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Prepared By: 
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ABSTRACT:     The purpose of  this study was   to  improve the accuracy of 
turbulent boundary  layer calculations by  finding an expression for 
the turbulent shear stress which more accurately accounts for the 
effect of the freestream pressure gradient.     Shear stress,   eddy 
viscosity,  and mixing  length distributions  corresponding to a number 
of turbulent boundary  layers were calculated by substituting experimentlly 
measured velocity profile data into the governing equations expressing 
conservation of mass  and momentum.     Distributions were obtained 
for five incompressible,  two-dimensional boundary layers which have 
constant values  of  the pressure gradient  parameter  ß,  where  B  is 
defined as   (boundary  layer displacement thickness)   x   (freestream pressure 
gradient)   ♦   (shear stress at the wall).     Such flows are referred  to as 
eguilibriuir flows.     Tho five equilibrium  flows cover the range from 
moderate acverse pressure gradient to strong favorable pressure 
gradient.    Where comparison is possible,   the calculated distributions 
agree quite well with measured ones.     The calculated results show that 
the mixing  length representation is  superior  for equilibrium flows 
and that the gradient of the mixing length in  the fully turbulent 
region varies significantly with the pressure gradient parameter  ß. 
The mixing  length gradient used in current formulas does not include 
this pressure gradient effect and corresponds  to the value obtained 
for zero pressure gradient   (constant pressure)   flows.     Results for 
a flow in which ß  is  changing rapidly show that the mixing length 
gradient  lags behind  that expected on the basis of the local value 
of 0,   reflecting  the upstream flow history.     The observed 3 
dependence of the mixing length gradient was  tested for the two 
adverse pressure gradient equilibrium flows using two finite- 
difference boundary  layer computation procedures,   the Cebeci-Smith 
procedure and one developed for this study.     The inclusion of  the 
B dependence affected  the computed skin friction distribution 
significantly,  greatly  improving the agreement between the measured 
anc calculated distributions.     When used with a continuous   (rather 
than a two-layer)   mixing  length formula,   the observed 6 dependence 
leads  to nearly perfect agreement with the experimental results. 
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CHAPTER 1 

INTRODUCTION 

The accurate prediction of turbulent boundary layer 

growth is of importance for a great number of fluid-dynamic 

problems. In recent years, substantial Improvements have 

been made in the numerical procedures used to calculate 

turbulent boundary layers.  Unfortunately, these improvements 

have not been matched by equivalent improvements in the 

physics input required for the numerical calculations. As 

will be described in more detail below, the purpose of this 

study is to improve the required physics input. 

1.1 BACKGROUND 

1.1.1 Turbulent Shear Stress and Mean-Field Methods 

The Instantaneous motion of a turbulent fluid is 

governed by the Navier-Stokes equations which express the 

conservation of momentum and the continuity equation which 

expresses the conservation of mass for the flow. However, 

these equations for the instantaneous motion are extremely 

difficult to solve. Moreover, it is usually the mean motion 

of the fluid that is of interest. Therefore, equations 

governing the mean motion are obtained from the instantaneous 

equations by replacing the instantaneous value of each 

          i ^- .■■■.I, ,. in ■mumm 
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variable by the sum of its mean value and its instantaneous 

fluctuation from the mean value, and then averaging the 

equations over a suitable time period.  However, this 

procedure Introduces a turbulent stress tensor, whose 

components aro the time-averages of the products of the 

fluctuating velocity components and are often called the 

Reynolds stzesses.  For most two-dimensional turbulent 

boundary layers, the only Important component is the turbulent 

shear stress -pu'v', although for some flows the normal stress 

component -pv a can also be important.  In these expressions, 

p is the fluid density and u1 and v1 are the fluctuating 

velocity components along and normal to the flow direction. 

To eliminate the need for the turbulent shear stress 

distribution through the boundary layer, the partial 

differential equations governing the mean motion cf the fluid 

are frequently integrated in the direction normal to the flow 

to give an ordinary differential equation in terms oi 

integral boundary layer parameters and the shear stress at 

the wall.  Although such integral approaches still require 

additional input in the form of auxiliary equations or 

empirical relations, they are usually easy to solve and many 

have been in use for years.  However, today integral methods 

no longer offer any real advantage over differential methods 

which give a more detailed description of the boundary layer 

and are easily adapted to many different types of flow 

situations.  In the proceedings [ 1 ] of a conference on the 

computation of turbulent boundary layers held at Stanford 

-   
_J 
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University in 1968, Reynolds discussed the different elements 

which have been used to introduce physics into turbulent 

boundary layer calculations, including various forms of the 

equations of motion, equations of state for turbulence, 

equations for the velocity profile and equations relating the 

wall shear stress to the mean flow properties.  He then 

classified many of the calculation methods then in use 

according to the form of the physics input used*. 

The physics input required for most differential 

methods of calculating two-dimensional, incompressible 

turbulent boundary layers is the turbulent shear stress 

distribution specified in the form appropriate to the 

particular method. As Reynolds points out, the differential 

methods may be divided into two groups, according to the 

treatment of the turbulent shear stress.  The mean-field 

(also called mean-velocity-field) methods assume that the 

turbulent shear stress can be related directly to the local 

mean flow properties, usually the mean rate of strain.  The 

turbulent-field methods relate the turbulent shear stress to 

the turbulence of the flow usually through the turbulent 

kinetic energy.  According to the evaluation committee at 

the Stanford conference [ 1 ], the most successful mean-field 

methods were those of Cebeci and Smith [1,2] and Mellor and 

*In addition, the proceedings contain fairly complete 
descriptions and comparative ratings of the various methods, 
together with a compilation of most of the good velocity 
profile data measured in two-dimensional, incompressible 
turbulent boundary layers. 
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Herring [ 1 ], while the most successful turbulent-field 

method was that of Bradshaw and Ferries [1,3]. 

Although the turbulent-field methods can more properly 

account for the upstream turbulence history, the mean-field 

methods a~e simpler to use, require less sophisticated 

assumptions to specify the turbulent shear stress, and give 

quite good results for a wide range of flow conditions. 

Thus, it is most likely that the variety of different methods 

for specifying the turbulent shear stress now in use will 

continue to be used until the nature of turbulence is more 

fully understood and expressed in a usable mathematical form. 

Even then, the longez computing times that will most probably 

be required for the more complete treatments will necessitate 

the use of simpler, approximate treatments, at least, for 

most engineering applications.  The success of mean-field 

methods and their intermediate position between the older 

integral methods and newer more detailed methods make mean- 

field methods a prime candidate for this role. 

1.1.2 Eddy Viscosity and Mixing Length Concepts 

Most mean-field methods relate the turbulent shear 

stress T_ (»-pu1 V ) to the mean rate of strain ■* using an 

eddy viscosity e or a mixing length t,  defined through the 

relations 

T  ped7 (1.1) 

i  - 
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T 
du 
dy 

du 
dy (1.2) 

where p J..s  the fluid density, u is the mean velocity in the 

flow direction (along the wall), and y is the direction 

normal to the wall.  The concept of an eddy viscosity is due 

to Boussincsq [ 4 ] who introduced it in analogy to the 

kinematic viscosity v which relates the laminar shear stress 

T to the same rate of strain.  However, unlike the kinematic 
L 

viscosity V; the eddy viscosity is not a physical property of 

the fluid, l     is simply a postulated proportionality 

constant between the turbulent shear stress and the rate of 

strain.  On the other hand, the mixing length as introduced 

by Prandtl [ 5 ] has a more physical interpretation.  In 

analogy with the mean free path used in the kinetic theory of 

gases, Prandtl visualized the mixing length as a mean 

distance transverse to the flow direction that a small mass 

(or lump) of fluid moves before the change in its mean 

velocity is equal to the mean transverse fluctuation in the 

flow (see Schlichting [ 6 ] for fuller details). 

Schlichting considers Prandtl' s mixing length to have an 

essential superiority over Boussinesq's eddy viscosity in 

that the mixing length, although still not a property of the 

fluid, is at least a purely local function. However, these 

analogies between the behavior of turbulent flow and the 

molecules of a gas are valid only if the "mean free path" of 

the turbulent eddies is small compared with the distance over 

- - ^^^MM 
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which the mean velocity gradient changes appreciably.  As 

Bradshaw [ 7 ] points out, it is becoming more obvious that 

turbulent boundary layers are dominated by large eddies 

whose size typically is of the same order as the boundary 

layer thickness and that, for such large eddies, the 

analogies that led to the eddy viscosity and mixing length 

concepts are unlikely to be valid.  Moreover, Champagne, 

Harris, and Corrsin [8] point out that even for the simplest 

conceivable shear flow, homogeneous turbulence maintained by 

a uniform mean shear, the principal axes of the turbulei.t 

stress tensor and the strain-rate tensor are not aligned, so 

that the defining equations for the eddy viscosity (1.1) and 

the mixing length (1.2) do not accurately reflect the 

physical situation.  For boundary layers and channel flow, 

the misalignment is even greater.  Only in the plane wake far 

from the synmetry axis are the principal axes of the two 

tensors nearly aligned. 

1.1.3 Eddv Viscosity and Mixing Length Formulas 

Although the validity of the eddy viscosity and mixing 

length concepts may be highly questionable, there is no 

question about the ability of eddy viscosity and mixing 

length formulas to predict fairly accurately the behavior of 

turbulent boundary layers under a wide range of flow 

conditions.  For example, Cebeci and Smith and associates 

have modified and extended their combined eddy viscosity- 

mixing length approach, applying it to incompressible and 

MMM^^^n  ii         
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compressible boundary layers, with and without heat transfer 

and mass addition, with rather good results [1,2,9-15].  The 

combined eddy viscosity-mixing length approach is a result of 

the widespread practice of using two-layer models to 

represent the eddy viscosity and the mixing length distribu- 

tions through the boundary layer.  One formula is used in the 

inner (wall) region and another in the outer region with the 

boundary between the two regions being the point where the 

inner and outer formulas give the same value.  From equations 

(1,1) and (1.2), it is seen that the eddy viscosity and the 

mixing length are related by 

e = 1»U»|. (1.3) 
I yl 

Thus,   a mixing length formula is easily used in what other- 

wise might be called an eddy viscosity approach. 

Some of the more successful combinations used for the 

Stanford conference [ 1 ]   are the following: 

Nq-Patankar-Spaldino 

inner i = 0.435 y   1 - expJ-^^J^"^ (1.4) 

outer i = 0'09yo99 (1,5) 

Cebeci-Smith 

inner 

outer e: = 0.0168ue6*ri + 5.5/^y"|"1 (1.7) 

- __^. -       
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Mellor-Ferrino 

inner c = prfe-gp where X = 0-41 vVj 

outer e ^ e + v = 0.016 uj> 

(1.8) 

(1.9) 

In these evpresslons,   x is  the total  shear stress,  x    Is the 

wall  shear stress, y0 -„ is the value of y at which the flow 

velocity u equals 9994 of its freestream value u  , p    is the 

freestream pressure,   and ö   and 6*  are the boundary layer and 

displacement thicknesses,  respectively. 

It is seen that the inner mixing length formulas used 

by Ng, Patankar,  and Spalding and by Cebeci and Smith are 

quite similar,  both being slight variations of  the modified 

form of the Prandtl irixir.g length 

-«•.«y[i-«*(-3kVF)] (1.10) 

proposed by Van Driest [16]   to account for viscous damping at 

the wall.     Because the Van Driest formula was  derived for 

constant freestream pressure flows,  Ng,   Patankar,  and Spalding 

replace the wall sheer stress x    by the  local  shear stress  x 

to account for non-ssro freestream pressure gradients.    Cebeci 

and Smith do essentially the same thing,  but use a simple 

expression for x which is a good approximation very near the 

wall where the Van Driest damping factor has an influence. 

In the outer region,  Ng, Patankar,   and Spalding use a constant 

mixing length,  while Mellor and Herring use a constant eddy 

viscosity as first suggested by Clauser  [17].     Cebeci  and 
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Smith also use Clauser's eddy viscosity but modify it using 

an approximate formula for Klebanoff's intermittency factor 

[18] which attempts to correct for the fact that the flow in 

the outer region is only intermittently turbulent. 

Examination of the eddy viscosity formulas shows that 

the influence of a freestream pressure gradient is confined 

to the changes it makes in the local shear stress in the 

inner region.  Similarly, the freestream pressure gradient 

influences the mixing length only through the local shear 

stress but now only in the very thin region near the wall 

where the exponential term in the Van Driest damping factor 

is not negligibly small.  The same behavior is observed in 

one of the few continuous mixing length formulas.  Chi and 

Chang [19] have fitted mixing length results derived from 

the Coles' law of the wake [20] using zero pressure gradient 

data by the single formula 

Chi-Chanq 

f=(o.4n-0.5^+0.2n3)[l-exp(-^;^)]     (1.11) 

valid through the entire boundary layer.  If this formula is 

extended to flows with pressure gradient in the same way as 

was Van Driest's formula given by equation (1.10), then the 

pressure gradient again affects the mixing length only 

through the locaJ shear stress very close to the wall. 

.1,,..  ,M..i.,l.l  I .1. 1 ■  I.  .  .in-     I..I ■        iL .„.111. in-    -  ,     ■ ■ ..-.»-„„^-..—i^a^-^»». 
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1.1.4 Further Improvement of Formulas 

There now is theoretical and experimental evidence 

that the effect of pressure gradient on the mixing length 

is not confined to a change in the local shear stress. For 

convenience, the inner mixing length formula will be defined 

in terms of the general form 

*m*i*[l"**{-Tkji)] (1.12) 

Cebeci [13] solved an approximation to the momentum equation 

in the viscous sublayer i.nmediately adjacent to the wall and 

obtained an expression for A+ which reduces for a non-porous 

wall (no mass transfer) to 

Cebeci A+ = A+ J^" (1 + 
Vw 

11.8 P+) (1.13) 

where At Is the zero pressure gradient, zero mass transfer 

value of A+ (Cebeci used A* ■ 26) and P+ is defined by 

P+ =_iL-^P 
puT

3 dx 

with u =V^ 

(1.14) 

(1.15) 

(It should be noted that A+ and P+ are defined differently 

than the quantities used by Cebeci.) 

At about the some time, from an examination of experi- 

mental velocity profiles measured under a wide range of flow 

conditions, Kays [21] obtained an expression for A+ which 

reduces for a non-porous wall to 

10 
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Kays A*" = Aj (1 + 30.18 P+r1 (1.16) 

Although this equation was based only on accelerating flow 

data, Kays indicates that it may be valid for decelerating 

flows as well.  The variation of A+ obtained for a limited 

range of P+ is shown in Figure 1-1. Kays also indicates 

that a rate equation for A+ might be necessary to account 

for the lag observed when P+ is changing very rapidly. 

In addition to A+, the pressure gradient has been 

observed to affect the other mixing length "constant" k. 

appearing In equation (1.12).  Bradshaw and Ferriss (22) 

measured shear stress and velocity distributions in strong 

adverse (positive) pressure gradient flows and calculated 

the corresponding eddy viscosity and mixing length distribu- 

tions. Their results show values of k up to about 0.6 

which is considerably higher than the value of about 0.4 

obtained from zero pressure gradient flow data.  Although 

published in 1965, the results of Bradshaw and Ferriss have 

had little, if any, effect on current eddy viscosity and 

mixing length formulas. 

The measurement of shear stress distributions is time- 

consuming, costly, and difficult for even the simplest of 

flows. Therefore, most "improvements" in eddy viscosity or 

mixing length formulas are obtained by modifying the 

formulas until the calculated results agree reasonably well 

with some experimental results. If the cause of an observed 

11 
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effect can be correctly identified, then such an indirect 

approach has considerable merit.  However, a more direct 

approach is available.  Shear stress distributions can be 

extracted from measured velocity profile data using the 

conservation equations which govern the flow. The corres- 

ponding eddy viscosity and mixing length distributions, 

calculated using the defining equations (1.1) and (1.2), 

are free ot the assumptions on form that are built into any 

formula.  Thus, not only the values of the "constants" but 

also the form of the formula itself can be determined. 3y 

analyzing distributions obtained for a wide range of flow 

conditions, improved eddy viscosity or mixing length 

formulas can be obtained.  In practice, however, this 

procedure must be carried out very carefully witli good 

experimental data in order to obtain useful results. 

This approach is not new.  It has been used in 

different forms by a number of investigators, dating back at 

least to Schultz-Grunow [23] and Wieghardt and Tillmann [24], 

who used it to analyze their own experimental data. Escudier 

[25] also used this approach to obtain mixing length distri- 

butions in incompressible boundary layers, wall jets, and 

pipe or channel flows in an effort to determine whether the 

mixing length could be related uniquely to the distance from 

the wall. Because his results were obtained over a very wide 

range of flow conditions, it is very difficult to detect any 

definite trends.  However, his results do seem to confirm 

the higher value of k^^ obtained by Bradshaw and Ferriss. 

12 
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Spence [26], Maise and McDonald [27], Poe and Holsen [28], 

and Meier and Rotta [29] have applied variations of this 

approach to supersonic compressible boundary layers up to a 

Mach number of 7.  Bushneil and Morris [30,31] have recently 

extended this range to hypersonic Mach numbers up to 20. 

1.2  PURPOSE AND SCOPE OF THIS STUDY 

In general, the purpose of this study is to improve 

the accuracy of turbulent boundary layer calculations by 

finding an expression for the turbulent shear stress which 

more accurately accounts for the effect of the freestream 

pressure gradient. More specifically, the purpose is to 

study eddy viscosity and mixing length approaches for 

turbulent boundary layers with freestream pressure gradients 

in order to determine the appropriateness of these approaches 

for such flows, to evaluate current formulas, and to detect 

possible areas of improvement. First, eddy viscosity and 

mixing length distributions will be extracted from existing 

velocity profile measurements for a number of two-dimensional, 

incompressible turbulent boundary layers with pressure 

gradients.  Next, these distributions will be examined to 

determine the effects of the pressure gradients.  Then, the 

most appropriate correlation of theee results will be tested 

for boundary layers with various pressure gradients using a 

suitable finite-difference computation procedure. 

In order to minimize effects other than those caused by 

the pressure gradient, this study will center on the simplest 

13 
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class of two-dimensional, incompressible turbulent boundary 

layers with pressure gradient, the equilibrium turbulent 

boundary layers.  The term equilibrium is used to denote a 

boundary layer for which the velocity profiles at various 

stations are similar when expressed in the non-dimensional 
u-u^ 

form of u versus X-  (the defect form) where u is the 

shear (or friction) velocity given by equation (1.15) and 6 

is the boundary layer thickness. Although exact similaril-y 

can be achieved only in a few special cases. Clauser [32] 

has achieved near similarity in two adverse pressure gradient 

boundary layers and has found [17] that for such flows the 

pressure gradient parameter ß is constant throughout the flow. 

The parameter 3 is defined by 

Tw dx 
(1.17) 

where  6*  is  the boundary  layer displacement  thickness,  T     is 
dp 

the wall shear stress, and  2. is the freestream pressure 
dx 

gradient.     For incompressible flows,  Townsend   [33]   and Mellor 

and Gibson   [34]  have shown that approximate similarity in the 

velocity profiles  is obtained if  the  freestream velocity u 

varies in proportion to xa where a is the same constant 

throughout the flow.    Since flows with exactly similar 

defect profiles,   flows with constant ß,  and flows with u 

proportional  to x    are practically indistinguishable  from an 

experimental viewpoint,   the term tquilibrium is  usually 

considered  to include all  three.     Zero pressure gradient 

(constant pressure)   boundary layers correspond both  to ß=0 

14 
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and u  « x everywhere and thus are just one member of the 

family of equilibrium boundary layers. 

The very nearly similar velocity profiles occurring 

in an equilibrium boundary layer indicate that the boundary 

layer is in a »täte of equilibrium under the applied free- 

stream pressure distribution and therefore can be considered 

as having a constant flow history.  Because of this constant 

flow history, the edd' viscosity and mixing length 

distributions will also be in equilibrium.  By comparing the 

distributions corresponding to different equilibrium boundary 

layers and therefore to different freestream pressure 

distributions, the effect of the pressure distribution can 

be determined. Although these equilibrium results may not 

apply directly to strongly non-equilibrium boundary layers 

in which the flow is far from equilibrium, the results will 

extend our knowledge of the eddy viscosity and mixing length 

from zero pressure gradient flows to flows with pressure 

gradient and supply a steppiug-stone for a further extension 

to more complex flows. 

15 
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CHAPTER 2 

PROCEDURES USED TO OBTAIN EDD^ VISCOSITY 

FROM VELOCITY PROFILE DATA 

2.1  OUTLINE OF PROCEDUR'i: 

The shear stress distributions for many turbulent 

boundary layers can be obtained by substituting measured 

velocity profile aata into the governing equations for the 

conservation of mass and momentum in the flow.  Appropriate 

datu must be selected and smoothed so that the necessary 

derivatives along and normal to the flow direction may be 

evaluated with reasonable accuracy.  In order to simplify 

the smoothing of a fairly large number of profiles, a spline- 

fit-with-constraints procedure was developed and programmed 

for computer use.  The constraints are imposed to insure that 

the spline-fit satisfies the physical conditions at the 

boundaries of the flow.  The spline-function and its 

derivative are substituted into the governing partial 

differential equations and the shear stress gradient normal 

to the wall is obtained. A fourth-order predictor-corrector 

integration technique is then applied to give the difference 

between the local shear stress and the wall shear stress as 

a function of distance from the wall.  Choosing the wall 

shear stress (which can be done in a number of ways) then 

16 
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gives the total shear stress distribution across the 

boundary layer. The turbulent shear stress, eddy viscosity, 

and mixing length distributions can now be calculated and 

plotted in suitabTe non-dimensional forms to help detect an 

appropriate correlation. 

2.2  DETAILS OF PROCEDURE 

2.2.1 Data Selection 

At the time the search was being made for appropriate 

data, a copy of the data proceedings of the Stanford 

conference II] became available.  As these proceedings had 

very complete tabulations for a number of equilibrium flows, 

it was decided to restrict attention to the included flows, 

at least initially. The most well-known equilibrium flows, 

the two measured by Clauser, although included in the 

proceedings, were bypassed temporarily because of indications 

that these flows are rather strongly three-dimensional.  Five 

equilibrium flows were selected for study. These included 

the adverse pressure gradient flow of Bradshaw ind Ferriss 

[22]  wiuh pressure gradient parameter B95, the adverse 

pressure gradient flow of Bradshaw [35] with 3 = 1  , the zero 

pressure gradient flow of Wle^hardt [24] with ß=0, and the 

two favorable pressure gradient flows of Herring and Norbury 

[36] with 3=-0.35 and ß=-0.53.  The ß=-0.53 case investigated 

by Herring and Norbury lies at the theoretical limit for 

equilibrium flows as predicted by Melior. Also included in 

the study was the relaxing flow of Bradshaw and Ferriss [22] 
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in which the flow abruptly changes from an equilibrium flow 

with ß-5 to a zero pressure gradient flow. This last flow 

was included primarily as a checkout case since Bradshaw and 

Ferriss measured the shear stress distribution at each 

profile station and calculated the corresponding eddy 

viscosity and mixing length distributions. 

2.2.2 Data Smoothing 

After the selected velocity profile data was plotted 

and examined, it was obvious that the data would have to be 

smoothed at least in the y (normal to the wall) direction if 

the necessary derivatives were to be evaluated with 

reasonable accuracy.  Since experimental data very near the 

wall either does not exist or is of questionable accuracy 

for the flows being studied, a search was made for a 

composite formula for the entire "law of the wall" region 

which includes the linear region at the wall and the 

logarithmic region somewhat further away. Generalizing the 

formula suggested by Spalding £37] to 

y - Au + B[e
Cu-l- (Cu) -D^2..E<C|>3-F<§J> * 1   (2.1) 

a computer program was developed to evaluate the "constants" 

A,B,C,D,EfF by a method-of-least-squares fit to the 

experimental data.  This program was prepared in such a way 

that any of the various "constants" could also be held 

constant at a given value or could be related to any other 

constant.  For example, Spalding*s formula corresponds to 

18 
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B = ..OllBv 

c^ 
E = F = 1 

where v is the kinematic viscosity and u Is the shear (or 

T 
friction) velocity defined by u 2 = —-.  Various constant 

values and interrelations were used in en attempt to find 

one combination which would give good results for all the 

profiles to be used.  Such a combination was r.ot found and 

this procedure was set aside. 

In order to smooth and differentiate the data in the 

outer portion of the boundary lav er (outside the wall region) , 

a spline-fit-with-constraints procedure was chosen*.  The 

spline-function consists of a counacting set of "cubics" 

(third-degree polynomials) each representing one section of 

the data and so chosen that the values and first and second 

derivatives of adjacent cubics match at their connecting 

point (or "joint"). Given the number of cubics and the 

locations of the joints, the optimum fit to the experimental 

data is obtained by a least-squares procedure which 

minimizes the sum of the squares of the deviations from the 

data. A different choice for the number of cubics and/or 

the locations of the joints will result in a different fit, 

perhaps better or worse.  The optimum locations of the joints 

for a given number of cubics could be found as part of the 

*Full details of the spllne-fit-with-constraints procedure 
and thi  associated computer program are given in Reference [38] 
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least-squares-fit procedure but such a procedure is very 

much more complicated than that encountered when the 

locations are specified before hand.  To avoid these 

complications, the simpler procedure was used.  The locations 

of the joints were varied in a cut and try manner until a 

satisfactory fit to the experimental data was obtained. 

To ensure that the spline-fit will reproduce the 

observed behavior of boundary layers of the type under 

consideration, consLraints were imposed during the fitting 

procedure.  Since the generalized law of the wall formula 

given by equation (2.1) was not satisfactory, it was 

decided to apply the. spline-fit procedure to the entire layer 

rather than just to the outer portion.  Therefore, one 

constraint imposed was that the velocity at the wall be zero. 

At the outer edge of the boundary layer, the velocity is 

observed to approach the freestream velocity asymptotically. 

To approximate this observed behavior, the velocity was set 

equal to the freestream velocity at some point outside the 

boundary layer and at this point the velocity gradient in the 

normal direction was set equal to zero.  The location of this 

point for each profile was varied until a good fit was 

obtained to the outermost data of that profile. These three 

constraints were applied for each spline-fit. For several 

cases, a fourth constraint was imposed to fix the velocity 

gradient very near the wall (the linear region), but the 

results were not satisfactory.  Regardless of where in the 

supposedly linear region this fourth constraint was imposed. 

20 

- mm 



NOLTR 74-105 

the velocity gradient would not remain constant. Because 

chia was not very satisfactory, the added refinement of the 

fourth constraint was not used in the data reduction. 

Initially the only smoothing done was in the normal-to- 

the-wall direction.  Since typically the number of profiles 

for a given flow were few and rather widely spaced, no 

smoothing was done in the direction along the wall.  Later, 

in an effort to improve the quality of some results, 

smoothing was done on the data near the wall for two flows. 

The results appeared to be improved in the region near the 

wall where the smoothing was done. Further from the wall, 

the results were unchanged.  This smoothing in the along-the- 

wall direction will be discussed later in connection with the 

particular flows involved (Flows 1400* and 2600). 

2.2.3 Governing Equations and Their Solution 

The governing equations for the flows being considered 

are the partial differential equations expressing the 

conservation of mass and momentum in steady, two-dimensional, 

incompressible turbulent boundary layers.  For present 

purposes, these equations are written In the form 

iX . -iü (2 2) 

i. tLA = i ^ + u3u + vlu (2 3, 
3y y p y  p dx + u3x + v3y U•3, 

♦These flow designations were originated by Coles and Hirst 
for the Stanford Conference [1], but are so convenient that 
they are being used in the literature. 
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where u,v are the velocity components in the x,y directions, 

respectively, p is the fluid density, p  is the freestream 

pressure, x represents the total shear stress, i.e., the 

sum of the laminar and the turbulent shear stresses, and 

T is the value of T at the wall. A fuller discussion of 

these equations and all aspects of the numerical procedures 

including the associated computer program is given in 

reference [38]. 

The boundary conditions at the wall are 

- 0, (2.4) 

y = 0 

T-T 
W (2.5) 

y = 0 

Depending on which is given, the freestream pressure 

gradient required in equation (2.3) is obtained either from 

the freestream pressure distribution directly or from the 

freestream velocity distribution using the freestream form 

of equation (2.3) 

—  e a _u   e 
p dx     e dx 
1 dP. 

(2.6) 

Using the spline functions obtained by fitting the 

experimental velocity profile data to represent the velocity 

u and its derivatives, the conservation equations are 
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integrated numerically using a fourth-order predictor- 

corrector  technique  to obtain the normal  flow velocity 
V-T 

and the shear stress  variable w 
as a function of distance 

from the wall.  The results are obtained in this form so 

that a numoer of different values can be tried for the wall 

shear stress T without repeating the integration each time. 

The results are stored on tape and can now be used with any 

given T  to obtain the corresponding distributions of the 

shear stress and other shear dependent quantities such as 

the eddy viscosity and the mixing length. 

2.2.4 Sources of Wall Shear Stress 

In addition to the increased efficiency of the above 

approach, there is the advantage that, instead of requiring 

T at the start, this method supplies a value for T at the 

end of the integration.  Since the shear stress T approaches 

zero as the edge of the boundary layer is approached, the 
tT-T„) w theoretically approaches  a limiting shear variable - 

T 

value of —.  Thus, a value of T can be obtained from the 

profile data itself.  This value of t  is susceptible to 

error from at least three sources; (a) any departures of the 

flow from two-dimensionality, (b) experimental errors in 

measured profile and freestream data, (c) numerical techniques 

used.  Because of these possibilities for error, the value of 

X  as obtained from the calculations is of uncertain accuracy. 

Its greatest significance is probably for use in comparing 

with values of T obtained by other means.  The degree of 
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agreement should be the best measure of the accuracy of the 

results and their freedom from the errors noted above. 

In addition to the method described in the previous 

paragraph, there are a number of methoas for obtaining a 

value for the wall shear stress T .  These methods can be w 
divided into three mair categories.     First,  there are those 

methods which involve the direct measurement of x    at the 
w 

time when the profile data is taken.  Second, there are 

methods by which T is obtained from the detailed profile 

data. Third, there are semi-empirical or theoretical methods 

for obtaining T  for given flow conditions from integril 

parameters only.  In general, the best method of obtaining T 

would be by direct measurement.  However, such measurements 

are relatively difficult to make.  For this reason, direct 

measurements often are not made, and when made, are of 

somewhat uncertain accuracy. Therefore, the value of t must 

often be obtained by the methods of the other two categories. 

Included in the second category are a number of methods 

for obtaining T from the detailed profile data.  If a 

sufficient number of accurately measured velocity profiles 

exist for the flow under study, then, as mentioned in the 

first paragraph of this section, integration of the partial 

differential equations governing the flow can be used to 

obtain a reasonable value for x .    Also included in this category 
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are the methods which, fit a "universal" law to a single 

velocity profile to obtain T . The logarithmic part of the 

"law of the wall" is most often used, but the linear part 

can also be used if experimental data exists close enough to 

the wall.  The "law of the wake" can be used, as was done by 

Coles for the Stanford conference.  The validity and accuracy 

of these methods depend on the  "universality" of both the 

form of the law and the "constants" used in ib.  (Although 

the "constants" are usually considered universal, this is 

not a necessity.  In theory, the "constants" can be chosen 

individually for each profile so that the best fit of the 

chosen form is obtained for each profile.) 

In the third category are those methods which depend 

only on the integral parameters at each measuring station. 

This includes methods using semi-empirical or theoretical 

expressions for T  (usually in terms of the skin friction 

coefficient) such as the Ludwieg-Tillmann law [39] , the 

Spalding-Chi law I 40] f and others.  The main difficulty with 

these methods is that they assume the "universality" of the 

law, at least, for flows of a given type.  Since the laws are 

usually obtained by fitting a limited amount of data, the 

assumption of "universality" is not too well proven. Also 

included in this category is the use of the integrated form 

of the governing equations known as the Von Kanran momentum 

integral equation.  This integral approach depends on the 

accuracy with which the necessary derivatives can be 

evaluated numerically or graphically and is particularly 
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poorly suited for flows with an adverse pressure gradient for 

which T is obtained from a difference of two nearly equal 

terms. 

Thus, a number of methods exist for "estimating" t , 

each with its own advantages and disadvantages.  Unfortunately, 

each of these methods is usually influenced by different 

factors, so that the various values of T do not necessarily 

agree.  However, for the flows being considered in this study. 

Table 2-1 shows that good agreement exists between the wall 

shear stresses obtained from experiment, from the Ludwieg- 

Tillmann skin friction law, and from fits of the law of the 

wall or law of the wake to the profile data.  Since preliminary 

calculations made to evaluate the accuracy of the procedure 

showed that the values of T obtained as the residual* of 
W ' 

T"Tw   at the edge of the boundary layer fluctuated erratically 

and were in extremely poor agreement with the values obtained 

by the other methods, the Ludwieg-Tillman skin friction law 

was used to determine the wall shear stress T  in all subse- w 
guent calculations,  whether or not a value had been determined 

experimentally. 

du 

2.2.5 Freestream Velocity Gradient from Wall Shear Stress 

The value assigned to the freestream velocity gradient 

was found to have a significant effect on the results 

* This technique for obtaining T will be referred to as the 
residual method. 
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T-T w obtained, particularly on the residual value of —-— 

obtained at the outer edge of the boundary layer.  However, 

if a realistic wall shear stress (experimental or Ludwieg- 

Tillmonn formula) is used, the effect of the freestream 

velocity gradient on the shear stress, eddy viscosity, 

and mixing length distributions is negligibly small near the 

wall but increases rapidly with distance through the boundary 

layer. A typical example of this was given in an earlier 

report on this work I41J .  Thus the calculated shear stress 

distribution depends strongly on both the freestream velocity 

gradient and the wall shear stress used in the calculation. 

Thus, if both the freestream velocity gradient and the wall 

shear stress are chosen independently, the calculated shear 

stress distribution need not approach zero at the outer edge 

of the boundary layer, as is observed experimentally.  In an 
due effort to correct this, the freestream velocity gradient -j— 

which must be used to give zero shear stress at the freestream 

edge of the boundary layer (when the wall shear stress is 

obtained from the Ludwieg-Tillmann skin friction law) has 

been determined in the following way. 

The Von Karman momentum integral equation is 

a t 4-fi*\ s_ f^s - !k - J» (2.7) 
cE  V 6 / u„ dx   2 ^ pue 

with 9 and 6* being the momentum and displacement thicknesses, 

de 
dx respectively.  The derivative -r- is difficult to determine 
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due with the accuracy necessary to evaluate g— from this 

equation as it stands.  However, this difficulty can be 

avoided by differencing this equation for two values of 

while noting that -5—, e, 6*, and u do not depend on the 
du ax     C£     

e 

value used for -5—, while -^ by the residual method does. 

The result is 

du. 

K) k <%) - 4) (2.8) 

so that 

(2.9) 

Thus, once a computation has been made for a particular 
due value of g— and the corresponding residual has been found, 

the above expression can be used to calculate the change in 
due 
T—— necessary to make the residual have the value given by 

the Ludwieg-Tillmann law. 

This equation was used to predict the necessary changes 
due 

in -j— for each of i,he flowd.  The absolute and percentage 
du 

changes from the values of 3— originally used are tabulated 

in Table 2-2 for all th. flows being considered.  For ost 

of the profiles, the changes were conside^ad to be witnin 
due 

the accuracy with which -r—  could be obtained from the 

experimental freestream velocity distribution.  (Fox flows 

such as 2400 and 1400 in which some of the original values 
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du. 
of -j— are zero or near zero,  the percentage changes are 

rather meaningless.)     Calculations were then made with the 
du 

new values for IT for each of the flows.  The results will 

be discussed in the next chapter. 
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CHAPTER 3 

CALCULATED SHEAR STRESS AND EDDY VISCOSITY 

DISTRIBUTIONS FOR SELECTED VELOCITY PROFILE DATA 

The procedure used to calculate shear stress and eddy 

v-i-icosity distributions from measured velocity profile data 

has been presented, discussed and evaluated in Chapter 2. 

In this chapter, the results obtained by applying this 

procedure to one noneguilibrium flow and five equilibrium 

flows will be presented in detail. First, the results for 

each flow are examined and discussed individually.  Then, an 

overall view of the results is given. 

3.1  FLOW 2400, BRADSHAW - FERRISS RELAXING FLOW (ß=5*0) 

Bradshaw and Ferriss [22] measured mean velocity, 

turbulent intensity, and shear stress distributions in a 

turbulent boundary layer wh^ch is initially in equilibrium 

with 3a5 but is suddenly cnanged to a 0=0 flow by the 

removal of the freestream pressure gradient.  The measure- 

ments show that the flow is relaxing toward a typical zero 

pressure gradient flow but has not yet completed this 

relaxation by the last measuring station. For comparison, 

Bradshaw and Ferriss elso present the distributions measured 

when the initial equilibrium flow is maintained in equilibrium 
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with ß=5 throughout the measuring region.  This equilibrium 

flow is designated as Flow 2600 and is considered in section 

3.3. 

As has been stated previously, this flow has been 

included aj a test case because Bradshaw and Ferriss used a 

hot-wire anemometer to measure the shear stress distribution 

across the boundary layer at each profile station and calcu- 

lated the associated eddy viscosity and mixing length 

distributions.  Unfortunately, the freestream velocity 

distribution is rather uncertain for this flow. In addition 

to the values of the freestream velocity tabulated with each 

set of velocity profile data, freestream velocities at a 

number of other locations are presented in graphical form. 

(This data is tabulated in Volume II of the Stanford 

Proceedings [ 1]). A comparison shows that these two sets of 

freestream velocities do not agree very well.  The difficulty 

seems to result from confusion as to whether the freestream 
u_ 

velocity parameter tabulated with the profile data is 
"REF 

or I—=—| . Pradsh w (see [1]) (and therefore Stanford 
REF-'   i  u 

also) chose 
• u  i 

However, there is reason to believe 
Uä 

If the value of 
"REF-' 

that the tabulated quantity is — 
2 UREF 

at each profile station is obtained from a curve 
'REF-' 

drawn through the tabulated   freestream distribution,   then 

— when rounded off  to two 

1 Uncii^J 

the corresponding values of 
"REF 

decimal places are the same as the values tabulated with the 

profile data.  Other data plotted and tabulated by Bradshaw 
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support  this  interpretation.     Consequently,   some of the 

values of u    used in this  study are  different than those 
e J du  e 

dx 
tabulated by Stanford*.  Since the gradient ~— i.= 

difficult to obtain with a reasonable degree of accuracy, 
du 

th-T values of  S. used were those tabulated by Stanford*. 
dx 

It was recognized that these values were probably not right 

for the values of u used, but this choice represented a 

convenient starting point. 

The shear stress distribution measured by Bradshaw is 

shown as Figure 3-la.  Bradshaw labels the ordinate of thi» 

figure as the turbulent shear stress u'v' non-dimensionalized 

by the square of a reference velocity. However, the curves 

do not go to zero at the wall but instead go to the value 

corresponding to the tabulated wall shear stress.  Accordingly, 

it has been assumed thai the plotted shear stress is the total 

(turbulent and laminar) shear stress ratner than the 

turbulent shear stress alone.  Only near the wall do the 

total and turbulent shear stresses differ appreciably.  For 

example, near the peaks of the curves, the laminar shear 

stress is only one-thousandth of the turbulent shear stress. 

For comparison to Bradshaw's results shown in Figure 

3-la, the total shear stress distributions calculated using 

the procedure described in the previous chapter with the 
du 

Stanford values of —£ and the Ludwieg-Tillmann law are shown 

*The values of the freestream velocity and its gradient used 
in all results presented are tabulated in Table 2-2. 
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in Figure 3-lb.  The orderly progression seen in Bradshaw's 

results where the peak of the curve moves downward and away 

from the wall as the flow proceeds downstream is missing in 
due 

Figure 3-1'b where the Stanford values of -r— are used. 

Moreover, the peak values are a good bit larger than those 

of Bradshaw and Ferriss, even though the values of the wall 

shear agree rather well with the experimental values (Table 

2-1). 
due If the values of -j-* are changed so that the freestream 

shear stresses are forced to be zero, then the calculated 

shear stress distributions are those shown in Figure 3-lc. 

The calculated distributions now have exactly the same 

behavior as the experimental results and the two sets of 

curves look very much alike. Unfortunately, the peak values 

are still too high, but even here the results are improved. 

For profiles 2403 to 2407, the peak values have moved closer 

to the experimental values. Only for profiles 2401 and 2402 

are the results poorer in terms of the peak values. Moreover, 

the results for profile 2401 are less reliable and should be 

discounted somewhat because at the first profile station it 

is necessary to use the forward difference scheme to obtain 

~  rather than the more accurate central difference scheme. 
dx 

Although a similar statement can be made for profile 

2407, the calculated and experimental results for that 

profile are in rather good agreement. From the results 

shown in Figure 3-1, it appears that the agreement between 

calculated and experimental results is improved substantially 
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by usina for ——  the values required to make the freestream 
dx 

shear stresses zero. 

The calculated results for this flow give an excellent 

justification of the basic approach and the detailed 

procedure used in this study.  First, it is seen that for 
due 

reasonable values of -^—» such as the Stanford values, the dx 

calculated behavior is qualitatively correct. For example, 

for profiles 2405, 2406, 2407, Figure 3-lb shows that, 

although the initial shear stress gradient is zero, the 

calculated shear stress rises above the wall value before 

decreasing in the outer portion of the boundary layer, 

matching qualitatively the experimental behavior shown in 

Figure 3-la rather than the L_havior normally expected for 

a zero pressure gradient flow.  Secondly, it is seen that 

by using the present method (forcing the freestream shear 
du_ 

stress to zero) for obtaining improved values of —£, the 
dx 

calculated shear stress distributions are in excellent 

qualitative and rather good quantitative agreement with the 

experimental results. 

For this and each of the five equilibrium flows 

discussed in the later sections of this chapter, calculations 

of the shear stress, eddy viscosity, and mixing length 

distributions were carried out with the two sets of free- 

stream velocity gradients given in Table 2-2. In every 

case, the distributions calculated with the final freestream 

velocity gradient (obta tned by requiring the freestream 

shear stress to be z^ro at each profile station as described 
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in Section 2.2.7) behaved more as expected and, where 

comparison was possible, were in substantially better 

agreement with available experimental results. 

Consequently in the remainder of this chapter, only those 

results calculated using the final freestream velocity 

gradients will be presented. 

The eddy viscosity distributions derived by Bradshaw 

and Ferriss from their experimental shear stress and 

velocity distributions are shown as Figure 3-2a. Near the 

wall, the eddy viscosity distributions for all profile 

stations tend to collapse into a single curve when plotted 

in the non-dimensional form of —£-.  In the outer portion 
ueö* 

of the boundary layer, the distributions diverge, broaden- 

ing and reaching higher peak values as the flow proceeds 

downstream.  Note that the dimensionless eddy viscosity for 

this flow exceeds the value of .016 used in many current 

eddy viscosity formulas.  Figure 3-2b shows the calculated 

eddy viscosity distributions. Comparison to the experimental 

distributions of Figure 3-2a shows the results to be in 

excellent qualitative and reasonably good quantitative 

agreement. 

The mixing length distributions obtained by Bradshaw 

and Ferriss are shown as Figure 3-3a.  The mixing length is 

seen to increase rather linearly with distance from the wall 

for a distance of about 0.7 inch  from the wall and then to 

remain relatively constant for the rest of the way through 

the boundary layer. The value at which the mixing length 
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levels out Increases as we proceed downstream.  For each of 

the seven distributions, the slope of the mixing length in 

the linear region is significantly greater than 0.40, a 

value typical of most current mixing length formulas.  As 

might be expected from the shear stress and eddy viscosity 

distributions, the calculated mixing length distributions 

shown in Figure 3-3b agree very well with the experimental 

results. 

With the overall mixing length distributions presented 

in Figure 3-3a, Bradshaw and Ferriss tabulate values of — y 

near the wall for each of the seven profiles of Flow 2400. 
0 

In order to compare the tabulated values of - with the 

calculated results, the results must be shown on a larger 

scale. This is done in Figure 3-4.  Approximately 15 percent of 

the boundary layer is represented by the calculated mixing 

length results shown as open or filled circles.  The solid 

lines are drawn with the slope given by Bradshaw and 

Ferriss.  Short vertical lines near T ■ .03 mark the inner 

five percent of the boundary layer.  Longer ••ertical lines 

near * ■ , 06 Indicate the ten percent marks for each 

profile.  It is seen that in the inner five percent of the 

boundary layer, the calculated mixing length distributions 

have the slopes given by Bradshaw and Ferriss.  Between 

five percent and ten percent of the way through the boundary 

layer the calculated results begin to deviate from the 

experimental slopes.  Unfortunately, Bradshaw and Ferriss 

do not make clear just what they mean by "near y = 0". 
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However, the excellent agreement between the experimental 

and calculated results in the innermost five percent of the 

boundary layer must be considered another major justification 

of the overall approach and the detailed procedure being used 

in this study. 

Bradshaw and Ferriss chose to present their distribu- 

tions in terms of the absolute distance from the wall, i.e., 

in terms of y.  However, the relative distance through the 

boundary layer expressed as ^ is a more natural and reason- 

able (but not necessarily more correct) choice for presenting 

the calculated results.  Similarly, most mixing length 

theories take the ratio 4 to ^e constant in the outer portion 
o 

of the boundary layer.  Therefore the calculated results for 

each of the flows being considered will be presented in terms 

of non-dimensionalized distributions.  The results discussed 

previously for Flow 2400 are presented in non-dimensionalized 

form in Figures 3-5.  Several advantages to using the non- 

dimensionalized forms of the variables oan be seen from these 

figures. First, in Figures 3-5a and 3-iJb, the maxima of the 

shear stress distributions occur at very nearly the same 

value of *.  Second, in Figures 3-5c and 3-5d, the eddy 

viscosity and mixing length distributions come much closer 

to combining into a singla curve than previously. Third, 

in Figure 3-5d, the constant value attained by the mixing 

length in the outer portion of the boundary layer usually 

falls in the range from .096 to .'16, as compared, for 

example, to the value of .096 used in many mixing length 
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formulas.     It  is difficult to know from these results if 

this spread in values of -r is significant or merely results 

from inaccuracies in the calculations.     Further analysis of 

the results will be deferred until the calculated results 

have been presented for all the flows being considered. 

3.2     FLOW  2500,   BRÄ3SHAW EQUILIBRIUM FLOW   (ß3l) 

Mean velocity measurements in an equilibrium 

turbulent boundary layer with  0 = 1.0 have been presented 

by Bradshaw   [35].    While  [35]  contains the values of the 

freestream velocity ue only at the four profile stations, 

Bradshaw supplied Stanford  [ 1] with a tabulation giving u 

at  27 stations,  beginning upstream and ending downstream of 

the four profile stations.     As with Flow 2400,  the agreement 

between the two distributions Is not very good,  making the 

values for —S very uncertain, 
die 

The calculated shear stress distributions  are shown 

in Figures 3-6a and 3-6b.    Also shown on these figures is 

the measured shear stress distribution given by Bradshaw 

for profile 2504.    The  agreement between the calculated and 

measured results  is seen to be excellent.     The distributions 

for profile 2501 have been omitted because they were Judged 

to be rather inaccurate.    Two explanations can be given for 

this.    First,  the forward finite-difference scheme must be 

used at the first profile station.     Second and probably 

more important,  the boundary layer is growing very quickly 

for this flow.     Between station 2501 and station 2502,  6, 
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<S*, and 6 nearly double and by the last station (2504) they 

are nearly triple their values at station 2501.  The value 

of dU 
3x calculated at station 2501 does not approach closely 

du. 
the specified value of —§ until about 2.5 boundary layer 

dx 
thicknesses from the wall.  The corresponding shear stress 

distribution goes through a relatively deep minimum before 

rising and approaching a constant value.  Although a few of 

the other 35 profiles studied showed a minimum in the shear 

stress distributions, the rise after the minimum was so 

small that the minimum could be used as the final value. 

Only for this case was the difference not negligible. For 

these reasons, the results for profile station 2501 have 

been disregarded. 

Although it is difficult to piclc values off the plot 

given by Bradshaw [35] with a high degree of accuracy, the 

agreement between the experimental results and the calculated 

distributions is excellent at least for the inner half of the 

boundary layer.  The discrepancy in the outer half of the 

boundary layer may again be due to the fact that the boundary 

layer is growing very fast between stations.  The eddy 

viscosity and mixing length distributions corresponding to 

the shear stress distributions of Figure 3-6b are given in 

Figures 3-6c and 3-6d, respectively.  The distributions for 

station 2504 do not agree with the experimental results 

quite as well as did the shear stress distribution. In 

fact, where the shear stress agreed best near the wall, 

both the eddy viscosity and the r.ixing length agree with 
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Bradshaw's results better In the central portion of the 

boundary layer.  The reason for this must lie in the values 

of iü used to calculate e and i.     Unfortunately, Bradshaw 
ay 

does not give  any information on how he  performed the 

necessary differentiation,   so a comparison of the techniques 

used is  not possible. 
due It should be remarked that different values of -g— dx 

necessarily lead to different values of ß.  The various 

values of 3 obtained for all of the profiles studied are 

tabulated in Table 3-1.  The table shows that, for any of 
due the sets of --—^, ß is not very constant.  However, the 

variations in ß in the table are probably small enough that 

the flow may still be considered an equilibrium flow with a 

ß of about 0.9 to 1.0. 

3.3 FLOW 2600, BRADSHAW - FERRISS EQUILIBRIUM FLOW (ß=5) 

This flow is the equilibrium companion flow for the 

relaxing flow designated as Flow 2400.  Bradshaw and Ferriss 

[22] state that the freestream velocity distributions are 

identical down to the 47-inch station.  Downstream of this 

point. Flow 2600 remains an equilibrium flow, while Flow 

2400 is rapidly changed into a constant pressure flow.  As 

with both of the previously discussed flows (2400 and 2500), 

two freestream velocity distributions are given.  The 

values used for u in these calculations are those tabulated e 

for the four profile stations. 
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The calculated shear stress distributions are shown 

in Figures 3-7a and 3-7b.  Again, results read from a plot 

given by Bradshaw [35] are shown. The agreement is not as 

good as for Flow 2500, althoi^gh it is reasonably good in the 

wall region.  The most probable explanation for the rather 

poor agreement in the outer region is the extremely rapid 

growth of the boundary layer between profile stations. 

Between the first and last stations, the boundary layer 

thickness has more than tripled.  The relatively wide 

spacing between stations causes great uncertainty in the 

values of -g^.  It is for this reason that the results for 

profile 2601 have been omitted. 

The calculated eddy viscosity distributions are shown 

with Bradshaw's results for profile 2604 in Figure 3-7c. 

Again, the calculated and experimental results for profile 

2604 agree reasonably well in the wall region but not so 

well further from the wall, reflecting the agreement in the 

shear stress distributions.  Figure 3-7d shows that the 

calculated mixing length distribution is in excellent 

agreement with the experimental results.  This agreement may 

be largely fortuitous since the agreement is not as good in 

the shear stress distributions.  As was the case with the 

two previous flows, the mixing length distributions tend to 

collapse into a single curve, especially in the wall region. 

Some of the velocity data near the wall looked as 

though it needed to be smoothed in the x direction.  Since 

the flow changes rather drastically between the widely 
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spaced profile stations, simple cross-plots of u versus x 

and y would not help.  Therefore, the four profiles were 

plotted in law of the wall coordinates (y , u ) and a single 

curve was faired through the data as far as possible. Values 

of u versus y were obtained from this curve and translated 
u 

back to u versus y to replace the unsmoothed experimental 
e 

data.  The differences were not very large so, when the 

calculations were rerun, the new distributions (shown in 

Figures 3-7) were virtually identical to the initial ones. 

3.4  FLOW 2700, HERRING - NORBURY EQUILIBRIUM FLOW (ß—0.35) 

This flow represents an equilibrium boundary layer in 

a mild negative pressure gradient.  Neither the wall shear 

stress nor the shear stress distribution through the boundary 

layer were measured.  Instead, Herring and Norbury [36] used 

the theory of Nellor and Gibson [34] to calculate these 

quantities.  Since the calculated shear stress distribution 

could not be read with sufficient accuracy from the small 

figures of the original paper and since the distribution has 

not been recalculated using the Mellor-Gibson theory, no 

comparison is made between the Herring-Norbury results and 

those of this study. 

The calculated shear stress distributions are shown in 

Figures 3-8a and 3-8b.  The results are somewhat difficult 

to analyze since there are no experimental distributions 

with which to compare them. The distributions do show the 

behavior expected for a negative (favorable) freestream 
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pressure gradient, decreasing continuously from the wall 

value toward the outer edge of the boundary layer.  The eddy 

viscosity and mixing length distributions obtained from the 

shear distributions of Figure 3-8b are shown in Figures 3-8c 

and 3-8d. 

3.5  FLOW 2800, HERRING - NORBURY EQUILIBRIUM FLOW (3=-0.53) 

This flow studied by Herring and Ncrbury [36] 

represents an equilibritun boundary laynr in a strong 

negative pressure gradient.  It was chosen since 3=-0.53 

corresponds to the liir.it of equilibrium flows in a negative 

pressure gradient, according to the theory of Mellor and 

Gibson [34J. As with Flow 2700, no wall shear stresses or 

shear stress distributions through the boundary layer were 

measured.  Since the distribution calculated from the Mellor- 

Gibson theory can not be read from the published figures 

with sufficient accuracy, no coinparison is made between the 

published results and those calculated here.  The calculated 

shear stress distributions are shown in Figures 3-9a and 3-9b, 

The eddy viscosity and mixing length distributions are 

shown in Figures 3-9c and 3-9d, respectively.  However, it 

seems that in the inner third or so of the boundary layer, 

3u the derivative -r— needs smoothing. A similar behavior was 

initially obtained for Flow 2700.  By refitting spline- 

functions to the velocity profile data while taking more 

care to obtain a smoother derivative, the wiggles which were 

worse than for this flow were almost completely removed. 
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The resulting distributions were nearly identical to mean 

curves drawn through the original distributions.  Because of 

this and the observation that the most significant findings 

of this study concern the results in the region near the 

wall where the effect of smoothing would be the least, the 

effort was not expended to refit the data and obtain a 

smoother derivative. 

3.6  FLOW 1400, WIEGHARDT ZERO PRESSURE GRADIENT FLOW (ß=0) 

Although zero pressure gradient flows have been studied 

extensively, this rather classical flow was included in this 

study to fill in the results for 0=0 and to serve as another 

check on the calculations.  Wieghardt [24] had taken profile 

data at a large number of stations (23), but the amount of 

data at each station was very small, especially for the 

early profiles.  For this reason, only the last ten stations 

were included in this study.  Even then, the amount of data 

for each profile was rather minimal, with none of the data 

being taken near enough to the wall to define the profile 

shape near the wall. 

Initially, calculations were made without smoothing in 

the x direction.  The calculated shear stress distributions 

showed a very erratic behavior near the wall.  When the 

profile data was plotted versus x rather than y, it was 

obvious that smoothing should be done in the x direction. 

Figure 3-10 shows the experimental data and curves faired 

through the data.  Corrected values were read from the 
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curves.  The resulting shear stress distributions shown in 

Figures 3-lla and 3-llb were greatly improved near the wall. 

The distributions were compared to the calculated 

distributions given by Wieghardt and the agreement was quite 

good. 

Similar results were found for the eddy viscosity 

distributions where the unsmoothed (in the x direction) data 

produced a rather disorderly distribution. When the data 

was smoothed in the x direction. Figure 3-11c shows that the 

resulting eddy viscosity distributions tend to fall together 

quite well. The maximum values of the eddy viscosity curves 

fall reasonably close to the value of 0.016 currently being 

used in most eddy viscosity formulas. 

Figure 3-lld shows the mixing length distributions 

calculated using the smoothed data. As for the eddy 

viscosity results, the mixing length distributions look 

nearly identical except for the last station 1423.  On the 
o 

average, the distributions level out at a value of T of 

about 0.085.  This value is a little lower than the value of 

0.09 commonly used in mixing length formulas. 

Overall, the calculated distributions appear very 

well behaved and in very good agreement with previous 

results obtained from this flow and other zero pressure 

gradient flows. The success of the procedure for this flow 

is a further justification for its use. 
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3.7  OVERALL VIEW OF RESULTS 

In previous sections, the focus was given to each flow 

individually. The peculiar characteristics cf  the results 

for each flow were noted and discussed briefly, and the 

results were compared to experimental results wherever 

possible.  In this section, an attempt will be made to detect 

and discuss the main similarities, differences, and trends 

present in the results as a whole. 

Despite some exceptions by individual profiles, the 

overall results exhibit the type of behavior that was 

expected from previous efforts to measure or derive the 

distributions of shear stress, eddy viscosity, or mixing 

length through two-dimensional, incompressible, turbulent 

boundary layers.  The shear stress distributions calculated 

in this study for positive (adverse) pressure gradients 

rise from the wall values, reach a maximum, then fall, 

raaching zero near the outer edge of the boundary layer. 

For zero and negative (favorable) pressure gradients, the 

shear stress distributions fall continuously from the wall 

values, also reaching zero at the outer edge of the boundary 

layer. 

For all types of pressure gradients, the eddy viscosity 

rises sharply from a zero value at the wall to a maximum 

value of about 0.016 u 6* before again falling of:  toward 

zero near the outer edge of the boundary layer.  The failure 

of many of the calculated eddy viscosity distributions to 

reach zero is due to the difficulty of keeping an accurate 
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value of the ratio of TT to »— as both approach zero. 

However, it has been found that boundary layer calculations 

based on an eddy viscosity concept are rather insensitive 

to the value of the eddy viscosity in the outer portion of 

the boundary layer. 

Again for all types of pressure gradient, the mixing 

length grows nearly linearly in the wall region, then 

rapidly levels out to a relatively cons tar. t value of about 

0.096 for most of the boundary laycv.  The values of 0.016 

u 5* and 0.096 are widely used in current eddy viscosity and 

mixing length theories. The variations in the calculated 

results about these values may or may not be a significant 

result of this study.  It is in this outc-L region that the 

results are most sensitive to the numerical techniques, to 

the values used for the freestream velocity gradient, and 

possibly to other factors, making the validity of the 

calculated results more uncertain.  Consequently, with the 

flows being considered, the significance of these observed 

variations cannot be determined with the desired accuracy. 

On the other hand, both the eddy viscosity and the 

mixing length distributions for each flow tend to fall 

together near the wall. Actually, the mixing length 

distributions collapse together more than the corresponding 

eddy viscosity distributions do, not only in the wall region 

but in the outer region also.  The mixing length distributions 

were also found to be less affected by the finita-difference 

scheme used to obtain -^ and by the freestream velocity 
dX 
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gradient.  Thus, the mixing length, representation seems 

better suited to correlate the shear stress distributions in 

equilibrium turbulent boundary layers.  The form of the 

mixing length distribution is similar to the ramp-type (or 

two-layer) model currently in use in most mixing length 

formulas. 

The important difference shown in the present results 

is the departure of the slope of the mixing length in the 

region near the wall from the value of about 0.4 used in 

current formulae.  A close inspection of the mixing length 

figures for the equilibrium flows shows definite relation- 

ship between the slope of the linear portion of the mixing 

length distribution near the wall and the value of the 

equilibrium pressure gradient parameter ß.  The slope k, 

decreases with decreasing 3.  In order of decreasing ß, tne 

equilibrium flow figures are Figures 3-7d, 3-6d, 3-lld, 3-8d, 

and 3-9d.  The slope of the mixing length for each of the 

equilibrium flows is shown in Figure 3-12 as a function of ß. 

For ß>0, these results can be fitted approximately by the 

formula 

k1 =  0.4 + 0.182257 [1 - exp(-0.32068 ß)] (3 .1) 

As indicated by the horizontal lines on the figure, this 

effect of pressure gradient is not taken into account in 

current mixing length formulas.  It should be noted that 

the large departure of the slope from currently used values 

calculated for Flow 2600 is verified by the experimental 
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measurements of Bradshaw and Ferriss and is supported by 

the calculated and experimental results for the companion 

relaxing flow, Flow 2400. 
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CHAPTER 4 

TURBULENT BOUNDARY LAYER COMPUTATION PROCEDURES 

USED TO TEST EDDY VISCOSITY FORMULATION 

In Chapter 2, a procedure was presented for extracting 

shear stress, eddy viscosity, and mixing length distributions 

from experimental velocity profile data measured in two- 

dimensional, incompressible turbulent boundary layers.  The 

results obtained for five equilibrium and one non-equilibrium 

flows were presented in Chapter 3.  These results showed that 

for equilibrium flows the mixing length formulation is 

superior to the most widely used eddy viscosity formulation 

and also that the "constant" in the mixing length formula 

which governs the behavior in the fully turbulent region 

near the wall depends on the pressure gradient parameter ß. 

In order to test the effect of the observed variation 

in this "constant" due to pressure gradients, calculations 

were made with two turbulent boundary layer computation 

procedures using the mixing length formulation.  Two 

different procedures, one taken from the literature and one 

developed specifically for this study, were used in an 

attempt to isolate the results from possible effects due to 
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the numerical solution techniques being used.  In this 

chapter, the two computation procedures .rd  the results 

obtained are presented and discussed. 

Because it is extremely unlikely that any computation 

procedure will accurately predict every aspect of a boundary 

layer under the very wide range of conditions of practical 

interest, it is usually necessary to evaluate various 

procedures on the basis of their ability to predict a very 

limited number of characteristics.  For example, the 

procedures presented at the Stanford conference [ 1 ] were 

evaluated primarily in terms of their ability to predict the 

skin friction coefficient, the Reynolds number based on the 

boundary layer momentum thickness, and the shape factor (the 

ratio of the boundary layer displacement and momentum 

thickness).  For the present study, the effect of variations 

in the mixing length constants will be examined in terms of 

only one parameter, the skin friction coefficient. The skin 

friction coefficient has been chosen for a number of reasons. 

First, the skin friction coefficient is one of the most 

significant parameters in the practical application of 

turbulent boundary layer theory.  Second, the results 

presented in the Stanford conference proceedings show that, 

for almost all of the flows included, the skin friction 

distributions are more uncertain and agree less well with 

the experimental results than either the Reynolds number or 

the shape factor.  Third, the ability to predict the skin 

friction coefficient from the slope of the velocity profile 
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at the wall without recourse to empirical skin friction laws 

is one of the major advantages of the eddy viscosity and 

raiximj length approaches over most other boundary layer 

computation procedures. 

4.1  CEBECI-SMITH PROCEDURE 

The primary purpose of the conference at Stanford II] 

was to evaluate the various methods of predicting turbulent 

boundary layers.  Twenty-seven different prediction methods 

were used to calculate sixteen mandatory, and up to seventeen 

optional, two-dimensional, incompressible turbulent boundary 

layers measured experimentally for a wide range of flow 

conditions.  In addition to the detailed results for each 

calculation, an evaluation of the comparative success of the 

various prediction methods v/as presented.  One of the 

methods judged most successful was that of Cebeci and Smith. 

Because of this and the ease with which it could be converted 

to an all mixing length approach, the Cebeci-Smith procedure 

was selected for use in this study. 

4.1.1 Description of Cebeci-Smith Procedure 

The finite-difference procedure used by Cebeci and 

Smith to solve the two-dimensional, incompressible turbulent 

boundary layer equations is presented briefly in I 1 ] and in 

detail in I 2].  The procedure as given is based on a two- 

layer eddy viscosity model.  The boundary layer equations 

are first transformed to a coordinate system that removes 
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the singularity at x =  0  and stretches  the coordinate normal 

to the flow direction.     The transformations used are 

x = x (4.1) 

dn = [Ue]1/2. 

v2. 

where 

Tii(.x,y)   =   (vxu )   zf(x,n) 

f   = =-. 

(4.2) 

(4.3) 

(4.4) 

(see Symbols  for definitions,  if necessary).     After a 

translated stream function defined by 

(j) = f - n (4.5) 

is introduced, the streamwise derivatives are replaced by 

three-point finite-difference formulas. 

The resulting ordinary nonlinear differential equation 

in Q  is linearized, converted to finite-difference form, and 

solved iteratively using values from the previous iteration 

for those terms which had made the differential equation 

nonlinear.  The finite-difference formulas used are derived 

from the Lagrange interpolation formulas and have a variable 

grid in the n-direction, permitting shorter steps close to 

the wall and longer steps away from the wall.  In order to 

overcome oscillations and obtain convergence in the iteration 

process, it was necessary to use an averaging scheme on the 

coefficients of the finite-difference equation (2-point mean 

in the x-direction) and on the eddy viscosity expression 

(5-point mean in the n-direction). 
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Cebeci and Smith [ 2] present in detail results of 

tests made to evaluate the nunerical techniques used as well 

as comparisons between calculated and experimental results 

for both laminar and turbulent boundary layers.  Their 

procedure is both accurate and fast and can give quite 

satisfactory results for many boundary layer calculations 

despite the use of an eddy viscosity formulation which is 

based on flat-plate data.  This basic method for two- 

dimensional, incompressible boundary layers has also been 

extended to compressible boundary layers, with and without 

heat transfer and mass addition, with rather good results. 

4.1.2 Tests of Cebeci-Smith Procedure for Flow 2600 

In addition to card decks for the computer program, 

Cebeci furnished copies of the data decks used to calculate 

the equilibrium boundary layer results for the conference at 

Stanford.  Since the mixing length distributions for Flow 

2600, the 0»5 equilibrium flow of Bradshaw and Ferriss, give 

the greatest departure from current mixing length formulas 

for the equilibrium flows considered in this study. Flow 

2600 was used as a test case for evaluating the effect of 

variations in the mixing length constants.  The Cebeci-Smith 

program and Flow 2600 data were run unchanged both to check 

out the use of the program and to provide a baseline to 

which other calculations could be compared. 
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As was shown in equation ( 1.6 ), Cebeci and Smith 

express the eddy viscosity in the inner (wall) region in 

terms of the mixing length with a value of 0.4 for the inner 

constant k,.  Before any other changes were made to the 

program or to the data furnished by Cebeci, a calculation 

was made in which the inner constant was changed from 0.4 to 

0.6, the value suggested by Bradshaw's results (Figure 3-3a). 

Comparison of the results obtained with the values 0.4 and 

0.6 indicated that the effect on the momentum thickness 

Reynolds number (-3%) and the shape factor (<1%) was 

negligibly small, whereas the skin friction coefficient was 

nearly doubled as is shown in Figure 4-1.  It is seen that, 

for the two values used, the skin friction coefficient 

changes very rapidly and in opposite directions in the 

neighborhood of the initial station.  The two distributions 

soon level out and become very similar, but the overall 

difference in level created near the initial station 

persists. Similar results were obtained when the eddy 

viscosity expression used by Cebeci and Smith in the outer 

region was replaced with a constant mixing length equal to 

0.0856 (where 6 is the boundary layer rnickness).  These 

results show that changes in the inner mixing length constant 

can significantly affect the calculated skin friction distri- 

bution. 

Calculations incorporating the effect of pressure 

gradient on the inner mixing length constant k, were then 

made.  The initial velocity profile given by Cebeci and Smith 
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was retained, but the freestream velocity distribution and 

its derivative were obtained from the analytical expression 

u - 136 e •
51

(T^T7) 

-0.255 
(4.6) 

which gives a good fit to the Bradshaw-Ferriss velocity data. 

For a constant outer mixing length equal to 0.0855, 

calculations were made first for the Cebeci-Smith inner 

mixing length as given by equation ( 1.6 ), then with the 

constant 0.4 replaced by 0.55 as obtained from Figure 3-3b 

for this flow, and finally, with the constant 0.4 replaced 

by ki (3) as given by equation (3.1). The resulting skin 

friction distributions are presented in Figure 4-2. 

This type of two-layer mixing length model results in 

a sharp "knee" at the junction of the inner and outer regions 

and, thus, overpredicts the mixing length near this junction. 

A continuous mixing length distribution which eliminates this 

"knee" and yet has the correct asymptotic behavior can be 

represented by 

11=0.0850 tanh [^^ j| [ l-exp (-j)] (4.7) 

where A is chosen to be 

A = 26v ({V^iY1 
(4.8) 

to be consistent with equation ( 1.6 ).  The skin friction 

distribution calculated using this expression is also 

presented in Figure 4-2 and is seen to be in excellent 

agreement with the experimentally determined values. 
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In Chapter 3, it was shown that at least one of the 

constants (the inner constant k,) appearing in current 

mixing length formulas varies with the freestream pressure 

gradient.  In this section, the effect of this variation on 

the calcul-ted skin friction distribution for an equilibrium 

turbulent boundary layer in a moderate adverse pressure 

gradient has been evaluated using the highly successful 

Cebeci-Smith computation procedure.  The results showed that 

the calculated skin friction distribution is significantly 

affected by the increase in the inner constant observed in 

the mixing length distributions for this ß=5 flow (Figures 

3-3b and 3-12).  The effect of possible variations in the 

other two mixing length constants has been found to be much 

less significant. To verify the results presented in this 

section, similar numerical experiments were made with a 

second computation procedure. 

4.2  PROCEDURE DEVELOPED FOR THIS STUDY 

The second turbulent boundary layer computation 

procedure used to evaluate the effect of pressure gradient 

on the mixing length formula constants was developed 

specifically for this study.  As was mentioned previously, 

two different procedures were used in order to isolate the 

effect of the numerical solution techniques being used. 

Because the Cebeci-Smith procedure is rather elaborate and 

sophisticated, a very simple and straightforward procedure 

was chosen as the second approach to be used. 
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4.2.1 Description of Present Procedure 

The computation procedure developed in this study, 

like the Cebeci-Smith procedure described earlier, approxi- 

mates the governing boundary layer equations expressed in 

terms of an eddy viscosity by linearized, implicit finite- 

difference equations which must be solved iteratively. 

Instead of the transformations used in the Cebeci-Smith 

procedure, the equations are solved in the x.y coordinate 

system with the only transformations being from the velocity 

variables u and v to the dimensionless velocity ratios — 

v e 

and —.    Although such  a simple approach may not be adequate 
e 

for  calculations  under  a wide range of  flow conditions,   it 

has  proven quite adequate for  the calculations made in this 

study.* 

The nonlinear partial differential equations are 

solved by an iterative procedure somewhat similar to that 

used by Cebeci and Smith.  First, the equations are linearized 

by assuming that the coefficients which had made the equations 

nonlinear are known from a previous iteration. Since these 

coefficients actually depend on the solution, the linearized 

equations must be solved repeatedly until the results of two 

successive iterations converge to the desired degree.  The 

*The basic mathematical procedure has also been used by 
Chi and Glowacki [42] to calculate turbulent boundary layers 
beneath intense vortices with very good results. 
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linearized differential equations are now written in the 

finite-difference form valid at the middle of a six-point 

grid (three points in y direction at two adjacent x stations). 

If the values of — are known for all grid-points at 
e 

the upstream station, then, using the known boundary conditions 

at the wall and at the outer edge of the boundary layer, 

the finite-difference equations can be solved for values of 

— and — for all grid-points at the downstream station.  Thus, 
e     e 
given the velocity distribution at some initial station, the 

calculation marches downstream, station by station, until 

the desired termination point is reached. 

Complete details of the mathematical procedure and of 

the FORTRAN IV computer program using it are presented in 

Reference I38J . 

4.2.2 Tests of Present Procedure for Flow 2600 

Numerical experiments, similar to those described for 

the Cebeci-Smith procedure, were carried out for flow 2600 

to evaluate the effect of the pressure gradient dependence 

of the mixing length constants on the calculated skin 

friction distributions. As indicated before. Flow 2600, the 

3=5 equilibrium flow of Bradshaw and Ferriss [22], was 

selected as the test case because the mixing length distribu- 

tions for this flow (Figures 3-3b and 3-12) show the greatest 

departure from currently used formulas. 
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The first mixing length constant varied was the inner 

constant k,.  In addition to the values of 0.4 and 0.55 used 

with the Cebeci-Smith procedure, calculations were made with 

k, as a function of the pressure gradient parameter ß as 

given by equation (3.1).  The calculated skin friction 

distributions shown in Figure 4-3 exhibit the same behavior 

observed in the Cebeci-Smith results of Figure 4-2.  The 

widely used value of 0.4 underpredicts the skin friction 

substantially, while the "improved" value of 0.55 or the 

variable k, obtained from equation (3.1) overpredicts the 

experimental results.  The variable k. distribution departs 

from the distribution obtained using 0.55 (corresponding to 

k,(ß) when ß equals the experimental value of 5.4) because 

the overprediction in the skin friction causes the calculated 

value of ß to be less than 5.4.  The procedure is somewhat 

self-correcting since a smaller value of ß leads to a smaller 

skin friction coefficient.  The skin friction distribution 

calculated using the continuous mixing length formula 

as given by equation (4.7) again is in extremely good 

agreement with the experimental results. 

Next, pressure gradient effects on the wall mixing 

length parameter A occurring in the damping factor of 

equation (4.7) were investigated.  In addition to the 

expression for A given by equation (4.8), the expressions 

(VFT A = 26v   14/— I (4.9) 
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and 

A = 26v W" (1+11.8P) 

1 
2 (4.10) 

(corresponding to the damping factors used by Van Driest in 

equation (1.10) and Cebeci in equation (1.13), respectively) 

were used with the continuous mixing length formula of 

equation (4.7).  Calculations with both the Cebeci-Smith 

proi.adure and the present procedure yielded virtually 

identical skin friction distributions for this case.  The 

calculations made using equation (4.9) for A gave very 

slightly better agreement with the experimental results and 

are shown in Figure 4-4. 

Also shown in Figure 4-4 is the skin friction 

distribution calculated for an equilibrium flow with ß=5.4. 

For this calculation, the freestream velocity downstream of 

the initial station and the freestream velocity gradient 

everywhere were obtained from the requirement that 6=5.4 

everywhere.  The resulting freestream velocity distribution 

was also in very good agreement with the experimental one. 

4.2.3 Tests of Present Procedure for Flow 2500 

Following the significant improvement in the calculated 

skin friction distribution obtained for Flow 2600, the 

procedure was applied to the mild adverse pressure gradient 

flow of Bradshaw [35] with ß"l.  Since this flow has a less 

severe pressure gradient than Flow 2600, the results were 

not expected to be affected as strongly by the inclusion of 
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the pressure gradient effect on the inner mixing length 

constant k,. For ß=l, k1(ß)=0.45, a valuo not substantially 

different than the value of 0.4 used in many present mixing 

length formulas. 

For a freestream velocity proportional to x  (with 

a = -0.15) and also for a freestream velocity chosen to make 

8=1 everywhere, calculations were made with the two-piece 

mixing length formula represented by equation (1.10) in the 

inner region and 

Si  = 0.0856 (4.11) 

in the outer region.     The two calculations  agreed quite well 

with each other but underpredicted  the experimental skin 

friction distribution by about ten percent,   as is shown in 

Figure 4-5.     However,  when the calculations were repeated 

for the continuous mixing length formula of  equation  (4.7) 

using A from equation   (4.9)   and k1(3)   from equation   (3.1), 

the resulting skin friction distributions are in much better 

agreement with  the experimental results. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

A procedure has been presented for extracting shear 

stress distributions from measured velocity profile data for 

two-dimensional, incompressible turbulent boundary layers 

using the governing partial differential equations expressing 

the conservation of mass and momentum in the flow. This 

procedure has been used to obtain shear stress distributions 

for five equilibrium and one non-equilibrium flows and the 

corresponding eddy viscosity and mixing length distributions 

have been calculated. 

Uncertainties inherent in the evaluation of the 

velocity derivative in the flow direction, both in and 

outfide the boundary layer, have been shown to affect the 

calculated distributions negligibly near the wall but 

significantly further away from the wall, with the mixing 

length distributions least affected. 

To determine the shear stress distribution through the 

boundary layer, the freestream velocity and velocity gradient 

and the wall shear stress must be known.  However, these 

quantities cannot be chosen independently if the shear stress 

is to approach zero at the edge of the boundary layer as is 

observed experimentally.  The values of the wall shear stress 
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which must be used with a given freestreara velocity gradient 

in order to make the shear stress approach zero at the edge 

of the boundary layer are frequently unreasonable.  If the 

Ludwieg-Tillmann skin friction formula is used to give the 

wall shear stress for a given freestream velocity gradient, 

the shear stress usually does not approach zero at the edge 

of the boundary layer.  However, the calculated distributions 

agree exceptionally well with available experimerital results 

if the Ludwieg-Tillmann formula is used to give the wall 

shear stress and the freestream velocity gradient is assigned 

the value which now makes the shear stress approach zero at 

the edge of thn boundary layer. 

When this technique is used to improve the values of 

the freestream velocity gradient, the eddy viscosity and 

mixing length distributions calculated for each equilibrium 

boundary layer tend to collapse into a single curve, 

especially in the wall region.  Since the mixing length 

distributions collapse somewhat better than the eddy 

viscosity distributions and also are less affected by 

uncertainties in the velocity derivative as was mentioned 

above, the mixing length formulation is preferable for use 

in correlating shear stress distributions for equilibrium 

boundary layers. 

The slope of the mixing length distributions in the 

wall region for equilibrium turbulent boundary layers 

increases with increasing values of the pressure gradient 

parameter ß.  For 3 equal to zero, the expected value of 0.4 
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is obtained for this slope, while for 3 equal to 5.4, the 

slope increases to 0.55.  This value not only verifies the 

values derived by Bradshaw and Ferriss from their measured 

shear stress and vnlocity profiles, but also verifies the 

accuracy of their entire experiment. 

For nonequilibrium flows in which ß is changing 

rapidly, the slope of the mixing length distribution in the 

wall region lags significantly behind that expected on the 

basis of the local value of ß, reflecting the upstream 

history of the flow.  This result indicates that the use of 

a mixing length approach to relate the shear stress 

distribution to the local velocity profile is not a good 

approximation unless the mixing length formula is modified 

to reflect the upstream flow history. 

In order to evaluate the effect of the observed 

dependence of the mixing length on ß, calculations were made 

for the ß=5 equilibrium flow using two completely independent 

finite-difference boundary layer computation procedures, the 

very successful Cebeci-Smith procedure and one developed 

specifically for this study.  The results obtained with the 

two procedures agreed quite well, verifying the accuracy 

both of the results and of the procedures themselves. 

Examination of the calculated results showed that the 

skin friction distribution was affected greatly by the 

inclusion of the pressure dependence observed for the inner 

mixing length constant.  When the observed dependence on ß 

was combined with a continuous mixing length formula, the 
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resulting skin friction distributions agreed almost perfectly 

with the experimental ones. 

Improved results were also obtained when this procedure 

was applied to the ß = 1 equilibrium flow.  The procedure 

used to extract the shear stress distributions from the 

experimental velocity profile data is a simple, but powerful, 

technique.  Moreover, it is easily extended to more complex 

flows, such as compressible flows with and without heat and 

mass transfer.  Therefore, the experimentalist should find it 

useful to provide shear stress, eddy viscosity, and mixing 

length distributions corresponding to his measured velocity 

profile distributions and to serve as a check on the two- 

dimensionality of his flow and the accuracy of his measure- 

ments. The theoretician should apply this procedure to 

successively more complex groups of flows in an effort to 

develop a mixing length or other eddy viscosity formulation 

which accurately incorporates all major influences on the 

flow development. 
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TA3LZ   2-1 

DIMENSIONLESS WALL   SHEAR  STRZSr^S   (Cf)   FROM VARIOUS   SOURCES 

PROFILE MEASURED LUDWIEG- LAW OF LAW OF 
NUMBER VALL-Z TILLMANN WALL WAKE 

FLOW 2400 2401 .00135 .001372 .001405 .001261 
BRADSHAW-FERRISS 2402 .00139 .001382 .001419 .001263 
RELAXING FLOW 2403 .00149 .001447 .001515 .001345 

(ß«5*0) 2404 .00167 .001565 .001695 .001441 
2405 .00173 .001680 .001856 .001577 
2406 .00183 .001806 .002005 .001710 
2407 .00192 .001894 .002105 .301828 

FLOW 2500 2501 .00224 .002370 .00230 .002210 
BRADSHAW 2502 .00211 .002140 .00218 .002127 
EQUILIBRIUM FLOW 2503 .00203 .002000 .00205 .002003 

(ß-1) 2504 .00183 .001893 .00195 .001905 

FLOW 2600 2601 .00145 .001419 .00142 .001239 
BRADSHAW-FERRISS 2602 .00132 .001359 .00138 .001267 
EQUILIBRIUM FLOW 2603 .00125 .001366 .00139 .001289 

(ß^S) 2604 .00123 .001273 .00132 .001226 

FLOW 2700 2701 .00343* .003447 .00339 .003349 
HERRING-NORBURY 2702 .00344* .003422 .00338 .003329 
EQUILIBRIUM FLOW 2 703 .00359* .003645 .00352 .003507 

(ß=-0.35) 2704 .00353* .003634 .00352 .003 520 
2705 .003 53* .003521 .00346 .003454 
2 706 .00345* .003416 .00340 .003377 

FLOW 2800 2801 .00334* .0J3271 .00327 .003215 
HERRING-NORBURY 2802 .00341* .003378 .00333 .003285 
EQUILIBRIUM FLOW 2803 .00360* ,003516 .003 50 .003496 

(ß=-0.53) 2804 .00375* .003677 .00367 .003691 
2305 .00352* .003702 .00375 .003771 

FLOW 1400 1414 _ .002693 .00269 .002663 
WIEGHARDT 1415 - .002652 .00266 .002630 
ZERO PRESSURE 1416 - .002661 .00260 .002591 
GRADIENT FLOW 1417 - .002617 .00260 .002568 

(ß=0) ±418 - .002574 .00256 .002519 
1419 - .002537 .00253 .002488 
1420 - .002506 .00247 .002469 
1421 - ,002454 .00247 .002431 
1422 - ,002423 .00246 .002435 
1423 - ,002398 .00243 .002422 

Note;     Law of Wall and Law of   Wake Values  are Taken  from Coles   I 1J 

Calculated  using Mellor-Gibscn  Theory   134] . 
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TABLE   2-2 

FREESTREAM VELOCITY  AND  GRADIENTS  USED 

PROFILE VELOCITY ORIGINAL* FINALt % 
NUMBER ue due/dx due/dx CHANGE 

(FT/SEC) (SEC-1) (SEC-1) 

FLOW 2400 2401 114.51 -5.80 -7.9746 -37.5 
BRADSHAW-FERRISS 2402 111.65 -4.00 -4.1660 -4.2 
RELAXING FLOW 2403 110.05 -2.20 -1.3778 +37.4 

(3=5-0) 2404 110.00 -0.50 0.4514 + 190. 
2405 110.00 0. C.5447 _ 
2406 110.00 0. -0.0480 _ 
2407 110.00 0. 0.1716 - 

FLOW 2500 2501 143.42 -10.34 -13.0670 -26.4 
BRADSHAW 2502 129.22 -4.66 -5.2404 -12.5 
EQUILIBRIUM FLOW 2503 123.47 -3.55 -3.9068 -10.] 

(3=1) 2504 118.98 -2.69 -3.1747 -18.0 

FLOW 2600 2601 136.51 -17.98 -30.9237 -72.0 
BRADSHAW-FERRISS 2602 113.78 -7.33 -5.9336 + 19.1 
EQUILIBRIUM FLOW 2603 104.93 -4.89 -4.7041 +3.8 

(3=5) 2604 98.39 -3.58 -4.0545 -13.3 

FLOW 2700 2701 76.50 2.65 3.1862 +20.2 
HERRING-NORBURY 2702 79.80 4.90 5.3341 +8.9 
EQUILIBRIUM FLOW 2703 84.60 6.13 7.6231 + 24.4 

(3 =-0.35) 2704 90.50 6.20 7.8278 + 26.3 
2705 97.10 6.25 7.3178 +17.1 
2706 103.60 6.25 6.6778 +6.8 

FLOW 2800 2801 76.90 5.00 3.5122 -29.8 
HERRING-NORBURY 2802 82.60 7.30 6.4305 -11.9 
EQUILIBRIUM FLOW 2803 90.80 9.50 10.9433 +15.2 

(3 =-0.53) 2804 101.40 12.00 15.8174 +31.8 
2805 115.40 17.00 16.4292 -3.4 

FLOW 1400 1414 108.27 0. 0.5119 _ 
WIEGHARDT 1415 108.27 0. 0.1418 _ 
ZERO PRESSURE 1416 108.27 0. 0.0978 _ 
GRADIENT FLOW 1417 108.27 0. 0.0801 _ 

(3=0) 1418 108.27 0. 0.1440 _ 
1419 108.27 0. 0.1401 _ 
1420 108.27 0. -0.1646 _ 
1421 108.27 0. 0,0083 _ 
1422 108.27 0. 0.0941 _ 
1423 108.27 0. -0.2633 - 

♦Original  due/dx obtained from experimental ue distribution. 

tFinal  due/dx obtained from  zero  freestream shear stress. 

73 



NOLTR  74-105 

TABLE   3-1 

PRESSURE GRADIENT  PARAMETER p   FROM VARIOUS  SOURCES 

Profile    Experiment    Stanford    Original*    Finalt 
Number due/clx due/dx 

FLOW  2400 2401 - 
BRADSHAW-FERRISS 2402 - 

RELAXING  FLOW 2403 - 
(3 s 5-0) 2404 - 

2405 0. 
2406 0. 
2407 0. 

FLOW  2500 2501 0.990 
BRADSHAW 2502 0.890 
EQUILIBRIUM FLOW 2503 0.900 

(0 = 1) 2504 0.915 

FLOW  2600 2601 5.100 
BRADSHAW-FERRISS 2602 5.480 
EQUILIBRIUM FLOW 2603 5.380 

(9 = 5) 2604 5.400 

FLOW  2700 2701 -0.229 
HERRING-NORBURY 2702 -0.384 
EQUILIBRIUM FLOW 2703 -0.355 

(9 =-0.35) 2704 -0.348 
2705 -0.354 
2706 -0.345 

FLOW  2800 2801 -0.548 
HERRING-NORBURY 2802 -0.579 
EQUILIBRIUM FLOW 2803 -0.620 

(9 =-0.53) 2804 -0.525 
2805 -0.539 

FLOW  1400 1414 0. 
WIEGHARDT 14.15 0, 
ZERO  PRESSURE 1416 0. 
GRADIENT FLOW 1417 0. 

(9=0) 1418 0, 
1419 0. 
1420 0. 
1421 0. 
1422 0. 
1423 0. 

4.040 4.030 5.540 
3.026 3.099 3.228 
1.637 1.705 1.068 
0.325 0.349 -0.315 

0. 0. -0.342 
0. 0. 0.028 
0. 0. -0.094 

0.869 0.929 1.174 
0.824 0.868 0.976 
0.858 0.961 1.058 
0.973 0.982 1.159 

5.20Ö 5.064 8.710 
5.139 5.218 4.224 
4.292 4.779 4.597 
5.172 5.185 5.872 

0.211 -0.207 -0.249 
0.388 -0.381 -0.415 
0.390 -0.386 -0.481 
0.360 -0.349 -0.440 
0.341 -0.337 -0.394 
0.333 -0.331 -0.353 

0.490 -0.489 -0.343 
0.634 -0.636 -0.542 
0.617 -0.606 -0.698 
0.527 -0.513 -0.676 
0.544 -0.535 -0.517 

0. 0. -0.058 
0. 0. -0.018 
0. 0. -0.013 
0. 0. -0.012 
0. 0. -0.024 
0. 0. -0.025 
0. 0. 0.031 
0. 0. -0.002 
0. 0. -0.021 
0. 0. 0.062 

♦Original  due/dx obtained from experimental Ue distribution. 

tFinal  due/dx obtained from zero freestream shear stress. 
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