
AD-783 409

MACHINE INDEPENDENT DATA MANAGEMENT
SYSTEM (MIDMS) SYSTEM SPECIFICATIONS

Defense Intelligence Agency
Washington, D. C .

1 July 1974

DISTRIBUTED BY:

U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

I

Oi
O

f
CO
00
i>
a
*15

*. ?*vvuu*»

4. TITLZ '#-.d SubtftU)

Muctiine Indcpi iivt^nt Data Maiiap,eti< nt System
(Mints) System Specifications

7. *uthor'»;
Defense Intelligence Agency (DIA)

C. rCHFORMIKO O^CANI^A1IOr4 N/M.£ / VO AOoT.c aS

* Defense Intelligence Agei.ey
’ ATTN: Information Processing Division (DS-5)
I Washington, D.C. 20301
H. ccnt»:cllisg cf’ncf nawc a».o Arto^icss

Same as 9

|4. MOuncRINO /OLNCV NAXL * dit'^rriil Iroat Conitollint OUiet)

^4. TYP^OF RC»OHT 4 rC«»iOO COVI •‘f r

User Docu’^entation
(. PCRfCRMINC ORC. nri'ORT NliVUlA

4. CONlRACT OR OHAnT

10. PROCWAm ELEI't KT. pr-.OJt-ZT,
AREA 4 AORK unit NCWatHS

tr. REPORT OATE

1 July J974
•J. NUMIjEK of pagesA9~4'
IS. SCCURITVCLA! S. (ol t.'i.-a iri>crlj

UNCL,\SSIFIED
is«. o*;c-. AS.^mc/MCN'oowSr AAi-.-.o”SCHkOuuL

16. O.n Ribul ION ST AT tMt ST 10/ l/.ls Krpotl)

Af^roved for public release; unlimited distribution

,V- i V r
; i

•7. DISTRIPUTIOH ST ATEMCNT (e/•n»rr»e in BJocli JO, If rfl/UrmI 7r»» Pi»p*fl> ^ __

K»;'
In'

•». SjPrt^MUNTARY NOTES AiU--C3^
IS. KEY WORDS fConiinjA on ttntf udm If necoaaary oicT idrnilty by block uuaibot)

HIDMS Subsystem Fixed Set
File Structuring Subroutine Variable Set
Librarian Retrieval Module
File Maintenance Output
Language Processor Periodic Set

20. 4I*S1 f^ACT (Centtnup on pico U snd tJenttty by block nun boe)

This document describes the MIDMS system specifications. Each module of
the system is described in detail to include its subsystem structure,
subprogram identification and description, flow charts, and error messages.
Differences between the IBM and Honeywell versions of MIDi-IS are documented.

"■'NAilONA. ;! ! HNICAI
INFORMAI'vj’i SF-RVIli
U -'t roa-n»e*'^

Spnngfif'J vA a*'*!;!

DD , FORM
JAN 7J 1473 edition CF I NOV 45 IS OaSOLETC

SCCwRlTV Ci.*illl ltATC.. CF^.

MACHINE INDEPENDENT DATA MANAGEMENT SYSTEM

(MIDMS)

SYSTEM SPECIFICATIONS

FOREWORD

This manual has been developed by the Etefense Intelligence Agency
(DIA) for technical purposes. It does not reflect either explicitly
or implicitly official DIA policy or intelligence matters. Its
purpose is to provide a detailed description of the Machine
Independent Data Management System (MIDMS) programs. DIA assumes
no system installation, program maintenance, or system operation
responsibility, nor is DIA responsible for the data upon which the

system operates.

iii

TABLE OF CONTENTS

PAGE

CHAPTER 1 - FILE STRUCTURING — /fî) ' Y O G
1. Subsystem Structuring
2. COBOL Data Division Entries .
3. FS Subprogram Identification and Description

a. FSX (Supervisor) .
b. FSSNX (Word Scan) .
c. FSPRX (Print/Error Subroutines) .
d. FSJBX (Job Card) .
e. FSEDX (EDITS) .
f. FSSBX (Subroutine and Table) .
g. FSFLX (Field Card) .
h. FSIOX (Input Output Function) .
i. FSDTX (Management Date) .
j. FSGOX (FIELD Card Continued) .
k. FSCRX (GROUP Card) .
l. FSVSX (VSET Card) .
m. FSENX (ENDFS Card) .
n. FSDDX (COBOL Data Division) .

A T? i 1 O m T* î r%r» V r* v* r\ Xíoo o o n

5. Quantitative Limits .

CHAPTER 2 - LIBRARIAN —/O '/V ^ ^ 6
1. Subsystem Structure .
2. Subprogram Identification and Description .,

a. LBLB .
b. LBCMPRS .
c. LBEXPAND .
d. LBMOVEC .
e. LBJBNAME .
f. LBENQ .
g. LBDEQ .
h. LBRNAME .

3. Error Messages .
CHAPTER 3 - FILE MAINTENANCE (FM) -
Overview

1. General .
2. File Maintenance (FM) Subprograms .

a. FM.
t. FMIOX .
c FMSCN .

Section I • File Maintenance Language Processor (FMLP)
1. Overview .
2. FMLP Subprograms

a. FMI J? .
b. FMLP2 .
c. FMLP VAL.

/^- 7y 3 yo?

1-1
1-3
1-22
1-22
1.00
i. *. >

1-33
1-36
1-39
1-41
1-44
1-50
1-53
1-55
1-57
1-64
1-66
1-70
i.

1-84

2-1
2-1
2-2
2-13
2-14
2-15
2-18
2-18
2-19
2-19
2-20

3-1
3-3
3-3
3-5
3-6

3-1-1

3-1-3
3-1-4
3-1-5

n i
V

\

PAGE

Section II - Ordinary Maintenance Language Processor (OMLP)

1. Subsystem Structure . 3-II-1

2. COBOL Entries and Subroutines . 3-II-3

a. DSD01 Entries . 3-II-3

b. VAL-LIT-AREA Entries . 3-II-4

c. Subroutines . 3-II-7

(1) OMLPX .;. 3-II-7

(2) OMLPFIL . 3-II-11

(3) OMLPCRP . 3-II-19

(4) OMLPREC . 3-II-23

(5) OMLPFLD . 3-II-26

(6) OMLPINT . 3-11-28

(7) OMLPOPR . 3-II-32

(8) OMLPOP2 . 3-II-36

(9) OMLPOP3 . 3-II-39

(10) 0MLP0P4 . 3-II-41

(11) OMLPRNG . 3-II-44

(12) OMLPVAL . 3-II-46

(13) OMLPRO . 3-II-51

(14) OMLPSBR . 3-II-54

(15) Om^PSS . 3-II-56

(16) OMLPííRP . 3-II-59

(17) OMLPWRT. 3-11-61

(18) OMLPWRP. 3-TT-62
3. Error Mpç<5«r»£»c ^ -•

w .•....•••**••••*•*•**•#**#*.*«#**** -y X.JL

Section III - File Maintenance (Ordinary’) Input Processor (FMIP)

1. Overview . 3-III-1

2. File Maintenance (Ordinary) Input Processor (FMIP)

Subprograms

a. FMIPX . 3-III-5

b. FMIPCD . 3-III-13

c. FMIPREC ... 3-III-26

d. FMIPUN . 3-III-44

e. FMIPVAL . 3-III-57

f. FMIPTRN .. 3-III-117

g. FMIPBIN . 3-III-130

h. FMIPSRT . 3-III-132

3. IP Error Messages . 3-III-133

Section IV - File Maintenance Maintenance Proper (FMMP)

1. Overview . 3-IV-l

2. FMMT Subprograms ... 3-IV-3

a. FMiffX . 3-IV-3

b. MPCDl . 3-IV-30

c. MPCD2 . 3-IV-49

d. OMMl’X . 3-IV-62

e. OMMPTIO.. 3-IV-125

f. OMMPTRN . 3-IV-128

PAGE

g. LMMPX .

h. MPSRTX .! ! !. .]] ! !.. !

i. FMMPSRT..

j. FMMPMRG..!.!!!!!!!.!!.

R. OMOVL....!!!!.*.*!!!!!!!.

3. File Maintenance Confirmations and Error Messages *!!.'
Section V - Logical Maintenance

1. Subsystem Structure .

2. Subprogram Identification and Description*'
a. LMLP . .

b. LMLPASN ..

c. LMLPATc..i.*!!!!!!!.*!!.
d. LMLPBLD..*[.*!.'!.*.

e. LMLPCNG .!!!!!...

f. LMLPDDS ..

g. LMLPDEF..i!.!!!.!!!!!!.*•■•••

h. L^ILPDEL..*.*!.*!.*!!.*.

i. LMLPF1.D..
j. LMLPFMT and LMLPFMT1..* *

k. LM1J?GEN

l. LMLPGRP

m. LMLPMLT

n. LMLPMOV

o. IM.PN>i0

q. LMLPNM2

r. LMLPNM3

s. LMLPPG1

t. LMIJ’PG2

u. LMLPPRT

V. LMLPPUT

w. Il'lLPRFD

X. LMLPRLN

y. LMLPR>ÎN1

z. LMLPRMS

aa. LMLPRST

ab. LMLPRT1

ac. LMLPRT2

ad. LMLPSCN

ae. LMLPSPO

af. LMLPSP1 ,

ag. LMLPSIT ,

ah. L'fLPSUB ,

ai. LMLPXAB .

aj. LMLPV^T .

ak. LMLPWPO .

al. LMLPV.T 1 .

am. LMLPWP2 .

an. LMLPWP3 .

. 3-IV-146

. 3-IV-147

. 3-IV-148

. 3-IV-149

3-IV-156

3-IV-158

3-V-l

3-V-8

3-V-8

3-V-ll

3-V-13

’ 3-V-16

3-V-19

3-V-23

3-V-25

3-V-29

3-V-32

3-V-42

3-V-46

3-V-47

3-V-50

3-V-52

3-V-35

3-V-57

3-V-60

3-V-62

3-V-64

3-V-67

3-V-69

3-V-72

3-V-75

3-V-78

3-V-81

3-V-86

3-V-89

3-V-94

3-V-98

3-V-102

3-V-106

3-V-lll

3-V-l14

3-V-116

3-V-122

3-V-125

3-V-127

3-V-129

3-V-133

3-V-136

vii

PAGE

ap. LMLPWP5 .

aq. MLMPZNO .

ar. LMLPZN1 .

as. U1LPZN2 .

at. LMLPZN3 .

3. LM Error Messages ...

CHAPTER 4 - RETRIEVAL AND OUTPUT DOCUMENTATION PART I •

a. Subsystem Structure ..

(1) Modules and Subroutines .

(a) COBOL Programs ...

(b) ALC Subroutines .

b. Subprogram Identification and Description

(1) GENO .

(2) GENI .

(3) GENU ..

(4) GEN2 .

(5) GEN2X .

(6) GEN4X1 .

(7) GEN4X2 .

(8) GEN4X3 .

(9) CEN3A .

(10) GEN3 .

(10.1) GEN3B .

(11) GEN4 .

(12) CEN4A .
✓ rrMc

(14) genu.!”!!!!!!!!!!!!!”
(15) CEN6 .

(16) GEN6A .

(17) GENAA .

(18) GEAR .

(19) GEAC .

(20) GEAD .

(21) GEAG .

(22) GEAL .

(23) GEAM .

(24) GEAN..

(25) GEAP ..

(26) GEAS ..

(27) GEAT..

(28) GEAX..

(29) GEAZ ..

c. Module Error Messages ..

CHAPTER 5 - RETRIEVAL AND OUTPUT DOCUMENTATION PART II

a. Program Flowcharts,

(1) CENO..

(2) GENI ..

(3) GENU ..

(4) GEN2 ..

(5) GEN2X..

(6) GEN4X1 ..

.. 3-V-142

.. 3-V-144

.. 3-V-146

.. 3-V-150

.. 3-V-152

.. 3-V-154

/0>^5r3
.." 4-1

.. 4-1

.. 4-1

.. 4-2

.. 4-8

.. 4-8

.. 4-8

.. 4-12

.. 4-12

.. 4-18

.. 4-20

.. 4-22

.. 4-23

.. 4-24

.. 4-33

.. 4-37

.. 4-37.2

.. 4-43

• • ‘♦"HJ

.. 4-44

.. 4-45

.. 4-51

.. 4-51

.. 4-52

.. 4-52

.. ¿-53

.. 4-54

.. 4-54

.. 4-55

.. 4-56

.. 4-56

.. 4-57

.. 4-58

,. 4-58

,. 4-59

,. 4-61

-. /rD s y
.. 5-1

,. 5-1

,. 5-4.2

,. 5-13

. 5-14

.. 5-44

,. 5-45

vi il

PAGE

(7) GEN4X2 . 5-51

(8) GEN4X3 . 5-52

(9) GEN3A... 5-55

(10) GEN3 . 5-73

(10.1) GEN3B . 5-108.1

(11) GEN4 and GEN4A . 5-109

(12) GENS .*. 5-120

(13) CEN5A . 5-121

(14) GEN6 and GEN6A . 5-125

b. Program Narrative

(1) GENO. 5-138

(2) GENI . 5-139.2

(3) CENIA . 5-149

(4) GEN2 . 5-150

(5) GEN2X. 5-185

(6) CEN4X1 . 5-186

(7) GEN4X2 . NONE

(8) GEN4X3 . 5-195

(9) GEN3A. 5-199

(10) CEN3 . 5-216

(10.1) GEN3B . 5-264.1

(11) GEN4 and GEN4A . 5-265

(12) GENS . 5-285

(13) GEN5A . NONE

(14) G EK 6 and GEN5A. 5-28S

(15) GEAA. 5-311

(16) GEAB. 5-314

(17) GEAC. 5-315

(18) GEAD. 5-136

(18.1) GEAE . 5-136.1

(19) GEAG . 5-317

(20) GEAL. 5-319

(21) GEAM. 5-320

(22) GEAN . 5-321

(23) GEAP . 5-322

(24) GEAS . 5-324

(25) GEAT. 5-325

(26) GEAX. 5-326

(27) GEAZ . 5-328

ENCLOSURE A - USER-WRITTEN SUBROUTINES . A-l

ENCLOSURE B - SPECIAL OPERATORS ANU CONVERT ROUTINES

1. Circle Search (CIR2SP) . B-l

2. Polygon Search . B-13

3. Route Search Conversion Subprogram (RTCVS) ... B-19 •

4. Route Search Special Operator . B-24

5. Date Conversion Subprogram (CD(\TS) . B-26

6. Coordinate Conversion Subprogram (CRDFS) . B-40

7. Coordinate Conversion Subprogiam (CRD6S) . B-41

8. Coordinate Conversion Subprogram (CRDGS) . B-41

ix

PAGE

9. Coordinate Conversion Subprogram (CRD7S) . B-43

10. Country Code Conversion Subprogram (CTY1S) . B-43

11. Comparison of Mark III and MIIHS Geographic

Operators and Convert Routines ... B-44

12. Route Search Special Operator (RTS3X) . B-45

13. Route Search Conversion Module (RTC3X) . B-57

ENCLOSURE C - ANCILLARY SYSTEM ROUTINES

Section 1 - IBM

1. ABGET. C-l-1

2. GALLIC . C-l-1

3. COMABSY . C-l-2

4. COMALL. C-l-4

5. GOMARAYS . C-l-7

6. COMLIST . C-l-9

7. COMNUMS . C-l-11

8. COMREC . C-l-13

9. DATESUB . C-l-14

10. EXPNSP . C-l-14

11. LINK. C-l-15

12. LMLOOK . C-l-16

13. UflABGEN.C-l-21

14. LOAD.C-l-22

15. LOADTAB . C-l-23

16. MOCHA . C-l-24

17. MOVALF . C-l-27

18. MOVaiP '.. C-l-29

19. MOVCON . C-l-31

20. MOVNUM. C-l-32

21. M0VRi\Y. C-l-34

22. MUVE . C-l-34

23. 0PR34 . C-l-36
Section 2 - Honeywell

1. BIBCS ..C-2-1

2. COMLST. C-2-4

3. COMRAY. C-2-7

4. MOVNUM. C-2-11

5. MOVPAC . C-2-14

6. MOVRAY . C-2-16

7. OPR34 . C-2-18

8. PUTPSC . C-2-20

9. RDPSCS . C-2-22

10. WTPSCS . C-2-24

11. YYDDD .. C-2-26

ENCLOSURE D - Honeywell Differences

1. File Structuring. D-1‘

2. File Maintenance . D-l

3. Logical Maintenance . D-5

4. Special Operators . D-7

5. Retrieval and Output . D-8

User-written Subroutines

1. The function of user-written subroutines in MIDMS is to permit

actions to be performed which cannot easily be defined in the normal

MIDMS languages. There are three distinct types of user-written

subroutines in MIDMS: conversion subroutines, validity checking

subroutines, and special operator subroutines. Once they are written,

these subroutines can be referenced in File Maintenance, Retrieval,

and Output by only their name and operands. However, writing these

subroutines requires knowledge of the calling sequence by which data

will be passed between MIDMS and the subroutine.

2. Each type of subroutine uses a single parameter (seven subparameters)

calling sequence, containing the same fields but whose contents differ

somewhat depending on the category of subroutine. The COBOL Data

Division statements for these seven subparameters are as follows. While

the field names may be different in every program (MIDMS programs and

user-written subroutines), the identical field sequence, length, ^nd

PICTURE must be used. IN—DATA and OUT—DATA may be coded as groups with

subfields for significant data items, but each of these areas must contain

exactly 360 characters. In some machines, the term "COMPUTATIONAL"

may have to be modified, so that IN-LENGTH, OUT-LENGTH, and EXIT-FLAG

will be in binary form. The Honeywell 600/6000 series compilers use

the term "COMPUTATIONAL-1" instead of "COMPUTATIONAL".

01 USER-CALLING-SEQUENCE.

02 IN-LENGTH

02 OUT-LENGTH

02 EXIT-FLAG

02 IN-DATA

02 OUT-DATA

02 FIELD-NAME

02 FILE-NAME

PICTURE S9(6)

PICTURE S9(6)

PICTURE S9(6)

PICTURE X(360).

PICTURE X(360).

PICTURE X(8).

PICTURE X(8).

COMPUTATIONAL.

COMPUTATIONAL.

COMPUTATIONAL.

3. Definitions of the kinds of user-written subroutines and their

methods of handling the seven subparameters are as follows:

a. Conversion Subroutines. File Maintenance, Retrieval, and Output

use conversion subroutines to change data from one format to another.

The seven subparameters used for passing information between MIDMS

programs (or MIDMS-generated logic packages) and user-written
conversion subroutines are:

(1) Input Length (IN-LENGTH) - a binary field containing the

actual size of the significant portion of the Input Data field. The

values of this field is inserted by the calling (MIDMS) program.

ENCLOSURE A

A-l

(2) Output Length (OUT-LENGTH) - a binary field containing

the actual size of the significant portion of the Output Data field.

The value of this field is inserted by the conversion subroutine.

(3) Exit Flag (EXIT-FLAG) - a binary field with data supplied

by the subroutine for indicating to the calling program whether or not

proper information has been given to the subroutine. The legal values
for the Exit Flag field are:

1 for normal exit

2 for data error exit

(4) Input Data (IN-DATA) - a field contailing 360 characters.

The significant portion of this field is left justified in the area.

The number of significant characters Is specified to the subroutine

by the Input Length field. The data in this field is inserted by the
calling program.

(5) Output Data (OUT-DATA) - a field containing 360 characters.

The significant portion of this field is left justified in the area.

The number of significant characters is specified to the MIDMS program

by the Output Length field. The data is inserted by the subroutine.

The Retrieval and Output compilers permit conversion subroutines to

produce an error message of up to 62 characters when parameters on

query and report statements are not in the proper format. To indicate

that an error message is present, the conversion subroutine must set

--it Flag to 2, place the size of the message (0 for no message) in
Output Length, and insert the message in the Output Data field.

Output conversion errors located for the CMOVE operation will not

produce any error messages — the data will be outputted in an
unconverted form when Exit Flag is 2.

(6) Field Name (FIELD-NAME) - an eight character area

containing the mnemonic of the data file field being converted. This

information is provided by the calling program.

(7) File Name (FILE-NAME) - an eight character field containing

the name of the file for which data is converted. This information is
provided by the calling program.

b. Validity Checking Subroutine. The Ordinary Maintenance portion

of File Maintenance uses a validity checking subroutine in Input Processor

for the purpose of examining an input data field to determine if its

format or value is in accordance with the programmed criteria. Its use

is specified by the SUBCHK parameter of the field card of a Data Source

Description (DSD). The seven subpatameters used for passing information

between File Maintenance Input Processor (FMIP) and user-written
validity checking subroutines are:

ENCLOSURE A

A-2

(1) Input Length (IN-LENGTH) - a binary field containing the

actual size of the significant portion of the Input Data field. The

value of this field is inserted by FMIP.

(2) Output Length (OUT-LENGTH) - a binary field which is

not applicable to checking subroutines.

(3) Exit Flag (EXIT-FLAG) - a binary field with data supplied

by the subroutine indicating to FMIP whether or nor. Input Data has

valid information. The legal values for Lxit Flag are:

1 for valid data

2 for invalid data

(4) Input Data (IN-DATA) - a field containing 360 characters.

The significant portion of this field is left justified in the area.

The number of significant characters is specified to the subroutine

by the Input Length field. The data in this field is inserted by FMIP.

(5) Output Data (OUT-DATA) - a 360 charactu. field which is
not applicable to checking subroutines.

(6) Field Name (FIELD-NAME) - an eight character area

containing the mnemonic of the data file field being checked. The
data is inserted by FMIP.

(7) File Name (FILE-NAME) - an eight character field containing

the name of the file for which data is being checked. This information
is prov'.c’ed by FMIP.

c. Special Operator Subroutines. Retrieval uses a special operator

subroutine to determine whether or not a data field in a MIEMS file has

some relationship to the information specified in the Retrieval statement

as a search parameter. This "relationship" is determined by whatever

has been programmed into the subroutine and either a hit or no hit condition

is found, based on the criteria incorporated into the special operator

subroutine. Subroutines may send "useful information" from their calculations

back to Retrieval for eventual printing during Output processing. The

seven subparameters used for passing information between Retrieval and
user-written special operator subroutines are:

(1) Input Length (IN-LENGTH) - a binary field containing

the size of the field from the MIDMS file which is being examined.

The value of Input Length is inserted by Retrieval.

(2) Output Length (OUT-LENGTH) - a binary field which is
used for two different purposes:

(a) Upon entrance to the special operator subroutine,
Output Length is the number of characters in the search parameter

A-3 ENCLOSURE A

specified in the Retrieval statement. This value is provided by
Retrieval.

(b) Upon completion of the subroutine, Output Length

must be changed to the size of information to be transferred from

the subroutine to Retrieval. If no data is passed, Output Length
must be set to zero.

(3) Exit Flag (EX'.T-FLAG) - a binary field with data

supplied by the subroutine indicating to Retrieval whether the data

field has the programmed relationship (i.e. hits) or does not have the

relationsnip (i.e. does not hit). The legal values for Exit Flag
are:

1 for hit

2 for no hit

3 for system error

4 for data error

The system error should be reserved for serious inconsistencies among

the parameters because it will cause Retrieval to abort the job.

The data error flag indicates that the file date value is incorrect

and will cause Retrieval to print an error message specifying the

location of the invalid data. If Output Length is not set to zero

by the subroutine, an error description in Output Data will also
be printed by Retrieval.

(4) Input Data (IN-DATA) - an area containing 360 characters.

The data from the MIDMS field is left justified in this area. This
information is inserted by Retrieval.

(3) Output Data (OUT-DATA) - a 360 character area which is
used for two different purposes:

(a) Upon input to the special operator subroutine,

Output Data contains the search parameter as it was specified in the

Retrieval statement. This information is left justified in Output Data.

The size of the search parameter is placed in Output Length. This
information is inserted by Retrieval.

(b) Upon completion of the subroutine. Output Data becomes

the information to be transferred from the suoroutine to Retrieval. The

subroutine must left justify the data in Output Data and place the size

of the transferred data in Output Length. If no data is transferred.

Output length must be set to zero. Output Length and Output Data are

ignored when Exit Flag is set to 2 (no hit) or 3 (system error). When

Exit Flag is 1, the information will be accepted by Retrieval only if

a RECEIVE statement has bf'en specified. When Exit Flag is 4, the

information is treated as an error message and will be printed by
Retrieval.

ENCLOSURE A A-4

(6/ Field Name (FIELD-NAME) - an eight character area

containing the mnemonic of the data file field being queried. This

information is provided by the Retrieval program.

(7) File Name (FILE-NAME) - an eight character area containing

the name of the file which is being searched by Retrieval. This

information is provided by Retrieval.

4. User-written s»broutines mav be programmed in COBOL, a combination
of COBOL and FORTRAN, or assembly language.

a. COBOL.

(1) For the IBM 360, a COBOL subroutine must have the Data

Division statements specified in paragraph 2 placed within the LINKAGE

SECTION. Any additional work areas needed for the COBOL subroutine

are to be placed In the WORKING-STORAGE SECTION. In addition to the

LINKAGE SECTION, an IBM 360 user-written COBOL subroutine must contain

a series of standard statements to effect proper linkage with the calling
program.

(a) In the Identification Division, the program identity

should be composed of the subroutine's entry point with a "P" suffix
(xxxxSP).

PROGRAM-ID. 'SUBRSP'.

(b) In the Procedure Division, the entry and return
statements are as follows:

ENTER LINKAGE.

FNTRY 'SUBRS' USING USER-CALLING-SEQUENCE.
ENTER COBOL.

• • • •

DATA-ERROR. MOVE 2 TO EXIT-FLAG.

GO TO LEAVE-SUB.

NORMAL-EXIT. MOVE 1 TO EXIT-FLAG.

LEAVE-SUB. ENTER LINKAGE.

RETURN.

ENTER COBOL.

The entry point name (SUBRS in the example) is used within MIDMS as the

reference to the subroutine. It must be exactly five alphanumeric

characters, starting with a letter and ending with "S". In the

example, DATA-ERROR and NORMAL-EXIT are used as paragraph names, thus

implying that this particular subroutine is used as a conversion sub¬

routine. There is no requirement that these paragraph names be used

or that EXIT-FLAG be set in a separate paragraph from the processing

which determines the value to be placed in EXIT-FLAG.

A-5 ENCLOSURE A

(2) For the Honeywell 600/6000, a COBOL subroutine must

have the Data Division statements specified in paragraph 2 placed

within the WORKING-STORAGE SECTION along with any additional work

areas. In addition to the appropriate Data Division statements,

a Honeywell 600/6000 user-written COBOL subroutine must contain

a series of standard statements to effect proper linkage with
the calling program.

(a) In the Identification Division, the program

identity should be composed of the subroutine's entry point with
a "P" suffix (xxxxSP).

PROGRAM-ID. SUBRSP.

(b) In the Procedure Division, the entry and exit
statements are as follows:

ENTRY SUBRS USING USER-CALLING-SEQUENCE

GIVING USER-CALLING-SEQUENCE.

LEAVE-SUB.

EXIT PROGRAM.

The entry point name (SUBRS in the example) is used within MIDMS as

the reference to the subroutine. It must be exactly five

alphanumeric characters, starting with a letter and ending with "S".

The parameter USER-CALLING-SEQUENCE must be specified twice because

it contains both the input to the subroutine and the results from

the subroutine and Honeywell COBOL requires separate identification

ef input and output parameters. The EXIT PROGRAM statement must be
the last executed by the subroutine.

b. COBOL and FORTRAN. Due to the character orientation of the

subroutine parameters, FORTRAN cannot directly handle the calling sequence

provided by MIDMS. Therefore, the subroutine must be subdivided into

two parts: a COBOL module to act as interface between MIDMS and the

FORTRAN routine and a FORTRAN module for the mathematical processing
requirements of the subroutine.

(1) COBOL. As far as MIDMS is concerned, the COBOL portion

of the COBOL-FORTRAN subroutine is the entire subroutine. That is,

all the requirements for a user-written COBOL subroutine specified’

in paragraph 4.a. must be followed by the COBOL module. Except for

those rules, the detailed processing of the COBOL module will usually

be oriented to character handling preprocessing and post-processing

needs of the FORTRAN mathematical routines. This may include, but is

not necessarily limited to, defining of fields within IN-DATA and OUT-

DATA, converting fields between decimal digits and either binary or

A-6

ENCLOSURE A

floating point forms of t>ie number, or the Insertion of error messages

into OUT-DATA (Retrieval and Output only) upon signal from the FORTRAN

subroutine. To execute the FORTRAN subroutine, an IBM 360 COBOL program

needs the following statements:

ENTER LINKAGE.

CALL 'fortsub' USING pi p2 ... pn.

ENTER COBOL.

Honeywell 600/6000 COBOL uses only the foil wing statement:

CALL fortsub USING pi p2 ... pn.

In the CALL statement, "fortsub" represents the name on the FORTRAN

SUBROUTINE statement. No specific list of USING parameters is

shown because it is completely dependent on the requirements of the
FORTRAN program.

(2) FORTRAN. The FORTRAN portion of the COBOL-FORTRAN subroutine

has virtually no specific requirements as far as MIDMS is concerned,

except to perform whatever actions are needed to carry out its user

defined functions and, together with the COBOL module, provide the

information expected by MIDMS. The FORTRAN module must begin with a

SUBROUTINE statement and terminate its processing with RETURN.

SUBROUTINE fortsub (pl,p2,...,pn)
• • •

RETURN

The subroutine name "fortsub" is referenced by the COBOL module in

the COBOL CALL statement. It cannot be the same as either the COBOL

PROGRAM-ID or the COBOL program entry point name. Parameters pl,p2,

...,pn must have corresponding parameters in the USING list of the

COBOL CALL statement. The number of parameters depends on the amount

of information passed between the FORTRAN and COBOL modules of the
combined subroutine.

(3) Figure A-l shows the linkage structure between MIDMS and
the COBOL-FORTRAN subroutine.

c. Assembly Language. Since assembly language is strictly machine

dependent, its use must be severely limited to situations where COBOL

programs are extremely inefficient in time or core storage or where the

requirement to transfer the subroutine to another computer is considered

remote. With these restrictions, the machine independent nature of

the MIDMS can be continued throughout its applications.

ENCLOSURE A

A-7

K. n(1) r0r the IBM 360 0Perating System, an assembly language
subroutine uses the standard linkage conventions: ian8«">8e

a START or a CsIc/sta^e^tr^liiL-^s^e^ê^ed^TMI^^this
name must be five characters long, starting uUhTu«^ ã^Üg*

^ d d L(b) Register 1 contains the address in core of a word

ThisaiattertaddaddreSS °í the.first Position of USER-CALLING-SEQUENCE,
is latter address, to be referenced as HOP, must be offset bv a

spe^Ldt'par^h-:0 ^ the

1^. IN-LENGTH is at location HOP.

2. OUT-LENGTH at HOP+4 .

3. EXIT-FLAG at HOP+8.

A* IN-DATA at HOP+12.

o. uui-UATA at HOP+372.

6. FIELD-NAME at HOP+732.

7. FILE-NAME at HOP+740.

(c)

in the MIDMS Program^orhoîdinrÎhe^onÎen^ofSthefregis?eis upon

“ui„i„°gt ^tlM- - restored^before*1^011

the subroutine uilî'fetÎrn.14 COntaI"S the address ln ““S to which

subroutine. 8 15 contalns the entry point address in the

subroutin^uses'th^following'standard^inkag^conventions?86 (GMAP)

long, starting with a letter and ending with "S’\ characters

ENCLOSURE A

A-8

(b) Registei 1 contains the address in MIDMS to which

the subroutine will return.

(c) The upper half of the second word beyond the

address in register 1 contains the address of the first word of

USER-CALLING-SEQUENCE. This latter address, to be referenced as

HOP, must be offset by a certain number of words to locate each

of the seven parameters specified in paragraph 2.

JL. IN-LENGTH is the word at location HOP.

2. OUT-LENGTH is at HOP+1.

3. EXIT-FLAG is at HOP+2.

IN-DATA begins at word HOP+3.

5. OUT-DATA begins at HOP+63.

6. FIELD-NAME begins at HOP+123.

FILE-NAME begins at character 2 (bit 12) of
HOP+124.

5. Under the IBM 360 Operating System all user-written subroutines

are placed in load module form on MIDMS.APPLOAD, a partitioned data

set used as a subroutine library. The following actions are required
to place a subroutine on MIDMS.APPLOAD:

a. Compile the subroutine using LOAD option (assumed in COBOL

and FORTRAN). For COBOL and FORTRAN, //SYSLIIJ DD specifies the data

set (DSNAME“&LOADSET) for the object modules from the compiler;

//SYSCO DD serves the same purpose for the assembler. The following

Job Control Language (JCL) cards may be used to compile a COBOL
subroutine:

//jobname JOB acct,prgmr-name,MSGLEVEL=l

// EXEC C0BFC,PARM»L0AD

//COB.SYSLIN DD DSNAME=&LOADSET,DISP»(MOD,PASS),

// SPACE*(TRK,(50,50)),UNIT“2314
//SYSIN DD *

COBOL Statements

/*

COBFC is a catalogued procedure which supplies most of the needed

JCL for compiling COBOL. Compiling FORTRAN is similar except that

FORTGC is the catalogued procedure and FORT is placed before SYSLIN.

ENCLOSURE A

A-9

// EXEC FORTGC,FARM-LOAD

//FORT.SYSLIN DD DSNAME-&LOADSET,DISP-(MOD,PASS),

// SPACE-(TRK,(50,50)),UNIT-2314

//SYSIN DD *

FORTRAN Statements

/*

Assembler language subroutines need the following JCL for compilation

(ASMFC is the catalogued procedure):

// EXEC ASMFC,FARM-LOAD

//ASM.SYSCO DD DSNAME-&LOADSET,DTSP=(MOD,PASS),

// SPACE-(TRK,(50,50)),UNIT-2314

//SYSIN DD *

Assembler Language Statements

/*

b. Link edit the subroutine. //SYSLMOD DD specifies the load

module library MIDMS.APPLOAD. //SYSLIN DD is the input of &LOADSET,

the object module data set from the compilers, and should have

DISP-(OLD,DELETE) whenever more subroutines will be compiled during

the same job. After SYSLIN should be the concatenated data set,

// DD DDNAME-SYSIN to indicate that there are control cards for

linkage editor. //SYSLIB DD specifies libraries to resolve calls

produced by COBOL (SYS1.C0BLIB) and FORTRAN (SYS1.FORTLIB).

//SYSIN DD * requires three cards

ALIAS xxxxS

NAME xxxxSP

/*

The ALIAS xxxxS is the same as the entry point for the COBOL subroutine:

xxxxSP is the PROGRAM-ID. For assembler language programs, ALIAS Is

the entry point of the subroutine and the xxxxSP form on the NAME card

is for compatibility with COBOL subroutines. The JCL required to link
edit a subroutine is as follows:

// EXEC PGM-IEWL,PARM='XREF.LIST.LET',REGION*98K

//SYSPRINT DD SYSOUT-A

//SYSLIN DD DSNAME-&LOADSET,DISP-(OLD,DELETE)

// DD DDNAME-SYSIN

//SYSLMOD DD DSNAME-MIDMS.APPLOAD,DISP-OLD,UNIT-2314,
// VOLUME-SER-VOLUME

//SYSUT1 DD UNIT-(SYSDA,SEP-(SYSLMOD,SYSLIN)),

// SPACE-(1024,(200,20))

//SYSLIB DD DSNAME-SYS1.COBLIB.DISP-SHR

ENCLOSURE A

A-10

// DD DSNAME^SYS1.FORTLIB,DISP=SHR

//SYSIN DD *

ALIAS SUBRS

NAME SUBRSP

/7*

6. Under the Honeywell 600/6000 General Comprehensive Operating

Supervisor (GCOS), user-written subroutines are placed in system

loadable form on a dynamic user library, a random file used as a

subroutine library.

a. A dynamic user library (sometimes identified by its file

codes Q* or **) must be reconstructed for every new subroutine and

cannot be maintained in random form. Therefore, each user should

have one or more dynamic libraries, as required by the various MIDMS

applications.

b. A dynamic user library can be used to hold user-written

subroutines, MIDMS-supplied subroutines that serve the purpose

of user subroutines but are widely applicable (such as coordinate

conversion or geographic special operator subroutines), user

defined lookup tables, and single file logic packages.

c. The same dynamic user library must contain any of the

above types of members needed during the execution of a single

activity because only one ** file is permitted at any time. This

means that:

(1) The ** file for procedures MLMG and MLMX must at least

contain the conversion subroutine and tables referenced by the logic

package.

(2) The ** file for the MFM procedure must at least contain

the conversion and validity subroutines needed by Input Processor

plus any single file logic package specified in Maintenance Proper

plus the conversion subroutines and tables refere iced by the logic

package.

(3) The ** file for the MRTOP procedure must at least contain

the conversion and special operator subroutines for Retrieval as well

as the conversion subroutines and tables for Output.

d. The following actions are required to place a subroutine

into a dynamic user library:

(1) Compile the subroutine using the DECK option (assumed in

COBOL, FORTRAN, and GMAP but explicity required for the FORTY card

referencing the Series 6000 FORTRAN compiler). Each object deck

will be output on file code C*. Ordinarily, a permanent file should

A-ll

ENCLOSURE A

be specified for each C* file so that the dynamic user library could

be built during the same job. By omitting a C* Job Control Language

(JCL) card, the object decks will be punched and a separate job will

be required to incorporate the subroutine module(s) into the dynamic

user library. The following JCL cards may be used to compile one

module of a subroutine:

$ COBOL (or FORTRAN or GMAP or FORTY^UDECK)

$ PRMFL C*,W,S,user01/OBJECT/subrs
compiler source deck

(2) After all subroutine modules have been compiled, it is

necessary to construct an object library file containing System

Editor (SYSEDIT) control cards, General Loader (GLOAD) control cards,

and object deck images of the required subroutine modules. The normal

GCOS method is to build and maintain an object library using the

Object Library Editor. Since object deck images stored in permanent

files cannot be referenced by $ SELECT cards when using the GCOS

FILEDITT program, a special MIDMS object library generator program

(OBGEN) will be used. The procedure MIDMS/PROCLIB/MOB contains

the JCL needed to execute the OBGEN program.

(a) The following is the normal deck set up for the
MOB procedure:

$ SELECT MIDMS/PROCLIB/MOB

$ DATA CD,,COPY

object library control cards

$ ENDCOPY

(b) The object library control cards input by file code

CD consist of groupings of SYSEDIT and GLOAD control cards and object

decks necessary to construct a dynamic user library. $ SELECT cards

may be used to reference existing card image files which already

contain some of the necessary control cards or object cards. The

SELECTed files are copied onto the object library file by OBGEN. Since

the GCOS Generalized Input (GEIN) program (which normally interprets

control cards) does not examine $-cards appearing after a $ DATA COPY

use of $ SELECT files is limited by OBGEN to two levels (i.e.,

the CD input file can contain a $ SELECT for a file which also contains

a $ SELECT). There is no limit on the number of $ SELECT cards in

the input deck or in first level selected files.

(c) Each user-written subroutine to be placed in the
dynamic user library will normally be defined with the following

control cards. The $ SYSLD card includes the name used in MIDMS
to reference the subroutine.

ENCLOSURE A

A-12

$ SYSLD CATALOG^subrS,RELOC,MASTER

$ OPTION NOSETU.NOFOB,SYMREF
$ LOWLOAD

$ SELECT userOl/OBJECT/subrs

(other $ SELECT cards or object decks needed to forin

a loadable subroutine)

$ ENTRY subcS (entry point name In program,

normally same as SYSLD catalog

name)
$ EXECUTE

$ ENDED

(d) Old object libraries saved in permanent files can
be used in the construction of a new object library. Each can be

referenced by a $ SELECT card since SYSEDIT control cards, GLOAD

control cards, and object deck images are already contained on the

separate object libraries. It is the user's responsibility to insure

that the collection of all items on the new object library, from

whatever source, does not contain any duplicate names (SYSLD catalog
names).

(e) A full description of the capabilities of the

MOB procedures is provided in Chapter 2 of DIAM 65-9-11, "Machine

If.deper.dent Data Management System (MIDMS) Job Control Language
Procedures and Installation Guide."

(3) After the object library is built, the System Editor
is used to construct a new dynamic user library.

(a) The following cards are used when the MOB

procedure has previously been applied as described in paragraph (2):

$ SYSEDIT INITIALIZE

$ FILE R*,R1R

$ PRMFL Q*,W,R,user01/DYNAMIC/filename

(b) The R* file input to SYSEDIT defines the object
library produced in the MOB procedure. The Q* file defines the

dynamic user library as a permanent file under the userOl master

catalog. This dynamic user library will be referenced as a ** file
by MLMG, MLMX, MFM, or MRTOP procedures.

A-13

ENCLOSURE A

M
I
D
M
S

ENCLOSURE A

A-14

--

Special Operators and Convert Routines

1. CIRCLE SEARCH (CIR2SP).

a. Function.

(1) Given the coordinates of two geographic points determine

if they coincide.

(2) Given the coordinates of a point and a radius and the

coordinates of a second point P, determine if P lies within or on

the circle and if it does compute the distance and azimuth of P

from the center of the circle.

(3) Given the coordinates of two points and two radii determine

if the two circles intersect and if they do determine the distance and

azimuth from the center of the search circle to the center of the file

circle.

b. Definitions.

(1) Distance - Ail distances are in nautical miles.

(2) Azimuth - That angle formed by the rays extending from

the center of the circle to both True North and the point, P. It is

measured clockwise from True North and has a range, in degrees of

0 Azimuth Angle 360.

c. Description of the Input/Output Fields in the Linkage Section.

(1) In-Length.

(a) Input - Contains number of characters in the In-Data

field.

(b) Output - Not applicable.

(2) Out-Length.

(a) Input - Contains number of characters in the Out-Data

field.

(b) Output - Contains number of characters in the Out-

Data field, equals 16 in the event of a "hit;" zero if there is not

a "hit," and 50 + IN-LENGTH in the event of invalid file point

coordinates.

ENCLOSURE B

B-l

(a) Input - Not applicable.

(b) Output - When two points coincide or a point, P, is

inside or on the circle or when two circles intersect, then Exit-Flag

contains a value =1. If the file point or circle does not "hit,"

the search point or circle Exit-Flag contains a value *2. If the

file point coordinates are invalid then Exit-Flag contains a value

*4.

(4) In-Data.

(a) Input - Can contain coordinates of a point cr coor¬

dinates of a center of a circle and its radius. The format of a given

pair of coordinates is: "Latitude, Longitude." The latitude and

longitude may oe given in either 15 character external format, 13

character internal format or 11 character internal format. If a

radius is given it immediately follows the coordinates of the circle

center, and if those coordinates are in 15 character format, the

radius is given in 5 characters representing nautical miles and

hundreths of a nautical mile, otherwise the radius is given in 4

characters representing nautical miles and tenths of a nautical mile.

In all cases the decimal point is assumed after the third character
in the radius field.

(b) Output - Not applicable.

(5) Circ-Number.

(a) Input - Contains three digit identifier of user
circle or point.

(b) Output - Contains three digit identifier of user
circle or point.

(6) Out-Data.

(a) Input - Can contain coordinates of point to be

searched or coordinates of ».enter of circle and its radius. The for¬

mat of a given pair of coordinates is "Latitude, Longitude." Both

the latitude and longitude are represented with degrees, minutes,

seconds and direction (N-S, E-W), with leading zeros where necessary.

When the coordinates of the center of a circle are represented, then

ENCLOSURE B

the radius immediately follows them, is five characters long and has

an assumed decimal place between the third and fourth digit positions.

Circle identifier, coordinates of center of circle, and radius are

user provided and separated by commas.

Circle Number

Filler -

Latitude Degree-

Latitude Minutes-

Latitude Seconds

"N" or "S"-

Longitude Degree -

Longitude Minutes

Longitude Seconds*

'E or "W

Filler

Radius

XXX 99

~T-

99 99 999 99 99 S999V99

(b) Output - In the case of a point, P, inside or on a

circle, then it contains the distance of P from the center of the

circle and the azimuth of P. The azimuth is represented first,

is seven characters long, and has an assumed decimal place between

the third and fourth digit positions. Distance immediately follows

the azimuth, is five characters long, and has an assumed decimal

place between the third and fourth digit positions.

ENCLOSURE B

B-3

Circle Number

Azimuth — ■

Distance »

XXX X S999V9999 S999V99

J

In the event of invalid file point coordinates OUT-DATA contains an
error message and the file data.

File Data (left-justified to position 51)—

d. Narrative Flow.

,,(1L subPro8rain is called by Retrieval using the name
CIR2S. The format of the file data is determined and the file

field is converted to binary with 4 decimal places (MAIN-PROGRAM

TEST-13, CASE-15). Th coordinates of the search field are converted

to the common format and coordinate system and a gross check is
performed (GROSS-CHECK).

(2) In the event of a point vs point search the coordinates
are compared for equality mod 360 (CHECK-LON). Otherwise the

cosine of the average latitude of the circle center and point or

circle center and the square of the distance between the above points

are computed (CHECK-LON). If the square of the distance is less than

or equal to the square of the total allowable radius then the distance

is computed (CHECK-LON, SQ-ROOT) and the azimuth is computed
(ARC-TANGENT). F

(3) The special case of the point and circle center on the
same meridian is analyzed separately (SPECIAL-CASE).

ENCLOSURE B

B-4

(A) A division error in computing the azimuth is flagged bv
setting Azimuth to 999 (ERROR-HIT).

(5) If the file point coordinates are invalid, an error

messige is moved to the output area along with the file coordinates
(EDIT-CHK-EXIT).

(6) Control is then passed back to Retrieval (ENTER-EXIT),

e. Limitations.

(1) Results are accurate if the radius of the circle or the

sum of the radii of the two circles does not exceed 300 nautical miles.

(2) The circle or circles cannot contain either of the two
poles.

Method of compute the Azimuth

North
A

Azimuth

file point

* East

Search Point

The target of the angle of (FTANA) may be computed by:

FTANA = (INLAT-OUTLAT)/DELTA-LON*COSLAT

The problem is now to find the arctan of FTANA. The algorithm used

in the IBM FORTRAN library subprogram IHCSATAN is used to invert

the tangent function (of IBM System/360 FORTRAN IV Library
Subprogram, GC28-6596-4).

The algorithm to computer Arctan (X) is as follows:

(a) Reduce to the case 0 < x ^ 1 by using

arctan = TT/2 - arctan |x|

ENCLOSURE B

B-5

(b) Reduce the case |x| ^ tan 15° by using

arctan (X) = 30° + arctan X -

If tan 15° < X 1 then

< tan 15°
X - 1

xTIT

(c) If |x| tan 15 then

arctan (X) = X (.60310579 - .05160454X2+ -^5913709—

IS X + 1.4087812

Once the arctangent is found the azimuth is computed based on the
quadrant of the file point.

(DELTA-LON <0,

INLAT > OUTLAT)

(DELTA-LON < 0,

INLAT >OUTLAT)

North

(DELTA-LON >0,

INLAT < OUTLAT)

^-
Search Point

■^East

(DELTA-LON >0,

INLAT< OUTLAT)

The parameter SYMBOL is used to keep track of the various cases.

SYMBOL * 0, I tan 01 <C 1;

1» I tan 0| > 1; i .

2, (tan 01 >1 and I üm 01 > tan iS0
3, I tan 0| 1 and |tan 0| >tan 15

(N0TE; If tl»e search parameter is a point and the file figure is a

clrcle then the azimuth is from the circle center to the search point.)

ENCLOSURE B

B-6

Enter CIR2S)

MAIN-PROGRAM

Initialize

Parameter

GROSS-CHECK

Convert the

search point

to internal

format

TEST-13

' NO-HIT

CHK-LON

EDIT-CHK-EXIT

ENCLOSURE B

B-7

ENCLOSURE B

B-8

ARC-TANGENT

NO

Move

0 to DISTANCE

AZIMUTH

16 to OUT-LENGTH

Compute

DISTANCE

Compute

tan (0)

FT ANA

I NO

r

Compute

Arctan (FTANA)

Confute

Azimuth

ENTER-EXIT

ENTER-EXIT

the angle 0~considered is from

a line due East to the line

from the search to file point.

8 J SPECIAL-CASE

ENCLOSURE B

B-9

..-.-..

WWII'i'ÜPP ... inrr-ni

NO-HIT

ENCLOSURE B

B-10

m

NO-HIT

ENTER-EXIT

ENCLOSURE B

B-ll

.éHéB ÉfláHMÉÉAIMfeftÉÉMN

EDIT-CHK-EXIT

Move error

message and

file data to

outpi’t area

r. y
Compute

OUT-LENGTH

—_¿_

Move 4 to

EXIT-FLAG

ENTER-EXIT

ENCLOSURE B

B-12

.-- —.. maÊtL

2. POLYGON SEARCH.

a. Function. Given the coordinates of the vertices of a polygon,
then:

(1) Given the coordinates of a point P; then determine if P

is inside or on the polygon.

(2) Given the coordinates of the vertices of a second polygon;

then determine if the two polygons intersect.

(3) In paragraph 2.a.(2), either or both polygons may degenerate

into a straight line, or point.

b. Description of the Input/Output Fields in the Linkage Section.

(1) In-Length.

(a) Input - Contains number of characters in the In-Data
field.

(b) Output - Not applicable.

(2) Out-Length.

(a) Input - Contains number of characters in the Out-Data
field.

(b) Output - Contains the number of characters in the

OUT-DATA field, either 0 for a "miss," 3 for a hit or 143, 145, or

147 for an edit check, and 11, 13, or 15 character coordinates.

(3) Exit-Flag.

(a) Input - Not applicable.

(b) Output - When a point, P, is inside or on the polygon;

when two polygons intersect; when a straight line and a polygon or two

straight lines intersect; when a point and a line or two points intersect,

then, Exit-Flag contains a value =1. If the search and file

figures do not intersect (i.e., "miss") then EXIT-FLAG =2. If the

file data is found to be invalid (i.e., an edit check) then EXIT-FLAG
»4.

ENCLOSURE B

B-13

(4) In-Data.

(a) Input - Can contain coordinates of a point, or

coordinates of vertices of a polygon, or coordinates of end-points of a

straight line. The coordinates of a point may be given in 15 character

external format, 11 character internal format or 13 character internal

format. The coordinates must be contiguous, no commas or blanks to

separate them; but with leading zeros where necessary. Input file provided.

(b) Output - Not applicable.

(5) Poly-Number.

(a) Input - Contains three digit identifier of user polygon

or point.

(b) Output - Contains three digit identifier of user polygon

or point.

(6) Out-Data.

(a) Input - Can contain coordinates of a point, or

coordinates of vertices of a polygon, or coordinates of end-points

of a straight line. The format of a given pair of coordinates is

"Latitude, Longitude," both the latitude and longitude are represented

with degrees, minutes, seconds, and direction (N-S, E-W), with

leading zeros where necessary (15 character format). User provided

with identifier and each pair of coordinates separated by commas.

(b) Output - In case of a "hit" or a "miss" it is

not used. In case of invalid coordinates in the file, an error

message and the invalid coordinates are returned in this area.

c. Narrative Flow.

(1) The subprogram is called by Retrieval using the name

"P0L2S." The file field is checked for blanks (CHECK-BLANKS). The

format of the file coordinates is determined and the maximum number

of vertices in the file polygon is determined (CONVERT-1, TEST-13,

CASE-15). The file coordinates are validated and the numoer of file

polygon vertices, which is the number of non-blank contiguous sets of

coordinates, is determined (TEST-15A, TEST-11A, TEST-13A). A gross

check for intersection is performed (B-ll, B-13, B-15, CROSS-CHECK),

(2) The number of vertices in the user supplied search polygon

is determined and validated (CROSS-CHECK, TEST1).

ENCLOSURE B

B-Í4

binary with ^ c°orílnates are converted to a common format,

The searíí coorHi t P ^ C0NVERT-H, CONVERT-13, CONVERT-2).
search coordinates are converted to the standard format (AAA, CONVERT-3).

are t. VS P°lnt SearCh the coordiMtM

Data fiJP íiíhKCk ÍS performed t0 see whether the In-Data and Out-
P Î\fí Wil1 be comPared for intersection of a Point-Line

Straight Line’ Pol^80"_Polyg°n' Straight Line-Polygon, Straight Line-

part 15 Ägra: (^:e lnltlaaZi"8 Values Cor that

. . ^ r(6; In the event of a Polnt vs fine search the point is
ested for equality with an end point of the line. If this fails

the vector-cross-product of the line and the vector from the first

end point of the line to the point is computed. If the vector-cross-

VECTOR-X-PRODUCT,^EST-VCP) fS t0 "hÍt" ^ 1Íne (™INT-LINE,

(7) In the event of a Point-Polygon test tha PMr^

^«da£liní,derSeC5l0n “íth the POly80n by c»™ting the numb« of
times a line drawn from the Point to True North Intersects the

r - n^r
(EVALUATE). Vecto5

sPïd0:i5 ^e«r„X'PR0DUCT)’ t0 deteralne “ ^ ^ Iu5 s1«hl58the

en te point P is within the square formed by extremes of

? Í5d:e««aftud10£ f"ä Slde ia ’uastlaa- “"«Is product or cne vector from vertex 1 to doí nf p v Î- cai.ca i CO point r, V, and the vector from vertex

ENCLOSURE B

B-li

1 to vertex 2, W, is taken. If VxW is positive then P lies south

of the side 12. The special cases of a point lying on the same

meridian with a vertex of a polygon, or a side of a polygon are also

considered (SPECIAL-CASES, VERY-SPEC-CASE).

(8) In the event of a line versus line search the slope of

the file line, CONST-IN, and the slope of the search line, CONST-OUT,

are determined, then the longitude of the point of intersection of the

two lines, X, is determined (SOLVING-FOR-X). It is then determined

if X lies within the longitude boundaries of the two lines, i.e.

that the lines intersect and not their extensions (CHECK-X).

(9) In the event of a line versus polygon search, a test is

made to determine if the first end point of the line is within the

polygon (CONCAVE-POLYGON, ITERATE, P0LY-1N-P0LY). If no hit occurs

in the first test, then the line is tested for intersection with

the sides of the polygon (SOLVING-FOR-X, CHECK-X, BEFORE-IT).

(10) In the event of a polygon versus polygon search, a test

is made to determine if vertex 1 of the file polygon is interior to

the search polygon (CONCAVE-POLYGON, ITERATE, POLY-IN-POLY). If

no hit occurs then the file and search polygons are interchanged and

the first test repeated (POLY-IN-POLY). If no hit occurs then all

pairs of one side from the file polygon and one side from the search

polygon are tested for intersection (SOLVING-FOR-X, BEFORE-IT).

The special cases of the line versus line tests are considered

(DET-EQ-ZERO, A-NONZERO, PARALLELE-CASE, COLINEAR).

(11) Special cases which may occur in determining if the

meridian from a point to the N-pole cuts a side of a polygon are:

(a) The longitude of the point equals the longitude of

a vertex (SPECIAL-CASES). The two cases are shown below:

1.
N-Pole

Do not add to the number of intersections.

ENCLOSURE B

B-lb

2.
N-Pole

Add 1 to the number of intersections when considering P versus
side (1,2).

(b) A side of the polygon lies on a meridian through

the point (VERY-SPEC-CASE). The two cases are shown below:

1.

In this case add zero to the number of intersections.

B-17
ENCLOSURE B

2.

N-Pole
A

1

6

1 >
^ point P

In this case add 1 to the number of interesections, P versus side (6,1).

(The meridian from P also intersects side (3,4); thus, the total munber

of intersections is even and P does not lie within the polygon.)

d. Limitations.

(1) Polygons may have interior angles greater than 180°, i.e.
can be concave.

(2) Polygon legs cannot be more than 350 nautical miles in

length, for accurate results.

(3) The difference between the longitudinal values of any two
vertices of a polygon cannot be greater than 45°.

(4) The data base polygon cannot have more than 16 sides.

(5) The user polygon cannot have more than 16 sides.

(6) The polygon cannot contain either of the two poles.

(7) The vertices of the polygon are assumed to be connected

in the order that they are read.

ENCLOSURE B

B-18

(8) The polygon cannot intersect itself.

(9) Accuracy decreases near the poles (error of approximately

3 miles at 68°N).

3. ROUTE SEARCH CONVERSION SUBPROGRAM (RTCVS).

a. Subsystem Structure. Not applicable.

b. Identification and Description of Subprogram included in the

Subsystem.

(1) Abstract of subprogram.

(a) Function. This program is designed to construct a

quadrilateral about a route, convert multiple formats into a standard

format, and make data error checks on user supplied parameters. If

no errors are em.ountered, data output from this subprogram may be used

as input for the Route Search Special Operator.

(b) Calling Sequence, Parameters Received and Passed.

In-Length - Describes the number of characters

of user supplied leg parameters (see In-Data below). The conversion

subprogram utilizes in-length to identify the format in use.

Out-Length - Describes the number of characters

generated by the subprogram and placed in the Out-Data field.

_3. Exit-Flag - A value of "1" placed in Exit-Flag

indicates information in Out-Data can be used as input to the

special operator; "2" indicates an error and an associated error
message is output.

4^. In-Data - Parameters describing a leg of

a route is input into In-Data. As a minimum, the user supplies the

leg number, the starting and ending point of the leg, (in 15 character

external format) and the left and right widths (directly or implicitly).

Optionally, data to be used for frame or time analysis may be input.

Data may be input as one of nine possible formats and may be described

uniquely by in-length. Each of the nine formats begins with the leg

number, and beginning and ending coordinates separated by commas.

(See the documentation of RTC3S for a description of the possible

input data formats, they are the same for both programs.)

5. Out-Data - This field, consisting of the

conversion subprogram generated data, is used primarily as input to

B-19

ENCLOSURE B

the route search special operator. The following data is passed

to the special operator; leg number, beginning and ending leg

coordinates, conversion code, maximum and minimum widths, four

comer points describing quadrilateral about a leg, code

indicating option in effect, direction of the leg, cosine of

average latitudes, and other supplemental data. The secondary

purpose of this field is to pass back to the system error

messages indicating errors in user supplied data.

j>. Field Name and File Name - These fields are not

used for the conversion subprograms.

(c) Narrative Flow and Capabilities. The entry point of

the Conversion Program is "RTCVS." The data is checked for appropriate

format; coordinates are examined for errors in size (numeric)

(ERR0R-TEST1, ERR0R-TEST2, EXIT1, CONT-PROC). In-length is checked to

determine which special case is applicable (CHECK-FMT, A8).

CASE 47 - Checks for format error are made,

maximum widths (W-MAX) are characterized by "L" and "R" depending on

whether that width is left or right. Further checks determine whether

frame (CASE 59) or time correlation (CASE 60X) are to be used, other¬

wise control is passed to the CNVRT section (see below) (CASE-47,A9,A5).

2. CASE 43 - A format error check is made

(CASE-43,C9,C1), followed by the computation of the left and right

widths from the users supplied focal-length (in), altitude (103 ft),

and focal-plane (in) where "A" represents 4.5 in and "B", 9.0

(GAL-WIDTH). If frame analysis (CASE 55) or time correlation

(CASE 56) are not to be used, control is passed to the CNVRT
section (C2).

CASE 41 - Only one width is given. After a

format error check is made, the width is determined left or right

and 0 is placed in the field of the opposite direction (CASE-41).

If frame analysis is to be used, a branch to CASE-53 is taken, and

if time analysis is to be used, a branch to CASE-54 is taken (HI).

4.. CASE 59, CASE 55, and CASE 53 - These cases are
associated with frame analysis, values of interval (number of frames

across), initial and terminal frames are passed to INTEVAL, INIT-FR,

and TERM-FR of the special operator respectively. Control is then
passed to the CNVRT section.

ENCLOSURE B

B-20

5. CASE 60X, CASE 56, CASE 54, and CASE 60 - Data

is moved to appropriate field for use by the special operator for time

correlation. One error check is made. Control is passed to the

CNVRT section.

6^. CNVRT - This section has several parts.

a. The first section CNVRT thru E6 converts

coordinate data to decimal format according to one of two possible

systems. System 1 makes all western longitude coordinates

negative. System 2 converts all western longitudinal coordinates as

360 - longitude. Both systems consider southern latitudes as negative.

ln In E6 cosine is calculated for the average

of the leg latitudes. The direction of the leg is determined and

control passed to CNST - NORTH, SOUTH, EA^, or WEST, if a special

case; or CNST-UNIV if routine. In each case, a quadrilateral is

constructed and the corner points are left in out-data for the special

operator. The quadrilateral is shown below:

(W

Where: (x0Yo^ is the point of the leg (X^Y^) is the

terminating point of the leg; L is the distance to the left;

R is the distance to the right; and W-Max is the greater of L and R.

The coordinates (X^, Y^) for all i, are in nautical miles from the

equator and the Greenwich meridian.

(2) Capabilities.

(a) This subprogram can convert leg parameters from nine

possible formats to one standard usable format for the route search

special operator.

ENCLOSURE B

B-21

(b) Coordinates must be in standard 15 character format

and are converted to decimal nautical miles.

(c) Implicit widths are calculated from data describing

camera, focal length, and altitude, or through omission of one width

in width specifications where the missing width is assumed to be zero.

(d) Time analysis requires beginning and ending times in

hours, minutes and seconds.

(e) Coordinates are corrected for longitudinal squeeze.

(f) Data checks are made on user queries.

(3) Limitations

(a) All coordinates must be in standard 15 character format.

(b) Accuracy decreases when the leg or its associated

data is more than 300 nautical miles.

(c) Leg coordinates cannot extend across the poles.

(d) Beginning and ending times are not continuous over

the international date line nor through midnight.

(e) Number of leg is limited by the system (main

program) to a maximum of 219 (depending on the format).

(f) Pitch of camera is assumed to be zero,

c. Error Messages.

(1) ERROR IN FORMAT SIZE.

(a) In-length is not the same value as required by the

conversion program.

(b) Check for improperly imbedded blanks, missing commas,

extra fields, and missing characters in the parameter field (field

enclosed with quotations) of the query card.

(2) ERROR IN EVENT POINT COORDINATES.

(a) Coordinates are incorrect.

ENCLOSURE B

B-22

(b) Check longitudes for over 180°, latitudes for over

90 ; insure characters for direction are correct and in their appropriate

positions; check for alphabetic characters in numeric partif the field.

(3) ERROR IN LEG NUMBER.

(a) Leg number is incorrect.

(b) Insure leg number is a three character numeric field
with no blanks or commas.

(4) SIZE ERROR.

(a) Probable attempt to divide by zeros has occurred
(a rare occurence).

(b) Check all equations with size error option, display
inputs to these equations to determine cause of size error.

(5) ERROR WIDTH SPECIFICATIONS.

(a) Widths (explicit) are incorrect.

(b) Check format to insure that "L" and "R" are used

appropriately; that preceding digits are numeric, and both widths
are present.

(6) ERROR IN FOCAL WIDTH DATA.

(a) Widths (implicit) are not correct.

(b) Format of focal width is not correct or in cases

where only one width is specified, that width is specified
incorrectly.

(7) ERROR IN FRAME DATA, ERROR IN TIME DATA.

(a) Class (numeric and alphabetic) of data is incorrect.

(b) Format of focal width is not correct or cases where

only one width is specified, that width is specified incorrectly,

(8) XX SIZE ERROR or YY SIZE ERROR.

(a) Probable error in numerator of complex equation.

ENCLOSURE B

B-23

(b) Check paragraphs II and 13 for data input.

4. ROUTE SEARCH SPECIAL OPERATOR.

a. Subsystem Structure. Not applicable.

b. Identification and Description of Subprogram included i.i

Subsystem.

(1) Abstract of Subprogram.

(a) Function. The Route Search Special Operator passes

a coordinate from a file against the data description of a leg to

determine whether the coordinate falls within specified parameters.

If it does, tne coordinates's relative position to the leg, and its

frame (optional) or its time (optional) is output with other

supplemental data.

(b) Calling Sequence.

1_. In-Length - For the special operator, in-length

is either 11, 13, or 15 depending on the format of the file coordinates.

2. Out-Length - If the coordinate examined is hit,

then a field of 25 characters is output. If the file data is invalid,

an error message and the invalid coordinates are returned with a

length of 65 characters.

j). Exit-Flag - The value 1 represents a hit, and

the value 2 represents a no hit. The value 4 represents invalid file

data.

4^. In-Data - One 11, 13, or 15 character geographic

coordinate is passed from the file to the program.

_5. Out-Data - This field is identical to the

out-data field of the conversion subprogram. Several data names

are different; however, the two data fields are exactly alike.

On output, in the event of a hit, a 25 character field or return

values is placed in Out-Data. (See the user documentation and

documentation RTS3S for a complete description.) In the event of

invalid file data, a 50 character error message and the invalid

coordinates are returned.

6^. Field Name and File Name - The special

operator does not utilize these fields.

ENCLOSURE B

B-24

c. Narrative Flow and Capabilities. The entry point for the

special operator is "RTS2S."

(1) The file coordinate is tested for format (TEST-CONV-SYS,

A2, TEST-13, CASE-15) and converted to a standard decimal format.

(2) The file coordinate is tested to determine if it is within

the quadrilateral constructed about the route in the conversion

subprogram. This test is performed by taking the vector cross product

of the vector formed by the side of the quadrilateral and the vector

formed by the line from the first vertex of the side in question and

the file point. If the result is negative, the point is exterior

to the quadrilateral and a "2" is moved to the exit-flag and control

is returned to the system. If a hit, control is passed to

NORTH-SOUTH-TEST. The process is illustrated below.

V is the vector from the corner No. 2 to the point P. U is the

vector from corner No. 2 to corner No. 3. If the vector cross

product, UxV, is negative then V is to the right of U and therefore,

P is not within the quadrilateral.

(3) NORTH-SOUTH-TEST thru NE-SE-FLIGHT. Flight direction is

determined, distance down track is computed, distance left or right of

route is calculated. If time or frame options are in effect

(CHK-OPT), time down track (TIME OPTION) or the approximate frame

(FRAME-OPTION) is calculated respectively, this generated data is

placed in out-data and control is then passed to the system.

d. Error Message. In can the file data is invalid. The message:

"FILE DATA INPUT TO ROUTE SEARCH IS INVALID" is returned.

ENCLOSURE B

B-25

5. DATE CONVERSION SUBPROGRAM (COATS),

a. Subsystem Substructure.

IBM

CDATS

CONVDATE

DATESUB

HIS

CDATS

CONVDA

CDATS is the executive route and calls CNVTDT by any one of six possible

entry points. CONVDATE calls DATESUB if the system date is required.

b. Identification and Description of Subprogram included in Subsystem.

(1) CDATS

(a) Abstract of Subprogram.

1.. Function. The conversion routine is made

up of two COBOL programs. The first provides an interface between the

MIDMS module that calls for the conversion and the second one which

does the actual conversion. The first contains the standard user calling

sequence, and determines, by examination of the first two characters

of IN-DATA, which entry point is to be called in the second program.

2.. Calling Sequence. It accepts the MIDMS standard
user calling sequence composed of:

01 USER-CALLING SEQUENCE

02 IN-LENGTH PICTURE

02 OUT-LENGTH PICTURE

02 EXIT-FLAG PICTURE

02 IN-DATA PICTURE

02 OUT-DATA PICTURE

02 FIELD-NAME PICTURE

02 FILE-NAME PICTURE

S9(6) Computational.

S9(6) Computational.

S9(6) Computational.

X(360).

X(360).

X(8) .

X(8).

ENCLOSURE B

B-26

3.
that it is numeric,

of IN-DATA which the

of output. The type

Capabilities. The input is checked to

The routine then isolates the first two

user has specified as the type of input

of output can be specified as:

insure

characters

and type

1 FOR YYMMDD

2 FOR JULIAN

3 FOR DDMMYY

4 FOR ABRV.

5 FOR MILITARY

6 FOR CIVILIAN

(690320)

(69079)

(200369)

(20 MAR 69)

(20 MARCH 1969)

(MARCH 20, 1969)

Type of input can be type 1, 2, or 3. In addition, the input type

can be 0 which indicates that the current run date as generated by the

system is to be used as the input type. Dependent upon the input code

type, the appropriate entry point is called in the second program.

Appropriate error checking is done to determine if the input date is

within valid bounds. Depending on the output code the desired processing
takes place.

4^ Limitations. It is the user's responsibility

to insure that the first two characters of the field specified by the

CONVERT operator contain respectively, the input type and the output

type. This can be done by the use of partial notation or in the case

of Logical Maintenance by partial notation or GROUP DEFINE.

(2) CONVDA

(a) Calling Sequence. (NOTE: This is HIS version.)

Entry Point CNONE using RCODE giving RETURN-DATE input is

system data (input code 0).

Entry Point YYMMDD using RCODE YOUR-DATE giving CCODE RETURN-DATE
input is YYMMDD (input code 1).

Entry Point JULIAN using RCODE YOUR-DATE giving CCODE RETURN-DATE

input is Julian date (input code 2).

Entry Point MILDAT using RCODE YOUR-DATE giving CCODE RETURN-DATE

input is DDKMM MJiYYYY (input code 5).

Entry Point CIVDAT using RCODE YOUR-DATE giving CCODE RETURN-DATE

input is MM MtfDD.liYYY (input code 6) .

Entry Point ABRDAT using RCODE YOUR-DATE giving CCODE RETURN-DATE

input is DDKMMMÜYY (input code 4).

ENCLOSURE B

B-27

Date Code General Format

0
1
2
3

4

5

6

Parameters

System date

YYMMDD

Julian YYDDD

DDMMYY

DDÜMMMtfYY

DD«MM...MKYYYY

MM...MKDD.KYYYY

RCODE PICTURE

CCODE PICTURE

YOUR-DATE PICTURE

RETURN-DATE PICTURE

S9(5) COMP-1.

S9(5) COMP-1.

X(8) .

X(20) .

RCODE gives the desired format of the output; it
4, 5, 6.

CCODE is zero if the input data is valid and is
invalid.

(b) Flow charts.

ENCLOSURE B

Example

730629

73180

290673

29 JUN 73

29 JUNE 1973

JUNE 29, 1973

range is 1, 2, 3,

9 if the data is

B-28

Get System

date

Jt
Determine if

leap year and

adjust tables

Compute

Julian date

B-29
ENCLOSURE B

IHKMi

ö
1

Determine if

leap year and

adjust tables

Determine

month* and

day of month

END-jlTl

Determine if

leap year and

adjust tables

(Determine
(month*
'

and day of

month

*Month is used here to mean the

numeric month (e.g., 12=December).

ENCLOSURE B

B-30

EE

y HH J

Add up the total

number of dayp in

all preceding

months

Add the day õ|í

the month to

the above totfcil

(TOTAL-COUNT)

Move the

Julian date tfc>

•RETURN DATE

Determine if

leap year and

adjust tables

¿_
Determine mon

and day of

month

h

Look up full

name of month

©

=9

Character by

character

Move the year

to the left s4>

that only -one-

blank appears after

the jaaae-.of the month

Move formatted

date to

RETURN-DATE

END-JlTl

ï ove input datt to returí;-date

END-[T

\7
|END-] T

B-31

ENCLOSURE B

FF

Move day, month and

year to their'output

positions and¡move

to RETURN-DAT¿

ENCLOSURE E

B-32

5

^Entry YYMMDDj

©
[wove day and year

to appropriate positions

in work area

WSCIVDATE

Move the number of

the month to

index I

FF1

B-33

ENCLOSURE B

Entry JULlÀÎ^

J
Hõvè input

to work area

JULIANXX

“Check thãFTHe JULIAN

date is numeric and

that the day I ~

not less thani 1 and

not gxe-ater than 366

If the Julian date

is invalid move

9 to CCODE

Determine if leap

year and adjust

tables accordingly,

number of days in

year and in February

.of YES Move 9 to

CCODE

YL S

Move day and year

to appropriate

positions in work

area WSMILDATi:

Move the numbe

of the month

to index I

ENCLOSURE B

B-34

Convert Julia i

date to month

day year_

Format oucput

and move to RETURN

END-ÍT

¡Move input

I date to RETURN-DATE

Convert Juliat

date to month

day ya«tt-

Format output
and move to

RETURN-DATE

P ND-IT

ENCLOSURE B

DATE

B-35

ENCLOSURE B

Move I to
Month

!YEAR<—
I number
1charad
• narnp n

-7 +
of
;ers in
F mnnfh

YDATE1(1)

MDATE1(YEAR)

YEAR <r-YEAR +]l

YDATE1(2) <—

MDATE1(YEA R)

YOUR-DATE

—YDAIg-

Ô

YEAR is a pointer to
the third and fourth
digit of the year in
format 5; e.g., for
20#MARCHjif 197 3
YEAR = 12 initially
pointing at the "7"

MDATE1 contains

the input date

Move number o:r

characters in

aaire Q^f month to YEAR

.YEAR YEAR + 2

; YDATE1 (5X-

IMDATEI (YEAR)

YEAR — YEAR + 1

YDATEl(6)<r—

■MDATEjl (YEAR

YEAR «- YEAR-

YDATEl(l)«-

-MDATE¡L (YEAR

+ 5

YEAR «=— YETOTT 1

YDATE(2) ^-

-MPftTFI (YEAR)

[YOUR-DATE *— {fDATE

o
B-36

Convert Julian

date to

month day yea):

Get 3 character

month abbrev.

and move to

output area I

Move formatte 3

output to

RETURN-DATE

Convert Juliah

date to

month day yea:

Move day and

year to work'

area WSCIVDATI!
i

Move full name

of month to

WSCIVDATE

Close up

WSCIVDATE,

move to

RETURN-DATE

Convert Julian

date to Month

day and year

Move dly and ’’i

year to work I

area

WSMILDATE

Move full name

of month to

WSMILDATE

I Close up

I WSMILDATE

to eliminate

unwanted blanks

B-37

ENCLOSURE B

ENCLOSURE B

B-38

TO CONVERT JULIAN DATE TO MONTH DAY YEAR

!To determine if leap

year divide year by

4 if remainder = 0

then it is a leap year

NOTE : I is the month

(e.g., 2=Feb; TOTAL-COUNT

is the day of the month)

ENCLOSURE B

B-39

6. COORDINATE CONVERSION SUBPROGRAM (CRDFS).

a. Subsystem Structure. Not applicable.

b. Identification and Description of Subprogram included in the
Subsystem.

(1) Abstract of Subprogram.

(a) Function. This program will convert the coordinates of

one geographic point, from 11 character internal to 15 character external

format. This program also makes error checks on the input data.

(b) Calling Sequence Parameters received and passed.

1^. IN-LENGTH - Describes the number of characters in the
IN-DATA field. It should be equal to 11.

2^. OUT-LENGTH - Describes the number of characters
generated by the subprogram and placed in the OUT-DATA field.

3. EXIT-FUG - A value of "1" in EXIT-FUG indicates a

successful execution of this subprogram; a value of "2" indicates an error
in the input data.

4k IN-DATA - The coordinates of one geographic point are
input to this subprogram in IN-DATA. The coordinates are given in 11

character format, the first 5 characters give the latitude in degrees and

thousandths of a degree, with the sign given in the zone position of the

5th byte, the 6th through 11th character give the longitude in degrees and

thousandths of a degree with the sign in the zone position of the 11th
+

byte, e.g. 45500105250.

_5. OUT-DATA - This field will contain either the

converted coordinates or an error message. The converted coordinates are

given in 15 character external format: degrees, minutes, seconds, quadrant,

degrees, minutes, seconds, quadrant with leading zeroes (North latitude and

East longitude are considered positive), e.g. 453000N1051500W.

6^. FIELD-NAME and FILE-NAME - These fields are not used.

(c) Narrative Flow. The entry point of the program in 'CRDFS.'

The data is tested to determine if it is numeric and valid, it is then
converted to the output format.

(2) Capabilities. This program validates and converts the

coordinates of a geographic point from 11 character internal format to
15 character external format.

ENCLOSURE B
B-40

c. Error Messages.

(1) "ERROR COORDINATES NOT NUMERIC."

(a) There is non-numeric data in the input field of IN-DATA.

(b) Check for a blank input field or mispunched data.

(2) "ERROR COORDINATES NOT VALID."

(a) Either the magnitude of the latitude is greater than 90°

or the magnitude of the longitude is greater than 180°.

(b) Check the input field for mispunched data.

7. COORDINATE CONVERSION SUBPROGRAM (CRD6S). This subroutine is a

modification of CRDFS. It converts the geographic coordinates of a single

point from the 13 character internal format to the 15 character external
format, e.g.

+
input 450001052505

output 453000N1051502W.

8. COORDINATE CONVERSION SUBPROGRAM (CRDGS).

a. Subsystem Structure. Not applicable.

b. Identification and Description of Subprograms included in the
Subsystem.

(1) Abstract of Subprogram.

(a) Function. This program will convert the coordinates

of a single geographic point from 15 character external to 11 character

internal format. This program also makes error checks.

(b) Calling Sequence Parameters received and passed.

1^. IN-LENGTH - Gives the number of characters in the
IN-DATA field. It should be 15.

2^. OUT-LENGTH - Gives the number of characters in the
OUT-DATA field.

ENCLOSURE B

B-41

3. EXIT FLAG - A value of '1' in EXIT-FLAG indicates

a successful completion of the subroutine; a value of '2' indicates an

error in the input data.

4. IN-DATA - The coordinates of a single geographic

point are input into IN-DATA. The coordinates should be given in 15 character

external format, i.e. 7 characters for the latitude expressed in degrees,

minutes, seconds, and N or S with leading zeros, and 8 characters for the

longitude expressed in degrees, minutes, seconds, and E or W with leading

zeros, e.g.

45o30,00"N105°15,00"W would be give:, as

453000N1051500W.

5>. OUT-DATA - This field will contain either the

converted coordinates or an error message. The converted coordinates are

given in 11 character internal format, i.e. 5 characters for the latitude

expressed in degrees and thousandths of a degree, with the sign in the

zone position of the 5th byte; the 6th through 11th characters give the

longitude in degrees and thousandths of a degree with the sign in the zone

position of the 11th byte, e.g.

+
45500105250.

used.

6. FIELD-NAME and FILE-NAME - These fields are not

2- Narrative Flow - The entry point of the program is

’CRDGS.' The data is tested to determine if it is numeric and valid, and

if it is, then it is converted.

(2) Capabilities. This subroutine can convert the coordinates of

one point from 15 character external to 11 character internal format.

c. Error Messages.

(1) "ERROR COORDINATES ARE NOT NUMERIC."

(a) There are non-numeric characters in che degrees, minutes

or seconds fields.

(f* Check input field for blanks and non-numeric data.

(2) "ERROR QUADRANTS INVALID."

ENCLOSURE B

B-42

(a) The seventh character is not 'N' or 'S' or the fifteenth
character is not 'E* or 'W.'

(b) Check the seventh and fifteenth character for punch
errors.

(3) "ERROR COORDINATES INVALID."

(a) The magnitude of the latitude is greater than 90°, or

the magnitude of the longitude is greater than 180°, or the magnitude of

the minutes or seconds is greater than 59.

(b) Checks the above fields for punch errors.

9. COORDINATE CONVERSION SUBPROGRAM (CRD7S). This subroutine is a

modification of CRDGS. It converts the geographic coordinates oe a single

point from 15 character external to 13 characters internal format, e.g.

input 453000N1051502W

+
output 4550001052505.

10. COUNTRY CODE CONVERSION SUBPROGRAM (CTY1S).

a. Subsystem Structure. Not applicable.

b. Identification and Description of Subprograms included in the
Subsystem.

(1) Abstract of Subprogram.

(a) Function. The program is designed to accept a 2-character

country cod~. search a table of country names and output a 14-character

country name, or an error message if the country name is not found.

(b) Calling Sequence Parameters received and passed.

JL IN-LENGTH - Describes the number of characters in
the IN-DATA field. It should be equal to 2.

2. OUT-LENGTH - Describes the number of characters

returned by the program in the OUT-DATA field. If the country name is

located OUT-LENGTH will be 14, if not OUT-LENGTH will be 31.

ENCLOSURE B

B-43

3. EXIT-FLAG - A value of 1 in EXIT-FLAG indicates

that the country name has been found. A value of 2 indicates that

the country name has not been found.

4. IN-DATA - Contains the two character country code.

_5. Ol^-DATA - Either contains the 14-character country

name or the 31-character error message when the country name is not

located.

6. FIELD-NAME and FILE-NAME - These fields are not

used for this program.

(c) Narrative Flow. The entry point of this program is

CTY1S. A binary search of the country code table is performed (BINARY-

TEST, CC-GREATER, CC-LESS). The country name is returned (FOUND-IT).

If the country name is not found an error message is returned (CC-ERROR-

EXIT).

(2) Capabilities. This subprogram given a 2-character country

code performs a binary search of the country code table and returns

a country name on error message.

c. Error Message. "COUNTRY CODE NOT FOUND IN TABLE."

(1) The country code is not standard or it has been mispunched.

(2) Check the country code.

11. COMPARISON OF MARK III AND MIDMS GEOGRAPHY OPERATORS YND CONVERT

ROUTINES .

a. Transfer Values.

(1) In Mark III a field must be defined in the FFT to receive

transfer values from the special operators.

(2) In MIDMS a field to receive transfer values may be defined

in the query or in the FFT.

b. General Geographic Operator.

(1) The capability to compare a file polygon with a search

circle for overlap exists in Mark III and not in MIDMS.

ENCLOSURE B

B-44

(2) Capabilities in MIDMS and not in Mark III.

(a) The distances left and right of the leg need not be
equal.

(b) There may be more than one frame across a leg.

(3) Language Differences.

(a) Default value of leg width.

_1. In Mark III it is 20 nm.

2. In MIDMS it is 0 nm.

(b) Transfer Values. The MIDMS Route Search Operator returns

a 3 character, user-defined, leg number, as well as a one character sort

key (left=2, right=l).

d. Circle Search.

(1) In Mark III the radius of the search circle is limited •'O

99.9 nm, whereas in MIDMS it is limited to 300 nm for accurate results.

(2) The MIDMS Circle Search Operator can return an identifying

number for the search circle or point which hits the file circle on point.

This capability is not available in Mark III.

12. ROUTE SEARCH SPECIAL OPERATOR (RTS3X).

a. Subsystem Structure. The Route Search Special Operator is

depicted below.

ENCLOSURE B

B-45

The flow of control is shown below:

The Route Search Special Operator passes a coordinate from a file against

the data description of a leg to determine whether the coordinate falls

within specified parameters. If it does, the coordinate's relative

position to the leg, and its frame (optional) or its time (optional) is

output with other supplemental <lata.

b. Identification and Description of Subprogram.

(1) RTS3X

(a) Abstract Function.

_1. Function. Given the coordinates of a geographic

point from the file and the parameter defining a leg (from RTC3S),

this routine determines if the point lies within the leg rectangle.

If the point lies within the leg then the cross-leg and down-leg

distance then the cross-leg and down-leg distance are returned along

with the frame number (optional) or time (optional).

2^. Calling Sequence.

Entry point RTS3S using

USER-CALLING-SEQUENCE GIVING

USER-CALLING-SEQUENCE.

ENCLOSURE B

B-46

Route Search Special Operator (RTS3X)

a. Subsystem Structure. The Route Search Special Operator

is depicted below.

RTS3X

CRDVAX

CVT531

The flow of control is shown below:

The Route Search Special Operator passes a coordinate from a file

against the data description of a leg to determine whether the

coordinate falls within specified parameters. If it does, the

coordinate's relative position to the leg, and its frame

(optional) or its time (optional) is output with other

supplemental data.

b. Identification and Description of Subprogram.

(1) RTS3X

(a) Abstract Function.

B-47

The formats of the fields in USER-CALLING-SEQUENCE are depicted below:

S9(6) S9(6) S9(6) X(360) H X(360)]□
OUT-DATA

IN-DATA

EXIT-FLAG

OUT-LENGTH

IN-LENGTH

IN-LENGTH is a binary field, which contains the number of valid

characters in the IN-DATA field.

OUT-LENGTH is a binary field, which contains the number of valid

characters in the OUT-DATA field.

EXIT-FLAG is a binary field. The program places a code into EXIT-FLAG

to indicate the outcome of the execution.

EXIT-FLAG = 1 file point in leg ("hit").

2 file points not in leg ("miss").

4 file point coordinates are invalid.

IN-DATA contains the file point coordinates in either 11, 13, or 15
character format as shown below.

ENCLOSURE B

B-48

15-char
1

1
5

99 99 99 999 99 99

-DIR-LON

'SEC-LON

MIN-LON

DEG-LON

DIR-LAT

SEC-LAT

MIN-LAT

DEG-LAT

11-char 1
1 1

S99V999 S999V999

!

13-char 1
1 3

S99V9999 S999V9999 : \

ENCLOSURE B
B-49

The OUT-DATA field is used to input the xeg parameter generated by

RTC3S upon entering RTS3S, and to output the generated value or

error message upon exiting RTS3S. The format of OUT-DATA upon entering

RTS3S is identical to the format upon exiting RTC3S (see description

of RTC3S). The format of OUT-DATA upon exiting RTS3S is shown below.

In even of a "hit" (EXIT-FLAG»!),

1 1111 11 11 22
134 890 4569 67 89 01

LEG-OPI is the leg identifier number. (Display)

DIS-DTK is the down-leg distance in nm. (Display)

SRTKEY is the sortkey. (Display)

= 1 for right

2 for left

NMI is the cross-leg distance in mn. (Display)

B-50

ENCLOSURE B

OFF-DIR is the direction of the point

"L" or "R" for left or right. (Display)

If the frame option is used:

FRM-NBR-OUT is the frame number of the file point. (Display)

If the time option is used, HRS, MIN, and SEC gives the time that the

file point would occur along with the leg. (Display)

In the event of invalid coordinates in the file EXIT-FLAG is set to 4

and an error message is placed in OUT-DATA.

5

1 0

X(5)

*■" ' ERROR-OUT

(b) Description. The Route Search Special Operator uses a

planar model. The coordinates of the file point are projected onto a

plane with a cartesian coordinate system with origin at the initial point
of the leg. The formulas used are:

XTEMP * (X2-X0) * 60.0000 *DEL,

and

XTEMP=(Y2-40) *60.0000.

when:

X2 is the longitude of the file point in degrees.

Y2 is the latitude of the file point in detrees

X0, Y0 are the longitude and latitude of the origin of the leg in degrees.

DEL is the cosine of the average latitude.

The coordinates are then rotated to a coordinate system along the leg.
The formulas used are:

XP = XTEMP * COSINE-THESTA + YMTEMP * SINE-THETA.

The planar model is ecpecter

ENCLOSURE B
B-51

The picture of leg coordinate frame is amplified below:

Terminal point

of leg

Once the coordinates along the leg (XP) and perpendicular to the leg

(YP), have been computed they are compared with the limits computed

in RTC3S. The limits are:

ENCLOSURE B

B-52

O < XP < XP-MAX

- RIGHT-DIST < YP < LEFT-DIST

(NOTE; XP and YP are signed numbers, YP positive to the left of the

leg negative right of the leg.)

The value of OPT is tested to determine if the leg used the frame-

option (0PT=1) or line option (0PT=2).

If the frame option has been taken, a test is made to see if the . '.le

point lies in the extension area (i.e., XP LEG-LENGTH) in which case

the terminal frame number is returned. If the file point is not in

the extension area, the following formula is used to compute the

frame number.

XP

frame-number = DF + FI * AX

LEFT-DIST-YP

AY +

where:

BF is the beginning frame number.

X is the length of a frame in the X direction.

Y is the length of a frame in the Y direction.

FI is the number of frames in the Y direction in the leg rectangle.

The symbol [Z] represents the largest integer in Z (i.e., if Z * 1.37

then [Z] = 1).

These parameters are depicted on the next page.

ENCLOSURE P

B-53

<
Ax

9 nm--3 nm

r
Ay

3 nm

1 nm I P

101 105 104 113 119 121

102 106 110 114 118 122

103

1-

107 111 115 119 123

104 108 112 116 120

-,

124

initial point

of leg

H
EXTENSON

AREA

124

terminal point

of leg

Here BE = 101, FI = 4, X = = 1.5 nm, Y = 1 nm

6

If the time option has been taken, the time from midnight of passing

the target in seconds is computed by:

TME-AT-TGT = TIME1 * SEC-PER-MILE;

the time in hours

hours =

by

TM-AT-TGT

3600

the minutes by

minutes = (TME-AT-TGT - 3600 * Hours)

60

and the seconds by

seconds = TM-AT-TGT - 60 * minutes - 3600 * hours.

In the event that the file point is invalid, EXIT-FLAG is set to 4 and an
error message returned.

B-54
ENCLOSURE B

Renter rts3s)

HOUSEKEEPING ^ "

INITIALIZE

RTS3S-OUT AND

INITIALIZE-COORDINATES

LEG-OPT

VALIDATE I
THE FILE

POINT COORDINATES

NO EDIT-CHK

EXIT

MOVE ERROR

MESSAGE AND

FILE DATA TQ-loUTPUT AREA 1
: CONVERT

!COORDINATES
TO INTERNAL FORM

COMPUTE OUT-LENGTH

= 50 +IN-LENGT 3

TRANSFORM-COO:

ADJUST LONGITpDE

TO INTERNAL

0 4. Jong <

MOVE 4 to EXIT-FLAG

OUTPUT AREA T) OUT-DATA

360
LEAVE SUB

TRANSLATE COORDINATES

AND CONVERT IQ NAUTICAL MILES

ROTATE

COORDINATE FF

BY THEjTA

J

NO HIT

MOVE 2 TO

EXIT-FLAG

25 TO OUT-LENGTH

LEAVE-SUB

Q
1

EXIT RTS3S ^

LEAVE SUB

ENCLOSURE B

B-55

HIT-OR-MISS

TIME-OPTION

COMPUTE TIME AT

FILE POINT IN

SECONDS (TME-i iT-TGT)

NO-HIT CONVERT TME-Ãl-TGT

TO HOURS, MINUTES
AND SECONDS I

WOVE "L" TO OFF-DIR

^OV 2 TO SRTKEY

CHK-OPTION

MOVE "R" TO

OFF-DIR; MOVE

FINAL-OUTPUT

1 TO SRTKEY

INITIALIZE

TIME-OUT-

UU TU DEFENDING

ON OPT

FRAME-OPTION 1

TIME-OPTION 2

FRAME-OPTION

FINAL-OUTPUT

MOVE DATA

TO OUTPUT

AREA-

LEAVE-SUB

ENCLOSURE B

B-56

13. ROUTE SEARCH CONVERSION MODULE (RTC3X).

a. Subsystem Structure.

(1) The Route Search Conversion module is depicted below:

RTC3X

CS41X

CS43X

CS47X

FRAMX

TIMEX

CRDVAX

CVT531X

The flow of control is shown on the next page.

ENCLOSURE B

B-5V

The Route Search Conversion module acts as a preprocessor for the Route

Search special operator. A description of a leg of the route is input

to this module and the parameters to be used by the Route Search

special operator during the file search.

b. Identification and Description of Subprograms included in the

Subsystem.

(1) RTC3X

(a) Abstract.

1.. Function. This is the executive routine of the

Route Search Conversion module. The function of the module is to

construct a rectangle about the route leg, convert multiple formats

into a standard format, and make error checks on user supplied

parameters. If no errors are encountered, data output from this module

may be used as input to the Route Search special operator.

2^. Calling Sequence.

Entry Point RTC3S using USER-CALLING-

SEQUENCE GIVING USER-CALLING-SEQUENCE.

The formats of the fields in USER-CALLING-SEQUENCE are depicted on the

next page.

B-58
ENCLOSURE B

6 7

1 1
2 3

1 1
8 9

3 3

7 7

8 9

7

3

8

S9(6)

.
S9(6) S9(6) X(360) j

OUT-DATA

IN-DATA

EXIT-FLAG

OUT-LENGTH

IN-LENGTH

IN-LENGTH is a binary (computarional-1) field, which contains the number of
valid chiracters in the IN-DATA field.

OUT-LENGTH is a binary (computational-1) field, which contains the number

of characters generated by the program and placed in the OUT-DATA field.

EXIT-FLAG is a binary (computational-1) field which contains a flag which

may have a value of "1" or "2". "1" indicates good data and "2" indicates

invalid input data and an error messagi will be found in the OUT-DATA
field.

IN-DATA contains the input data left-justified. The first 36 characters
are the same for all formats.

ENCLOSURE B

B-59

1 1 1 1 11 11 1 2 2
1 3 4 56 78 90 1 2 A 56 78 9 O 1

3 3

5 6

LEG-NMBR is the identifying number of the leg (usage is display).

YDEG1, YMIN1, YSEC1 are the degrees, minutes, and seconds of the latitide
of the initial point of the leg (usage is display).

YDIR1 is either "N" or "S" indicating North or South (usage is display).

XDEG1, XMIN1, XSEC1 are the degrees, minutes, and seconds of the

longitude of the initial point of the leg (usage is display).

XDl^l Is either E or W indicating East or West (usage is display).

ENCLOSURE B

B-60

The next portion of the input field contains the left and right distance

either or directly on in the altitude, focal length, and focal plane
format.

3 4 4 4 4 4 4

7 0 1 2 3 6 7

WIDTH1

MI-WIDE is the cross-range distance in nautical miles (usage is display).

OFF-SET is "L" for left or "R" for right.

WIDTH2 gives the corresponding data for the other side of the leg.

3 3 4 4 4

7 9 0 2 3

FORMAT-43 S999 S99V9 X X(317)

FILLER

FCL-PLNE

FCL-LNGT

ALTITUDE

ALTITUDE is

FCL-LNGT is

FCL-PLNE is

the altitude in thousands of feet (usage is display),

the focal-length in inches,

the focal-point code:

A 4.5 inches,

B 9.0 inches.

ENCLOSURE B B-61

3

7

A A
0 1

FORMAT-Al S999V9 3 1 X(319)

IZ_
FILLER

OFF-SET

MI-WIDE

Only one off set is given in this format (the other is assumed to be zero)

If the frame option is used we may define the leg rectangle by either

format A7, A3, or A1 and continue with the frame data.

FORMAT-59

-55

-53
[X99 X9(A) X9(A)

TERM-FR

INIT-FR

FILLER

INTEVAL

FILLER

INTEVAL is the number of frames across the leg.

INIT-FR is the initial frame number.

TERM-FR is the terminal frame number.

If the time option is used we may define the leg rectangle by either

format A7, A3 or A1 and continue with the time data.

B-62
ENCLOSURE B

FORMAT-60

56

54

S99 S99 S99 S99 S99 S99 1
S60B

M60B

H60B

S60A

M60A

H60A

FILLER

H60A is the hours field.

M60A is the minutes field.

S60A is the seconds field of the time of the initial point of the leg.

H6QB, M60B, and S60B are the corresponding fields for the terminal

point of the leg.

H56A.S56B are the corresponding fields for FORMAT-56; and

H54A, ..., S54B are the corresponding fields for FORMAT-54.

Formats 60, 56, and 54 are formed by adding the time data to formats

47, 43 and 41 respectively.

All entries in IN-DATA are display usage.

The OUT-DATA field contains the output either an error message or

generated data which is to be used as input to the Route Search special

operator.

If an error is discovered in the input data, an error message is returned

in OUT-DATA as shown on next page.

ENCLOSURE B

B-63

P 8
3
6
O

X(80) X(240) S

If no error is discovered the OUT-DATA field has the format shown below.

1 3 4 6 7

1 1
2 3

1 1
8 9

2
4

999 XXX S9999V9999 S9999V9999 9 V
SYS-CODE

YO-DEG

XO-DEG

FILLER

LEG-OUT

ENCLOSURE B

B-64

2 3 3 3 3

5 0 1 6 7

4 4 4 4

2 3 8 9

5 5 6

4 5 0

S S9999V9999 S9999V9999 S9999V9999 S9999V9999 S9999V9999 S9999V9999
SINE-THETA

COSINE-THETA

Y-MIN

Y-MAX

X-MIN

X-MAX

6 66 77 77 88 99 9

1 67 23 89 45 01 6

S9999V9999 S9999V9999 S9999V9999 S9999V9999 S9V9999999 9

T
OPT

DEL

LEG-LENGTH

RIGHT-DIST

LEFT-DIST

XP-MAX

ENCLOSURE B

B-65

In case of frame option:

11 11
9 0 0 0 0
7 2 3 8 9

11 11
11 2 2
4 5 0 1

1
2
6

In case of time option:

1 1 1
9 0 0 0
7 2 3 8

S999999V99 S999999V99

~J
■SEC-PER-MILE

TIME1

ENCLOSURE B

O

O
'

L
O

Field Name Usage Description

LEG-OUT

XO-DEG

YO-DEG

SYS-CODE

X-MAX

X-MIN

Y-MAX

Y-MIN

COSINE-THETA

SINE-THETA

XP-MAX

LEFT-DIST

RIGHT-DIST

LEG-LENGTH

DEL

OPT

FI

BF

EF

RECIPROCAL

-OF-DELTAX

RECIPROCAL

-OF-DELTAY

Display

Floating point

Floating point

binary

Floating point

Floating point

Floating point

Floating point

Floating point

Floating point

leg identifying number

Longitude of point 0 in degrees

Latitude of point 0 in degrees

Code indicating coordinate frame

used (see diagram below)

Maximum X for gross test

(see below)

Minimum X for gross test

(see below)

Maximum Y

Minimum Y

Cosine of angle of rotation theta

(see below)

Sine of theta

Floating point

Floating point

Floating point

Floating point

Floating point

binary

Length of leg to extension area

left displacement of leg rectangle

Right displacement of leg rectangle

Length of leg

Cosine of the average latitude

Option code = 1 frame

2 time

0 otherwise

binary

binary

binary

Floating pointl See FRAMX description

Floating point

ENCLOSURE B

B-67

Field Name

TIME1

SEC-PER-MILE

Usage

Floating point

Floating point

Description

See TIMEX description

The possible coordinate frames are shown below.

-180
-90

Greenwich Meridian

+90 +180
SYS-CODE*!

180°W 90°W 90°E 180°E

Greenwich Meridian

+90 +180 +270 +360
SYS-C0DE=2

0C 90°E 180°E 90°W

Example 170°W -170, SYS-C0DE=1;
190, SYS-C0DE=2.

ENCLOSURE B

B-68

Hie rectangle constructed about leg is shown below:

Maximum of

LEFT and RIGHT-DIST

LEFT-DIST

RIGHT-DIST

ENCLOSURE B
B-69

The maximum, minimum values of X and Y are depicted below:

Greenwich

Y

X (Equator)

ENCLOSURE B

B 70

(b) Description.

(1) A planar model is used throughout this program;

however, the convergence of the meridians of longitude is accounted

for by multiplying distance along parallels of latitude by the cosine

of the average latitude.

(2) The formulas used are presented below:

Given A in radians the truncated series below is used to compute

cosine a = 1 - a__ + a_ - a_ + a_ - a_

'2.' 4.' 6.' 8! IO.'

The average latitude in radians is computed by:

2
AVG = [.0174533 rad/deg x _1 x (Lat of ptl + Lat of pt2)]

2

The cosine of the average latitude is computed by:

o q / in

DEL = 1 - 1. AVG + 1 AVG - 1 AVG + J. AVG - 1 AVG

2 4! 6! 8! 10!

The X and Y coordinates are computed by means of the following equations

X(nautical miles) = X(degrees) 60 (nm/deg) cosine a

where: a the average latitude of the leg.

and

Y(nautical miles) = Y(degrees) 60 (nm/deg)

ENCLOSURE B

B-71

The length of the leg is computed by:

LEG-LENGTH = 4 (AX)2 + (Ay)2

and the functions SINE THETA and COSINE THETA are computed by

SINE-THETA = AY/LEG-LENGTH

COSINE-THETA = AX/LEG-LENGTH

(NOTE: HIS COBOL did not properly squareAx andAY and therefore,

GMAP patches were inserted for this purpose.)

The leg rectangle is extended by the maximum of the left and right

distances (LEFT-DIST, RIGHT-DIST). This maximum is called W-MAX.

ENCLOSURE B

B-72

In order to test the file point quickly on the Route Search special

operator, the limits of latitude and longitude are computed in this

program and passed to the Route Search special operator. First,

the X,Y coordinates of the corner points are computed. Next, the

maximum and minimum values of X and Y *re found. Finally, these

maximum and minimum X and Y are converted to degrees. The diagram

below shows the labelling of the corner points.

Comer Points

ENCLOSURE B

B-73

(c) Limitations.

(a) All coordinates must be in standard 15

character format.

(b) Accuracy decreases when the leg or its associated

data is more than 300 nautical miles.

(c) Leg coordinates cannot extend across the poles.

(d) Beginning and ending times are not continuous

over the international date line nor through midnight.

(e) Number of leg is limited by the system (main

program) to a maximum of 219 (depending on the format).

(f) Pitch of camera is assumed to be zero.

ENCLOSURE B

B-74

ENCLOSURE B

B-75

mumm

CHK-FMT-EXIT

1

X/ ENCLOSURE B

B-76

CHK-OPTIONS-

EXIT

ENCLOSURE B

B-77

CHK-OPTIONS-EXIT

ENCLOSURE B

ENCLOSURE B

B-79

COORD-CONVERSION

Determine

SYS-CODE

Move P0INT1

to A-POINT

IS tO A-LENGTH
«ML.

Call

CRDVAL

n
Validate the

coordinates

, GROSS-RECTANGLE-EXIT

Adjust coordijnates

by SYS-CODE.

Move P0INT2 to
A-POINT
15 to A-LENGTH

I

ENCLOGURE B

B-80

GROSS-

RECTANGLE-

EXIT

Adjust

coordinates

by SYS-CODE

Move lat of]

point 1 to YO

and Ion to X(î

COS-NG-LAT_!_

Compute the

cosine of the

average latitudes

<*—Jr—and

Convert

coordinates to

displacements!

in nautical mj.les

COMPUTE-LENG^H-AND-TRIG

Compute DELTAjx

and Square

DELTAX

I Compute DELTAJy

and Square

DELTAY

Compute LEG-

LENGTH =

/AX2 + AY2

AREA

Determine the

maximum displacement

I
Compute

XP-MAX
i_

GROSS-RECTANGLE

Compute coordinates

of corner

points of leg

_!__

Determine max

and min of

corner points

Convert

and min

coordin

from nm
degrees

max

ates

to

GROSS-RE CTANGLE

r Exit

GROSS-

RECTANGLE -

EXIT

ENCLOSURE B B-81

(2) CS41X

(a) Abstract.

JL. Function.

ji. This subroutine handles the case where

the Route Search leg being defined has only one displacement left
or right.

jj. Given a distance in nautical miles and a

direction, L or 'R1, this program validates the input and converts
the distance to floating point format.

2^. Calling Sequence.

Entry CS41S USING A-DATA,

GIVING B-DATA, A-FLAG

where:

A-DATA contains the input data in the format shown below:

1 4

FILLER

DIRECTION

DELTA

where DELTA is the cross-leg distance and is Display usage.

B-DATA contains the output data in the format shown below:

1 6 7
1
2

S9999V9999 S9999V9999

1
RIGHT-DIST

LEFT-DIST

ENCLOSURE B

B-82

where RIGHT-DIST and LEFf-DIST are the right and left cross-leg

distances and are in computational-2* (floating point) usage.

A-FLAG contains a flag indicating whether the input data was valid

or not. The format is shown below:

1 6

S9(6)

l A-FLAG

A-FLAG is in computational-1* (binary) usage and has the values:

A-FLAG =

(b) Description. DELTA is tested for numeric and

if it is numeric, it is moved to RIGHT-DIST, if DIRECTION is "R" or

LEFT-DIST if DIRECTION is "L". If direction is neither "R" nor "L"

A-FLAG is set to 2.

* Refers to HIS COBOL.

ENCLOSURE B

B-83

(^Entry C à41S ^

Move 1 to
A-FLAG

ENCLOSURE B

B- >4

.....

(3) CS43X

(a) Abstract.

1. Function. This subroutine handles the case

where the Route Search leg width is defined by altitude, focal

length, and focal nlane size. The subroutine validates the input

parameters and computes the right and left distances, and returns

them in floating point format.

2. Calling Sequence.

ENTRY CS43S USING A-DATA

GIVING B-DATA, A-FLAG.

where:

A-DATA contains the input data in the format shown below:

1 3 4 6 7

S999 S99V9 X

FCL-PLNE

FCL-LNGT

ALTITUDE

where

ALTITUDE is the altitude in thousands of feet (usage is Display).

FCL-LNGT is the focal length in inches (usage is Display).

FCL-PLNE is the focal plane code (usage is Display).

FCL-PLNE = Ta, 4.5 inches

[B, 9.0 inches

ENCLOSURE B

B-85

B-DATA contains the output data in the format shown below:

1
1 6 7 2

S9999V9999 S9999V9999

RIGHT-DIST

LEFT-DIST

where RIGHT-DIST and LEFT-DIST are the right and left cross-leg

distances and are in computational-2* (floating point) usage.

A-FLAG contains a flag indicating whether the input data was valid

or not. The format is shown below:

1 6

A-FLAG is in computational-1* (binary) usage and has the values:

A-FLAG =|1» successful execution

^2, invalid data

(b) Description. The input data is validated and then:

ALTITUDE is moved to AL, FC-LNGT is moved to FL, and 4.5 or 9.0 is

moved to IT depending on whether FCL-PLNE equals A or B respectively.

The cross-leg distance W-MAX is computed as follows:

FP * AL

W-MAX = 12.1522 * FL

* Refers to HIS COBOL.

ENCLOSURE B

B-86

The formula follows fiom tne law of similar triangles:

Focal Plane

W-MAX nm = !_ FP in x AL thousands of feet

2 FL in x 6.0761 thousands of feet/nm

where the units in the above are given by: nm, mautical miles
in, inches.

The conversion factor 6076.1 feet/nm is also used.

ENCLOSURE B

B-87

^Entry CS43S^

ENCLOSURE B

B-88

(4) CS47X

(a) Abstract.

JL. Function.

£. This subroutine handles the case where the

Route Search leg being defined has both a right and left disolacement

(not necessarily equal).

Ik Given two distances in nautical miles

and directions, "L" and "R", this program validates the input and

converts the distance to floating point format.

2. Calling Sequence.

ENTRY CS47S USING A-DATA,

GIVING B-DATA, A-FLAG.

where:

A-DATA contains the input data in the format shown below:

1 1
1 4 5 6 7 0 1

S999V9 S999V9

DIRECTION2

DELTA2

FILLER

DIRECTIONl

DELTA1

where DELTA1 and DELTA2 are the cross-leg distances and are in DISPLAY

usage, and DIRECTIONl and DIRECTI0N2 give the direction of the

corresponding displacements, one must be "L", the other "R".

ENCLOSURE B

B-89

B-DATA contains the output data in the format shown below:

11 11 2
1 6 7 2 3 8 9 A

S9999V9999 S9999V9999 S9999V9999 S9999V9999

■""" Y MIN

Y MAX

RIGHT-DIST

LEFT-DIST

where RIGHT-DIST and LEFT-DIST are the right and left cross-leg

distances and are in computational-2 (floating point) usage,

YMIN and YMAX are the limits on the Y-axis of a coordinate frame.

The coordinate frame is shown below:

X-axis

YMAX should not be negative and YMIN should not be positive, they

are both defined to be computational-2 (floating point).

ENCLOSURE B

B-90

A FLAG contains a flag indicating whether the input data whether

the input data was valid or not. The format is shown below:

1 6

S9(6)

A-FLAG

A-FLAG is in computational-! (binary) usage and has the values:

(It successful execution

2, invalid data

(b) Description. DELTA1 and DELTA2 are tested to

determine if they contain numeric data. If DELTA! and DELTA2 are

numeric they are moved to LEFT-DIST and RIGHT-DIST depending on

DIRECTIONl and DÍRECTI0N2. LEFT-DIST is moved to YMAX and
-RIGHT-DIST to YMIN.

ENCLOSURE B

B-91

/Entry CS47SN

Move 2 to A-FLAG

Move DELTA1 15
LEFT-DIST
Move DELTA2 to
RIGHT-DIET

r '»ove
NO

2 to A-

Move DELTA1
to RIGHT-DIET

Move DELTA2
to LEFT-DTST

TTjAC

Move LEFT-DIST
to Y-MAX
Move RIGHT-DI$T to ^

/Exit 03473^

V __J

ENCLOSURE B

B-92

iM

-MIN

(5) FRAMX

(a) Abstract.

_1. Function.

a. This subroutine is used by the Route
Search preprocessor R1C3S, to handle frame data for the frame
option.

J). Given the frame internal beginning
and ending frame numbers and the dimensions of the leg, this
program computes the frame parameters to be used by the Route
Search special operator.

2. Calling Sequence.

ENTRY POINT FRAME USING A-DATA
GIVING B-DATA, A-FLAG.

where:

A-DATA contains the input data in the format shown below:

111
1234 78 123

1 1
8 9

2 2
4 5

3
0

ENCLOSURE B

B-93

INTEVAL is the frame interval (usage is Display).

INIT-FR is the initial frame number (usage Display).

TERM-FR is the termina.' frame number (usage is Display).

LEFT-DIST is the left distance in nautical miles of the leg rectangle.

It is in computational-2 (floating point) usage.

RIGHT-DIST is the right distance in nautical miles of the leg

rectangle. It is in computational-2 (floating point) usage.

LEG-LENGTH is the length of the leg in nautical miles of the leg

rectangle. It is in computational-2 (floating point) usage.

RIGHT-DIST

LEFT-DIST

;rm-fr (EF)

ENCLOSURE B

E -94

B-DATA contains the output data in the format shown below:

11 11 2 3

1 6 7 2 3 8 9 4 0

S9(6) S9(6) S9(6) S3999V9999 S9999V9999

C RECIPROCAL-OF-
DELTAY

RECIPROCAL-OF-

DELTAX

EF

BF

FI

FI is the frame internal converted to binary (computational-1).

3F is the beginning frame number in binary (computational-1).

EF is the ending frame number in binary (computational-1).

RECIPROCAL-OF-DELTAX and RECTPROCAL-OF-DELTAY are special parameters

in floating peint (computational-2).

A-FLAG contains a flag indicating whether the input data was valid or

not. The format is shown below:

1 6

A-FLAG is in binary (computational-1) usage, and has the values:

{1, successful execution
2, invalid data

ENCLOSURE B

B-95

(b) Description.

1. INTEVAL, INTT-FR, and TERM-FR are checked for

numeric data and if they are numeric they are moved to FI, BF and

EF rrespectively.

2. Since INTEVAL is considered to be the number

of frames across the leg INTEVAL should exactly divide the

difference between INIT-FR and TERM-FR. This is illustrated below:

Beginning

Point

Ending

Point

In the above example the number of frames across the leg (INTEVAL) is 4.

INIT-FR=1 and TERM-FR=32. The total number of frames should be a

multiple of INTEVAL. To check this compute

INTEGERl *- 32 - + 1 = 32

(i.e., INTEGERl is the total number of frames).

INTEGER2 «- iNTERl/FI

= 32/4 = 8 + no remainder

Here the remainder is dropped (i.e., the fraction is terminated).

INTEGER2 «— INTEGER2 . FI

= 8 4 = 32

Now if INTEGER2 is not equal to INTEGERl, then the total number of frames

is not a multiple of the frame internal (INTEVAL, FI), and this is not

valid.

ENCLOSURE B

B-96

DELT/X and DELTAY are considered to be the dimension of a frame.

The X-axis is placed along the leg and Y-axis is perpendicular

to it.

DELTAX

DELTAY

X-axis

RECIPROCAL-OF-DELTAX = 1/DELTAX = INTEGER!/LEG-LENGTH FI

RECIPROCAL-OF-DELTAY = 1/DELTAY = FI/(LEFT-DIST + RIGHT-DIST)

The reciprocals presented above are used in the Route Search special

operator.

ENCLOSURE B

B-97

B-98

ENCLOSURE B

(6) TIMEX

(a) Abstract.

_1. Function.

a.. This subroutine is used by the Route

Search preprocessor RTC3S, to handle time data for the time option.

lb. The input consists of the beginning and

ending time for a leg and the length of the leg. The output is

the beginning time as a decimal number in floating point format

and the reciprocal of the speed along the leg.

2^. Calling Sequence.

ENTRY POINT RTMES USING A-DATA

GIVING B-DATA, A-FLAG.

where:

A-DATA contains the input data in the format shown below:

1111 1
1234567890123 8

LEG-LENGTH

SEC2

MIN2

HRS2

SEC1

MINI

HRS1

HRS1, MINI, SEC1 are the hours, minutes, and seconds of the initial
point of the leg.

ENCLOSURE B

3-99

HRS2, MIN2, SEC2 are the hours, minutes and seconds at the terminal
point of the leg.

These values are all in Display usag->.

LEG-LENGTH is the length of the leg in na itical miles, floating

point (computational-2) usage.

B-DATA contains the output data on the format shown below:

1
1 6 7 2

S9999V9999 S9999V9999

L__
SEC-PER-MILE

TIME1

TIME1 is the initial time in seconds from midnight in floating point
(computational-2) usage.

SEC-PER-MILE is the reciprocal of the speed (nautical miles per sec)
in floating point (computational-2) usage.

A-FLAG contains a flag indicating whether the input data was valid

or not. The format of A-FLAG is shown below.

1 6

S9(6)

A-FLAG

A-FLAG is in binary (computational-1) usage, and has the values:

A-FLAG
Í1, successful execution

2, invalid data

ENCLOSURE B

B-100

(b) Description. The hours, minutes, and seconds

fields are validated by verifying that each is in its appropriate

range of values .

0 hours 24

0 minutes 59

0 seconds 59

The times in seconds are then computed and checked to insure that

TIME2 is greater than TIME1.

Finally, the reciprocal of the velocity is computed.

The equations used are:

Time (in seconds) = 3600 (hours) + 60 (minutes) + seconds

SEC-PER-MILE = Total Time (seconds)

length of leg (nautical miles)

= (TIME2 - TIME!)/LEG-LENGTH

The time is kept in seconds since this keeps the value a whole number

and avoids roundoff errors.

ENCLOSURE B

B-101

ENCLOSURE B

(7) CRDVAX

(a) Abstract.

_1. Function.

a. This subroutine validates geographic

coordinates input in either 11, 13 or 15 character tonnât. It

is used by the MIDMS HIS 600/6000 geographic search routines.

_b. Given a length and an input set of

coordinates CRDVAX returns a flag indicating the validity of the

data.

2. Calling Sequence.

ENTRY CRDVAL USING A-LENGTH,

A-DATA GIVING A-FLAG.

where:

A-LENGTH contains the number of valid characters, left-justified,

in the A-DATA field. The format of A-LENGTH is shown below:

1 6

9(6)

Ï A-LENGTH

A-LENGTH is computational-1 (binary) usage.

A-DATA contains the geographic coordinates left-justified. The format

of A-DATA is shown below:

1
1
5

X(15)

A-DATA

ENCLOSURE B

B-103

The A-DATA is redefined for 11, 13 and 15 character format as
shown below:

11 1
1 5 6 12 5

S99V999 S999V999 X(4)

FILLER

LON11 and L0N11X

LATH and LATI IX

111
1 6 7 3 4 5

S99V9999 S999V9999 XX

FILLER

L0N13 and

LATI3 and

L0N13X

LAT13X

1 11 11 1
12 34 56 7 890 12 34 5

E-W and LON-QUAD

LON-MIN-SEC

LON-DEG
LON-GROUP

N-S and LAT-QUAD

LAT-MIN-SEC

LAT-DEG
LAT-GROUP

B-104
ENCLOSURE B

Each character is A-DATA may be individually addressed by Xi.

e.R. 1
3

X

XI3

The usage of all the A-DATA formats is display.

A-FLAG contains a flag indicating whether the input was valid or not.

The format is shown below:

1 6

A-FLAG

A-FLAG is computational-1 (binary) usage and has the possible values

A-FLAG = 1, good data

2, not numeric

latitude exceeds 90°

longitude exceeds 180°

5, Deg min sec invalid

6, latitude not North or South

longitude not East or West

incorrect length

Degrees minutes seconds field in

15-character format is not numeric.

3,

A,

7,

8,
9,

(b) Description. The three cases of possible inputs

are handled separately, but the logic is basically the same for 11

and 13 character cases.

ENCLOSURE B

B-105

The conversion of MIDMS files from IBM to HIS 600/6000 caused a

problem in the geographic coordinates. Since the files are

converted character by character without regard to the meaning

of a field, signed numeric characters may be converted incorrectly.

The table below shows the IBM signed numeric characters and what

they will be converted to on the HIS 600/6000.

IBM HIS 600/6000

Value Print Her

+0¾ CO

+1 A Cl

+2 B C2

+3 C C3

+4 D C4

+5 E C5

+6 F C6

+7 G C7

+8 H C8

+9 I C9

-0 1/ DO

-1 J D1

-2 K D2

-3 L D3

-4 M D4

-5 N D5

-6 0 D6

-7 P D7

-8 Q D8

-9 R D9

Value Print Octal

0 0 00
+17 A 21

+18 B 22

+19 C 23

+20 D 24

+21 E 25

+22 F 26

+23 G 27

+24 H 30

+25 I 31

0 t 40

-1 J 41

-2 K 42

-3 L 43

-4 M 44

-5 N 45

-6 0 46

-7 P 47

-8 Q 50

-9 R 51

As can be seen in the above the value of the positive numbers is

changed. This may be corrected by turning off the number 1 bit of

the character by using a GMAP "AND" operation as shown below:

Mask

This operation must be performed for both the 11 and 13 character

inputs.

ENCLOSURE B

B-106

Since the HIS COBOL conditional test IF ... NUMERIC ... compares

each character to the limits 0 to 9 (octal: 00 to 11) a negative

digit would be considered not numeric. Thus, it was necessary

to turn off bit zero (bg) as well as bit one (b^) before testing

either the 11 or 13 character fields.

The following table presents the output value (A-FLAG) for various
input.

Input Type Input Data A-FLAG

11 or 13 0 < Lat 90.000 7 1

0 <T Lon 180.0000J
Lat or Lon not numeric 2

Lat 90.0000 3

Lon 180.0000 4

15 Lat = 900000 N (or S) 7 1

Lon * 1800000 E (or W)J

Lat or Lon not numeric 9

Lat> 90° 3

Lat minutes >59 or sec >59 5

Lat Quadrant not "N" or "S" 6

Lon>180° 4

Lon minutes or second >59 5

Lon Quadrant not "E" or "W" 7

ENCLOSURE B

B-107

n

VAL-13

"Turn oit El Es’
0 and 1 in

characters no,. 6 and 13

NO

LESS-90

4) CRDVAL-EXIT

Enter

_;
AT-POLE-13

/''ÍÍAT13X

X* 900000

Move 3 to

A-FLAG

Return J

CHECK-N-S
jiiyES
Í 4 CRDVAL-EXIT

r4u. CRDVAL-EXIT

CRDVAL-EXIT

Move 3 to

A-FLAG

/-¡S
14 ; CRDVAL-EXIT

ENCLOSURE B

B-109

ENCLOSURE B

B-110

B-lll

c. Error Messages.

(1) ERROR IN FORMAT SIZE.

(a) In-length is not the same value as required by
the conversion program.

(b) Check for improperly imbedded blanks, missing

commas, 2xtra fields, and missing characters in the parameter

field (field enclosed with quotations) of the query card.

(2) ERROR IN EVENT POINT COORDINATES.

(a) Coordinates are Incorrect.

(b) Check longitudes for over 180°, latitudes for

over 90°; insure characters for direction are correct and in their

appropriate positions; check for alphabetic characters in numeric
part of the field.

(3) ERROR WIDTH SPECIFICATIONS.

(a) Widths (explicit) are incorrect.

(b) Check format to insure that "L" and "R" are used

appropriately; that preceding digits are numeric and both widths
are present.

(4) ERROR IN TIME DATA.

(a) Either the hours, mirâtes, or seconds fields of

the beginning and ending times are invalid or ending time is less
than beginning time.

(b) Check data to insure that hours 24, minutes
and seconds <C 59.

(5) ERROR IN FRAME DATA.

(a) Data for the frame option are not valid.

(b) Check that frame internal and initial and

terminal frame numbers are numeric, and that total number of frames

is a multiple of the frame internal (i.e., terminal frame number -

initial frame number + 1 = M x frame internal for some integer M).

ENCLOSURE B

(6) LENGTH OF LEG CLOSE TO ZERO.

(a) The leg is less than 10-6 nm long, and is rejected.

(b) Check the coordinates for incorrect entries.

(7) ERROR IN ALTITUDE, FOCAL LENGTH, FOCAL PLANE.

(a) The altitude, focal length or focal plane entry

is invalid.

(b) Check that altitude and focal length are numeric,

that focal length ^ 0, and that focal plane code is either "A"

or "B".

ENCLOSURE B

B-113

Ancillary System Routines

Section 1 “ IBM

1. ABGET

a. Function. To move data, whose location Is specified as an
absolute address. Into a symbolically-named field.

b. Calling Sequence. In COBOL one may write:

CALL 'ABGET' USING ABSOLUTE-LOC
RECEIVING-FLD

FLD-LEN.

k

where:

(1) ABSOLUTE-LOC Is a fullword binary field containing
the absolute address of the leftmost character of the wanted data.

(2) RECEIVING-FLD names the field to receive the data.

(3) FLD-LEN Is a halfword binary field containing the
number of characters to move.

c. Limitation. FLD-LEN must fall within the range 1-256 (Inclusive);
any other value Is effectively reduced modulo 256 (but If the remainder on
division by 256 Is 0, the effective value of FLD-LEN becomes 256).

4qr,rr st'.pt o r,rr fm A'^SPLUTT
*■ TO M/.KP CtMTr\iTS PP AVAfLARLE! ON THE PQB'^L-LpvFL
* WHPN PNLV the iRSlLUTE C SS PF RIFin TS KNOWN. TP USF
•' CALL MB'',!'T* USING ABLOC, FLON&'^t, FLDLFN
^ WNF«E ARIOP t5 i RULIWM'P RTM^Y Hf^LPlNG THF HOP-ADORFSS TO BF
« PinNi'^R IR Thc '•PBri DiTANAvt: TfjTO WHICH CnNTCNTS PF BIFLO
* W^LL BR -*N^ RLTL'*N !S A HALFwPcn BINARY CONTAINING THF
* ‘^IFL'' L*^' GTH -- N. B. riOL^N IS *’5^.

US!*''G *,1S
S A V (?,■")
L'*
L
L'^
»f Tc
FV
RtTI|R\
YVC
FNn

1»
?.G(?»
4,0(4)
^.0

(F),T
0<P,B»,0(2)

ENCLOSURE C

C-1-1

2. CALLIO

a. Function. To interface between File Maintenance routines

and the FMIOX subroutine.

b. Calling Sequence. The subroutine is called by File Maintenance

routines through one of three COBOL calling sequences:

CALL

CALL

CALL

CALL

'FMSET' USING FMIO.

'FMCRD' USING FM-INPUT END-SW.

1FMPRT' USING PRT-LINE CC.

'FMPUN' USING CARD-IMAGE.

where:

(1) FMSET is the entry point to initialize the CALLIO

subroutine by setting the entry address for the FMIOX subroutine.

(2) FMIO is a computational (Picture 9(5)) field containing

the entry address of the FMIOX subroutine.

(3) FMCRD is the entry point causing CALLIO to branch to

FMIO with the equivalent of the following calling sequence:

CALL ’FMIO’ USING FMIO-SW FM-INPUT END-SW

(FMIO-SW being set to 1).

(A) FM-INPUT is an area of 80 characters in File Maintenance

into which FMIOX will read a card.

(5) END-SW is a one character switch in File Maintenance

into which FMIOX will specify end of file, ordinary card, or type

of FM control card.

(6) FMPRT is the entry point causing CALLIO to branch to FMIO

with the equivalent of the following calling sequence:

CALL ’FMIO' USING FMIO-SW PRT-LINE CC

(FMIO-SW being set to 2).

(/) PRT-LINE is an area of 132 characters in File Maintenance

from which FMIOX will print a line.

(8) CC is a one character field in File Maintenance containing

a code from which FMIOX will determine printer carriage control.

ENCLOSURE C

C-l-2

(9) FMPUN is used by Single File Logical Maintenance

as the entry point causing CALLIO to branch to FMIO with the

equivalent of the following calling sequence:

CALL 'FMIO' USING FMIO-SW CARD-IMAGE

(FMIO-SW being set to 3).

(10) CARD-IMAGE is an 80-character area from which FMIOX
will punch a card.

c. Reference. See program documentation for the FMIOX subroutine.

MEMBER NAME CALLIO
CALLIO START
* THE PURPOSE OF THIS SUBROUTINE
* LOAD MODULE AFTER SETTING UP A
* OR PRINT A LINE (21 OP PUNCH

CMCRD

FMPRT

FMPUN

ENTRY
LA
B
ENTRY
LA

B
ENTRY
LA
SAVE
BALR
USING
STH
ST
LA
M VC
LA

BALR

FMCRD
0,1
20(15)
FMPRT
0,2
12(15)
FMPUN
0,3
(14,2)
2,0
*, 2
0,SWITCH
13, SAVE*4
13,SAVE
LIST+4 (8) »0(i.)
l,LIST
15,=A(FMIO
15,0(15)
14,15

13,SAVE+4

SAVE
LIST

SWITCH

RETURN
DS
DC
DS
DS
LTORG
ENTRY

(14,2) ,T
18F
A(SWITCH)
2F
H

IS TO BRANCH TO THE FMIO SUBROUTINE
SWITCH TELLING FMIO TO READ A CARD (1)

A LINE (3).
CARD READ ENTRY
SET PO TO 1
GO TO SAVE MACRO
PRINT ENTRY
SET RO TO 2
GO TO SAVE MACRO
PUNCH ENTRY
SET RO TO 3
SAVE REGISTERS, ALL ENTRY POINTS
SET UP

BASE REGISTER
SAVE SWITCH VALUE
SAVE OLD SAVE ADDR
LCAD NEW SAVE ADDR
MCVE OLD PARAMETER LIST
LCAD NEW PARM LIST ADDR
OBTAIN FMIO HOLD AREA ADDR
LOAD FMIO ENTRY POINT ADDR
CALL FMIO

LOAD OLD SAVE ADDR
RETURN
SAVE AREA
SWITCH ADDRESS
OLD PARAMETER LIST
FMIO SWITCH

FMSET INITIALIZE ENTRY
* FMSET INITIALIZES FIELD FMIO TO THE ENTRY POINT OF LOAD MODULE FMIO
* PROVIDED IN THE INPUT PARAMETER LIST,

USING
FMSET L 1

FMIO

M VC
BR
OS
END

,15
,0(1)

FMIO,0(1)
14

SET UP BASE REGISTER
LOAD ADDR OF FMIO ENTRY POINT
MOVE FMIO ENTRY POINT ADDR
RETURN
FMIO ENTRY POINT ACDR

ACDR

C-l-3 ENCLOSURE C

L
3. COiABSY.

a. Function. To compare data whose location is specified as an
absolute address with data in a symbolically named field.

b. Calling Sequence. In COBOL one may write:

CALL 'COMABSY' USING ABSOLUTE-LOC
COMPAHE-FLD
FLD-LEN, RESULT.

where ABSOLUTE-LOC is a fullword binary field containing the absolute
address of the leftmost character of a field to be compared with the
contents of COMPARE-FLD. The number of characters to be compared is in the
halfword binary FLD-LEN. At return time, RESULT (a halfword binary)
contains 1, 2 or 3 according as the data addressed by ABSOLUTE-LOC is less,
equal or greater than the contents of COMPARE-FLD.

c. Limitation. FLD-LEN must fall within the range 1-256 (Inclusive);
any other value is effectively reduced modulo 256 (but if the remainder on
division by 256 is 0, the effective value of FLD-LEN becomes 256).

NAMT c?MABS/ „
rnMArt<;Y STAC-^ 0 CCMPAf-E ABSOLUTE-S YMBGLIC
♦ 'pCUTINi TO CrMPAPf 2 COBOL L>=VEL WHEN ONE MELD IS KNOWN

TO CC3IL-PGM ONLY IN T=f>^S UF ABSOLUTE COPE ACDrESS. TO USE
CALL 'CONABSY* LSINS ABL^C ♦ FLONAME, FLOLEN* RESULT,

W»-tF[A3LCC 'S A t^ULLWCFC PINAFY HOLDING THr H0®-ADD‘^ESS OF ONE
C0'-»ca3ANd', FLCNAM' is TH«- CUB'LL CATANAM= OF THE OTHER ^
CLOLtN IS A HALFWOFO BINAPV CONTAINING THE LENGTH OF The CCMPAPANO
ctcloS, ant tf-.'LLT contain* I f 2 CP 3 AT RETURN TIME, ACCORDING AS

pTs5x CDMPASAf O II LF.SSt ECUAL OP GREATER THAN THE SECOND,
♦ N, B, MAY fl DLEN IS 2f‘.

LSING ♦t 1 5
SAVE 12,i)
LM 2,5,0(1)

L 2,C(2)

LH A,C(A)

BC-'c F,0

f X 4,CP

BW P3

BL PI

MVC 0(2,^).=H*2*

B RN

PI MVC 0(2,*^) f =H«l*
B PN

R3 MVC CI2.5) ,=H»3*
ON RETUBN (2t6»,T
CP CLC 0(0,2)fC(3)

END

ENCLOSURE C
C-1-4

4. COMALL.

a. Function. To determine whether a source input field contains

data or blanks, and set an appropriate switch in FLD-LIST.

b. Calling Sequence. This routine is called by FMIP as follows:

CALL 'COMALL' USING INPUT-RECORD,

FLD-LIST,

FIELD-LIMIT.

where FLD-LIST is a list, provided to FMIP. The number of entries

in it is given by the binary fullword FIELD-LIMIT. Each field in the source

data record (INPUT-RECORD) is described by an entry of FLD-LIST.

c. Capabilities. COMALL scans over the entries of FLD-LIST.
The layout of each entry is as follows:

32 bytes

’N

FLD- FLD- FLD-

HOP LEN SKIP

FLD-HOP locates a field in INPUT-RECORD relative to 1 (i.e., a field

starting with the first bytes of INPUT-RECORD will have FLD-HOP-1,

not 0). The length of the field is given in FLD-LEN. If the field,

so defined, contains all blanks, then FLD-SKIP is set negative; otherwise,

it is set positive. FLD-HOP and FLD-LEN are binary fullwords; FLD-
SKIP is a binary halfword.

C-l-5

ENCLOSURE C

MEMBER
CCMALL

*

*

*

*

LOOP

CONT

POS

COMPARE
MORE

NEC

RETURN

NAME COMALL
START 0

THE PURPOSE OF THIS ROUTINE IS TO SCAN THE INPUT AREA AND SET
FLD-SKIP (I) FIELD TO NEGATIVE OR POSITIVE DEPENDING CN THE PRE
OR ABSENCE (-) OF DATA.

THE CALLING SEQUENCE IS
CALL 'COMALL* LSING INPUT-RECORD

FLD-LIST
♦ FLD-HOP PICTURE 9(5) COMP 04
* FLD-LEN PICTURE 9(5) COMP 08

FLD-PSS-HOP PICTURE 9(5) COMP 12
FLÛ-PSS-LEN PICTURE 9(5) COMP 16
FLD-LR2-P0INTEP PICTURE 999 COMP 18

FLO-VAL-CT PICTURE 999 COMP 20
FLD-VAL-POINT PICTURE 9999 COMP 22

♦FLO—SKIP PICTURE 9 COMP 24
FLO-NAME X 30

FIELD-LIMIT
NOTE THE FIELDS MARKED WITH * ARE THE ONES USED.
LSING *,15
SAVE (2,7)
LM 21410(1) INPLT-RECORD FLD-ITEM FLD-LIMIT

XR2 XR3 XR4

LH 4,0(4) FLC-LIMIT
LH 7,22(3) FLD-SKIP
L 5,0(3) FLD HCP
AR 5,2 INPLT-RECORD ♦ FLD-HOP
BCTR 5,0 ADJLST ADDRESS
L 6,4(3) FLD-LEN IN XR6
CLI 0(5),C • FIRST CHAR EQUAL BLANK
BNE POS
BCT 6,CONT GO TO CCNT IF 6 NOT EQUAL ZERO
8 NEG IS ZERO
BCTR 6, C

EX 6,COMPARE
BE NEG
LPP 7,7
STH 7,22(3)
BCT 4,MORE
B RETURN
CLC 0(0,5),1(5)
LA 3,32(0,3)
e loop
LNR 7,7
STH 7,22(3)
BCT 4,MORE
RETURN (2,7) , T
END

ENCLOSURE C
C-1-6

5. COMARAYS

a. Function. To compare two character-stringa of equal length,

each starting at a distinct position within a namea field. The string-

length and starting position are determined at execution time.

b. Calling Sequence. The subroutine can be called from a COBOL

routine as follows:

CALL 'COMARAYS' USING ARRAYA INDEXA

ARRAYE INDEXE LENGTHX INDICATOR

where:

(1) ARRAYA is the name of an array. It is meant to be the

known or constant character stream (from input).

(2) INDEXA is a computational (fullword) field representing the

character position within ARRAYA.

(3) ARRAYE is the name of an array to compare ARRAYA to.

(4) INDEXE is a computational (fullword) field representing

the character position within ARRAYE.

(5) LENGTHX is the length of the fields to be compared

(fullword computational).

(6) INDICATOR is a computational (halfword) area to store

an indicator of the result where:

1:ARRAYA string collates lower than ARRAYE string.

2:ARRAYA string collates equal to ARRAYE string.

3:ARRAYA string collates higher than ARRAYE string.

For example, suppose ARRAYA, ARRAYE have the contents:

ARRAYA:31415926534

ARRAYE¡QWERTY15927

It is desired to compare 5 characters of ARRAYA and ARRAYE. The

field is ARRAYA starts at position 4; the field in ARRAYE starts

in position 7. One may then code:

ENCLOSURE C

C-l-7

MOVE 4 TO INDEXA.

MOVE 7 TO INDEXE.

MOVE 5 TO LENGTHX.

CALL 'COMARAYS' USING ARRAYA

INDEXA ARRAYE INDEXE LENGTHX

INDICATOR.

This will cause the string "15926" in ARRAYA to be compared with "15927"

in ARRAYE, so that ARRAYA will test low and COMARAYS will return with

INDICATOR«!.

c. Limitations. In the system-360 implementation, LENGTHX is

limited to 256, and any larger value will be effectively reduced to

the remainder on division by 256 (or to 256 if the remainder is zero).

MFMBFR NAME COMARAYS
CCMARAYS START 0
♦
*

*

*

*

MOVE I

M0VF3

COMFX
ccmret

THE CALLING SEQUENCE CF COMARAYS IS
CALL «CCMARAYS1 LSING ARRAYA

ARRAYS
LENGTHX

INDICATOR IS A HALFWORD.
USING *,15
SAVE (2,7)
LM 2,7,0(1)
L 6,0(6)
BCTR 6, C
A 2,0(3)
SCTR 2,0
A 4,0(5)
SCTR 4 , C
EX 6,COME X
BL MOVE 1
SH MOVE 3
MVC C(2,7),=H'2'
B COMRET
MVC 0(2 » 7) » =H « 1 •
B COMRET
MVC 0(2,7),=H'3«
B COMRET
CLC 0(0,2),0(4)
RETURN (2,7) , T
END

INDEXA
INDEXB

INDICATOR

ENCLOSURE C

C-l-8

6. COMLIST

a. Function. To compare the contents of a field with the entries of

a list.

b. Calling Sequence. To call from a COBOL program, code as

follows :

CALL 'COMLIST' USING TEST-DATA XA

FIELD-LIST XB

FLD-CNT FLD-LEN

INDICATOR.

where:

(1) TEST-DATA and FIELD-LIST are character-strings. All

other parameters are fullword binary fields except INDICATOR, which

is a halfword binary field.

(2) The field whose HOP is at position XA of TEST-DATA

is compared to the array of fields which start at position XB of

FIELD-LIST. The length of each field is given by FLD-LEN and the

number of entries in the list by FLD-CNT. If an entry of the array

is found to match with the TEST-DATA field, the subroutine returns

with INDICATOR32; if not, INDICATORS.

(3) For example, suppose that TEST-DATA contains an

80-character card image. Starting in position 8 of the card is

a 3-character field, and we need to know whether the field contains

"GEN," "DEL," "UPD," "REP," or none of these. We may code:

MOVE 8 TO XA.

MOVE 1 TO XB.

MOVE 3 TO FLD-LEN.

MOVE 4 TO FLD-CNT.

MOVE 'GENDELUPDREP' TO FIELD-LIST.

CALL 'COMLIST' USING TEST-DATA XA

FIELD-LIST XB

FLD-CNT FLD-LEN

INDICATOR.

If the field contains one of the words "GEN," "DEL," INDICATOR

will contain 2; if none of these, INDICATORS.

C-l-9
ENCLOSURE C

MEMBER name ccmlist
ccmlist start 0

ISING *f 15

* THE PURPOSE OR THIS ROUTINE IS TO COMPARE A LIST OF FIELD
* VALUES
* TRE FORMAT OF THE VAL-LIT-ARE A IS 7-NNNN-LISTl—' IST2....
* WHERE LISTltLIST2,...ARE THE ITEM
* NNNN NUMBER OF ELEMENTS
* THE CALLING SEQUENCE IS
* CALL 'CCMLIST* LSING
* INPUT-RECORD INDEXA
* VAL-LIT-AREA INCEXB
* NO-OF-ITEMS LENGTH
* INDICATOR .

SAVE (2 » 8)

2,8,0(1) GET ADDRESSES INPUT-RECORD INDEXA
* VAL-'. IT-AREA

XR 2 XR 3 XR 4
INDEXB NO-OF-ITEMS LENGTH
XR 5 XR 6 XR 7
INDICATOR
XR 8

L 3,0(3)
L 5,0(5)

AP 2,3
AP 4,5
L
L
BC TP
BCTP
BC TP

EXECUTE EX
BE
BCT
STH
B

MOPE LA
e

COMPARE CLC
HIT M VC
RETURN RETURN

6,0(6)
7,0(7)
2,0
4,0
7,0
7,COMPARE
HIT
6,MORE
6,0(8)
RETURN
4,1(4,7)
EXECUTE
0(0,2),0(4)
0(2,8),=H'2'

(2,6) ,T

INPUT-RECORD - INDEXA
VAL-LIT-AREA - INDEXB

COMPARE RESULT
FCUND
RECYCLE
NOT FOUND ZERO STORED

SUBTRACT LENGTH OF ELEMENT

THE COMPARE

1

END

ENCLOSURE 0 0-1-10

..—

7. COMNUMS

t a. Function. To compare two numbers. The numbers may be signed
or unsigned and 1 to 18 digits long.

b. Calling Sequence. The calling sequence Is :

CALL 'COMNUMS* USING FIELDA, INDEXA, FIELDS, INDEXB,
LENGTHX, INDICATOR.

fdiere:

(1) FIELDA Is the location of the field or array from which the
number Is to be compared with FIELDS.

(2) INDEXA Is the subscript of the high order character of FIELDA.
INDEXA Is a fullword computational.

(3) INDEXS Is the same as INDEXA except the subscript of the
high order character of the FIELDS.

(4) LENGTHX Is the length of the fields to compare. LENGTHX Is a
fullword computational.

(5) INDICATOR Is a halfword computational with the following
returning values:

1 - FIELDA IS LOW
2 - FIELDS ARE EQUAL
3 - FIELDA IS HIGH
4 - DATA ERROR

vipvinro av p fr

INP=X^

ST fiCT 1...
T,^C r*-LL STOUENCr IS
CHI • C 1'«N'iyS* USING

* Ay-AY4 APR AYR
V LEV'Gthx INPICATncJ,

HL Ai- GU'^tmTS ACF PIJLWPPr) tY'*PRT
«

USIN'?

L'* 1 »
L f , “H *<» length
ocT = Lcmgth -U

7,01 ’ » AkRAYA ♦ iNPfXA

C-1-11 ENCLOSURE C

r;o'>r) \

I

.'ionn-J

paooc

G^no

L

«CTR
l
QCjn
ic
»3
L5
£3
'•L !

rt!
«f'L
CL’
=»L
CL ’
at
n
r\. ’
*^L
CL’

'■I I
BL
"LT
RL
'■•«

CL T
“L
ril
«L
^LT
*-L
CL T
=>L
'^VC
n
PX
PX
CP
HL
^t-

-1

!Nri|T£
LPf-GTM
TNPUTa
LP^GTM

rrMCPT
Mrv'"’

Mr yn

o tCx 1
«'£CK?
cT =LH^
P’CLO-^

ENCLOSURE C

?tO
4,0(SI

*.?
Jt S
Q,4

0(0 I.X'PT

0< RI,X*P5*
F K 3 n 3
01 J),X 'P'O*
r,n IP)-)
0(3 I,X•P 4 •
Gr-in
F 33 -10
n(3|,x*co*
c 3 -•' n 3
0CO|,X*C4*

0(H),X'OO*
C03 '-*3
0 (« I , X • 1 ft *
oo'^ni
F03P 1
0(0),x T 0*
c83 no
OfOl.X'Cft*
Gnnn
or3),x*')o*
ra3 nQ
0 (<31, X • n A •
on^n
n(?,7),=M*4*
r OMO rT
*>,PftCK 1
e,,pftCx-»
F nft,P!rLPP
yny/P I
Mnyp ^
0(7,7),=M*?«

, T

♦ !\'OPX
Annc(>
♦ IM^FX
4nr)p n

FIELOa FO thru F<J

FTELOB FO THPIJ fq

FfFLOB CO thru C«»

FtFLDR THRU no

ftfloh CO thru CO

ftclor no thru no

yyC

CPTUC^: (',^>»

01?,T|,=h*!•

0 (:, TI, =M • 0 •
fOMO FT
FI‘^L'^4,0(0,?I
FTrL’'",0(0,4)
CL’ 0
CLIO

VVC

n

^'VC

PACK

PtCK

OS

ns
PMO

C-1-12

0
8. CniREC

a. Function. To enable a COBOL progranmer to test a character
string of an arbitrary starting point and of a variable length for blank
status.

b. Calling Sequence. The COBOL calling sequence Is as follows:

CALL 'COMREC* USING INPUT-RECORD
INPUT-FLD-HOP
INPUT-FLD-LENGTH
HIT-TABLE-1.

where:

u.

u

(1) INPUT-RECORD Is the name of an area (data record) In
which the character string (data Held) may be found.

(2) INPUT-FLD-HOP Is the arbitrary starting point of the character
string (high order position of the data field) which Is used as an Index to
locate a particular data field In the data record.

(3) INPUT-FLD-LENGTH defines the length of the character
string (data field).

(4) HIT-TABLE-1 Is a halfword computational field. At return time,
It will hold a zero If the field Is all blanks; otherwise. It will hold a
one.

■lEMBtK .'.AMt
CUMHtC STAkl J

♦ THE CALLING St^JLi'4oc JE CJMktC IS
* CALL 'LJMrvtL' ui 1 MPU f - KE CJk 0 I P JT-F L 0-HOP
*
m HlT-TAiiLt- I

SAVt
LM
L
Ak
uCTk
L
CL I
H''4E
rtCT
B

I .»PjT-FLIJ-Lb-.vilH HlT-TAbLE-l
A ilAL-wJkj,

* »
(<: 101
2, jm
ifJ(A)
2, 3
2. J
■»f 3(4»
J(2),C* '
■^uVc 1

.lUVc J

ENCLOSURE C

I C-1-13

8CTK 4,J
FX ‘ttLJM»>AK
lit iJVtJ

%»uvtl ‘^vc I*
tt LtAVt

MliVFI MVL =^n»)•
L tAVfc ;>! tT
COMPAR CLC

FNU

9. DATESUB

a. Function. To take the five character Julian date from the
360 Operating System.

b. Calling Sequence. The subroutine can be called from a
COBOL routine as follows:

CALL 'DATESUB' USING DATE-PLD.

where DATE-FLD Is a five digit numeric field.

DATESUB START

* THE FUNCTION OF THIS SUBROUTINE IS TO READ THE OS SYSTEM DATE
* THE FORMAT OF THE DATE IS FIVE CHARACTER JULIAN
*

SAVE

LIST

SAVE (14.12)

BALR 10,0

USING *,10

ST 13.SAVE+4

LR 9,13

LA 13,SAVE

ST 13,8(9)

L 5,0(1)

TIME DEC

ST l.LIST

UNPK 0(5,5),LIST+1(3)

LR 13,9

RETURN (14,12),T
DS 18F

DS P

END

(

10. EXPNSP

a. Function. To expand every MIDMS Autoisated Installation
Intelligence File (MIDMS AIF) record from compressed form Into fixed form.

ENCLOSURE C

C-1-14

b. Calling Sequence. The subroutine can be called from a COBOL

program as follows:

CALL 'EXPNSP' USING RXF RX.

where:

(1) RXF is the high order position address of the compressed
record.

(2) RX is the high order position address of the expanded
record.

c. Capabilities. The subroutine initializes the RX output area

to 6856 blank characters. The fixed portion of the record is

moved from RXF to RX. The expansion control words for the compressed

portion of the record are validated, decoded, and the compressed

data are moved to the appropriate locations in the expanded record
area RX.

d. Limitations.

(1) This subroutine is used only by the AIF PROCESSOR. The

user should not attempt to call this subroutine from either RT or

OP since a call is issued automatically by the AIF PROCESSOR.

(2) An invalid expansion control word in the compressed

record causes expansion of the record to cease. Normal return is

made to the invoking program. No warning message is issued by
EXPNSP.

11. LINK

a. Function. To provide dynamic loading and execution of

MIDMS system load modules, user subroutines, and logic packages.

b. Calling Sequence. The LINK subroutine can be called from
a COBOL routine as follows:

CALL 'LINK' USING NAME Subroutine-Parameters.

where:

(1) NAME is the load module member or alias name (usually the
COBOL PROGRAM-ID or ENTRY name).

ENCLOSURE C

C-l-15

(2) Subroutine-Parameters are the parameters being passed

to the subroutine being linked (zero or more parameters are permitted).

MEMBER NAME LINK
LINK START 0

SAVE (14,12)
BALR 10,C
USING *,10
LR 12,13
LA 13,SAVE
ST 13,8(12)
ST 12,4(13)
L 2,0(1)
LA 1,4(1)
LINK EPLOC = (2)
LR 13,12
RETURN (14,12) , T

SAVE DS 18F
END

12. LMLOOK

a. Function. This routine is called via entry-point LMLKUP when a

table lookup is executed in Logical Maintenance or Retrieval. It loads the

table into core, if not already loaded, and carries out a binary search for

a table-argument matching the argument in the calling-sequence.

b. Calling Sequence. LMLOOK uses three subroutines written

in machine-code (ALC for 360):

(1) LOADTAB executes the LOAD macro of the operating system.

(2) ABGET obtains contents of a field, given the absolute

address.

(3) COMABSY compares contents of two fields, of which

one is available as a COBOL dataname, while the other is known only

in terms of absolute location.

c. Capabilities.

(1) Upon entry, the program scans the list of tables loaded

(paragraph TAD-SCAN). If the table is not yet loaded, its name is

added to the list, and control goes to LODIT, where the new table

is loaded (CALL 'LOADTAB'), and the field TRIPLET (argument—length,

function-length, item-count) picked up from the table (CALL 'ABGET').

ENCLOSURE C

C-l-16

If the table has already been loaded, control goes to FIMDIT, where
TRIPLET la picked up froa the list.

MFMBtC MAMF LMLCCK
COIOOO ICATICN DTVISICN.
CC2C00 P^OGc ‘LMLCCK*.
CC3C00 rivi?lCK.
COAOOO CCNFIGUPATUN SftTICN.
CC5000 SCLPCF-CCMPtT"F.
CC6000 TBM-3^0.
CC7C00 nijECT-CCMPuirc.

CC8000 I8M-36J.

CCOCOO INPf^-OLTPtT GfC'ICN.
OlOOOO CATA OIVl^nN.
Olinoo =ILF SFCTION.
C12000 WIPKing-storagc spcticn.
013000 77 tanPFX cICTUPE F(02) CG^PUTATICNAL SyNCHOQNIZED.
CIAOOO* P'JNr;i7jG IMOrK CV'=’F tad-enTRIES.
OlECCO 77 TAQCN'f PICTURE E(02» CCMPUTATICNAL S Y»^CH(iCNI Z FD
CltJOO VALLE 0.
C17000* CDUNT nc ITEM'S CURCciMLY IN TAD.
Ol?COO«-****<=*** MU'T CiSIDR IN FM SJPERVISOR ***♦♦♦♦•♦**•♦***•♦
C19J0J 77 taovaX picture 9(02) C G'*PUT Af IDNAL SYNCHRONIZED

VAL'JI
MAX ALLDhrD ENTRIES IN TAD.

LOCAD PICTURE 9(08) CDMPJTAT ICNAL SYNCHRONIZED.
CGPE-ADDPISS KEPPE TAbL: NAMED ‘TABNAME* STARTS.

HHB-S PICTURE 9(02) COMPUTATIONAL SYNCHRONIZED
VALUf' ‘.

HALRaCCO binary 6.
LTMAOK picture 9(08) COMPUTATIONAL SYNCHRON IZEC.
h’MARK picture 9(03) CCMPUTATICNAL SYNCHRONIZED.
MlOMAt-K PICTURE 9(0R) COMPUTATIONAL SYNCHRONIZED.

HIGH, LOW, ANP SFLIT-THE DIFRSRENCE CCRE-ADORESSES
TABLE entries FOR BINARY SEARCH.
LDDEX picture 9(0A) COMPUTATIONAL S YNCHRCNIZ EC.
HIDEX pIC'‘URE ?(09) C'PMPuTATICNAL S YNCHR CNI Z EC .
mtdEX PICTl'or 9(04) computational SYNCHRONIZED.

C2COOO
021CC0*
C22CU0 77
C23000*

C24C00 -n
02SOOO
C26C00*
C27CCG •^7
C28CC0 77
C2OCC0 77
C3CG03*
C3I000* OF
C320CC 7"
C33000 77
C3400C P7

ENCLOSURE C
C-1-17

f
L^'LOCK

HIGH, LOW, A^'^ SFL!T-TH = -DIFP5iRENCE SEOUENTIAL POSITIONS
table ENTFItS for binary SrAFCH.
HIL'IOEX PICTLRE 9(0^'I CC^PUT ATI GNAL SYNChRGNIZEC.
HGLr HlOrX + LCDEX.
rTMLEN PICTURE 9(02) CCMPUTATICNAL SYNCHRONIZED.

= ARGL*'-N E «^UNLlN = LENGTH G^ A TABLE-ENTRY.
ttmHALF picture 9(02) CG»"PUT ATI ONAL SYNCHRONIZED.

= ITviLrN/’, C7SCAR0ING REMAINDER.
c=SULT PICTURE 9(02) COMPUTATIONAL SYNCHRONIZED.

I F FESLLT C= COMPARE.
pw-M PICTURE 9(02) CCMPUTaTICNAL SYNCHRONIZED.

REMAINDTP CR DIVISION BY 2.
TAD.

T A D — TABL''-DIRECTGRY.
TAUENTRY Ti(,ci_pc c TIMES.
TACNAME PTCTi.FF X(3).
NA^’■ O'- A TABLI (5-CHAR MNEMONIC)
l^dax p:c f(7) ctmp.

Qnpr-ADCPESS WH-PC TABLE NAMED 'TADNAME’ STARTS.
TR tPLEX.

3 iTcMS T(^f,|jPV f^IRST h BYTES 3F TABLE.
APGL^NX P'^C F- COMP.
LENGTH uF EACH ARGUMENT IN THIS TABLE.

4. FUNLFMX P^C F9 CCMP.
length nc =ACH function IN THIS TABLE.
TtmcNTX PTC c';c^ COMP.
C^'LNT f-c ITEMS (ARG-FUNC PAIRS)

T= IPLFT.
similar t- itr^PLEX* but not SUBSCRIPTED.

AR Gl FN PIC 9F CCMP.
ARGUMENT length, NOT SUBSCRIPTED.

FUNLEN PIC F9 CQMP.
FUNCTION LFNG'H, NCT SUBSCRIPTED.

ITMCT FTC RFE9 COMP.
ITc-^-CnuMiNOT SUBSCRIPTED.

FRR-MSG.

FILLER PICTLRF X(A1) VALUE
LM — TABLE LOOKUP — TOC MANY TABLES*.

FILLER P*CTLSE X(92) VALUE SPACE.
CFG-CTL PICTLRE X VALLE SPACE.

member NAME
035C004
C3t000* OF
C370C0 77
038000* TO
C39C0C 77
C^iOCOO*

CAICCO 77
0*2000*

CA3000 77
C*4000*

C45CC0 77
C46 300*
CA7CG0 01
048000*

049000 C2
CFOCOO 03

C51000*

C52000 03

053000*

C54C00 03

CFFCOO*

C56000 C

057CO0*

CE8000 C

C59CG0*

060 COO C

06 1 COO*
062COO 01
C63000*

C64CC0 C2
C65G00*

066000 C2
C6TC00*

068000 C2
C69C00*

070000 01
C71C00 G2
072000
C73000 C2
C74C00 Cl
C75000 LINKAGE SECTION.

IN this TABLE.

C7eCC0

0770C0

C78000

C79000

C80000

081000

C62C00

01

02

C2

02

C2

02

C2

LSFR-CALL-SEC.
IN-LFNGTH
OUT-1ENGTH
FXIT-FLAG
IN-DATA

PIC S9(6) CCMP.
PIC S9(6) CCMP.
PTC S9(6) CCMP,

.. _ _ _ PIC X(360).
SEARCH-AFG RFDEfineS in-data picture X(360).
GUT-CATA pic X(360).

ENCLOSURE C C-1-18

(

MfMBEH
CR3C00
ceAtoo
C85COO
C86C00
C87000
088000
C89CC0
OCOOOO
C91000
C92C00
€9^000
C94C00
C98CC0
C96COO
097CU0
CC«000
0C9000
ICCCOO
ICIOOO
I CPC00
103000
lOACOO
IC5C00
IC6COO
107000
icpccn
icocoo
110000
iiiuoo
112000
113000
llAOJO
115CC0
116000
117C00
118C00
IICOOO
120000
1210U0
122000
123000
12A000
128000
126CG0
127000
128CC0
129C00
130C00

NAME LMLLOK
C2 PIELC-WAME PIC XJ8).
C2 TABNAME tEDEFINES FIELO-NAME PIC
C2 FILE-NAME PIC X(8I.

DROCFOUPE CIViSiCN.
cmtfy 'LMLKLF* USING LSFF-CALL-SEQ.
M"Vi 1 Jf' TANCcX.

TAC-ECA^I.
\c taCNAMF (TANCFX) equal to TABNAME
cc TO FiroiT.

IF TANOFx less than taDCNT
AOD 1 TO TANCcX
GO TO TAF>-SCAN.

IF taCCNT NC^ LFES THAN TAOMAX
GO TO PFIN-^I'.
AOO 1 TO TACCNT.
VPVF TACCNT Tf TANOEX,
MOVE tabnamp to tadnaVe I'tANOEXI.
r,n TO LOOTT.

PINCIT.
MOVE LQOAX JTANOrX) TC L3CAD.
MOV. TRIPLEX (TANTfX) TC TRIPLET.
GO BIN.

L30IT,
CALL 'L^ADTAM LSTNG ’ACNAMC (TANOEX)

LCCAD.
MOVP LOPAC TO LCCAX (TANCEXJ.
CALL 'ABGFT* USING LPDAC

TPTPLFT
HWB-6,

MOVE TRIPLET TC TRIPl^X (TANDEX).

x(d).

BIN
AOr 6, LCPAO GIVING LCMAFX.
AOO AFGLtN FLNLFN r.lViNG IT^LEN.
CIV^DE 2 TNir ITMLEN GIVING ITMHALF.
MULTIPLY ITML=N BY 1TVCT GIVING HIMAPK.
ADD LCMAFK "'C HiPACK.
SUB^PACT ItmlFN FBCM Hi PARK.
CALL 'COMA83Y* LSTNG LPPARK

SFARCH-APG
ARGLEN

RESULT.
IF F'^SULT = 3

GO TO fail.
IF result = 2

MOVE LOPAFt^ TO MIOMARK
GO TP cruMO,

CALL 'COMABSY* USING HIMARK
SEAPCH-ARG

ENCLOSURE C
C-1-19

(

(

MEMBER NAME LMLfOK
131003 A^GLEN
132CC0 RESULT.
133COO IP RESULT = 1
13^000 GO TO PATL.
13E000 IF RESULT = 2
136000 MOVE HI WAP K TO VUMARK
137C00 GO TO FCUNO.
138000 MCVF ttmCT T HIDFX,
13PC00 M'JVP 1 TC LDCtX.
140C00 BINl.
1A1003 ADD HIMARK LCWAPK GIVING MIDMAFK.

1A2000 OlVIDH 2 IN'^C MICWARK.
143000 ACO HIOEX, LCOEX G’VING HILGDEX.
1^4000 riVIDE HIL'^DFX bY 2 GIVING MIDEX, REMAINDER PEM.
1A5C00 IP REM = 1
lAfrCOO SUBTRACT » TWt-ALF PR CM MIOMARK.
1^7000 IF LCMASK = MICWARK
148C00 GC TO PAIL.
149000 CALL 'CGMABSY* LSTNG MICMARK
150CG0 S=ARCH-ARG
lElCOO ARGLEN
1E20C0 RESULT.
1E3000 IF '■rsoLT = 1
154COO M1VC MIDWAPK Tf L~WARK
IE5000 MGV:* Ml'-'f X TC LCC'x
156000 GO TO B’Nl.
157C00 TP RESULT = 3
153C00 WOVE MICWAPK hImaRK
15RCU0 wove MICEX TG HICEX
16CCJ0 GC TO BINl.
16 1000 FCUND.
162C00 ML'Vp 1 TC cXIT-PLAG.
163C00 Arc APGLPN TL MCMARK.
164CQ0 CALL 'ABGPT* LSTNG MIOMARK
165C00 OUT-DATA
It 6COO PUNLEN.
167C00 GCBACK,

168000 PRINTTT.
16'3000 ENTER LINKAGE.
170C00 CALL 'FMCRT* ISIN'G SRP-MSG
171C00 CPG-CTL.

172000 ENTFR COBOL.
173C00 FAIL.
174CC0 wrvF 2 TC LXTT-FLAG.
175CG0 GCBACK.

ENCLOSURE C
C-1-20

(2) If the table is not yet loaded and there is no

irore room in the list, an error-message is inserted into OUT-DATA

and control returns to the calling program.

(3) With TRIPLET given the proper contents, control goes

to BIN, where the binary search starts. Searching continues in

BIN1. If a hit is made during the search, control goes to FOUND:

otherwise, it goes to FAIL.

(A) A few words are in order concerning the subroutines

LOADTAB, ABGET, COMABSY. When LOADTAB executes the LOAD macro

for the table, it returns to LMLOOK with the address of the table.

This address cannot be used directly in a COBOL program as the

operand of a MOVE or IF statement. Instead, when we need to

move data from a field whose address (in a table) we know, to a

field which is defined within a COBOL program, we use ABGET.

Likewise, a compare a field within a table, known only by its

address, to a field defined as a COBOL dataname, we use COMABSY

("compare absolute address and symbolic label").

d. Limitations. No more than 5 tables can be handled in one

job step. This is due to the fact that the program must keep a

list of what tables have been loaded, and there must be a

limit to the length of this list. This limitation is an

aggregate for all logic packages that may be operating in one job
step.

13. LMTABGEN

a. Function. LMTABGEN is a free-standing program, which may

be used to generate tables for use by the program LMLOOK. After

a table is produced by LMTABGEN on dataset OBJDECK, it must be

stored as a load module (in the IBM-360 implementation) by means

of the Linkage Editor.

b. Calling Sequence. LMTABGEN ’’ses the subroutine MUVE.

Inputs and outputs are discussed in the user documentation. The

table format, as stored on OBJDECK, is discussed below:

(1) The first 3 fields of the table contain, in order,

the argument-length, function-length, and item-count for the table.

The first two fields have PICTURE 99, the last has PICTURE 9999;

all three have USAGE COMPUTATIONAL. The argument- and function-

lengths give the number of characters for the argument and

function fields in the table, while the item-count gives the

number of argument-function pairs in the table.

ENCLOSURE C

C-l-21

(2) After these three fields, the arguments and

functions follow in order: arg-1, func-1, arg-2, func-2,....

These fields are close-packed; that is, after the number of

characters allotted to arg-1 by the argument-length field, the

next character begins func-1, and so on. The argument-function

pairs are arranged by ascending sequence of argument, to

facilitate binary search.

c. Capabilities.

(1) Paragraph STARTALL makes general initialization for

the program. READ1 processes the first card (carrying the

table-name, argument-length, function-length) and checks for

errors. READ2 processes all suceeding cards and stores the

arguments and functions into UNSORTED-TABLE. Paragraph SORTIT

starts a bubble-sort of this table, which is carried on by

SORTI and S0RT2. Then comes SORTX, which formats and outputs

the ESD-card and first TXT-card. Following TXT-cards are

processed by TXT-LOOP, TXT-L00P-1, which finally produces the

END-card. At this point we have a complete object module on

OBJDECK. However, Linkage Editor requires a NAME-card, consisting
of the words:

NAME xxxxL(R)

where xxxxL is the module-name. This is built up by paragraphs

REP-1, REP-2, and the job is done.

(2) Paragraph PRINTIT handles all printer output.

d. Limitations. This program is strongly machine-dependent,

because of the requirement of storing the tables as load modules.

However, its shortness will lighten the task of conversion to

other machines. The JCL to run this program and process the

output through the Linkage Editor is discussed in the MIDMS

Procedures for System/360 OS Manual.

14. LOAD

a. Function. To dynamically load a subroutine or table load

module without execution and return the address of the subroutine
or table.

b. Calling Sequence. The subroutine can be called from a COBOL
routine as follows:

CALL 'LOAD' USING ENTRY-ADDRESS.

ENCLOSURE C

C-l-22

where ENTRY-ADDRESS is a computational (PICTURE 9(5)) field into which the

subroutine will place the initial execute address of the loaded subroutine
or the load point address of a table.

MEMBER NAME LOAD
LOAD
* THE
* ITS
* THE
*

*

«
* NAME
♦

SAVE

START
PURPOSE OF THIS SUBROUTINE IS TO LOAD A LOAD
ENTRY POINT ADDRESS OP THE HOP OF A TABLE IN
SUBROUTINE'S CALLING SEQUENCE IN COBOL IS...

ENTER LINKAGE.
CALL 'LOAD* USING NAME ORIGIN.
ENTER COBOL.
ORIGIN APE DEFINED AS...
NAME PICTURE X(8).
ORIGIN PICTURE

(14,41

MODULE
CORE.

AND RETURN

AND
01
01
SAVE
BALR
USING
ST
LR
LA
ST
LM
LOAD
ST
L
RETURN
DS
END

2, C
* ♦ 2
13,SAVE«-4
3,13
13,SAVE
13,8(3)
3,4,0(1)
EPLOC=(3)
0,0(4)
13, SAVE«-4
(14,4),T
18F

9(5) COMPUTATIONAL.
SAVE REGISTERS
SET UP

BASE REGISTER
SAVE OLD SAVE ADDR
COPY OLD SAVE ADDR
LOAD NEW SAVE ADDR
PLACE NEW SAVE ADDR IN OLD SAVE AREA
LOAD PARAMETER LIST
LOAD THE LOAD MODULE
PLACE ENTRY POINT ADDR
LOAD OLD SAVE ADDR
RETURN
SAVE AREA

IN ORIGIN

15. LOAÛTAB.

a. Function. Used by LMLKUP to read a table from the load-module
library into available core.

b. Calling Sequence. From COBOL:

CALL 'LOADTAB' USING TABLEÑAME, TABLOC

where TABLENAME is an 8-character field containing the table name (left-

adjusted with trailing blanks) and TABLOC is a fullword binary which

will contain the beginning core address (HOP) into which the OS Supervisor
loads the table.

ENCLOSURE C

C-l-23

i.

t.

(

c. Capabilities. The subroutine executes a LOAD macro for the
module named by the user In TABLENAME. At return, TABLOC contains
the core address of the module.

LGArTABSTisTj L?aGTAoL=
* F'kT^'^LTNk ' i.lbPA®V VIA 'LCAD'
«, ' CUL LTAOTAfl USING TASL'^NAMF, TABLCC.
« yi^coc IS T HP o-T'-iAA. \'iw= fF THE TABLP (LE F T—AD JUST B G,
* W/ BLANKS) AND^TiBLOC IS t F’JLLUCRD cINA-JY TC HOLD THE

MACPr.

MGP OF the

AFT^^ I T -NTFOS Cr=F
US INC- ‘.I*'

(l-,12)
BZ-LC 10,0
y ING ',10
L- 12,1?
L A 1 •>. S V
ST n, IS)

■~TT I7,h(1:)
LV 2, '‘.0(1)
LCAC ro(_r I = (-)
ST 0,0(5)
LF 12,1?
3 ='^U'=N (1 ’ :) t__ _ ^
PNH

16. MOCHA

a. Function. To move a character string from one place to another,
where the Initial and final positions of the string are variable,
as well as Its length, and where the region finally occupied by the
string may overlap some part of the Initial region.

b. Calling Sequence. The subroutine may be called from COBOL
as follows:

(

CALL 'MOCHA* USING SENDING-ASRAY
RECEIVING-ARRAY
SENDING-OFFSET
RECEIVING-OFFSET
LENGTH

ENCLOSURE C

C-l-24

where SENDING-ARRAY and RECEIVING-ARRAY are names of initial and final

regions for the move, while the other parameters are fullword binaries.

Each OFFSET is added to its ARRAY address to determine the first place

to move from or move to (NOTE: If the first character of an ARRAY is

required, OFFSET must contain zero). The number of characters to be

moved is contained in LENGTH.

MOCHA START 0

* SUBROUTINE MOCHA — THAT IS — MO(VE) CHA(RACTERS)

* IS DESIGNED TO MOVE A STRING OF CHARACTERS, OF VARIABLE LENGTH,

* FROM ANY POSITION IN ONE ARRAY TO ANY POSITION IN ANOTHER. THIS

* ROUTINE IS DESIGNED TO BE CALLED FROM 360-OS COBOL PROGRAMS TO

* ACHIEVE STRING-MOVES, AS DESCRIBED, IN THE SHORTEST POSSIBLE TIME.
*

* USAGE

*

*

*

*

*

*

ENTER LINKAGE

CALL 'MOCHA' USING SENDING-ARRAY

RECEIVING-ARRAY

SENDING-OFFSET

RECEIVING-OFFSET

STRING-LENGTH

* ENTER COBOL

* THE FInST TWO PARAMETERS MAY BE ANY ALPHANUMERIC STRINGS. THE OTHER

* PARAMETERS MUST BE FULLWORD BINARIES — PICTURE S9(N) COMPUTATIONAL

* — WHERE N MAY BE FROM 5 TO 9. THE FIRST (LEFTMOST) CIIARCTER TO

* BE MOVED IS FOUND BY ADDING THE CONTENTS OF 'SENDING-OFFSET' TO

* THE ADDRESS OF 'SENDING-ARRAY', AND THE PLACE TO WHICH IT IS

* MOVED IS FOUND BY ADDING THE CONTENTS OF 'RECEIVING-OFFSET' TO

* THE ADDRESS OF 'RECEIVING-ARRAY'. THE TOTAL NUMBER OF CHARACTERS

* TO BE MOVED IS FOUND IN 'STRING-LENGTH'.

* NOTE THAT THE FIRST CHARACTER TO BE MOVED IN THE SENDING-STRING

* IS NOT THE (SENDING-OFFSET)-TH CHARACTER, BUT THE (SENDING-

* OFFSET + D-TH. THE SAME IS TRUE OF THE RECEIVING-AREA.

* ONLY THOSE CHARACTERS IN THE RECEIVING-AREA ARE DISTURBED.
*

* THEORY
*

* THE 5 PARAMETER-ADDRESSES ARE STORED IN REGISTERS 3 THROUGH 7, AND

* CONTENTS OF REG 3,4 »10DIFIED TO CONTAIN THE SENDING AND RECEIVING

* ADDRESSES WITH OFFSETS ADDED. THE LENGTH OF STRING TO BE MOVED

* GOES INTO REG 6.

* IF THE MOVE IS LEFTWARD, (RECEIVING ADDRESS SMALLER THAN SENDING-

* ADDRESS) OR IF THE SENDING AND RECEIVING STRINGS DO NOT OVERLAP,

* CONTROL THEN PASSES TO 'LEFT' WHICH INITIALIZES THE LOOP TO MOVE

* CHARACTERS INTO THE RECEIVING-AREA. THE CYCLICAL PART OF THIS

ENCLOSURE C

LOOP STARTS AT 'LFCYC*. THE ACTUAL MOVE Is HANDLED BY THE COMMAND

EX 6,MV1

IN WHICH THE MVC INSTRUCTION AT 'MVl' IS EXECUTED BY THE EX,

THE EFFECTIVE LENGTH OF THE MOVE BEING GIVEN BY THE LOW-ORDER

BYTE OF REG 6. EXIT FROM THE LOOP AND RETURN TO THE CALLING

PROGRAM IS DONE BY THE BZ INSTRUCTION.

IF THE MOVE IS RIGHTWARD WITH OVERLAP, DIFFERENT LOGIC IS REQUIRED

TO PREVENT CHARACTERS IN LEFTMOST PARTS OF THE SENDING-AREA FROM

DISTURBING CONTENTS OF POSITIONS YET TO BE SENT. HERE CONTROL IS

SENT TO 'RIGHT' WHICH INITIALIZES THE MOVE-LOOP THE CYCLICAL PART

BEGINNING AT 'RTCYC'. HERE THE SUCCESSIVE MOVES START AT THE RIGHT

END OF THE STRING AND WORK LEFT, IN CONTRAST TO LOOP 'LEFT', WHICH

WORKS LEFT-TO-RIGHT. AS A FURTHER PRECAUTION, LOOP 'RIGHT' PERFORMS

EACH MOVE IN TWO STEPS — FIRST FROM THE SENDING-ARRAY INTO A

BLOCK CALLED 'HOLD', THEN FROM 'HOLD' TO THE RECEIVING-AREA.

RIGHT

RTCYC

LEFT

LFCYC

SAVE

BALR

USING

LM

A

A

L

CR

BE

BH

LR

AR

CR

BNH

AR

LR

STC

S

S

BCTR

EQU

EX

EX

SRDL

SLA

BZ

S

S

BCT

BCTR

EQU

(2,7)

2,0
*» 2
3,7,0(1)

3,0(5)

4,0(6)

6,0(7)

3,4

RTN

LEFT

7.6

7.3

7.4

LEFT

4.6

3.7

6,TEMP1+3

3, TEMPI

4, TEMPI

6,0
*

6,MV2

6,MV3

6.8
6,8
RTN

3, -F'256'

4, =F’256'

6,RTCYC

6,0
*

ENCLOSURE C
C-l-26

HOLD

TEMPI

MV1

MV 2

MV 3

RTN

EX 6,MV1

SRDL 6,8

SLA 6,8

BZ RTN

SRL 7,24

LA 3,1(7,3)

LA 4,1(7,4)

BCT 6.LFCYC

DS 256C

DC F'O’

MVC 0(0,4),0(3)

MVC HOLD(O),0(3)

MVC 0(0,4).HOLD

RETURN (2,7),1

e;jd

17. MOVALF.

a. Function. To move an alphanumeric string into a receiving area,

which may be longer than the string. The string is left-adjusted into the

receiving area, with trailing blanks if necessary.

b. Calling Sequence. The routine may be called from COBOL as follows:

CALL 'MOVALF' USING ARRAYA INDEXA LENA

ARRAYS INDEXB LENB.

where:

(1) ARRAYA contains the string to be moved.

(2) INDEXA (fullword binary) gives the starting position of the

string relative to ARRAYA (first position of ARRAYA counts as INDEXA^l).

(3) LENA (fullword binary) is the length of the string to be moved.

(4) ARRAYS contains the receiving area.

(5) INDEXB (fullword binary) gives the starting position of

the receiving area relative to ARRAYE (first position of ARRAYE counts
as INDEXB+1).

(6) LENB (fullword binary) is the length of the receiving area.

c. Limitation. In the 360 version, it is the user's responsibility

to insure that LENA does not exceed LENB. Violation of this rule will

cause the string to overflow the receiving area, overlaying whatever
is stored in following locations.

ENCLOSURE C

C-l-27

MEMBFR NAME MOVALF
MOVALF START 0
* THE CALLING SEQUENCE CF MOVALF is
* CALL 'MOVALF* USING ARRYA INOEXA ! ENA ARRAYS INDEXB
* LENB.

USING * » I 5
SAVE (2,¾) SAVE REGISTERS
LM 2,4,0(1) LCAD P2,R3,R4
LM 6,8,12(1) LCAD R6,P7,R8
L 3,0(3) R3=INDEXA
L 4,0(4) R4=LENA
L 7,C(7) P 7=INDE XB

LOOP l

MOVE 1
CHKsr

MV I

LC0P2

M VC
LEAVE

L 8,0(8)
AR 2, 3
AR 6,7
BCTP 2,0
BCTR 6,0
LTR 4,4
BE MV I

R 8 = LENB
R2 = A(2ND CHAR ARRAYA)
R6=A(2ND CHAR ARRAYS)
R2 = A(1ST CHAR ARRAYA)
R6 = A(1 ST CHAR ARRAYS)
TEST FOR LENA = 0

LR
BCTR
EX
SRDL
SLA
BZ
SRL
LA
LA
BCT
M VC
LR
CR
BE
AR
M VI
LA
SR
BM
EX
SRDL
SLA
BZ
SRL
LA
BCT
M VC
RETURN
END

3,4
4,0
4,MOVE 1
4,8
4,8
CHKSPC
5.24
2,1(5,2)
6,1(5,6)
4,LOOP 1
0(0,6),0(

4.3
4.8
LEAVE
6.4
0(6),C '
4,2(A)

8.4
LEAVE
8,MVC
8.8
8,8
LEAVE
9.24
6,1(6,9)
8 , LOOP 2
1(0,6),0(

(2,9) ,T

R3 = R4
R4=LENA -1

SHIFT R4 RIGHT 8 POS DBL
SHIFT R4 LEFT 8 POS SNGL
BRANCH IF ZERO
SHIFT R5 RIGHT 24 POS
UPDTAE R2 = A(NE XT CHAR ARRRYA)
LEGATE R6-A(NEXT ARRAYS)
R4=LENA -256

2) MOVE ARRAYA TO ARRAYS
R 4 = LENA
COMPARE LENA TO LENB
P 6 = A(1ST PCS ARRAYS FOR SPACE)
MOVE SPACE TO 1ST POS OF ARRAYS
MCVE ONE SPACE
R4=LENA*2
R8 = NUM OF ADDL SPACES TO BE MOVED
BRANCH IF NO ADDL SPACES REQD

SHIFT R8 RIGHT 8 POS DBL
SHIFT P8 LEFT 8 PQS SNGL
BRANCH IF ZERO
SHIFT R9 RIGHT 24 POS
LPDATE P6 = A (NE XT CHAR ARRAYS)
R8=R8 -256

6) PROROGATE BLANKS RIGHT
RETURN

ENCLOSURE 0
C-l-28

18. MOVCMP

a. Function. To test and move a numeric display field to a

computational field, both within arrays. The to-field (output field)

may be halfword or fullword.

b. Calling Sequence. The 360 COBOL Linkage:

CALL 'MOVCMP' USING ARRAYA INDEXA LENA

ARRAYE INDEXE LENE INDICATOR.

where:

(1) ARRAYA is the location of the array from which the

numeric display field is to be obtained.

(2) INDEXA is the subscript of the high order character

of the numeric display field (9(5) COMPUTATIONAL).

(3) LENA is the length of the from-field (9(5) COMPUTATIONAL).

(4) ARRAYE is the location of the array containing the

computational numeric field being changed.

(5) INDEXE is the subscript of the high order character

of the to-field (9(5) COMPUTATIONAL). Proper halfword or fullword
alignment is assumed.

(6) LENE is the length of the to-field (9(5) COMPUTATIONAL).

Length 1-4 means halfword computational, 5-9 means fullword

computational. LENE is always greater than or equal to LENA.

(7) INDICATOR is a computational (halfword) area to
store an indicator of the result where:

0 = Good (Action Completed)
1 = Bad (Action Not Competed)

ENCLOSURE C

C-l-29

MEMBER NAME MOVCMP
MOV CMP START 0
*P2 = ARR AYA tR 3 = INDEXA tR4=LE NA » R5=ARR AYBtR6 = INDEXB,R7 = L6NB» R8 = INDICATOR

♦ CDMS ROUTINE TO MOVE EXTERNAL DECIMALS
TEE CALLING SEQUENCE IS
CALL • MOVCMP ' LSING

INTO COMPUTATIONAL FIELD.

SCAN

ARRAYA
INDEXA
LENGTHA
ARRAYS
INDEXB
LENGTHS
INDICATOR

ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS

FULLHORD
F ULL WORD
FULLWORD
FULLWORD
FULLWORD
FULLWORD

REG
REG
PEG
REG
REG
REG

2.
3.
4.
5.
6.
7.

BINARY
BINARY
BINARY
BINARY
BINARY
BINARY

STARTING POS

- STARTING POS

ADDRESS HALFWORD REG8 BINARY

USING
SAVE
LM
L
AR
BCTP
L
L
AP
BCTR
L

RETURN
MOVE4

MOVE 1

P ACK1
LO
OUBLWORD

XC
CP
BH
LP
CLI
BL
CLI
BH
LA
BCT
SR
BCTR
C
BH
EX
CVB
C
BH
STH
M VC
RETURN
ST
M VC
B
MV I
B
PACK
DS
DS
END

*. 15
(2,9)
2,8,0(1)
3,0(3)
2.3
2 , C
4,0(4)
6,0(6)
5.6
5,0
7,0(7)
0(2,8),0(8)

4.7
MOVE l
3.4
C(2),X*FC'
MOVE 1
C(2),X'F<5'

MOVE 1
2,1(2)
3,SCAN
2.4
4,0
7, *F 1 9 1
MOVE 1
4,PACK1
9 »L0
7, =p ' 4 '
M0VE4
9,DUBLW0PD

ARRAYA ADDRESS
STARTING POSITION
ADD STARTING PCSITICN
DECREMENT 2 BY 1

TO ARRAYA ADDRESS

ADD STARTING POS IN ARRAYS TO BEGINNING
- 1
ARRARYB LENGTH

ZERO CUT INDICATOR
4 GREATER THAN 7
ERROR

NUMERIC TEST
DECREMENT 2 BY 1

ERROR

TEST TO SEE
SUBTRACT R4

IF ALL DIGIT
FROM R2

ARE NUMERIC

ERROR
PACK THE DATA
CONVERT TO BINARY

MOVE FULLWORD
STORE

0(2,5),DU8LW0RD
(2,9)

9 »DUBLWORD
0(4,5).DUBLWORD
RETURN
1(8),X'01 '
RETURN
LO(8),0(0,2)
D
D

MOVE
HALFWORD

halfword

STORE FULLWORD
MOVE FULLWORD

ERROR ROUTINE

ENCLOSURE C

C-l-30

19. MOVCON

a. Function. To provide a subroutine to move two-byte fields

from one array, convert them to binary, and move them to a second

array.

b. Calling Sequence. The subroutine can be called from a

COBOL routine as follows:

CALL 'MOVCON' USING ARRAYA, INDEXA, ARRAYB, INDEXE, LENGTHX.

where:

(1) ARRAYA is the name of an array of alphanumeric characters

from which a string of consecutive 2 byte fields will be moved.

(2) INDEXA is the number of the first byte in ARRAYA to be

processed. INDEXA is a fullword (computational).

(3) ARRAYE is the receiving array.

(A) INDEXE is the number of the first position in ARRAYE

to where the halfword will be moved. INDEXE is a fullword (computational).

(5) LENGTHX is the number of bytes to be used in ARRAYA.
LENGTHX is a fullword (computational).

MOVCON START 0

* THE CALLING SEQUENCE OF MOVCON IS

* CALL 'MOVCON' USING ARRAYA INDEXA ARRAYE INDEXE LENGTHX

* LENGTH IS A FULLWORD

USING *,15

SAVE (2,7)

LM 3,7,0(1)

L 7,0(7)

BCTR 3,0

BCTR 5,0

A 3,0(4)

A 5,0(6)

PAC’’ PACK CONAREA,0(2,3)

CVB 2,CONAREA

STH 2,0(5)

LA 3,2(3)

LA 5,2(5)

BCTR 7,0

BCT 7,PACK

OUT RETURN (2,7),T

CONAREA DS D

END

C-1-31 ENCLOSURE C

20. MOVNUM

a. Function. To test and move a numeric field to another numeric

field, both with arrays, inserting leading zeroes when necessary.

b. Calling Sequence. MOVNUM can be called from a COBOL routine

as follows:

CALL 'MOVNUM' USING ARRAYA INDEXA

LEN/I ARRAY B

INDEXB LENB INDICATOR

where:

(1) ARRAYA is the location of the array from which the

numeric field is to be obtained.

(2) INDEXA is the subscript of the high order character of the

numeric field (9(5) COMPUTATIONAL).

(3) LENA is the length of the field (9(5) COMPUTATIONAL).

(A) ARRAYB is the location of the array to which the numeric
field is to be moved.

(5) INDEXB is the subscript of the high order character of the

to-field (9(5) COMPUTATIONAL).

(6) LENB is the length of the to-field (9(5) COMPUTATIONAL).

LENB is not less then LENA.

(7) INDICATOR. When this field is numeric, it is set to 1.

Normally, it is 0 (9(5) COMPUTATIONAL).

MEMBFR NAME MOVNUM
MOVNUM START 0
* THE CALLING SEQUENCE IS
* CALL 'MOVNLM* LSING ARRAYA INDEXA LENA
* ARRAYB INDEXB LENB INDICATOR
* INDICATOR IS A HALFWCRD.

USING *,15
SAVE (2,9)
LM 2,8,0(1)
L 3,0(3)
L 4,0(4)
L 6,C(fc)
L 7,0(7)
AO 2,3

ENCLOSURE C

C-l-32

CL î

LOOP

ACCEPT 2

ACCEPT

AR 5,6
BC TP 2,0
BC TP 5,0

LTP 9,4
BZ ACCEPT
CLI Cm^'AC*
BE SKPBLK

CLI 0 (2)» X'F 0 •
BL LEAVE
CLI C(2),X,F9*
BH LEAVE
LA 2,1(2)
BC T 9,LOOP
SR 2, A
LR 9,7
SP 9,4
BZ JIMP
M VT C(5),X'FO1

BCTR

ADD 1
JUMP

EX4
FLGZERO
RETURN
LEAVE

FLGCNE

SGNCK

BCT 9,BCTP
B ADD 1
BCTR 9,0

EX 9,MOVE Z
LA 9,1(0)
LA 9,1(9)
AR 5,9
LTP 4,4
BZ FLGZERO
BCTR 4,0
EX 4 » MOVEN

MVC 0(2,8),^'O'
RETURN (2,9) , T
C
BE SGNCK
MVC 0(2,e),=H,l'
B RETURN
CLI 0(2),X'CO*
BL FLGONE
CLI 0(2)»X'CA*
BL ACCEPT2
CLI 0(2),X'DO'
BL FLGONE
CLI C(2), X ' D9 '
BH FLGONE
B ACC5PT2

SKPBLK LA 2,1(2)
BCTR 4,0
BCT 9,CLI
B ACCEPT

MOVEZ MVC 1(0,5),0(5)
MOVEN MVC 0(0,5),0(2)

END

ENCLOSURE C

C-l-33

21. MOVRAY

a. Function. To provide a subroutine to move one array of

characters to another area (not an array) and to the same character

positions.

b. Calling Sequence. The subroutine can be called from a COBOL

routine as follows:

CALL 'MOVRAY' USING XFROM XINDEX XTO LENGTHX.

where:

(1) XFROM is the name of an array of alphanumeric characters

from which a string of consecutive bytes are to be moved.

(2) XINDEX is the name of a computational field (fullword)

representing the character position within an array (located at

XFROM) from which the move is to begin.

(3) XTO is the name of an area (not an array) to which

the character(s) are to be moved.

(4) LENGTHX is the name of a computational (fullword)

field (value from 1 to 256) representing the number of characters

to be moved.

MOVRAY START 0

USING *,15

SAVE (3,6)

LM 3,6,0(1)

L 6,0(6)

BCTR 6,0

A 3,0(4)

BCTR 3,0

EX 6.M0VEX

RETURN (3,6),T

MOVEX MVC 0(0,5),0(3)

END

22. MUVE

a. Function. To provide COBOL programmers with a subroutine

which can move a string of characters of arbitrary length from one area

to another.

ENCLOSURE C

C-l-34

b. Calling Sequence. The following example is as if the

subroutine would be called from a COBOL routine:

CALL 1MUVh USING A(I), B(J), K.

(1) Example 1. Assume that areas A and B are defined

in COBOL as follows:

01 AA.

02 A PICTURE X OCCURS 1000 TIMES.

01 BB.

02 B PICTURE X OCCURS 1000 TIMES.

Now assume, before entering linkage, that 1=50, J=172, and K=300.

Subroutine MUVE will move 300 characters from area A starting in

position 50 to area B starting in position 172. The user may want

to use 'MUVE' as follows.

(2) Example 2.

MOVE 999 TO K.

MOVE 'X' TO A(l).

ENTER LINKAGE.

CALL 'MUVE' USING A(l), A(2), K.

ENTER COBOL.

The character X will be propagated from A(l) through A(1000) with

the one call to MUVE. A and B must be character-defined areas.

K must be defined as S9(5) computational. The names "A, B, and K"

may be user defined.

c. Limitations. No test is made to determine if the storage

area B can contain K characters from A. Subroutine 'MUVE* requires

64 bytes of storage.

ENCLOSURE C

C-1-35

MUVE

NEXT

MV IT
MVOUT

START 0

USING *,15

SAVE (2,5)

LM 2,4,0(1)

L 4,0(4)

BCTR 4,0

EX 4,MVIT

SRDL 4,8

SLA 4,8

BZ MVOUT

SRL 5,24

LA 2,1(5,2)

LA 3,1(5,3)

BCT 4,NEXT

MVC 0(0,3).0(2)

EQU *
RETURN (2,5),T

END

23. OPR34

a. Function.

(1) To obtain from a character array the characters that

describe OPR34(B,C).

(2) The format of the OPR is as follows:

T nnnn L LITERAL OPR//

(3) Where:

T = Type (3,4), 1 position numeric FLD.

nnnn = Four character subscript or numeric HOP of

data field.

L = Length of literal (1 position numeric FLD).

LITERAL = Characters 'L* in number.

OPR// = Two digit number.

b. Calling Sequence. The subroutine can be called by a COBOL

routine as follows:

CALL 'OPR341 USING ARRAY, INDEX, POSIT, LENGTH,

LIT-HOLD, OPRNUM.

ENCLOSURE C

C-1-36

where :

(1) ARRAY is the name of an array of characters that

describe a string of OPR's.

(2) INDEX is the position in the array where a particular
OPR starts.

(3) POSIT will contain the four character subscript (nnnn)
described above.

(4) LENGTH (PICTURE 9(3) COMPUTATIONAL) will be the place
where 'L' is moved.

(5) LIT-HOLD (PICTURE X(9)) is place where the literal
is moved.

(6) OPRNUM (PICTURE 99 COMPUTATIONAL) is place where
OPR number will be moved.

OPR34
*

*

*

MOVIT

START 0

THE CALLING SEQUENCE FOR OPR34

IS: CALL ’OPR34' USING ARRAY, INDEX,

POSIT, LENGTH, LIT-HOL, OPRNUM

USING *,15

SAVE (2,8)

LM 2,7,0(1)

A 2,0(3)

MVC 0(4,4),0(2)

IC 8,4(2)

LA 3,15

NR 8,3

ST 8,0(5)

BCTR 8,0

EX 8,MOVIT

LA 2,6(8,2)

IC 4,0(2)

NR 4,3

NR 6,3

LA 5,10

MR 4,4

AR 5,6

STH 5,0(7)

RETURN (2,8),T

MVC 0(0,6),5(2)

END

ENCLOSURE C

C-l-37

Ancillary System Routines

Section II - Honeywell

1. BIBCS

a. Summary. This subroutine converts a variable length binary

number to binary coded decimal (BCD). Upon normal completion, an

exist-flag is set to 1". If bad in-date is found, the exit-flag
is set to "2".

(1) Function. Binary to BCD conversion subroutine.

(2) Calling Sequence. Standard user-calling-sequence.
DIAM 65-9-9A, page D-l.

b. Description. BIBCS converts a binary number varying from 24

bits to 48 bits to BCD using the CHAP RPT instruction. The BCD

characters (either 4, 6, or 8) are stored in the out-data address

of the standard user-calling-sequence.

c. BIBCS Flowchart.

C-2-1
ENCLOSURE C

'ENTER
BIBCS

I
SAVE REGS
CLEAR X3
LOAD ARG1
INTO REGISTER
2

I
MOVE "1" TO
EXIT FLAG
LOAD IN-
LENGTH FARM.

IN-LENGTH
=8?

NO

YES
> I
\

YES
[N-LENGTH /

=6 X 2

NO

IN-LENGTH
\ =4

YES

■f y
NO

STORE A
"2" IN
EXIT-FLAG

RETURN
V_J

I 3

V
LOAD 36
BITS FROM
IN-DATA

-*1/_
CONVERT 36
BITS TO 6
BCD
CHARACTERS

STORE BCD
CHARS IN FIRST
WORD OF OUT-
DATA

RETURN

ENCLOSURE C
C-2-2

r-

Tl 4

'

V
LOAD BINARY
NUMBER FROM
IN-DATA. STRIP
BITS 24-35

LI

RETURN

ï
CONVERT

J SECOND 24 BIT
STRING TO 4
CHARS

7

STORE 2 BCD

CHARS IN
SECOND WORD
OUT-DATA

TJZ
STORE 2
BCD CHARS
INTO LOWER
TEMP

I
STORE TEMP

(6 CHARS) INTO /"
IST WORD CF ! K 5
OUT-DATA

V
LOAD FIRST
WORD FROM
IN-DATA. STRIp
BITS 24-35

CONVERT 24
BITS TO 4 BCD
CHARACTERS

STORE ^ BCD
CHARS IN
UPPER TEMP

-V-_
LOAD FIRST
WORD FROM
IN-DATA

LOAD SECOND
WORD FROM
IN-DATA

I

GET BITS
24-35 FROM
FIRST WORD
AND BITS I-U
PROM SECOND

RETURN

ENCLOSURE C
C-2-3

i

2. COMLST

a. Summary. The purpose of this subroutine is to compare a field

value in an input-record against a list of values in an array. When a

match is found between the input record value and the list, an indicator

is set to "2" and control passed to the calling program. If no match

is found, the indicator is set to zero before returning.

(1) Function. To locate in an array an FMIPVAL OPCODE

corresponding to the particular OPCODE in the input-record.

(2) Calling Sequence.

CALL COMLST USING INPUT-REC INDEXA VAL-LIT-AREA INDEXE

NO-OF-ITEMS LENGTH INDICATOR.

where:

INPUT-REC is the input-record address.

INDEXA is the character offset for the address.

VAL-LIT-AREA is the list address.

INDEXE is the character offset for the list.

NO-OF-ITEMS is the COMP-1 value for the number of

items in the list to search.

LENGTHA is the COMP-1 length value of the input-
record field.

INDICATOR is the COMP-1 indicator where the result
is stored.

b. Description. COMLST locates field values in an array by using

two tally words to compare the input record against the list.
For example:

01****INPUT-RECORD****GEN**** (INDEXA POINTS TO THE "G")

01****VAL-LIT-AREA****CHGADDGENDEL**** (INDEXE POINTS TO "C")

THE LENGTH PARAMETER IN THIS CASE IS EQUAL TO 3, AND THE

NO-OF-ITEMS PARAMETER IS EQUAL TO 4. IN THE ABOVE EXAMPLE

A COMPARE IS MADE THRU NO-OF-ITEMS (3) AT WHICH TIME A "2" IS

PASSED TO INDICATOR AND CONTROL PASSED TO THE CALLING PROGRAM.

IF A MATCH IS NOT FOUND BETWEEN THE VALUE AND THE ITEMS IN

VAL-LIT-AREA, A ZERO IS STORED IN INDICATOR.

INPUT-RECORD AND VAL-LIT-AREA ARE PICTURE X.

INDEXA INDEXE NO-OF ITEMS-LENGTH AND INDICATOR ARE COMPUTATIONAL-1.

ENCLOSURE C C-2-4

Register 2 is used for addresses, and register 3 is used for the

NO-OF-ITEMS counter.

c. FCOMLST Flowchart.

C-2-5
ENCLOSURE C

Center

1 CCMLST

I
LOAD X3

NO-OF-ITEMS

COUNT.

SET INDICATOR

'BUILD LIST

AND INPUT-REC

TALLY WORDS

ENCLOSURE C

IS

TALLY
-COUNT

tt2*t

IN INDICATOR

(T

*
PRIME LIST

TALLY WITH

LENGTH

C-2-6

3. COMRAY

a. Summary. COMRAY compares one array of characters to another

array, not necessarily a one-to-one position correspondence. COMRAY

can compare from 1 to 4096 characters. A Computational-1 indicator

is set to "2" if the specified number of characters of ARRAYA

compare equally to ARRAY3. When a character in ARRAYA is encountered

that is higher in collating sequence than the ARRAYB character, the

indicator is set to "3". If an ARRAYA character is lower in

comparison to the ARRAYB character, indicator is set to "1". When

either a high or low condition is encountered, no further comparisons

are made, the appropriate value is stored in the indicator, and a

return is made to the calling program.

(1) Function. Compare alphanumeric character arrays.

(2) Calling Sequence.

CALL COMRAY USING ARRAYA, INDEXA, ARRAYB,

INDEXE, LENGTH, INDICATOR.

where:

ARRAYA and ARRAYB are addresses.

INDEXA and INDEXB are character offsets.

INDICATOR is a location to result the result.

b. Description. The first instruction initilizes the indicator

to zero. The next 16 instructions build the ARRAYA and ARRAYB tally's

consisting of addresses, and starting character positions. The next

five instructions accept the length parameter, check it for validity

(i.e., a positive integer), and stores the length into the receiving

area tally. The next seven instructions compare the specified

number of characters and branches to the appropriate address. The

last four instructions store the correct value into the indicator

address and executes a return to the calling program.

c. COMRAY Flowchart.

ENCLOSURE C

C-2-7

4 /

(COMRAY

INITIALIZE

INDICATOR

BUILD TALLY

WORDS

j;
. ÎS
LENGTH N0 y ABORT

POSITIVE ~ \ ROUTINE ^

YES

MOVE LENGTH

TO ARRAYB

iTALLY COUNT

"CHECK YES STORE A "1"

FOR LESS ' > IN INDICATOR

CONDITION

NO

/<ÍHECK xx yes
FOR EQUAL --

LLY

COUNT

RUNOUT

STORE A "2"

IN INDICATOR

(RETURN)

NO

¡STORE A "3"

IN INDICATOR

RETURN
7

ENCLOSURE C

C-2-8

LOAD X3 WITH
TA ALE A DDRS

1_

'ADD'ARG,
FUNCTION
LENGTH TO
CONSTANT

COMPUTE NUMBER
OF WORDS IN

ENTRY

I INITIALIZE
AND BUILD

* TALLY
ADDRESSES

NO

ENCLOSURE C C-2-9

2

y

STORE TABLE"
FUN. LENGTH
IN U-S-C
OUT-LENGTH

MOVE FUNCTION
TO OUT - DMA
ADDRS.

PRIME
EXIT-FLAG

I WITH A "1"

L ,

SUBTRACT 1
FROM ITEM
COUNT

NO

PRIME EXIT-FUG
WITH A "2"

r
RETURN) RETURN

V_

BUMP
ADDRESSES
TO NEXT TABLE
ITEM

4

X/

ENCLOSURE C

C-2-10

MOVNUM

a. Summary. This subroutine moves any number of numeric

characters from one array to another array.

(1) Function. To test and move a numeric field to another

numeric field, both within arrays, inserting leading zeroes when

necessary. If non-numeric data is found in the frora-field, an

indicator is set to "1" and a return made to the calling progam.

MOVNUM can insert all zeroes in the receiving-region by setting

the sending-length to zero and the receiving-length to n (where

n is a positive integer from 1 to 4096). MOVNUM terminates and

sets the indicator to "2" if receiving-length is less than sending-

length. Upon normal termination, the indicator is set to zero.

(2) Calling Sequence.

CALL MOVNUM USING ARRAYA, INDEXA, SENDING-LENGTH,

ARRAYE, INDEXE, RECEIVING-LENGTH,
INDICATOR.

b. Description. Data is moved from one location in memory

to another location by means of two sequence character (SC) tally

words. After the tallys are computed, a determination is made

whether all zeroes are required in the receiving field. If so,

transfer is made to a special routine. If more than 4096 characters

are to be moved, a special loop moves them in blocks of 4096

characters. If the receiving-region is larger than the sending-

region, leading zeroes are moved prior to the numeric data. Data

is checked for validity before it is moved to the receiving-region.

c. MOVNUM Flowchart.

ENCLOSURE C

C-2-11

MOVNUM

*
SAVE REGS

SET INDICA¬

TOR TO 0

.. y

(COMPUTE SENDING

AREA TALLY

COMPUTE
RECEIVING-

AREA TALLY

RECEIVING-

LENGTH TO

TALLY COUNT

y
I MOVE ALL

ZEROES TO

ARRAYB

r -subtract-i
! SENDING

LENGTH FROM

LENB

RETURN

1 YES
y

SET

INDICATOR

TO "2"

RE TU RN

ENCLOSURE C

STORE ^LENB-
(LENA) NO. OF
ZEROES IN
ARRAYS

STORFV LENA !
CHARACTERS INTO
ARRAYB.
CLEAR INDICATOR

--JE-

RE TURN

V”'

, ARE
-Leading 0's

NEEDED

YES

MOVE REQUIRED
NUMBER OF
ZEROES

NOVE NUMERIC
DATA TO
ARRAYB

V,
RETURN J

ENCLOSURE C

C-2-I3

5. MOVPAC

a. Summary, ihis subroutine is used by OMLP to take a series

of two character opcodes from a table, and place them in an array.

(1) Function. To move 'n' number of 12 bit opcodes from

a binary table and pack them into an array.

(2) Calling Sequence.

CALL MOVPAC USING POSIT-GROUP, COUNT, VAL-LIT-AREA,

VAL-LIT-HOP.

where:

POSIT-GROUP is a computational-1 table where opcodes

are stored in the low order 12 bits of each word.

COUNT is the number of words to process.

VAL-LIT-AREA is an address for the beginning of the
receiving array.

VAL-LIT-HOP is an index to the desired character

position within VAL-LIT-AREA.

b. Description. After register 1, 2 and 3 are saved, the count

is multiplied by 2 and stored in bits 18-29 of "T", thus forming

the runout tally count. The address of the binary table is stored

directly inot bits 0-17 of tally word "S". The receiving area character

position is divided by six and added to t le address for the address

of tally word "T". The residue character position is stored into bits

30-35 of "T". The 12 bit opcodes are moved from the table to the

array in the following fashion: The A register is loaded with the

first word of the table. Characters 4 and 5 are shifted to the right

6 positions thus placing character 5 into the left side of the Q

register. The Q register is shifted right 30 positions placing the

character in the low order end of the Q. The A register (containing

character 4) is stored in array "T" with a sequence character tally

word. The Q register (containing character 5) is then stored into

"T" at the next character position, by the same tally word. The tally

count is tested to see if there are any more words to process. If so,

transfer is made to the location where the table words are loaded. If

the tally count is zero, an immediate return is executed.

c. MOVPAC Flowchart.

C-2-14

ENCLOSURE C

ENTER
MOVPAC

y.
sa\t:
REGISTERS

LOAD COUNT
INTO Q REG

SHIFT
LEFT 7

Q REG

I
STORE CHARACTER

(COUNT INTO
TALLY "T"

STORE
ADDRESS INTO
TALLY "S"

COMPUTE
ADDRESS AND
CHAR POSIT
FOR TALLY "T"

1

STORE
ADDRESS AND i

1 CHAR POSIT ^
INTO TALLY "T*'

LOAD A WORD
FROM TABLE

(TALLY S)

isoiat£
OPCODE INTO

. TOO REGISTERS

STORE FIRST
PART OF OPCODE
INTO ARRAY

STORE SECOND
HALF OF
OPCODE INTO
ARRAY

I.
ÏS

/-TALLY COUNT
0

NO

\

YES

V
RETURN

ENCLOSURE C
C-2-15

6. HOVRAY

a. Summary. The MOVRAY subroutine is a generalized routine

called by COBOL programs to move data from one location in core to

another.

(1) Function. To move an alphanumeric string of characters

from the INDEXA (TH) character of ARRAYA to the INDEXA (TH) character

of ARRAYB. T..e characters may or may not be located on a word

boundary. The receiving location may be a different location within

a word.

(2) Calling Sequence.

CALL MOVRAY USING ARRAYA, INDEXA, ARRAYB, INDEXE, LENGTH.

where:

All parameters are 01 levels. The array's are picture X;

the indexes and length parameters are fullword binaries.

b. Description. The MOVRAY subroutine can move from 1 character

to 4096 words of data. The length parameter is checked for validity,

and if less than 180 characters are to be moved a branch is made to

an SC tally routine. If LENGTH is 180 or greater, the pickup SC

tally is aligned to a module 6 boundary by storing into the receiving

area. That number is subtracted from LENGTH, and the remainder

resolved into words (COUNT). A determination is made whether the

ARRAYB (receiving) area is aligned on a boundary. If it is, both

indexes were offset the same, and the move is accomplished with ID

tallys. If ARRAYB is not aligned, ID tallys are used and the data is

aligned within the registers prior to storing into the receiving

area. After the word tally has runout the remaining number of

characters is computed and stored with an SC tally word.

c. MOVRAY Flowchart.

ENCLOSURE C

C-2-16

MOVRAY

COMPUTE
ARRAYA TALLY
WORD

; COMPUTE
ARRAYE TALLY
WORD

-'"Length n no - ”
<180 > i
chars

YES

WITH SC TALLY

RETURN

1

IS \ NO
ARRAYE _
MODULO

6

YES

MOVE DATA Winj
ID TALLY

MOVE
REMAINING
CHARACTERS
WITH SC TALLY

RETURN

. - ... 5

SHIFT
ROUTII
WITH
TALLY

i_

IE
[D

__i i
MOVE LAST
'OVERHANG'

i CHARACTERS
WITH SC TALLY

i t

RETURN \

ENCLOSURE C C-2-17

7. OPR34

a. Summary. This subroutine obtains from a 6-bit character

array the characters that describe OPR34. An OPR has the following

format: TNNNNLLITERALOPR//, where T is the OPR type, NNNN is the

high order position of the data field, L is a one character field

giving the length of the literal, and LITERAL is characters "L"

in number. OPR// is a two dxgit number.

(1) Function. Enter an array containing a string of OPR's,

and breakdown a single OPR into four elements, moving the elements

to locations specified by the calling sequence.

(2) Calling Sequence.

CALL OPR34 USING ARRAY PNTR POSIT LENGH LIT-HOLD OPRNUM.

where:

ARRAY contains the address of the array containing

an OPR string.

PNTR is a COMP-1 number used to modify the ARRAY

address, pointing to "T".

POSIT is the location where NNNN is to be moved.

LENGTHA specifies the number of characters in the

literal.

LIT-HOLD is the location where the literal is to be

moved.

OPRNUM contains the address where the OPR// is to be

moved.

b. Description. The first instruction initilizes LIT-HOLD to

zero. The next seven instructions build the pickup tally word.

The next four instructions build the receiving area tally word.

Following that is the code to move four 6-bit characters to the

location specified by POSIT. The next two instructions move the

length parameter to an address. Seven instructions are jsed to move

the literal to LIT-HOLD. The last two characters in the OPR string

are converted to binary in the OPR string are converted to binary

and stored in OPRNUM. The last instruction is a return to the

calling program.

c. OPR34 Flowchart.

C-2-18
ENCLOSURE C

, ENTER \
_OPR34 J

ENCLOSURE C

C-2-19

i.MMMM wiiMri«ÉllHll«ÉriÉ

8. PUTPSC

a. Summary. Subroutine PUTPSC is called from the OMMP module

to move all periodic set control fields (PSC's) from a two word

area to an array.

(1) Function. To assemble a 48 bit PSC from the data found

in two word LOCATIONS, and move the PSC to a character oriented

array.

(2) Calling Sequence.

CALL PUTPSC USING FROM-ADDRESS, TO-ARRAY, PSCHOP.

b. Description. Register 2 is loaded with the address of the first

word of data. The accumulator is loaded with the first word of data

and the second word is loaded into the Q register. The desired data

is located in the lower order 24 bits of each word. This data is

separated and stored contiguously into WORK and WORK+1. The pickup

tally is initialized to zero, and the address of BSS location WORK

is placed into TALLY. The receiving tally word is computed erasing

the second and third parameters from the calling sequence. The eight

characters comprising a PSC are moved from the location WORK to the

array, and a RETURN executed.

c. PUTPSC Flowchart.

ENCLOSURE C

C-2-20

START

LOAD FIRST
DATA WORD
INTO A REG

1
V

CLEAR TALLY

LOAD SECOND
DATA WORD
INTO Q REQ

STRIP HIGH
ORDER 12
BITS OF EACH
WORD

STORE A REG
INTO WORK

! STORE Q REG
INTO WORK+1

RETURN

ENCLOSURE C

C 2-21

9. RDPSCS

a. Summary. The READ periodic set control subroutine is used

during execution of MIDMS logical maintenance.

(1) Function. Subroutine RDPSCS moves all periodic set

control fields and variable set control fields in a MIDMS logical

record to a table that will be referenced during execution of the

logic package.

(2) Calling Sequence.

CALL RDPSCS USING RECORD PSCS-HOP TABLE N.

b. Description. PSC and VSC control fields located ccntigiously

in a character string (array) are moved four characters at a time

to consecutive word locations in a table. An SC tally word is

computed for the RECORD, and functions as the pickup tally. An SC

tally with character position two is built for the initial putdown

(TABLE) tally. The count (N) is checked for validity, multiplied

by two, and placed in index register 3. The control fields are moved

by loading and storing the A register four times into the table

address. After the fourth storage operation, the TABLE SC tally

is incremented twice with the NOP instruction in order to place the

TABLE tally on character position two of the next consecutive word.

Index register 3 is decremented by one to determine if N is zero.

If not zero, transfer is made to the load and store routine. If N

equals zero, an immediate RETURN instruction is executed.

c. RDPSCS Flowchart.

ENCLOSURE C

C-2-22

RDPSCS

ENCLOSURE C

C-2-23

10; WTPSCS

a. Summary. The write periodic set control subroutine is used

during execution of MIDMS logical maintenance.

(1) Function. To move the periodic and variable set control

fields from the table holding them to an output MIDMS logical

record.

(2) Calling Sequence.

CALL WTPSCS USING TABLE, RECORD, PSC-HOP, N.

b. Description. PSC and VSC control fields are located in bits

12-35 of consecutive word addresses of a table. These control fields

are moved to and stored consecutively in an array (MIDMS record).

Parameter N is validity checked and multiplied by two, so that the

contents of two words are moved if N equals 1. Table (pickup) and

record (putdown) tallys are computed and stored in TABLE and RECORD.

Movement of data occurs in the loop "MOVE" by loading and storing

the TABLE and RECORD SC tally four times, and then bumping the

TABLE tally ahead 12 bits to character position two of the next

word. The contents of index register 2 determines whether to transfer

back to MOVE, or to fall through to a RETURN instruction.

c. WTPSCS Flowchart.

ENCLOSURE C

C-2-24

' MOVE FOUR

, I CHARS. FROM

1 TABLE TO

RECORD

X
2

ENCLOSURE C

C-2-25

H. YYDDD

a. Sununary. This subroutine converts the HIS 6000 system date

to a BCD Julian date format. YYDDD is dependent upon the computer

operator entering the correct date into the system.

(1) Function. To compute the Julian date and store it in a

five character field accessible to the calling program.

(2) Calling Sequence.

CALL YYDDD USING PARMI.

where:

PARMI is a picture 9(5) address where YYDDD

places the five character Julian date.

b. Description. Subroutine YYDDD first determines whether the

Julian date has been previously computed by checking a one word

BCI hold area. If the date is in JDATE, it is stored back into PARMI

and a return is immediately executed. If the date has not been

computed, the system BCD date is obtained by issuing a MME GETIME

instruction. The year is saved for later conversion to binary.

The two month characters are stored in MONTH. Next, the two BCD

day characters are converted to binary and stored in WORK. The

MONTH is converted to binary and then converted by menas of a table

to the number of cumulative days. The binary day of the month is

added. Next, the binary format Julian days are converted to BCD

format, and combined with the year. This gives the Julian date

in YYDDD BCD format, which is stored in WORK. To check for a ..eap

year, the year is converted to binary and divided by four. If there

is a remainder, it is not a leap year, so the Julian date is stored

in PARMI and JDATE and a return executed. If it is a leap year and

the month is either January or February, the date is stored as

before and a return made. If it is a leap ye^r and the month is March

or later, one day is added to the day portion oí che Julian date,

the date is stored in FaRMI and JDATE, and a RETURN instruction
executed.

c. YYDDD Flowchart.

C-2-26

ENCLObURE C

ENTER

YYDDD

STORE JDATE

INTO PARMI

L RETURN

y

LOAD SYSTEM

DATE

MMDCYY

ENCLOSURE C

V

ISOLATE THE

TWO MONTH

CHARACTERS

IN MONTH

_-jk.-
i CONVERT 2

; BCD DAYS TO

BINARY

CONVERT

MONTH TO

BINARY

^.
OBTAIN

NUMBER OF

CUMULATIVE

DAYS FROM
TABLE__

ADD DAY OF

MONTH TO GET

TOTAL

*
CONVERT

JULL\N DAYS

BACK TO BCD

__ k_
COMBINE

JULIAN DAYS

rfITH YEAR

STORE IN WORK

C-2-27

I

¡CONVERT BCD
YEAR TO

¡BINARY

•J/
i_

STORE
JULIAN DATE
INTO
JDATE, PARMI

,/fs ITN
A LEAP

YEAR

^ NO

T RETURN

YES

r^isY ADD
TO JULIAN
NUMBER

ENCLOSURE C

C-2-28

«adtdllHriMiUniMiMHii

Honeywell Differences

1. FILE STRUCTURING. The Honeywell version of MIDMS differs only in its

overlay structure as shown below:

FSX

FSPRX

MOVRAY*

LB LB

CGOPNCRIO*

i-1--1-1
FSIOX FSDTX FSSN FSGOX FSDDX

FSJBX FSSBX FSEDX FSFLX FSGRX FSVSX FSEiMX

*GMAP Programs

Honeywell Overlay Structure (File Structuring)

2. FILE MAINTENANCE. The Honeyvell version of MIDMS differs in its

structure for the Input Processor and in the configuration of trans¬

action records as shown on the diagrams on the next page.

ENCLOSURE D

FM

FMI OX

FMSCN

LBLB

CGOPNCRIO*

MOVRAY*

MOVALF*

MO VNUM*

LOAD*

IPX

COMALL*

COMLST*

OPR34*

IPTRN

IPBIN

(- 1
IPVAL IPCD

IPSRT

IPUN IPREC

C**

*GMAP Routines

**C is a variable block common area

FM Input Processor Structure for HIS 600/6000

ENCLOSURE D

D-2

R

E G S R

CRUE
0 P B C

INFO FILE D N N N

SIZE NAME RECORD ID E O O O VARIABLE INFO

GENERAL

FORMAT

6 5 30 1 6 6 6 4-INFO SIZE -^
V---)

SORT KEY

?!

G S R C

R U E 0

P B C N

FILE N N N S

NAME O O O W CONFIRM INFO

CONFIRM¬

ATION

RECORD

300 LOW VALUE
h

"1

31 6 6 6 1 4
T i
299

R

E G S R

CRUE
O P B C

FILE D N N N

NAME RECORD ID E 0 0 0

REJECT

GROUP

RECORD

30 16 6 6

Transaction Record Configuration

D-3
ENCLOSURE D

R

E G S R

C R U E I C T

0 P B C T H E

FILE D N N N E A X

NAME RECORD ID EOOOMRT

SUBOR¬

DINATE

GROUP

CONTROL

RECORD

R

E G S R

CRUE
O P B C

FILE D N N N

NAME RECORD ID E O O O TRANSACTION ITEMS

ITEM

INFO

RI CORD

6 5 30 16 6 6

FILE

NAME

R

E G S R

CRUE
0 P B C

D N N N

E 0 0 0 TRANSACTION DATA STRING

TEXT

INFO

RECORD

LAST

RECORD

Transaction Record Configuration (Continued)

ENCLOSURE D D-4

3. LOGICAL MAINTENANCE. Relatively few changes in the generated COBOL

program were required in conversion from IBM COBOL to HIS. The most

substantial changes were required in the DATA DIVISION portion of

the generated COBOL program. The Logical Maintenance modules which

were modified for these changes were:

LMLPPG1

LMLPPG2

LMLPWP4

Generated code differences (HIS) are as follows:

a. LMLPPG1

(1) OBJECT-COMPUTER/SOURCE-COMPUTER changed to reflect

Honeywell G-635.

(2) A SPECIAL-NAMES statement is required for the HIS version

to define block common areas. Block 59 is used to copy a portion of

the DATA DIVISION (LMMPDD) for file-to-file LM and for the passing

of data between LM and MP in single-file LM. The GCOS system date

is used (GETIM) for producing a run date. A special HIS debug

statement is used to speed systax error processing when syntax errors

are detected in the generated code

(3) An I/O control paragraph is used to define special control

techniques to be used in the object program. The APPLY PROCESS AREA

caluse provides direction to the compiler to generate a fixed logical

record processing area in addition to the normal buffers. System

standard file format is used for all records.

b. LMLPPG2

(1) The FILE SECTION remains basically the same. LABEL records

are standard rather than omitted as in IBM. Data control block

information cannot be used from control cards as in IBM and therefore,

the BLOCK CONTAINS clause is omitted and default used.

(2) NO LINKAGE SECTION is used in HIS. This entire section

is omitted with communication of data handled via the SPECIAL NAMES

clause through the use of BLOCK COMMON. The data elements themselves

are defined in the WORKING-STORAGE SECTION.

(3) The '-X' redefinition of the data record (e.g., MAJOR-fileA-

RECORD-X) have been eliminated from the HIS version. The data records

are now defined as 10K characters in length with no OCCURS DEPENDING
ON clause.

ENCLOSURE D

D-5

(A) Data items defined as COMPUTATONAL in IBM are used as

COMPUTATIONAL-1 (COMP-1) under HIS.

(5) Some data items are no longer used in the HIS code and

have been eliminated. Specifically, some of the VAL-n used for

reading DCB information have been removed.

(6) A MAJOR- and MINOR-PSC-TABLE is generated in the HIS

version along with a MAJOR and MINOR-PSC-HOP for use in manipulation

of binary control information in the record PSC fields. The

TABLES are a replica of the MAJOR and MINOR record control

definitions. Special GMAP routines are used to read and write the

control information. Data is moved from the TABLE to a record for a

READ and from the record to the TABLE prior to a WRITE.

(7) New data elements have been created to correspond with

changes in the HIS PROCEDURE DIVISION statements. These changes

are minor but do represent a departure from the IBM coding.

(8) In the PROCEDURE DIVISION, the transfer of DCB informaticn

has been eliminated as this type of data cannot be taken from control

cards as in IBM.

(9) Under GCOS a GO TO DEPENDING ON clause must have at least

two paragraph names to branch to. As the generated code often

produced only one paragraph, a second paragraph ENI>-RUN was

incorporated into all generated GO TO DEPENDING ON clauses. At no

time should this st-wod paragraph be branched to and it acts as a

dummy paragraph.

c. LMLPWP4

(1) The CONVERT-FIELD paragraph (one call in IBM) requires the

use of three calls (depending on previous usage) under GCOS in order

to use dynamic loading of programs. If there has been a previous

loading of a routine, it will be deleted (paragraph DELETE) before

a new routine is loaded. Paragraph LOAD loads the routine and BRANCH

directs the logic flow to the loaded routine for execution.

(2) In order to pass parameters between a COBOL calling program

and a GMAP subroutine, both a USING and a GIVING statement is required.

(3) Two new GMAP subroutines (RDPSCS and WTPSCS) are used to

read and write records larger than the GCOS system standard record size.

ENCLOSURE D

y

D-6

(4) In the WRITE-MAJOR paragraph, GMAP coding has been

inserted to expedite the writing of a larger than system standard
record.

4. SPECIAL OPERATORS. The Honeywell Information System (HIS)

implementation of the MIDMS special operators. There were several

problem areas encountered in translating the MIDMS special

operators from IBM to HIS. These problems are discussed below:

a. The linkage of subroutines. Since HIS COBOL requires that

parameters passed in calling a subroutine be 01 level items, it was

necessary to make special provisions for this constraint. Special

01 level items were added to the Data Division of the calling and

called program. In the calling program the data to be passed was

first moved to the 01 item and then the subroutine was called.

Upon return from the sunroutine the returned data was moved from a

01 level item to its appropriate storage area.

b. Floating point and binary item. In IBM COBOL binary usage

is designated COMPUTATIONAL. In HIS COBOL binary is COMPUTATIONAL-1.

In IBM COBOL floating point single precision is COMPUTATIONAL-1

and double precision is COMPUTATIONAL-2. In HIS COBOL floating

point is COMPUTATIONAL-2, with the precision (i.e., number of words

of storage) determined by the picture clause. IBM COBOL does not

permit a picture clause with floating point data whereas HIS COBOL

requires a picture clause. Great care must be used in HIS COBOL

when designating the picture of a floating point item, since the data

will be truncated according to that picture. For example:

01 XYZ PIC S9V9 COMP-2.

COMPUTE XYZ = 5.0 + 5.0

will result in 0.0 being stored in XYZ since the leading 1 of 10.0 ^
will have been truncated.

c. The geographic coordinates. Special provisions were required

for handling the geographic coordinates. These provisions are

described in the documentation of program CRDVAX.

ENCLOSURE D

D-7

d. Square root problem. The HIS COBOL compiler in use when the

special operators were converted, failed in squaring negative numbers.

A GMAP patch was inserted in the programs to perform the squaring

operation.

e. System date. The method of obtaining the system date is

machine dependent and the appropriate changes were made to the

CONVDATE program.

5. RETRIEVAL AND OUTPUT.

a. GENO. GENO calls the executable programs GENI through GEN6

by using the area label FRANK. The name of the routine to be called

is placed in that area and then a subsequent call to LITTLE LINK

brings in the appropriate module for execution. Functionally, the

Honeywell GENO is identical to the IBM GENO. The only difference

is the manner in which the actual calls to the overlays are made.

This concludes GENO since that program has no GMAP.

b. GENI.

(1) Procedure Division. The initial GitAP in this program

establishes the proper names for the input and output work files

by modifying the contents of the file control block (FICB).

(2) G2-2. If a query card has a slash in column 80, that

is an indication that the MIDMS source language deck being read in

is in the 360 character set and must be converted to the 635

character set. Upon determination that this conversion is necessary

the switch is set which is subsequently checked on following cards

to determine the appropriate action for either conversion or uon-

conversion.

(3) G100. The GMAP in this paragaph sets up the file

control block for the output work file. Since the work files

are alternated between input and output between the various

subroutines, the name for this file must be dynamic within the

program. It needs to be set up prior to opening the file. This

concludes the GMAP for GENI.

c. GEN1A. The only GMAP in GEN1A is used to set up the name

of the work file in the file control block.

d. GEN2. HOUSE-KEEP—The GMAP instructions in this paragraph

store the appropriate names for the input and output work files

in the file control block area. That is the only GMAP used in GEN2.

ENCLOSURE D

D-8

e. GEN3.

(1) HOUSE-KEEP. The GMAP instructions in this paragraph

provide the correct names for the input and output work files to

the file control block (F1CB) area.

(2) C-TAB1. The GMAP in this paragraph is used to force

alignment with table entries. If the combined length of the

argument and function is not a multiple of six, the function length

is padded so that it will be a length in full word increments.

If the next available location in the constant pool is not on a

word boundary, the constant pool area is padded so that the entries

in the table will be word aligned. This concludes the GMAP for

GEN 3.

f. GEN3A.

(1) START. The GMAP in this paragraph is used to set up

the appropriate file names for the input and output work files.

(2) CONVX. The GMAP in this paragraph is used to acquire

the current date from the system with a MME GETIME. This concludes

the GMAP for the GEN3A.

g. GEN4.

(1) START-1. At Line 002721--There are four GMAP instructions

in this paragraph and their function is to pick up the file code for

the input work file and the file code for the output work file. These

file codes are inserted in the file control block generated by COBOL

under the name F1FICB and F2FICB.

(2) SEGEN4. The effective address of the record area is stored

in the field IRECX. The effective work address of the constant pool

is stored in the field ICONX, and multiplied by six to indicate the

number of characters.

(3) LINK?. Going into this GMAP routine the field FA1 contains

the starting position of the A-field in characters. This value is loaded

into the Q register and divided by six to get the number of words. The

remainder which is a character position, is found in the A register.

The Q register is shifted left and to the remaining value is added in

the contents of field FA2, the length of the field under consideration.

The Q register is rotated along with the A register so that the final

contents of the Q register in bits 0 through 17 will be the work address

of the field. The bits 18 through 29 will contain the length of the

field and the bits 30 to 35 contain the character position within the

ENCLOSURE D

D-9

word of the beginning of that field. The starting address of the

B-field in characters is loaded into the Q register and the length

of the B-field is loaded into the A register. The AQ registers

are temporarily stored in the work area called the W0RK1. The

A register is now loaded with the OP code, the OP, for the current

object statement. If that OP has a value of 5, a transfer is made

to the 0P5X paragraph. If the OP is equal to 6, control is

transferred to the OPGX paragraph. If che OP was 12, the transfer

is made to the 0P6X paragraph. The Q register still contains the

starting position of the B-field. This value is divided by 6 to

get the starting position in words of the B-field. The A and Q

registers are shifted, added, and rotated as they were for the

A-field computation. The result of this manipulation is similar

to that which was obtained for the A-field; that is, the starting

word of that address is in bits 0 through 17. The length of the

field is in bits 18 through 29 and the character position within

the word of the starting address of that field is in bits 30 through

35. This brings us to line number 004950. We have already

determined that the OP code does not represent a SATISFY, a special

operator or a negation of the special operator type statement.

This OP code is loaded back into the A register and a check ^ade

for a BETWEEN operator which is an 0P4. In this case we will go to

0P4X. If it is not an 0P4, check is made for an OPIO, a negation

of a BETWEEN operator in which case we also go to 0P4X. If the OP

code is not a 4, 5, 6, 10 or 12, we will transfer out of this GMAP
string.

(4) 0P6X. Coming into this paragraph che Q register contains

the starting position of the B-field in characters. Division by 6

provides the word address of the B-field in the Q register and the

character position in the A register. Index register 2 is loaded

with the word address of the B-field. Index registers 3 and 4 are

loaded with the character position within that word. The A register

is loaded with the contents of the address contained within index

register 2 which is the first word of the B-field. The Q register

is loaded with the second word. Subtract 1 from the character

position within the word. If it goes minus, the word is properly

aligned. Otherwise, rotate these two words left 1 character position

and check the alignment again. Continue this until the word is

properly aligned. Once aligned we will be down on line 5110. Save the

contents of that word in the area tfl. Now we will load the A register

with the second word from the B-field area and the Q register with

the third word from the B-field area. Subtract 1 from the character

offset, check for a minus condition which indicates alignment. If we

do not have alignment, shift left 1 character position, loop back and

check again. Continue doing this until the word is aligned. The

A register now contains the 7th through 12th characters of the U-field.

ENCLOSURE D D-10

The Q register, after the load operation, contains the first through

6th characters of the B-field. This is stored in the second word of

the B-fieid area. The B1 field of the object statement is loaded

with the value 384. Index register 2 is loaded with the address

of the second word of the B-field area. This is stored in the B1

field. The character address of the B-field data is now aligned

as was done previously so that the word, the length of the field,

and the character position within the word are contained in a single

word. This value is stored in the B2 field. At the conclusion

of the 0P6X processing, the address of the name of the special

operator is contained in the B1 field and the address, length and

offset of the B-field to be operated on by the special operators

contained in the B2 field of the object statement. From here a

transfer out of the GMAP string is executed.

(5) 0P5X. With the SATISFY operator, the computations

are similar except that the B3 field has a computed number of

mandatory hits on a SATISFY statement and the B4 field will contain

the number of candidates, or the number of possible fields for

examination on the SATISFY statement. Other than that the packing

of the word containing the word address, length of the field, and

starting position offset, in characters, is similar to those fields

previously computed.

(6) 0P4X. The BETWEEN operator B-field computation is

similar to that of the other B-fields with one exception. The

BETWEEN operator requires two B-fields, therefore, the fields B1 and

B2 of the object statement are used to contain word address, length

and character offset.

(7) LINK-END. The first half of the GMAP in this string is

used to compute addresses within the S-TABLE in the same manner in which

they were calculated previously. The S-TABLE as generated contains

character positioning or character addresses which must be converted

to word addresses and offsets. The second part of this string is

initializing control words and blocks prior to opening the first
data file.

(8) RECIN. Each time a record is read computations must be

performed to determine the starting position of each of the sets.

This, of course, is necessary because of the variable nature of the

records. A check of the periodic set control words will indicate

whether or not there are subsets for each particular set within that

record. If there are subsets, the starting position of the first

periodic set is the beginning position of the record plus the length

of the fixed set. The starting position for the second periodic

would be the starting position for the first periodic plus the

number of subsets times the length of each subset in the first

periodic. This accumulation process is continued for each set within

that record.

D-ll
ENCLOSURE D

(9) TEST-FLAG. In this paragraph the periodic sets are

checked to determine whether or not switches have been set. If

switches were set to indicate that the subsets are flagged, they

are reset to, in effect, unflag these subsets.

(10) QSQ-2. In this string of GMAP the S6 vector in the

SET-STABLE is being zeroed out or reinitialized. The SI vector

is being moved to the S8 vector. This initialization is performed

on advancing from one subquery to another subquery that involves

the same record.

(11) UPONEA. The GMAP in this paragraph is used to increment

the address of the next subset as the previous subset addresses are

incremented by the length of the subset to arrive at the starting

poijition of the following subset, if there is one.

(12) P6. The SATISFIES operator has a plurality of B-fields.

This GMAP is used to increment the B1 field of the object statement

to indicate the address of the next B-field to be processed.

(13) OP05-3. The current subset address is incremented by

the length of the subset to compute the start position of the next

subset within the record.

. (14) OP06-1. The 0P6 statement is special operator. First

the A-field address must be calculated and the contents of the A-field

must be moved to the INDATA part of the calling sequence for

passing to the special operator. The name of the special operator

is located and that name is placed in the calling sequence so that

the name can be identified as a special operator. The address of the

B-field is calculated and the contents of that address and the contents

of the B-field are moved to the OUTDATA part of the calling sequence.

The length of the B-field, that is the B2 field of the object

statement, was destroyed when using the tally instructions for moving

the B-field to the OUTDATA portion. This B2 field must be restored

prior to continuing.

(15) COMPARE-DUMMY. The logical compares are executed within

this section. In the beginning of the GMAP string, the proper A-field

address must be established. It needs to be calculated if the A-field

is periodic. When this has been done, there is a branch to the AOK

GMAP paragraph which indicates that the A-field is correct. At that

point the B-field address is calculated, if necessary, to account

for periodic positioning of the field within the record. When this

is done a branch is made to the BOK paragraph. In the 30K paragraph a

determination is made as to whether the fields are alpha or numeric so

that the proper type of compare can be made. At this point the

actual compare part of the routine is executed and also at this point

ENCLOSURE D

D-12

virtually all of the GNAP instructions have comments describing the

function taking place. Indicators are set describing the result
of the compare.

(16) 0P13 SECTION. Starts at Line 011910—The purpose

of the GMAP code here is to insert the data that was passed from

a special operator into a DEFINE fiald, a record name or in the

constant pool. This is accomplished by picking up the type of

receiving field and computing the address of this receiving field.

If the field is in a record and is in a periodic set, the address

of the field in the active subset is computed. Then the address

of the returned data from the special operator is computed. The

length of the returned data is inserted in the tally word and that

data is transferred left to right from the returned data to the

receiving field. If the receiving field is shorter than the returned

data, only as much data as fits into the receiving field will be

moved. If the receiving field is larger than the returned data,

trailing blanks will be added to the receiving field for the

remainder of the field. This is accomplished in the following manner.

FA4 is the fourth field of the A-field parameters. This field

contains zero if, and only if, the receiving field is a defined field

or in the constant pool. Otherwise, this field will ccontain

the set number of the data set of the record. If it is periodic

set number 2, it will contain a 3. Jf it is number 4, it will

contain a 5, and so on. When this is the case, ST8 vector contains

the address of the subset in words and in character position.

This is picked up using an index to it, the contents of

register 2, which was loaded from FA4 to get to the right subscript.

The resolution and words and character position of the address

of the field in the particular subset is done by loading A with

the location of the subset, loading Q with the location of the

subset, adding to A, the starting position of the field in word

and character position, adding to Q, the starting position of the

word and character position of A-field, that is, the receiving

field. Then an ANAQ is performed with the mask LOVE. The mask

LOVE is a double word mask that will mask the length in A and the

character position and the remainder of the Q, except that the last

six bits in Q. This is done so that when a sum of characters from

the last six bits of Q reaches a number that is greater than one

word, that is 5 characters, then we know that the character

position has to be recomputed and 1 has to be added to the word

position. For that we use a table called ADDRSS. This table

contains the necessary parameters and we use the remainder of Q

registers as an index to that table that will give us the precise

translation in characters and word modifiers. After this has been

done we store the result in FA1, with FA1 becomes a work field now.

ENCLOSURE D

D-13

Then if the field were to be a DEFINE field or in the fixed area

of the record, these operations are not performed as seen by the

second instruction in this code at line 011980. A TZE at that

point will branch around this operation and therefore the

receiving data in the DEFINE field or the fixed area of the record

are much more efficient than receiving in the periodic data.

There is an OVERHEAD for receiving in periodic fields. Then we

pick up the address of B-data which is the address of the

returned data from the special operator. That is actually a

tally word, recomputed already in previous steps, that points

to the address of the OUT-AREA and AREA-LINKED that is our standard

interface with the user subroutines and special operators. One

thing has to be modified about this tally. This is the length,

the amount of characters that were returned by the special

operator. The length is loaded in A register and shifted six bits

to the left for proper alignment and then inserted into the TALLY B.

After that, using indirect addressing, we proceed in moving the

strings of characters and here we are checking to see if an END

occurs. If the field is complete, and if the move is complete,

and if the field is not filled to the end with data from the

special operator, then trailing blanks are added to the receiving

field.

(17) FLAG FIRST. At Line 013160—In this paragraph we

have a set of GMAP instructions that will place a flag on a number

of subsets the user has specified to be flagged unconditionally.

Example:

FLAG FIRST 5

The first five periodic subsets will receive a nondestructive bit

on the first character of the periodic subset sequence number.

This nondestructive bit will not modify the digit in any manner

whatsoever and at output time or update time the digit will appear

just the way it is without a flag. This is accomplished in the

following manner. The subset number of the periodic set, the

periodic set number, is picked up from FA4. Then the address of the

ABM vector is picked up in register 3. That is a work area where

we keep track of where we set flages into the records. Then we

compute the address of the first subset in the periodic set.

A flag is placed upon the first digit of the subset sequence number.

The number of flags are counted, the address of the flag, the

absolute address in the computer, is saved. In flag A area, 1

is subtracted from the number of subsets to be flagged and if any

are remaining to be flagged, we loop back to label 0P151 at line

013250. The operations are repeated until all the subsets required

are flagged. Then we save the next available location in the

FLAG-A area and in the ABM fields and we exit.

ENCLOSURE D D-14

(18) FLAG-LAST. Line 0134tO—The purpose of this

paragraph is to, as its name implies, flag n periodic subsets

from the end of the subset. First a determination is made if that

many subsets exist. If no more subsets than the required number

exist, then we transfer back to FLAG—FIRST and we flag as many as

there exist in the record. However, if more subsets are present

in the record than the user is requiring to flag, we have to

compute the address of the last where to start flagging. This is

accomplished in the following manner. We pick up the number of

subsets in the periodic set. We subtract the number of subsets

to be flagged. We store the result in the work area called

WORK1. We get the length of subsets in words and characters froTj

ST02 vector for this particular periodic set. We multiply by the

number of subsets to be bypassed. We store the result in field FA1.

We keep the product of characters only, mask out the rest in Q

register. We get the starting address from the first subset.

We store zeros in the work area, W0RK1. We store character

position of the first subset in WORK1. We add to it the product

of characters in Q and then we divide by six to obtain words

and characters of the address. Insert 1 in length bit 29 of A

register. We store the length and the character position in FA1.

We get the word amount computed from characters and add to it

the product of subset-word-length. Then we add logically the

word address of the first subset. We store the result in FA1

upper part of the word, that is the address part of FA1. After

this has been accomplished, the job remains to place the flags

as we have done in FLAG-FIRST with exception now that the address
is down at the subset that we have to start with.

(19) UP-A. Line 013860—The GKAP in this paragraph is

concerned with computing an address of a field in a periodic set

that needs to be flagged if it meets certain requirements of

number of subsets to be flagged of low value or high value. That

switch is being set in previous paragraph with a 1 if it needs to

be flagged high, with a 3 if it needs to be flagged low. This is

accomplished by getting the address of the first subset of the

particular periodic set and placing that value into SAVEA1 and

SAVEB1. Each time the subroutine is executed, the field will be

increased by the size of the periodic subset; consequently, the

addresses will be pointing to the field of the next periodic subset.

(20) UP-B. Line 013980—It words in conjunction with the
code in paragraph IT-A. The only difference between the two is

that in this parag aph we are updating the second field that we

are comparing with. The address is being saved in area called
SAVES1.

ENCLOSURE D

D-15

(21) FLAG34. Line 014180—The three GMAP instructions in

this paragraph have a very simple function: to set the secón

bit of the first digit of the periodic subset sequence number.

(22) UP-SET. Line 014320—The GMAP in this paragraph

advances the address of the periodic subset under consideration.

The address of the periodic subset is saved in area SAVE-SI.

The addresses are done in words and characters of the particular

element. The word is placed in the first 18 bits of the

and the character position is placed in the last 6 bits of the

particular field.

(23) AGO. Line 014760—The GMAP in this paragraph

functionally will perform and decide the logic at the end of a

retrieval when a record is qualified. There are several modes

of retrieval, which are called search modes. They are normal

search, search flag, search all, and search terminate. Normal

search means that if the logic is satisfied, we don t go on to

anything else further. We want to proceed to provide an answer

record or a summary record from this input record. That is

done here. Next is the search flag mode. Here ve have to place

a flag on every periodic subset that participated in selecting

this record and proceed to develop the output record. If we are

in a SEARCH ALL mode, we would have to place a flag on all the

periodic subsets that participated in this selection. At this

time hold the record and look forward to see if there are more

subsets remaining to be processed. If that is the case, we set up

an indicator and rather than producing an answer at this time

we return back, go through the logic again, and see if more

subsets qualify for the criteria and subquery. The SEARCH

TERMINATE on the 635 version of MIDMS behaves in the same manner

as SEARCH ALL. There is no such thing as SEARCH TERMINATE.

Although the statement is accepted by the compiler we process

it as SEARCH ALL on the 360 version.

(24) OP21. Line 015440—This paragraph takes a look at

the record after the logic was not satisfied while doing the

retrieval. There are several cases in here when the logic was not

satisfied because of some fields that were periodic. If that is

the case, the GMAP code looks to see if there is another periodic

subset that contains those fields that might satisfy the logic.

Ii that is the case, an indicator will be set and the addresses

of the active subsets are advanced to that particular new subset

and will proceed back to try again the logic. If no subsets are

left to be tried, then we proceed to do a final analysis of the

record since if we were in a SEARCH ALL mode the record may have

been previously selected already for retrieval. It is just this

pass of the logic that was not satisfied. The final decision is

done in GO-6 paragraph.

ENCLOSURE D D-16

(25) LOC-SUB SECTION. Liue 016460—This GMAP code is

a subroutine in itself and its function is to locate periodic

subsets that do carry a flag. This is done so that we can perform

secondary logic on the subsets. This is being accomplished in

the following manner. When a subset is required for processing

for secondary logic, this subroutine is invoked. This subroutine

searches through the subsets until it locates one subset that

carries the flag. That address, then, is saved and we proceed

to compare as being a normal compare. Every time a compare

operation of secondary type logic is performed, this subroutine

is used to locate those subsets that carry the flag.

(26) SP’&l. Line 017090—The GMAP code in this paragraph

will build a sort key for the retrieval. The subroutine locates

the field within the active subset that participated in the retrieval

of the record. The data is picked up from this record and is placed

in the sort key. If the sort key is descending, a transformation

of data is being performed where the inverted value of the data

is placed instead of the actual data. That is, for a 00 value, a

77 value is placed and so on. The sort will perform only an

ascending sort, consequently this inversion of data on the

character set will produce a descending sequence sort.

(27) SP163. Line 017550—In this paragraph the code does

the actual movement of data from the record to the sort key area.

This is being accomplished through convential tally words that

were precomputed in the first part of the program when it was
loaded.

(28) SP165. Line 017960—The GMAP code in this paragraph

reestablishes the periodic set control at the initial value after

a SORT FLAGGED operation was performed. That is, producing

multiple copies o^ the record as indicated in the sort flag option

and indicating i;¿ the set control that one subset exists for that

particular periodic set. After all the copies have been created,

the peridic set control word is reestablished at the initial value.

(29) SP166. Line 018130—The GMAP code in this paragraph

recomputes a periodic set control word for the SORT FLAGGED option

of the SORT/MERGE operators. This is being done for each copy

of the record that will go on the answer file.

(30) SP14. Line 018500—SP14 is the "SELECT IF FLD-A-HITS n"

statement. This GMAP code looks into the particular periodic

set and counts to see if there was a number of subsets flagged as

required in the SELECT statement. If so, it accepts the record

for further processing. If not, it rejects the record as not

meeting the logic criteria.

D-17 ENCLOSURE D

(31) OUT-WRITE. Line 019090—The G^iP code in this

paragraph picks up, scans all the periodic subsets, and turns

the flag off where they are on after they have been put out as a

copy in the SORT FLAG option.

(32) OP-SUMMARY SECTION. Line 019380—The GMAP code in this

paragraph computes the address of the input record and of the output

record. NOTE: The address of the output record is the address of

the logical records in the output buffer. Then it moves the record

from the input buffer to the output buffer through repeat-double

instructions until all the data is transferred to the output area.

(33) SUM-OPEN. Line 019770—There are two GMAP instructions

in this paragraph and their function is to pick up the file code

for the summary file to be created for this subquery and place it

into the file control block word minus 4 called 12 FICB definition

that was done in the file section of this program.

(34) SHIFT-R SECTION. Line 019870—The GMAP code in this

paragraph computes the address of the periodic set control word of

the periodic set that the SORT FLAG/MERGE FLAG option is exercised.

After the location of the periodic set control word, it inserts

the address of the periodic subset that is under consideration.

h. GEN4A. GEN4A is wholly contained within GEN4 and will not

be separately identified.

i. GEN5. GEN5 contains no GMAP and therefore will not be included

in this set of documentation.

j. GEN5A. START-PROC—The GMAP in this paragraph is used to

assign the correct name to the work file. This name is stored in

the file control block (FICB). This is the only GMAP used within
GEN5A.

k. GEN6.

(1) START-PROC. Line 038900—Two GMAP instructions

(LOAD Q WITH DDIN and STORE Q IN FlFICB-4,03). These instructions

pick up the file code of input the work file and place it in the

file control block word minus 4 (two characters in the last two

digits of the field).

(2) GET-RIT2D. Line 057800—In here we have one GMAP

instruction which is TSX1 to ENCODE. This instruction transfers

control to subroutine ENCODE and returns from the subroutine back to

the instruction MOVE N TO J. The ENCODE routine has the function

of packing the statement and placing it into the STATE (N) vector.

ENCLOSURE D D-18

(3) LINK-EDIT. Line 060000—TWo GMAP im>tructions here

where we pick up the file code for the output data from the field

called IN-DATA and we place it in the RVFICB-4. That permits us

to write a variable file as output from report generator.

(4) LOOP-A. Line 061700—Two GMAP instructions here.

We pick up the file code of the SOURCE DIRECT data file and we

place it in the file control block I2FICB.

(5) LOOP-B. Line 063700—The GMAP code in this paragraph

has the function of determining if the operation was table lookup

or not. If it were to be a table lookup, which is operation code 40,

then the pointers are saved in YESGO vector and NOGO vector.

(6) LOOP-C. Line 064700—The GMAP code in this paragraph

finds the location in the constant pool where the convert

routine is placed and converts that location to words and computes

the absolute address of the table in memory. That address is stored

in the NOGO field of the vector.

(7) LOOP-LOAD. Line 066300—The GMAP code in this

paragraph will compute the address of a table that was just loaded

in core and places it into the constant pool. After the data has

been placed in there the pointers are saved in the vectors for a
later reference.

(8) LOOP-22. Line 068900—The GMAP that starts at line

number 069200 has a function of precomputing the addresses in word

and character position of the periodic set controls and file to be

processed. Later on the references will be done more efficiently

and will not have to be computed each time the records need to
be referenced.

(9) STEP8-RET. Line 077700—There are three GMAP

instructions in this paragraph. Their function is to compute the

address of the answer record and through a mask to save the

segment number of the record just read in. This is done so to

know when the record has been completely read in core it would

have the segment number 99.

(10) STEP9-1. Line 081100—The function of this paragraph

is to zero out the W vector. The W vector is a vector parallel

to the instructions generated by the compiler. Each instruction

in sequence created by the compiler has a location in this vector

and this vector is used as a switch to indicate that this instruction

has been executed once and need not be executed again while looping

through the periodic subsets. It contains the pointer and compare

instructions where the next instruction is to be performed. The

code in this paragraph has no other functions except to initialize

it when a new record is considered for processing.

D-19
ENCLOSURE D

(11) CALARASI. Line 084800—The GMAP code in this

paragraph is adequately explained in the program. The

instructions are explained in this paragraph logically; and

furthermore, it has COBOL statements equivalent if the decision

is made to replace the GMAP with COBOL code.

(12) OP41-42. Line 092600—The GMAP in this paragraph will

compute the subscripts for A-field and B-field. The subscripts

are provided in characters and the 635 unit of reference is the

word. Consequently the characters are being converted to word

addresses and character position between those words. Those

addresses are being saved and further processed for address

modification on the periodic fields or defined elements, matrix,

vectors, etc.

(13) 0P13-C. Line 097700—The GMAP code in this paragraph

will pick up the character position in the record and convert it to

word address and character position within those words for A-field

and B-field of all operations. Then those addresses are adjusted

with the address of the particular area that the field resides in,

i.e., record address, constant pool address, and so on. These

addresses are used and execution is actual address for further

processing.

(14) LOAD-A. Line 103100—The function of the GMAP code in

this paragraph is to place in A-field the data from a work area

as a result of a computation.

(15) LOAD-B. Line 104200—The function of the GMAP code in

this paragraph is to pick up the result of a computation f/om

temporary word area W0RK2 and place it in B-field of the operation.

(16) OP0710. Line 105400—The code in this paragraph Js

used to obtain data from A-field and place it into a work area tfter

it has been converted to binary data and to obtain data from the

B-field and place it in the second temporary work area after it hat.

been converted to binary data. This subroutine is utilized in

obtaining numeric fields from the constant pool and from the

record and to perform operations like add, subtract, multiply,

divide, and so on.

(17) X40. Line 110402—This paragraph contains the table

lookup subroutine. It is iroperly documented in the COBOL program,

functionally and otherwise. Each line of code is documented.

(18) Xll. Line 113400—The GMAP in this paragraph has the

function of moving the A-fieli tc the B-field. The fields could be

a)pha-numeric or numeric. The code is properly documented in the

listing with comments, functionally and otherwise, for each

instruction.

ENCLOSURE D D-20

(19) COMPXN. Line 117100—The code in this paragraph

performs a compare between two fields which we shall call A-field

and B-field. These fields can be alpha-numeric fields or numeric

fields. Depending on the type of fields, different type of

compares will take place. If the fields are alpha-numeric, they

are assumed to be of equal length; otherwise, the compiler would

not have let them through. The compare is done logically left

to right, bit for bit, and the greater logical compare, that field

will be Indicated as being greater. Within the numeric fields

the compare is performed in a different fashion, blanks which are

an Octal 20 and are consequently much greater than any number are

treated in this compare as zeros. The bits that form a blank *re

masked out. Furthermore, the fields do not have to be of equal

length. Here we are doing a true algebraic compare. The one

exception is that the blanks first are converted to zero if they

exist in the field. The operation is performed in the following

manner. Leading zeros are provided for the shorter fields. We

are looking for the greater magnitude first. Once we determine

which is the greater magnitude of the two fields that we are

comparing, field-A and field-B, then we proceed in analyzing

the sign of the numbers. If the sign is negative, the field

with a greater magnitude in the greater field. If negative signs

are found within digits other than the last digit of the fields,

they are ignored by being masked out and they are not considered

in the compare. Alpha-numeric data encountered in numeric fields

cannot be compared properly unless they are of equal length and

the fields are equal. Otherwise the sign bit will be wiped out and the

characters are transforned before any comparison takes place.

The addresses of A-field and B-field to be compared are precomputed

during the previous paragraph that we have identified as 0P13-C at

line 097700.

(20) X12. Line 127800—The GMAP code in this paragraph

has the function of moving the input data to ARELINKED. That data

will be passed through the convert routine the us.>r has provided

under the operation (0P12), which is the CMOVE. It does not do

anything but move the data from the constant pool or the input record
to AREALINKED.

(21) 0P1A. Line 134500—The GMAP code in this paragraph

has a function of moving data from the output area where the user has

built it into the buffer of the output record that the .ser wants

to write. 0P18, operation 18, means it is a write. At toe command

"WRITE" the code will be executed and its places into the vutput

buffer the data that needs to be written out. The operations are

done through repeat double instructions for efficiency.

ENCLOSURE D

D-2 1

(22) X26. Line 137700—The GMAP in this paragraph, rather

long, functionally places segments of the variable set into the

output specification of the users. Due to the nature of the

variable data certain analysis has to be performed on the text.

This analysis is as follows. When possible, words may not be

split but are spilled over in the repeated line. Therefore,

backward tracking for blanks has to be checked, and, where possible,

the entire word will be placed into the output area. When not
possible, this word will be split. The code is properly documented

in the program listings.

(23) OP24. Line 147500—The GMAP code in this paragraph

computes the address of the subset to start with and to process

in the output the last n periodic subsets as required in the

LINE subparagraph of the LINE SECTION. This is done by counting

backwards how many subsets there are and by saving that point

as the first subset.

(24) OP25-1. Line 149800—The GMAP code in this paragraph

is similar to the code in paragraph 0P24 at line 147500. One

exception—the counting backwards is done inly on flagged subsets

rather than any subsets. It is used with SET N LAST M FLAGGED.

(25) OP29. Line 152800—The GMAP code in this paragraph

has the function to decode the information about periodic sets in

the input record. This decoding is being done for every record

read in and it is placed in the set vectors, SETI, SET3, SET5, and

so on. What actually takes place in here is picking up information

from periodic set control from the input records and placing them

in vectors in order using the periodic set number as a subscript

to the vector set. An insertion of the value takes place. Also a

conversion takes place. From BCD information they are being

converted to binary values to be used more efficiently.

(26) X30. Line 158002—This subroutine is the edit move

code. It is properly documented in the program.

(27) X33. Line 159400—This paragraph computes the address

of the program number to be performed. That program number is used

as a subscript in the table where the list of programs are loaded.

That address is picked up and inserted and used as a subscript

in executing the instruction where the program is located. The

program number is converted from BCD to binary value to be used as

a true subscript in COBOL in further processing.

ENCLOSURE D

D-22

(28/ LINE-START. Line 164800—The GMAP code in this

paragraph initializes the vectors to zeros as their initial

values for starting to process a LINE SECTION in the OUTPUT

module. Repeat double instructions are being used.

(29) X36. Line 172700—The GMAP code in this paragraph

is performing IF CHANGE operation. The code is properly

documented in the program listings.

(30) X37. Line 174900—The code in here performs the

IF COMPLETE operation. The code is properly defined in the

program listings.

(31) ENCODE. Line 182502—The code in this paragraph,

functionally, takes the expanded statement vector and packs it.

The packing rules are properly documented in the COBOL listing

indicating what bits occupy what.

(32) DECODE. Line 182534—In this paragraph the

operation is a reverse of the ENCODE operation that is started

at line 182502. Again, the code is properly defined and can be

easily seen cross referenced to the ENCODE documentation.

1. GEN6A. GEN6A is wholly contained within GEN6 and will

not be separately identified.

D-23
ENCLOSURE D

