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Reported herein is an investigation of the Gurney formula and a
restudy of results of experimentally derived Gurney constants.
It is shosm that differences in reported Gurney constants stem
from differences in experimental conditions of the tests and in
some instances from incorrect analysin of the data. A modified
Gurney equation which improves the range of application in terms
of charge/mass ratio is given.

The work was performed under ORD Task No. 35D/001/092-1/UR-023-04-Ol,
"Energy Transfer Studies." It should bý of interest to engineers
and scientists who are designing, developJng, testing, or analyzing
fragmenting weapens or other devices or systems in which the
velocity of fragments propelled by explosions is of importance.

A

ROBERT WILLIAMSON II
Captain, USN
Commander
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THE GURNEY FORMULA: VARIATIONS ON A THEME BY LA3RANGE

S I. INTRODUCTION

An approximation to the velocity of fragments expelled from a
projectile or bomb was formulated in a very simple expression by

Gurney' 2 during World War II. Since that work, numerous papers have

appeared on the subject 3 1 1 . These include applications to plane
(sandwi-h), cylindrical, and spherical symmetric systems; and also
discuss limitations of the formula. It is interesting that two

8 10authors, Henry and Defourneaux , noted (but without references)
that the plane flow formulation is an approximation to the interior
ballistic problem of guns, a problem first stated by Lagrange in

1793 (see 1 2 -14 for detailr). Lagrange's approximation is just the
Gurney formula for the motion of a projectile in a uniform diameter
tube assuming the propelling gas to expand witn uniform but time
dependent density. Thus Gurney's formulation and others that follow
it are simply variations on the Lagrange theme. A more exact

solution to the Lagrange problem, Love and Pidduck 1 3 , is a classic in
the literature of hydrodynamics. It is probably the first detailed
characteristic solution to a Riemann flow problem. The Love and
Pidduck solution shows that gas density must be a function of
position as well as time even in a one dimensional flow. More
important to the fragment velocity problem is the fact that we are
dealing with the acceleration of a metal by a dptonating explosive in
which the flow behind the detonation is vastly dlflerent from the
Lagrange model. Yet we find, despite -;his large deviation from the
model, that the Gurney equation with minor modification can serve as a
good approximation for predicting fragment velocity as a function of
explosive composition. It must be used judiciously, however. In
principle the entire problem can be precisely cal iateý- by the use
of a two dimnensional hydrodynamic code with appropriate thermodynamic
data. One .'inds that here, too, one must use judgement to get the
results correctly interpreted. -t is therefore of advantage to
employ the much simpler Gurney approach in many instances.

D. R. Kennedy9 cited a practical difficulty revarding the
Gurney formula; the Gurney constant has not been pinned down
adequately. He also shows that the values given by Army and Navy
sources for the Gurney constant differ by about 10,, Navy values
being low. It appears that all the Navy values cited may, in fact,
be quotes or minor variants of results from one series of experiments

performed at NOL in 1953 by Solem, et a1 5 . A follow-up pLper by

Solem and Singleton6 recognized some of the problems arising in theuse of the Gurney formula. This paper based on a cylumr expansion

1
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technique could have cleared up some of Kennedy's findings. It
shewed that the "constant" in the formula as written for cylindrical
symmetry is not a constant. The formula when applied to ultimate
fragment velocity is correct to within experimental error only over
a limited range of C/M, C being the explosive charge mass per unit
length of a cylindrical cased charge and M being the case mass per
unit length. Part of this paper Is devoted to a review of the work
by Solem and Singleton in references [5] and [6]. It will show that
the range of application of the Gurney type formulation can be
extended by a further variation on the Lagrange theme. In our treat-
ment we will generally use the ratio, M/C, because it simplifies the
mathematics.

f

2
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II. THE LAGRANGE APPROXIMATION IN N DIMENSIONS

DefourneauxI0 summarized the Lagrange-Gurney formulation for
plane parallel motion (n = 1), axially symmetric or cylindrical
motion (n - 2), and for point symmetric or spherical motion (n = 3)
in the single equation

V2 = (2 Eg) M/C'+.h/(n.2) ; (1)

E being the Gurney energy per unit mass of charge and V the fragment

velocity. Although Defourneaux refers to the value of n as
representing initiation on a plane, an axis, or a point this equation
is, in fact, derived by the assumption that the total kinetic energy
E is distributed between the expanding gas and the moving case with
the gas velocity a linear function of the distance from the plane,line, or point origin. A consequence of this assumption is that the

gas density is uniform; a function only of the time or distance
traveled by the case. This inherent assumption like that of Lagrange
implies that a uniform pressure also exists in the gas products at
any instant. This permits consideration of a second formula to
define the Gurney energy as a function of case displacement.
Neglecting changes in gas composition its entropy will be constant;
the gas internal energy and pressure will consequently be only a
function of volume. We can then write a more general conservation of
energy equation

Eg = Eo - E(v), (2)

00where Eo is the initial energy per u it mass in the gas and E(v') is

the iaternal energy retained after expansion to specific volume v.
The case displacement is related to the specific volume in the model
by thi relation

(r/ro)n = V/vo,

r being the distance from the orig-it to the gas/case interface, and
subscript o referring to the initial position. For a polytropic gas
E = pv/(y-l) and equation (2) leads to the Gurney energy 8 ,l0o14

E (r) Eo [l - (ro/r) n(.-1)] (3)

3
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8We should note that Henry used equations (2) and (3) but ignored
the kinetic energy of the gas in relating equations (1) and (2). It
has been the usual practice to refer to the Gurney energy or to the

Gurney velocity Vg = 2T as constants. It is apparent from
g

equation (2) that these parameters are a function of the radial
expansion which can occur before the case breaks up and ceases to be
accelerated by the gas. The Gurney velocity will therefore be a
function of the case material, in particular, its ductility urder
dynamic loading conditions. One can get a rough estimate of the
ratio E /E by using the approximate ratio r/ro = 1.5 which is about

the value at which a steel case breaks. Using y = 3 and n = 2 (for acylinder) we find the energy ratio to be about 0.80 for a

cylindrical expansion. It is usually smaller. Equation (3) could be
of use when one wishes to estimate the value of E for a radius

ratio other than that at which velocity has been measured.

The above model leads to a simple mathematical formulation
which turns out to be useful even when the model is not closely
adhered to. When a charge is detonated within a metal cylinder, we
find we are dealing with a wave phenomenon. The detonation wave
results in a gas product having axial motion and a distribution of
velocity and density far from the uniform state envisioned in the
model. Despite th's difference we find it possible to use the Gurney
formula as an acceptable approximation over a limited range of the
ratio C/M. This is accomplished by fitting experimental data to the
equation to obtain E which is now an arbitrary constant. We will

g
show that by a slight modification, replacing the term n/(n+2) in
Equation (1) by an arbitrary constant, we can, in fact, extend the
range of applicability of the "Gurney equation" to values of N/C as
small as may be needed in practice. One must, however, modify the
value of V if the conditions in the application differ from thoseg
in the test used for evaluation of Vg. For example, the results of

tests with open ended cylinders will lead to lower speeds for the
fragments near the end of the cylinder than would be obtained with
closed cylinders. The speeds of fragments near the center of open
ended cylinders will, however, be much the same as those for closed
cylinders. Some of the differences cited by Kennedy can be traced to
such differences in test configuration. The discussion in the next
section shows some of the expected features of gas product
distribution in detonated cylinders. It also outlines the method
used to determine case speed when the explosive is detonated in a
long cylinder.

UNCLASIFIED
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III. DETONATION IN A CYLINDER

To s.mplify the discussion of this report we assume the
explosion product to be a polytropic gas. We will illustrate the
discussion with examples in which the value of y is 3. This is
actually a fair approximation for explosives like Composition B
loaded at or near the maximum bulk density. To see how a detonation
leads to a different situation than the idealized Gurney model, we
first illustrate the energy distribution in a detonated cylinder

encased in a perfectly rigid tube1 5 . Figure (1) shows the
distribution of energy per unit volume as a function of position
alzng the tube of explosive at the instant that the detonation front
has reached the end opposite the plane of initiation. In this
f'i.gure, Q is the energy of detonation per unit weight. For a
rolytropic gas product we can write the following hydrodynamic
relations

2
P Dup , D/uj = y + I, P o p D /(Y + 1),

P./Po vo/Vj = ( + ,)/y (4)

E-2.E Q =p(v -v )/2= u /2

D is detonation velocity, u is particle velocity, p is pressure, P is
density, and v is specific volume. The subscripts o and J refers to
the initial state and the Chapman-Jouguet detonation product state,
respectively. With these equations and the polytropic gas relations
it turns out that the value of Q is related to the detonation
velocity and the detonation pressure by

D2(y + I) (- i) per unit mass (5)

A simple illustration of the above equations is given to show the

approximate magnitudes for Composition B. This explosive has a
Qetonation velocity of approximately 8 mm/psec at a loading density 4
P of 1.7 g/cc and y is very nearly 3. Using these values and

5
UNCLASSIFIED
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applicable conversion factors we get

P= l0 x 82 x 1.7/(3 + 1) = 272 kilobars = 2.684 x l05 atm.

uj = 8/4 = 2 mm/usec = 2000 m/sec

Pj = 4 x 1.7/3 = 2.267 g/cc

Q = 8 x 8/(2 x 4 x 2) = 4 kilojoules/g = 996 calories/g.

A y of 2.8 would bring the detonation pressure and energy closer to
the experimental values.

The idealized picture in Figure (1) is a pretty good
representation of the energy distribution behind a detonation in the
plane wave case (i.e., rigid confinement). Had the left closure been

removed, the potential Anergy to the left of the halfway point would
have decreased toward the opening and the kinetic energy would have
correspondingly increased; the energy distributions to the right of
center would remain unchanged. At the time shown there would be no
change in the energy distribution if we removed the right closure.
At a slightly later time the closed right end would lead to a
reflected shock (less kinetic energy, more potential energ'1 moving
to the left from the closure, whereas an open right end i I lead to
escapement of gas resulting in a rarefaction wave (more -.tic and
less potential energy) which moves to the left from the ope,. end.
If, instead of a rigid case we had one which was deformableQthere
would be a radial expansion of the case and the gases within it after
passage of the detonation wave. A velocity near the limit of this

expansion is aporoximated by the Gurney formula. ror y
equal to 3 the gas density will vary as the square root of the
potential energy in the plane flow shown. To this change there will
be the additional density decrease due tG radial expansion. We can
see theref're that the real hydrodynamic problem will differ quite
markedly from the Gurney model. Qualitatively the detonation energy,
Q, will be approximately the E0 of Equation (2). This will be closer

to the truth if the case is closed at both ends and M/C is
relatively large.

To see approximately how the case moves behind a detonaticn
wave, it is convenient to consider a steady state flow problem. This
type of problem can be approximated experimentally by using a long
cylinder of cased explosive and by looking aL the motion in a region
far from the plane of initiation. If in the iriginal rest system
the detonation is moving to the left, velocity -D, we can transform
the motion to a system with the detonation front at rest by imagining
the cased cylinder ahead of the detonation '.o be moving to the right
at velocity D. In this new system the veloities and other
properties in the detonated explosive and in the case in the vicinity
of the detonation front will be only a funccion of position,

UNCLAS1IFIED
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Figure (2). The gas immediately after detonation wil' be moving at
velocity D - u (neglecting the reaction zone). This by Chapman-

Jouguet theory is the sound speed in the gas. The case will expand
laterally in a shock wave and a centered set of Mach lines in the gas
will originate at the corner between the detonation front and the
case. On these Mach lines the sound sp~ed is the component of the
flow velocity normal to a given Mach line. The C-J condition implies
that the first Mach line is parallel to the detonation front. As a
result, gas expansion starts at all radii as scon as the detonation
is complete at the front. This situation contradicts the "detonation
head theory" of Cook. (WilKins has confirmed by detailed 2-D

calculations16 that the axis pressure in a typical detonation in an
unconfined cylinder falls to alout 30% of the CJ value at a distance
of one charge radius behind the detonation front.) Waves and flow
lines are qualitatively sketched in Figure (2). One streamline in
the gas is shown; the boundary between case and explosive is also a
streamline.

The motion of a cylinder of finite thickness proceeds in a
series of step Jumps. After 2 or 3 transits the shocks and
rarefactions in the case settle down to weak waves with small
pressure changes; the material density of the case will then return
to almost its initial value. Taylor (see reference [3] made the
useful observation that this implied a case velocity equal to
detcnation velocity in the steady state :low. The velocity vector is
at a new angle a to the cylinder axis. This idea makes it possible
to transform the flow back to the initial rest system and thus
obtain the case speed and direction relative to our usual frame of
reference. The analysis is shown in Figure (3a). Angle a is
obtained from the y displacement, Vat by the observation that

tan a - V a/D. (Va is an apparent velocity.) The vector

representing the case motion in the steady state is D at angle a to
the horizontal. We add vectorially the vector -D at angle zero.
The resultant is vector V at an angle a/2 to the vertical. This is
true case velocity and direction resulting from a detonation moving
to the left in a system initially at rest. The case has acquired a
velocity component in the direction of the detonation.

The above scheme has a practical application to the determination
of case velocity as a function, of thickness in the cylindcr
expansion test. The velocity is seen to be given by the simple
relation

V = 2D sin (a/2). (C)

In actual practice the tube's length to H.E. diameter ratio need not
be excessively great to approximate steady state. The L/d ratios of

2.5 and 6 used by Solem6 gave only slight differences in the

calculated expansion velocity. Kury 1 7 has used larger 1/d ratios; he
states that the difference between observations of Va disappears when
made at 3 times the diameter or greater.

8
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The experimental approach to obtain V is to use a smear camera
to observe the transverse motion of the case. When a is small, it is
permissible to consider the transverse velocity to be the true case
speed. This is not valid when a is ldrge. To show this more clearly
we have drawn in Figure (3b) a situation in which the transverse
speed Va of the case is 3/4 of the detonation velocity; i.e.,

tan a - 0.75. Vector velocities have been changed to d4spla-ements
by considering the case to have traveled a distance Dt at angle a
after constant angle c has been established. Note that the element
of the case which is initially at A moves to C rather than B.
Analyzed as in Figure (3a), we see AC to have the same direction and
magnitude as the vector at 0. In the example shown the result is
V equal to 5.07 instead of the 6 units given by VP when the

detonation speed is 8 units. Va is in significant error. The

error in magnitude is, however, trivial when Va /D is less than 0.2.

The experiments to be described included several instances for which
Va/D exceeded 0.2.

UL I1
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IV. NOL CYLINDER EXPANSION EXPERIMENTS

Solem and Singleton6 studied the radial expansion of steel and

aluminum cases accelerated by cast Composition B at a loading

density of 1.58 ± .01 g/cm3 . The aluminum cylinders were of 2S type
3having a nominal density of 2.70 g/cm ; steel cases were of Shelby

3
tubing (untreated) at a nominal density of 7.85 g/cm3. Wall
thicknesses were varied over a wide range as shown in the
experimental results given in Table 1. The explosive diameter was
kept constant at 2".0. Open ended tubes of length 5".0 and 12".0
were employed. The explosive was initiated at one end by a plane
wave booster. Detonation velocity in the HE was 7850 meters/second.
Observations with the smear camera were made with the slit at about
3".75 from the booster end for the 5-inch tubes and at about 8 inches
for the longer tubes*. The position for smear camera observation was
chosen to optimize the compromise between getting as close an
approximation as possible to steady state without interference from
rarefaction from the open end. The smear camera observations give

radial displacement as a function of time up to the time that the
cases fractured and vented. The steel cases were thus observed up to
about 2 cm of radial motion and the quoted values of V are at 2 cm.a
The aluminum cases did not vent until they had expanded about 4 to 5
cm in radius. The quoted velocities for these tubes is at about 4 cm
of radial expansion. The slightly higher observed velocity for
aluminum cases reflects mainly the result of the increased travel
distance for the observation. Very little additional velocity is
expected after the observttion is made so that the data obtained

should represent terminal fragment velocity to within mean
experimental error of 2 to 3%.

The raw data of Table 1 was reduced to terminal velocities in
this report by a more exact calculation than in reference [6]. First
a Taylor angle correction was made. Then we noted that the smear
camera records the apparent velocity of the outer boundary of tne
case. Thus, the Taylor angle result must be corrected for the fact

The choice of 5-inch tubes is unfortunate in that the approach to
steady state is marginal. Nevertheless, the results obtained
agreed with the NOL values for 12-inch cylinders. The results show
several important features of case expansion which hd not beenJ
studied elsewhere. The velocity of the case at the position chosen
represents the value for the fastest fragments expelled. We note
in Section 5 that reference [17] reports a velocity for Composition
B (Grade A) about 7% higher than that obtained here.

12
UNCLASSIFIED
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TABLE 1 (cont.) - CASE EXPANSION DATA

CASEV VVVV
THICKNESS M/C oa o o
(in.) m/sec m/sec ft/sec ft/sec ft/sec

Al'mninum Case,, = 2.70, 5 inches long (in Helium)

0 0 9580 6718 220J11 22041 22041

0.002 0.00646 9200
889o0 5518 21385 21385 21385

0.005 0.01618 7660)
67301 5694 18680 18680 18680

0.125 0.4284 2990 2841 9321 9406 9406

0.250 0.9074 2280 2212 7256 7386 7386

Aluminum Case, p - 2.70, 12 inches long (in air, except t=O)

0.0 0 9880 6825 22391 22391 22391

0.125 0.4284 3280 3087 10127 10219 10219

0.500 2.016 1640 1614 5295 5479
1610 1585 5201 5392 5436

Va - apparent velocity

Vo - velocity of outer surface

V - mean velocity (Appendix A)

V•m averaged Vm

F 14
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that the case becomes thinner as it expands. Becausi. of the thinning
the mean case speed Is faster than the surface speed. The mean
velocity can be determined with acceptable accuracy if we assume that
the case expands as an incompressible fluid. For a measurement at
any given radius ae can then calculate a total rad~.al momentum which,
when divided by the case mass gives the desired mean velocity. The
analysis is given in Appendix A. Calculated results are listed in the
table.

It was evident from the data that the original Gurney formula

equation (1) with the appropriate value n = 2 would not fit the
experimental data. We, therefore, rewrite the formula as an
empirical two constant relation in the form*

V = V (M/C+A)-I (7)
g

with A beiig an arbitrary dimensionless constant. One can argue that
the effective kinetic energy of the gas is ACV 2 ; e.g., A = (constant)
•n/(n+2 ), the constant being less than one due to non-uniform density
distribution. The data for the steel and the aluminum cases were
reduced separately. Trial fits showed that the steel case data could
be best fit with A = C.3, V = 7900 ft/sec. The same value for Vg g
could be used for the aluminum case data provided that A was changed
to 0.2. Figures (4) and (5) are plots of the data and calculated
velocities ±3%. In fitting the data we have ignored the very thin

case experiments. These experiments were carried out to demonstrate
the extreme error that can occur in the original Gurney formula. From
a practical point of view the modified formulas give good fit down to
M/C ratios as low as 0.05.

The equations for steel and aluminum cases are compared in Figure (6).
Note that the change in A with constant V results in a shift of the

g
steel curve 0.i unit in M/C to the left of the aluminum case data.
The difference in velocities, steel about 3 to 5% lower than aluminum
at M/C greater than 1.0, is mainly due to the smaller radius at which
the steel case velocity nad to be measured. The larger difference at
low values of M/C may, in part be due to differences in tensile
strength. A third curve, dashed line, is a plot of the Gurney formula,
A = 0.5, fit to the mean value of V at M/C equal to 1.5. In this case
V turns out to be 8485 ft/sec. If the curve had been fit to the

g
velocity at the value, M/C = 2.5, typical of other experiments,
V (0.5) would have been more like 8200 ft/sec.

g

• Henceforth, equation (7) will be referred to as the Gurney formula
with the understanding that two constants must be specified. When
we mention "Gurney constant" without specifying A its value is
implied to be 0.5.
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THE GURNEY FORMULA
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V. DISCUSSIO1N

5.1 Comparison with Other Case Expansion Work

Kury, et al. 1 7 at the Lawrence Livermore Laboratory, LLL, have
developed a standard cylinder test in which the H. E. diameter is
1.00 inch (25.4 mm), length equal to 12 inches (305 mm). The
cylinder is a copper tube 1.00 inch I. D. and 1.2044 0. D. (30.592 mm).
Using the handbook value for the density of copper, 8.96 g/cc the M/C
ratio for their experiment on Composition B (Grade A), 64% RDX,
SPC : 1.717 g/cc is 2.341. The velocities Va they quote at 5 and 19 mm

of radial expansion are 1.39 and 1.63 mm/psec respectively. Corrections
for the Taylor angle and wall thickness give velocities of 1.449 and
1.631. We note that the net correction for a measurement at 19 mm is
nil; the correction at 5 mm is about 4%. Using A = 0.5 the values for
V are 8010 and 9020 ft/sec. The NOL result for the aluminum tubes measured

g
at 40 mm should agree with the 19 mm value from LLL except for a small
composition correction which we estimate to be 1.0%. Thus our corrected
value for V falls below the LLL value. This may best be attributed

g
to the short open ended cylinders in the NOL experiments. The LLL
result has been confirmed within experimental error by both Hoskins,

et al.18 and Plausen and Mitchell 1 9.

5.2 Comparison with Fragment Range Results

One of the earliest experiments on fragment velocity was carried
out at the Explosives Research Laboratory at Bruceton, Pa. in the
early 19 4 0's. The basic experiment used steel cylinders of 2.00 inch
I. D. and 3.00 inch 0. D. of length, 10 1/8 inches. A base plate
was welded onto the tube. The velocity of a large group of fragments
was measured at distances of 9 and 25 1/2 ft from the charge. Averages
from these measurements have been reported in the Army Materiel
Command's Engineer's Design Handbook Series, one source being the

volume on Explosives Properties 20. The data on page 48 of reference
[20] for Composition B has been converted to velocity at the charge
and a Gurney constant by a linear extrapolation to zero distance of
the quoted velocities. The extrapolated velocity, 3074 ft/sec, and
the M/C ratio, 5.811, give a Gurney constant of 7740 ft/sec.

The NOL work employs the same range technique as Bruceton but only
a nine-foot observation post. In that work, described in reference [5)
the tube is open at the ends and the thickness is 0.25 inches. Fifty-
two fragments in five experiments were measured for Composition B

19
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(M/C a 2.646) and the velocity averaged to cbtain a value which,
corrected for drag, gave a Gurney constant of 7880 ft/sec.f On
re-examination of the data, we note that the observed speeds varied
over a band of ±11%. Taking note of the fact that five experiments
were r-an for each explosive it is appropriate to average the five
or perhaps ten fastest fragment velocities to obtain a representative
mean for maximum speed. The necessary data is obtained from histo-
grams of fragment speed vs. number of fragments reported in
reference [5]. The average for the five fastest fragments lead to
Vg - 8540 ft/sec. The ten fastest fragments give Vg - 8410. Thus

the five to ten fast fragment average comes into agreement with the
cylinder expansion result 8485 ft/sec. (NOL range results are
treated more fully Sn Section 6.)

It is evident from the results of the comparisons of experiments
to deterrine Gurney constants that one cannot expect to use any
given set of constants blindly. Consideration must be given to both
the conditions under which the data is obtained and the conditions
under which the data is to be employed. Some aspects of this
problem will be discussed in the next section.

5.3 Problems Regarding Selection of Data

We define for cylinder expansion experiments the following:
rio and roo, initial inner and outer cylinder radii; and ro, the

outer radius after expansion. The LLL copper tube experiment17,21
uses r1 o = 12.7 mm. Data at rt-roo = 19 mm is usually employed to

determine relative Gurney constants. For this value the expansion
ratio, (ro-r oo)/rio is about 1.5. The NOL fragment range experiments

(see reference (5)) employed steel tubes with rio = 25.4 mm. The

cylinder wall probably reached an expansion ratio of about 0.8 when
it fractured and ceased to be accelerated. Both experiments employea
M/C ratios in the vicinity of 2 to 2.5.

We have the following comments to make regarding the use of the
cylinder expansion data:

1. Relative radial velocities or relative kinetic
energies of the metal tube at any r are insufficient for
comparison of V . It is better to compute the V valuesg g

* It may be of interest to note that the low Bruceton V which is an

average for 0.5 inch thick cases is reconciled with the NOL average
in reference [5) for 0.25 inch wall if A is taken to be 0.3 rather
than 0.5. This is additional. evidence that the lower value of A is
more appropriate in the Gurney formula.

20
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from the data with a given value of A selected for the
application. This will correct for the explosive kinetic
energy due to density differences. The selected value of
r should be scaled to the expected effective r value for
metal fracture in the application.

2. If V is computed with A = 0.5 from data for which
g

M/C is greater than 2.0, the resulting predictions at M/C
less than 1.4 will be low. It is better to use a value of
A of about 0.3 for steel cylinders as found in this work.

3. When Taylor angle and wall thickness corrections
are made, the effect of tube density on tube velocity is of
second order and can oe ignored.

The following comments apply to range experiments, in particular,
the NOL work (reference [5]).

1. The average velocities of fragments from open ended cylinders
give Gurney constants which are too low for most applications. There
is a bias because of the low speed of the fragments near the ends.
It is also likely that some of the low speeds observed are a result
of greater than average air drag on small fragments. More
"consistent constants can be obtained by selecting the fastest 20 to
50% of the fragments for data reduction. This will be shown in the
next section.

2. As suggested for cylinder expansion data, a lower value of A
is desirable when the data is to be applied at an M/C ratio much
smaller than that at which the test data has been obtained.

3. Explosives with delayed reaction, e.g., aluminized, may not
deliver their full effect in 25 to 50 mm inside diameters. Resulting
Gurney constants can be too small.

Comments on Applications:

1. Consideration must be given to the nature of the case material
and make-up. If we consider a seamless steel case of constant thick-
ness as the norm, then the Gurney value for a more ductile case would
be increased because it will fracture at a larger expansion ratio.
If the case is made up of discrete preformed fragments the constant V
will have to be decreased. If the case is of variable thickness one g
could get a first order prediction by computing velocities as a
function of pcsition by assuming the Gurney equation with a given
value of A to apply to each section independently.

2. Some of the published Gurney constants are in need of
revislon. For example, the value for HMX in reference [9 ] is given
as 10230 vice 8800 for Composition B. The ratio is 1.163. From LLL
data we find the ratio of V gs tc be 1.097 or 5.5% lower. The values

cited in reference [ 9 ] appear to be the result of; (a) applying the

21
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Gurney formula for munitions where M/C is 1.0 or small while
retaining the normal value 0.5 for A, and (b) neglect of explosive
density in comparing HMX with Composition B. We were able to fit
the data given in Figure (2) of reference [ 9] with the constants
A - 0.3, Vg a 7900 at least as well as the authrr's fit. Our

result has the advantage of fitting the experiments at large M/C
equally well.
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VI. REVISED GURNEY CONSTANTS

In this section we re-examine selected results for some of the
explosive compositions which are of military interest. We convert
the LLL results at 19 mm of radial expansion to G,,rney constants
with A = 0.5. We give the results of recalculation of Gurney
constants from the NOL range data of Solem, et al. also with A = 0.5.
In this calculation only the fastest 20 or 50% of the fragments are
used; the latter being considered as most representative of real
munitions. We find this selection brings some of the anomalous
results of reference [5] into better agreement with expected values.
For example, the V calculated for pressed and cast TNT and also for

g
Pentolite when based on the total sample differ significantly. This
difference is reduced to the measuring error when the fastest 20 or
50% of fragments are used in the calculation. In addition we employ
a scheme to be described for interpolating V from LLL data which

g
permits one to obtain rather good estimates for compositions that
have not been experimentally measured. Numerical results are carried
to three or four significant figures to aid the user in making
further calculations. The actual accuracy of any result is, at best,
2%.

6.1 Data Reduction Procedure

The LLL data at 19 mm is taken as the standard reference for
c:.mparison. The velocity data is reduced without correction for
Taylor angle and mean momentum since this correction has been shown
to be negligible at 19 mm. The NOL range data has been obtained from
the histograms in the rcport by averaging the velocity for the fastest
27 and 50% of the fragments ol-erved. A ratio of 1.043 has been used
tD convert the mean velocity a4 nine feet of travel to a mean value
at the charge.

Ail data has been converted to Gurney constants for the usual
Ourney value of A, 0.5. V can be converted to the value appropriateg
to any other A by the equation

V (A) = V (0.5) M/C + A (8)

CM /7C +4 0.5(8

The effect of explosive loading density on V should be second order

so that the proper value of C for the given loadir~ denstty will take
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care of the first order density effect on the velocity constant.

A first order correction for composition can be made by assuming

the Gurney energy, Eg - V 2 /21 is a linear function of the Egk by

the relation

Eg = Z nkEgk (9)

which gives

S= 4: nk~gk2 , (10)

where nk is the weight fraction of the kth constituent, Egk is the

corresponding Gurney energy. These foimulae also permit an
estimation of V for a mixture of an explosive and an inert binder.

A comparison of LLL results for RDX and HMX with TNT suggests a
slight modification for explosive mixtures given by the rule

V E nkVk * (11)

We have applied equation (11) to obtain a V for RDX (by extrapolation)

and other cyclotols from the TNT and RDX/TNT data in reference [17).

6.2 Results

Table 2 lists the comparative values of Gurney constants based
on A a 0.5. The LLL data including interpolated constants is given
for the 19 mm radial expansion. The NOL range data is then given in
three columns for comparison. Based on the evidence that the NOL
values comp,,ted for the fastest 50% of the fragments in the test are
representat.ave of fully cased munitions we have normalized the LLL
data to Composition B taken as 8210 feet per second. The last two
columns then give the best estimates of V for A = 0.5 and A = 0.3.g
The latter set is preferred for general application since it should
apply about equally well at both low and high M/C ratios.

The present values of the Gurney constants are generally about
6% lower than those given by Kennedy. The difference in fragment
velocity is not great, however,when tne A = 0.3 value is used and the
M/C ratio is small. We note that the present results for HMX vice RDX
is more consistent with the fact that the explosives are homologues
and have very nearly the same heat of formation per unit mass.
Kennedy's value differed significantly because no correction was
made for the higher density of HMX when the LLL data was normalized
to a Gurney constant. The same reason applies to Kennedy's low value
for Nitromethane. One unusual result of this work is the high
constant found for H-6 when the fastest fragments in a NOL range test

224
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are used as the basis for analysis. The Gurney value is 2% higher
than for Composition B. In an LLL type copper case expansion
experiment, Plausen and Mitchell 19 found a value 11% lower. The
discrepancy between these two results may be due to a diameter effect.
Aluminum is known to contribute to case expansion in the LLL tests
when in combination with some explosives (see reference [21]) and
the effect of the aluminum reaction appears to come late in the-I expansion of the one-inch charges. The two-inch charge may see the
reaction of aluminum at an earlier time after detonation. It would
be of value to perform additional cylinder expansion tests on H-6 and
other aluminized explosives using two and four-inch scaled experiments
to verify or disprove our present results.

The parameters listed in Table 2 are considered to be applicable
to sOlid, unscored cylindric steel cases. Other cased munitions will
require a correction factor as previously discussed.
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VII. CONCLUDING REMARKS

We have shown that the Gurney equation in its original form is
derived as an application of an earlier idea of Lagrange to an
explosive case system having cylindrical symmetry. Although the
actual situation for a detonating explosive differs markedly from
the model employed, the equation with an additional minor modification
is found to be a useful approximation for predicting fragment velocity.
Though we have not discussed other symmetries it is likely that a
similar modification of the basic equation would also lead to a better
approximation to experimental results.

A more complete analysis of fragmentation is possible by using
2-D computation. In an attempt to reduce the computer time for a 2-D
calculation, Sternberg at this laboratory has generated a code in
which the metal case Is treated as an incompressible fluid. This
code retains the inertial effects of the case but avoids the need
for calculation of the wave motions within it. Since the waves in
the case are likely to have little effect on the final velocity the
results would be of significant utility. A series of basic boundary
value problems have been run with this code in connection with this
task. The results are to be reported in a follow-up report by
Sternberg.
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APPENDIX A: CALCULATION OF MEAN CYLINDER VELOCITY

A logical mean in cylinder expansion velocity should be based on
the total momentum divided by the mass. Then we obtain the correct
fragment velocity after a case fractures since the total momentum
must be conserved. This method of getting a mean velocity implies
that some of the kinetic energy appears as a vibration within a
fragment after breakup of the cylinder. We adopt the notation,
Figure (A-l):

r = outer radius of cylinder at time, t.

roc,= outer radius of cylinder at time, zero.

ri = inner radius of cylinder at time, t.

rio = inner radius of cylinder at t..e, zero.
x = radius of an element of cylinder at time, t.

x = radius of an element of cylinder at time, zero.

We make the following assumptions:

1. The cylindrical case expands radially as an
incompressible fluid, density p = constant.

2. Mean velocity is given by the integrated momentum.

divided by the case mass.

3. Case mass per unit length of case = M.

4. Velocity, Vas of outer case surface = dr /dt.

5. V = V(x) is the velocity of a case element initially
located at- xo.

By conservation of mass

M= 2O(ro2 _ 2A
- rio)

= ,r2-r12 (A-1)
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FIG. A-] NOTATION FOR CALCULATION OF MEAN CYLINDER VELOCITY
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then

ri 2  o2  (r 2  r 2 ) (A-2)

The mass between any element of the case and the outer surface is
also a constant so we may write

x2  r 2  (r 2  x 2  2  constant. (A-3)

Differentiating equation (A-3) gives the velocity at radius x,

dx/dt (r /x)dr /dt. (A-4)
0 0

The momentum at radius x is

d(MV) = 2np(xdx)(ro/x)dr_/dt . (A-5)

Integration of equatlon (A-5) from ri to ro gives

MV = 27rpro(ro - ri)dro/dt . (A-6)

The mean velocity is then obtained from equations (A-6) and (A-i)
- 2ro dro (

= (A-7)r 0 + ri dt

Calling dr /dt = V we write
o a

V (l +E) V
where

C (r - ri)/(r° + ri) . (A-8)

ri is given as a function of ro by equation (A-2).

Equation (A-8) shows very simply that the mean velocity must be
greater than the apparent velocity of the outer surface and that the
correction is given by half the metal thickness divided by the mean
radius. In the LLL standard cylinder expansion experiment the
correction amounts to 1.6% for measurements at 19 mm and 5.5% for
measurements at 5 mm. The correction is greater for several of the
NOL cylinder expansion experiments when aluminum cases were employed.
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