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ABSTRACT

Failure surface of laminated composites can be constructed in special
strain space such that the transformation of strain components becomes
an orthogonal matrix. This construction provides a convenient means of
studying strength of laminates consistiig of arbitrary lamina orientations.
This special construction of failure surface can be based on the maximum
strain thecry, the tensor polynomial theory or other failure criteria of
the larina. The elfect of nonlirearity due to shear on the failure

surface is also illustrated.
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SECTION I

INTRODUCTIOR

In the design of composites it is frequently necessary to know the
failure properties referred to a reference coordinate system other than
the material coordinates. A failure surface is usually constructed in
the stress or strain coordinates which are the components referred to
the material symmetry axes. When a different coordinate system is used,
the resulting failure surface cannot be obtained from the original one
through a pure rotation, because the matrix relating the stress or strain
components in the two different coordinates is not orthogonal. In other
words, the transformation of stress or strain components involves a
deformation as well as a rotation, which follows easily from the Polar
Decomposition Theorem.

Rotation is easy to visualize and so amenable to graphical representa-
tion. We described in Reference 1 a method to eliminate the deformation
part from the transformation matrix, What makes this possible is the
similarity of the transtormation matrix to an orthogonal matrix. Here we

apply the method to study failure surfaces of symmetric laminated com-

posites subjected to in-plane loadings only. A full advantage is taken of

the orthogonality of the modified transformation matrix. Further, noting

that this orthogonal matrix describes a rotation about the axis of two
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dimensional dilatational strain p in the modified strain coordinates (or
hydrostatic stress in the modified stress coordinates), it is proposed to
represent the failure surface in the (e, - e,)/2 - e4/2 plane with p as a
parameter. An advantage of the proposed method is shown via its appli-
cation to analysis of initial failure of a laminate,

Stress-strain relation of most unidirectional laminae can be assumed
to be linear except in shear. A comparison is given, with due regard to
this shear nonlinearity, between the stress and strain criteria of failure

when they both are described by polynomials of second order.
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SECTION II

METHOCD

It was suggested in Reference 1 to use V2 0'6+ in place of the
shear stress ¢, because this makes the transformation matrix of stress
orthogonal. The same result was shown to follow for strain if eg is
replaced by eq/\ 2. A new set of coordinates (7,%, v.", T¢") was
introduced in which the transformation describes a rotation about 7,*
axis through an angle -26, where 0 is the angle of rotation of coordinates
(x1» X2) Figure 1.

The modified strain components Ei* are related to the original com-

ponents e; by

E1* = (e + e)N2,
TF = (e - e2)/\V2, (1)
;6* = €4 /\/-é—:
To make terms on the right side more familiar we divide them by V2
to obtain

e = (p,q nT = He (2)

+ Contracted notation is used.
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Figure 1.

Coordinate Transformation
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where
1 1 0 1 1 0
- l -1 .’
!;I =z E 1 -1 0 i{ = 1 - 0 (2)
0 0 1 0 0 2

Note that the coordinate system (p, q, r) is left-handed.

Quantities p, q, r given by
p= (e|+ ez)/Z. q = (e|- ez}/zn r = 96/21 (4)
are all familiar if we consider the Mohr's circle representation of a

strain state, Figure 2. Moreover, we can specify (el, e2) and (p, @) in the

same coordinate plane if we change the scale of e; and e; by

—él = e,/\/ 2, 32 = ez/\/_Z_. (5)

The relat.on is shown graphically in Figure 3. Transformation of the

modified coordinates (p, q, r) follows from that of (e;, €., €g):

p' 1 0 0 P
q' = 0 cos26 sin29 q (6)
r' 0 -sin2 0 cos20 r

where primed quantities are referred to new coordinates (x; , x'z).
Equation (6) is nothing but & simple coordinate transformation showing
that (p', q', r') is related to (p, q, r) through a rotation of angle 26 about

p axis, Figure kL.

- et iy 2ine o a
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Figure 3. Relaticn Between (El, 32) and (p, q)
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28

Figure L. Induced Transformation of {g, r)
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Failure is characterized by a closed surface in the stress or strain

coordinates. Transformation between e and e;

i i» for example, includes

a deformation as well as a rotation. Therefore, the shape of failure
surface is altered by this transfof‘mation, Figure 5. However, when the
failure surface is drawn in the (p, q, r) coordinates, its shape does not
change because the coordinate transformation results only in a rotation
about the p axis.

Mathematically, a failure surface may be described by a function g

such that

glg) = 1 (1)

The equation for the same surface in the (p, q, r) coordinates is then

given by a new function g© which is related to g by
8%(e% = g(H 'e% = 1 (8)

Equation (&) is useful in obtaining the new function go, especially when
the surface is described by a polynomial. It should be noted, however,
that the method is not restricted to such cases only. A simple graphical
method is possible when the maximum strain criterion is used. Figure 6
shows such graphical construction. It also illustrates the way the projec-
tion on the q-r plane is obtained. This will be explained in detail in the
following section.

The same reduction follows for a failure surface in the stress space if

the stress vector g = (o1, o2, cr;,)T is replaced by
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Figure 5. Change of Failure Surface; Deformation and Rotation
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2° = (a0t = Kg (9)
where '
1 1 0 1 | 0
1 -1
5 =5 1 -1 0 5 = 1 -1 0 (10)
0 0 2 0 0 1

Our discussion is hereafter restricted to strain criteria because our main
objective is to apply the method to laminated composites in the framework

of classical plate theory.

11




SECTION III

AFFLICATIONS

1. UNIDIRECTIONAL LAMINAE
There are various criteria for failure of composites. These theories

&re s.rmerizes in Felerenze 0. Altlcugh the present method is rot restricted

[

*c any particular criteria, we restrict cur discussion t¢ the maximum

strain criterion and the second order tensor polynomial criterion,

In the maximum strain criterion, the allowable range of strains are

given by
+ - + . -
E) > ey > E] ’ E; > ez - E.;”,
{
E¢t > eq > E¢ (11)

In the modified coordinates (€,, €,, r) the corresponding limit values

are

E]+/\/2 2 E] > E]-/\Fz_p E2+/\/-2—_: Ez > E{/"Z
E¢'/2 > r > Eg/2 (12)

Equation (1i) implies the absence of interaction among limiting strain
components. Therefore, it is possible to obtain those limiting values
from the limiting stress components determined by load-controlled tests

if pertinent constitutive equziion is known. Most composites are almost
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linear up to failure in longitudinal and transverse tension and compres-

sion. Thus, it follows that

H
I

' = X,YEL, Ey” = X, /E[,

(13)

M
~
+
I

X;/Er, E; Xz /Eq,

where X; and X, are the failure stresses and EL and ET are the longi-
tudinal and transverse Young's moduli, respectively (Reference 3).

The difficulty in relating the limiting strain components to the limiting
stress components lies in shear, because of highly nonlinear behavior.
The procedure we follow here is derived from current practice which chooses
a fictitious maximum strain assuming a linear behavior. This may be
plausible if we note that the classical theory of laminated composites is based
on the linear stress-strain relation. A recent study (References k, 5) showed
that the effect of shear nonlinearity on the behavior of laminates is negligible

under uniaxial tension as far as laminates contain layers of Q° orientation.

The nonlinearity appears most in +45° laminate as experimentally
observed and theoretically proved. In any event we here choose the
truncated value as the limiting shear strain so that

E6+ = -Eg = X¢/G (14)

where, again, X, is the failure stress and G is the shear modulus. The
first equality which states the identity of positive and negative shears

foliows from the material symmetry of unidirectional laminae.

13




AFML-TR-TL~13

Failure stresses of unidirectional graphite/epoxy and boron/epoxy
corposites are given in Reference 6 . The corresponding strains are
determined using Equations 13 and 14, and are listed in Table I. Graphical

representation of failure surfaces is given in Figures 6 through 9.

The procedure to be followed is described below:

a. Obtain limiting values of e;, e;, e; directly from experiment
or from limiting stress components through Equations 13 and 1k.

b. Calculate limiting values of e,, €., r from Equation 12.

¢. Draw the failure surface in the €;-€; plane.

d. Draw p and q axes. p axis bisects the angle <‘e;o0€e, and q
axis the angle <%€,o0 (-¥¢;).

e. To find the failure surface in the q-r plane corresponding to a
particular value p = ¢, draw a straight line p= c. The points at which
this line intersects the failure surface in the p-q plane give the limiting
values of q.

f. The corresponding failure surface is then given as a rectangle whose
vertical sides pass through those determined points on the q axis and
whose horizontal sides are given by r = E¢*/2 and r = E; /2.

Another way of characterizing the failure of unidirectional composites

is provided by a second order tensor polynomial of the form (Reference T)%

* Summation is implied over any repeated indices.

14
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TABLE I

LIMIT VALUES OF STRAINS

Failure + - + -
strain Ey E, E. -E. E,
Material x 10° x 103 x 10* x 103 x 103
High-Strength
Graphite/Epoxy 8.57 8.57 4.71 17.65 18.46
ve = 0.6
Intermediate-Strength
Graphite/Epoxy 9.41 9.41 4.41 14,71 15.38
Vf = 0.6
High- Modulus
Graphite/Epoxy 4.40 4.00 2.35 11.76 13.85
ve = 0.6
Boron/Epoxy 6.40 11.77 | 3.85 14.81 | 21.86
' 0.5
15
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In the modified strain coordinates the same failure surface is described

by a new function g°

8%(e® = G;%;° + G;;%e;%;° = 1 (16)
where
G,° = iji‘ Gs» Gij° = H | Hl; Gy, (17)
Using Equation (3) for the matrix H;; in Equation (17) results in
G,° Gy + G,
G° = G; - G; ,
G¢° 2G,
(18)
Gy +2Gy2 + Gaz G- Gz 2(Grg + G2p)

[Gljol = Gy - ZGI?. + G, 2(G16 - G26)
symmetric 4G

For unidirectional laminae the material symmetry requires that

(19)

Therefore, Equation (16) reduces to

20
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(q - q,)? 2
a b
where
az = =1 T
G° P Gge® P
1
qp = = 26 ) (ZGlaop + Gzo) (21)
22
2 /[ o 2
2 Gy ° Gy,°G,° G,°
k = > Gn°) p® + (———6—— - G°)p + > +1
p G2 . Gz 4G,

Since a failure surface should be closed from physical considerations,

Equation (20) should describe an ellipse and so

a?> o, b% > 0, o>k >0 (22)

The ratio of major axis to minor axis remains constant whereas the center
moves along g axis depending on the value of p. The lengths of axes also

depend on p. In terms of Gijo Equation (22) yields the well known conditions

2
Gn%G,° > Gi.°, G2%Ge® > 0 (23)
and

2 2
G1° + G°G2° /G2 + 4GP - 2G1.2GPG° + 2G.0) /G0 > 0 (24)
The bounds for p then follow as

Pmin £ P £ Pmax, {25)

21
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= (B - CY/(2A), = -(B + C)/(2A) (25)

Cont'd.

Pmin
where '
o? (e}
A = G12°/Gy° - Gy

1/2

B = [GP +GiPGR /Ga® + 4Gy - 2G12(GPG° + 2Gy,% /G20 (26)

c = Gzoclzo/Gzzo' Glo

The strength tensors G;, Gij in the strain criterion can be related to

the strength tensors Fj;, F;; in the stress criterion if the material is

i

linear elastic (Appendix I):

where Qij is the reduced stiffness tensor. The above equation is necessary

because most available data are for F; and Fij-
As an example we take the failure data reported in Reference 8 for

gxass/epoxy scotch-ply 1002 lamina:

Fy = -0.003 (ksi)"!, F, = 0.295 (ksi)"',
Fiy = 0.063 x 107° (ksi)™ %, Fao = 17.15x 107% (ksi)~ 2, (28)
Fee = 10.85 x 107° (ksi)™?, Fy2 = 0.15x 10-' (ksi)~?

The stiffness matrix of the same material is

5.004 0.083 0
[Qi;] = [0.083  1.668 0 x 10° ksi (29)
0 0 0.704
22
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From Equation (27) follow G, and G, ,:

i iJ
Gy = 9.47s G, = 491.81
Gy = 1.82x10° Gz, = 47.76x 10} (30)
Geg = 5.38 x 10° Gyz = 3.65x 10°

Finally, substituting Equaticn (20) into Eguation (18) yields

G2 = 510.29 G° = -482.34
Gi® = 56.88 x 10° G..° = 42.27 x 103 (31)
Ge® = 21.51x 10° G:° = -45.94 x 103

The variables characterizing the failure surface can now be obtained

ty subsiituting the above data into Equation (21):

a = 4.864 x 10“kp. b = 6.818 x 107 kp,
q. - 1.087p + 5.705x 1073,
(32)
kp ¢ (-6.951 x 10° p® + 22.928p + 2.376)!/2,
p_._ = -16.91 x 107",

- -3
Pruax = 20.21x 10

e Uallure zurface is drawn on the qg-r rlane, Figure 10. Each ellipse

*

retresents Eauation (20, for 2 fixes 4dilstaticnal strain p.
It yoes without saying that, whereas the graphical method is a more
viable means of constructing failure surface in the case of maximum

strain (or stress) criterion, one has to resort to the equation of failure

ir. *he case of polynomial ecriterion (Equation 15).
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Now that one has the appropriate failure surface drawn in the g-r
plane, any off-axis failure can easily be checked. This will be illustrated

in the following paragraph.

2. LAMINATED COMPOSITES
According to the classical plate theory for thin laminates, the in-plane
strains are assumed to be the same in all constituent layers. This makes
it possible to draw failure surface for each layer in the same strain
; coordinates without modification. Once the state of critical strain is
known, the state of stress in each layer can be calculated by using appro-
priate constitutive equations, e.g., o¢; = Qijej'
The above argument applies at most to the initial failure of laminate,
i.e., the failure of the weakest layer in the laminate. The behavior after
1 the initial failure is not well understood at this time. One of the approaches

to this problem is tc remove the layers that have failed from the laminate

by setting the stiffness of the layers equal to zero (Reference 9); the
other assumes stress-strain relations with negative slope for the failed
layers (Reference 10). In any event, understanding of the initial failure
is important because it forms one of the bases of current design criteria
(3eferences 6, 11).

One more point to be noted is that we do not consider any effects of

interlaminar stresses. The interlaminar stresses become significant along
free edges because there they have large magnitude, depending on the stacking

sequence or lay-up of the laminae (References 12, 13). However, a few

25
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thicknesses of the laminate away from the free edges the classical plate
theory provides a reasonable solution,

To be precise we formulate the criterion for the initial failure as
fcllows (Reference 1lk): Let G be the failure function of a-th layer.
Then the initial failure of laminate occurs when the strain e satisfies

the condition

max {ga(g)} =1 (33)
a

Graphically, this is the equation for the inner envelope of failure surfaces
of constituent layers.

As we have seen, the failure surface of, e.g., ¢° layer is obtained
from the failure surface of 0° layer by keeping the surface fixed while
rotating q, r axes through angle -2¢. Note that the layer orientation angle
¢ is equal to -0, because 6 is measured away from the layer symmetry
axes (Figure €).

As an illustration consider a high-strength graphite/epoxy laminate of
[O°/30°]s lay-up configuration. The lamina failure surface is shown

for the 0° layer in Figure €. Suppose the state of strain resulting from

stress analysis is

- -3 - -3 = -3
e, = 4x10°°, ey--4x10 , exy = 12x10 (34)

The corresponding p, q, r follow from Equation 4 by using the above

values:

26
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p= (e, + ey)/Z = 0, q = (ey - ey)/2 = 4x 1073,
r= e /2= 6x10° v (35)

The state of strain is denoted by the point Q for the 0° layer. Since we
use the same failure surface, the same state of strain is given, for the 30°
layer, by the point Q' that is obtained by rotating 0Q through angle -60°,

The failure surface corresponding to p= 0 is shown by dashed lines.

Since both Q and Q' are inside the region enclosed by those dashed lines,
both layers will not fail. It is easily seen that under the same state of

strain, the range of ¢ without failure is

-74% < 26 < 186°, i.e., -37° < 6 < 93° (36)

One of the advantages of using {p, g, r) coordinates in conjunction with
failure is that one constructs the failure surface only once no matter how

many layers a laminate consists of insofar as all the layers are made of

the same material.

A disadvantage of working with failure surfaces in the stress coordinates

stems from the fact that the lamina stresses vary from layer to layer even
when there are no bending effects. Thus the relation between the lamina
stresses and the laminate stresses must be known in order to express any
failure criterion in terms of the laminate stresses.

In the laminate coordinates, the laminate stress-strain relation is

given by Equation 37 (Reference 15).
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x ex
Ny } = [Ag5] (ey (37)
N exy

where [Aij] is the laminate stiffness matrix. Noting that the strain com-
ponents in the lamina coordinates are related to those in the laminate

coordinates by

e, ex cos®e sin®p (sin2¢)/2
ez) = [Tiej] ey | [Tiej] = sin®¢ cos®¢ -(8in24)/2 | (38)
eq exy -sin?¢ sin®¢ cos2¢

we can obtain the relation between the lamina stresses and the laminate

stresses:

oy Nx

- - e -1
a2 = [Bij] Ny » Blj = Qlk ka Ali (39)
(. 13 ny

where [A;;] is the inverse matrix of [Alj] .

To compare the failure behavior of a lamina as an independent layer
and as a constituent layer in a laminate, it i8 necessary to use the same

reference coordinates, Thus we need the equation

oy Oy cos®d sin¢ sin 2 ¢

o2} = [ng] Ty ' [ng] = sin?¢ cos®$ -8in2¢

T Ty -(8in2¢)/2 (sin2¢)/2 cos2¢
(k0)
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As an example, we now take a boron/epoxy composite whose stiffness

matrix 1s given in Reference £

r30.12 0.572 0
[Qiﬂ = [ 0.372 2.71 0 x 103 ksi (k1)
0 0 0.7

For a laminate of [0°/% 30°] s lay-up configuration, the stiffness matrix

is calculated to be

21.941 4.183 0
(Al = | 4.183 3,667 0 x 10° ksi (k2)
0 0 4.311

The matrix [Bi.j] for the 0° layer is obtained by substituting

Equations (u41) and (42) into Equation 29:

1.715  -1,801 3.428
-0.147 0.906 -0.248 (43)
-0.087 0.290 0.162

[ By;]

Similarly, we have

0.795 1.264 2.969
-0.080 0.684 ~0.215 (L4)
-0.075 0.251 0.081

{ Bys]
for the 30° layer and
0.795 1.264 -2.969

[Bij] = ]-0.080 0.684 0.215 (Ls)
0.075 -0.251 0.081

29
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for the -30° layer.

For the purpose of comparison, we choose the maximum stress

criterion formulated by

X6 > 0¢ > -X;, ()46)

For the given boron/epoxy composite, the limit values are

+ -

X' = 192 ksi, X, = -353 ksi,
x,t = 10.4 ksi, X, = -40 ksi,

()
X¢ = 15.3 ksi

As an independent layer, failure surfaces are shown in Figure 11 for 0°,
+30°, and -30° orientations. Since Iy = 0 in the case under consideration,
and since Xt = -X¢ = X¢ » the failure surface for +30° orientation is
the same as that for -30° orientation.

Moreover, for #30° orientations the possible failure mode is either
transverse or shear failure. In the figures the first letter stands for
longitudinal or transverse and the second for tension or compression.

S denotes shear.
Failure behavior of the same lamina as a constituent layer in the
[o°/+ 30°]s laminate is quite different, as shown in Figure 12. Again, +30°
and -30° layers behave identically, because ny = 0. Note that even the
0° layer has a failure surface which is rotated as well as deformed from
the original shape.
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SECTICN IV

COMPARISON BETWEEN STRESS AND
STRAIN FAILURE CRITERIA

In the preceding section limiting strains were obtained from failure
stresses under the assﬁmption of linear stress-strain relation. It was
noted also that those are not the actual values but fictitious ones because,
frequently, the relation is not quite linear. Unidirectional composites are
observed to behave nonlinearly, especially in longitudinal shear. Recently,
an attempt has been made to describe analytically this shear nonlinearity.
A reasonably good agreement was shown between the analytical predictions
and experimental data when a term of fourth order in shear stress was
added to the plane-stress complementary energy of the linear elasticity.

Physically, failure criteria in stress and in strain should be convertible
to each other because they express the same phenomena. What prevents
this is the lack of both exact criteria and accurate stress-strain relation.'

I+ is shown in Reference 7 that a stress tensor polynomial of second order
provides a reasonably accurate failure criterion. Then the question that
might be asked is, how does it compare with a strain tensor polynomial
of the same order? An answer to this question will be attempted by taking

& stress-strain relation of the form suggested in Reference L . _

The stress-strain relation we shall use is written as
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(] 0y 0
2
ez) = [S;5]1 {02} + Seessog {0} (48)
6

eg o6

where the linear compliance matrix [Sij] is given by
[Si51 = [S12 Sa O (L9)

Then, substituting Equation (48) into Equation (15) yields

?(0’1) = F]O’] +F2°’2 + fnclz + 2?]20’10’2 +F320’:
- (50)
+ Fge (1 + aa':)zzr: = 1
where F; and Fij are defined by
Fi = sijGj’ Fij = Siij‘,le; i=1,2 (51)
and
a = Sgese/See (52)

Now that the strain polynomial is converted to a stress polynomial,
the stage is set to compare the stress and strain criteria of failure when

they both are described by polynomials of second order. For this purpose

the stress polynomial given in Appendix | is rewritten as
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f(O’i\ = Fyoy + Fao, +Fnu’la +2F 120102+ Fp; O': + Fgg 0'6z =1 (53)

Five coefficients except Fg, are determined from five different tests
(guiding experiments (Reference 16) in the o) — 02 plane: tension and
compression in the longitudinal and transverse directions and a biaxial

loading). Therefore, it follows that

F. = F,, Fij = Fig i,j=1,2 (54)

However, in order for Equations (50) and (53) to have the same intercept

* X, along the o¢ axis, the following relation should hold:

?66 = “'—l'— F66 (55)
(1+aX%)?

Thus the failure surface in the stress coordinates representing the strain

ecriterion of the form (Equation 15) can be written as

?(0’1) = F]O’, + FzO’z + Fno“z + ZFlzd'lo'z + Faz 0’:

. (56)
l1+ao0g
+ Fg | ™ 0'62 = 1
1+°X62

Suppose that (o, ¢, 04) and (o), o2, o¢) satisfy Equations (53)
and (56), respectively. Then we have

|6 1+a0e

el ~ Traxg (57)

The above equation implies that
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vila

|?6| % IUcl as l?(,l X (58)

In other words, the strain criterion predicts a higher failure stress of
shear in combined loadings when the applied shear stress is less than the
failure stress in pure shear, and vice versa.

Figures 13 and 1k show ellipses described by Equations (53) and (56).
The data except O are for graphite fiber (Morganite II) reinforced epoxy

composite lamina fabricated by Whittaker Corporation:

F, = -0.003 (ksi)-!, F, = 0.105 (ksi)"!,
Fs = 0,
Fyy = 0.065 x 10-% (ksi)-2, Fo, = 8.72 x 1072 (ksi)~ 2,

Fee = 9.07 x 1073 (ksi)-2, Fy2 = 0.2 x 10-3 (ksi)~?

)]

The values of a are taken from Reference 4 only for illustration purposes.
However, the actual value for the chosen composite is expected to fall within

the range considered. It seems that with higher values of a the strain
failure criterion tends toward the maximum stress criterion. At present
there is no conclusive experimental evidence which can support the choice

of one over the other. In any case, the difference seems rather small.
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SECTION V

SUMMARY

Current practice of constructing the initial failure surface of laminates
is rather complicated and usually needs the help of a computer. More-
over, in the design of laminated composites it is frequently necessary to
change the lay-up configuration. Thus, for each case a failure surface
must be determined anew.

In the proposed method coupled with the Kirchhoff assumption, the
failure surface is constructed only once for a layer with given direction,
usually 0© orientation. Failure surfaces for the other off-axis layers are
obtained from that for the 0° layer simply through an appropriate rotation
about the axis of dilatational strain. Alternately, we may hold the failure
surface fixed while rotating the strain coordinates through a pertinent angle.

The method is based on the observation that the transformation matrix
for the strain components becomes orthogonal when the shear strain e
is replaced by e /N2. For the stress one has to multiply the shear stress

by 2. Consequently, it is proposed to use

N f—

p= %(e,-&ez), q = (e;- e2), r = -eié. (59)

in place of e;. e,, e, . The above are the quantities we are familiar with

in the Mohr's circle representation of a strain state. Then it is easily
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verified that there exists a one-to-one correspondence between the
rotation of (x;, x2) and that of (q, r).

One of the disadvantages may be that uniaxial strengths are not
apparent in the proposed method. This can, however, be resolved by
studying the relation between p and q, and if failure surfaces are available
in the q-r plane for a reasonable number of p values.

Using the constitutive equation suggested in Equation 4 to describe the
nonlinearity in shear, a comparison was made between the stress and strain
criteria of failure when they both are described by polynomials of second
order. Although there is a noticeable difference in combined stress state,
no experimental data are available yet to favor one over the other. Con-
sidering both the difficulty of working with nonlinear equations and

experimental scatter, the difference may be neglected.
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APPENDIX I
MODIFIED STRENGTH TENSOR COMPONENTS
Strength failure criterion:

f(g") = F.o. + F-.oncj = 1.

Modified criterion:

(g% = F2e2 + F.lj° ai°aj° =1,
where
FP F, + F,_I‘
F.° = Fy - Fz( ’
Fe° Fe |
Fu+ 2Fy2 + Fp Fp-Fa
fFijOJ = Fip-2F2+ Fap

symmetric

Ly

Fi¢ + Fzé

Fi6- Fy
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APPENDIX II

USE OF FAILURE SURFACES IN gq~-r PLANE

e e e A

Suppose the elasti. stress analysis of a laminated composite has

F yielded the following strain components referred to the laminate reference

axes:

e_).

(e eys ey

Failure surfaces of 0° layer corresponding to various values of p are

available in the q-r plane. Failure of each layer under the given state of
strain can then be checked by following the procedure described below
(Figure 6):

a. Calculate p, q, r using Equation (4), i.e.,

p = (ex + ey)/Z, q= (ex- ey)/Z, r= exy/Z
b. Choose the failure surface corresponding to the calculated value
of p in the g-r plane.
c. Find the point Q with coordinates (q,r) and draw a straight line
OQ connecting the origin O and the point Q.

d. For a ¢° layer, find the point Q' such that OQJ' is obtained by

rotating OQ clockwise through angle 24.

e, If Q'is inside the region enclosed by the chosen failure surface,

the layer is safe. Otherwise, the layer has failed.




