viscosity as first suggested by Clauser [17]. Cebeci and




NOLTR 74-105

Smith also use Clauser's eddy viscosity but modify it using
an approximate formula for Klebanoff's intermittency factor
(18] which attempts to correct for the fact that the flow in
the outer region is only intermittently turbulent.
Examination of the eddy viscosity formulas shows that
the influence of a freestream pressure gradient is confined
to the changes it makes in the local shear stress in the
inner region. Similarly, the freestream pressure gradient
influences the mixing length only through the local shear
stress but now only in the very thin region near the wall
where the exponential term in the Van Driest damping factor
is not negligibly small. The same behavior is observed in
one of the few continuous mixing length formulas. Chi and
Chang [19] have fitted mixing length results derived from
the Coles' law of the wake [20] using zero pressure gradient

data by the single formula

6 . . 20 ]

=X
=%

valid thzough the entire boundary layer. If this formula is
extended to flows with pressure gradient in the same way as
was Van Driest's formula given by equation (1.10), then the
pressure gradient again affects the mixing length only

through the local shear stress very close to the wall.

- e
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1.1.4 Fugther Improvement of Formulas

There now is theoretical and experimental evidence
that the effect of pressure gradient on the mixing length
is not confined to a change in the local shear stress. For
convenience, the inner mixing length formula will be defined

in terms of the general form

L =kly[1-exp(-x¥; f)] (1.12)

Cebeci [13] solved an approximation to the momentum equation
in the viscous sublayer immediately adjacent to the wall and
obtained an expression for At which reduces for a non-porous

wall (no mass transfer) to
Cebeci At = A‘s JI(I + 11.8 Pt) -4 (1.13)
Tw

where AB is the zero pressure gradient, zero mass transfer

value of A* (Cebeci used A; = 26) and Pt is defined by

+=_VY_29p (1.14)
d pu, > dx
i )
" .15
with u, V - (1.1

(It should be noted that A* and P* are defined differently
than the quantities used by Cebeci.)

At about the scme time, from an examination of experi-
mental velocity profiles measured under a wide range of flow
conditions, Kays [21] obtained an expression for At which

reduces for a non-porous wall to

10
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Kays At = A'a (1 + 30,18 p+)" 1 (1.16)

Although this equation was based only on acceleratina flow
data, Kays indicates that it may be valid for decelerating
flows as well. The variation of AT obtained for a limited
range of Pt is shown in Figure 1-1. Kays also indicates ?
that a rate equation for At might be necessary to account

for the lag observed when Pt is changing very rapidly.

In addition to A't, the pressure gradient has been
observed to affect the other mixing length "constant" k1
appearing in equation (1.12). Bradshaw and Ferriss (22)
measured shear stress and velocity distributions in strong
adverse (positive) pressure gradient flows and calculated
the corresponding eddy viscosity and mixing length distribu-
tions. Their results show values of kl up to about 0.6
which is considerably higher than the value of about 0.4
obtained from zero pressure gradient flow data. Although
published in 1965, the results of Bradshaw and Ferriss have ]
had little, if any, effect on current eddy viscosity and
mixing length formulas.

The measurement of shear stress distributions is time-
consuming, costly, and difficult for even the simplest of
flows. Therefore, most "improvements" in eddy viscosity or

mixing length formulas are obtained by modifying the

formulas until the calculated results agree reasonably weil

with some experimental results. If the cause of an observed

11

l
:
*,
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effect can be correctly identified, then such an indirect
approach has considerable merit. However, a more direct
approach is available. Shear stress distributions can be
extracted from measured velocity profile data using the
conservation equations which govern the flow. The corres-
ponding eddy viscosity and mixing length distributions,
calculated using the defining equations (1.1) and (1.2),
are free ot the assumptions on form that are built into any
formula. Thus, not only the values of the "constants" but
also the form of the formula itself can be determined. 3y
analyzing distributions obtained for a wide range of flow
conditions, improved eddy viscosity or mixing length
formulas can be obtained. In practice, however, this
procedure must be carried out very carefully with good
experimental data in order to obtain useful results.

This approach is not new. It has been used in
different forms by a number of investigators, dating back at
least to Schultz-Grunow [23] and Wieghardt and Tillmann [24],
who used it to analyze their own experimental data. Escudier
(25]) also used this approach to obtain mixing length distri-
butions in incompressible boundary layers, wall jets, and
pipe or channel flows in an effort to determine whether the
mixing length could be related uniquely to the distance from
the wall. Because his results were obtained over a very wide
range of flow conditions, it is very difficult to detect any
definite trends. However, his results do seem to confirm

the higher value of k1 obtained by Bradshaw and Ferriss.
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Spence [26]), Maise and McDonald [27], Poe and Holsen [28],
and Meier and Rotta [29]) have applied variations of this
appreach to supersonic compressible boundary layers up to a
Mach number of 7. Bushnell and Morris [30,31] have recently

extended this range to hypersonic Mach numbers up to 20.

1.2 PURPOSE AND SCOPE OF THIS STUDY

In general, the purpose of this study is to improve
the accuracy of turbulent boundary layer calculations by
finding an expression for the turbulent shear stress which
more accurately accounts for the effect of the freestream
pressure gradient. More specifically, the purpose is to
study eddy viscosity and mixing length approaches for
turbulent boundary layers with freestream pressure gradients
in order to determine the appropriate.ess of these approaches
for such flows, to evaluate current formulas, and to detect
possible areas of improvement. First, eddy viscosity and

mixing length distributions will be extracted from existing

velocity profile measurements for a number of two-dimensional,
incompressible turbulent boundary layers with pressure
gradients. Next, these distributions will be examined to
deternine the effects of the pressure gradients. Then, the f
most appropriate correlation of these results will be tested
for boundary layers with various pressure gradients using a
suitable finite-difference computation procedure.

In order to minimize effects other than those caused by

the pressure gradient, this study will center on the simplest
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class of two-dimensional, incompressible turbulent boundary
layers with pressure gradient, the equilibrium turbulent
boundary layers. The term equilibrium is used to denote a
boundary layer for which the velocity profiles at various

stations are similar when expressed in the non-dimensional
u-u

form of € versus % (the defect form) where u, is the

shear (or ;riction) velocity given by equation (1.15) and §
is the boundary layer thickness. Although exact similarity
can be achieved only in a few special cases, Clauser [32]

has achieved near similarity in two adverse pressure gradient
boundary layers and has found [17] that for such flows the

pressure gradient parameter B is constant throughout the flow.

The parameter 8 is defined by

—_— (1.17)

where §* is the boundary layer displacement thickness, Ty is
the wall shear stress, and g;ﬂ is the freestream pressure
gradient., For incompressible flows, Townsend [33] and Mellor
and Gibson [34] have shown that approximate similarity in the
velocity profiles is cbtained if thLe freestream velocity u,
varies in proportion to x2 where a is the same constant
throughout the flow. Since flows with exactly similar
defect profiles, flows with constant B8, and flows with u,
proportional to x? are practically indistinguishable from an
experimental viewpnint, the term equilibrium is usually

considered to include all three. Zero pressure gradient

(constant pressure) boundary layers correspond both to B=0

14
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and u, = x0 everywhere and thus are just one member of the
family of equilibrium boundary layers.,

The very nearly similar velocity profiles occurring
in an equilibrium boundary layer indicate that the boundary
layer is in a state of equilibrium under the applied free-
stream pressure distribution and therefore can be considered
as having a constant flow history. Because of this constant
flow history, the eddy viscosity and mixing length
distributions will also be in equilibrium. By comparing the
distributions corresponding to different equilibrium boundary
layers and therefore to different freestream pressure
distributions, the effect of the pressure distribution can
be determined. Although these equilibrium results may not
apply directly to strongly non-equilibrium boundary layers
in which the flow is far from equilibrium, the results will
extend our knowledge of the eddy viscosity and mixing length
from zero pressure gradient flows to flows with pressure
gradient and supply a stepping-stone for a further extension

to more complex flows.
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CHAPTER 2

PROCEDURES USED TG OBTAIN EDDY VISCOSITY

FROM VELOCITY PROFILE DATA

2,1 OUTLINE OF PROCEDURZ

The shear utress distributions for many turbulent
boundary layers cuan be ohtained by substituting measured
velocity protfile data into the governing equations for the
conservation of mass and momentum in the flow. Appropriate
datw must be selected and smoothed so that the necessary
derivatives along and normal to the flow direction may be
evaluated with reasonable accuracy. In order to simplify
the smoothing of a fairly large number of profilez, & spline-
fit-with~constraints procedure was developed and programmed
for computer use. The constraints are imposed to insure that
the spline-fit satisfies the physical conditions at the
boundaries of the flow. The spline-function and its
derivative are substituted into the governing partial
differential equations and the shear stress gradient normal
to the wall is obtained. A fourth-order predictor-corrector
integration technique is then applied to give the difference
between the local shear stress and the wall shear stress as

a function of distance from the wall, Choosing the wall

shear stress (which can be done in a number of ways) then
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gives the total shear stress distribution across the
boundary layer. The turbulent shear stress, eddy viscosity,
and mixing length distributions can now be calculated and
plotted in suitable non-dimensional forms to help detect an

appropriate correlation.

2.2 DETAILS OF PROCEDURE

2.2.1 Data Selection

At the time the search was being made for appropriate
data, a copy of the data proceedings of the Stanford
conference [ 1] became available. As these proceedings had
very complete tabulations for a number of equilibrium flows,
it was decided to restrict attention to the included flows,
at least initially., The most well--known equilibrium flows,
the two meastred by Clauser, although included in the
proceedings, were bypassed temporarily because of indications
that these flows are rather strongly three-dimensional. Five
equilibrium flows were selected for study. These included
the adverse pressure gradient flow of Bradshaw and Ferriss
[22) wa.l pressure gradient parameter 825, the adverse
pressure gradient flow of Bradshaw [35) with B=1 , the zero
pressure gradient flow of Wieyhardt [24) with 8=0, and the
two favorable pressure gradient flows of Herring and Norbury
[36) with B8=-0.35 and 8=-0.53. The B=-0.53 case investigated
by Herring and Norbury lies at the theoretical limit for
equilibrium flows as predicted by Melior. Also included in

the study was the relaxing flow of Bradshaw and Ferriss [22]
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in which the flow abruptly changes from an equilibrium flow

with B=5 to a zero pressure gradient flow. This last flow
was included primarily as a checkout case since Bradshaw and
Ferriss measured the shear stress distribution at each

profile station and calculated the corresponding eddy

PR

viscosity and mixing length distributions.

2.2.2 Data Smoothing

After the selected velocity profile data was plotted
and examined, it was obvious that the data would have to be
smoothed at least in the y (normal to the wall) directior if
the necessary derivatives were to be evaluated with
reasonable accuracy. Since cxperinmental data very near the
wall either does not exist or is of questionable accuracy
for the flows being studied, a search was made for a
composite formula for the entire "law of the wall" region
which includes the linear region at the wall and the
logarithmic region somewhat further away. Generalizing the

formula suggested by Spalding [37] to
- 2 3 [
y=Au+B[eC“-1-(Cu)-D(5=§) --3(9-‘61’ -r‘%’-) ] (2.1)

a computer program was developed to evaluate the "constants"
A,B,C,D,E,F by a method-of-least-squares fit to the
experimental data. This program was prepared in such a way
that any of the various "constants" could also be held
constant at a given value or could be related to any other

constant. For example, Spalding's formula corresponds to

18
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Vv .0118v
A:—r B = s
Yy Yz
4
C =< D=E=F=1
u
T
where v is the kinematic viscosity and u, is the shear (or
T
friction) velocity defined by uT2 = —%. Various constant

values and interrelations were used in 2 attempt to find

one combination which would give good results for all the

profiles to be used. Such a combination was rnot found and
this procedure was set aside,.

In order to smooth and differentiate the data in the
outer portion of the boundary laver (outside the wall region),
a spline-fit-with-constraints proc.dure was chosen*. The
spline-function consists of a connecting set of "cubics"
(third-degree polynomials) each representing one section of
the data and so chosen that the values and first and second

derivatives of adjacent cubics match at their connecting

point (or "joint"). Given the number of cubics and the
locations of the joints, the optimum fit to the experimental
data is obtained by a least-squares procedure which
minimizes the sum of the squares of the deviations from the

data. A different choice for the number of cubics and/or A

the locations of the joints will result in a different fit,
perhaps better or worse. The optimum locations of the joints

for a given number of cubics could be found as part of the

*Full details of the spline-fit-with-constraints procedure
and th: associated computer program are given in Reference [38]. 4

19
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least-squares-fit procedure but such a procedure is very
much more complicated than that encountered when the
locations are specified before hand. To avoid these
complications, the simpler procedure was used. The locations |
of the joints were varied in a cut and try manner until a
satisfactory fit to the exzerimental data was obtained.

To ensure that the spline-fit will reproduce the
observed behavior of boundary layers of the type under
consideration, constraints were imposed during the fitting
procedure. Since the generalized law of the wall formula
given by equation (2.1) was not satisfactory, it was
decided tc apply the spline-fit procedure to the entire layer
rather than just to the outer portion. Therefore, one
constraint imposed was that the velocity at the wall be zero.
At the outer edge of the boundary layer, the velocity is
observed to approach the fresstream velocity asymptotically.
To approximate this observed behavior, the velocity was set
equal to the freestream velocity at some point outside the

boundary layer and at this point the velocity gradient in the

nornal direction was set equal to zero. The location of this
point for each profile was varied until a good fit was
obtained to the outermost data of that profile. These three
constraints were applied for each spline-fit. For several
cases, a fourth constraint was imposed to fix the velocity
gradient very near the wall (the linear region), but the
results were not satisfactory. Regardless of where in the

supposedly linear region this fourth constraint was imposed,

20




NOLTR 74-105

i the velocity gradient would not remain constant. Because

this was not very satisfactory, the added refinement of the

fourth constraint was not used in the data reduction.

initially the only smoothing done was in the normal-to- \
the-wall ~irection. Since typically the number of profiles
for a given flow were few and rather widely spaced, no
smoothing was done in the directiion along the wall. Later,

in an effort to improve the quality of some results,

smoothing was done on the data near the wall for two flows.
The results appeared to be improved in the region near the
wall where the smoothing was done. Further from the wall,
the results were unchanged. This smoothing in the along-the-

wall direction will be discussed later in connection with the

— P

particular flows involved (Flows 1400* and 2600).

2,2.3 Governing Equations and Their Solution

The governing equations for the flows being considered
are the partial differential equations expressing the
conservation of mass and momeatum in steady, two-dimensional, \
incompressible turbulent boundary layers. For present

purposes, these equations are writter. in the form

-g% - -g-,‘% (2.2)
- a
3 (T""w) _1%e 3u_ 3u
W ( 5 ) o ax + u-a? + VW (2.3) |
|

Y W

*These flow designations were originated by Coles and Hirst
for the Stanford Conference [l1], but are so convenient that
they are being used in the literature.

21
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where u,v are the velocity components in the x,y directions,
respectively, p is the fluid density, Pe is the freestream
pressure, 1 represents the total shear stress, i.e., the
sum of the laminar and the turbulent shear stresses, and

Ty is the value of 1 at the wall. A fuller discussion of
these equations and all aspects of the numerical procedures
including the associated computer program is given in
reference ([38].

The boundary conditions at the wall are

v = 0' (204)

Ty = 0. (2.5)

Depending on which is given, the freestream pressure
gradient required in equation (2.3) is obtained either from
the freestream pressure distribution directly or from the
freestream velocity distribution using the freestream form
of equation (2.3)

dp du
1 e e
5 I v, I (2.6)

Using the spline functions obtained by fitting the

experimental velocity profile data to represent the velocity

u and its derivatives, the conservation equations are
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integrated numerically using a fourth-order predictor-

corrector technique to obtain the normal flow velocity
T=T
p
from the wall. The results are obtained in this form so

and the shear stress variable Y as a function of distance

that a numoer of different values can be tried for the wall
shear stress il without repeating the integration each time.
The results are stored on tape and can now be used with any
given Ty to obtain the corresponding distributions »f the
shear stress and other shear dependent quantities such as

the eddy viscosity and the mixing length.

2.2.4 Sources of Wall Shear Stress

In addition to the increased efficiency of the above
approach, there is the advantage that, instead of requiring
T at the start, this method supplies a value for Ty at the
end of the integration. Since the shear stress T approaches

zero as the edge of the boundary layer is approached, the
(t-1.)

shear variable ——3—3— theoretically approaches a limiting
T
value of -%. Thus, a value of T, can be obtained from the

profile data itself. This value of Tw is susceptible to
error from at least three sources; (a) any departures of the

flow from two-dimensionality, (b) experimental errors in

measured profile and freestream data, (c) numerical techniques

used, Because of these possibilities for error, the value of
T, 28 obtained from the calculations is of uncertain accuracy.
Its greatest significance isprobably for use in comparing

with values of T obtained by other means. The degree of

23
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agreement should be the best measure of the accuracy of the

results and their freedom from the errors noted above.

In addition to the method described in the previous
paragraph, there are a number of metl.us for obtaining a
value for the wall shear stress Tw® These methods can be
divided into three mair categories. First, there are those

methods which involve the direct measzurement of Ty at the

time when the profile data is taken. §Second, there are
methods by which Tw is obtained from the detailed profile
data. Third, there are semi-empirical or theoretical methods
for obtaining Ty for given flow conditions from integril
parameters oculy. In general, the best method of obtaining Ty
would be by direct measurement. However, such measurements

! are relatively difficult to make. For this reason, direct

E measurements often are not made, and when made, are of
somewhat uncertain accuracy. Therefore, the value of T must
often be obtained by the methods of the other two categories.

Included in the second category are a number of methods

for obtaining Ty from the detailed profile data. 1If a

sufficient number of accurately measured velocity profiles

exist for the flow under study, then, as mentioned in the
first paragraph of this section, integration of the partial
differential equations governing the flow can be used to

obtain a reasonable value for Ty Also included in this category

24
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are the methods which fit a "universal" law to a single

velocity profile to obtain T The logarithmic part of the
"law of the wall" is most often used, but the linear pa:zt

can also be used if experimental data exists close enocugh to
the wall., The "law of the wake" can be used, as was done by
Coles for the Stanford conference. The validity and accuracy
of these methods depend on the "universality" of both the
form of the law and the "constants" used in it. (Although Q
the "constants" are usually considered universal, this is

not a necessity. In theory, the "constants" can be chosen

T e TP

individually for each profile so that the best fit of the
chosen form is obtained for each profile.) ]
In the third category are those methods which depend ]
only on the integral parameters at each measuring station. 3
This includes methods using semi-empirical or theoretical
expressions for Ty (usually in terms of the skin friction
coefficient) such as the Ludwieg~Tillmann law [39], the
Spalding-Chi law [ 44], and others. The main difficulty with
i these methods is that they assume the "universality" of the
law, at least for flows of a given type. Since the laws are
usually obtained by fitting a limited amount of data, the
assumption of "universality" is not too well proven. Also
included in this category is the use of the integrated form j
of the governing equations known as the Von Karran monrentun
integral equation. This integral approach depends on the
accuracy with which the necessary derivatives can be

! evaluated numerically or graphically and is particularly
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poorly suited for flows with an adverse pressure gradient for
which Ty is obtained from a difference of two nearly equal
terms,

Thus, a number of methods exist for "estimating” Ta!
each with its own advantages and disadvantages. Unfortunately,
each of these methods is usually influenced by different
factors, so that the various values of Ty do not necessarily
agree. However, for the flows being considered in this study,
Table 2-1 shows that good agreement exists between the wall
shear stresses obtained from experiment, from the Ludwieg-
Tillmann skin friction law, and from fits of the law of the
wall or law of the wake to the profile data. Since preliminary
calculations made to evaluate the accuracy of the procedure

showed that the values of Ty obtained as the residual* of
=T

¥ at the edge of the boundary layer fluctuated erratically
and were in extremely poor agreement with the values obtained
by the other methods, the Ludwieg-Tillman skin friction law
was used to determine the wall shear stress Ta, in all subse-
quent calculations, whether or not a value had been determined

experimentally.

2,2.5 Freestream Velocity Gradient from Wall Shear Stress

The value assigned to the freestream velocity gradient

du
a§3 was found to have a significant effect on the results

* This technique for obtaining Tw will be referred to as the
residual method.
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T=T
w

P
obtained at the outer edge of the boundary layer. However,

obtained, particularly on the residual value of

if a realistic wall shear stress (experimental or Ludwieg-
Tillmonn formula) is used, the effect of the freestream
velocity gradient on the shear stress, eddy viscosity,

and mixing length distributions is negligibly small near the
wall but increases rapidly with distance through the boundary
layer. A typical example of this was given in an earlier
report on this work [41). Thus the calculated shear stress
distribution depends strongly on both the freestream velocity
gradient and the wall shear stress used in the calculation.
Thus, if both the freestream velocity gradient and the wall
shear stress are chosen independently, the calculated shear
stress distribution need not approach zero at the outer edge
of the boundary layer, as is observed experimentally. In an
effort to correct this, the freestream velocity gradient ;;g
which must be used to give zero shear stress at the freestream
edge of the boundary layer (when the wall shear stress is
obtained from the Ludwieg-Tillmann skin friction law) has
been determined in the following way.

The Von Karman momentum integral equation is

ds + 2+-6-* _e._ d—ue- = -C—f- = Tw (2-7)
dx 6 )] u_ dx 2 puei

with 6 and 6* being the momentum and displacement thicknesses,

respectively. The derivative g% is difficult to determine
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du
with the accuracy necessary to evaluate 3;2 from this

equation as it stands. However, this difficulty can be
du
avoided by differencing this equation for two values of ais’

while noting that g%, 8, 6*, and u_ do not depend on the
due Cf .
value used for X’ while 5 by the residual method coes.

The result is
du C
&%) 6 e _ £
(2.'.3) .__ue A(a_—x) = A(T) (2.8)
so that

(2.9)

Ce
due " ue A T
ax +

Thus, once a computation has been made for a particular
du
value of HEE and the corresponding residual has been found,

the above expression can be used to calculate the change in
du
EEE necessary to make the residual have the value given by

the Ludwieg-Tillmann law.

This equation was used to predict the necessary changes
du
in 3;9 for each of the flows. The absolute and percentage
du
changes from the values of EIE originally used are takulated

in Table 2-2 for all th. flows being considered. For ‘'nst

of the profiles, the changes were considerzd to be witnin
du

the accuracy with which 3§E could be obtained from the

experimental freestream velocity distrihution. (For flows

such as 2400 and 1400 in which some of the originali values
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du
of € are zero or near zero, the percentage changes are
dx

rather meaningless.) Calculations were then made with the
du
new values for HIE for each of the flows. The results will

be discussed in the next chapter.
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CHAPTER 3

CALCULATED SHEAR STRESS AND EDDY VISCOSITY

DISTRIBUTIONS FOR SELECTED VELOCITY PROFILE DATA

The procedure used to calculate shear stress and eddy
viscoasity distributions from measured velocity profile data
has been presented, discussed and evaluated in Chapter 2.

In this chapter, the results obtained by applying this
procedure to one nonequilibrium flow and five equilibrium
flows will be presented in detail. First, the results for
each flow are examined and discussed individually. Then, an

overall view of the results is given.

3.1 FLOW 2400, BRADSHAW - FERRISS RELAXiING FLOW (B=5-+0)
Bradshaw and Ferriss [22] measured mean velocity,
turbulent intensity, and shear stress distributions in a
turbulent boundary layer which is initially in equilibrium
with B8=5 but is suddenly cnanged to a B=0 flow by the
removal of the freestream pressure gradient. The measure-
ments show that the flow is relaxing toward a typical zero
pressure gradient flow but has not yet completed this
relaxation by the last measuring station. For comparison,
Bradshaw and Ferriss 2lso present the distributions measured

when the initial equilibrium flow is maintained in equilibrium
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with B=5 throughout the measuring region. This equilibrium
flow is designated as Flow 2600 and is considered in section
3.3,

As has been stated previously, this flow has been
included av a test case because Bradshaw and Ferriss used a
hot-wire anemometer to measure the shear stress distribution
across the boundary layer at each profile station and calcu-
lated the associated eddy viscosity and mixing length
distributions. Unfortunately, the freestream velocity
distribution is rather uncertain for this flow. In addition
to the values of the freestream velocity tabulated with each
set of velocity profile data, freestream velocities at a
number of cther locations are presented in graphical form,
(This data is tabulated in Volume II of the Stanford
Proceedings [l ])). A comparison shows that these two sets of
freestream velocities do not agree very well. The difficulty
seems to result from confusion as to whether the freestream

u
velocity parameter tabulated with the profile data is L

u
or [ L ] . PBradsh.w (see [ 1]) (and therefore Stanford

UREF u_ 42
also) chose [ < ) . However, there is reason to believe
REF u
that the tabulated quantity is - €_. 1If the value of

u 2 REF

[u - J at each profile station is obtained from a curve
REF

drawn through the tabulated freestream distribution, then

Ye

u
REF
decimal places are the same as the values tabulated with the

when rounded off to two

the corresponding values of

profile dat:., Other data plotted and tabulated by Bradshaw
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support this interpretation. Consequently, some of the

values of u, used in this study are different than those

du
tabulated by Stanford*., Since the gradient 75% is

difficult to obtain with a reasonable degree of accuracy,
tha values of i;% used were those tabulated by Stanford*,
It was recognized that these values were probably not right
for the values of U, used, but this chcice represented a
convenient starting point.

The shear stress distribution measured by Bradshaw is
shown as Figure 3-la. Bradshaw labels the ordinate of this
figure as the turbulent shear stress u'v' non-dimensionalized
by the square of a reference velocity. However, the curves
do not go to zero at the wall but instead go to the value
corresponding to the tibulated wall shear stress. Accordingly,
it has been assumed that the plotted shear stress is the total
(turbulent and laminar) shear stress rather than the
turbulent shear stress alone. Only near the wall do the
total and turbulent shear stresses differ appreciably. For
example, near the peaks of the curves, the laminar shear
stress is only one-thousandth of the turbulent shear stress.

For comparison to Bradshaw's results shown in Figure
3-la, the total shear stress distributions calculated using

the procedure described in the previous chapter with the

du
Stanford values of 15? and the Ludwieg-Tillmann law are shown

*The values of the freestream velocity and its gradient used
in all results presented are tabulated in Table 2-2.

.
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in Figure 3-1b. The orderly progression seen in Bradshaw's
} results where the peak of the curve moves downward and away i
from the wall as the flow proceeds downstream is missing in

du
Figure 3-1b where the Stanford values of 3;2 are used.

Moreover, the peak values are a good bit larger than those

of Bradshaw and Ferriss, even though the values of the wall

shear agree rather well with the experimental values (Table
2-1). » .

If the values of 3;9 are changed so that the freestream
shear stresses are forced to be zero, then the calculated
shear stress distributions are those shown in Figure 3-1lc. %
The calculated distributions now have exactly the same
behavior as the experimental results and the two sets of
curves look very much alike. Unfortunately, the peak values
are still too high, but even here the results are improved.
For profiles 2403 to 2407, the peak values Fuve moved closer
to the experimental values., Only for profiles 2401 and 2402
are the results poorer in terms of the pea2k values. Moreover,
3 the results for profile 2401 are less reliable and should be {
discounted somewhat because at the first profile station it

necessary to use the forward difference scheme to obtain

rather than the more accurate central difference scheme.

f
xia (7]

Although a similar statement can be made for profile '

2407, the calculated and experimental results for that

profile are in rather good agreement. From the results I
shown in Figure 3-1, it appears that the agreement between

calculated and experimental results is improved substantially
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by using for g;ﬁ the values required to make the freestream
shear stresses zero.

The calculated results for this flow give an excellent
justification of the basic approach and the detailed
procedure used in this study. First, it is seen that for
reasonable values of g;ﬁ, such as the Stanford values, the
calculated behavior is qualitatively correct. For example,
for profiles 2405, 2406, 2407, Figure 3-1b shows that,
although the initial shear stress gradient is zero, the
calculated shear stress rises above the wall value before
decreasing in the outer portion of the boundary layer,
matching qualitatively the experimental behavior shown in
Figure 3-la rather than the L havior normally expected for
a zero pressure gradient flow. Secondly, it is seen that
by using the present method (forcing the freestream shear
stress to zero) for obtaining improved values of g;g, the
calculated shear stress distributions are in excellent
qualitative and rather good quantitative agreement with the
experimental results.

For this and each of the five equilibrium flows
discussed in the later sections of this chapter, calculations
of the shear stress, eddy viscosity, and mixing length
distributions were carried out with the two sets of free-
stream velocity gradients given in Table 2-2. In every
case, the distributions calculated with the final freestream
velocity gradient (obta.ned by requiring the freestream

shear stress to be zz:ro at each profile station as described
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in Section 2.2.7) behaved more as expected and, where
comparison was possible, were in substantially better
agreement with available experimental results.
Consequently in the remainder of this chapter, only those
results calculated using the final freestream velocity
gradients will be presented.

The eddy viscosity distributions derived by Bradshaw
and Ferriss from their experimental shear stress and
velocity distributions are shown as Figure 3-2a. Near the
wall, the eddy viscosity distributions for all profile
stations tend to collapse into a single curve when plotted
in the non-dimensional form of Egﬁ;. In the outer portion
of the boundary layer, the distributions diverge, broaden-
ing and reaching higher peak values as the flow proceeds
downstream. Note that the dimensionless eddy viscosity for
this flow exceeds the value of .016 used in many current
eddy viscosity formulas. Figure 3-2b shows the calculated
eddy viscosity distributions. Comparison to the experimental
distributions of Figure 3-2a shows the results to be in
excellent qualitative and reasonably good quantitative
agreement,

The mixing length distributions obtained by Bradshaw
and Ferriss are shown as Figure 3-3a. The mixing length is
seen to increase rather linearly with distance from the wall
For a distance of about 0.7 inch from the wall and then to
remain relatively constant for the rest of the way through

the boundary layer. The value at which the mixing length
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levels out increases as we proceed downstream. For each of
the seven distributions, the slope of the mixing length in
the linear region is significantly greater than 0.40, a
value typical of most current mixing length formulas. As
might be expected from the shear stress and eddy viscosity
distributions, the calculated mixing length distributions
shown in Figure 3-3b agree very well with the experimental
results.

With the overall mixing length distributions presented
in Figure 3-3a, Bradshaw and Ferriss tabulate values of ;
near the wall for each of the seven profiles of Flow 2400.
In order to compare the tabulated values of % with the
calculated results, the results must be shown on a larger
scale. This is done in Figure 3-4. Approximately 15 percent of
the boundary layer is represented by the calculated mixing
length results shown as open or filled circles. The solid
lines are drawn with the slope given by Bradshaw and
Ferriss. Short vertical lines near % = ,03 mark the inner
five percent of the boundary layer. Longer "ertical lines
near % = .06 indicate the ten percent marks for each
profile. It is seen that in the inner five percent of the
boundary layer, the calculated mixing length distributions
have the slopes given by Bradshaw and Ferriss. Between
five percent and ten percent of the way through the boundary
layer the calculated results begin to deviate from the
experimental slopes. Unfcrtunately, Bradshaw and Ferriss

do not make clear just what they mean by "near y = 0",
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However, the excellent agreement between the experimental
and calculated results in the innermost five percent of the
boundary layer must be considered another major justification
of the overall approach and the detail’ed procedure being used
in this study.

Bradshaw and Ferriss chose to present their distribu-
tions in terms of the absolute distance from the wall, i.e.,
in terms of y. However, the relative distance through the
boundary layer expressed as % is a more natural and reason-
able (but not necessarily more correct) choice for presenting
the calculated results. Similarly, most mixing length
theories take the ratio % to be constant in the outer portion
of the boundary layer. Therefore the calculated results for
each of the flows being considered will be presented in terms
of non-dimensionalized distributions. The results discussed
previously for Flow 2400 are presented in non-dimensionalized
form in Figures 3-5. Several advantages to using the non-
dimensionalized forms of the variables nan be seen from these
figures. First, in Figures 3-5a and 3-3r, the maxima of the
shear stress distributions occur at very nearly the same
value of ¥. Second, in Figures 3-5c and 3-5d, the eddy
viscosity and mixing length distributions come much closer
to combining into a single curve than previously. Third,
in Figure 3-5d4, the constant value attained by the mixing
length in the outer portion of the boundary layer usually
falls in the range from .09 to 1§, as compared, for

example, to the value of .09 used in many mixing length
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formulas. It is difficult to know from these results if
this spread in values of % is significant or merely results
from inaccuracies in the calculations. Further analysis of
the results will be deferred until the calculated results

have been presented for all the flows being considered.

3.2 FLOW 2500, BRADSHAW EQUILIBRIUM FLOW (B=1)

Mean velocity measurements in an equilibrium
turbulent boundary layer with B = 1,0 have been presented
by Bradshaw [35]. While [35] contains the values of the
freestream velocity u, only at the four profile stations,
Bradshaw supplied Stanford [ 1) with a tabulation giving ug
at 27 stations, beginning upstream and ending downstream of
the four profile stations. As with Flow 2400, the agreement
between the two distributions is not very good, making the
values for g;ﬂ very uncertain.

The calculated shear stress distributions are shown
in Figures 3-6a and 3-6b. Also shown on these figures is
the measured shear stress distribution given by Bradshaw
for profile 2504. The agreement between the calculated and
measured results is seen to be excellent. The distributions
for profile 2501 have been omitted because they were judged
to be rather inaccurate. Two explanations can be given for
this. First, the forward finite-difference scheme must be
used at the first profile station. Second and probably
more important, the boundary layer is growing very quickly
for this flow. Between station 2501 and station 2502, 4§,
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d*, and 9 nearly double and by the last station (2504) they
are nearly triple their values at station 2501. The value
of %ﬁ calculated at station 2501 does not approach closely
the specified value of g;g until about 2.5 boundary layer
thicknesses from the wall. The corresponding shear stress
distribution goes through a relatively deep minimum before
rising and approaching a constant value. Although a few of
the other 35 profiles studied showed a minimum in the shear
stress distributions, the rise after the minimum was so
small that the minimum could be used as the final value.
Only for this case was the difference not negligikle. For
these reasons, the results for profile station 2501 have
been disregarded.

Although it is difficult to pick values off the plot
given by Bradshaw [35]) with a high degree of accuracy, the
agreement between the experimental results and the calculated
distributions is excellent at least for the inner half of the
boundary layer. The discrepancy in the outer half of the
boundary layer may again be due to the fact that the boundary
layer is growing very fast between stations. The eddy
viscosity and mixing length distributions corresponding to
the shear stress distributions of Figure 3-6b are given in
Figures 3-6¢c and 3-6d, respectively. The distributions for
station 2504 do not agree with the experimental results
quite as well as did the shear stress distribution. 1In
fact, where the shear stress agreed best near the wall,

both the eddy viscosity and the mixing length agree with
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Bradshaw's results better n the central portion of the
boundary layer. The reason for this must lie in the values
of g% used to calculate e and 2. Unfortunately, Bradshaw
does not give any information on how he performed the
necessary differentiation, so a comparison of the techniques
used is not possible.
due
It should be renarked that different values of . 2
X
necessarily lead to different values of B. The various
values of B obtained for all of the profiles studied are
tabulated in Table 3-1l. The table shows that, for any of
du
the sets of H§E’ B is not very constant. However, the
variations in B in the table are probably small enough that

the flow may still be considered an equilibrium flow with a

B of about 0.9 to 1.0.

3.3 FLOW 2600, BRADSHAW - FERRISS EQUILIBRIUM FLOW (8=5)
This flow is the equilibrium companion flow for the
relaxing flow designated as Flow 2400. Bradshaw and Ferriss
[22) state that the freestream velocity distributions are
identical down to the 47-inch station. Downstream of this
point, Flow 2600 remains an equilibrium flow, while Flow
2400 is rapidly changed into a constant pressure flow., As
with both of the previously discussed flows (2400 and 2500),
two freestream velocity distributions are given, The
values used for u, in these calculations are those tabulated

for the four profile stations.
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The calculated shear stress distributions are shown
in Figures 3-7a and 3-7b. Again, results read from a plot
given by Bradshaw [35] are shown. The agreement is not as
good as for Flow 2500, althoygh it is reasonably good in the

wall region., The most probable explanation for the rather

poor agreement in the outer region is the extremely rapid
growth of the boundary layer between profile stations.
Between the first and last stations, the boundary layer
thickness has more than tripled. The relatively wide
spacing between stations causes great uncertainty in the
values of %%. It is for this reason that the results for [
profile 2601 have been omitted.

The calculated eddy viscosity distributions are shown 1

with Bradshaw's results for profile 2604 in Figure 3-7c.

Again, the calculated and experimental results for profile l
2604 agree reasonably well in the wall region but not so

well further from the wall, reflecting the agreement in the

e .

shear stress distributions. Figure 3-7d shows that the
calculated mixing length distribution is in excellent
agreement with the experimental results. This agreement may
be largely fortuitous since the agreement is not as good in

the shear stress distributions. As was the case with the

1
two previous flows, the mixing length distributions tend to ’ ;
collapse into a single curve, especially in the wall region. ‘

Some of the velocity data near the wall looked as

though it needed to be smoothed in the x direction. Since

the flow changes rather drastically between the widely
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spaced profile stations, simple cross-plots of u versus x
and y would not help. Therefore, the four profiles were
plotted in law of the wall coordinates (y+, u+) and a single
curve was faired through the data as far as possible. Values
of u' versus y+ were obtained from this curve and translated
back to %é versus y to replace the unsmoothed experimental
data. The differences were not very large so, when the
calculations were rerun, the new distributions (shown in

Figures 3-7) were virtually identical to the initial ones.

3.4 FLOW 2700, HERRING - NORBURY EQUILIBRIUM FLOW (B=-0,35)

This flow represents an equilibrium boundary layer in
a mild negative pressure gradient. MNeither the wall shear
stress nor the shear stress distribution through the boundary
layer were measured., Instead, Herring and Norbury [36] used
the theory of Mellor and Gibson [34] to calculate these
quantities. Since the calculated shear stress distribution
could not be read with sufficient accuracy from the small
figures of the original paper and since the distribution has
not been recalculated using the Mellor-Gibson theory, no
comparison is made between the Herring-Norbury results and
those of this study.

The calculated shear stress distributions are shown in
Figures 3-8a and 3-8b. The results are somewhat difficult
to analyze since there are no experimental distributions
with which to compare them. The distributions do show the

behavior expected for a negative (favorable) freestream
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pressure gradient, decreasing continuously from the wall

value toward the outer edge of the boundary layer. The eddy
viscosity and mixing length distributions obtained from the
shear distributions of Figure 3-8b are shown in Figures 3-8c

and 3-84.

3.5 FLOW 2800, HERRING - NORBURY EQUILIBRIUM FLOW (8=-0.53)
This flow studied by Herring and Ncrbury [36]
represents an equilibrium boundary layer in a strong
negative pressure gradieni:. It was chosen since B=-0.53
corresponds to the limit of equilibrium flows in a negative
pressure gradient, according to the theory of Mellor and
Gibson [34]. As with Flow 2700, no wall shear stresses or
shear stress distributions through the boundary layer were
measured. Since the distribution calculated from the Mellor-
Gibson theory can not be read from the published figures
with sufficient accuracy, no comparison is made between the
published results and those calculated here. The calculated
shear stress distributions are shown in Figures 3-9a and 3-9b.
The eddy viscosity and mixing length distributions are
shown in Figures 3-9c and 3-9d, respectively. However, it
seems that in the inner third or so of the boundary layer,
the derivative %% needs smoothing. A similar behavior was
initially obtained for Flow 2700, By refitting spline-
functions to the velocity profile data while taking more
care to obtain a smoother derivative, the wiggles which were

worse than for this flow were almost completely removed.
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The resulting distributions were nearly identical to mean
curves drawn through the original distributions. Because of
this and the observation that the most significant findings
of this study concern the results in the region near the
wall where the effect of smoothing would be the least, the
effort was not expended to refit the data and obtain a

smoother derivative.

3.6 FLOW 1400, WIEGHARDT ZERO PRESSURE GRADIENT FLOW (8=0)

Although zero pressure gradient flows have been studied
extensively, this rather classical flow was included in this
study to fill in the results for B=0 and to serve as another
check on the calculations. Wieghardt [24] had taken profile
data at a large number of stations (23), but the amount of
data at each station was very small, especially for the
early profiles. For this reason, only the last ten stations
were included in this study. Even then, the amount of data
for each profile was rather minimal, with none of the data
being taken near enough to the wall to define the profile
shape near the wall.

Initially, calculations were made without smoothing in
the x direction. The calculated shear stress distributions
showed a very erratic behavior near the wall. When the
profile data was plotted versus x rather than y, it was
obvious that smoothing should be done in the x direction.
Figure 3-10 shows the experimental data and curves faired

through the data. Corrected values were read from the
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curves. The resulting shear stress distributions shown in
Figures 3-1lla and 3-1lb were greatly improved near the wall.
The distributions were compared to the calculated
distributions given by Wieghardt and the agreement was quite
good.

Similar results were found for the eddy viscosity
distributions where the unsmoothed (in the x direction) data
produced a rather disorderly distribution. When the data
was smoothed in the x direction, Figure 3-1lc shows that the
resulting eddy viscosity distributions tend to fall together
quite well. The maximum values of the eddy viscosity curves
fall reasonably close to the value of 0.016 currently being
used in most eddy viscosity formulas,

Figure 3-11d shows the mixing length distributions
calculated using the smoothed data. As for the eddy
viscosity results, the mixing length distributions look

nearly identical except for the last station 1423. On the

average, the distributions level out at a value of % of

about 0.085. This value is a little lower than the value of
0.09 commonly used in mixing length formulas.

Overall, the calculated distributions appear very
well behaved and in very good agrcement with previous
results obtained from this flow and other zero pressure
gradient flows. The success of the procedure for this flow

is a further justification for its use.
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3.7 OVERALL VIEW OF RESULTS

In previous sections, the focus was given to each flow
individually. The peculiar characteristics ~f the results
for each flow were noted and discussed briefly, and the
results were compared to experimental results wherever
possible. 1In this section, an attempt will be made to detect
and discuss the main similarities, differences, and trends
present in the results as a whole.

Despite some exceptions by individual profiles, the
overall results exhibit the type of behavior that was
expected from previous efforts to measure or derive the
distributions of shear stress, eddy viscosity, or mixing
length through two-dimensional, incompressible, turbulent
boundary layers. The shear stress distributions calculated
in this study for positive (adverse) pressure gradients
rise from the wall values, reach a maximum, then fall,
reaching zero near the outer edge of the boundary layer.

For zero and negative (favorable) pressure gradients, the
shear stress distributions fall continuously from the wall
values, also reaching zero at the outer edge of the boundary
layer.

For all types of pressure gradients, the eddy viscosity
rises sharply from a zero value at the wall to a maximum
value of about 0.016 uec* before again falling of% toward
zero near the outer edge of the boundary layer. The failure
of many of the calculated eddy viscosity distributions to

reach zero is due to the difficulty of keeping an accurate
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value of the ratio of T

However, it has been found that boundary layer calculations

to %% as both approach zero.

based on an eddy viscosity concept are rather insensitive
to the value of the eddy viscosity in the outer portion of
the boundary layer.

Again for all types of pressure gradient, the mixing
length grows nearly linearly in the wall region, then
rapidly levels out to a relatively constarnt value of about
0.098 for most of the boundary layew. The values of 0.016
ue6* and 0.096 are widely used in current eddy viscosity and
mixing length theories. The variations in the calculated
results about these values may or may not be a significant
result of this study. It is in this outec region that the
results are most sensitive to the numerical techniques, to
the values used for the freestream velocity gradient, and
possibly to other factors, making the validity of the
calculated results more uncertain, Consequently, with the
flows being considered, the significance of these observed
variations cannot be determined with the desired accuracy.

On the other hand, both the eddy viscosity and the
mixing length distributions for each flow tend to fall
together near the wall. Actually, the mixing length
distributions collapse together more than the corresponding
eddy viscosity distributions do, not only in the wall region
but in the outer region also. The mixing length distributions
were also found to be less affected by the finites-difference

Ju

scheme used to obtain = and by the freestream valocity
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gradient. Thus, the mixing length representation seems
better suited to correlate the shear stress distributions in
equilibrium turbulent boundar:; layers. The form of the
mixing length distribution is similar to the ramp-type (or
two-layer) model currently in use in most mixing length
formulas.

The important difference shown in the present results
is the departure of the slope of the mixing length in the
region near the wall from the value of about 0.4 used in
current formulas. A close inspection of the mixing length
figures for the equilibrium flows shows definite relation-
ship between the slope of the linear portion of the mixing
length distribution near the wall and the value of the
equilibrium pressure gradient parameter B. The slope kl
decreases with decreasing B. In order of decreasing B, the
equilibrium flow figures are ~igures 3-7d4, 3-6d, 3-114, 3-8d,
and 3-9d. The slope of the mixing length for each of the
equilibrium flows is shown in Figure 3-12 as a function of B.
For B>0, these results can be fitted approximately by the

formula

k, = 0.4 + 0,182257 [l - exp(-0.32068 B)] (3.1)

1

As indicated by the horizontal lines on the figure, this
effect of pressure gradient is not taken into account in
current mixing length formulas, It should be noted that
the large departure of the slope from currently used values

calculated for Flow 2600 is verified by the experimental
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] measurements of Bradshaw and Ferriss and is supported by
the calculated and experimental results for the companion

relaxing flow, Flow 2400.




NOLTR 74-105

CHAPTER 4

TURBULENT BOUNDARY LAYER COMPUTATION PROCEDURES

USED TO TEST EDDY VISCOSITY FORMULATION

In Chapter 2, a procedure was presented for extracting
shear stress, eddy viscosity, and mixing length distributions
from experimental velocity profile data measured in two-
dimensional, incompressible turbulent boundary layers. The
results obtained for five equilibrium and one non-equilibrium
flows were presented in Chapter 3. These results showed that
for equilibrium flows the mixing length formulation is
superior to the most widely used eddy viscosity formulation
and also that the "constant" in the mixing length formula
which governs the behavior in the fully turbulent region
near the wall depends on the pressure gradient parameter f.

In order to test the effect of the observed variation
in this "constant" due to pressure gradients, calculations
vere made with two turbulent boundary layer computation
procedures using the mixing length formulation. Two
different procedures, one taken from the literature and one
developed specifically for this study, were used in an

attempt to isolate the results from possible effects due to
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the numerical solution techniques being used. In this
chapter, the two computation procedures .rnd the results
obtained are presented and discussed.

Because it is extremely unlikely that any computation
procedure will zccurately predict every aspect of a boundary
layer under the very wide range of conditions of practical
interest, it is usually necessary to evaluate various
procedures on the basis of their ability to predict a very
limited number of characteristics. For example, the
procedures presented at the Stanford conference [ 1] were
evaluated primarily in terms of their ability to predict the
skin friction coefficient, the Reynolds number based on the
boundary layer momentum thickness, and the shape factor (the
ratic of the boundary layer displacement and momentum
thickness). Fcr the present study, the effect of variations
in the mixing length constants will be examined in terms of
only one parameter, the skin friction coefficient. The skin
friction coefficient has been chosen for a number of reasons.
First, the skin friction coefficient is one of the most
significant parameters in the practical application of
turbulent boundary layer theory. Second, the results
presented in the Stanford conference proceedings show that,
for almost all of the flows included, the skin friction
distributions are more uncertain and agree less well with
the experimental results than either the Reynolds number or
the shape factor. Third, the ability to predict the skin

friction coefficient from the slope of the velocity profile
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at the wall without recourse to empirical skin friction laws
is one of the major advantages of the eddy viscosity and
mixing length approaches over nost other boundary layer

computation procedures.

4.1 CEBECI-SMITH PROCEDURE

The primary purpose of the conference at Stanford [1]
was to evaluate the various rethods of predicting turbulent
Eoundary layers. Twenty-seven different prediction methods
were used to calculate sixteen mandatory, and up to seventeen
optional, two-dimensional, incompressible turbulent boundary
layers measured experimentally for a wide range of flow
conditions. 1In addition to the detailed results for each
calculation, an evaluation oZ the comparative success of the
various prediction methods was presented. One of the
methods judged most successftl was that of Cebeci and Smith.,
Because of this and the ease with which it could be converted
to an all mixing length approcach, the Cebeci-Smith procedure

was selected for use in this study.

4,1.1 Description of Cebeci-Smith Procedure

The finite-difference procedure used by Cebeci and
Smith to solve the two-dimensional, incompressible turbulent
boundary layer equations is oresented briefly in [1] and in
detail in [ 2]. The procedure as given is based on a two-
layer eddy viscosity model. The boundary layer equations

are first transformed to a coordinate system that removes
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the singularity at x = 0 and stretches the coordinate normal

T S

to the flow direction., The transformations used are

X =X (4.1)
u, Y
dn = [;;] dy (4.2)
v.
vix,y) = (vxu)) “?£(x,n) (4.3)
where £1 = 4, (4.4)
Ue

(see Symbols for definitions, if necessary). After a

translated stream function defined by

¢ =f-n (4.5)

1 is introduced, the streamwise derivatives are replaced by
three-point finite-difference fornulas.

The resulting ordinary nonlinear differential equation

in ¢ is linearized, converted to finite-difference form, and
solved iteratively using values from the previous iteration
for those terms which had made the differential equation
nonlinear. The finite-difference formulas used are derived
from the Lagrange interpolation formulas and have a variable
grid in the n-direction, permitting shorter steps close to
the wall and longer steps away from the wall. In order to
overcome oscillations and obtain convergence in the iteration
process, it was necessary to use an averaging scheme on the
coefficients of the finite-difference equation (2-point mean
in the x-direction) and on the eddy viscosity expression

(5-point mean in the n-direction).
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Cebeci and Smith [ 2] present in detail results of
tests made to evaluate the nunerical techniques used as well
as comparisons between calculated and experimental results
for both laminar and turbulert boundary layers. Their
procedure is both accurate and fast and can give quite
satisfactory results for many boundary layer calculations
despite the use of an eddy viscosity formulation which is
based on flat-plate data. This basic method for two-
dimensional, incompressible boundary layers has also been
extended to compressible boundary layers, with and without

heat transfer and mass addition, with rather good results.

4.1.2 Tests of Cebeci-Smith Procedure for Flow 2600

In addition to card decks for the computer program,
Cebeci furnished copies of the data decks used to calculate
the equilibrium boundary layer results for the conference at
Stanford. Since the mixing length distributions for Flow
2600, the B=5 equilibrium flow of Bradshaw and Ferriss, give
the greatest departure from current mixing length formulas
for the equilibrium flows considered in this study, Flow
2600 was used as a test case for evaluating the effect of
variations in the mixing length constants. The Cebeci-Smith
program and Flow 2600 data were run unchanged both to check
out the use of tic program and to provide a baseline to

which other calculations could be compared.
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As was shown in equation ( 1.6 ), Cebeci and Smith
express the eddy viscosity in the inner (wall) region in
terms of the mixing length with a value of 0.4 for the inner
constant kl. Before any other changes were made to the
program or to the data furnished by Cebeci, a calculation
was made in which the inner constant was changed from 0.4 to
0.6, the value suggested by Bradshaw's results (Figure 3-3a).
Comparison of the results obtained with the values 0.4 and
0.6 indicated that the effect on the momentum thickness
Reynolds number (~3%) and the shape factor (<1%) was
negligibly small, whereas the skin friction coefficient was
nearly doubled as is shown in Figure 4-1., It is seen that,
for the two values used, the skin friction coefficient
changes very rapidly and in opposite directions in the
neighborhood of the initial station. The two distributions
soon level out and become very similar, but the overall
difference in level created near the initial statiomn
persists. Similar results were obtained when the eddy
viscosity expression used by Cebeci and Smith in the outer
region was replaced with a constant mixing length equal to
0.0858 (where & is the boundary layer thickness). These
results show that changes in the inner mixing length constant
can significantly affect the calculated skin friction distri-
bution.

Calculations incorporating the effect of pressure
gradient on the inner mixing length constant k1 were then

made, The initial velocity profile given by Cebeci and Smith
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was retained, but the freestream velocity distribution and

its derivative were obtained from the analytical expression

-0.255
3 ) (4.6)

u, = 136'51[TT§I7

which gives a good fit to the Bradshaw-Ferriss velocity data.

For a constant outer mixing length equal to 0.0856,
calculations were made first for the Cebeci~Smith inner
mixing length as given by equation ( 1.6 ), then with the
constant 0.4 replaced by 0.55 as obtained from Figure 3-3b
for this flow, and finally, with the constant 0.4 replaced
by kl(B) as given by equation (3.1). The resulting skin
friction distributions are presented in Figure 4-2,

This type of two-layer mixing length model results in
a sharp "knee" at the junction of the inner and outer regions
and, thus, overpredicts the mixing length near this junction.
A continuous mixing length distribution which eliminates this
"knee" and yet has the correct asymptotic behavior can be

represented by
k
2=0.0858 tanh [DTO%':T i-] [l-exp [-*]] (4.7)

where A is chosen to be

P -1
A= 26\)(‘/ . pe 1 ) (4.8)

to be consistent with equation ( 1.6 ). The skin friction

distribution calculated using this expression is also
presented in Figure 4-2 and is seen to be in excellent

agreement with the experimentally determined values.
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In Chapter 3, it was shown that at least one of the
constants (the inner constant kl) appearing in current
mixing length formulas varies with the freestream pres<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>