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I. INTRODCTION

A problem of considerable current interest is the modeling of laser

propagation through inhomogeneous media. Of particular interest is the
case where the index-of-refraction inhomogeneities are induced by high-
energy beams intezacting with the medium. The self-consistent modeling
of the problem requires the modeling of the hydrodynamics of this inter-
action, the effect of the hydrodynamics on the index field, and the
influence of this induced field on the propagation. Such models have
been derived from first principles by a number of authors. -6* The effect
of the phenomenon has been examined by use of analytical approximations7 ,8

and by numerical solution employing a number of algorithms.'1 21** The
most successful algorithm now used by several of the large-scale computer
codes is the so-called Implicit-Galerkin-Spline (IGS) technique devised

by Herrman and Bradley.9 Even more important than the numerical algo-
rithm, however, is the form in which the model is preprocessed for compu-
tation. Experience indicates that focused beams of high Fresnel number
require the model's being specified in an adaptive coordinate system;
otherwise, as the marching computations approach the focus, spatial reso-
lution is insufficient for any numerical scheme utilizing a reasonable
number of grid points. Furthermore, the focusing (defocusing) strategy
must allow for the fact that the beam will be distorted and spread to an
extent usually lying somewhere in expanse between the exit-plane spot
size and the so-called diffraction-limited spot size at the focus. For
high Fresnel numbers the transformations to adaptive coordinates must be
accompanied by an appropriate phase transformation; otherwise, phase
oscillations cannot be sampled adequately. Transformations previously
used to overcome this difficulty either partially removed the initial
phaso oscillation and allowed arbitrary coordinate focus (defocus)2 ,3,5

or removed all the initial phase but were limited t ?*hfocusing strategy
following the behavior of a beam focused in vacuum.

The generalized transformations derived herein contain the best
features of both these cited methods and are shown to be a convenient
point of departure for solution by a class of numerical methods. Two
computer codes utilizing these Lransformations have been developed and
compared, one using a modified form of the Herrmann-Bradley algorithm
and the other using a Fast Fourier Transform (FFT) approach described
herein. "he formulation cited above is shown to lead to an FFT solution
that does not require a Nyquist accuracy criterion, allowing the numeri-
cal procedure to march the solution forward in a more economical fashion.
Numerical experiments indicate that the IGS method is slightly faster on
a per step basis when identical grid spacing is used. The FFT approach,
however, yields greater accuracy for identical spacing of mesh in the

References *-re listed on page 41.
**This list is representative but by no means complete.

***See note after Reference 9.
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transverse plane and, because of larger allowable propagation steps, it
is overall faster. This factor, in conjunction with the greater ease
of implementing an FFT algorithm, ara the requirement for less core
storage (when symmetry is not assumed), makes the method superior to
algorithms currently used.

The algorithms described herein concern themselves primarily with
the solution of the propagation equation. The class of problems
addressed is represented by hydrodynamic equations which can be solved
essentially in closed form within each computing step. This is the
type of problem to which most attention has been directed in the
literature.

Stimulus for the FFT portion of this report arose from a three-way
consultation between the author, Dr. J. Wallace of Far Field, Inc.,
Sudbury, Massachusetts, and Dr. J. Lilly of the US Army Missile Command.
A related FFT technique for the wave equation and hydrodynamics for
repetitively pulsed lasers is described in an Army Missile Command
Report22 which is in preparation. The nature of this collaboration is
described in Section V and the Acknowledgment.

I. MATHEMATICAL MODEL

We consider the model applicable to continuous-wave operation of a
laser in steady-state conditions. We assume that the laser is propagating
through an atmosphere with a time-independent cross wind V(&) and is
being rotated (slewed) at an angular rate a through an axis passing
through the exit aperture. We assume that the hydrodynamics can be
represented by the steady-state heat equation with the laser acting as a
source term, that the wind and slewing produce forced convection, and
that conductivity is negligible. Under these assumptions the governing
model is given by1

2ik W/ / + 2W/an 2) + k2(n2 - no2)W = 0, (2-1)

n 2 - no2 = (n0  - )Ap/o = -(n0  - )AT/To, (2-2)

PoCp(V + Q) 2 = e , (2-3)

W(&,n,O) = (P/nr )F(&,n)exp[i - i(k/R)(C 2 + n2)/2]. (2-4)

Equation (2-1) is the paraxial approximation to the wave equation.
Equation (2-2) is obtained from the Lorentz-Lorenz law expressing the
change in the index of refraction as a function of the change in tempera-
ture or air density where small deviations from ambiert are assumed.
Equation (2-3) is the expression of the heat balance for the conditions

8



stated above. Equation (2-4) expresses the amplitude and phase of the
launched beam. In (2-4) the two quantities in the complex exponential
represent the phase arising from the laser cavity and the focusing
optics, respectively. It should be noted that in Equation (2-3) we have
neglected the so-called kinetic cooling phenomenon, 23 since this effect
is insignificant for ground-based lasers. This effect can nevertheless
be brought into this model without change in the basic nature of the
algorithm, since it merely affects a quadrature formula.1'3'5

We convert the model to a form containing all variables in dimen-
sionless form by letting

u -W/(P/ c2) (2-5)

X = &/r, Y = n/r, (2-6)

Z = UL, (2-7)

a = a.L, (2-8)

= kr2/L, (2-9)

y = (n0 2 _ 1) P/(TooCpV~r), (2-10)

= kL(n 2 - no2), (2-11)

= SIL/V, (2-12)

f(X,Y) = F(Xr,Yr), (2-13)

¢(XY) = ((Xr,Yr). (2-14)

Here we have assumed that r is a convenient scale length in the
transversi (&,n) plane. For a aussian beam a convenient choice for r
is the e- folding radius. For focused beams the characteristic length,
L, in the ¢ direction, is conveniently chosen to be the focal cistance R.
In order to make one set of equations valid for focused beams and colli-
mated beams (R=-), L is defined by

R, focused beams
L = (2-15)

kr2, collimated beams.

For this choice of dimensionless variables the model takes the form

2iB@U/&Z + (D2U/X 2 + a2U/ay 2) + 2aipU = 0, (2-16)

g(X,Y,Z) = -aye-a (1 + Z)- 1 U(X'Z) IdX' ,  (2-17)

9



U(X,Y,O) = f(X,Y) exp[i - i(X2 +y2)/2], (2-18)

where {kr2/R, focused beams

B (2-19)
collimated beams,

and focused beams

Susd a (2-20)
0, collimated beams.

The solution to the model expresses the dimensionless irradiance

Iul2 as a function of the four dimensionless parameters a,a,y,w and
X,Y,Z. If we seek the maximum irradiance or a characteristic average
irradiance in the focal plane, then the solution is seen to be dependent
only on a,a,y and w.

Equation (2-16) is of parabolic type, and the algorithms success-
fully utilized for solution have similarities to those employed for
numerical solution of the time-dependent heat equation. The Z variable,
representing the propagaLion direction, is analogous to the time variable
in heat transfer. The various methods used thus far "march" the compu-
tations forward in Z as is done in the classical explicit and implicit
difference schemes. Equation (2-18) is used Aor specifying the initial
plane of data. At each step the index distribution is recalculated,
utilizing the most current values for U where AT, as will be shown, is
evaluated by numerical quadrature. Despite these similarities to the
heat transfer problem, the algorithms referenced above have, of neces-
sity, been uniquely tailored to the propagation problem and are somewhat
more complicated than the techniques used for sclving the classical heat
equation. Factors of computing efficiency of 10-100 can be gained by
transforming the above model into a form more suitable for computation.
These transformations are essential regardless of the numerical algorithm
ultimately used.

III. TRANSFORMATIONS

Adaptive coordinates are generally required for focused beams of

high Fresnel number but have also been found necessary for collimated
beams when significant beam spreading occurs. The transformations uti-
lized for adaptive coordinates and phase removal are as follows:

x = X/a(Z), y = Y/a(Z), (3-1)
12 2

U = [B/a(Z)] exp[ 7 i8 (X2 + Y2)(aa/3Z)/a(Z)], (3-2)

z
Z (2a2)-dz

Pa = (3-3)

Zo

10



The application of these transformations to (2-16) results in

2i 3B/Dz + (92 B/aX2 + a2B/ay 2) + g(x,y,Z)B = 0 (3-4)

where
g(x,y,Z) = 26a 2p - *2(x2 + y2)a332a/3Z 2 . (3-5)

The choice of the term (aa/3Z)/a in the phase transformation (3-2) makes
possible the maintenance of a simple structure for the transformed propa-
gation equation for any subsequent choice of scale length a(Z). All
first-order derivatives B ,B that would otherwise appear in the trans-
formed equation have been elyminated by this particular choice of vari-
ables. The transformations (3-1), (3-2), and (3-3) are a generalization
of transfo.mations used by Wallace, Aizken et al., 3 and Herrmann and
Bradley.9 By appropriate choice of a, these cited transformations result
from the above generalization. In a later section we will show how cer-
tain advantages peculiar to each of the cited system of transformations
can be obtained by appropriate choice of a(Z).

The solution to (3-4) is highly oscillatory in z, portending diffi-
culty in numerical computation due to the Nyquist criterion. The oscil-
lations arising from the term containing g are removed by use of the
Herrmann-Bradley9 transformation

D = B exp(-ir/2) (3-6)

where

r = g(x,y,Z)dz. (3-7)
zo

This leads to the equation
I 1

2i D/az = -exp(- 1 ir)(; 2/ax 2 + 32/ay 2)[D exp(- ir)]. (3-8)

If we envision the approximation of (3-8) by finite differences, where
all difference operators are centered at z = zo = zn + AZn/2, then all

terms containing r become unity. The resulting difference equation is
then identical to the difference equation arising for a collimated beam
in vacuum. The difference approximation to Equation (3-8) is then indis.-
tinguishable from the approximation to

2i aD/3z = -(a2/Dx2 + ;2/ay2)D. 13-9)

In sequence with the transformations leading to it, Equation (3-9) is
the point of departure for numerical solution using both the IGS and FFT
me.hods.

11



IV. IMPLICIT-GALERKIN-SPLINE METHOD

The IGS algorithm is designed to advance the solution of Equation
(3-9) from the plane z_ to the plane z_. = zn + Az. The algorithm, in
conjunction with the initial wave function specification, is applied
repetitively, along with phase initializations at each step, to march
the solution to the point in z of interest. Since we have assumed the
wind to be along the x-axis, we have a line of symmetry along y=O. We
use this symmetry to reduce the calculations in half. In the rectangu-
lar propagating tube

-X5 x 5 M

0 y Y 5 YMP (4-1)

0 5z z M'

we superimpose the three-dimensional grid

xj = -XM  + (j-l)Ax, j = 1,2,...J

Yk = (k-l)Ay, k = 1,2,.. .K (4-2)

Z n+1 zn + AZ, n = 1,2,....M.

On this grid we approximate Equation (3-9) by a Crank-Nicholson type
stencil in z and the resulting difference equation by a fractional
step-alternating direction approximation. This leads to the two
equations:

(1 iAza2/x2) n+ = (I + L iAz32/-x2)D, (4-3)

4D 4 a) 43

(I - I iAZa2/ay2)Dn+l = (1 + I iAza2/ay2)Dn+ , (4-4)
4 4

where the superscripts denote the wave function at the n, n+ , and n+l
z levels, respectively.

S •9.
The linear spline approximation is given by

D D= DttD m wZ(x)wm(y) (4-5)

where Z=l m=l

12



' 0, X Xtl 0I X XtIo, xxL1  r .Ll ,  Lgl,J

Wt(x) - (x-x.) (x t- .) 1  Xt . x .xt, Lil,J (4-6)

-12

(xL - x) (xL~l -xL) " , xs x .5 xe 1, ,iJ

W, (x) - exp 2-(Xl 2 _ X )p -S X < X (4-7)
1X Cx2 _ ),X 0

oj~~x) a exp ( 2,x <x<- 4-8)

A similar definition applies to w (y).

Applying the Galerkin method24 to (4-3), one obtains

cW(X) [(1 - - i6Z2/32) n +  -(1 + . iAZa 2 aX2 )Dn]dx 0, (4-9)

with a similar expression resulting from (4-4). After performing the
integration, one obtains two sets of coupled linear equations given by

(I- n+ ' ( n.(I-ia)(D ,k + D '+,k) + (4+2ia1 )D .

(4-10)
n n(1+ ial)CD + D ) + (4- 2ial)D.

(1- ia ) 1j,k_ + DJ,k+1 ) + (4+2ia)D j'k

(4-11)
=(1+ia )(Dn+ + Dn + (4-2ial)D n

C j,k-a j,k+l JkP

where

a1 = 3/2 Az/h 2 , (4-12)

h = Ax = Ay. (4-13)

It should be noted that the cffect of using the Galerkin-Spline procedure
as opposed to the more conventional central difference method has been to
yield a finite difference stencil of similar basic structure but differing
coefficients. The central difference approach would yield (4-10) and
(4-11) with the coefficients (1 ial) being changed to (±ial) and
(4 ± 2ial) being changed to (6 ± 2ial). The use of the Galerkin-Spline
is reportedly9 more accurate.1; 13



Equations (4-10) and (4-11) are of tri-diagonal form and are solved
by the recursive relations obtained by an adaptation of the Gauss elimi-
nation method. The complete set of equations for both the x and y direc-
tions are:

x Direction

A C = I -ia, (4-14)

B. = 4 + 2iaI , j * 2,3,...J-1 (4-15)

B• Bj = 2 + 3(1 - O.SXM-2)/Xmh) (4-16)

+ al(l ; O.SXMh + 0.2Sh(l - O.SXN- 2)XM, 1 )i,

( * ~ ij.1,k) + (4 - 2ial)Djk, (4-17)

El a -C/B1, (4-18)

F1 - G1/B 1 , (4-19)

E z -C(A E .I + B) " , j a 2,3,...J (4-20)
-1

F. = (G. - A Fj. )(A Ej.I + B.) , j a 2,3,...J (4-21)

n+D n, (4-22)
J + 1,k 0

D k = E D +k + F., j = J,J-l,...l . (4-23)
j,k j j+1,k 3

The sequence of relations, Equations (4-14) to (4-23), when performed
for k = 1,2,...K, comprises the first half of the fractional step method.
It should be noted that all quantities are complex and that complex
arithmetic is implied throughout.

y Direction

The algorithm for the y direction is similar to that for the x direc-
tion with changes arising due to the assumed line of symmetry.

A = C = 1 - ia I , (4-24)

Bk = 4 + 2ial, k = 1,2,...K-1 (4-2S)

BK = Bj Eq. (4-16) (4-26)

14



(1 *lial) (D. + D + (4- 2ia) (4-27)kj,k-l J,k4) 1J,k'

F- -2/B1 , (4-28)

F, - Gj/B 1, (4-29)

E k k)(A 1, k - 2,3,.. K (4-30)-l1

Fkm •(Gk - A Fk.l)(A Ek.l + 8k) k = 2,3,...K (4-31)

Dn+1
Dj,+ = 0, (4-32)
j,Ki-1

+k Ek j,k+l + F k = K,K-l,...1. (4-33)

Upon completion of this second half of the alternating direction method,

the array 0 When combined with the phaseJK ha enrelcdwihV +

initialization, Section VI, this operation advances the solution one
step. A FORTRAN IV subroutine for this algorithm is listed in Appendix B.

V. FAST FOURIER TRANSFORM METHOD

Fast Fourier Transform algorithms have been employed for solving
boundary value problems by a number of investigators. 25-27 These efforts
involved the use of the FFT to reduce the dimensionality of certain dif-
ference equations, the resulting numerical methods requiring a mixed
procedure entailing aspects of the more traditional implicit difference
schemes as in Section IV. An FFT algorithm for solving the atmospheric
propagation problem for collimated beams was proposed by Wallace,19 and
led to the effort being reported here and in the MICOM report22 pre-
viously mentioned. An FFT algorithm for propagation within a laser
cavity is described by Canavan and Phelps.'0  1 The authors report on
one method applicable to collimated beams which utilize the Helmholtz
equation as a point of departure. A second technique is reported which
is applicable for diverging beams and which makes use of the paraxial
approximation. This latter form contains a singularity at z=O and does
nut seem to be generally applicable. The algorithm proposed by Wallace 19

is designed for the solution of the paraxial equation for collimated
beams and is based on a forward difference approximation in the Z direc-
tion. This algorithm would march one step of the solution to Equation
(2-16) by the three-stage operation

15



i0A

i(pq,Z) a FFT[U(XY,Z)oi0 J], (S-1)

U(p,q,Z+ &Z) a U(p,q,Z)[1 + iAZ(p2 + q2)/2]-' (5-2)

U(X,Y,Z+ AZ) a FIT [U (p,q,Z+ AZ)], (5-3)

where the symbolism FFT and FFT indicate operation on a two-dimensional

array of complex data by the forward and inverse FFT algorithm. This
algorithm, while being competitive with existing methods, suffers the
disadvantage of requiring a Nyquist-type accuracy criterion. For
example, when p-O (vacuum propagation), the exact FFT transform solution
to (2-16) requires that in (5-2) I be given by

U(p,q,Z + AZ) = U(p,q,Z)e iaZ(p 2 + q2)/2. (5-4)

Since this solution is cyclic, the Nyquist criterion indicates that a
minimum of six samples per cycle is needed to integrate a harmonic of
a particular frequency. When Equation (5-2) is used, the Nyquist cri-
terion, when applied to the highest frequency (/Ax - n/Ay), leads to

AZ _ 2ax2 /3ff. (5-5)

For the IGS method Herrmann and Bradley suggest the forward marching be
governed by the step-size criterion, AZ x Ax2 , which is approximately
one sample per cycle for the Nyquist frequency. As they show, however,
this criterion does lead to sizable but tolerable phase errors at the
high frequencies. Hence, in (5-5) and (5-2) one could similarly sacri-
fice the accuracy of the high-frequency components by relaxing (5-5).
From this the conclusion can be drawn that the algorithm given by (S-I)
to (5-3) requires a step-size criterion that is similar to the IGS
method but differs by a factor near unity to be determined by numerical
experiment. The two algorithms thus differ in their cost according to
their relative cost in marching the solution one step forward, other
factors being assumed equal. As will be detailed in a later section,
the single-step IGS algorithm is about 15 percent faster than the FFT
as executed on BRL's BRLESC II computer. In contrast, it will be shown
by example that the FFT algorithm is more accurate for a specified grid
size than is the IGS method.

By analogy with the algorithm to be described in a later section,
the above algorithm can be made more attractive by replacing (5-2) with
(5-4). This can be justified by virtue of thp approximation

e-iAz(p 2 q2 )/2 [1 + iAz(p 2 + q2)/2]- (5-6)

16



or by assuming constancy of P within a step Az. By this artifice the
Nyquist requiremnt is eliminated; however, the algorithm can be shown
to propagate thi non-linear effect to an accuracy that is first-order
accurate in AZ.

In order to obtain a more accurate algorithm, to eliminate the need
for the Nyquist criterion, and, more importantly, to handle focused as
well as collimated beams, we derive an FFT algorithm utilizing the
sequence of transformations in Section III.

The FFT algorithm is also designed to advance the solution to
Equation (3-9) in stages from plane zn to zn+., each stage preceded by
a phase initialization. For reasons peculiar to FFT computer subroutines
we do not use the line of symmetry but work on the rectangle

XM. x .5

(S-7)L Y < Y < YM'

with :he grid points as defined by (4-2). On this region, at the arbi-
trary plane z, the complex wave function D is assumed to have a Fourier
series approximation

J K
D(x,y,z) d jk(x)yz), (5-8)

where

djk(x,y,z) a Cjk(z) exp(ipjx + iqky). (5-9)

By assuming that each component of the series satisfies (3-9) in the
interval (z ,zn+), we guarantee that (5-8) also is a solution. Hence,
the amplitu e of each harmonic for advancing from zn to Zn+i is giver by

Cjk + Cjk(Zn) exp[- .1 iAz(pj2 +qk2)], (5-10)

where, because of the transformations leading to (3-9), we solve the one-
step propagator "exactly." From the theory of finite Fourier series for
discrete data it can be shown that

Cjk(Zn) = (JK) D(xym,z n ) exp(-ipexj - iqmyk), (5-11)

where
t 27r (t-l)/(Jax), - 1,2,...J/2

p0:= (5-12)
2%" 2(t- 1 - J)/(JAx), t = J/2+l,...J
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I 2w(m-1)/(KAy), m - 1,2,...K/2
qu - (5-13)

2w~m- I- K)/CK y), a - K/2+1,...K.

The inverse finite Fourier transform at level (n+l) is given by

J K
D(xyZn) k (Z exp(ipjx + iq~y). (5-14)

The operations defined by the sums in(S-11) and (5-14) can be
related to the operations performed by the so-called Fast Fourier Trans-
forms. See Appendix A. In (5-11) and (S-14) we have adopted a conven-
tion which "folds" the negative frequencies to the second half of the
series. This form is compatible with the convention used in most com-
puter subroutines. See, for example, Brenner.28

VI. PHASE INITIALIZATION

The employment of the phase transformation (3-6), (3-7) is equiva-
lent to propagating one z increment holding the phase distribution fixed
at what is anticipated will be the distribution at the middle of the
step. This "anticipation" is implemented by assuming that the function g
can be separated into similarity type products of functions depending on
z and on x,y. In this manner the z dependence can be accounted for by
quadrature, and within the half step the x,y dependence is assumed to be
similar to the behavior at the beginning of the step. Once the step has
been taken, by application of the basic algorithm, the phase of the wave
function is now "off" by one-half step. The phase is updated by again
assuming separability of g and similarity, this time, however, using the
x,y dependence of g calculated at the end of the step. This phase up-
dating can be combined with the phase initialization for the next half
step and done in one operation. If the scaling parameter a is completely
arbitrary--that is, its slope is discontinuous at each step--then an
additional phase increment must be included. These operations are
defined in the equations that follow. We let

r(x,y,z) =f [f 1 (Z)U(x,y,z) + f 2 (Z)(x 2 + y2)]dz, (6-1)

where Zn+

fj(Z) = 2acya[Z(z)]e- az  'l + WZ(z)]-1, (6-2)

f2 (Z) = - 2a3h2a/Z 2 , (6-3)

and_ x
P(xyz)= I D(x,y,z) 2 dx. (6-4)
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The phase updating is accomplished by multiplying the "old" wave func-
tion by a complex phase increment and storing the "new" wave function
over the old; that is

new (XYzn) - Dold(xYZn)e "IA ,  (6-5)

where-

2 U(x,y,zn) (En + Fn) (6-6)

+ 1 (X2 + 2 (G HI*J)
2 n + Hn + In Jn )

En = Zn fl(Z)dz, (6-7)

Zn-&tZn.i

Fn . fl(Z)dz, (6-8)

zn + A l

Gn f f 2 (Z)dz, (6-9)

z n-44zn-

nn

In  - 8a(Zn)3a/DZ Z=Z (6-11)

Jn = 8a(Zn )aa/a IZ.Zn + . (6-12)

In the computer code the four integrals (6-7) to (6-10) are done by
traperoidal quadrature. When the scaling length a has a continuous
slope in going ftom step to step, the sum (In + Jn) vanishes.

VII. CHOICE OF SCALING LENGTH FOR ADAPTIVE COORDINATES

The scale length a(Z) used in defining the adaptive coordinates is
present in the phase transformation (3-2). The initial wave function
after transformation is given by

B(x,y,O) = af(ax,ay)e (7-I)

where

* (x,y,0)=- - (x2 + y2)(8aa/3Z!z 0 + 3). (7-2)
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Unless a(Z) is properly chosen, #, can become quite large away from the

center of the bean, leading to rapid oscillations in the initial data.
Such oscillations, to be sampled adequately, would require too fine a
mesh size for practical computation. The manner in which this diffi-
culty is avoided is described below for focused beams and collimated
beams.

Focused Beams

For focused beams Bi = 0 in Equation (7-2). Hence, if 3a/aZ = -1
at Z = 0, 0, will be identically 0 as desired. The choice of

a(Z) = [1-Z) 2 + (Z/8)2] (73)

by Herrmann and Bradley 9 and by Ulrich 13 has this advantage but suffers
the disadvantage of focusing as does a beam in vacuum, thus not allowing
enough grid space for severely bloomed beams. The choice of

a = 1 - (I - N/B)Z (7-4)

is similar to Aitken et al. and has the advantage of being N times dif-
fraction limited at the focus. Here N can be chosen arbitrarily,
depending on the expected severity of thermal blooming. This choice has
the disadvantage that 01 does not vanish completely; that is

Oi(x,y) = N(x2 + y2)/2. (7-5)

Hence, if the N required to contain the bloomed beam is too large, this
formulation may lead to a poor numerical solution. This is apparent in
Problems 1 and 2 for an N of 5. The above two candidates assume that
one formula governs the z variation of a from aperture to focus. This
requires that zo in Equation (3-3) be zero. A generalization of this
choice is to advance to the focus in a manner where a(z) is piecewise
linear. In this way, a can have an initial slope of -1, thus nulling
01, and can be gradually varied at each step so as to have the proper
scaling according to the demands of the blooming. Here we have

a(Z) = an + b n(Z - Zn), Zn f Z < Zn+i, (7-6)

and -lZz = Z [an + bn(Z - Zn)] 2dZ
Zn

(Bb n) ).[a - {an + b n(Z- Zn)}-, b nO

21 (7-7)
(Ba n)_(Z - Z), bn=0

n n

An additional attractive candidate for a is
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a = - Z NZ2 /8. (7-8)

It has the desired properties of -1 initial slope and arbitrary size at
the focus. Its major disadvantage is that it does not permit the inte-
gral in (23) to be done in simple closed form.

The choice

a = [(1 - Z)2 + (NZ/B)2] (7-9)

has all the requisite characteristics. This form is seen to be similar
to the Z-dependent beam waist for a focused Gaussian beam with the scale
gradually evolving to N times larger than that expected in vacuum. While
this form seems to be an obvious generalization of the previously used9

(7-3), the freedom to use the generalization is not readily apparent
until one proczeds to perform the sequence of transformations as done
in Sections III and VII. For a in (7-9), Equation (3-3) relating z and
Z becomes

z = N 1tan- [NZ/8(l- Z)], (7-10)
and

Z = 8 tan z/(N + 8 tan z). (7-11)

The tv~o equations (7-10) and (7-11) thus permit the integration or
marching to proceed in z space while simultaneously computing such quan-
tities as fj(Z) and f2(Z) which are more conveniently expressed in Z.

It should be noted that there are "tradeoffs" among these various
choices. For example, when a(Z) is piecewise linear, its second deriva-
tive vanishes, eliminating one term in the phase function g(z), but
introduces an additional term because of the discontinuity. In Equation
(7-9) the second derivative of a, as required in (3-5), takes the form

32a/az2 = (N2/82)/a3 . (7-12)

Choice of Az

Marching or integrating forward in steps of fixed Az is good
strategy since, through the transformations, the effect is to use more
z planes in the region where the beam is tightly focused and fewer planes
elsewhere. It can be shown that for a(Z) chosen by (7-4) the focus is
reached when

z = 1/N. (7-13)

Hence, if we elect to march to the focus in M equal steps, Az is given
by

Az = I/MN. (7-14)

For a(Z) in (7-9) the focal z is equal to r/2N and

Az = n/2MN. (7-15)
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In order to have a flexible code the author's codes have been designed
to allow optionally for fixed Az or fixed AZ with provisions for a
maximum AZ when Az is fixed.

Collimated Beams

For collimated beams a, in Equation (7-2) is zero. If the compu-
tations are done without an adaptive coordinate system, aa/aZ = 0 and
01 is identically zero. If the blooming is severe enough to spread the
beam beyond the original coordinate system, the linear form of a,
Equation (7-4), is generally adequate. If the required N is not too
large (2 or 3), then the oscillations can be adequately sampled. A
seemingly better choice (though not tried) is

a(Z) = 1 + dZ2. (7-16)

The term 01 vanishes for this choice and

z = Z(2d 2 + 2dZ2) -l + (2d)-ltan'l(z/d ). (7-17)

This form requires marching in steps of fixed Z, since inverting of (7-14)
to reference z dependent quantities requires a numerical procedure. The
parameter d is free to be chosen according to the thermal blooming that
is expected.

VIII. A COMPARISON OF THE ACCURACY AND EFFICIENCY
OF THE TWO METHODS

The two algorithms were compared employing two different methods
for choosing the adaptive coordinates and utilizing different step size
Az. Two sample problems were done, one with a "small" Fresnel number of
2.96 and the second with a "moderate" Fresnel number of 9.3. Both
cases experience severe thermal blooming and tax the state of the art
for such computations.

Problem 1

The first problem is the so-called NRL sample problem. We assume
an ideal Gaussian beam focused at a range of 2 km. The parameters are
given by

f(C,n) = expf- (t2 + )r 2 ]

a, = 0.064/m

P/V = 44.843 kw-sec/m

r = 10 cm

R= 2 km

sl = 0.0/sec

A = 10.6 x 10-6m

V= .0
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The parameters associated with the computations are as follows. For
both methods the extent of the grid at the exit plane was ±4 beam radii
with symmetry utilized for the IGS method. An N of 5 was used for the
coordinate system. For the IGS method the number of grid points was
65 x 33 and 64 x 64 for FFT. The actual size of the individual cells
was essentially identical but twice as many cells were used for the FFT
because of the requirements of the subroutine. With this gridding, one
step of IGS was about 15 percent faster than one step of FFT. By impli-
cation, in problems not permitting the symmetry the FFT would be over
1.5 times faster than the IGS. Alternatively, special modification of
the FFT subroutines would gain the same factor.

For this problem the number of z steps to the focus was varied to
see if either method permitted more rapid advance. In Figures 1 through
4 the notations I and II are used to denote the strategy for choosing the
adaptive coordinate system, the notation implying

I, a(Z) determined by Equation (7-4),

II, a(Z), determined by Equation (7-9).

For this problem we have compared only the peak intensity at the various
ranges. The solid line in Figures 1-4 is the result obtained by Hogge

s

for the identical problem using an explicit difference scheme with a grid
of 121 x 121 in x,y and 247 z planes. In order to compare with Hogge'sresult, we have multiplied the intensity by e1Z to conform with his con-
vention (private communication).

In Figures 1 and 2, the IGS method is seen to agree closely with
Hogge for 10 z steps, but for 5 z steps and a(Z) chosen by I the IGS
method is off considerably. For the FFT method, Figures 3 and 4, the
results again agree very well; but, most importantly, the solution shows
almost no sensitivity to relaxing Az to 5 steps when choosing a(Z) by
either I or II. No attempt was made to solve this problem with either
method for less than 5 steps. Neglecting the solutions using I, the
results for this problem are inconclusive. However, we note that we
neglected the usual step-size criterion in the IGS method. We would
therefore conclude that for this problem the two methods are comparable
only if we know a priori that the step-size criterion can be ignored.
In Problem 2 we will show that it cannot in general be ignored for IGS
but can be for the FFT.

Problem 2

The second problem has more severe thermal blooming than Problem 1.
Again we consider an ideal Gaussian beam focused at 2 km. The parameters
for this problem are

al = 0.224/m

P/V = 50 kw-sec/m
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r - 2512 ca

R-2 km
a 0.0/38C

A 10.6 x 10-6b

N S

The problem was solved utilizing both methods, two strategies for the
adaptive grid, and various choices of Az. The summary of the focal plane
data and the key parameters used for each of the nine cases are listed

in Table I. Figure S denotes the isoirradiance contours at the aperture
plane for each of the nine cases. The focal plane isoirradiance contours
obtained by using a subroutine developed by Hartwig29 are contained in
Figures 6-14. In these figures the point of peak intensity is denoted

with an x, and the ratio of focal plane to aperture plane peak intensity
is denoted as MAX FLUX. The intensity for each contour line is in
decreasing increments of 0.1 times the peak intensity as one moves away
from the x. The dashed circle is the e-1 contour for vacuum propagation
and for no thermal blooming encompasses the first six contours. In the
focal plane the extent of the computing grid is the original factor of 4
beam radii (4 times the small circle) times the factor of N=S to allow
for blooming. The magnitude of the focal plane blooming is evident by
comparing the area of the inner six contours with the small dashed circle
in Figures 6-14.

Since the problem has no independent solution by which we can gauge
the accuracy of the numerical solution, we have taken the usual approach
of trying to find a region in mesh spacing where the solution is not
sensitive. From experience, accurate solutions can be delineated by
examination of the degree of smoothness in the isoirradiance contours.
Employing these two factors, we have made the judgment that the cases
denoted with the symbol ++ are acceptable and accurate. It should be
noted that, since the peak intensity is a quantity determined at a dis-
crete point, some discrepancy between methods is to be expected, depending
on the coarseness of the grid.

For this problem it was found that a grid of 65 x 33 was not suffi-
cient to obtain an accurate solution by the IGS method, Figures 6 and 8.
For a grid of 101 x 51 with the IGS method and a(Z) chosen by II
(Figure 9), the solution at the focal plane agreed with the FFT cases
using a grid of 64 x 64. For the IGS method it was found that using the
step-size criterion Az = Ax2 yielded an accurate solution (Figure 9),
but when this restriction was ignored and 10 z steps were used (Figure 11)
an inaccurate solution resulted. For the FFT method no appreciable dif-
ference resulted between 10 z steps and 5 z steps, Figures 13 and 14.
The contrasting behavior of the two methods when Az is increased is
attributed to the Nyquist-type accuracy criterion as discussed in
Section V. Even though implicit schemes are generally considered to be
unconditionally stable, because of the cyclic nature, the Nyquist
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criterion is needed to sample the oscillations of the high frequencies.

A similar behavior would be expected for the FFT method using (5-2) when
Az is relaxed. The difficulty does not occur using (5-10), since the
oscillations are followed "exactly" for each frequency within the step.
This does not imply that the solution itself is exact, since the phase
transformations done at each step are obviously approximate.

IX. CONCLUSIONS

The numerical solution of the laser propagation problem can be
greatly enhanced by mathematical transformations that are applied con-
currently. Transformations previously used can be generalized to remove
phase oscillations arising from the focusing optics and still permit
beams blooming well beyond a one times diffraction limited coordinate
system. The FFT and IGS approaches to the solution of the propagation
problem are found to differ most importantly in the fact that a step-
size criterion similar to the Nyquist criterion is needed for IGS and
can be relaxed for certain formulations of the FFT. Additionally, the
FFT method yields greater accuracy than IGS for the same choice of
gridding. While single steps of IGS are about 15 percent more efficient
than FFT, the above factors led to a factor of 10 in computing efficiency
for FFT for one sample problem, while for another problem the computing
costs were about equal. Overall, the FFT method seems to be several
times more efficient than the IGS method. Propagation programs based on
the FFT method are easier to implement becausc of the general availability
of FFT subroutines. This latter advantage is eliminated, however, when
an IGS one-step subroutine is available. See Appendix B. The IGS method
requires the storage of two complex arrays while FFT requires one. This
is a significant saving of core storage for those problems that do not
permit symmetry.
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APPENDIX A

USE OF FAST FOURIER TRANSFORM SUBROUTINES

The operation performed by a so-called FFT subroutine is the very
rapid computation of the complex array

Cj =Dt exp[vi21r(L- 1)(j - 1)/J] (A-l)

where the C., j= 1,2,...J, are usually stored over the complex array DZ.
For v = -1, jthis corresponds to the forward finite Fourier transform
over discrete data. This is equivalent to obtaining the amplitudes of
the J Fourier harmonics for approximating D. The approximation for D
is then given by J

D(x) = Cj exp[vipjx] (A-2)
J=1

where p- is given by Equation (5-12) of the report and v = 1. If x is
replacea by the discrete values over which D was defined, it car. be
shown that

J

= D(x) = Cj exp[vip.(k - l)Ax] (A-3)
j=1

= Cj exp[vi2yr(j - 1)(t- l)/J].

The implication of this identity is that the sums CA-1) and A-3) can be
performed by one algorithm with the appropriate change of v, as is done
by the various available FFT routines. The possible pitfall in the
propagation problem is that, in performing the integration of the wave
function as approximated by the Fourier series, we must use the first
sum in (A-3) rather than the second. Use of the convention standardized
by the computer routines can obscure the fact that the second sum of
(A-3) is a completely erroneous representation of the Fourier series at
all points in x except the discrete points. The difficulty is avoided
by observing that all operations involving x at other than the discrete
points must treat the series as having the negative frequencies "folded"
as given by Equation (5-12). These considerations affect only Equation
(5-10) of the algorithm. Equations (5-11) and (5-14) involve situations
where the sums of (A-3) are interchangeable.

The nature of the orijinal Cooley-Tukey FFT algorithm and its many
variants is such that the operation is far more efficient for arrays of
length 2K

. The computer code was designed to work with arrays of size
64 x 64 to take advantage of this economy.
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APPENDIX S

le LISTING OF FORTRAN IV SUBROUTINE FOR ONE STEP IGS ADVANCE

SUBROUTINE ADVANCIIXN6JYN ORDR1 98IOM190iOHSRSS11
DIMENS IIN DRl~s, 51I~l M613 D411,01 In DM1 01)1
DIMENSION fKR1 033 ,EK 10~,K1OlKIiu 1.
CIMENSION PSIR13 I , II(0 I
XM;IN1 REPORT), Jfh=Kt REPORT)PAT j O02 DINENSIONAL ARRAYS FORP~RN REAL AND IMAGINARY

C PTOFDRESPECTIVELY STO)RAGE ALEATLEVELS N AND N+1.
C "RONI DSANE STORAGE AS DR AND 01APYIGT k'iL N+1/2 RPR

C 918REAL AND ING PART O I le 16)6 4-26) FRPR
EK~tEKI EALAND IMG PART OF E E So4a4-0

FKtFKRA AND IMG PART OF F e AND1 4-
C CNTANEDINBOTH E AND Fe STORED 0AVOID RECOMPUTATION.

A Is:-.5DZOH2

8 1=3.*DZ0H2
C6!! RA * 5*DZ&H2

c I~a I PLIES X IlIRECTION, ID=2 IMPLIES Y DIRECTION

IF(ID.EC.13K1A-Y
F)R PECUK*uI1J !MX t1

TIQ E I= ) JC1I

TQCI=BaR

CALL GK(GKRtGKI,IlvDA129B9 1B)
.-Ou CTINUE.CI

DEN=TQDR*TQL)R+TQIf)X*TUjDI
TR=(Tgit*rQDR*TQg*fQl)/E
IIu( TQI*TQDR-TQR*TJDI/E
EKR( 1)=TRf
EK I ( .1 3
FKR(il3(GKR*TQDR+GKI*rQDI )/UEN

00 500 K=29KMAX
C COMPUTL FK AND FK

MFID .0Q 11-K
IF( ID.E411=
IF(Ki*NE.1)GQ~T0 3154

IFIK.E(J.KMAX18 R=IiiRP
IF(K.EQS.MAX 81B=6i1f1B
CENRxAlR*EKRIK-1l-A1I*EKI(K-1)BIR
OENI=AiiR*EKIIK-11*A1I*EKR(K-1 )+RI
DEN=DENR*DENR*DENI*OENI
PSIR(K)=CENR/DEN
PS I I(K)x-DEN IIDCN
EKR(K?=-ClR*PSIRIK )*CII*PSIIIK)
EK I(KI=-L1R*PSII(K )-C1I*PSIR(K)

Preceding page blank



FKR(K)3rIJR*PSIR1K ,-ruI*PS11f
EKR(KMAE )uou~
EKI(KMAX)=.o
UKRz
UK I,=..
co .00j~ KK=1,KMAX
K=KMAX*.-KK
UKR=EKa(K)*UKRO-EKI(K)*UKIO+FKR(K)
UKI=LKR(K )*UKIO4EKIIK)*UKROFKI (K)

Coo. CHR(KtJ)=UKR
CHI(K*J)=UKI

Ivo CR(lK)zUJKR

nou CONT NUc
UKR =U1R
UK I -UK I
C3NTINUt:

RLTURN
ENC

sUBRjUr I'E GK(GKfkGKIIDIJDz:H2,H1RB9e11B)
COMP,4NWJ)E MAIN)

L. WU8Rvurl'iE -VALuATES GJ AND GK, EQS. (4-17) AND (4-27) UF
c REP RT AS NEEDED eY ADVANC FOR iGS

All l9i*DlA?2

IF(I.Nt~l)ULR-9

UI I I .JI=,J) II 1J

IF(I *Nc. IXM)URI= VR( 1419J)

IF I .Efo..(JIk..:..IM)bRxBlRB

IF] I.Ld..)IRzDI..IAM):BB

IF (J.*N..*.JULR=DiR( I I, J- 1I

UCR=DHRi( 1J)
UCIIAII( Ij)

IF(J.Nr:.JYM1URR4f,tR( IJ*1)
IF(J.EW*.IYM)URI=*C
IF(J*NF.JYM)URI=P~iI(IvJ*1)
HR Ii!R
etxi L I '

IF (J.EQ*JYM )13R="1RH
IF(J.EJ. JYM)1I=-tiiIB

G'KR=A1R*JLR-All*)iLI+BR*UCR-BI*UCI+ClR*URR-C1[*URI
GK I=ALI*IJLR4+AIR*LIL IRI*UCR*13R*UL[,CII*URR+C1R*URI
RETUR~N
ENO
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It* LISTING OF FORTRAN IV SUBROJUTINE FOR ONE STEP FFT ADVANCEI i SUBR3UTINE ADVANC(DR1gPV2,IXN JYN DZOZ ZOLDI
DIMENSIJN 0R112tIXMJYM~iNN 12)PV& (IX 9WORKI13OJ
DIMENSION XIA1I6419XRA 1641

C REAL PART OF D IS STO~RED IN DRIA1611J)
r C IMAGINARY PART OF D IS STORED INR 2at .1 J)

C PV2 CONTAINS THE SQUARE OF THE FREtUE1CIES AS
c DEFINED IN EQ(5-121, THE ASSUMPTI NIS THAT
C J(IN REP..RT)*IXM AND KIlN REPORIIJYM, IXM=JYMt

c DUDYHE~NCE P DEFINED RY EQ*(5- 12 EQUALS
C Q DY1 NE BY EQ*45-131.FIS CL

C CHECK FiRSKIPING OF BEGINNING OF MPEX ARAY
cFUSELD.LQTHIS GUMEN 25 TODTRIEFRTCL
c F(ABSI-8O2-DZ02 FFT UROTE-REO e 2

PHI-01j*PV( I

GOT COrIu

2 RXA 5 0*XAI 10IA I )*XAIJ
XXRA( I )*XAI ),XAJPxII II
5R X1I AlI )SXR*YR-XI*

75) CONTINUE

CALL F- 'LJT(NR,4 NN11OK

YEO (t1JC/E

YI=D I12, 1 J) DENXIA( )*X A(J

X~sXR(I)*RA49
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LIST OF SYMBOLS

B Transformed complex wave function

cp Specific heat of propagation medium at constant pressure

D Transformed complex wave function

F(&,n) Spatial distribution of beam amplitude at aperture

k Wave number (= 21r/X)

L Characterislic length in propagation direction (= R, focused
beams; = kr , collimated beams)

n Index of refraction after laser heating (function of , r, and )

no  Index of refraction under ambient conditions (assumed constant)

P Total beam power

r Characteristic length in E-n plane; e- folding length for a
Gaussian beam

R Focal distance for focused beam

T Atmospheric temperature after laser heating (function of E, n,
and )

To  Ambient atmospheric temperature

U Dimensionless complex wave function (= W/Wo)

V Wind speed (assumed to be Jn the positive E direction and may be
4-dependent)

W Complex wave function

N0  Normalizing factor fa (P/1r2) ]

x,y Adaptive coordinates in transverse plane [= X/a(Z), Y/a(Z)]

X,Y Dimensionless spatial coordinates in transverse plane (= /r,
n/r)

Z Dimensionless coordinate in propagation direction (= i/L

z Transformed coordinate in propagation direction [see Eq. (3-3)]

a1  Absorption coefficient

a Dimensionless absorption coefficient (= aL)

S Dimensionless parameter (= kr2/L), equal to the Fresnel number
for focused beams or unity for collimated beams

y Dimensionless thermal blooming distortion parameter
[= (no2 - 1)P/(ToPoCpVAr)]; in the atmosphere y may be 4-dependent.

¢ Spatial coordinate in propagation direction

, Spatial coordinates in transverse plane

X Laser wavelength
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II

P Dimensionless quantity [- -kL(n 2 - no2 )]

p Atmospheric density after laser heating (function of F, n, )

oo  Ambient atmospheric density

i € Spatial distribution of beam phase at aperture

P Angular slewing velocity

w Dimensionless slewing velocity (= QL/V)

S2


