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SECTION I

INTRODUCTION

SCX is a two-dimensional computer code designed to
solve Maxwell's equations in the environment of a ground
nuclear burst, The calculational regime includes both the air
and ground regions, It is well-known that the detonation of a
nuclear device results in the generation of large electric and
magnetic fields, This phenomenon is commonly referred to
as the EMP (electromagnetic pulse). Information concerning
the EMP is of vital interest in the design of both offensive and
defensive weapons systems, For this reason the SCX code
was developed at the Air Force Weapons Laboratory (AFWL) and is
presently used at AFWL in the prediction of EMP environments,

The nune rical methods employed in the SCX code are
similar to methods used in other EMP codes; however, the
code is essentially an extension of the original British RAG
codes, Methods used in these codes were expanded by AFWL in
the writing of B, a two-dimensional medium altitude code. The
B code was then modified and, using the combination spherical-
cylindrical grid suggested by Longmire, converted to a ground
burst code, The original version of SCX, called SC, was
developed by G, K. Schlegel and G. Waller, The production
version of the code now in use at AFWL is a similar, but
expanded, version of the original code, S. J. Dalich was not
involved in the development of the original code but, along with
J. N. Wood, is responsible for certain portions of the present
production code,

This document is meant to be as up to date as possible.
All areas of the calculation, including source and air chemistry,



are included. The main text and Appendices II and III were written
by S. J. Dalich of Science Applications, Inc. Appendix I was
written by K. D. Granzow of The Dikewood Corporation. Assistance

in compiling the variable list in Appendix III was obtained from
A. A. Henden, also from The Dikewood Corporation.

The SCX code is not generally available for distribution.
While the majority of the code is written in standard FORTRAN IV,
it is not generally compatible with computer systems other than the
AFWL system. This is the result of the extensive use made of ex-
tended core storage on the CDC 6600 at AFWL. A typical SCX run
requires 2508K of central memory and 7608K of extended core
storage. Also, several of the subroutines are written in assembler

language.



CECTION I

FIf*: °, CALCULATION

Obviously the primary calculation in the SCX code
involves the field algoritim. The field calculation is, however,
coupled to the conductivity calculation through the field dependence
of the electron mobility and electron attachment rate. The con-
ductivity calculation is discussed in Section III, and in the
following it will be assumed that the appropriate conductivity

has already been obtained,

1, FIELD EQUATIONS

Two coordinate systems are used in the field calculation in
the SCX code, These are a spherical system in the air pdrtion
and cylindrical coordinates in the ground, The use of these
two systems allows for the applicntion of the inner boundary
conditions due to Longmire, Specifically, an infinitely conducting
hemisphere is assumed to surround the burst point in the air
portion of the grid. In the ground an infinitely conducting cylinder
with radius equal to the radius of the air-hemisphere is assumed

to extend down to several skin depths.

The Maxwell equations of interest, in MKS units, are

vxE = -8 (1)

; X ﬁ = 3 4 oE -+ QD_ (2)



The two divergence equations are not included as they are only
initial conditions on the problem. In the air the free space
values of the permitivity, ¢, and permeability, p, are assumed.
These are input parameters in the ground equations. Using

the constitutive relations, Eqs. (1) and (2) are written

- _ 3B
"xE = -5 (3)
vxB =u'j+uo}§+ue%§"— (4)

Carrying out the operations indicated in Eqs. (3) and (4)
generally results in two sets of three equations. These sets
represent the transverse eleciric and transverse magnetic
fields, In the SCX code azimuthal symmetry is assumed and the
transverse electric equations are eliminated, The remaining

three equations are

(Air-spherical )

1 3 _ 3E
r sin 8 20 (B‘p sin @) = pd +poE, + pe 5 ()

E

1 3 - %
== sk (rB(p) = pJo +u,0‘Ea + ue =5 (6)

3E

Rel - —r._.2 .
ar TEg) - —3 s (TBy (7)



(Ground-cylindrical)

= _a_.z_.. = “'JP +p.0Ep + pe at (8)
E
1 3 _ 0%y,
o 3p (PBw) = W, + poE, + pe 5 (9)
i - .a.EE. = - ?iw.. (10)
32 ' p op at
Before attempting to solve Egs., (5) through (7) (the air
equations), a transformation to retarded time is made,
r’ = 1
¢ = ¢
o' = 8
r=t-r/c (11)

In effect the transformation eliminates the steep gradients in the
r direction, At a constant retarded time all points in space

represent the same point on the wave front. Thus, no special
gridding is required in the r direction. With the above trans-
formation the partial differential operators in Eqs. (5) through (7)

become

(91



FodoiE @
a% = EQ" (14)
The air equations in this system are (the primes on the trans-
formed variables have been dropped)
_ 1 B (rB sing) = J + oF +ei§5 (16)
p,rz sin 0 a6 ® r r or
- ;—11—1—'[58? (rBw) - %-—aa—T (rBw)] = J9 + O'Ee + ¢ -a-:;re— (17)
%L%(rne) - %53; (cE,) - 2 Er] S ;&E (18)

In the ground equation the retarded time is obtained by
considering a refracted wave. In Fig. 1 the path of this wave
is defined.



3

r i e X AR

ORIGIN GROUND

(FP2)

Figure 1, Path to (p,z) by a refracted wave.

Using variational methods, the minimum time for a wave to

reach (p,z) by the above path is given hy

(19)

where c is the speed of light in the air and cg is the light speed
in the ground. This minimum time is used to define the
retarded time in the ground as

r Wk B ol g i T ey kS M i



(20)

e = P
z! = 2
o = o (21)

and the differential operators in the ground become

o
%t'=a‘," (22)
3 . _ 13
a 3 car (23)

2,2
1 -
2 .2, X[ " 5 (24)
dZ 3z’ C dr
g

9 . o
LI 25
% 0’ (25)

(note that as presently used in the code z is negative)



In the transformed system the ground equations [(8)-(10)] are

given by (primes have been dropped)

. 2,9
B 1 -¢“/c® aB J3E
1(%% \/ g o) _ o
'E<az + 2 v Jp+oEp+t = (26)
g
1-a-—(B)--——-(pB) = J +gE_ + EEE (27)
aplde ° z 2’ €3]
\/l-c/c 3 2B
— ....§._ -l-l = .._.Q
> 3 E T E, = (28)

The ground equations are modified further by assuming that
all currents are zero in the ground, These currents are available
and could be implemented; however, studies at AFWL, using the
one-dimensional code NEW1, have shown that for a burst on
the ground the effect is negligible. If the height of burst is

greater than zero, the ground currents should be included,

2. GRIDDING CONSIDERATIONS

Figure 2 illustrates the grid used in the SCX code. Examin-
ing Eqs. (16) through (18) indicates that centering derivatives in
¢ is simplified by defining B¢ and Eé¢ on full angles and E, on
half angles. Thus, in Fig. 2 the crosses refer to positions
where E, is defined and the circles to E¢,By positions.

et R Ee s Ak Stk



Ee (E;), By Are calculated on
linas marked by O.

Er (E5) Are calculoted on
lines marked by X.

©=0 i=l
j=2
)=3
=4
AlR
5
j=6
=7
=8
=9
J=11
e
— ; JSNTA- 1
= = P |=NTA
< J=NTA +1
42{
4 GROUND
-
g -j=NT-I
0o -j=NT
"min Yiet % fis max
Figure 2. Sample grid as used in the SCX code.
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Similarly in the ground, Ep is defined at half z positions while
Ez and B are defined on the full grid lines,

Z
max
as an input parameter, If chosen by the code (the usual running
mode), 2 ax

frequency. Generally, the entire 0° to 90° region is included

in the ground grid is chosen by the code or is given
is obtained as several skin depths at a 8 MHz

in the air grid; however, the option does exist to begin the
calculation off the vertical, This latter option is virtually
never used in the normal running of SCX,

The asymmetry at the air-ground interface necessitates a
further modification of the grid, At poinis far from the interface,
where no asymmetry exists, fairly large grid steps can be
taken, Near the interface the grid steps must be much smaller
since variations in this region are expected to be highest. Thus,
a variable grici spacing in both the air and ground region is
desirable., In the code this is accomplished as follows: first,
the air region is divided into N1 angle bins, the lower N2 of
these bins are then halved, The process of halving the lower
N2 bins is repeatced N3 times, The total number of air angle
bins is then given by

NTA = N1 + N2 x N3

A similar process is also preformed in the ground portion of
the grid. The net result is a uniform grid at points far from
the air-ground interface but an increasingly finer grid in the
regior: near the interface. In the normal running mode there
are 7 bins of 10° and 22 bins which decrease in size to a final
bin of 9.766E-03° next to the ground.

11



The regridding discussed above introduces certain problems
in the centering of derivatives, These will be discussed in
Section II-5,

3. BOUNDARY CONDITIONS

A few of the boundary conditions have already bheen
mentioried while others have not been discussed at all. For
completeness and at the risk of repetition, all of the boundary
conditions used in the SCX code will be discussed in this
section, Fig. 3 is a simplified grid for the code with the
various boundaries labeled,

\ man
\ AR
- } >
Fmin /J i Pmox GROUND
7 |
Z .
5 E
i

7777775 77777777 e

Pmax *max

Figure 3, Sample SCX grid with labeled boundaries,
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The inner boundary is defined as an infinitely conducting
hemisphere in the air and an infinitely conducting cylinder in
the ground, There are several reasons for choosing this type
of inner boundary, First, it is reasonable since it is meant
to represent the region in the immediate vicinity of the burst,:
In this region ionization is very high and the infinite conductivity
approximation is fairly good, Second, it eliminates stability
problems associated with quantities having a 1/r dependence,
At the inner boundary, then,

o ="min

In the general running mode T oin is chosen as 200 meters;
however, any value can be input to the code.

Due to the assumption of azimuthal symmetry a boundary
condition is obtained on the vertical axis at 8 = 0°, Clearly,
only radial vector components can have nonzero values here,
Thus,

B = 0
?lg-0°

As discussed earlier, 2 ax is chosen automatically by the code
¢
as being equal to scveral skin depths, Thus, a reasonable

assumption in this region is

13



At the air ground interface: both B‘p and Er are continuous,
Thus,

This condition becomes quite imporiant in the actual fields

algorithm, As will be seen in Section II-4, E and Ee

can be expressed in terms of B@; and, therefore, the
continuity of B‘p at the interface provides a unique solution for
B *»

')

Numerically the most difficult boundary occurs at r = L —

Ideally one would like to choose T ax to be infinite and thus

[£

set the fields to zero at this boundary. Since a computer with

infinite storage is not available, this is not possible, In SCECS
two options are provided for handling the outer boundary, Both
involve the assumption that L lies in the radiated rcgion,

[3

Normally I hax will be between 5 and 7 km, and for most

3

problems of interest the assumption is reasonable,

14



With the first option the fields at r = r cand p = p
A max max
are calculated by a first order Taylor expansion, In the air
portion of the grid it is assumed that the fields é;o as 1/r and
the expansion is on rB‘p. This essentially amounts to taking

the first term of a multipole expansion, The second option

does the actual multipole expansion. In this case it is assumed

that beyond r

ground conductivity infinite, The expansion methods \Qere

T ax the air conductivity is zero and the

¢

developed by K. Granzow and are documented in Appendix I
and also in an independent paper (Ref. 1).

4. DIFFERENCING - THE FIELD ALGORITHM

The SCX code uses a combined explicit-implicit
differencing scheme in the field algorithm, B‘p and Ee (or Ez)
are obtained implicitly while E,  (or Ep) is ohtained explicitly.
A step-by-step description of the differencing in both the air
and the ground region will be given in this section, The equa-
tions have been described in an earlier Dikewood Corporation
document which deals with the field algorithm only (Ref. 2).
Also, AWRE Report No, 0-72/65 contains descriptions of the
algorithms used in the various RAG codes, and these are quite
similar to the techniques used in SCX, Both the above
documents should serve as useful complements to the present
paper,

The equations of concern were given ir} Section IT-1 and

will be repeated here for convenience in referencing.

ok
_—1—-— a— (rB sin @) = J_ + OEr t+ € —
p,rz sin o 26 14 o

15

(16)

~y



e 1o cny] - 8
7 B
113 13 2wl . % .
;[3; 0 - o artB) ~ g %[ = -5 (12)

Eq. (18) is multiplied by 1/2 and Eq. (17) by cur/2; subtracting (17)
from (18) then yields

3 rEe aEr
¢ < rB(p <] = 35 - cou.(rEe) - cu,rJ6 (29)

These two equations, plus Eq. (16), are differenced in the air
region of the SCX code.

Several comments concerning the above equations
are in order. In the (r,6,t) space the surfaces defined
by t - r/c = constant and t + r/c = constant are the charac-
teristic surfaces for the wave equation. It is well-known
that a characteristic surface cannot serve as a boundary

surface for hyperbolic differential equations. The retarded time

16



transformation, which is to a characteristic surface, thus
eliminates the possibility of advancing certain of the variables
exactly parallel to this direction. This is deronstrated by
examining Egs. (29) and (30), which contain the retarded time

]
independent, and attempts to obtain two independent equations

derivitives of E_ and I}w. It will be seen that these are not

6
be advanced exactly parallel to the retarded time direction. As

in aB(p/a-r and aEe/aq- will fail, Therefore, E_ and B{p cannot

a result, a line of constant advanced time, t + r/c = constant,
is used to difference Eq. (30) and a line of constant retarded
time to difference Eq. (29). Eq. (16) presents no such problem
and is differenced along a line of constant radius. Fig. 4 is

a (r,7) grid showing the differencing lines for the three equations,

N
r K‘_ i 4 , [
h‘l \,\
5
Lo
Yo
" 3 EQISs

A

Figure 4. Differencing lines in the air grid.

Note that interpolation must be used to obtain values at point
5 in Fig. 4.

17



The steps used in differencing the field equations are

described below., Tirst, the following definitions are made,

r, = ro+ ix Ar 18 is NDR
Py g p0+iXAp 1< i< NDR
q'k = kx Ar 1 <k=< NTY

. = 0. + ! 1< i< NTA
%) -1+ 95 )
z, = 2, , + Bz, NTA + 1< j=< NT

j j-1 j

Note that because of the regridding in 6 and z, no simple

relation may be written for these coordinate positions. Further,

Er and E‘D are defined at half angles and half z, respectively.
In describing a half angle (or depth) variable, or coordinate,
a superscript h will be used, Variables obtained through

interpolation carry a subscript p.

a. Air Equations

The equations to be differenced in the air grid are

1 aEr
- (rB sing) = J 1+ 0oF + ¢ —
P r r AT

ur sin @ ab

18
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2 + &
Ly (rBw) bor (rEa)

oE

s

) c o B
B |- — o
T (r ‘P) 2 or <ngo> Jp

curd
= +

- cuo(rho)

6 Cucr(rEe) 1 BEr

2 2 2 50

- c,JrJe

(32)

(33)

Eq. (31) is differenced along a line of constant radius resulting in

1

sin @,
]

Separating the variables in Eq. (34) according to the time superscript

yields

1

K k-1
(rB ).. + (rB )., )
69j2pri2 sin e'; [( Pl i)

(e 257, (e
_ | _rij rij ), \_i
2

sin §. -

hk
rij

k
1 <(rBso)ii-

( ool i1

ij rij

- (Em.‘. - Eh‘.‘.'1>
T \ rij rij

19

2

1

)

+ (rB )
%)

k-1
ij-1

(34)



2
b6re . ( )k _ k
gin 9.(rB )., - sin 0, (rB )
21'.2 sin 6',169, [D“ AR -1\ " 1]-1]
. } )

2

) (1 . 6 hk)Ehk _ b¢ (Jhk Jhk-l) ' 6rc

2¢ %ij /Urij T 2¢ Urij - “rij g
RS

sin 6. (rB )l.(.-l - sin 9.(1'B )1.{.-1
J-1\V T/ ij-1 I\ Tl

(1 - So ohk-t)ghet
2¢ ij rij

2r? sin 6

(35)

Eq. (32) is differenced on a line of constant retarded time and

arranged similarly to Eq, (35). Thus,

k (1  ubr k)( )k 6r (-hk _ _hk )
(qu,)ij + (c g0y rEg ij 2cb0" ("“rij - Erije1
j

_ k 1 pbr k )( . ) <
- (”%)i-ﬁ +(c 2 %i-1j/\ %/ i-1

br (hk _hk ) 6r [( k k
b — B, -8 -k rJ) +(rJ -
2(:69? ri-1j+1 ri-1j 2 e). 1 6/ij

(36)

Finally, Eq. (33) is differenced along a line of constant advanced
2 _c @
Tt 2

a

time (note thal on this line 55-77

20



n Yk (1 cubr k)('.)k br (‘hk hk )
(IB(p)ij (E k—‘ﬁ-oij rEg )i + — |E E

459" rij = Trij+l
j

k-1 (1 cubr k-l)( )k-l 6y (hk-—l hk-l)
- (L. b K Sy 2 (gL - ENS
(chp)DJ c "7 %) Nalui * R Erpi+1 ~ Prpj
j

+ l‘-‘—cad—r- [(rJe)li(j'l + (rJe)li{].] (37)

To simplify the above equations define the following

Al(j) = (1 + %‘% o‘iljk) (38)
2 sin 6

A21(j) - Dre ) (39)
260.r. sin 9,
11 )
2 sin @,

Azz(j) S L -1 (40) |

259.1‘i sin 6,

j j |

o e

N t_S_-,_-(hk hk-l) ( 6r hk—l) hk-1
A3(1) = ge \rij iy ) L Fe % ) Erij

61-c2 sin 0.

SRR

N3
o

- (rB )‘.".‘1 - il-n-—%-li (ra )‘.‘.“11 (41)
269j r. |sin 0. P/ sin e.‘

i

-
i
=N 7

2]

21



)

sl

)

)
of)

ol

1

i

1 6r k
¢t %3 (42)
6
~ (43)
2c60,

Kk 1 _ ubr k ( )k
(IB¢)1 1j (c 3 oi-lj) rEq i-1j

or ( hk hk ) or ( )k ( )k
—1\E ..., - . ] - A Y J_ ..
t 2c69? ri-1j+1 ri-1j 2 [ i) i-1j T \"e ij| .
(44)
. (46)
469j

k-1 1 cubyr k-1 (_‘ k-1
(rBe) — (— —4L o .. ) IEB) .

P)
pie-i + OTHC (rJ )l.{.-l + (rJ )k (47)
4 o/l 6/ij

hk-1
rpj+l = )

4-—EIE(E g
460 P

j
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With these definitions Eqs. (35), (36), and (37) may be written

R )1 4 .
Al(j)Erij - A21(])(rB¢)i + A22(j)(rB )lJ 1

= A3(j) (48)
(rB .,) +A4(])(rE) +A5(])( ‘I}‘l‘] E:‘.:M) = A6(j) (49)
B + ATONEE + s (DS - ENG,) = Asw)  (50)

Note that the A variables defined in Eqs, (38) through (47) involve

values at k - 1 or i - 1, In the above, (49) and (50) are used to
eliminate the (rEe)l.:j term; the result is then used in (48) to

eliminate E:ll\] A three-term recursion relation in (rB ) is

thus obtained

AlO(j)(rB‘p)l.:j_l + All(j)(rB(p)li{j + ALOEB ),y = A1BG) (1)

In Eg. (51) the following definitions have been used

1

A100) = (AS()A4() - AS()AT())A22(7)/AL() (52)

A11(j)

H

AT() - A40) - (AB(IAAG) - ABGATG))

x (A2IG)/ALG) + A22(j + 1)/AL( + 1)) (53)
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atzg) = (AB(IAMG) - ASGAT())A21G + D/ALG + 1) (54)

ALG) = ASATG) - AMGIAYG) + (ABGIAD) - ASGATG))

x (A3GI/ALG) - A3G + 1/ALG + 1) (55)

Eq. (51) can be reduced to a two-term recursion relation by
use of the boundary condition at 6 = 0°. Here rB(p = 0, so

that choosing j = 1 in (51) yields

1\11(1)(1[-1%)‘.1‘1 ' AlZ(l)(er)‘i{z = A13(1) (56)

Write the above in the form

(rB(p)‘.:l - 15:(1)(:-13‘0)‘;2 + F(1) (57)
where
O A12(Y)
EQ) = - &im
F(l) = %-}%ﬁ% (58)
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Assuming that it is possible to write (57) for an arbitrary j,
Eq. (51) for j + 1 becomes

K A12(j + 1) K
@B )1 = - ATO T DEG) +ATIG 1) TBulije

A13(j + 2) - F(j)A10( + 1)
+ ATOG T DEG) - ATT(; ) (59)

Make the following definitions

L A12(j)
EG) = - XoGEG - 1) + A0

L A13( + 1) - F(j - 1)A10()
FO) = R0 1)+ ALIG) (60)

and Eq. (59) is of the same form as Eq. (57). Thus, by

induction it is always possible to construct a two-term recursion
relation in (rB‘p) (Ref. 3)

B = EG0 iy + FO) (61)

b. Ground Equations

The equations to be differenced in the ground are

R

SEI



{ 2,2
2B 1 -c%/c” 2B SE
oo ) g 0 . 1 %
3% cz T I-‘()‘Lp + cz Y (62)
g g
3B JE
1 7 1 3 1 z
T C8 (po) + ok + 2 rvalli 0 (63)
4
dE 1 - c2/c? 3E E
- 0Fp ¥ 13 By
32 2 3 op ¢ ar 3t (84)
[
g

As discussed in the text, no currents are used in the ground.

In the following let

Eq. (62) in differenced form is
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_ E _ 6+ k-1
2 26zj pij-1

Similarly, Eqs. (63) and (64) become

and

21
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k 1 64 \pk Z 6 hk Z b hk

B. +(=-5=]E .. +[- 5 + E ..+ [-5 - —L-\E .

pij <c 6p> zij ( 2 26zt_’ ) pij+1 ( 2 szt} > pij
i+l j+1

okl 1 8 \ok-1 | 6p (k-1 _k
= Buij +<c ‘2‘6$>Ezij *‘55<Ezi+1j Ezi-lj)

2 6p \ohk-1 [/ Z 6, \_hk-1
{2 26—25—>Epi3+1 * < g * ol Epij (67)
j+1 j+1

As in the air grid, the following definitions are made to simplify
the above equations.

G1G) = L+ ooty (68)
c
g
G2(i) = - p- (69)
j
G22() = =+ L (70)
j
G3(j)

H
TN
PR L

(1)1
=
[+,
(-3
N',,
~—
'Dms‘
:..":7.r
fu—y
1
o[y
o.lo.
N9
V
s =
[T |
el

Z  6e \ k-1
B (2‘ B '2'6?].>B¢ij-1 (71)
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. 1 P o
Ga) = L1 Or
c P; + pi__1 Gp (72)
) 1 ot
GS(]) = — + orp —

c6(j) = (

Pit1 64\ k-1 P
(e S L)\ g © S b S
Pi T Py Op) @I 0; + Pyyq Opf pi-li

Ll 6y
G7(j) = ¢~ %p (75)
N Z 6
c8G) = -3 - —F% (76)
26z,
i+l
R Z 6r
G81(j) = -5 +—y (77)
26z,
j+1
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N ookl f1 6\ k-1 6. k-1 K
GO(j) = B+ <c‘ %o | zij * 255<Ezi+11 Ezi-lj>

Ehk-l + (- Z N 6+ Ehk—l
z, Pl 2 gpg | Pl
j+1 j+1

Eqs. (65), (66), and (67) may now be written

hk

1G)E .
G1G)E ;;

k
Pij

K hk
B ..+ G7(])Ezij + G81(])Epij+

i

k k
- G21(j)B .. - G22(j)B .. G3(j
()8 - C22)B ;4 (1)

K K .
G4(])B(pij + G5(J)EZij = G6(j)
DK .

As in the air equations, the above equations may be

used to obtain a three-term recursion relation in B ., Setting

qu = 0 at the maximum depth further reduces this to a two-

term recuision relation,

The following definitions are made:

G10(j) = G8(j)G5(j)G22(j)/G1(j)

(78)

(79)

(80)

(81)

(82)

G11(j) = Gs(j)[l + (G81()G22(1)/G1(j + 1) + GS(j)GZl(j)/Gl(j))]

- G4(3)GT())

(83)



G12(j) = G5()G81(j)G21(j + 1)/G1(j + 1)

G130) = G5(|G9) - (GBIGIGG + 1/G1G + 1)

+ GBHIG3G)/G1G)) | - Gs(i)aT()
The recursion relation is given by

k k
B... = GE()B..,
(3) T

+ GF(j
5 (i)

1

where
GE(j) = -G10(j)/(G11() + GI2G)EG + 1))
GF(j) = (G13G) - GL2()F( + 1))/(G116G) + GL2G)E( + 1)

Starting values for GE and GF are

GE(NT - 1)

GI1O(NT - 1)/G11(NT - 1)

GF(NT - 1) G13(NT - 1)/GII(NT - 1)

where NT - 1 represents the next to the last grid line.
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(86)
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(88)
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Examination of the two recursion relations in B
[Eqs. (61) and (86)] indicates that the proper starting
value is B(p at the air-ground interface. The air recursion
relation then provides B values throughout the 6 grid
starting at 6 = 00. The ground relation starts at z = 0
and goes to z = Z o ax’ The interface value of B‘p is

obtained using the following boundary conditions:

B |3ir = B ground (91)
©lo=90 Plz=0
and
Er air L E E ground
6=90 Plz=0
Since Er and E are defined on half grid lines, they must be
extrapolated to the interface. Let j = NTA define the air-
ground interface, then
hk hk
3E . - E .,
E - riNTA . riNTA-1 (92)

Tlg=90°

and
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hk hk
. _ 3EiNTA+1  EpinTas2

Ply=0 2

Thus, the boundary condition on the E field at the interface

may be written

hk hk _ .ohk hk
SE.inTA ~ Brinta-1 T 3EjinTasr T EpinTAs2 (93)
Eq. (48) can be used to express E_ in terms of B
A3(j) + A21(G)(rB )5 - A22(j)(rB )¥
hk _ oij o'ij-1 (04)
rij Al(j)
and Eq. (78) for Ep in terms of B(p
G3(j) + G21()B%.. + G22(j)B"
g - pij pli-1 (95)
pij G1(j)
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Using Eq. (94), the following is obtained

3Ehk Ehk _ 3A21(NTA) (B )
riNTA riNTA-1 AI(NTA) @’ INTA

) [3A22(NTA) , A2L(NTA - 1)} B, Jk
ATNTA) * AI(NTA - 1) iNTA-1

L A2XNTA - 1) (b ik
AT(NTA - 1) " @/iNTA-2

[3A3(NTA) A3(NTA - 1) (96)
AI(NTA) ~ AI(NTA - 1)

Note that B(p values at three different j lines appear on the
right side of Eq. (96). Since the interest is in the B(p value

at j = NTA only, the air recursion relation is used to obtain

(rB )1NTA i E(NTA - 1)(rB )NTA + F(NTA - 1)
and
6B, B E(NTA - 2)[E(NTA - 1B ) + FINTA - 1)]
iNTA-2 ’ ¢’ iINTA

+ F(NTA - 2) (97)



Substituting the above equations into Eq, (96) results in an
expression for Er at the boundary which depends only on
constants and Bp at the boundary. After a great deal of

messy algebra the following may be written

k

air
Kl(qup)iNT At

6=90°

E

: K2 (98)

where

_ 3A21(NTA) 3A22(NTA) = A21(NTA - 1)
K1 = —Zimwrta) - ENTA - 1)[ AT(NTA) * “AI(NTA - 1)

, E(NTA - 1)E(NTA - 2)A22(NTA - 1)

AINTA -~ 1) (99)
and
_ [3A3(NTA)  A3(NTA - 1)
K2 = [AI(NTK) - AI(NTA - 1)| - FTWTA - 1)
iy [3A22(NTA)  A21(NTA - 1)] , A22(NTA - 1)
"AINTA)  * AT(NTA - D) | * ATNTA - 1)
x |E(NTA - 2)F(NTA - 1) + F(NTA - 2)] (100)

Using the same method, the following may be obtained for
Ep at the interface
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ground _ k _
Ep 0 = K3B<piNTA + K4 (101)

where K3 and K4 have forms similar to K1 and K2, Application
of the boundary condition in Eq. (91) now yields

k K2 - K4

(BJiNTA = K3 —TKI (102)

Thus, having obtained B‘p at the interface, the recursion relations

may be used to fill in the rest of the grid.

5, SPECIAL DERIVATIVES

Due to the regridding in the theta and z directions discussed
in Section II-2, the code version of the difference equations are
changed slightly from those presented above. The change
involves centering derivatives at regrid points, Figure 5
isolates several grid lines in the ground portion of the code.
From the figure it is obvious that using the normal form for

a derivative of E::i with respect to z,

L. = P . (103)
9%; sz
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-2 i-1 i i+l fe2
ji-2
j-1
h B DY DU I B B h
Epj—————t—————t-—————1~—-———"——F——- -}
RE GRID J
EP.’ jet """ 17—~~~ +=- 1"
j+l
jr2

Figure 5. Isolation of z grid lines in a regrid portion of the
grid. The dashed lines indicate half grid variables.

is incorrect. Thus, an adjustment must be made to center

such derivatives, In the actual code such derivatives are

calculated as

h h 1( h h )
E . E..- 5E.+E.
° ghl . _pi+l 2 : pl __pi-1
1
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This averaging essentially centers the derivative by obtaining
a value on the full grid line, j - 1, A similar situation
occars in the air portion of the grid when taking theta
derivatives of Er’ The adjustment here is the same as in
the ground.

In the code the differencing is carried out using the
equations obtained in Section II-4, If the calculations are
being performed on a regrid line, some of the quantities

are then modified to properly center them as discussed above,
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SECTION III

SOURCE AND AIR CHEMISTRY

In this section the driving currents and the air con-
ductivity used in the SCX code will be discussed, As
mentioned in the previous section, the ground conductivity
is considered constant for the calculation; however, the air
conductivity depends on the ionization rate and field values,
Thus, the conductivity and field calculation are coupled.

The methods used in handling this will be discussed below,

1, COMPTON CURRENT AND IONIZATION RATE

The source terms consist of currents and ionization
rates resulting from the gamma and neutron output of the
device. Prompt gammas undergo Compton collisions with
the constituents of the atmosphere producing Compton electrons.
Electrons so produced lose energy by ionizing the atmosphere
and thus driving the conductivity, The neutrons interacting
with the atmosphere produce additional gammas which also
undergo interactions with the air. Two methods are
currently used in EMP codes to obtain driving currents.
In the first, analytic approximations are made and a functional
form is obtained for the currents and ionization rates., These
types of sources are by far the most convenient to use, It
is not possible, however, to evaluate the effects of the approxi-
mation without performing a detailed transport calculation,
In the second case the actual gamma and neutron transport is
performed using Monte Carlo methods. These calculations

yield delta function responses as a function of time, energy,
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range, and angle for the currents and ionization rates.
Results from Monte Carlo calculations are not generally in
a form which can be directly implemented in EMP calcula-
tions. First, the results must be curve fit and the fits
then implemented in a source program which calculates the
currents and ionization rate for the final EMP program.
Obviously, the second method is much more costly and time
consuming that the first; however, it generally assures a
greater accuracy in the final source terms used in EMP
calculations. AFWL has chosen to use the second method
in obtaining source terms for the SCX code to obtain the
greater accuracy.

Sources due to prompt gammas are calculated using a
separate code, GSOR, and serve as input to the SCX
code. These input sources consist of the radial current,
transverse current, and the ionization rate. The sources
are based on monoenergetic, air-over-concrete gamma
transport calculations using the TIG2 code. A complete
documentation of this code and the results of the transport
calculation are available (Ref. 4). Curve fits of the
transport results were performed at AFWL (Ref. 5). The
GSOR code uses the fitted delta function responses and con-
voiution techniques to obtain the appropriate time history for
the gamma sources. The fitted results are for eight mono-
energetic gamma sources, and consequently GSOR also applies
an appropriate energy spectrum to the sources.

Calculation of the neutron induced sources is performed
within the SCX code. Neutron contributions are based on

transport calculations for a neutron source at an air-ground
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interface. Contributions from fast neutron collisions and
secondary gamma ray collisions, arising from neutron
inelastic scattering and capture of thermal neutrons, are
included, The source energy spectrum is that of a typical
thermonuclear device (Straker spectrum), Since the energy
spectrum is folded into the transport, it cannot be altered;
however, the neutron efficiency of the device can be input
through SCX, The transport results, and the O5R-NIES
code used to obtain them, are fully documented (Ref. 5).
Curve fits to these results were performed by J. N. Wood
(Ref. 7).

2. AIR CHEMISTRY AND CONDUCTIVITY

In Section III-1 the methods used to calculate the primary
or Compton current were discussed. To obtain the total
current density, the conduction currents must also be calculated,
The creation of secondary electron-ion pairs by the Compton
recoil electrons ionizes the almosphere and renders it conduct-
ing. The resulting conduction currents which are set up must
be accounted for in the EMP calculations. To do this the
conductivity at the grid points must be obtained by keeping
track of the formation and destruction of free electrons and
ions and taking into account their mobility in the electric
field,

The conduction current is defined by the generalized

Ohms law as

= ¢E (105)



and is generally obtained using the Lorentz model., Assume
that plasma electrons are created at rest and that their motion
is delermined by collisions and the local electric field, The

equation of motion for the electrons is then

dziz dx e =
—gtVar = “mE (1086)
dt
where Ve is the collision frequency. The creation of an
electron at time tO results in the current
t
- 2 -V (t -t’)
dx _ e ’ ’
'eﬁf"mfdte E(t)
to
If ﬁ(to) is the rate of creation of secondary electrons, the
total current density is given by
e2 -V, (t-t')
e f B(t')a(t’) dt’ (107)

Eq. (107) is not generally soluble due to the spatial dependence
of v.. However, for vc much larger or smaller than the
frequencies of E and n, approximate solutions may be easily
obtained.
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For a ground burst code such as SCX, the collision
frequency will be on the order of 1012 scc-1 (Ref. 8).
A solution to Eq. (107) can therefore be obtained using the
high collision frequency approximation, The conduction

current is then given by

-y _ _E__Il =t
s = v, E (108)

Combining Eqs. (108) and (105), the following expression may
be obtained for the conductivity

o = —— (109)

In a complete treatment of the conductivity, both the
ionic density and the electron density must bhe considered,
In actual calculations the collision frequency is replaced
by a mobility defined as

4 (110)

where q is the charge, m the mass, and Ve the collision
frequency of the particle in question, The conductivity is

thus obtained from Eq. (109) as
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o = ?qi“i"i (111)

where the index i refers to the different species. The
various number densities in the above equation are obtained
by solving a set of rate equations.

An exact calculation of the number densities for Eq. (111)
would require the consideration of all possible reactions between
the constituents of the air and the weapon output. Fortunately,
the EMP pulse length generally is small compared to the
times required for most of the reactions and consequently

only three possibilities need be considered. These are

1. Electron attachment.
2. Electron-Ion recombination,

3. JIon-lon recombination.

The first concerns the attachment of free electrons to neutral
oxygen molecules. This occurs through the two- and three-

body processes,

e+02-00+0- (112)

and

e+02+M-02+M
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At field values less than 3 x 105 V/M the three-body process
dominates while the two-body reaction is dominated at higher
field values. Both processes are characterized by the
attachment rate, B, which describes the rate of production

of negative ions and disappearance rate of electrons, The

rate equation for this process is then

dn_ dne
at ol (113)
and
dne
—at— = Bne (114)

Since B is field dependent, it is coupled to the field calculation,
In SCX a curve fit to experimental data is used for B.

Fig. 6 shows the attachment rate as a function of total electric
field as used in the SCX code.
Electron-ion recombination involves the dissociative

recombination process
+
e+02—o0+0 (115)

The rate coefficient for this process is o and the disappearance

rate of O; and free electrons is given by
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dn dn
e +

T T (116)
and

dne

ac = -omen+ (110)

The value for a used in SCX is taken from work by Van Lint

and is

12

a = 4,5 x 10 meters/sec (118)

Ion-Ion recombination is a late time affect, becoming
important when the electron density is low and the conductivity
is dominated by ionic density, This is characterized by

reactions such as
+ -
O +0 -20 (119)
and

+ -
N2+02-N + 0
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The recombination rate is ¥y and the number density cquations

are
dn+ dn_
® T (120)
and
dn+

Considering the above processes, the following rate

equations can be written

dne
5 = Q-PBn, -onn, (122)
dn+
' = Q - anen',_ - 'yn+n_ (123)
dn_
v neB - ynn (124)

From conservation of charge a fourth equation can be written,
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n = n +n (125)

In Eqs. (122) and (123) Q is the secondary electron production
rate, or ionization rate, which was discussed in Section III-1,
Because of charge conservation, only two of the three rate
equations need be solved. This is usually done numerically
using a differencing scheme rather than obtaining a closed
solution, Nole that in obtaining the rate constants, a and v,

a lumped parameter approximation has been used, This
approximation is necessary because of the lack of data concerning
individual processes,

Having obtained the number densities through the solution of an
of an appropriate combination of Eqs, (122) through (125), the
mobility of the electrons and ions must next be found. Eq. (11)
then yields the conductivity.

The determination of ionic mobilities is a difficult
process involving a number of uncertainties, In SCX
a single mobility, taken from DASA 1731, is used for both

the positive and negative ions. The value used is

Bion = 2-4E - 04 meters/volt-sec (126)

It is expected that the error in this quantity could be as
great as 30%. However, the ion contribution to the conductivity
is a late time ecffect, and the error will nol affect early time

predictions, Because codes such as SCX now run to 100 usec,
more work in this area is needed.
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The electron mobility is a function of both the water vapor content
in the atmosphere and the electric field. The electron mobility
used in SCX was obtained by curve fitting results presented

by C. Baum (Ref. 9). The water content is an input parameter
and the fits give the mobility as a function of total the electric
field for this content. Figure 7, taken from the paper by Baum,
shows the electron mobility curves which were curve f{it for use
in SCX.
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APPENDIX 1
OUTER BOUNDARY CONDITION

1, INTRODUCTION

Whenever Maxwell's equations are solved by a finite-difference
method in the source region, the calculation must be truncated at some
surface surrounding the sources because of computer-memory and
computation-time limitations. When one employs a central difference
scheme in such a solution, he lacks sufficient conditions at the outer
boundary to close the equations. The neceded condition can be described
physically as the statement that all the sources of fields are inside the
boundary; mathematically this can be stated by rcquiring the fields to
be represented by the outward-moving wave terms of a multipole expan-
sion. From a practical (numerical) point of view the need is for field
values at grid points on the outside boundary where a differencing of
Maxwell's equations cannot supply them (since values at points outside
the boundary would be required to calculate a central difference).

In the previous versions of the SC code, the assumption is made
that at the outer calculational boundary the field is radiation field; i.e.,
the field has attained the asymptotic behavior that it must approach as
r—wo. This assumption works well if the boundary is placed at a great
enough distance that the field is indecd largely radiation. For large
yields this is impractical and in all cases it saves computer storage and
computation time to use a rigorous boundary condition since the differcnce

equation solution can be truncated at a smaller range.
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In the following, the mathematical analysis of the method is pre-
scnted, then some numerical techniques to implement the scheme are

given. Finally, the results of a sample calculation are presented.

2.  ANALYSIS
The method can be described as two basic steps (taken at each re-
tarded time):
1. ,Using the values of EO at the next-to-last range grid points,
the outgoing-wave multipole expansion coefficients are found.
2. Using the expansion coefficients found in (1), the values of
(rB ¢) at the last (outside boundary) range grid points are
found. This is sufficient to close the SCX difference equa-
tions on the outside boundary.
To implement this scheme mathematically, one writes the general

form for azimuthally-symmetric, electric-multipole, outgoing waves

(Ref, 1)

00
Lo _z Jae+ )
r

m— -l(r)al(t*)f;l(cose) (127)

£=1

54



00
E, - Y Al(r)al(t*)f):(cosa) (128)

1
> 1 9 * =1
B, = 121 < 3 I, ra, 1) B (cos ) (129)

where only odd values of £ arc needed in the summations for the assumed
symmetry (the analysis will include both even and odd terms for the sake

of gencrality). The functions P are normalized Legendre polynomials

£
and -13; are the normalized associated Legendre polynomials of the first
* *
kind; t is retarded time definecdast =t - r/c; Al and 32 are differen-

tial operators given by

. 2-3
- £j 9
Z(r)= Z . P (130)
£ j=0 rJ+1 cz I at £
bl v 2+1-]
2 3
A (r) = - i . (131)
2 '20 r:rH c1+1-3 at’ £+1-j
J-
i
F o (44K (2-k+1)
p‘e-: : » j:o’ l.ooo.! (132)
I e+

_ A2+ + -1
Voj ~ Haj 2(er1) - j(-1) *

v (133)

J=oo 1.-'091 24

BTN

The field component E_ is given at r = R (R = next-to-the-last

0
range) by
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N o=l
E, (R,9,t )-z A ()P, (cos )

£=1

(134)

Upon cquating the coefficients of Egs. (128) and (134), one canexpress the un-

* *
known cocfficients al(t ) in terms of the known coefficients Az(t )

% *
AI(R) az(t ) = Az(t )

(135)

It is convenient to express the above coefficients in terms of a dimension-

%
less time variable 7 = ¢t /R. The operator AI(R) now becomes

4+1 -3
a,e+1 J

S S N 2 -
AfR) =2 2 Voj 9ra+i-j

RT3

Redefine the coefficients

b, = 5, (ZR) 74D

Byr) = 4, (’Tcﬁ)

Equation (135), expressed in terms of 7, becomes

2+

2 s
R™“A(R)b (1) = B (1)

The application to the SCX code proceeds in the following steps:

(136)

(137)

(138)

(139)

%
A. For each retarded time, the coefficients Al(t ) in Eq. (134) must

be determined with r = R corresponding to the "next-to-the-last" value of

r where E_ is known. This is accomplished by the usual integration, i.e.,
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* r/2 N |
A (t)-= Zf E (R,0,t )P, (cosg)sing dg, £ odd (140)
2 0 ] £

B. The diffcrential equation (135) must then be solved. Note:

1. Al(t*) (obtained above) is the forcing function,

2. Not only az(t*), but its first (£+1) derivatives will be
nceded for evaluating field components at other radii.

3. The equation and solution are simplified by changing
to a dimensionless time variable 7 = ct*/R, hence
At = cat' /R,

Thus, new variables are defined by Egs. (137) and (138). The

differential equation (135) (also 139) can be written

2+1
(g+1-3) , . _
vljb! (1) = BI(T) (141)
=0
(n) dnbl‘ﬂ
where b, (7)== ———— , n=1, 2,..,, £+1
£ n
dr
Suppose b(zn)('r) is known for a given 7 and it is desired to find

b(ln)('r*l'A'r). Using a Taylor expansion truncated after the (l’rl)th order to
represent bI(T) for the domain [7,7+A7]one obtains
- j+
2-nt g x“)('r) .

(n) ]
b, (+a7) = Z —J.T—A-r’, n=1,..., 2 (142)
j=0
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(n)

y (r+A7), n=1,..., 2into Eq. (141) (with 7 set to r+A7),

(2+1)

Substituting the b

one can solve for bl (t+A7, i.e
F 3! :
(2+1) (241-j
= - +
by (r+A7) = B (1+07) zl Vyibp o) (143)
J:

(Note that VIO = 1)

Substituting back to find the ficld components for any radius,

one obtains

k042 *
al(t )=R b (et [R)
d"a (t")
2 _pltef(c (n)
R
dt
n
da,lt)
+9 -
- L— - gt “c“b‘;’) (7) (144)
t
P Rj+2 (2 "Dy
g, (rla, (") :E ~ (145)
j=0
. R pleti=j)
. R -]
Afr)a (¢ )‘-5'6 EJ(P) b, Vim) (145)
J‘-'

[\/E(l_) (%) u-“)(-r)] P (cosg)  (147)
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. S RV (+1-)) ) |
Le-z 2 Vﬂj(r) bl () Pl(coso) (148)
£2=11j=0
< \ (2 u+1 )
= il )
¢ = z M, r) l ) | P (coso) (149)
£=1] j= 0
At each time step the bfzn)('r) should be written on a tape for
(2+1)

futurefield evaluationusing Eqs. (147), (148), and (149). Note thatb

(2)
2

extrapolation, one could include only b

2 repre-

sents the radiation (r-l) term, b represents r"2 term, etc. For

2 terms found to be important and
greatly reduce the storage requirements though probably including all
significant effects. The proper sclection of terms should be determined
by trial and error.

C. The value of (rB¢) is needed in SCX for r equal to the last

range grid value, i.e., r = R + Ar, Hence,

(rB¢) = (rB¢) +Ard(rB )/or (150)

r=R+Ar r=R ¢

The quantity Ar a(rB¢)/3r is calculated by multiplying both sides of
Eq. (149) by r/c, then taking the partial derivative with respect to r to

obtain

) b R j+l

2
z unJ - buﬂ-J)('r) ﬁl(cose) (151)
)1

r 2

>
e ]
Q
"
©-
o|l>
=M
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Notice that the radiation (j = 0) term docs not contribute in Eq. (151) (since
r*(1/r) = 1 and 3(1)/ar = 0). This underlines the fact that both incoming
and outgoing waves have 1/r terms. Hence, enforcing 1/r (or ''radiation')
behavior at the outer boundary is not equivalent or similar to enforcing

the outward-moving wave condition,

3. NUMERICAL TECHNIQUES

In this section various numcrical proccdures for implementing the
analysis of the last section are discussed. In particular, the method of
numerical integration used in Eq. (140) is given; the method used for calcu-
lating Legendre functions is given; stability problem arising in calculating
the bin)'s (Egs. 142 and 143) is discussed; and a criteria for truncating the
multipole expansion is given.

A. Numerical Integration with Kernel P:; . The problem addressed
is that of numerically performing the integration shown in Eq. (140), 1t is
assumed that E(g) = EG (R,6,t) can be adequately represented (as a func-
tion of g) between grid points by straight lines on the E - x plane, where
x = cosg. Analytic expressions for the indefinite integralsf P; (cos ¢ )sing dg
and /cos 0 Pi(cos 9 )singdg are derived and the integral (140)is expressed
as a sum of these applied between grid points.

Let Ei = E(g i) be the data set given, where E1 = E(0) = 0, and

Ey = E(ON) = E(z/2). The 9, are assumed to be ordered. Betwecn the

two grid points 05 and 91+1 it is assumed that
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E(g) = gcosg +h (152a)

where g and h are the constants
g*= (Ei - Eiﬂ)/(cose1 - coseiﬂ) (152b)

h=Ei-gcosoi (15:¢c)

Thus,
01
/ E(o)l’z(coso)sino dg
6
Bi+1 -1
=/ (gcos g +h)P1(cose)sine dg

6;

01 |
/ E(e)Pz(cose)sine dg
i

= g[f,(0;,)) - T 0] +n[Tyi0,,) - T, (153)

where Tl and T, are the indefinite integrals

Tl(e) =[cose ?;(coso)sine de (154)
and

Tz(e) =fl.3;(coso)sin9 de (155)
Let

11(9) =fcoso P;(coso)sine de (156)
and

12(0) =/Pi(cose)sina do (157)
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then

= - . 2n+1 .
11(9) = \/ ) Il(o) (158)
= - . 2n+1

Iz(e) = \/-———-2n(n+“ 12(9) (159)

From Jahnke and Emde (Ref. 10) one obtains (for n odd):

and

P (cosg)=2- 1-3-5---2n-1) [cosna +-1- n cos(n-2)g
n 1 2n-1
2 n!
1-3 n(n-1)
*172 @a-Dien-3) cosin-de + L
13- (n-2) U —
n-l (2n-1)(2n-3) - -+ (n+2)
2 .
Equation (160) can be written
n-1
2
Pn(cosa) = 2 Z an-j aj cos (n-2j) ¢ (161)
=0
where
a, = 1, (162a)
_1:3-5---(2i-1) . _
a, = zii' ,1=1,2,..., L (162b)

The associated Legendre function P; can be written
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) dPn(coso)
Pn(cosa) T e ——

de
n-1
) 2
Pn(coso) = 2 2 an-j aj (n-2j) sin(n-2j) ¢ (163)
j=0
Hence, the integrals I1 and I2 can be written as sums of terms of the form
Tl(e) =fcose sin(n-2j)9 sing dg (164)
and
Tz(e) =/sin(n-2j)e sing dg (165)

Using trigonometric identities to combine the terms in the integrands and

integrating, one obtains

[ 1
T )___l sin(n-2i-2) ¢ _ sin(n-2j+2) 4 (166)
187 %4 | "n-2j-2 n-2j+2 |
and
r “
_1|sin(n-2j-1)g _ sin(n-2j+1)g
Tple) =3 | "n-2j-1 n-2j¥l S
Hence,
n-1
1 2 (n-2i-2) in(n~2i+2)
= = sin(n-2i-2) 9 _ sin(n-23 9
1(e) =3 o5 (n-2 [ n-2)-2 n-25+2 ] (168)
J=0

In writing I2' one should notice that for j = 9—;—1 , both numerator and
denominator of the first term on the right-hand side of Eq. (167) vanishes;

= oa
the limit value g should be substituted for -s-lnr%;f—”-g in this case. Thus,
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