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SUMMARY

PROBLEM

An analysis of the Terrain Contour Matching Navigation System (TERCOM)
was performed by the system's manufacturer, LIV E-Systems, Inc. An inde-
vendent evaluation of that analysis and of TERCOM wes desired for several
reasons: (1) some doubt existed about initial assumptions; (2) that analy-
sis was performed for a mean-square~distance (MSD) classifier with continu-
ous input, but a mean-absolute-distance (MAD) classifier with discrete
input is used in the actuzl hardware; and {(3) the utility of the single
terrain parameter, oz, suggested by E-Systems as being predictive of
TERCOM performance seemed limited because it varies widely over terrain
areas of interest.

APPROACH
The approach was ‘“vofold:

{1) Starting with kasic¢ assumptions, derive an error model for
TERCOM. Concentrate on the MSDiclassifiar because of its mathematical
tractability, but treat the MAD classifier also as far as possible.

4

(2) Determine by computex gsimulation the performance capabilities
of MSD and MAD, using both artificial Gaussian terrain and real terrain
samples. Compare TERCOM performance over artificial statistically control-
led terrain with the performance cver real tecrain to yield the parameters
necessary for a predictive performance model.

RESULTS

A mathematical model for TERCOM "false~fix" probability wis derived
that differs from the original LTV E-Systems model in certain assumptions.
False fix probability is presented as a finite sum having parameters that
depend on sample size, terrain and noise correlations, and the signal-to-
ncise ratio.

The computer simulation revealed that a dramatic increase in the
probability of a correct fix could be achieved by a simple change in the
normalization procedure for the MSD or MAD computations.

It was found that the simulated performance nf TERCOM on real terrain
was the same as on artificial terrain, yenerated from a Gaussian process,
when a parameter ratio oz/ot was the same for both terrains. This per-
formance was specified by plots of probabiiity of correct fix vs the
parameter ratio oz/0n. A family of performance curves was generated by
varying the parameter ratio 0,/0¢.
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The error model developed herein is a good predictor of simulation
results, but a rather poor predictor of performance on actual terrain.
Y This is believed to be principally due to the assumption of stationary
statistics for the terrain. While a Gauss-Markov v del may be valid for
local terrain regions, the Gauss-Markov statistics vary widely over real
terrain, even over physical extent:s represented by the reference arrays
encountered in TERCOM. Both the E-Systems error model and the present
one offer insight into TERCOM performance, and both wnuld undoubtedly be
improved by considering the nonstationarity of the terrain stat.stics.
The present model is not as computationally involved as the E-Systewms
model, however, and may therefore be preferable.

CONCLUSIONS

TERCOM performance can be significantly improved by means of a minor
modification in the mean-~removal procedure.

Present error models of TERCOM suffer from an assumption of stationary
statistics. This assumption is not justified on real terrain except when
precautions are taken to insure its validity.

2 parametric family of performance curves can be generated by simula-
tion of TERCOM flights over modified Gaussian terrain. Once such a familw
3 of curves is generated for a partirular terrain sample size, all performance
1 characteristics of interest zre determined. It still remains to compare
these results with actual flight test data.

TERCOM is an effective system providad that reference arrays can be
obtained that produce acceptable performance. Such reference arrays are
characterized herein, but their availakility in the real world was not
examined.
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INTRODUCT1ON

The terrain contour matching navigation system (TERCOM) (Ref 1) has
been proposed as a self-contained, auto.omous system for updating an
1nertial guidance system at selected checkpoints en route. The rystem
is based on a pattern classifi.r that may be termed a nearest-prototype
classifier, wliere "nearest" is cdefined in the first-Minkowski-metric sense.
In cxder to cobtain a clearer understanding of the capabilities and the
limitations of the system. an analysis and evaluation of TERCOM was per-
formed by this laboratory at the request of the monitoring agency.

The report of that analysis and evaluation is organized as follows.
The first section presents a brief discussion of the performance of an
! error model for TERCOM that was developed by TERCOM's manufacturer. Sone
b theoretical results are presented as suggestions for improving the model.
Ak brief compar.con of nearest prototype classifiers based on the first
Minkowski metric (termed MAL classifiers) and based on the Eu:liuean

metric (termed MSD classifiers) is also included. The next section pre-

sents a discussion of the simulation procedure and the sinulation results.

The last section presents the conclusions and recommendations.

THEORETICAL CONSIDERATIONS

PERFORMANCE OF THE TERCOM ERROR MODEL

Because the theoretical aspects of pattern recognition in general,
and TERCOM system performance in particular, are quite mathematical, there
must be some fairly strong motivation for the typical systems desigrer to
consider them in depth. The initial motivation for development of an
error model is, of course, to predict systems performance: such predic-
tions are essential to the systems buyer and user. But, if the TERCOM
manufacturer has provided an error model, why do we need more mathematical,
theoretical considerations?

The answer is obtained by constructing a scatter plot of the pre-

dictions of the manufacturer's error model against actual flight test data.




Such a plot would reveal that predictions do not correspond well with the
measured performance. The Pearson correlation coefficient computed for
such a scatter plot (p = 0.617) is interpretable as meaning that the error
model accounts for only about 38% of the variance in the measured per-
formance. This leaves about 62% of the variance unaccounted for. When

we consider the cost of a system like TERCOM, there is clearly strong

motivation to reconsider a mathematical error model.

GENERAL CONCEPTS

let x = (xo,x )be the true-position, stored, sampled terrain

170 %qo
contour. Assume X is accurate to some "mapping" error that is negligible
compared to the observation noise. Let T = (ro,rl,...,rd_l) =X + n,
where n = (no,nl,...,nd_l) is the observation noise. Let y{(1) =
(yo,yl,...,yd_l) be the stored sampled terrain contour at a geographical
distance T from the true position, as shown in Figure 1. Finally, let m
denote the match-distance (e.g., the decision statistic) between the

vectors r and y(T), and let m denote the special case T = O.

® ¥(1) = (Y1,¥2,¥3,Yy)
R " @ =a)

START OF - \

TRACK, K| = | - .

FLIGHT PATH

Figure 1. Nemeiclature and notation for vector samples
from a stored reference array.
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First of all we indicate the procedure for finding the probability
that m < mp for some fixed t. This will show us what distributions we

need to £ind in order to arrive at numerical predictions.

We let pT(m,mo) denote the joint probability density function of m
and myp. Recall that m corresponds to some T, and the function depends

(in general) on this 7. hence the subscript. Then we compute

PRSPPI S WIS

mo
Prob {m < my|mp} = IO pT(m,mo) dm
When we allow mp to range over all permissible values we arrive at 3
Prob {m < mp} = IO IO p_(m;mg) dm dmg

We now make our first assumption. We assume that for sufficiently
large 1, the distributions of m and mgp are independent. 1In the case of

the Gauss-Markov model, which we introduce shortly, this corresponds to

o

T > LT, where LT

equivalent to the following assumption:

is the correlation length of the terrain. This is

e

L]

mp
Prob {m < mp} = IO p(mp) jo p.(m) dm dmg

e

Now we want to know the probability that my is smaller than m for

[ WU

every permissible value of 1. Suppose that pT(m) is the same for each
of the permissible values of 1 (but, recall, 7 > LT), and that the inte-

gral above has been evaluated to, say, 8. That is,

RSV |

Prob {m < mp} A

Then Prob {my <m} =1 -8 8« ‘

Note that supposing pT(m) does not change with 1 imposes a second assump-

tion: that the terrain statistics are stationary.

TOPS
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T, proceed, consider the rank ordering of three observations that
correspond to mg, my, and my, where r and my are match values for two

distinct T > LT' Six orderings are possiblie; suppose the probability of
the ith order is P

mgy m) m3 P
mo m2 my P2
my m L] p3
m mp mg Py
mp mp m) Ps
my m myp Pe

We note that Prob {mp < mj} = p3g + py + pg = @, and Prob {mg < my} =
py + p5 + pg = a. It is a simple matier to compute

Prob {mg < m ( ) mp < mp} = py + pg. We further note the constraint

p; = 1. These facts together imply that
Prob {rj3 <my {\mg <my} =20 -1+ p; +pp

Now, as o approaches one, it is clear that p; and p; must approach zero.
Hence, for "large" «,

20 -~ 1

e

Prob {mo < m m my < m2}

As a approaches zero, p; + ps dominate. If we suppose py
obtain

1/2, we

]
ne

P2

Prob {mg < my /M mp < my}

ne

a/2

The somewhat surprising thing is that this sort of combinatorial arqument

can be generalized to rank orderings of many observations: the approxi-
mations remain the same.

The approximations just developed are fine for the high and low
ranges of a. But what about o ¥ 1/2? One case where a equals 1/2 ariues

when p; = 1/N for all i, and N is the number of possible rank orderings.

Y Wt
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If M is the number of observations being ranked, then N = M! and Prob {my

is the minimum observation} = 1/M. We see that in this particular case,

the approximation for "large" a gives the best result when M is large.
Using the preceding combinatorial argument as motivation, we choose

the following approximation.

Prob {mp < all m}
max {2a-1, 0}
max {1-28, 0}

e

op(mo)[U pT(m) dm dmp, 0} (1)

max {1-2 J

This expression approximates the probakility of correctly assigning r to
a position that is within a distance of L. of X.

At this point we see what distributions are of principal interest:
p{mp) and pT(m). We must consider the definition of the classifier's

match function before we can proceed further.

THE GAUSS-MARKOV STATISTICAL MODEL

The statistics of the terrain process and the noise process are
assumed to be Gauass-Markov, and independent of each other. Hence the

probability density function (using the notation of Ref 5)

= _ ~d/2 ~1/2 1 _,4-T
p(@) = (20 IATI exp { 3 al'a }
governs the terrain process, and the probability density function

-dy2,, ~1/2 T)

1
- = ’ - _:_.- ‘-l—
P5 (@) (2m) ]Anl exp { 3 aAn a

governs the noise process. The covariance matrix for the terrain, AT,
. .th .
has i-j elements given by

52 o himilzng
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The covariance matrix for the noise, An, has i—jth elements of the same
form, but with different parameters,

o> e-Ii-jI/Ln

»

The parameters LT and Ln are called the correlation lengths of the
terrain and the noise, respectively.
The joint distribution of X and ¥#(t) has a similar form, but the

covariance matrix is sligntly more :omplicated. Define

A, r A

L : Xy
A = .._-.;._.-..
z i

Ay t ATJ

where AT is the terrain covariance matrix, as before, and Axy contains the
covariance information between X and ¥(t). If we let the vector X be com-
prised of the i-jth cells (e.g., j is fixed and i runs from I throﬁgh I44;
d is the dimension of Xj of the reference array, and let ¥(t) be the k-lth

cells, then Axy has elements given by

-y (1~} 2 3
"i‘ /R (-D2/1,

We also know the main diagonal terms are given by

2 =-1/L
O’Te T

Now we let Z = X E ¥i1)] be the 2d-dimensional vector formed by cun-
catenating ¥ and §(t). Then the joint distribution of X and y(t) is given

by
2

- -, - "d —1/ - 1 -
(Gy,2p) = pz(a) = (27) IAzl exp {- E-ﬁhz

l_T}
P)-(’y ¢

where &; and G are the "halves" of @ corresponding to values of X and
y(r). In the special case that t is large enough Ayy is essentially a null

matrix, and Az has a block-diagonal structure. Then

9




THE DISTRIBUTION ON THE DIFFERENCE VECTOR

The match functions defined by both the MSD and the MAD classifiers

involve cperations on the components of a difference wector.

want to compute this difference vector and determine its underlying

probability density function.

When TERCOM samples terrain it is, of course, sampling the true fix

point, X. This uvbservation is perturbed by additive independent noise.

The observation is, therefore

r=X+n

Since X and n are independent, the distribution on T is easily computed

{e.g., via characteristic functions) to be

- -d/2 -172 -1 q
pz(@ = (2m) / IArI exp {- %—al\r a}

. A
where Ar a AT + AN

The difference vector that the classifier uses is then

adr- g

In the special case that X and ¥(1) are uncorrelated (e.g., large enough

7) the distribution on d is as easy to obtain as the distribution on r.

_ -d/2 ~-1/2 1. -l-T
Pa(u) = (27) IAdI exp {- E-aAd a}

where Ad = Ar + AT = 2AT + An.

o

The more general case of correlated x and y(t) is harder to analyze,

and is not considered herein.

THE HSD CLASSIFIER

In this section we want to compute the statistics on the match function

for the MSD classifier, and then compute the approximate probability of cor-

rect assignment according to equation 1, above.

10



The match function for the MSD classifier is given by

d-1 _ - _
m= ] (r; -yp?=3-3d=[d?
i=0

We will use the following notation.

-4 ~-1/72 -1
pz(®) = (2m) °/2|z] / exp {- %-EZ @l

This treats two special cases:
(1) For =0, Z=An, and

s
(2) for T>LT, Z_2AT+An.

To begin, we know that d can be transformed by an appropriate orthnogonal

transformation into a vector, say ii, that has the following properties.

[4

{1) The components of the vector U are independently distributed,

zero-mean Gaussian random variables with different variances (in general).

(2) If Ag denotes the variance of ui, we know that A% is the i

eigenvalue of the covariance matrix L.

(3) The inner product d+d is preserved under the transformation so

that usu = d-d.

Now we return to some statistical ideas. We know that if ui is
distributed as N(O,Az) then ug is distributed as a Gamma distribution,

G(a,x), with parameters « = 1/21% and r = 1/2. We know G(a,r) has the

form u/P(r)(ax)r-l e ¥

i
The Jdistribution on u, has the characteristic function

(1 - jzAiw)'l/z

Becaucc the U, are independently distributed, the characteristic

function of the distribution on WU = m is given by

a~-1
- 522207172
igo (L -5 lm)

- L e Al L a2 -1/2
Hence pT(m) = o [im e igo (1 jZAiw) dw.

11

a = 2 -1/2 - 2
%>0), hence, Pu?(vi) (2ﬂlivi) exp{ vi/2ki}
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This is an exact expression for the Gauss-Markov terrain model and
the discrete MSD classifier. Unfortunately, it appears thexe is no closed
form expression for the inverse Fourier transform.

Before finding an approximation for pT(m), we note that in the case
x?l = A for all i, p_(m) is G(1/2X, 6/2). We further note that in the
case Ag = )\ for i = 0,1,2,...I-1, and Ag = 0 for all i such that I £1i < 4-1,
pT'm) is G{1/2A, 1/2).

Now we want to evaluate the ki. Specifically, we want to know what
are the eigenvalues of the covariance matrix, IZ. We do not wish to evalu-
ate the Ai exactly, but we do want a good approximation to their behavior.
The approximation comes from noting that I is a Toeplitz foxm (Ref 7),
and hence, as 4 + =, I assymptotically approaches a circulant matrix.

The eigenvalues of the Toeplitz form and of its associated circulant
matrix are distributed identically in the limit. Further, the eigenvalues
of a circulant matrix can be obtained exactly as the discrete Fourier
transform of the first row of the matrix (Ref 7'and 5, p 205).

A Toeplitz matrix of order 8, its associated circulant matrix and
the error matrix involved in the approximation are shown in Fig 2. The
approximation is very good for Toeplitz matrices whose first rows contain
many trailing zeroes, or whose first rows are essentially constant. This
corresponds in our model to L << d and LT >> 4, respectively.

T
The behavior of the eigenvalues of a covariance matrix having elements

exp {-|i - j|/L}
as approximated by the Toeplicz theory is shown in Fig 3. Also shown in
Fig 3 is a "pulse-approximation.” The eigenvalues are approximated a
second time by a constant value over the first N large eigenvalues, and
by zero over the remaining small eigenvalues. The conscant and the

numbeyr, N, are chosen to minimize the mean-sguare-error of the pulse

approximation.
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(a) a Toeplitz matrix or oxder 8, (b) the associated circulant

matrix, and (c) the error matrix.
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Figure 3. Asymptotic behavior of the eigenvalues of A with d=48,

showing "pulse"-approximation for the case L=4.
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Thus, we approximate p(mg) and pT(m) (for T > LT) by Gamma distri-~
butions having parameters defined in terms of the eigenvalues of the
covariance matrices for the terrain and the noise. The eigenvalues are
approximately detcrmined by the Toeplitz theor, and the "pulse" approxi-
mation. Computer programs to implement these approximations are found
in Appendix A.

We may note that this approximation yields results that agree with
Schwartz (Ref 4). The eigenvalues of I are determined jointly by the
track length, 4, and by the correlestion lengths, LT and LN' The product
of d and LT(LN) yields the B of Ref 4. The behavior of the Gamma func-
tions derived from the approximation agree with the behavior of the
approximate distributions given in Figure 2 of Ref 4.

As we shall see, the Gamma distributions can be intearated easily to

obtain the false-fix probabilities for TERCOM.

THE MAD CLASSIFIER

The match function for the MSD classifier is given by

a-1 da-1
m=} |z, -yl =1 lg]l
i=0 i=0
where the notation is the same as in previous sections. This match func-
tion is uoften referred tc as the first Minkowski metric because it cor-

responds to K=1 in the following definition of the Minkowski metrics.

d-1 !
M Axal )z - YilK

i=0
We may note that K=2 corresponds to the Euclidean metric found in the MSD
classifier discussed in the preceding section.

Because the M; metric is not preserved under an orthogonal trans-
formation, it is very difficult to obtain the distribution on m from
knowledge (or assumption) about the distribution on d. The only case
that is at all tractable is the case of independently distribvted com-
ponents of d. This would correspond .o a diagonal I, and that is an

wiwarrented assumption for TERCOM.

15
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We can, however, gain some insight into the performance of the MAD

classifier by considering a theorem in pattern recognition that states
that any classification procedure is optimal (in a Bayes sense) for some
distribution on the patterns. A meaningful question to ask about M
nearest-prototype classifiers is, therefore, for what distribution of T
conditioned on ¥ (1) are such classifiers optimal?

Toussaint (Ref Z) has shown that minimizing M; distances is equiva-
lent to maximizing the Laplacian distribution. To make this clear, let
p(?ly(r)) be the conditicnal probability of receiving (observing) T when we
are truly at location ¥(1). As hefore, ¥ and ¥(t) are d-dimensional

ve-~tors. If

d-1 lr. - ¥ d-1 ‘n
p(fh—((‘t)) = —];-i- N exp [~ A N L ld' I exp{
g i=0 o i=0

il}

(o] g

(c a constant), then assigning ¥ to ¥(1) on the basis of nearest M; dis-

tance is an optimal (Bayes) procedure. The extent to which the distribu-

[

tion of real-world noise appro«imates the Laplacian distribution is,
therefore. an indicator of how close to optimal the TERCOM classifier is.
while this model of the noise may not be too unrealistic, it does not help

us make numerical predictions about the classifier's performance. It does,

however, suggest that MAD performance and MSD pe.formance will be approxi-
mately the same when tne noise process can be modeled equally well by the
Laplacian and the Gauss-Markov processes. Some additional points to con-
sider regarding Ml classifiers follow.

The Laplacian distribution is not "rotationally" symmetric, so the
decision boundaries implemented by Ml depend cn the choice of a coordinate (
reference system. This may be a distinct disadvantage when modeling a
physical process.

The Ml distance has an unusual "instability" that serves to point out
both the coordinate deperndence referred to above, and the fact that trans-
foxrms that are usually considered isometries do not presexve Ml distances.

See Figure 4.
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Figure 4. Decision boundaries established
by an MAD classifier. The shaded areas
are equidistant from y¥; and ¥, in the
special case shown.

The MAD classifier is harder to analyze mathematically than a classi-
fier based on Euclidean distance. This is so for two reasons: (1) An MAD
classifier has piecewise linear (e.g. nonlinear) decision boundaries,
whereas the Euclidean classifier has linear decision boundaries. (2) The
Gaussian distribution for which the Euclidean classifier is optimal has
been extensively studied in the literature due to the tractability of its
functional form, whereas the Laplacian distribution does not enjoy such
rich development. However, as Figure 5 shows, the difference between the
two classifiers is not great in the local regions of the signal space that
are "near" the signals (prototypes). Hence, an analysis of the Euclidean

classifier may produce a good approximate analysis ol the MAD classifier.
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Figure 5. Comparison of decision boundaries
established by an MAD and an MSD classifier.
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PREDICTION OF FALSE-FIX ERROR

At this point we want to evaluate Eq 1 by using the Gamma approxima-

tion discussed earlier. We therefc’ ~ assume that

I-1
- 1 _mg - 2
plme) = 2o§r(1)[2o§] exp {-mo/20}
and (m) = L (== )K~l exp {-m/202}
pT>LT 2020 (K) 202 P

where 62, 02, I, and K are the parameters involved in the approximation.

N
(see Appendix A for a computer program to find these once the terrain and

noise processes are specified.)

Thus,

my
[:p(mo) Io pT>LT(m) dm dmg

tad I-1
= 1 mo - 2
- L, 2520 (D [5?5] exp {-mo/20y}

™o K-1
. l m } _ 2
Io 202T (K) (202) exp {-m/20%} dm dmg

By changing variables, u = m/202 and v = m0/20§, we rewrite this as

19




2 /2
Jm LY BRI Wt e™ au av
o T(I) Jo I'(K)
u _ 2 2,K-1-1
0 T(I) 2o k-1-D)1
(w1 (g2 /g2 K-1-i
_ 1 Ko (oy/o%) I-14K-1-i _=(l2¢2/02)y
SR (5 N T T = T P ¢« v
i=0 e 0
- 2 5.2y K-1-1
I TS A (I+K-i-2) 1
T(1) (K-1-1) ! T+K-i-1

i=0 (1+u§/02)

I-1+k
k
half the number of nonzero eigenvalues of AN and of 2AT+AN, respectively,

with R=o?/c§ and ( ] a binomial coefficient. Recall that I and K are
as derived from the approximation.

Appendix A also gives a program to compute this finite sum. A
recursion formu'-~ is used to avoid an overflow problem that might cther-
wise arise from the factorials involved.

Once the sum is evaluated, Eq 1 is easy to compute. If the sum
evaluates to a quantity less than one~half, the Prcb {mg < all m} is set
to zero.

We return to a discussion of the predictions from this model after
we discuss the simulation. At that time we can compare the results of

the theory and the simulation.
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TERCOM SIMILATION

GENERAL CONSIDERATIONS

For a theoretical analysis of TERCOM performance to bhe useful, one
must have confidence that most of the resultsz predicted by this analysis
can be experimentally verified. While the ultimate test is an actual
flight test over real terrain, a computer simulation of a Gaussian ter-
rain model has proven very enlightening. Samples of Gaussian terrain
were generated by a digital computer program. TERCOM runs across these
terrain samples were then simulated for both MSD and MAD classifiers using
an uncorrelated Gaussian process to simulate system noise from all causes.
A tape of digitized real terrain amplitudes was obtained which contained
a wide variety of terrain types from flat to mountainous. TERCOM runs
were simulated across these samples, again using the uncorrelated Gaussian
process as system noise. We found that TERCOM results from both Gaussian
and real terrain were almost equivalent when a certain terrain parameter
ratio, GZ/GT, was the same for both types of terrain. Certain basic con-~

clusions about TERCOM performance can be drawn from these simulations.
OUTLINE OF COMPUTER PROGRAMS

A reference array size of 64 x 64 cells was chosen for the simulation
since this would represent a realistic size Zfor an on-board aircraft com-
puter system. The distance between sample points (cell size) was left
unspecirfied for the Ge.issian data, but the cell size used for the real
terrain samples was 400 ft.

The starting point for generating the Gaussian data was a radially

symmetric autocorrelation function of the form ¢(x,y) = exp{—/EZ:;zyn},
where L is the correlation length. Small values of L indicate rough ter-
rain with low correlation between points, while large values of L indi-
cate smoother terrain with a high correlation between adjacent points. A
two-dimensional fourier transform of the autocorrelation function was com-

puted using a2 fast Fourier transform algorithm. This procedure generated

21
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t 1 power spectrum, Pz(wx,wy), of the terrain. Generation of the actual

terrain, however, r.nuires an inverse transform of the complex spectrum.
There are an infinity of complex spectra for a given power spectrum, so
any complex spectrum, ¢(wx,wy) = Re(wx,wy) + jIm(wx,wy), with the power
spectrum Pz(wx,wy) = $*® would do, provided it has conjugate symmetry.
If ¢(wx,wy) = Ré(wx,wy) + jIm(wx,wy), conjugate symmetry implies that
Re(wx,wy) = Re(-wx,—wy) and Im(wx,my) = —Im(—wx,-wy). This is necessary
and sufficient to ensure that the Fourier transform of ¢(wx,wy) will give
a real function T(x,y) representing the terrain.

Each real point of the spectrum, Re(mx,wy), is picked at random from
a Gauscian distribution with mean zero and variance equal ¢o P(mx,wy)/3.

If |R (w_,w )! > P{(w_,w ) a new number is picked until a value
e x'y x" Ty

|Re(wx,wy)| §_P(wy,wy) is found. It fellows that the imaginary part

of the spectrum, Im(wx,wy), is given by /?‘(wx,my) - Re‘(wx,wy). The
sign of Im(wx,my) is chosen at random to be + or - with probability 1/2
for each case. When quadrants 1 and 2 of the 64 x 64 spectrum array nave
been computed in this way, quadrants 3 and 4 are generated from 1 and 2
using the conjugate symmetry conditions. The Fourier transform of this
spectrum produces the Gaussian terrzin used in the simulations of TERCOM.
Figure 6 shows a number of amplitude density plots from this terrain
superimposed on Gaussian density functions having the same mean and vari-
ance. The agreement is quite good. Similarly, good ayreement is shown
in Figure 7, where the distripution function for the terrain data is
plotted on a special ncrmal probability versus amplitude graph paper.
Gaussian distribution functions plct as straight lines on this type of
graph. The steeper the slope the smaller the variance. The data is
fitted quite well by a straight line. Figure 8 shows two computer plots
of terrain generated by the transform method just described. 1In Figure 8a
the correlation length, L, is 4 cells while in Figure 8b it is 8 cells.
Increased correlation length has produced flatter, smootlrer terrain.
Figures 6, 7 and 8 illustrate that the method produces terxrain-like

surfaces with Gaussian amplitude densities, and that terrain ro'ghness
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Figure 6. Gaussian terrain amplitude histograms compared with normal
density curves having the same mean and variance.
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Figure 7. Probability plot of 64 x 64 Gaussian data arrays.
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Figure 8. Samples of computer-generated Gaussian terrain.

(a) L=4; (b) L = 8.
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is controlled to a certain extent by L, the correlation length. The pro-
gram (TERC 1) listed in Appendix A is set up to generate and store on a
pexmanent file 10 such (different) reference axrays of dimension 64 x 64.
The real terrain tape contained amplitudes from a large continuous
area sampled into an array of 1073 x 282 cells with a cell width of 200 ft.
We chose to use 400-ft cells , sanpling every other point, and divided the

area into eight 64 x €4 arrays representing a variety of terrain types.

ald

These were stored on a permanent file in the same format as the Gaussian
terrain, so both could be used as input to the TERCOM simulation program.

: Some of the real terrain samples are shown in Figures 9 and 10. Amplitude
distribution and density functions were computed from the entire 1073 x 282
E array. The distribution function is shown in Figure 11 plotted on a normal
probability graph. The primary deviation from a straight line i; below .05
probability. Thus 5% of the amplitudes deviate considerably from Gaussian
behavior. The Gaussian density function and an amplitude histogram of the
real terrain are shown in Figure 12. The real terrain histogram is nar-
rower in the peak and wider in the skirts than a Gaussian density. We

show, however, that the Gaussian approximation is accurate enough for

Lt 4

TERCOM performance estimation purposes.

SIMULATION OF TERCOM SYSTEM NOISE

Simulation of the TERCOM system required testing with many levels of
additive Gaussian noise. The Fourier transform method used to generate
the terrain could also have been vsed to generate this system noise if
the computer memory requirements for transforming a 64 x 64 array were

not so large. Computer turnaround time on our CDC 6600 system is largely

eyl

determined by memory allocation, so a more efficient method of generating

correlated Gaussian noise was sought. Moshman (Ref 3) has demonstrated a

ol andha

method for generating a one-dimensional string of Gaussian random numbers

with any desired correlation coefficient. This method was expanded to

two dimensions for generating a 64 x 64 array of correlated, normally
distributed amplitudes. %he method is illustrated in Appendix B. Noise
characteristics may be specified by correlation coefficient or correlation
length. Both terrain and noise are generated from Gaussian random processes
of mean zero, but then have independent variances and correlation lengths.
Most of the situations studied used noise with zero correlation, but the

option exists in the TERCOM simulation program to use correla’ed noise.
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Figure 10.

(b)

Samples of real terrain.
{b) Area #5.
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Figure 11. Probability plot of real terrain.
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SIMULATION PERFORMANCE ON GAUSSIAN TERRAIN

Performance of the TERCOM system on the Gaussian terrain wi.l be dis-
"cussed in some detail.

It will be seen later that TERCOM pz2rfonnance on

real terrain seems to be somewhat different, but Gaussian terrain per-

formance can be transformed into a close approximation to real terrain
1 performance.

| et o, cammeaete

Therefore, the conclusions made in this report with regard

to the Gaussian terrain will be seen to hold also for “aal terrain.

(SR

We have assumed that the fcrm of additive noise ic Gaussian in the
E absence of any othar evidence. Previous reports by LTV E-Systems have
indicated that a large source of noise is the error made in transferring

i
measurements from maps or aerial photographs to the digitize& on-board

memory of the TERCOM system. Such errors are likely to be Gaussian in

| nature. We have lumped this together with any sensor noise into one ?

Gaussian function in our model. Total system noise is varied by changing i

the variance (GZN) of this noise function.
The TERCOM system in an aircraft scans a strip of terrain over which
it is flying, recording and digitizing terrain altitudes at regular inter-
vals until some predetermined number (d) have been recordec¢. The on-board
s memory contains a digitized representation of the surrounding terrain area ’
over which the aircraft is expected to be flying when sampling starts.
This digitized terrain is in the form of an M by N matrix in which both
M and N are usually larger than d. We will assume that the aircraft is
flying over the represented terrain in a columnwise direction. The dis-
tance will then be computed between the d-dimensional scanned vector and

1 all the column subvectors of size d contained in the array. These

i (M-d+1)N distances are computed by either a mean sguare distance algo-
rithm (MSD) or a mean absolute difference algorithm (MAD). 1In each case
the array vector with minimum distance from the scanned vector is picked
as a match and the navigation system uses the coordinates of this match
to fix its position.

Our computer simulation used a 64 x 64 array of amplitudes to repre-
sent the terrain. This same array, with Gaussian noise added, then repre-

sented the on-board memory. Scanning track length for most cases was
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chosen to be 48 cells. We assumed that scanning would start inside the
specified area and be completed within this area. No study was made of
the situation where scanned tracks started or stopped outside the area of
interest. Thus, in our case M and N were 64; track starting coordinates
were 1 to 64 in the N direction and 1 to 17 in the M direction
(M-d+1=64 -48 + 1 =17). For each terrain sample, 10 such start-
ing points were chosen from a uniform distribution over the 64 x 17 area.

2 single computer run produced 10 different terrains with 10 scanned tracks

rer terrain, giving 100 trials to the TERCOM system at a given signal to
noise ratio. The signal to noise ratio was specified as cT/oN where Op is
! the standard deviation of the terrain and o, is the standard deviation of

N
the noise.
TERCOM performance using both MSD and MAD classifiexs is shown, for
Gaussian terrain, in Figure 13. Here terrain correlation length is four

cells and system noise is uncorrelated. The curves represent the mean of

400 TERCOM trials at each signal to noise ratio. One striking feature of
these curves is that system performance never reaches 100% correct identi-
fication. The average miss distance also remains essentially constant.
This failure to reach 100% corxrect at high signal to noise ratios follows
from the method of "mean removal" used by TERCOM to normalize the terrain
data.
: Mean removal in the present TERCOM system 13 carried out as follows.
(1) The mean of the stored 64 x 64 array is computed and subtracted
from each element of the array to assure that the stored array has zero
Tean.
(2) The mean of the scanned strip is computed and subtracted from
each component of the strip vector to assure that the scanned strip has

nean zero.

(3) The zero mean strip vector is compared with equal length strips

in the zero mean stored array using the MSD or MAD algorithm.
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Figure 13. TERUOM performance on Gaussian terrain
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The problem with this method is in step 1 above. The system computes
the distance between a d-dimensional zero mean scanned strip vector and a
d-dimensional vector picked from an array with mean zero but with dimen-
sionality many times larger than d. A small sample from an array of points
with mean zero will in general have nonzero mean. Thus, the distance
between the two vectors will almost never be zero, even in the zero noise
case. This problem can be remedied by simply removing the mean of each
strip vector chosen from the array before the distance from the zero mean
scanned strip is computed. This alteration gives the results shown in
Figure 14, where the terrain used is the same as that which produced
Figure 13. The percentage of correct identifications rises quickly to
100%, and the average miss distance falls quickly to zero. We see that
the simulation has pointed out a procedural error not too obvious from
purely theoretical studies.

A nvmber of computer runs were made to check out various effects such
as correlated noise and variations in track length. These runs were made
with the original TERCOM system which could not reach 100% correct per-
formance. The curves have generally the same shape in all cases. Cor-
related noise with correlation length the same as the terrain causes a
noticeable drop in performance, but the average miss distance is reduced
somewhat. These results are shown in Figure 15. The percentage of cox-
rect identifications was maximum for uncorrelated system noise. TERCOM
performance with this type of noise, using both MSD and MAD classifiers,
is shown in Figure l6a. Here the percentage of correct identifications
is shown as a function of track length and terrain correlation length.

In all cases MSD is slightly superior to MAD (this is to be expected -
we forced the process to be Gaussian). Average miss distance as a func-

tion of track length and terrain correlation length is shown in Figure 16..
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One more study involving terrain correlation length was done using
the improved TERCOM system. Performance curves were plotted for increzs-
ing terrain correlation lengths, and some of the results are shown in
] Figure 17. We see that the curves approach an asymptote as the correla-
3 tiocn length is increased. This asymptotic curve is important in interpret-
ing the results of the next section, where TERCOM performance on real
terrain is considered.
E
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Figure 17. TERCOM performance on Gaussian terrain, showing asymptotic
behavior with increasing correlation length. Only the MSD classifier
with improved mean removal is shown.
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SIMULATION PERFORMANCE ON REAL TERRAIN

Each of the eight real terrain patterns was used for 40 TERCOM runs
at each of seven signal to noise ratios. The results of these runs are
shown as the data points of Figure 18. Each pcint represents the per-
centage of correct matches in 40 TERCOM runs.

Note that all of the points lie below the solid curve in the figure.
This curve represents the performance asymptote of Figure 17 apprcached
by TERCOM trials on Gaussian terrain as correlation length is increased.
Thus we see a wide variety of curves for TERCOM applied to real terrain,
all lying below thc lowest possible performance curve produced on Gaussian
terrain. Examination of computer plots of real terrain, such as those
shown in Figures 9 and 10, revealed a correlation between initial slope
of the performance curves and the amount of flat area in the terrain over
which this performance was computed. Pattern 1 was completely flat.
Patterns 2, 3, and 4 showed increasing amounts of mountainous area.
Patterns 5, 6, 7 and 8, which cluster together, were almost all completely
mountainous. These last four are also the curves nearest the asymptotic
performance curve for the Gaussian terrain.

A quick analysis of the TERCOM algorithm will make it obvious that
TERCOM cannot operate successfvlly on a nearly flat or planar area, and
we should expect more mistakes on terrain containing flat areas. Howeve:,
the data for Op On the right of Figure 18 show that there is no apparent
correlation between O and the amount of flat or planar area present in
the pattern. An area may be planar but have non-zero slope and conse-
quently a fair sized o

T T
parameters to characterize performance over real terrain. Some measure

. Thus o, and the ratio UT/ON are not the correct

of terrain roughness seems to be needed. Ideally, it seems that this
should be some sort of second .derivative or second difference. A simpler

measure, which seems to workx well for real terrain is

2 _ _ 2
oy = E{(xi )¢}

X.
i+l
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This parameter gives a measure of the average difference between adjacent
sample points in the direction of the expected flight path. The ratio
cz/oT was found to be especially useful in characterizing the terrain.
. A small value of cz/oT indicates smooth terrain with small variation
between sample points, but possible laxrge slow fluctuations in amplitude
over tue ;hole area. Large oz/oT indicates variation between adjacent
sample points is large compared to the overall amplitude variation in
the area.

The ratio oz/oT was computed for the Gaussian terrain. Because
TERCOM performance on Gaussian terrain approached the asymptote of
Figure 18, the oz/oT ratio for Gaussian terrain asymptotically 2., _.(.ued

0.3. This was higher than the oz/aT values for real terrain, which ranged

. dan

from .06 for very flat areas to .22 for completely mountainous areas. The
real terrain data of Figure 18 was then replotted in texrms of oz/oN, where
% took on the values of oT/l.S, oT/z.S, aT/B, oT/4, oT/7 and oT/lo. This
1 replotted data is shown in Figure 19; it exhibits a very nice clustering

F of the data points. Three distinct groupings of curves are evident, and
there is correlation between initial slope and oz/oT as can be seen on

the right of Figure 19. Further, all curves seen to originate near the
same value of cz/oN.

s Fiat areas were then introduced into the Gaussian terrain in the hope
that this would decrease their oz/oT b2low the asymptotic value of 0.3.

1 The flat areas were introduced by simply setting entire columns of the

64 x 64 matrix equal to zero. This had the desired effect, and three modi-
fied Gaussian arrays were generated. The number of zeroed columns and
corresponding oz/oT values were: 2 columns zeroed, oz/oT = ,22; 16 columns
zexoed, ﬂz/oT = .10; 32 columns zeroed, oz/oT = .06. This modification

was done with Gaussian terrain of correlation length 1024 cells.
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Correct match scores for MSD classifier over real terrain
as a function of oz/oN. The data show the emergence of three groups.

The percentage of correct scores of a TERCOM ciassifier using the MSD

algorithm on partially flattened Gaussian terrain are shown in Figures 20

and 21, along with the appropriate real terrain data points.

Note that

for all but one case with very low oz/oT, the Gaussian model underesti-

mates the real terrain scores by an average of about 10%.

Thus, this

5imply modified Gaussian terrain model gives a somewhat pessimistic pre-

diction of real terrain TERCOM performance.
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DISTRIBUTION OF MISS DISTANCES

Typical miss distance distributions for two real ..nd #wo Gaussian
terrain areas are compared in Figures 22 and 23. The values of oz/oT
for the terrains are comparable in each case. The bin widths in the
histograms are 5 cells, corresponding to 2000 ft on the real terrain.
MSD and MAD distributions are very close in each case with MSD usually
marginally better in the percentage of correct identifications. If
2000-ft errors are acceptable, which is unlikely, the number of correct
identifications increase considerably for most signal~to-noise ratios.
From all the results, however, completely mountainous terrain with

oz/oN > 1.4 gives almost perfect results with MSD or MAD.

CONCLUSIONS AND RECOMMENDATIONS

COMPARISON OF THEORY AND SIMULATION

The results of the theory are compared to the results of the simula-
tion in Figures 24 through 27. The comparison is not direct becauses the
theory predicts how often the false-fix distance will be less than or
equ: . to the terrain correlation length, whereas the simulations count
a decision correct only when a correct match is made. To make a direct
comparison, we would have to shift the simulation results upwards or the
theoretical results downwards. The amount of this shift is not hard to
compute ~ either in theory or in simulation - but it is a computaticn
that we omit in the interest of expediency.

In Figure 24 we see two things: the effect of increasing track length,
and the effect of using the present TERCOM mean-removal scheme. 1In view-
ing the theorctical predictions, we must recall that the Toeplitz approxi-
mation is best for LT << d or LT >> d (in the figures, which are computer
drawn, N = d, XT = LT’ and XN = LN)‘ For signal-to-noise ratios greater
than about one, the theory and the simulation agree that performance
improves with increased track length. 1In Figure 25 the agreement between

theory and simulation is quite good. We again see the beneficial effect

of increasing the track length. A comparison of Figures 24 and 25 further
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shows that performance will improve sligntly in the case where the noise
has the same correlation length as the terrain. This same effect is
observable in Figure 26, where it is presented explicitly. Again, the
agreement between theory and simulation is quite goc? Finally, in

Figure 27 we see that, according to the simulation, performance decreases
monotonically as the terrain correlation length increases (other parame-
ters remaining constant). The thecry agrees, except that the drop seems
to be too great for intermediate values of LT: this results in an apparent
increase in performance as LT increases from 4 to, say, 32. The reasons
for this apparent discrepancy are believed to be due first to the Toeplitz
approximation, and second to the scoring procedure. In this last state-
ment we refer to the previously mentioned, indirect nature of the compari-
son between theory and simulation. However, it seems entirely appropriate
to conclude that performance decreases with increasing terrain correlation
length.
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Figure 22. Comparison of TERCOM performance on Gaussian terrain (left column)
and real terrain (right columnj. Open bars represent the MAD classifier;
solid bars represent the MSD classifier; one cell equals 400 feet on the

real terrain.
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Figure 23. Comparison of TERCOM performance on Gaussian terrain (left column)
and real terrain (right column). Open bars represent the MAD classifier;
solid bars represent the MSD classifier; on. cell equals 400 feet on the

real terrain.
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AREAS OF FUTURE RESEARCH
The results of this study partially validate a test for TERCOM per-

formance dependent only on three parameters: o, and ¢_ {(which summarize

T
the terrain correlation information} f£rom the terrain and o, from the

TERCOM system (including ail sourxces of noise). We envisiog the develop-
ment, with further research, of a family of performance curves. These
would be probability of correct match vexrsus az/cN for a family of ter-
rain parameter ratios, oz/oT. Then we would not be required to simulate
a large number of individual flights to determine the suitability of a
given terrain area for use as a TERCOM navigational checkpoint. Compu-
tation of the required parameter ratios wouldG autumaticaily deilesming a
point on the family of performance curves and thereby produce a value for
the expected percentage of correct position identifications.

The parameter ratios oz/oT and oz/oN will be useful in analyzing
TERCOM performance, but we must now point out some limitations of the
present study. The simulations were run, as we mentioned before, with
a 48-cell TERCOM track over a 64 x 64 cell terrain grid. This represents
the so-called "short track - long matrix" method which assumes that the
inertial guidance system has enough accuracy to place thc aircraft some-
where over the checkpoint area at the time the scan starts. Different
track lengths and different array sizes will change the TERCOM performance
curves in a manner predicted by the theory, and indicated by the simula-
tion. Thus the oz/aN ratio of 1.4, which was quoted as an ideal operating
roint, would only hold for the specific track and array size considered
in the preceding section of the report. We have not considered the
"long track - short matrix" method at all in the simulation, although
the theory includes this case. Further simulation studies may be desired
to determine performance curves for a number cf different track lengths
and terrain matrix sizes. In particular, model performance curves for
tile configurations which have been used in flight tests of TERCOM should
be established, for it is comparison witl actual flight test data that
will determine the ultimate use ulness of the Gaussian model and the

parameter ratios oz/oT and oz/c“. Successful comparison to flight test
b
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results over a wide variety of terrain would show that TERCOM performance
characteristics over any terrain area could be predicted by knowing only
oz and 9o for c¢he terrain and o\ for the system noise.

1 The mention of %y brings uc to another important limitation of the
TERCOM-terrain model presented in this report. We assumed that the system
noise was Gaussian. If the real system noise is not well approximated by
such a process, flight test performance data could differ from model per-

formance. If the process is non-Gaussian, there might be differences

between model and flight test performance even if oz/oT and crz/oN are the

same for both. We suggest, therefore, a detailed analysis of the per-

a anatadte

tinent noise sources such as incorrect ground speed, flight path angular
deviation, altimeter errors, etc. This would produce greater confidence

] in the results of this study.

E CONCLUDING REMARKS

i We have shown that oz/oT seems to be an adequate description of real
terrain, and that Gaussian terrain modified by introducing a certain per-
centage of flat area closely simulates real terrain.

1 We have shown that the MSD and MAD classifiers produce almost identi-
cal resnlts on both real and Gaussian terrain. This indicates that a

theoretical analysis of the more tractable MSD classifier is an adequate

theoretical analysis for the MAD classifier.

We have shown agreement between the theory developed herein and the
results of the'simulation. However, there is a strong assumption in both
the theory and the simulation of stationary statistics. This assumption

/G scome

was not valid on the real terrain investigated. The ratio AN

Q

to be insensitive to this nonstationarity.
We conclude, on the basis of the theory and the simulation, that
TERCOM - modified to include the improved mean~removal scheme - will
yielAd acceptable performance on appropriate terrain. What constitutes
"app! opriate” can be determined either from ¢ :+ L

¢ G . LN' and d in the

T N T
theoretical framework (assuming the stationarity assumption is valid),
or from OZ/OT and oz/aN in the simulation framework. There is no doubt

that the quantities oz, ﬁT' and o, are tiie easiest to obtain.
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APPENDIX A

COMPUTER PROGRAMS

Program TERCOM results in the performance curves shown in
Figures 24 through 27.

4 2. Program TERC1l generates Gaussian terrain.

3. Program TER is the simulation program.
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TERCOM

200
201

202

11

12

13
14

19

PROGRAM TERCOM(INPUT, GUTPUT,PLOT)
DIMENSION EIGT(33), SIGN(33), A(33) '}M\n&ay. proopam ¢ sl up

DIMENSION COV(2,EL4), NN(1)
OATA N, XT, XN/32,0., 0./ v A3 covariante waaRaly

CALL PLOT(Goy=1044-3) (o) Thoek M“(”B 32>
CALL PLOT( 04 s10y~3) Lt (xT)=0. wniially § Lo (x0)=0,
CALL SYMBOL (1e¢46e9+15,37+PROBABRILITY OF CORRECT msmrrcanon 0.

¥,37)

CALL SYMAOL(1+845¢8,0.15,26HAS A FUNCTION OF S/N RATIO,0.+26)
CALL SYMEOL(3.5.3.5,B.15,5H N = 90.,5)

ZN=N

CALL NUMEEKR(C99.05,999.0,0.15,ZKy04,41)

CALL SYHPOL(3-5,3.3,[‘.15,5HX}' = ,0.,5)

CALL NUMBER(999.0,999.0,0.15,XNy0.,1)

CALL SYMBOL(2e5523419Ce15,20HXT IS PARAMETER WITH,0.,20)

CALL SYMEOL (3454249040415, 21FVALUESS 044,16 90.,21)
CALL AXIS(0+90ey2LHSIGNAL TO NOISE RATIOy=2148.90690ey¢5)
CALL . AXIS(Gsy0es I9HPROEABILITY GCORRECT$19;549S049C0y02)

FORMAT (SX4F64295X+F12.E95X9sFGebB95X3FCeb910X,1295X4F3.645X912,5X%XyF9
1.€)
FORMAT (38H1PROFABILITY(CORRECT) FOR THE CASE N = ,I346H XT = 4F7.3

L910H AND XN = ,F7.3//)

FORMAT (7X4 3WSNR,11X31HF, 13X, 4HPTAU,8X, 10HP (CORRECT) , 9Xy 2HNN, 10X, 2H

ICN47X92HNT 410X, 2HCT/ /)

GG 2300 NRUN=1,3

SNR = 0.55 Tl o W Obdoan

NHALF = N/2 + 1 2 oums Wil xT (rernrotnm

NN(1) = N qm&a_:\—\chﬁ(w_\ widapendiend™
NiL = N + 1 N UNYS 7Y

N2 = NHALF + 1

IF IXT.EQ.0.)G0 TC 2 tzhek i O ““’“9“"““"&“”‘\“"

DC 11 I=1,NHALF Boidd e Aews 8% aras

COV(1,I) = FXP(FLOAT(1-1)/XT)

cov(z,I) = ¢, C,Mhﬂ&o-:i'\oh *0\45&)\»;( o.ca»&wc\
DC 12 I=N2,N o Mosas. Morkey stodistie and
COV(1,I) = EXP(FLOAT(I-N1)/XT) AV NN By
ccv(z,I) = e. oeplity e-Rprnk y

CALL FOURT (CCV,NNy1,~1,0,0) Compedla Slggrotusa . (FET

00 7 I=1,i+~ALF <

EIGT(I) = COV(1,D Shote, ww‘&paxwamm

GO TO 16

CCNTINUE

DO 13 I=1, NHALF Sgecied wose of XT0-

EIGT(I) = 1,

CONTINUE

IF (XN.EQ.0.)GO TO & Chaek conadafion Lugtn .
00 8 I=1,NHALF b:\ O

COV(1,1) = EXP(FLOAT(1-1)/XN)

CoV(2,I) = 0.

DC 9 I=N2,N Buld ona -wwoa(w:\ya comalation
COV(1,I) = EXP(FLOAT(I-N1)/XN) Mol\&:;w % o
cevez2,I) = 0. - OARW X %c o bteﬁ%
CALL FOURT(CCV4yNNy1,-1,0,0) x O(.?W L
DQ 10 I=1,NHALF 9 C'"'F”x“ R s (Ve .
EIGN(T) = COV(1,D) X P)
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TER00M

6o T 15 ] . .
CONTINUE 55\0«1 Vosnse QA(:WMN,
D0 16 I=1 NFALF N
EIGN(I) = 1. Seeerel Tone. o¢f XW=0.
CONT INUE

CoLL APROX (NKALF JNNCNJEI6N) & Cmgﬂcvm—aew\m&«m MRS

er [NT 201, N, XT, XN
PRINT 2J2
Ge 1173 NCTR=1,65

VE = 2.,¥SNR¥SNF W QJ.XXOO.-W\‘«\O:Q\.G\A &‘\

70 & I=1,NHALF . )
A(I) = VRPEIGT(I) + EIGN(I) Ao nelgr. Jueios

CALL APRCX (NRALF,MT,(T,4) D SRR A (S.T/@p
& = CT/CN .
coth] = FTAU(NNGAT ) & Comegde Plnampy

IF (ERTAUL.GT. 3. ERTAL = 2.5 'i Compude nfald M@*&*ﬂ\(m)-

B = 1., - 24*ERTAU

EFINT 200, SNR, Ry EFTAU, B, Nh, CN, NT, CT
:SND:Q‘JQ“?. T FA=5 , *F
I:(NCTQ.EO.b.OF.NCTRoFC-E) GC T0 %00
IF(NGCTR.FNL1) CALL PLOT(FSNR,95,3)

CALL PLCT(FSAR,P2,2)

yuf  CONTINUE .
SNR=SHR+ .05 T Iacewans SOR %‘\Q‘*"'?CSQ ”K?m :
16009 CONTINUE
IF (NPUNLEQ.1) XT=l. . .
2600 XT=4®XT g Chomge Roramasior XT NEECVINS SR
STCP 3 ?bv S Qo 2298 b XV,
ENC o. ko o SR WnQuswaq =32
QAnC ¥&V=C.
APROX FTAY
SUIRQUTINE AFROX(NHALF,K,C.1) FUNCTION PTAU(MNN,NT,F)
NIMFNSION A(NHALF) Q1 = R+,
¢ = AL} C = (R/R1)**AN
gMax = A(1) SUM = 1.
K =1 IF(NT.EA.1)60 TO 2
DC 3 I=2,NHALF A =1
Sy» = 0, NT1 = NT-1
no 1 J=1,1 XNN = NN-1
1 SU¥ = SUr + A(J) DO 1 I=1,NT1
£ = SUM**2/FLOAT(I) xI =1
IF(E.LT.EMAX)ILO TO2 A o= A*(XAN+XT)/(XI*R1)
EMAX = E 1 SU™ = SUF + B
K = I 2 eTay = 1, -~ CASUM
C = SUM/FLCAT(T) RETURN
2 CONTINUE EnD
3 CONTINUE
RE TURN
END
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PROGRAM TERC1(INPUT,OUTPUT,TAPEL)
DIMENSION A(2,64,64) ,NN(2)
A DATA NN, TC,PyB/6Uy6lylbe 501/
CALL RANSET(P) .
DO 1008 NCTR=1,10 PAZND,
00 10 I=4,2 NES S RN TN t
DO 10 J=1,64 L
DO 10 K=1,64 RV
A(I,J,K)'—'Uo ": R o N Yy LENLT,
10 CONTINUE R
00 20 J=1,33 A T
D0 20 X=1,33 Pans . s . 3
CJ1=FLOAT(J) B A ) )
CK1=FLOAT(K) - . :
C=SQRT((CJ1-1.) **24+(CK1-1.) **2)
A(1,J,K)=B*EXP(-C/TC)
20 CONTINUE
D0 30 K=1,33
3 00 30 J=2,32
J1=66-J
AC1,U1,K)=A(1,4,K)
30 CONTINUE
DO 40 J=1,64
00 40 K=2,32
K1=66-K
ACL,JyK1)=A41,J,K)
40 CONTINUE
CALL FOUR‘(A,NN,Z,“.’0,0) - C::’,.:.‘f T AL, \
00 60 J=1,64 ~ Sas
00 63 X=1,33
F2=A(1,J,K)
CALL RANDOM(F2,RE, XI)
] A{1,J,K)=RE
A(2,JsK) =XI
60 CONTINUE
DO 70 J=34,64
J1=66~J
All,J,1)=A(1,J1,1)
1 A(2,Jy1)==A(2,U1,1)
AC1,J933)=A(1,J1,33)
A(?,.), 33)=“A(2:J1;33)
70 CONTINUE
DO 80 K=34,64
K1=66-K
AC1y1,K)=A(1,1,K1)
A(2519K)==A(2,1,K1)
A(1,33,K)=A(1,33,K1)
A(2,33,K)==A(2,33,K1)
80 CONTINUE
00 85 J=2,32
D0 85 K=2,32
J1=66-J
K1=66-K
A(17J19K1)=A(1,J,K)
A(2,J1,K1)=-A02,J,K)

-
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85 CONTINUE

90

1004

102

D0 90 J=2,32

00 90 K=2,32

K1=66~K

J1=66-J

A(LyJyK1)=A(1,J1,K)
A(2,J9K1)==A(2,J1,K)

CONTINUE

CALL FOURT (Ay4NNy2,1,0,0)

CALL RANGET(P)

WRITE(1) NCTR,y TCy Py By ((A(1,I,J), I=1,64), J=1,64)
PRINT 102, NCTR, P

FORMAT (10X s *NCTR=¥12,5X,¥P=*E15.7)
REWINO 1

syYge

END

RANDOM

SUBROUTINE RANDOM/(r2,rPE,XI)
IF(F2.6GT.0.)G0 TG &
RE=0.
XI=0.
GO 10 3

1 F=SQRT(F2)
ZMU=0.

2 X=RANF (DUM)
¥ =RANF (DUM)
CC=SQRT (-2.¥ALOG (X)) *SIGHMS
RE=CC*C0S(6.28313%Y) +ZMU
IF (ABS (RE) «GT.F)GO TC 2
XI=SART(F2-RE¥**¥2)
IF{XeGT4.5)XI==X)

3 RETURN
ENOD

60
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22

23

25

PROGRAMN TER (INPUT,0UTPUT,TAPEL)
DIMENSION A(64,64) yS(0U4),AB(64,6U4)
DIMENSION RN(B4)

RO=0. I O ST CORRELATIIN COEECVLENT
E=.7642672
NL=45 SET TRACY LENGTH

NBL=64
NL5=NBL-NL
BLS5=FLOAT({NLS)

CALL RANSET(E)

PRINT 107,€

PRINT 110

ANUM=SNUM=DMSD=DMAD=C,

DO 79 NC=1,10

READ(L1INCTR,TC,P,8,A — READ TZR00N PATTERY
D0 S5 I=1,64

DO 5 J=1,2

A(I,Jr=0.

CONTINUE

PRINT 104,NC

SUM10=0.

SUML1=1.

RAz2. — SET SIGNAL T2 NOoISE RATIC
FMEAN=0,

IK=JK=64

BN=FLOAT (IK*JK)

SUM=),

BN2=FLOAT(IK-1)

00 19 I=1,IK

D0 17 J=1,JK

SUM=SUM+A(T,J)

CONTINUE

AVE=SUM/ BN

SUM=z),

D0 23 J=1,JK

D0 20 I=1,IK

SUM=SUM+ (A(T,J) ~AVE) ¥*2

CONTINUE

SIGT=SQRT(SUM/EN) 0 JONSYTA™ oy
SIGNO=SIGT/RA Ta T wn Ay,
In=1

IF(ROJNE.N.IG0O TO 22

RO1=0.

GO 79 25

IF(RO.NE.1.)60 TO 23

R01=1.

GO0 Tn 25 .o septaTrn LENG T
SCN=-1,/ALOG(RO) =PV T T NEARLT I NE aAdR .
ROL1=ZEXP(~SOPT(2.1/SCN) =7L&€ A 1 RETWLL N
ACA=RO/ (1. +R0O1) Yed vENeptr VL QL
ACB=SORT (1 .-2.* ((RO)**2) /(RO1+1.))

CALL RAND2 (RN1,RN2,SIGNC,FMEAN,ID)

RN3=R]N2

DO 37 I=1,64,2

CALL PANC2 (RN1,RN2,SIGNC,FMEAN,ID)

Str ARRAY Xi1ZE

6l
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52

53

L0
L1

51

55

RN(I)=RO*RHN3+SORT(1.-RO**2)*RN1 NowsE
RN (I+1)=RO*RN(I) +SART(1,~R0O**2) *RN2
SUML0=RN (I)**2+RN(I+1) ¥**¥2+SUML O PATIEP N
SUML11=RN(I) +RN (I +1) +SUM11 e
AB(I,1)=ACI,1)+RN(I) BMPUYTL g
AB(I+1,1)=A(I+1,1) +RN(I+1)
RN3=RN(I+1}

CONT INUE

DO 31 J=2,64

CALL RAND2 (RN1,RN2,SIGNO,FMEAN,ID)
RN (1) =RO®RN(1) +SQRT (1.-R0**2) *RN1
RN(2)=ACA* (RN{1) +RN(2) ) + ACB*RN2 )
SUMLI=RN (L) **24RN(2) ¥*¥2+SUML0 ALt
SUML1=RN (1) +’RN(2)+SUM11 l"w‘°
AB(1,J)=A(1, ) +RN(1) T
AB(2,J)=08(24J) +RN(2) L TERRALN
D0 31 I=3,64,2 '

CALL RAND2 (RN1,RN2,SIGNQO,FMEAN,ID)
RN(I)=ACA* (RN(I~1) +RN(I)) +ACB*RN1
RN(I+1)=A4CA¥ (RN(I) +RN(I+1))+ACB*RN2 '
SUML1J=RN(I)**2+RN(I+1) ¥**2+SU¥10
SUMLL1=RN(I)+N(T+1) +SUML1

AB(I,J)=A(I,J) +RN(I)

AB(I+1,J)=A(T+1,J) +RN(I+1)

CONT INUE

SuM=g,

00 52 J=1,JK

DO 52 I=1,IK

SUM=SUM+AB (I,J)

CONT INUE

SUM=SUM/ 4096,

00 53 J=1,JK

00 53 I=1,IK

AB(I,J)=AB(I,J)-SUM

CONTINUE

SOEVN=SORT (SUM10/409€.-(SUML1/4096.) *¥2)
IF(SOEVN.NE.C.)GO TO 40

SNR=11.11

GO TO 41 _ ,
SNR=SIGT/SOEVN - ~9%=Wii AT LM
PRINT113,SDEVN,SIGT,SNR

10=2 ;

00 7u L=1,10

CALL RANC2 (RN1,RN2,SIGNC,FMEAN,ID)
KI1=IFIX(RLS5*RN1)+1

KI2=KI14MNL~1

KJ1=IFIX(63.¥RN2)41 cone o TRAY
DC 51 I=KT1,Ki? S Ayt oG €3 0%D,
M=I-KI1+1

S(M)=A(I,KJ1)

CONTINUE —_
SUM=0,

D0 55 I=1.NL

SUF=SUM+S(T)

CONTINUE
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SUM=SUM/NL

00 56 I=1,NL

S(I)=S(I)-SuM

CONTINUE

NL2=64=-NL+1

SUMR=32000.

SUMR2=1OE7

DO 62 J=1,JK

DC 62 K=1,MNL2

SuUM=).

SUM2=00

SUM5=0, —
00 58 I=1,NL ComBae
II=I+K-1 MSD Anl MAT
SUMS=AB(II,J)+SUM5
CONTINUE
SUM5=SUMS/FLOAT (NL)
DO 63 I=1,NL
II=I+K-1
SUM=SUM+ABS(S(I)-AB(II,J)+SUMS)

SUM2=SUM2+ (S(T)-AB(II,J) +SUM5) **2

CONTINUE

IF (SUM.GE.SUMR)GO TO 61

SUMR=SUM

KIR=K

KJR=.)

IF (SUM2,%5E.SUMR2)GO 10 62

SUMR2=SUM?

KIR2=K

KJyi2=J

CCNTINUE
OMAD=SART((FLOAT(KI1-KIR)) *¥2+ (FLOAT (KJ1~KJR) ) **#2) +DMAD
DMSD=SQRT{(FLOAT(KI1-KIR2))*¥2+(FLOAT(KJL-KJIR2))¥*2) +0MSD
IF(KI1.EN.KIP.AND.KJ1.EQ.KJR)GO TO €3 .

IF (KI1.EC.KIR2.AND.KJUL1.EQ.KJR2)GO TO 6E Com® ™% Lyfeanr
GO 10 67 r e
IF(KI1.EQ.KIR2.AND Kul.EQ.KJR?)GO TN 65 . e
PRINT 105,KIR,KJRyKI1,KJ1,KIR2,KJP2

SNUM=SNUM+1,

GO TO 790

PRINT 106,KIR,KJRyKIK2,KJR2

GG To 79

PRINT 108.KT1,KJ1,KIF KJR.KT1.KJ1

ANUM=ANUM+1,

G0 To 70

PRINT 109,KT1,KJ1yXKIR,KJF,KI1,KJIL,KIR?)KJIR2

ANUM=ANUVM+1,

SNUM=SNUM+1,

CONTINUE

OMAD=NMAC/ ANUM

DMSD=DMS D/ SNUM

REWIND 1

PRINT 103,RA

PRINT 111,0MAD,DNMSD

PRINT 112,R0O

RET ).~ ¢
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PRINT 114,NL
CALL RANGET (0D)
PRINT 107,00
STop
103 FORMAT (1X,*SIGMA T / SIGMA N =%,F4,1)
FORMAT (1 X, ¥NGCTR=%,13) ,
ig; FgRMAT(tX:’CORPECT TeDWAT*,2T38,10X,2T ¢y 1X,*MISTAKEN FOR*,21I3)
166 FORMAT (1%, ¥CORRECT I.0.AT¥,213,10X,*CORRECT I.D.AT*,213)
; 107 FORMAT (1X, *RANDOM NUMBER=*,E15,7)

oy )

H ' 3 AT*,213) E

18 FORMAT (LX42T3,1X,*MISTAKEN FCR*,2I3,%¥,*COPRFCT 1.0, ’
103 FORMAT (LXy2T 348X " MISTAKEN FOR®,2I3,5X,213,1X,*MISTAKFN FOR*,21I3) J
L 110 FORMAT(7X, ¥MAD¥,32X,*MSO*)

% 111 FORHAT (1X,*AVE. MAD FRROR=*,1X,F5.1,11X,*¥AVE. MSD ERROR=*,1X,FS.1) i
112 FORMAT (1X,*R0O=*,F5,2) _
l 113 FORMAT (60X, *NOISE SI(MA=¥,E15.7,1X,*SIGNAL SIGMA=*#,Ei5.7, ]

L¥S/N=*,F5.2)
114 FORMAT (1X,*TRACK LENGTH =%,I3)
4 END

Ca
Bt NSNS SNV R NGRRY ¥ NP0 HE St - SUGIIT TV

SUBROUTINE PANDE(PNl,RNZ,SIGNO,FHEAN,ID)
X=RANF (DUM)

Y=RANF (DUM) {

Ip= ShAN D:ITRR J7 4y, :
IF(ID.€Q.1)60 To 5 . ~°°!7OR GAVSIAN D:3TRR 7,
RNi=X IDAI £22 UMRLEW D" TR A, &
RN2=Y .
60 T0 10 i

5 CC=SART(-2,*ALOG (X)) *SIGNO ‘
RN1=CC*CCS(65.28313*%Y) +FHEAN

RN2=CC*SIN(6.28313%Y)+FMEAN
10 RETURN
END
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APPENDIX B

METHOD FOR COMPUTING VALUES FOR GAUSSIAN
CORRELATED NOISE IN ONE DIMENSION

Let Rn be a Gaussian random variable of mean zero. We wish to
generate a string of numbers Sn which are Gaussian with mean zero and

any given correlation coefficient p.

We chcose Sn = wlsn-l + WR (Bl1)

where Wy and w, are weights to be determined.

Now, take the variance of Sn

= 2 2
Var (Sn) Wy Var (sn_l) + o, Var (Rn)
. 2 = . 242 2, 2
or more simply o vy g + w2 ON
Furthermore, we chose ¢ = L. to simplify computation
which gives us i=w?4+w?
1 2
Now multiply Eq Bl by sn-l and take the expectation of both sides
- 2
E(S S _;) = Bw (S _,)* + Bw,(S R
2, = 2,
o“p w0 0
p =
- _ 2 2 Y
1=09%+w, or wg = vl -p
thus S_ = pS + Y1 - p2R
n n-1 n
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This can be extended to two dimensions by making Si

. depend on S, .8
] P i-1,3
Si-1,5-1 2" 55 51
we have then
= a2
Si-1,j-1 E(R) =0
o o “i-1,3 E(S. .S. .) =02
i,571i,3
2
E(S. .S. .) = E(S, .S. . = po
o % s ¢ i,j 1-1,3) ( i,j 1,3~1) P
S. s i,3 _ 2
i,j3-1 E(Si,jsi-l,j-l) = plo
Let si,j = wlsi~1,j + WZSi,j—l + w3Rn (B2)
where again Of_wlf_l'oiwzil'oiw:.;il
and Var (S, .} = Var R
i,j n
= 8 \2
var Sij E(wlsi—l,j + wzsi,j-l + w3Rh,
2 _ . 242 2.2 2,2 2
g wl o° + w2 g° + w3 G + 2w1w2p10
- 2 2 2
or 1 w1 + w2 + w3 + 2w1w2p1 {B3)
Multiply Eq B2 by Si_1 3 and take the expectation of both sides.
’
This gives:
2 _ 2 2
paoc = wlo + wzplc + 0
P = w1 + wzpl (B4)

Multiply Eq B2 by Si . and taxe the expectation of both sides to get
!

-1

po2 = w + w2°2 +0

W1

poEwp, b, (B5)

Now multiply Eq B4 by 2 and subtraczt Eg B5 from the result to get

= 2
PPy = 0¥y PPy
TPEIN T
- — 2—

p(pl 1) wz(p1 1)

plp1-1) _ »

W = =
2 7 (p1%-1) " py + 1
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. . . _ _ p
Similarly we find that wy; = wy = 511

Now substituting for w; and wy in Eq B3, we get

2p2 20,02 ,
= + +
L oDzt ez T Vs
(202 + 2p;0%) 2p2
or = -./ - = -
v3 yl (py + 1)2 1 (py + 1)
-0 _p 1/ _ 20
Thus Si,j T+l T rici1 YY1
When p = 0, S, =R and whonp =py =1, 8., = l-S + ;-s .
i, 3 n " Tij 2 Ti-1,5 2 7i,5-1

There are two ways to specify the characteristics of the correlated

noise we wish to generate. The noise may be characterized by a correlatiom

length T or a correlation coefficient p. 1In both cases an exponential
autocorrelation function is assumed for the noise.

If the Si 3 are treated as samples from a continuous function, we

[4

can determine p and p; when the correlation length T is given. If the

correlation length is T cells, p is the value of the correlation function

one cell away from the origin. Thus we have
-1
p=e T
Since S, ., S. is 1.414 cells distant f£rom S, .,
i-1 j-1 i,
_1.414

py =€ T

If the noise is specified in terms of a correlation coefficient p,
we can determine T from the relation T = 1/-1lnp. Then, p} can be

determined as shown above.
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