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SUMMARY

PROBLEM

An analysis of the Terrain Contour Matching Navigation System (TERCO1)
was performed by the system's manufacturer, ITV E-Systems, Enc. An inde-
pendent evaluation of that analysis and of TERCO! w.s desired for several
reasonsi, (1) some doubt existed about initial assumptions; (2) that analy-
sis was performed for a mean-square-distance (MSD) classifier with continu-
ous input, but a mean-absolute-distance (MAD) classifier with discrete
input is used in the actual hardware; and (3) the utility of the single
terrain parameter, oz, suggested by E-Systems as being predictive of
TERCOM performance seemed limited because it varies widely over terrain
areas of interest.

APPROACH

The approach was twofold:

(1) Starting with basic assumptions, derive an error model for
TERCOM. Concentrate on the MKD klassifier because of its mathematical
tractability, but treat the MAD classifier also as far as possible.

(2) Determine by computer simulation the performance capabilities
of MSD and MAD, using both artificial Gaussian terrain and real terrain
samples. Compare TERCOM performance over artificial statistically control-
led terrain with the performance over real teirain to yield the parameters
necessary for a predictive performiance model.

RESULTS

A mathematical model for TERCOM "false-fix" probability was derived
that differs from the original LTV E-Systems model in certain assumptions.
False fix probability is presented as a finite sum having parameters that
depend on sample size, terrain and noise correlations, and the signal-to-
noise ratio.

The computer simulation revealed that a dramatic increase in the
probability o£ a correct fix could be achieved by a simple change in the
normalization procedure for the MSD or MAD computations.

It was found that the simulated performance of TERCOM on real terrain
was the same as on artificial terrain, generated from a Gaussian process,
when a parameter ratio az/at was the same for both terrains. This per-
formawce was specified by plots of probability of correct fix vs the
parameter ratio az/an. A family of performance curves was generated by
varying the parameter ratio az/at.



The error model developed herein is a good predictor of simulation
results, but a rather poor predictor of performance on actual terrain.
This is believed to be principally due to the assumption of stationary
statistics for the terrain. While a Gauss-Markov kdel may be valid for
local tertain regions, the Gauss-Markov statistics vary widely over real
terrain, even over physical extents represented by the reference arrays
encountered in TERCOM. Both the E-Systems error model and the present
one offer insight into TERCOM performance, and both would undoubtedly be
improved by considering the nonstationarity of the terrain statistics.
The present model is not as computationally involved as the E-Systems
model, however, and may therefore be preferable.

CONCLUS IONS

TERCOM performance can be significantly improved by means of a minor
modification in the mean-removal procedure.

Present error models of TERCOM suffer from an assumption of stationary
statistics. This assumption is not justified on real terrain except when
precautions are taken to insure its validity.

A parametric family of performance curves can be generated by simula-
tion of TERCOM flights over modified Gaussian terrain. Once such a famil'
of curves is generated for a partiralar terrain sample size, all performance
characteristics of interest e-re determined. It still remains to compare
these results with actual flight test data.

TERCOM is an effective system provided that reference arrays can be
obtained that produce acceptable performance. Such reference arrays are
characterized herein, but their availability in the real world was not
examined.
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INTRODUCTION

The terrain contour matching navigation system (TERCOM) (Ref 1) has

been proposed as a self-contained, auto.aomous system for updating an

inertial guidance system at selected checkpoints en route. The rystem

is based on a pattern classifier that may be termed a nearest-prototype

classifier, where "nearest" is defined in the first-Minkowski-metric sense.

In order to obtain a clearer understanding of the capabilities and the

limitations of the system: an analysis and evaluation of TERCOM was per-

formed by this laboratory at the request of the monitoring agency.

The report of that analysi.q and evaluation is organized as follows.

The first section presents a brief discussion of the performance of an

error model for TERCOM that was developed by TERCOM's manufacturer. Some

theoretical results are presented as suggestions for improving the model.

A brief comparison of nearest prototype classifiers based on the first

Minkowski metric (termed MAJ classifiers) and based on the Euw:liuean

metric (termed MSD classifiers) is also included. The next section pre-

sents a discussion of the simulation procedure and the si1ulation results.

The last section presents the conclusions and recommendations.

THEORETICAL CONSIDERATIONS

PERFORMANCE OF THE TERCOM ERROR MODEL

Because the theoretical aspects of pattern recognition in general,

and TERCOM system performance in particular, are quite mathematical, there

must be some fairly strong motivation for the typical systems desigr'r to

consider them in depth. The initial motivation for development of an

error model is, of course, to predict systems performance: such predic-

tions are essential to the systems buyer and user. But, if the TERCOM

manufacturer has provided an error model, why do we need more mathematical,

theoretical considerations?

The answer is obtained by constructing a scatter plot of the pre-

dictions of the manufacturer's error model against actual flight test data.
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Such a plot would reveal that predictions do not correspond well with the

measured performance. The Pearson correlation coefficient computed for

such a scatter plot (p = 0.617) is interpretable as meaning that the error
model accounts for only about 38% of the variance in the measured per-

formance. This leaves about 62% of the variance unaccounted for. When

we consider the cost of a system like TERCOM, there is clearly strong

motivation to reconsider a mathematical error model.

GEVIERAL CONCEPTS

Let x = (xox 1 ...,x d-)be the true-position, stored, samp.ed terrain

contour. Assume 7 is accurate to some "mapping" error that is negligible

compared to the observation noise. Let r = (r orl,... ,rd-) x + n,

where n = (no,nl,... ,n d 1) is the observation noise. Let y(t) 

(yoYl,... ,Yd-l) be the stored sampled terrain contour at a geographical

distance T from the true position, as shown in Figure 1. Finally, let m

denote the match-distance (e.g., thue decision statistic) between the

vectors r and y(T), and let m denote the special case T = 0.o

= (Y1 ,Y 2 ,Y3 ,Y4 )
END OF - (d =4)

TRACK, Xd
T....--.. -- 

-

START OF
TRACK, X1

FLIGHT PATH

Figure 1. NeMeLclature and notation for vector samples
from a stored reference array.
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First of all we indicate the procedure for finaing the probability

that m < m0 for some fixed T. This will show us what distributions we

need to find in order to arrive at numerical predictions.

We let pT(m,mo) denote the joint probability density function of m

and M0. Recall that m corresponds to some T, and the function depends

(in general) on this -; hence the subscript. Then we compute

Prob {m < molol J pT(m,mO) dm

When we allow m0 to range over all permissible values we arrive at

°
Prob {rm < mO}  J p(m,m0 ) dm dmo

We now make our first assumption. We assume that for sufficiently

large T, the distributions of m and m0 are independent. In the case of

the Gauss-Markov model, which we introduce shortly, this corresponds to

T > LT, where r T is the correlation length of the terrain. This is

equivalent to the following assumption:

Prob {m < M0 ) = p(m 0 ) p (m) dm dm0

Now we want to know the probability that m0 is smaller than m for

every permissible valu~e of T. Suppose that pT (m) is the same for each

of the permissible values of T (but, recall, T > LT) , and that the inte-T
gral above has been evaluated to, say, 0. That is,

Prob {m < mo ) _ 3

Then Prob (mo < m =-8

Note that supposing pT(m) does not change with T imposes a second assump-

tion: that the terrain statistics are stationary.

6
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T-, proceed, consider the rank ordering of three observations that

corresoond to m0 , mi, and m2 , where m and m2 are match values for two

distinct T > L T . Six orderings are possible; suppose the probability of

the i thorder is pi.

m0  mi m2 Pi

m0  m2  mi P2

mi m0  m2  P3

mi m2  m0  P4

m2  m0  mi P5

M2  mi m0 P

We note that Prob fm0 < MI) = P3 + P4 + P6 = a, and Prob fm0  in2 ) =

P4 + P5 + P6 
= a. It is a simple matter to compute

Prob {m0 < mi n mO < m2} = P4 + P6- We Lurther note the constraint

pi = 1. These facts together imply that
i=l

Prob f-0 < m1 (\-N M0 < m2 ) = 2- 1 + P, + P2

Now, as a approaches one, it is clear that pl and p2 must approach zero.

Hence, for "large" a,

Prob fm0 < m0 in o < m2 } = 2a - 1

As a approaches zero, Pl + P2 dcminate. If we suppose P!2 = p 1/2, we

obtain

Prob fm0 < m! n\ m0 < m2 } ! a/2

The somewhat surprising thing is that this sort of combinatorial argument

can be generalized to rank orderings of many observations: the approxi-

mations remain the same.

The approximations just developed are fine for the high and low

ranges of a. But what about a a 1/2? One case where a equals 1/2 ariies

when pi = 1/N for all i, and N is the number of possible rank orderings.
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If M is the number of observations being ranked, then N = M! and Prob {m0

is the minimum observationi = l/M. We see that in this particular case,

the approximation for "large" a gives the best result when M is large.

Us*ng the preceding combinatorial argument as motivation, we choose

the following approximation.

Prob {m0 < all m)

= max {2a-l, 01

= max {1-28, 01

= max {1-2 JP(mo)J0  pT(m) dm dmo, 01 (1)

This expression approximates the probability of correctly assigning r to

a position that is within a distance of LT of x.

At this point we see what distributions are of principal interest:

p(m0 ) and p (m). We must consider the definition of the classifier's

match function before we can proceed further.

THE GAUSS-MAR'OV STATISTICAL MODEL

The statistics of the terrain process and the noise process are

assumed to be Gauss-Markov, and independent of each other. Hence the

probability density function (using the notation of Ref 5)

. -/2 "1 2 1- -T-d= (2 - A/TI exp {- 2 cA Ta

governs the terrain process, and the probability density function

d/2 -1/2 1
n In ep 2 n

governs the noise process. The covariance matrix for the terrain, AT,

has i-j elements given by

2e -I-j/LT
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The covariance matrix for the noise, An, has i-j elements of the same

form, but with different parameters,

o2 e-li-jl/Lnn

The parameters LT and Ln are called the correlation lengths of the

terrain and the noise, respectively.

The joint distribution of R and T(T) has a similar form, but the

covariance matrix is slightly more .,omplicated. Define

A=
Axy I TJ

where A is the terrain covariance matrix, as before, and A contains the
T X 1

covariance information between Sc and y(t). If we let the vector 5E be com-
th

prised of the i-j cells (e.g., j is fixed and i runs from I through I4d;

d is the dimension of R) of the reference array, and let Y(T) be the k-lth

cells, then A has elements given byxy

2 -/(i-k) 2 + (j-1)2/LTT T

We also know the main diagonal ter-s are given by

2 -T/L
Gr e TOT

Now we let 2 = IR t hT)] be the 2d-dimensional vector formed by cun-i
catenating R and y(t}. Then the joint distribution of -1 and y(T) is given

by

_ -1/2 1 -zw"
= pE(5) = (2-)-dAz exp i- 2

where 61 and a2 are the "halves" of 6 corresponding to values of R and

y(T). in the special case that T is large enough A is essentially a nullxy
matrix, and A has a block-diagonal structure. Then

Pi(a) = p (61) P(62)



rilE DISTRIBUTION ON THE DIFFERENCE VECTOR

The match functions defined by both the MSD and the MAD classiZiers

involve operations on the components of a difference vector. We now

want to compute this difference vector and determine its underlying

probability density function.

When TERCOM samples terrain it is, of course, sampling the true fix

point, R. This observation is perturbed by additive independent noise.

The observation is, therefore

Since 5 and fi are independent, the distribution on i is easily computed

(e.g., via characteristic functions) to be

p = ( 2 ", -d/
2
1  I, -1/2exp 1- -&.&'1

where A AA + A

The difference vector that the classifier uses is then

5A i- 9T

In the special case that SE and Y(T) are uncorrelated (e.g., large enough

T) the distribution on d is as easy to obtain as the distribution on r.

-d/2 -1/2 1 -1 T
pa(F) = (27r)-d AdI exp {- &Ad a I

where Ad =A + A = 2AT +ArheT T Arn

The more general case of correlated x and y(T) is harder to analyze,

and is not considered herein.

THE MSD CLASSIFIER

In this section we want to compute the statistics on the match function

for the MSD classifier, and then compute the approximate probability of cor-

rect assignment according to equation 1, above.
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The match function for the MSD classifier is given by

d-i
m = I (r i - Yi 2 =

i=O

We will use the following notation.

(2 1 -d/21-/2 1 -T
(2ff exp a- 6.l T

This treats two special cases:

(1) For T=O, Z=A n , and

(2) for T>LT, Z_ 2AT+An .

To begin, we know that d can be transformed by an appropriate orthogonal

transformation into a vector, say U, that has the following properties.

() The components of the vector U are independently distributed,

zero-mean Gaussian random variables with different variances (in general).

(2) If X2 denotes the variance of u., we know that X? is the ith
1 1 1

eigenvalue of the covariance matrix Z.

(3) The inner product Id- is preserved under the transformation so

that uu = d.d.

Now we return to some statistical ideas. We know that if u. is
1

distributed as N(0,0') then u' is distributed as a Gamma distribution,
1 I

G(a,r), with parameters a = i/2X.2 and r = 1/2. We know G(a,r) has the1

r-l -aixform /i/r(r)(ax) e (x>O), hence, P 2 (v i ) = (22v. ) -1/2expf - v i /2XA2u.(i 1. 31 3. 3.
1

The distribution on u. has the characteristic function

(1 - j2A2 )-1/2

Becauce the u. are independently distributed, the characteristic
1

function of the distribution on u' = m is given by

d-1i:"0 (I 2- -1/2

Hence p (M) = e mw f 1 (1 - j2X~w) 'I 2 dW.T 21r i=0

11
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This is an exact expression for the Gauss-Markov terrain model and

the discrete MSD classifier. Unfortunately, it appears there is no closed

form expression for the inverse Fourier transform.

Before finding an approximation for p T(m), we note that in the case

A3 = A for all i, pT(m) is G(l/2A, d/2). We further note that in the
3.

case X= A for i = 0,1,2,...I-1, and X3 = 0 for all i such that I <i < d-1,
1 1

p ,m) is G(I/2A, 1/2).

Now we want to evaluate the A.. Specifically, we want to know what1

are the eigenvalues of the covariance matrix, Z. We do not wish to evalu-

ate the A. exactly, but we do want a good approximation to their behavior.1

The approximation comes from noting that Z is a Toeplitz form (Ref 7),

and hence, as d - -, E assymptotically approaches a circulant matrix.

The eigenvalues of the Toeplitz form and of its associated circulant

matrix are distributed identically in the limit. Further, the eigenvalues

of a circulant matrix can be obtained exactly as the discrete Fourier

transform of the first row of the matrix (Ref 7"and 5, p 205).

A Toeplitz matrix of order 8, its associated circulant matrix and

the error matrix involved in the approximation are shown in Fig 2. The

approximation is very good for Toeplitz matrices whose first rows contain

many trailing zeroes, or whose first rows are essentially constant. This

corresponds in our model to LT << d and LT >> d, respectively.

The behavior of the eigenvalues of a covariance matrix having elements

exp {-li - il/Lj

as approximated by the Toepli'cz theory is shown in Fig 3. Also shown in

Fig 3 is a "pulse-approximation." The eigenvalues are approximated a

second time by a constant value over the first N large eigenvalues, and

by zero over the remaining small eigenvalues. The conscant and the

number, N, are chosen to minimize the mean-square-error of the pulse

approximation.

12



t O  tl t_ o o o o o
t0 t-1 t-2 0 0 0 0 0

t1 t0 t-1 t-2 0 0 0 0

t 2  tI to t-l t- 2  0 0 0

o t 2  t I  t0 t1 t-2 0 0

(a) 0 0 t2 t 1 t o  t 1  t_ 2  0

0 0 0 t 2  t1 t o  tl t-2

0 0 0 0 t 2  t t o  t-l

0 0 0 0 0 t2  tI  to

t o  t-1 t_2 0 0 0 t 2  t 1
o 1 -1 - 21t 2 t t 0 0 0 t

t( 0 to t1 l t-1 0 0 0

0 t t2 t o  t 0 t12 0 0

o 0 t2  t 0 t2 t1l t_2 0

o 0 0 t2  t 2 to  L to2

t_2 0 0 0 t t I  t t

-2 2 1 0 -12

t t 0 0 0 t t t

-c) -2 2 01 0

mo o0 0 0 0 t 2  t 1

0 0 0 0 0 0 0 0
o0 0 0 0 0 0 0

(c)0 0 0 0 0 0 0 0
o 0 0 0 0 0 0 0
o o 0 0 0 0 0 0

tl1 t_2 0 0 0 0 0 0

Figure 2. The circulant approximation to a Toeplitz matrix:
(a) a Toeplitz matrix of order 8, (b) the associated circulant
matrix, and (c) the error matrix.
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Figure 3. Asymptotic behavior of the eigenvalues of A with d=48,
showing "pulse"-approximation for the case IL=4.
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Thus, we approximate p(mO) and p (m) (for T > L ) by Gamma distri-

butions having parameters defined in terms of the eigenvalues of the

covariance matrices for the terrain and the noise. The eigenvalues are

approximately detc.rmined by the Toeplitz theot, and the "pulse" approxi-

mation. Computer programs to implement these approximations are found

in Appendix A.

We may note that this approximation yields results that agree with

Schwartz (Ref 4). The eigenvalues of Z are determined jointly by the

track length, d, and by the correlation lengths, LT and L N . The product

of d and LT( ) yields the a of Ref 4. The behavior of the Gamma func-

tions derived from the approximation agree with the behavior of the

approximate distributions given in Figure 2 of Ref 4.

As we shall see, the Gamma distributions can be intearated easily to

obtain the false-fix probabilities for TERCOM.

THE MAD CLASSIFIER

The match function for the MSD classifier is given by

d-l d-l
m= I Jr, - yJ = I Jdil

i=0 i=0

where the notation is the same as in previous sections. This match func-

tion is often referred to as the first Minkowski metric because it cor-

responds to K=1 in the following definition of the Minkowski metrics.

d-l
MK AK Jr. - yilK

i=0

We may note that K=2 corresponds to the Euclidean metric found in the MSD

classifier discussed in the preceding section.

Because the MI metric is not preserved under an orthogonal trans-

formation, it is very difficult to obtain the distribution on m from

knowledge (or assumption) about the distribution on d. The only case

that is at all tractable is the case of independently distributed cor-

ponents of d. This would correspond .o a diagonal Z, and that is an

,iwarrented assumption for TERCOM.
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We can, however, gain some insight into the performance of the MAD

classifier by considering a theorem in pattern recognition that states

t1at any classification procedure is optimal (in a Bayes sense) for some

distribution on the patterns. A meaningful question to ask about MI

nearest-prototype classifiers is, therefore, for what distribution of F

conditioned on y(T) are such classifiers optimal?

Toussdint (Ref 2) has shown that minimizing M1 distances is equiva-

lent to maximizing the Laplacian distribution. To make this clear, let

p(ZIY(T)) be the conditional probability of receiving (observing) T when we

are truly at location Y(T). As before, i and (T) are d-dimensional

ve.-tors. If

1d-l Iri -Yil 1 d-l In.i
=~l() 11 exp V a = Hexp{-)-

a i=O CF i=O

(a a constant), then assigning F to (t) on the basis of nearest M1 dis-

tance is an optimal (Bayes) procedure. The extent to which the distribu-

tion of real-world noise appro.'imates the Laplacian distribution is,

therefore. an indicator of how close to optimal the TERCOM classifier is.

Ohile this model of the noise may not be too unrealistic, it does not help

us make numerical predictions about the classifier's performance. It does,

however, suggest that MAD performance and MSD pe:formance will be approxi-

mately the same when the noise process can be modeled equally well by the

6aplacian and the Gauss-Markov processes. Some additional points to con-

sider regarding M1 classifiers follow.

The Laplacian distribution is not "rotationa.Ily" symmetric, so the

decision boundaries implemented by M1 depend on the choice of a coordinate

reference system. This may be a distinct disadvantage when modeling a

physical process.

The M1 distance has an unusual "instability" that serves to point out

both the coordinate dependence referred to above, and the fact that trans-

forms that are usually considered isometries do not preserve M1 distances.

See Figure 4.
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Figure 4. Decision boundaries established
by an MAD classifier. The shaded areas
are equidistant from YI and Y2 in the
special case shown.

The MAD classifier is harder to analyze mathematically than a classi-

fier based on Euclidean distance. This is so for two reasons: (1) An MAD

classifier has piecewise linear (e.g. nonlinear) decision boundaries,

whereas the Euclidean classifier has linear decision boundaries. (2) The

Gaussian distribution for which the Euclidean classifier is optimal has

been extensively studied in the literature due to the tractability of its

functional form, whereas the Laplacian distribution does not enjoy such

rich development, However, as Figure 5 shows, the difference between the

two classifiers is not great in the local regions of the signal space that

are "near" the signals (prototypes). Hence, an analysis of the Euclidean

classifier may produce a good approximate analysis of the MAD classifier.
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PREDICTION OF FALSE-FIX ERROR

At this point we want to evaluate Eq 1 by using the 
Gamma approxima-

tion discussed earlier. We therefo", assume that

~I-1
P~meI = c2r(1 271 exp {-m0/2a N

N
1 m K-1

and (M) exp {-m/20
21

and T>LT in) - K) 2aK-

where 02, 02, 1, and K are the parameters involved in the 
approximation.

(See Appendix A for a computer program to find 
these once the terrain and

noise processes are srecified.)

Thus, M

FP (MO ) .10 PT>LT (M) 
dm dm0

10 1~ -1 ex<p {-mo12o2

0 202r(i) e(p=2n 0a,~

.o 2 2 r(K) 2mK21 exp [-m/2c721 dm dm0

By changing variables, u = m/2a2 and v = m 0/2a2, we rewrite this as
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-v i f (Co 2  a 2 )o z--v e ( 1 K-i e du dv
J (I0 o(K) 

I

-- (a 2v/2) K- (a2v/U2)Kl- dv
i=0eN (k-i-i) I

1 iI-+K-l-i - (i C2/0 2 ))K2
= 1 ---- (I---- efe dv

i=OO

K-I (2/02)KK-l-i
S (I+K-i-2)

X(I (K-l-i) .'(,2)I+K-i-

Rd IK1( I-l+kj k= 1 - R k k (R l)

witl. R=2!o2 and (i-+k] a binomial coefficient. Rpcall that I and K are

half the number of nonzero eigenvalues of AN and of 2AT+A , rLsoectively,

as derived from the approximation.

Appendix A also gives a program to computQ this finite sum. A

recursion formul- is used to avoid an overflow problem that might other-

wise arise from the factorials involved.

Once the sum is evaluated, Eq I iq easy to compute. if the s=.

evaluates to a quantity less than one-half, the Prob (m0 < all m) is set

to zero.

We return to a discussion of the predictions from this model after

we discuss the simulation. At that time we can compare the results of

the theory and the simulation.
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TERCOM SIMULATION

GENERAL CONSIDERATIONS

For a theoretical analysis of TERCOM performance to be useful, one

must have confidence that most of the results predicted by this analysis

can be experimentally verified. While the ultimate test is an actual

flight test over real terrain, a computer simulation of a Gaussian ter-

rain model has proven very enlightening. Samples of Gaussian terrain

were generated by a digital computer program. TERCOM runs across these

terrain samples were then simulated for both MSD and MAD classifiers using

an uncorrelated Gaussian process to simulate system noise from all causes.

A tape of digitized real terrain amplitudes was obtained which contained

a wide variety of terrain types from flat to mountainous. TERCOM runs

were simulated across these samples, again using the uncorrelated Gaussian

process as system noise. We found that TERCOM results from both Gaussian

and real terrain were almost equivalent when a certain terrain parameter

ratio, a Z/T, was the same for both types of terrain. Certain basic con-

clusions about TERCOM performance can be drawn from these simulations.

OUTLINE OF COMPUTER PROGRAMS

A reference array size of 64 x 64 cells was chosen for the simulation

since this would represent a realistic size Zor an on-board aircraft com-

puter system. The distance between sample points (cell size) was left

unspecified for the Ge.ssian data, but the cell size used for the real

terrain samples was 400 ft.

The starting point for generating the Gaussian data was a radially

symmetric autocorrelation function of the form P(x,y) = exp(-/ 7/L,

where L is the correlation length. Small values of L indicate rough ter-

rain with low correlation between points, while large values of L indi-

cate smoother terrain with a high correlation between adjacent points. A

two-dimensional Fourier transform of the autocorrelation function was com-

puted vsing a fast Fouriet transform algorithm. This procedure generated

21
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tie power spectrum, p2 (wx,1wy), of the terrain. Generation of he actual

terrain, however, zi-uires an inverse transform of the complex spectrum.

There are an infinity of complex spectra for a given power spectrum, so

any complex spectrum, (wx, y) = Re (wWy) + Ji (W , ), with the power

3pectrum P2 (,Wy) P*4 would do, provided it has conjugate symmetry.

If (wx, w) = Re (wxw y) + jIm (W ,W y), conjugate symmetry implies that

Re (W w y) =Re(-wx'-wy) and Im(xW y) = -Im(-W '-WY). This is necessary

and sufficient to ensure that the Fourier transform of (wxwy) will give

a real function T(x,y) representing the terrain.

Each real point of the spectrum, Re (w1,(Jy ), is picked at random from

a Gaussian distribution with mean zero and variance equal Co P(w xw y)/3.

If IRe(ww y)I > P(wxJ y ) a new number is picked until a value

IR ( , y) < < P(W_,y)W is found. It follows that the imaginary part

of the spectrum, Im(wxcz Y ), is given by Pz(wxlw) - Re2(wxwy). The

sign of Im(a)Xwy) is chosen at random to be + or - with probability 1/2

for each case. When quadrants 1 and 2 of the 64 x 64 spectrum array nave

been computed in this way, quadrants 3 and 4 are generated from 1 and 2

using the conjugate symmetry conditions. The Fourier transform of this

spectrum produces the Gaussian terrain used in the simulations of TERCOM.

Figure 6 shows a number of ampitude density plots from this terrain

superimposed on Gaussian density functions having the same mean and vari-

ance. The agreement is quite good. Similarly, good agreement is shown

in Figure 7, where the distrioution function for the terrain data is

plotted on a special normal probability versus amplitude graph paper.

Gaussian distribution functions plct as straight lines on this type of

graph. The steeper the slope the smaller the variance. The data is

fitted quite well by a straight line. Figure 8 shows two computer plots

of terrain generated by the transform method just described. In Figure 8a

the correlation length, L, is 4 cells while in Figure 8b it is 8 cells.

Increased correlation length has produced flatter, smootter terrain.

Figures 6, 7 and 8 illustrate that the method produces terrain-like

surfaces with Gaussian amplitude densities, and that terrain roighness

22
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Figure 8. Samtples of computer-generated Gaussian terLain.
(a) L =4; (b) L =8.
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is controlled to a certain extent by L, the correlation length. The pro-

gram (TERC 1) listed in Appendix A is set up to generate and store on a

permanent file 10 such (different) reference arrays of dimension 64 x 64.

The real terrain tape contained amplitudes from a large continuous

area sampled into an array of 1073 x 282 cells with a cell width of 200 ft.

We chose to use 400-ft cells , san.pling every other point, and divided the

area into eight 64 x 64 arrays representing a variety of terrain types.

These were stored on a permanent file in the same format as the Gaussian

terrain, so both could be used as input to the TERCOM simulation program.

Some of the real terrain samples are shown in Figures 9 and 10. Amplitude

distribution and density functions were computed frow the entire 1073 x 282

array. The distribution function is shown in Figure 11 plotted on a normal

probability graph. The primary deviation from a straight line is below .05

probability. Thus 5% of the amplitudes deviate considerably from Gaussian

behavior. The Gaussian density function and an amplitude histogram of the

real terrain are shown in Figure 12. The real terrain histogram is nar-

rower in the peak and wider in the skirts than a Gaussian density. We

show, however, that the Gaussian approximation is accurate enough for

TERCOM performance estimation purposes.

SIMULATION OF TERCOM SYSTEM NOISE

Simulation of the TERCOM system required testing with many levels of

additive Gaussian noise. The Fourier transform method used to generate

the terrain could also have been used to generate this system noise if

the computer memory requirements for transforming a 64 x 64 array were

not so large. Computer turnaround time on our CDC 6600 system is largely

determined by memory allocation, so a more efficient method of generating

correlated Gaussian noise was sought. Moshman (Ref 3) has demonstrated a

method for generating a one-dimensional string of Gaussian random numbers

with any desired correlation coefficient. This method was expanded to

two dimensions for generating a 64 x 64 array of correlated, normally

distributed amplitudes. The method is illustrated in Appendix B. Noise

characteristics may be specified by correlation coefficient or correlation

length. Both terrain and noise are generated from Gaussian random processes

of mean zero, but then have independent variances and correlation lengths.

Most of the situations studied used noise with zero correlation, but the

option exists in the TERCOM simulation program to use correlated noise.
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Figure 10. Samples of real terrain. (a) Area #8;

(b) Area #5.
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SIMULATION PERFORMANCE ON GAUSSIAN TERRAIN

Performance of the TERCOM system on the Gaussian terrain wil be dig-

cussed in some detail. It will be seen later that TERCOM parfornance on

real terrain seems to be somewhat different, but Gaussian terrain per-

formance can be ,-ransformed into a close approximation to real terrain

performance. Therefore, the conclusions made in this report with regard

to the Gaussian terrain will be seen to hold also for -qal terrain.

We have assumed that the form of additive noise i.- Gaussian in the
absence of any othar evidence. Previous reports by LTV E-Systems have
indicated that a large source of noise is the error made in transferring

measurements from maps or aerial photographs to the digitized on-board

memory of the TERCOM system. Such errors are likely to be Gaussian in

nature. We have lumped this together with any sensor noise into one

Ga'issian function in our model. Total system noise is varied by changing

the variance (a2 ) of this noise function.
N

The TEECOM system in an aircraft scans a strip of terrain over which

ft is flying, recording and digitizing terrain altitudes at regular inter-

vals until some predetermined number (d) have been recordee. The on-board

memory contains a digitized representation of the surrounding terrain area

over which the aircraft is expected to be flying when sampling starts.

This digitized terrain is in the form of an M by N matrix in which both

M and N are usually larger tha. d. We will assume that the aircraft is

flying over the represented terrain in a columnwise direction. The dis-

tance will then be computed between the d-dimensional scanned vector and

all the column subvectors of size d contained in the array. These

(M-d+I)N distances are computed by either a mean square distance algo-

rithm (MSD) or a mean absolute difference algorithm (MAD). In each case

the array vector with minimum distance from the scanned vector is picked

as a match and the navigation system uses the coordinates of this match

to fix its position.

Our computer simulation used a 64 x 64 array of amplitudes to repre-

sent the terrain. This same array, with Gaussian noise added, then repre-

sented the on-board memory. Scanning track length for most cases was

31



chosen to be 48 cells. We assumed that scanning would start inside the

specified area and be completed within this area. No study was made of

the situation where scanned tracks started or stopped outside the area of

interest. Thus, in our case M and N were 64; track starting coordinates

were 1 to 64 in the N direction and 1 to 17 in the M direction

(M - d + 1 = 64 - 48 + 1 = 17). For each terrain sample, 10 such start-

ing points were chosen from a uniform distribution over the 64 x 17 area.

A single computer run produced 10 different terrains with 10 scanned tracks

jer terrain, giving 100 trials to the TERCOM system at a given signal to

noise ratio. The signal to noise ratio was specified as a T/ N where aT is

the standard deviation of the terrain and aN is the standard deviation of

the noise.

TERCOM performance using both MSD and MAD classifiers is shown, for

Gaussian terrain, in Figure 13. Here terrain correlation length is four

cells and system noise is uncorrelated. The curves represent the mean of

400 TERCOM trials at each signal to noise ratio. One striking feature of

these curves is that system performance never reaches 100% correct identi-

fication. The average miss distance also remains essentially constant.

This failL:e to reach 100% correct at high signal to noise ratios follows

from the method of "mean removal" used by TERCOM to normalize the terrain

data.

Mean removal in the present TERCOM system is carried out as follows.

(1) The mean of the stored 64 x 64 array is computed and subtracted

from each element of the array to assure that the stored array has zero

nean.

(2) The mean of the scanned strip is computed and subtracted from

each component of the strip vector to assure that the scanned strip has

.mean zero.

(3) The zero mean strip vector is compared with equal length strips

in the zero mean stored array using the MSD or MAD algorithm.
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Figure 13. TERcoM performance on Gaussian terrain
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The problem with this method is in step 1 above. The system computes

the distance between a d-dimensional zero mean scanned strip vector and a

d-dimensional vector picked from an array with mean zero but with dimen-

sionality many times larger than d. A small sample from an array of points

with mean zero will in general have nonzero mean. Thus, the distance

between the two vectors will almost never be zero, even in the zero noise

case. This problem can be remedied by simply removing the mean of each

strip vector chosen from the array before the distance from the zero mean

scanned strip is computed. This alteration gives the results shown in

Figure 14, where the terrain used is the same as that which produced

Figure 13. The percentage of correct identifications rises quickly to

100%, and the average miss distance falls quickly to zero. We see that

the simulation has pointed out a procedural error not too obvious from

purely theoretical studies.

A number of computer runs were made to check out various effects such

as correlated noise and variations in track length. These runs were made

with the original TERCOM system which could not reach 100% correct per-

formance. The curves have generally the same shape in all cases. Cor-

related noise with correlation length the same as the terrain causes a

noticeable drop in performance, but the average miss distance is reduced

somewhat. These results are shown in Figure 15. The percentage of cor-

rect identifications was maximum for uncorrelated system noise. TERCOM

performance with this type of noise, using both MSD and MAD classifiers,

is shown in Figure 16a. Here the percentage of correct identifications

is shown as a function of track length and terrain correlation length.

in all cases M!SD is slightly superior to MAt (this is to be expectpd -

we forced the process to be Gaussian). Average miss distance as a func-

tion of track length and terrain correlation length is shown in Figure 161..
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One more study involving terrain correlation length was done using

the improved TERCOM system. Performance curves were plotted for increas-

ing terrain correlation lengths, and some of the results are shown in

Figure 17. We see that the curves approach an asymptote as the correla-

tion length is increased. This asymptotic curve is important in interpret-

ing the results of the next section, where TERCOM performance on real

terrain is considered.
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Figure 17. TERCOM performance on Gaussian terrain, showing asymptotic
behavior with increasing correlation length. Only the MSD classifier
with improved mean removal is shown.

38



0

SIMULATION PERFORMA1NCE ON REAL TERRAIN

at each of seven signal to noise ratios. The results of these runs are

shown as the data points of Figure 18. Each pcint represents the per-

centage of correct matches in 40 TERCOM runs.

Note that all of the points lie below the solid curve in the figure.

This curve represents the performance asymptote of Figure 17 approached

by TERCOM trials on Gaussian terrain as correlation length is increased.

Thus we see a wide variety of curves for TERCOM applied to real terrain,

all lying below t! lowest possible performance curve produced on Gaussian

terrain. Examination of computer plots of real terrain, such as those

shown in Figures 9 and 10, revealed a correlation between initial slope

of the performance curves and the amount of flat area in the terrain over

which this performance was computed. Pattern 1 was completely flat.

Patterns 2, 3, and 4 showed increasing amounts of mountainous area.

Patterns 5, 6, 7 and 8, which cluster together, were almost all completely

mountainous. These last four are also the curves nearest the asymptotic

performance curve for the Gaussian terrain.

A quick analysis of the TERCOM algorithm will make it obvious that

TERCOM cannot operate successfully on a nearly flat or planar area, and

we should expect more mistakes on terrain containing flat areas. However,

the data for aT on the right of Figure 18 show that there is no apparent

correlation between aT and the amount of flat or planar area present in

the pattern. An area may be planar but have non-zero slope and conse-

quently a fair sized aT* Thus aT and the ratio a TIaN are not the correct

parameters to characterize performance over real terrain. Some measure

of terrain roughness seems to be needed. Ideally, it seems that this

should be some sort of second .derivative or second difference. A simpler

measure, which seems to work well for real terrain is

02 = E{(x - x )2}
z i i+l
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This parameter gives a measure of the average difference between adjacent

sample points in the direction of the expected flight path. The ratio

az/rT was found to be especially useful in characterizing the terrain.

A small value of a/a T indicates smooth terrain with small variation

between sample points, but possible large slow fluctuations in amplitude

over tit. ,hole area. Large l T indicates variation between adjacent

sample points is large compared to the overall amplitude variation in

the area.

The ratio a z/ T was computed for the Gaussian terrain. Because

TERCOM performance on Gaussian terrain approached the asymptote of

Figure 18, the a /a ratio for Gaussian terrain asymptotically -...

z T
0.3. This was higher than the az / T values for real terrain, which ranged

from .06 for very flat areas to .22 for completely mountainous areas. The

real terrain data of Figure 18 was then replotted in terms of a za N , where

aN took on the vdlues of ci.5, aT/ 2 .5, aT/3, aT/ 4 , aT/7 and aT/10. This

replotted data is shown in Figure 19; it exhibits a very nice clustering

of the data points. Three distinct groupings of curves are evident, and

there is correlation between initial slope and a z/T as can be seen on

the right of Figure 19. Further, all curves seem to originate near the

same value of c /a N .

Fiat areas were then introduced into the Gaussian terrain in the hope

that this would decrease their a /a T below the asymptotic value of 0.3.

The flat areas were introduced by simply setting entire columns of the

64 x 64 matrix equal to zero. This had the desired effect, and three modi-

fied Gaussian arrays were generated. The number of zeroed columns and

corresponding a z/aT values were: 2 columns zeroed, a z/aT = .22; 16 columns

zeroed, z/aT = .10; 32 columns zeroed, a z/T = .06. This modification
was done with Gaussian terrain of correlation length 1024 cells.
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Figure 19. Correct match scores for MSD classifier over real terrain
as a function of a ION . The data show the emergeihce of three groups.

The percentage of correct scores of a T.RCOM classifier using the VISD

algorithm on partially flattened Gaussian terrain are shown in Figures 20
and 21, along with the appropriate real terrain data points. Note that
for all but one case with very low az/a , the Gaussian model underesti-

ST
mates the real terrain scores by an average of about 10%. Thus, this
simply modified Gaussian terrain model gives a somewhat pessimistic pre-

diction of real terrain TERCOM performance.
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DISTRIBUTION OF MISS DISTANCES

Typical miss distance distributions for two real ..nd two Gaussian

terrain areas are compared in Figures 22 and 23. The values of a z/aT
for the terrains are comparable in each case. The bin widths in the

histograms are 5 cells, corresponding to 2000 ft on the real terrain.

MSD and MAD distributions are very close in each case with MSD usually

marginally better in the percentage of correct identifications. If

2000-ft ezrors are acceptable, which is unlikely, the number of correct

identifications increase considerably for most signal-to-noise ratios.

From all the results, however, completely mountainous terrain with

a z/a N 1.4 gives almost perfect results with MSD or MAD.

CONCLUSIONS AND RECOMENDATIONS

COMPARISON OF THEORY AND SIMULATION

The results of the theory are compared to the results of the simula-

tion in Figures 24 through 27. The comparison is not direct because the

theory predicts how often the false-fix distance will be less than or

equ.;! to the terrain correlation length, whereas the simulations count

a decision correct only when a correct match is made. To make a direct

comparison, we would have to shift the simulation results upwards or the

theoretical results downwards. The amount of this shift is not hard to

compute - either in theory or in simulation - but it is a computation

that we omit in the interest of expediency.

In Figure 24 we see two things: th effect of increasing track length,

and the effect of using the present TERCOM mean-removal scheme. In view-

ng lhe ,thcorctlcal predictions, we must recall that the Toeplitz approxi-

mation is best for LT << d or LT >> d (in the figures, which are computer

drawn, N = d, XT = LT, and XN = L N). For signal-to-noise ratios greater

than about one, the theory and the simulation agree that performance

improves with increased track length. In Figure 25 the agreement between

theory and simulation is quite good. We again see the beneficial effect

of increasing the track length. A comparison of Figures 24 and 25 further
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shows that performance will improve slightly in the case where the noise

has the same correlation length as the terrain. This same effect is

observable in Figure 26, where it is presented explicitly. Again, the

agreement between theory and simulation is quite gocA  Finally, in

Figure 27 we see that, according to the simulation, performance decreases

morotonically as the terrain correlation length increases (other parame-

ters remaining constant). The theory agrees, except that the drop seems

to be too great for intermediate values of LT: this results in an apparent

increase in performance as LT increases from 4 to, say, 32. The reasons

for this apparent discrepancy are believed to be due first to the Toeplitz

approximation, and second to the scoring procedure. In this last state-

ment we refer to the previously mentioned, indirect nature of the compari-

son between theory and simulation. However, it seems entirely appropriate

to conclude that performance decreases with increasing terrain correlation

length.
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Figure 22. Comparison of TERCOM performance on Gaussian terrain (left column)
and real terrain (right column;. Open bars represent the MAD classifier;
solid bars represent the MSD classifier; one cell equals 400 feet on the
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AREAS OF FUTURE RESEARCH

Tihe results of this study partially validate a test for TERCOM per-

formance dependent only on three parameters: 0z and vT (which summarize

the terrain correlation information) from the terrain and aN from the

TERCOM system (including all sources of noise). We envision the develop-

ment, with further research, of a fcamily of performance curves. These

would be probability of correct match versus az/aN for a family of ter-

rain parameter ratios, az / T . Then we would not be required to simulate

a large number of individual flights to determine the suitability of a

given terrain area for use as a TERCOM navigational checkpoint. Compu-

tation of the required parameter ratios would auLumaLicaiiy d=LJ ine a

point on the family of performance curves and thereby produce a value for

the expected percentage of correct position identifications.

The parameter ratios az/aT and a zIaN will be useful in analyzing

TERCOM performance, but we must now point out some limitations of the

present study. The simulations were run, as we mentioned before, with

a 48-cell TERCOM track over a 64 x 64 cell terrain grid. This represents

the so-called "short track - long matrix" method which assumes that the

inertial guidance system has enough accuracy to place the aircraft some-

where over the checkpoint area at the time the scan starts. Different

track lengths and different array sizes will change the TERCOM performance

curves in a manner predicted by the theory, and indicated by the simula-

tion. Thus the az/aN ratio of 1.4, which was quoted as an ideal operating

rzuint, would only hold for the specific track and array size considered

in the preceding section of the report. We have not considered the

"long track - short matrix" method at all in the simulation, althouafi

the theory includes this case. Further simulation studies may be desired

to determine performance curves for a number cf different track lengths

and terrain matrix sizes. In particular, model performance curves for

the configurations which have been used in flight tests of TERCOM should

be established, for it is comparison wit& actual flight test data that

will determine the ultimate uselulness of the Gaussian model and the

parameter ratios az/aT and a Z/ N . Successful comparison to flight test
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results over a wide variety of terrain would show that TERCOM performance

characteristics over any terrain area could be predicted by knowing only

a and aT for che terrain and a for the system noise.z
The mention of aN brings us to another important limitation of the

TERCOM-terrain model presented in this report. We assumed that the system

noise was Gaussian. If the real system noise is not well approximated by

such a process, flight test performance data could differ from model per-

formance. If the process is non-Gaussian, there might be differences

between model and flight test performance even if az/aT and az/aN are the

qamp for both. We suggest, therefore, a detailed analysis of the per-

tinent noise sources such as incorrect ground speed, flight path angular

deviation, altimeter errors, etc. This would produce greater confidence

in the results of this study.

CONCLUDING REMARKS

We have shown that az/aT seems to be an adeqLate description of real

terrain, and that Gaussian terrain modified by introducing a certain per-

centage of flat area closely simulates real terrain.

We have shown that the MSD and MAD classifiers produce almost identi-

cal results on both real and Gaussian terrain. This indicates that a

theoretical analysis of the more tractable MSD classifier is an adequate

theoretical analysis for the MAD classifier.

We have shown agreement between the theory developed herein and the

results of the simulation. However, there is a strong assumption in both

the theory and the simulation of stationary statistics. This assumption

was not valid on the real terrain investigated. The ratio uz/uT sccms

to be insensitive to this nonstationarity.

We conclude, on the basis of the theory and the simulation, that

TERCOM - modified to include the improved mean-removal scheme - will

yield acceptable performance on appropriate terrain. Wat constitutes

"appiopriate" can be determined either from aT, aN, LT' LN' and d in the

theoretical framework (assuming the stationarity assumption is valid),

or from az/aT and a ZI N in the simulation framework. There is no doubt

that the quantities az' 1T' and aN are the easiest to obtain.
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APPENDIX A

COMPUTER PROGRAMS

1. Program TERCOM results in the performance curves shown in
Figures 24 through 27.

2. Program TERC1 generates Gaussian terrain.

3. Program TER is the simulation program.
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TERCOM

PROGRAM TERCON(INPUT, GUTFUT,PLOT)
DIMENSION EIGT(33), IGN(33), A(33) .OaM

DIMENSION COV(2,64), NN(1) S (A Ato'A W'A;
DATA N, XT, XN/32,0., 0./ . -S
CALL PLOT(O0.,-1.,-3)L-L.)O
CALL PLOT(0 4 ,1., -3) L-v 0 LL. ~L tjto) 0
CALL SYMEOL(1.,6.,.i5,371IPROEA8ILITY OF CORRECT IDENTIFICATIONO.

* 937)
CALL SYMF9OL(198,5.B,.15,26HAS A FUNCTION OF S/N RATIOO.,26)
CALL SYMBOL(3.5,3.5,0.i5,5H N = 90.95)
ZN=N
CALL NU?1EEr(999g.0,999.O,0.i5,ZN,O.,i)
CALL SYMEPOL(3.5,3.3,e.15,5HXh = ,0.,5)
CALL NUME(999.Ot99o9.O0.15,XNIO. ,i)
CALL SY'80L(3.5,3.iV.15,2OHXT IS PARAMETER WITH,O.,20)
CALL SYMEOL (3.5,2.90,0 .15, 2iIFVALUES3 0,4,16 ,0.9,21)
CALL AXIS(O.,O.,21HSIGNAL TO NOISE RATIO,-2i,8.,0.,0.,.5)
CALL.-AXIS.(60.,.9HPFOEAEILITY CORRECT,19v5.,90.,0., .2)

200 FORMAT (5X,F6.2,5X,F12.6,5X,F9.6,5X,FC.6,I0X,I2,5XF9.6,5X,I2,5XF9

201 FORP4AT(38HiPROPABILITY(COr(RECT) FOR THE CASE N = q13,6H XT = ,F7.3
!.,iOH AND Xh, =,F7.3//)

202 FORMAT (7X,3I4SNR,IIX,1Hrt,13X,4HPTAU,8X, 1OHP(CORRECT) ,9X,2HNN,IOX,2H
iCfl,JX,2HNT ,10X,2HCT//)

00 2000 NRUN=1,3
SNR =0.55 I *.-,L ~
NHALF = N/2 + I Y"T 4~

NN(i) = N c(J.bJ4' Z&IA R J &
Ni = N +1 I
N2 =NHALF + 1
IF tXT.EQ.0o.) (O7 TC 2 0
DC 11 I19NHALF av(k U."3 &e

COVj(I,I) = FX(PFLOAT(-)/XT)x

DC 12 I=N2,N iaA M$c - .~w YW\OAVZe -VA-A Qw4AC-

12 CCV(2,I) = 0.
CALL FOUPT(CCV,NN,1,-.,0,0)
00 7 1=1,1-wALF '

7 EIGT(I) = COV(i,I)S M..flAAA

GO TO 14
2 CCNTINUE

00 13 11i,N-4ALF X~O
13 EjI'T(I) = 1
14 CONTINUE9

IF(XN.EQO0.)GO TO 4 0C~'M-~
DO R~ 1=1 ,NHAI.F
COV(19I) = EXPIFLOAT(i-I)/XN)

8 COvU,I) =0. '.r
DC 9 1IN2,N ( tw3~ UAtt o~ACYhc~ v t. ZO-Md'

COV(1,I) =EXP(FLOAT(I-N1)/XN) -vo.q ~ -

9 CcV(2fI) = 0. YcAcj~ O .
CALL FOUQT(CrCV,NN,i,-1,0,0)
DO 10 I=1,NHALF -

10 EIGN(T) COV(l,I) %Q*)
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4 CONTI1NUE

15 EIGN(I 1

PQINT 2J2
rCr t pi) N~CTP= 1,

Z.S=N?-S* P QZN'?SNF

AM A =l Vr,*EI-T(I) + EIC.N(I) TT 4 ;
CALL APRCX (NHlALF,0,jT,rT,A) 5 .

TA1= PT ALI (NK NT 9P)Ccw 2± ? wo'
IF (ERTAU GT. 3. 5)ERT AL 05 ~ ~ \J~

q . - 2.*FRTAU
PPINT 200s SNR, R, EFTAU, e, NN~, Ct'h NT, CT

l(NOTR.EO.4.OF.rNCTa.FCsE) GC TO 500

IF (NCTR.cQ.1) CALL PLOT(rSNP,Or-,
3)

CALL PLCT(PSKRqP ,2)

'V CONTtIt40iF ~~ ~ \~AJS ~S '~ ~ 0 ~

SNR=Stl~''J. 05

IF(NQU'4.EO.I) T=i.

CALL PLCIE ~A.~OQ%~~':- C

STCP

Ap:?()XFT AU

SU3POUTINE A~POX(NHALF,K(,C .3) 
FUN~CTION oTAu(?44NTF)

qImFqSIOp: A(NUALP) ol Q1.

C At)C CP/Pl)*N

EmAX = Ai) 
SUM =1

K = I F(NT.E(I.t)GO TO 2

DC I 1=2NHALF A =I

SM= 0. NTI = NT-l

no i J=191 
XNN =NN-I.

t Sur, = SUM + A(J) Do I I=I,NTI

F 5U9*42 /FLOAT (I) XI =II

IF(E-.Lr.EMAX)t;O T02 
A =A*(XNN~+Y)/(XI*Rl)

EtMAX =E 
I SUM  SUP + A

X = 
2 ;TAU I. -*U

C =SUM/FLCAT (I) RETURN

? CONTINUE 
N

3 CONTINUE
RF TURN
END
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TERCI

PROGRAMI TERCI(INPUT,OUTPUTITAPEI)
DIMENSION A(2,64,64) ,NN(2)
DATA NNTCPP,B/64,64.4. ,5. 4.1
CALL RANSET(P)
DO 1000 NCTR=1,10
DO 10 I=1,2 f~ )
DO 10 J=1964
00 10 K=1,64
A (I i '()=0. 

- -

10 CONTINUE
DO 20 J1i,33 

'-

DO 20 K1i,33 P,.
CJI=FLOAT(J)
CKI=FLOAT(K)

C=SQT((CJi-.)**+(CI-1.**2
A(IJ,K)=B*EXP(-C/TC)

20 CONTINUE
DO 30 K1,933
00 30 J=2132
J1=66-J
A( 1,JI,K)=A (1,J,K)

30 CONTINUE
DO 40 J=1,64
DO 40 K=2132
Ki=66-K
A (1, J, K1.'=A11, J, K)

40 CONTINUE
CALL FOURT(A,NN,2,-.,0,O) C.;ya'.
DO 60 J=1164 

,.~*

00 60 K=1,33
F2=A (1 J ,K)
CALL RANOOM(F2,RE,XI)
A(I,JgK) =RE
A (2,J5 K)=X1

60 CONTINUE
DO 10 J=34964
J1=66-J
A(1,J,j) =A (1,Jjpj)
A(2,J,1)=-A(2,Jl,l)
A(1,J,33)=A(i,J1,33)
Ac (2t.) 33) =-A (2,J!., 33)

70 CONTINUE
00 80 K=34164.

K1=66-K

ACi,33,K)=A(1,33Kl)
A2,33 ,K)=-A(2 ,33,K1)

80 CONTINUE
00 85 J=2032
00 85 K=2,32
Jl=66-J
K 1=66-K
A(1,JIKl)=A (1,JK)
A (2, J1 ,KI) =-A(2, J, K)
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TERCI

85 CONTINUE
00 90 J=2932
DO 90 K=2932
Ki=66-K
Ji=66-J
A(IJKl)=A(1,JiK)
A (2,JKt) =-A (2,qJiK)

90 CONTINUE
CALL FOURT(ANN,2,iO,0)
CALL RANGET(P)

1000 WRITECI) NCTR, TC, P9 B, (CA(lIJ), I19,64)9 J1i,64)
PRINT 102, NCTR, P

102 FORHAT(iOX,*NCTR=*I2,5X,*P=*E15.7)
REWIND i
STOP

END

RANDOM

SUBROUTINE RAN0OM' :2,,EXI)
IFCF2.GT.0.)GO TOI £
RE =0.

GO TO 3
1 F=SQRT(F2)

SIGMA= Fl 3.
2 X=RANF(OUM)

Y-RANFM(UH)
CC=SQPT(-2.*ALOG(X) )*SIGHAI RE=CC*COS(6.28313*Y) iZHU
IF(ABS(RE).GT.F)GO TO 2
XI=SQRT (F2-RF**2)
IF(X.Gr. .5)XI=-Xi

3 RETURN
END



TER~

PROGRAM TER (INPUTOUTPUT,TAPEI)
DIMENSION A(64,64)qS(GLd',A9(64,64)
DIMENSION RN(64)

R00o. pj lS J CV04 rLA'oJ CQEF(I'iEqT
E=.7642672

NL=41SE-r TPRAC LENGTN
NBL64 S~i ARRAy vizr
NL5=NBL-NL
BL5=FLOAT( NL5)
CALL RANSET(E)
PRINT 107,E
PRINT 110
ANUH=SNUm=O4SDDMAD=t.
0O 79 NC19l0
READO(1)NCTR, TC,P,, A - REM~b P4TTEP,%J
DO 5 1=1,64
00 5 J1i,2
A IJ, =0.

5 CONTINUE
PRINT 101.,NC

SUM10=O.

RA=2. S ET SGNAL 71 AJOI.S.: ATiC
FMEAN=0.
IK=JK=64
BN=FLOAT CIK*JK)
SUM=).
BN2=FLOAFi(IK-I)
00 10 I=1,1K
DO 11 J=1,JK
SUM=SU1+ AC ,J)

1) CONTINUE
AVE=SUH/BN
SUH=).
0O 23 J=1,JK
DO 20 I=1,IK
SUiMSUM+ (A (I,J) -AE)4"2

20 CONTINUE
SIGT=SQPT(SUM/PN) -r r jA""
SIGNO=SIGT/RA11 "A ,

IF(RO.NE.i1.)rm0 TO 22
RO1=0.
GO TO 25

72 IFCRO.NE.1.)UO TO 23
RO11l.
GO TO 25 LGr

23 SCN=-I./ALOG(RO) -i ~ p-
ROI=EXP(-SOPT(2.)/SCNM C jfPQ./ ?' pfv ,

CALL RAN02(PNI,RN2,SIGNC,FMEAN,ID)

PN3=RN2
0O 3) I=1,64927
CALL PANC? (RN1,PN2,SIGlKC,FMEAN,ID)l



TER

RN (I)=R0#RN43SORT( i.-RO**2 )*RNI
RN(I+I)=RO*RN(I) +SQRT(1.-RO**2)*RN2
SUt11!RN(I)*2+RN(I+I)**2+SUMI0

SUMtl=RN (I) +RN (1+1)+SUMII
AB (I~l)=A(I,1) +RN(I)

RN3=RN(I+1)

0O 31 J=2964
CALL RAND2CPN1,RN2,SIGNOFHEANIO)
RN (1)=RO4RN(1) +SQPT(l.-RO**2) RNi
RN(2)=ACA*(RNCI)+RN())+ACB*RN2 j il
SUM1ThRN(I)**2+RN(2)**2+SUMt0
SUMIRN (I)+RN(2)+SUPII
AB (I9J)=A (1,j) +RN(iD
tAB(2,J)=A(2,J) +RN'(2)
00 31 1=3,6492
CALL RAN02(RNtvRN2,SlGNOqFMEAN,IO)
RN(I)=tACA* (RN(I-i) +RN(I) )+ACB.*RNI
RN(I+1)=.CA*(RN(I)R.(I41) )+ACB*RN2
SUMIO=RN (I)**2+RN(I+i)**2+SUMI10
SUMiI=RN(I) +RN(TI) +SUH11

AB(IiJ)=A(HrN(i,)RNID

31 CONTINUE
SUM=O.
00 52 J1,PJK
00 52 1=1,1K
SUM=SUM+AB (IJ)

52 CONTINUE
SUM=SUM/4096.
00 53 J=1,JK
00 53 1=1,1K
tAP Q(vJ)= AP QIJ) -SUM

53 CONTINUE
S0EVN=SORT (SUMI/40E.-(SUli1/40q6.)**?)
IF(SOEVN.NE.0.)GO TO 40
SNR=11.11
GO TO 41

40 SNR=SIGT/SOEVN CT i A P
41 PRINT113,SOEVNSIGT,SNR

10=2
00 70J L1,IIJ
CALL RAN02(RN1,RN?,SIGthCqFMEAN,ID)
KII=IFIX CRL5*RNI)4-1

KJI=IFIX(63.*Rtl2)4i I'.~
00 51 I=KTi,Kf2 ~ c. co
M=I-KII+1

51 CONTINUE
SUM=O.
00 55 I11,NL
sut'SlUM+s( 1)

55 CONTIN4UE
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TER

SUM=SUM1/NL
00 56 11I,NL
S (I)=S(I)-SUH

56 CONTINUE
NL2=64-NL+ I
SUMR=320 00.
SUMR2=i. *E7
0O 62 J=1,JK
DC 62 K=l,N~L?
SUM=].
SUM2O0.
SUM5=0.
DO 563 I=1,NL Cr-

SUM5=AB(II,J)+SUM5 .-

58 CONTINUE
SUM5=SUM5/FLOAT (NL)
DO 60 I=I,NLe
II=I+K-i
SUM=SUMA3S(S(I)-t&8(II,J)+SUMj5)
SUM2=SUH2+(S(l)-AB(II,J)+SUM5)**2

60) CONTINUE
IFCSUM.GE.SUMR)GO TO 61
SUMR=SUM

KJR=J
61 IF(SUM2.'E.SUMR2)GO 70 62

SUMR2=SUM?
KIR2=K
KJ142=J

62 CCNTINUE
0MAO=SQRT((FLOAT(KIl-KIR))**2AFLoATCKJI-KJR))"*2)+DMAD
OMSO=SQRT((FLOATCKII-KIR2))**2+(FLOAT(KJi-KJR2))**2)+OMSO)
IF (Ktl.EO.KIP.ANO.KJI.EO.KJR)GO TO 63
IF(KII.EG.KIP2.ANO.KJ1.EO.KJR2)GUO TO 66A

GO TO 67
63 IF('(I1.EO.KIR2.AND.Koi.EO.I<JR?)GO TO 65

PRINT 105, KIR,KJR,KII,KJI,KIR?,KJP2
SNUM=SNUmfl *

GO TO 70
65 PRINT 106,KIR,KJR,KIF.2,KJR2

GO TO 70
i-6 PRITNT 1'18, KI I K.Jl, KTPKJR, KI I KJl

ANUM=AI4UM4 1.
GO TO 70

A~7 PRINT 109,KTI,KJI, KIF,KJP,K.Il,KJI,KlR?,KJR2
ANUM=ANU"'s- .
SNUM=SNUm~+l.

11 CONTINUE
OMAOO4A C/ANUM
DMSO=DMSO/SNU1
RENiIN') 1
PRINT t03,RA
PRINT Jl,OtfAODM~SD
PRINT Ii.?,RO

63



PRINT 1i4tNL
CALL RANGET(OO)
PRINT 107,PD

STOP
103 FORMAT(IX9*S1GMA T /SIGVIA N =*,FL,,1)
104 FORMAT (tX, *NCTP=*, 13)
t05 FORMAT(1.XCORRECT I.D.AT*,2T5,1,0X,2lTt,xMISTAKEN FOR',213)
1(.6 FORMAT(1X,*CORECT Id).ATv ,2T,1flX,*C0RRECT I.O.AT~t2I3)
107 FORMATt X, *RANO NUN3ER=*,E1Lv,.7)
VIA, FORMAT U&X,2I3,1X,#M'ISTAKFN. FCRt213, Y,*COPRFCT T.D.AT*,2I3)
10-1i FORMAT (tX,213,IAX,*MISTAKEN FOR'F,2I3,rlX,2?t3, tXMISTAKFN FOR*, 213)
110 FORMAT (7X,*MAO , 32X,*MSO*)
111 F0RMAT(tX,#IIVE. MAO FRROR=*,IXtF5.I,IIX,#AVE. HSO ERROR=*,1X,F5*l)
112 FORM1AT(lX,*RO=*%F5.2)
113 FORMAT(60X,#NOISE SI(MA=,E5.7,X,*SIGNAL SIGMA=*,E15.7v

SU8ROUTINE RAND2 (PN1,RN2,SIGNOFM~EANTO)
X=RA4F CUM)
Y=RANF (OUH)
IF(IO.EQ.1)Gj TO 5 c. ok GA U 41iA N tjT'Pei'J'

RN2=Y
GO TO 10

5 CC=SIIRT(-2.*ALOGo())*SIGNO
RNI=CC*CCS (6.28313*Y) 4FMEAN
RN2=CC*SIN (6.28313*Y) +FMEAtq

£0 RETURN
END
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APPENDIX B

METHOD FOR COMPUTING VALUES FOR GAUSSIAN
CORRELATED NOISE IN ONE DIMENSION

Let R be a Gaussian random variable of mean zero. We wish to
n

generate a string of numbers S which are Gaussian with mean zero and
n

any given correlation coefficient p.

We chcose Sn = W1Sn-i + w2Rn  (BI)

where wI and w2 are weights to be determined.

Now, take the variance of Sn

Var (S) =w2 Var (S ) + w2  Var (R)
n 1 n-i 2 n

or more simply G2 w2  + w 2 a 2

Furthermore, we chose a = aN to simplify computation

which gives us i = w12 + w22

Now multiply Eq Bi by Sn 1 and take the expectation of both sides

E(Sn S _) = Ew (Sn- )2 + Ew 2(Sn-i Rn

02p = W l 2 + 0

P =W

+ w 2' or w2 =v1 p

thus S = PS + /i p2R
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This can be extended to two dimensions by making Si, j depend on S i ,j ,

Si_l,j_ 1 and Si,j_ 1

we have then

Si 1 E(Rn) a 2

o 0 i-l,j E(S. .S..) a 2
i'j 1,)

S. E(S Si-l'J) = E(S. jSi J-) pa 2

1 ,j- E(Si S. pl02

LetSi,j =1 Si-l,j + w2Si,j-1 + w3R n  (B2)

where again 0 < w <,0<w <i,<w <1
-1-: l < w2 :S' < 3-<

and Var (S. .) = Var R1,) n

Var S = E(w 1S il, j + w2Si,j_1 + w 3 R ) 2

02 = w202 + 2w1W2pla
2

or1w12 + 2  w 2 (B

or I = w12 + w22 + w32 + 2wlW2P 1  (B3)

Multiply Eq B2 by Si-l, j and take the expectation of both sides.

This gives:

pa 2 = w1 a 2 + w2P1 2 + 0

p = w1 + w 2P1  (B4)

Multiply Eq B2 by Si,j_ 1 and take the expectation of both sides to get

pa2 =w 1  + w2o2 + 0

P +1 W2 (B5)

Now multiply Eq B4 by p1 and subtract Eq B5 from the result to get

PP1 = Plwl w2p 12

- p = -Plwl w2

p(p1 -1) w2 (p1
2 -1)

o (0p-l) p

w2 = (01 - ) -P
6 P1
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Similarly we find that wl = w2 = -PP1+1

Now substituting for w, and w2 in Eq B3, we get

2p2 2P102_2
1 (Pl+l)2 + (Pl+1)2 + w3

or W3  - (2p2 + 2P p 2 ) i 2p2

(P, + 1)2 -(P + 1)

Thus S. P S S + - 202TSJ Pl + 1 i-lj PI + 1 i,j-i. +  +- Rn

1 1
When p 0, Si j = R and wh_.n p = pl = 1, Si S +n 1) 2 i-lj 2 Si,j-1"

There are two ways to specify the characteristics of the correlated

noise we wish to generate. The noise may be characterized by a correlation

length T or a correlation coefficient p. In both cases an exponential

autocorrelation function is assumed for the noise.

If the S. . are treated as samples from a continuous function, we

can determine p and Pl when the correlation length T is given. If the

correlation length is T cells, o is the value of the correlation function

one cell away from the origin. Thus we have

1
p=e T

Since Sil I , Sj_ 1 is 1.414 cells distant from Si'j ,

1.414
ol = e T

If the noise is specified in terms of a correlation coefficient p,

we can determine T from the relation T = i/-inp. Then, pl can be

determined as shown above.
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