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ABSTRACT

Failure surface of laminated composites can be constructed in special

strain space such that the transformation of strain components becomes

an orthogonal matrix. This construction provides a convenient means of

studying strength of laminates consistii g of arbitrary lamina orientations.

This special construction of failure surface can be based on the maximunm

strain thecry, the tensor polynomial theory or other failure criteria of

the lan-ina. :he effect of nonlinearity due to shear on the failure

surface is also illustrated.
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SECTION I

INTRODUCTION

In the design of composites it is frequently necessary to know the

failure properties referred to a reference coordinate system other than

the material coordinates. A failure surface is usually constructed in

the stress or strain coordinates which are the components referred to

the material symmetry axes. When a different coordinate system is used,

the resulting failure surface cannot be obtained from the original one

through a pure rotation, because the matrix relating the stress or strain

components in the two different coordinates is not orthogonal. In other

words, the transformation of stress or strain components involves a

deformation as well as a rotation, which follows easily from the Polar

Decomposition Theorem.

Rotation is easy to visualize and so amenable to graphical representa-

tion. We described in Reference I a method to eliminate the deformation

part from the transformation matrix. What makes this possible is the

similarity of the trar,normation matrix to an orthogonal matrix. Here we

apply the method to study failure surfaces of symmetric laminated com-

posites subjected to in-plane loadings only. A full advantage is taken of

the orthogonality of the modified transformation matrix. Further, noting

that this orthogonal matrix describes a rotation about the axis of two

[1



AFNL-TR-74-13

dimensional dilatational strain p in the modified strain coordinates (or

hydrostatic stress in the modified stress coordinates), it is proposed to

represent the failure surface in the (el - ez)/2- e 6 /Z plane with p as a

parameter. An advantage of the proposed method is shown via its appli-

cation to analysis of initial failure of a laminate.

Stress-strain relation of most unidirectional laminae can be assumed

to be linear except in shear. A comparison is given, with due regard to

this shear nonlinearity, between the stress and strain criteria of failure

when they both are described by polynomials of second order.

2
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SECTION iI

METHOD

It was suggested in Reference I to use /" 06 + in place of the

shear stress 06 because this makcs the transformation matrix of stress

orthogonal. The same result was shown to follow for strain if e 6 is

replaced by e 6 / ,IVT. A new set of coordinates (6,'. oj:, "'6) was

introduced in which the transformation describes a rotation about W:

axis through an angle -Z2, where 0 is tie angle of rotation of coordinates

(XI, x)) Figure 1.

The modified strain components i are related to the original com-

ponents ei by

(e, + ez)l'/-•,

"ez* = -(e, - ez)/•v'2, (1)

"e6 = e6 /\/'.

Tu make terms on the right side more familiar we divide them by VrF

to obtain

e° = (p, q, r)T = He (2)

+ Contracted notation is used.

3
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Figure 1. Coordinate Transformation
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where

I 1 0 1 1 01

H 1 -1 0 H"1 1 0 (3)

0 0 1 0 0 2

Note that th- coordinate systein (n, q, r) is left-handed.

Quantities p, q, r given by

p = (e 1 + e 2 )/Z, q = (el- e?)/Z, r = e 6 /2, (4)

are all familiar if we consider the Mohr's circle representation of a

strain state, Figure 2. Moreover, we can specify (eI, e 2) and (p, q) in the

same coordinate plane if we change the scale of el and ez by

F, = el/ V 5 , -i2 = ez?.A/V5 . (5)

The relat.on is shown graphically in Figure 3. Transformation of the

modified coordinates (p, q, r) follows from that of (el , e 2 , e 6 ):

P0 0 p

q 0 coso 2 sin2O (6)

0 -sinZ co0 s J20 r

where primed quantities are referred to new coordinates (x, xx)"

Equation (6) is nothing but a simple coordinate transformation showing

that (p', q', r') is related to (p, q, r) through a rotation of angle 20 about

p axis, Figure 4.
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Failure is characterized by a closed surface in the stress or strain

coordinates. Transformation between ei' and ei, for example, includes

a deformation as well as a rotation. Therefore, the shape of failure

surface is altered by this transformation, Figure 5. However, when the

failure surface is drawn in the (p, q, r) coordinates, its shape does not

change because the coordinate transformation results only in a rotation

about the p axis.

Mathematically, a failure surface may be described by a functiom g

such that

g(e) 1 (7)

The equation for the same surface in the (p, q, r) coordinates is then

given by a new function gO which is related to g by

g°•e°) = g(H-le°) (8)

Equation (5) is useful in obtaining the new function g , especially when

the surface is described by a polynomial. It should be noted, however,

that the method is not restricted to such cases only. A simple graphical

method is possible when the maximum strain criterion is used. Figure 6

shows such graphical construction. It also illustrates the way the projec-

tion on the q-r plane is obtained. This will be explained in detail in the

following section.

The same reduction follows for a failure surface in the stress space if

the stress vector a = (al , .. , .6 )T is replaced by

9
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(p, q. r)T K (9)

where

1 1 0 1 1 0

1 -1 0 1 1 -1 (10)

L0 0 2 J 0 0 1

Our discussion is hereafter restricted to strain criteria because our main

objective is to apply the method to laminated composites in the framework

of classical plate theory.

)1



SECTION III

APPLICATIONS

1. UNIDIRECTIONAL LAMINAE

There arc various criteria for failure of composites. These theories

are Ftx:&r:-:zni:: Fvfe'rce 2. A.t:.cugh the present method is not restricted

to an*" particular criteria. we restrict our discussion to the maximum

strain criterion and the second order tensor polynomial criterion.

In the maximum strain criterion, the allowable range of strains are

given by

El el > El , e2  E 2 ,

E6+ 2> e 6 -, E6-

In the modified coordinates (e , ci, r) the corresponding limit values

are

El+/V-2-> -e, , E,-/\XT, Ez+l"'-• _j2 > E27"/' Z--,

E 6 +/2 > r > E 6 "/2 (12)

Equation (ii) implies the absence of interaction among limiting strain

components. Therefore, it is possible to obtain those limiting values

from the limiting stress components determined by load-controlled tests

if pertinent constitutive equalion is known. Most composites are almost

12
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linear up to failure in longitudinal and transverse tension and compres-

sion. Thus, it follows that

El+ = X1+/EL. Ej" = Xj-/EL,
(13)

E2+ = X,'/ET, E 2. = Xz-/ET,

where X, and X 2 are the failure stresses and EL and ET are the longi-

tudinal and transverse Young's moduli, respectively (Reference 3).

The difficulty in relating the limiting strain components to the limiting

stress components lies in shear, because of highly nonlinear behavior.

The procedure we follow here is derived from current practice which chooses

a fictitious maximum strain assuming a linear behavior. This may be

plausible if we note that the classical theory of laminated composites is based

on the linear stress-strain relation. A recent study (References 4, 5) showed

that the effect of shear nonlinearity on the behavior of laminates is negligible

under uniaxial tension as far as laminates contain layers of Q0 orientation.

The nonlinearity appears most in *450 laminate as experimentally

observed and theoretically proved. In any event we here choose the

truncated value as the limiting shear strain so that

E6 + = -E 6 " = X6/G (14)

where, again, X 6 is the failure stress and G is the shear modulus. The

first equality which states the identity of positive and negative shears

follows from the material symmetry of unidirectional laminae.

13
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Failure stresses of unidirectional graphite/epoxy and boron/epoxy

composites are given in Reference 6 . The corresponding strains are

determined using Equations 13 and 14, and are listed in Table I. Graphical

representation of failure surfaces is given in Figures 6 through 9.

The procedure to be followed is described below:

a. Obtain limiting values of el, ez, e 6 directly from experiment

or from limiting stress components through Equations 13 and 14.

b. Calculate limiting values of e 1 , 'Z2 , r from Equation 12.

c. Draw the failure surface in the Ze --ez plane.

d. Draw p and q axes. p axis bisects the angle <i eoe 2 and q

axis the angle < 7F o (-hz).

e. To find the failure surface in the q-r plane corresponding to a

particular value p = c, draw a straight line p = c. The points at which

this line intersects the failure surface in the p-q plane give the limiting

values of q.

f. The corresponding failure surface is then given as a rectangle whose

vertical sides pass through those determined points on the q axis and

whose horizontal sides are given by r = E 6+/2 and r = E 6 /2.

Another way of characterizing the failure of unidirectional composites

is provided by a second order tensor polynomial of the form (Reference 7)*

O Summation is implied over any repeated indices.

14
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TABLE I

LIMIT VALUES OF STRAINS

• Fa i lurre+
trinst E,+ -E, E?+ -E2 E6

Material x 10, x 10, x 10' x 10i x 10 3

High-Strength

Graphite/Epoxy 8.57 8.57 4.71 17.65 18.46
vf= 0.6

Intermediate- Strength

Graphite/Epoxy 9.41 9.41 4.41 14.71 15.38

High- Modulus
Graphite/Epoxy 4.40 4.00 2.35 11.76 13.85

vf 0.6

Boron/Epoxy 6.40 11.77 3.85 14.81 21.86
vf1 0.5
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g(e) - Giei + Gijeie. z 1 (15)

In the modified strain coordinates the same failure surface is described

by a new function go

go(eo) = Gijei° + Gijoei.ej. = 1 (16)

where

Gi H-j Gj Gij° = Hki- H-1j Gk (17)
-1

Using Equation (3) for the matrix Hij in Equation (17) results in
ij

Gl G, + (G2]

G20 = G, - G~t,

G6° 2G6

(18)

Gil + 2GI0 + G02 Gil - G02 Z(G16 + G26)

[G ij° = Gl - 2G12 + G22 Z(G 1 6 - G26)

L symmetric 4G" J

For unidirectional laminae the material symmetry requires that

G6 = G16 = G2 = 0 (19)

Therefore, Equation (16) reduces to

20
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(q q )2 Sr
2 + -- = (20

az b2

where

2 2a - k b = k
G 2•2 P 0660 p

qp= 0Gzz° (ZG!zop + Gz°) (21)

2 / G/Z o P + Go02
0k = • GG p0 +

• •)+ 4G 4 o22

Since a failure surface should be closed from physical considerations,

Equation (20) should describe an ellipse and so

a2 > 0, b1 > 0, c > k _ 0 (22)

The ratio of major axis to minor axis remains constant whereas the center

moves along q axis depending on the value of p. The lengths of axes also

depend on p. In terms of Gijo Equation (22) yields the well known conditions

GII°G 220 > G120 , Gz2 °G 66
0 > 0 (23)

and

Go2 + G 11
0G 2

0G /Gz° + 4G, 0- ZG, °(G°G2 
0 + 2G10)/Ozz , > 0 (24)

The bounds for p then follow as

Pmin :S P :- Pmax, (25)

21
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Pmin = (B - C)/(2A), Pmax -(B + C)/(2A) (25)
Cont'd.

where

A G 12
0 /G 22 ° - G11°

B= rGO• + G, oG" o /G212
0 

+ 4GO- 2G, 2O(GOeGo + 2G+2
0 )/G 2,O] (26)

C a G 2°G 1 2°/G 22° - Gl°

The strength tensors Gi, Gij in the strain criterion can be related to

the strength tensors Fi, Fij in the stress criterion if the material is

linear elastic (Appendix I):

Gi Qji.Fj, Gij = QkiQfjFkt (27)

where Qij is the reduced stiffness tensor. The above equation is necessary

because most available data are for Fi and Fij.

As an example we take the failure data reported in Reference 8 for

gl-ass/e.)oxy scotch-ply 1002 lamina:

F, z -0.003 (ksi)"', F2  = 0.295 (ksi)-

F•i ý 0.063 x 10-' (ksi)"-, F 22  = 17.15 x 10-3 (ksi)-r , (28)

F66 - 10.85 x 10-3 (ksi" 2, F 12  = 0.15 x 10-' (ksi)-

The stiffness matrix of the same material is[5.004 0.083 01

[Qij] 0.083 1.668 0 x 10' ksi (29)

0 0 0.704

22
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Froa Equation (27) follow G. and G.

G, = 9.475 G = 491.81

G11 = 1.82 x 10W 0,2 G 47.76 x 10' (30)

C .66 5.38 x 10 G12 3.65 x 103

Finally, substituting Equation (30) irnto Equation (1i) yields

Go 510.29 0 -482.34

GO 1 56.88 x 10 0 G22 0 42.27 x 103 (31)

C 660 =21.51 x 103 Gja - -45.94 x 10'

The variables characterizing the failure surface can now be obtained

s.-...t.t.tir,, the above data into Equation (21):

a - 4.864 x 10-kp, b = 6.818 x 10-lkp,

qp 1.087 p - 5.705 x 10-3
p (32)

k P (-6.951 x 10' p 2 + 22.928p + 2.376)1/2.

Pmin = -16.91 x 10', Pmax = 20.21 x 10-'

- '- e -urface is drawn on the q-r Flane, Figure 10. Each ellipse

re.•reset3 ;ittis•n (20ý "or a fixedl 4ilataticnal strain p.

it goes without saying that, whereas the graphical method is a more

viable means of constructinil failure surface in the case of maximum

strain (or stress) criterion, one has to resort to the equation of failure

in tre case of polynonial criterion (Equation 15).

23
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Now that one has the appropriate failure surface drawn in the q-r

plane, any off-axis failure can easily be checked. This will be illustrated

in the following paragraph.

2. LAMINATED COMPOSITES

According to the classical plate theory for thin laminates, the in-plane

strains are assumed to be the same in all constituent layers. This makes

it possible to draw failure surface for each layer in the same strain

coordinates without modification. Once the state of critical strain is

known, the state of stress in each layer can be calculated by using appro-

priate constitutive equations, e.g., Ti = Qijej"

The above argument applies at most to the initial failure of laminate,

i.e., the failure of the weakest layer in the laminate. The behavior after

the initial failure is not well understood at this time. One of the approaches

to this problem is tc remove the layers that have failed from the laminate

by setting the stiffness of the layers equal to zero (Reference 9), the

other assumes stress-strain relations with negative slope for the failed

layers (Reference 10). In any event, understanding of the initial failure

is important because it forms one of the bases of current design criteria

(References 6, 11).

One more point to be noted is that we do not consider any effects of

interlaminar stresses. The interlaminar stresses become significant along

free edges because there they have large magnitude, depending on the stacking

sequence or lay-up of the laminae (References 12, 13). Hovever, a few

25
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thicknesses of the laminate away from the free edges the classical plate

theory provides a reasonable solution.

To be precise we formulate the criterion for the initial failure as

follows (Reference 14): Let ga be the failure function of a-th layer.

Then the initial failure of laminate occurs when the strain e satisfies

the condition

max ga (e)} 1 (33)
a

Graphically, this is the equation for the inner envelope of failure surfaces

of constituent layers.

As we have seen, the failure surface of, e.g., €o layer is obtained

from the failure surface of 00 layer by keeping the surface fixed while

rotating q, r axes through angle -2). Note that the layer orientation angle

6 is equal to -0, because 0 is measured away from the layer symmetry

axes (Figure 6).

As an illustration consider a high-strength graphite/epo-cy laminate of

[00/300] lay-up configuration. The lamina failure surface is shown

for the 00 layer in Figure 6. Suppose the state of strain resulting from

stress analysis is

ex 4 x 0 ey = -4 x I0", exy 12 x 10" (34)

The corresponding p, q, r follow from Equation 4 by using the above

values:

26
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p = (ex + ey)/2 0, q (e. - ey /2 = 4 x 10-,

r = exy/2 = 6 x 10-' (35)

The state of strain is denoted by the point Q for the 00 layer. Since we

use the same failure surface, the same state of strain is given, for the 300

layer, by the point Q' that is obtained by rotating 07 through angle -600.

The failure surface corresponding to p = 0 is shown by dashed lines.

Since both Q and Q' are inside the region enclosed by those dashed lines,

both layers will not fail. It is easily seen that under the same state of

strain, the range of 4 without failure is

-740 < 2,p < 1860, i.e., -370 < 6 < 930 (36)

One of the advantages of using (p, q, r) coordinates in conjunction with

failure is that one constructs the failure surface only once no matter how

many layers a laminate consists of insofar as all the layers are made of

the same material.

A disadvantage of working with failure surfaces in the stress coordinates

stems from the fact that the lamina stresses vary from layer to layer even

when there are no bending effects. Thus the relation between the lamina

stresses and the laminate stresses must be known in order to express any

failure criterion in terms of the laminate stresses.

In the laminate coordinates, the laminate stress-strain relation is

given by Equation 37 (Reference 15).

27
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Ny = [Aij] ey (3)

Nxy exy

where [Aij] is the laminate stiffness matrix. Noting that the strain com-

ponents in the lamina coordinates are related to those in the laminate

coordinates by

(el ex Cos 2 * sinai (sin2 0)/2

e2 T j ey [T j [sin. cosZ4 -(sin2o)/2 ( 3 8 )

e6 exy u sin zo sin2 O cos 2 0

we can obtain the relation between the lamina stresses and the laminate

stresses:

(T Nx

tB .j] N B 1 Te A -! (39)S j y eij = ik £k

.6 (Nxy

where [A;-, is the inverse matrix of [A,,]

To compare the failure behavior of a lamina as an independent layer

and as a constituent layer in a laminate, it is necessary to use the same

reference coordinates. Thus we need the equation

Cosa 0 sina sin 20-
x!

T2z [T'J] oy (TO-] = sinZ 20 Cos 2b -sin 2 4

407:'T' [.- sinE 0/2 (sin 2 j)/2 cos 2
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As an example, we now take a boron/epoxy composite whose stiffness

matrix is given in Reference 6

=r' 30. 1. 0.572 0.]()
[ ij] : 0.572 2.71 0 x 103 ksi (41.)

For a laminate of [00/* 3001 lay-up configuration, the stiffness matrix

is calculated to be

21.941 4.183 01

(A..1 4.183 3.667 0 1X 103 ksi (42)
0 0 4.311

The matrix [B for the 00 layer is obtained by substituting

Equations (41) and (42) into Equation 29:

F 1.715 -1.801 3.4287
[Bij] -0.147 0.906 -0.248 (h3)

L-O.O87 0.290 0.162J

Similarly, we have

F0.795 1.264 2.9691
(B i j ] = -0.080 0.684 -0.215 (4h)

L-O.O75 0.251 0.081J

for the 300 layer and

[0.795 1.264 -2.969[Bij] = -0.080 0.684 0.215 (45)

0.075 -0.251 0.081
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for the -300 layer.

For the purpose of comparison, we choose the maximum stress

criterion formulated by

X,+ > 0-1 > X 1 - X+ > o- > XZ

X 6 :> q 6 > -X 6  (46)

For the given boron/epoxy composite, the limit values are

X, 192 ksi, X, -353 ksi,

Xz+ 10.4 ksi, X 2 - -40 ksi,

(47)
X6 15.3 ksi

As an independent layer, failure surfaces are shown in Figure 11 for 00,

+300, and -300 orientations. Since o-xy = 0 in the case under consideration,

and since X6+ = -X 6 " = X 6 , the failure surface for +300 orientation is

the same as that for -300 orientation.

Moreover, for * 300 orientations the possible failure mode is either

transverse or shear failure. In the figures the first letter stands for

longitudinal or transverse and the second for tension or compression.

S denotes shear.

Failure behavior of the same lamina as a constituent layer in the

[0 0 /t 300] laminate is quite different, as shown in Figure 12. Again, +300

and -300 layers behave identically, because Nxy = 0. Note that even the

00 layer has a failure surface which is rotated as well as deformed from

the original shape.
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SECTION IV

COMPARISON BETWEEN STRESS AND
STRAIN FAILURE CRITERIA

In the preceding section limiting strains were obtained from failure

stresses under the assumption of linear stress-strain relation. It was

noted also that those are not the actual values but fictitious ones because,

frequently, the relation is not quite linear. Unidirectional composites are

observed to behave nonlinearly, especially in longitudinal shear. Recently,

an attempt has been made to describe analytically this shear nonlinearity.

A reasonably good agreement was shown between the analytical predictions

and experimental data when a term of fourth order in shear stress was

added to the plane-stress complementary energy of the linear elasticity.

Physically, failure criteria in stress and in strain should be convertible

to each other because they express the same phenomena. What prevents

this is the lack of both exact criteria and accurate stress-strain relation.

It is shown in Reference 7 that a stress tensor polynomial of second order

provides a reasonably accurate failure criterion. Then the question that

might be asked is, how does it compare with a strain tensor polynomial

of the same order? An answer to this question will be attempted by taking

a stress-strain relation of the form suggested in Reference 4

The stress-strain relation we shall use is written as
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e 02 + S666 6 o•6 0 (48)

e6 0*6 T6

where the linear compliance matrix [Sij] is given by

[S 11  S 12  0 1
(Sij] = Siz Sz0 j0 (49)

Then, substituting Equation (48) into Equation (15) yields

"f (oai) = F ,1 o- + F 2(2 + F11, ', + 2F120z o-2 + Fz2 0-

2 2 
(50)

+ F6 6 (I + 1 -6( 56

where Ti and Fij are defined by

"TiF SijGj "Fij = Sik sGkI; i =1,2 (51)

and

a = S 6666 /S 66  (52)

Now that the strain polynomial is converted to a stress polynomial,

the stage is set to compare the stress and strain criteria of failure when

they both are described by polynomials of second order. For this purpose

the stress polynomial given in Appendix I is rewritten as
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i F +F 2  +F 1  
2  

2  : + F66 -62 (53)

Five coefficients except F66 are determined from five different tests

(guiding experiments (Reference 16) in the GI - Ct2 plane: tension and

compression in the longitudinal and transverse directions and a biaxial

However, in order for Equations (50) and (53) to have the same intercept

± X 6 along the a-6 axis, the following relation should hold:

• - 1
F66 = F 66  (55)

(1 + cX 6
2 )2

Thus the failure surface in the stress coordinates representing the strain

criterion of the form (Equation 15) can be written as

T(-- F 1a-1 + Fza- 2 + F11 a,? + 2F 2o-1 z + F a22

)2 (56)

+ F 6 6  a =%

Suppose that (aI-, q2, (r6) and (a-, a-2, a-() satisfy Equations (53)

and (56), respectively. Then we have

. + 3a62

II (57)I;,J '+ -X6'

The above equation implies that
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> as<

61I 16 as I X6 (58)

In other words, the strain criterion predicts a higher failure stress of

shear in combined loadings when the applied shear stress is less than the

failure stress in pure shear, and vice versa.

Figures 13 and 14 show ellipses described by Equations (53) and (56).

The data except 01 are for graphite fiber (Morganite II) reinforced epoxy

composite lamina fabricated by Whittaker Corporation:

F, = -0.003 (ksi)"I, F 2  = 0. 105 (ksi)-1 ,

F 6 = 0,

F11 = 0.065 x I0-3 (ksi)- 2 , F 22 = 8.72 x I0"3 (ksi)2,

F 66 = 9.07 x 10-3 (ksi)"2 , F12 = 0.2 x 10-3 (ksi)"2

The values of a are taken from Reference 4 only for illustration purposes.

However, the actual value for the chosen composite is expected to fall within

the range considered. It seems that with higher values of a the strain

failure criterion tends toward the maximum stress criterion. At present

there is no conclusive experimental evidence which can support the choice

of one over the other. In any case, the difference seems rather small.
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SECTION V

SUMMARY

Current practice of constructing the initial failure surface of laminates

is rather complicated and usually needs the help of a computer. More-

over, in the design of laminated composites it is frequently necessary to

change the lay-up configuration. Thus, for each case a failure surface

must be determined anew.

In the proposed method coupled with the Kirchhoff assumption, the

failure surface is constructed only once for a layer with given direction,

usually 00 orientation. Failure surfaces for the other off-axis layers are

obtained from that for the 00 layer simply through an appropriate rotation

about the axis of dilatational strain. Alternately, we may hold the failure

surface fixed while rotating the strain coordinates through a pertinent angle.

The method is based on the observation that the transformation matrix

for the strain components becomes orthogonal when the shear strain e 6

is replaced by e 6 //-ý 7 . For the stress one has to multiply the shear stress

by vrZ. Consequently, it is proposed to use

S 1 . (59)
p= • (e1 +e 2 ), q= •(e,- e2), r (2

in place of el e 2 , e 6 . The above are the quantities we are familiar with

in the Mohr's circle representation of a strain state. Then it is easily
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verified that there exists a one-to-one correspondence between the

rotation of (XI, X2) and that of (q, r).

One of the disadvantages may be that uniaxial strengths are not

apparent in the proposed method. This can, however, be resolved by

studying the relation between p and q, and if failure surfaces are available

in the q-r plane for a reasonable number of p values.

Using the constitutive equation suggested in Equation 4 to describe the

nonlinearity in shear, a comparison was made between the stress and strain

criteria of failure when they both are described by polynomials of second

order. Although there is a noticeable difference in combined stress state,

no experimental data are available yet to favor one over the other. Con-

sidering both the difficulty of working with nonlinear equations and

experimental scatter, the difference may be neglected.
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APPENDIX I

MODIFIED STRENGTH TENSOR COMPONENTS

Strength failure criterion:

f(c0) = Fic -1 + F..• •- : 1.

Modified criterion:

fo ((o) F.0°a 0 + F.P 0.° I,

where

F 0  F, + F 2

2F0  = F, - F

F 6°0 F 6

F 1 , + 2F, 2 + F 22  F 1 , F 22  F 16 + FM 1
[F.i 0 = F1 , - 2F12 + F22 F16- F I •

L symmetric 
F" J
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APPENDIX II

USE OF FAILURE SURFACES IN q-r PLANE

Suppose the elasti, stress analysis of a laminated composite has

yielded the following strain components referred to the laminate reference

axes:

(ex, ey, e xy).

Failure surfaces of 00 layer corresponding to various values of p are

available in the q-r plane. Failure of each layer under the given state of

strain can then be checked by following the procedure described below

(Figure 6):

a. Calculate p, q, r using Equation (4), i.e.,

p = (ex + ey)/ 2 , q = (ex- e y)/2, r = e xy/

b. Choose the failure surface corresponding to the calculated value

of p in the q-r plane.

c. Find the point Q with coordinates (q, r) and draw a straight line

0?5 connecting the origin 0 and the point Q.

d. For a 00 layer, find the point Q' such that I' is obtained by

rotating OQ clockwise through angle 24.

e. If Q' is inside the region enclosed by the chosen failure surface,

the layer is safe. Otherwise, thp layer has failed.
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