
AD-783 408

MACHINE INDEPENDENT DATA MANAGEMENT
SYSTEM (MIDMS) SYSTEM SPECIFICATIONS.
CHAPTER 4 - RETRIEVAL AND OUTPUT DOCU ¬
MENTATION - PART I. CHAPTER 5 -
RETRIEVAL AND OUTPUT DOCUMENTATION -
PART II

Defense Intelligence Agency
Washington, D. C.

1 July 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfisld Va. 22151

pTTTTTTlT» -*• • ccvi /sbrtSîOK kt.

i
■» HU r (init Sublltlr)

Machine Independent Data Management System
(MI IT iS) System Specifications
C-HA P / h~/Ç y ^ ftèzTnc.Val a.nd ¿?uT?«r3rfu/*»c*rt7S7

CLMrfUlTX É. >Tr.A<ukuL±-$rL3.TL¿ j^iÂTfpX'.Pocinh^fVT4T/ovi -PM-r TT,

7i ’ül

7. AUThOP-s

Defense Intelligence Agency (DIA)

9. PEH('OPMIUG ORGaT'IZATIOP NAME / VD /OcjT.tîS

Defence Intelligence Agency
ATTN: Information Processing Division (DS-5)
Washington, D.C. 2(b(H

•1. CONTROLLING CFFlCF N AM C AND ArfOI»ESS

Same as 9

U. MON IT C NIN G AGENCY N AV. L* 6 AOORELSfli dit eirnl t.om Conuoltine Ol(ict)

REyiMit^r-s CATALOG f.-MácV;

iS. TYP^Or REPORT A f'CRlOD COVI <r-

/l’user Documentation
K MER MERFORmING ORG. REFORT NUMÖl R

»■ CONTRACT OR GRANT N JMDE~f«y

10. PROGRAM ELEMENT. PROJECT 1 A!n~
AREA u TORK UNIT NL'MCERS

12. REPORT DATE

1 July Í97A
'J. NUMGE.R OF PAGES

TJT
IS. SECURITY-CLA! S. foi t ut f»/.orfJ

UNCIASSIFIFD
IS«. OEC L ASSI FÍCÃtTÕnTDO*,'KCR AGI N 0"

SCHEÜULE

16. LTSTRIEUTION STAT EMENT [OÍ this ritpott)

Approved for public release; unlimited distribution

r « /

H. DlSTniüt'TlON STATEMENT (et the *fratr»ct entered In Block 20, It different /ro.7» Report)

nV '
Av Al'5
T|‘

IB. SUPPLEMENTARY notes

GÇ-y

19. KEY NORDS (Contlnut on trvtrt* tide ¡I neetttery out Identity ty blr^i. nuaiber)

MIDMS Subsystem Fixed Set
t File Structuring Subroutine Variable Set

Librarian Retrieval Module
File Maintenance Output
Language Processor Periodic Set

20. APST HACT (Ccntlnut on ttrtnt t.c • II ntcetttn *nd identity by block nun.bet)

This document describes the MIDirS system specifications. Each module of
the system is described in detail to include its subsystem structure,
subprogram identification and description, flow charts, and error messages,
Differences between the IBM and Honeywell versions of MIDMS are documented,

, Reproduced by "

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Depurtmeot of Commerce
Sprlntifield VA £1:151

DD , FORM
JAN 71 1473 EDITION OF I NOV 6S IS ODSOLETE

• !

-r-—« “T— ,.1
SECURITY CLAJSlfICATICN CF Ti

•' m • • i
e t< f ■ ^

>). C7
'* —-

MACHINE INDEPENDENT DATA MANAGEMENT SYSTEM

(MIDMS)

SYSTEM SPECIFICATIONS

FOREWORD

This manual has been developed by the Defense Intelligence Agency
(DIA) for technical purposes. It does not reflect either explicitly
or implicitly official DIA policy or intelligence matters. Its
purpose is to provide a detailed description of the Machine
Independent Data Management System (MIDMS) programs. DIA assumes
no system installation, program maintenance, or system operation
responsibility, nor is DIA responsible for the date upon which the
system operates.

TABLE OF CONTENTS

CHAPTER 1 - FILE STRUCTURING -
!.. Subsystem Structuring .
2. COBOL Data Division Entries .
3. FS Subprogram Identification and Description

a. FSX (Supervisor)
b. FSSNX (Word Scan) .!.*.*!!!!.*!!
c. FSPRX (Print/Error Subroutines)
d. FSJBX (Job Card) .
e. FSEDX (EDITS) ..*.*!!!!!!'
f. FSSBX (Subroutine and Table) .
g. FSFLX (Field Card) ..[
h. FSIOX (Input Output Function) .
i. FSDTX (Management Date) .
j. FSGOX (FIELD Card Continued) ..
k. FSGRX (GROUP Card) . '
l. FSVSX (VSET Card) ..*.*.*! !!!*!
ni. FSENX (ENDFS Card) ...!!!!!.*!!!]
n. FSDDX (COBOL Data Division) .

Ik % Vi In r\ et V V Xfr» con r»n o

5. Quantitative Limits .7.
CHAPTER 2 - LIBRARIAN - .

1. Subsystem Structure ..

2. Subprogram Identification and Description ...
a. LBLB
b. LBCMPRS .
c. LBEXPAND.
d. LBMOVEC .
e. LBJBNAME .
£. LBENQ .
g. LBDEQ .
h. LBRNAME .

3. Error Messages .
CHAPTER 3 - FILE MAINTENANCE (FM)
Overview

1. General .

2. File Maintenance (FM) Subprograms
a. FM.

b. FMiox.!!!!!!.*!.’!.
c. FMscN.!!!!!!!.*!!!!!.!

Section I - File Maintenance Language Processor (FMLP)
1. Overview..
2. FMLP Subprograms

a. FMLP .
b. FMLP2.
c. FMLP VAL.. •■***•* s • • •

/)2>- y ¡í 3 / o?

PAGE

1-1
1-3
1-22
1-22
1-29
1-33
1-36
1-39
1-41
1-44
1-50
1-53
1-55
1-57
1-64
1-66
1-70
1 _■»/.

1-84

2-1
2-1
2-2
2-13
2-14
2-15
2-18
2-18
2-19
2-19
2-20

3-1
3-3
3-3
3-5
3-6

3-1-1

3-1-3
3-1-4
3-1-5

h a V

PAGE

Section II - Ordinary Maintenance Language Processor (OMLP)
!• Subsystem Structure ...

2. COBOL Entries and Subroutines ..

a. DSD01 Entries .

b. VAL-LIT-AREA Entries

c. Subroutines .

(d oMLpx..!.

(2) OMLPFIL..

(3) OMLPCRP., ’ * '].

(4) OMLPREC ..

(5) OMLPrLD.Ü..!!.
(6) OMLP I NT.].’***.

(7) OMLPOPR..

(8) OMLPOP2 ...

(9) OMLPOP3 .!.* !.!.*!.

(10) 0MLP0P4 ..* .*.*!!].’.

(11) OMLPRNG..*.*!!..!.

(12) OMLP VAL.i !...*!!.

(13) OMLPRO..*!.*!!.*.

(14) OMLPSBR.!.'!!!.*.*!!.
(15) OMLPPSS . *]’’’’]].

(16) omlpu’rp.!.*!.*.*!!!.*.*.*.

(17) OMLPWRT.!.*.*!!!.

(18) OMLPWRP........!!!.....!!
3. Krror Mo c Corroe ..

3-II-1

3-11-3

3-11-3

3-11-4

3-11-7

3-11-7

3-II-11

3-11-19

3-11-23

3-11-26

3-11-28

3-11-32

3-11-36

3-II-39

3-11-41

3-II-44

3-11-46

3-11-51

3-11-54

3-11-56

3-11-59

3-11-61

3-II-6?

Section III - File Maintenance (Ordinary) Input Processor (FMIP)
1. Overview.
2. File Maintenance (Ordinary) Inout Processor (FMIP)

Subprograms

3-III-1

a. FMIPX ..

b. FMiPCD.!!!!!..*!.*!..

c. FMiPREc.!!!!!.*!!..
d. FMIPUN..

e. FMIPVAL.!...*!.!.*!!.
f. FMIPTRN..

g. FMIPBIN..

h. FMIPSRT.1.

3. IP Error Messages .

Section IV - File Maintenance Maintenance Proper (FMMP)
1. Overview .

2. FMMP Subprograms....

a. FMMPX. .

b. MPCDi...!.’.*!!!!.
c. MPCD2.!.!.*!!!!.*.
d. oMMPx.
e. oMMpTio.!!.*!.*!!.'!.'.*!!!.
£. GMMPTRN..

3-111-5

3-III-13

3-III-26

3-111-44

3-111-57

3-111-117

3-111-130

3-111-132

3-111-133

3-IV-l

3-IV-3

3-IV-3

3-IV-30

3-IV-49

.3-IV-62

3-IV-125 .

3-IV-128

vi

PAGE

ß. LMMPX .

h. MPSItTX.... 3-IV-146

i. FMMPSRÏ .. 3-IV-147

j. FMMPMRG... 148

k. OMOVL.. 3-IV-149

3. File Maintenance Confirmât i ...3-IV-156

Section V - Logical Maintenance ^°1 Messa8es ••• 3-IV-158

1. Subsystem Structure
2. S„W,: 3-v-i

b. LMLPASN... 3-V-8

c. LMLPATC... 3-V-ll

à. LMLPBLD 3-V-13

e. LMLPCNG .. 3-V-16

f. LMLPDDS 3-V-19

g. LMLPDEF 3-V-23

h. LMLPDEL... 3-V-25

i. LMLPFLD. 3-V-29

j. LMLPFMT and LMLPFMT1 .•• 3-V-32
k. LMLPGEN. 3-V-42

l. LMLPGRP... 3-V-46

m. LMLPMLT... 3-V-47

n. LMLPMOV. . 3-V-50

o. IAÍT..PNM0...

^ . . 3-V-55
q. LMLPNM2 . . 3-V-57

r. LMLPNM3’. 3-V-60

s. LMLPPG1 .. 3-V-62

t. LMLPPG2 ... 3-V-64

u. LMLPPRT .. 3-V-67

V. LMLPPUT...

W. LMLPRFD. 3-V-72

X. LMLPRLN 3-V-75

y. LMLPRMN1... 3-V-78

2. I2-ILPRMS . 3-V-81

aa. LMLPRST... 3-V-86

ab. LMLPRT1 .. 3-V-89

ac. LMLPRT2 . 3-V-94

ad. LMLPSCN 3-V-98 .

ae. LMLPSPO..*’*... 3-V-102

af. LMLPSP1 *.*. 3-V-106

ag. LMLPSTE ... 3-V-lll

ah. LMLPSUB... 3-V-114

ai. LMLPTAB... 3-V-116

aj. LMLPVPT... 3-V-122

ak. LMLPkTO .. 3-V-125

al. LMLPWP1 3-V-127

am. LMLPWP2 .. 3-V-129

an. LMLPWP3 .. 3-V-133

. 3-V-136

vii

T

PAGE

ap. IMLPWP5 . 3-V-142

aq. MLMPZNO... 3-V-144

ar. LMLPZN1 . 3-V-146

as. LMLPZN2 . 3-V-150

at. LMLTZN3 . 3-V-152

3. LM Error Messages . 3-V-154

CHAPTER 4 - RETRIEVAL AND OUTPUT DOCUMENTATION PART I

a. Subsystem Structure ...4-1

(1) Modules and Subroutines..4-1

(a) COBOL Programs .4-1

(b) ALC Subroutines .. 4-2

b. Subprogram Identification and Description . 4-8

(1) GENO...4-8

(2) GENI .4-8

(3) GENLA.4-12

(4) GEN2 .4-12

(5) GEN2X.4-18

(6) GEN4X1 .4-20

(7) CEN4X2 .4-22

(8) GEN4X3 .4-23

(9) GEN3A.4-24

(10) GEN3 ..4-33

(10.1) GEN3B . 4-37

(11'» GEN4.4-37.2

(12) GEN4A.4-43
riTMC4-hJ

(14) GEN3A.4-44

(15) GEN6.4-45

(16) GEN6A.4-51

(17) GENAA.4-51

(18) GEAB.. 4-52

(19) GEAC. 4-52

(20) GEAD.4-53

(21) CEAG .4-54

(22) GEAL.4-54

(23) GEAM. 4-55

(24) GEAN.4-56

(25) GEAP ..4-56

(26) GEAS .4-57

(27) GEAT.4-58

(28) GEAX.4-58

(29) GEAZ.4-59

c. Module Error Messages . 4-61

CHAPTER 5 - RETRIEVAL AND OUTPUT DOCUMENTATION PART II

a. Program Flowcharts ...5-1

(1) GENO. 5-1

(2) CENI. 5-4.2

(3) CENIA. 5-13

(4) GEN2 . 5-14

(5) GEN2X. 5-44

(6) GEN4X1 ...5-45

vi il

PAGE

(7) GEN4X2 ..

(8) GEN4X3.!!!!.*!!.
(9) GEN3A ..*[]**.

(10) CEN3 . .

(10.1) GEN3B.!!!!!!!!!!.*.*!

(11) CEN4 and GEN4A .!!!.*!!!!.
(12) GENS .

(13) censa.
(14) GEN6 and GEN6A .

b. Program Narrative

(1) GENO .

(2) geni.!!!!!.[.

(3) CENIA ..’.*[[[.

(4) GEN2 .

(5) GEN2X.!!!!!.*..

(6) GEN4X1.!.’.*!!!!.
(7) GEN4X2 .,.***).

(8) GEN4X3 .] ‘ *.

(9) GEN3A ..*.

(10) GEN3 ..

(10.1) CEN3B.
(11) GEN4 and GEN4A.. [...
(12) GENS .

(13) censa..!.!.!!.... ;;;;
^CLi»6 and CENCA

i 13) GEAA ..

(16) GEAB..

(17) GEAO..

(18) GEAx).[■.*.*.

(18.1) GEAE ..

(19) GEAG ..]].*

(20) GEAL...*.*.*.

(21) GEAM.!..*!!!!!.* **’*

(22) GEAN..*!.! !.

(23) GEAP .!.'!.*!!.’.

(24) CEAS .!.*!.*.*.

(25) GEAT..

(26) GEAX..*.*!!;!!.
(27) GEAZ .

ENCLOSURE A - USER-WRITTEN SUBROUTINES .*.*.*.*!!!!!!.*! !

ENCLOSURE B - SPECIAL OPERATORS AND CONTORT ROUTINES

1. Circle Search (CIR2SP) .

2. Polygon Search .

3. Route Search Conversion Subprogram (RTCVS) .

4. Route Search Special Operator .

5. Date Conversion Subprogram (CQ\TS) .

6. Coordinate Conversion Subprogram (CROPS) ...

7. Coordinate Conversion Subprogram (CRD6S) ...

8. Coordinate Conversion Subprogram (CRDGS)

, 5-51

, 5-52

5-55

5-73

5-108.1

5-109

5-120

5-121

5-125 ‘

5-138

5-139.2

5-149

5-150

5-185

5-186

NONE

5-195

5-199

5-216

5-264.1

5-265

5-285

NONE

5-288

5-311

5-314

5-315

5-136

5-136.1

5-317

5-319

5-320

5-32.1

5-322

5-324

5-325

5-326

5-328

A-l

B-l

B-13

B-19

B-24

B-26

B-40

B-41

B-41

C^y ^)}$>- 7 S'3 ÿcÿ

PAGE

%

9. Coordinate Conversion Subprogram (CRD7S)
10. Country Code Conversion Subprogram (CTY1S)
11. Comparison of Mark III and MUMS Geographic

Operators and Convert Routines .
12. Route Search Special Operator (RTS3X) .
13. Route Search Conversion Module (RTC3X)

t.Xr’T.OSURE C - ANCILLARY SYSTEM ROUTINES
Section 1 - IBM

1. ABGET .

2. calho.11!!.!!.!!!!!’.!!!!“”
3. C0MA13SY .

4. comall..!!!!!.!.!!*’
5. co^rays.;;;;;;;;;.
6. COMLIST.’ ' [] ..

7. COMNUMS ..!!!!!!!..
s. coMREc.;;;;;;..
9. mTESUB ..
10. EXPNSP ..!!!.*!.
11. link..
12. LMLOOK ..
13. LMTABGEN.**]**.
14. LOAD..

15. LOADTAB ..*!!!.*!”!.’.*.
16. MOCHA ..
17. MOVALF.. .
io. MovcMp.!!!.*!!..!!.
19. MOVCON..*.*.*.*.*!!.*.*.
20. MOV'NUM..* ' ‘
21. MOVERA Y.!!.*!.*!.’.
22. MU\T:.’**'”].

23. 0PR34
Section 2 - Honeywell

1. BIBCS .

2. comlst...*!.*!.*!!.!!.
3. comray...!!!!.'!!!.’!!!.
4. MovNUM.!!!!!!.!!..
5. MOVPAC..
6. MO\TL\Y..
7. OPR34..

8. puttsc.!!.*!!!!!.*!!.
9. KDPSCS ..
10. inrscs.;;;;;;.
11. YYDDD.

ENCLOSURE D ~ Honeywell Differences
1. File Structuring..
2. File Maintenance
3. Logical Maintenance..
4. Special Operators,
5. Retrieval and Output..

B-43
B-43

B-4A
B-45
B-57

. C-l-1

. C-l-1

. C-l-2

. C-l-4

. C-l-7

. C-l-9

. C-l-11

. C-l-13
, C-l-14
, C-l-14

C-l-15
C-l-16
C-l-21
C-l-22
C-l-23
C-l-24
C-l-27
C-l-29
C-l-31
C-l-32
C-l-34
C-l-34
C-l-36

C-2-1
C-2-4
C-2-7
C-2-11
C-2-14
C-2-16
C-2-18
C-2-20
C-2-22
C-2-24
C-2-26

D-l
D-l
D-5
D-7
D-3

X

CHAPTER 4

RETRIEVAL AMD OUTPUT DOCUMENTATION

PART I

Subsystem Structure and Program Identification:

3. Subsystem Structure.

(1) The Retrieval and Output portion of the Machine
Independent Data Management System (MIDMS) is made up of seventeen
COiiOL modules and fourteen ALC subroutines.

(a) COBOL Programs. •

1. GENO

2. GENI

3. GENIA

4. GEN2

5. GEN2X

Supervisor

Batch Build

Source Statement Sort

Retrieval Source Statement Compiler

Non-Sequential Source Statement
Compiler

6. GEN4X1 Non-Sequential Logic Processor, analyzes
lists according to users’ source state¬
ments .

2_. GEN4X2

8. GEN4X3

9. GEN3A

10. GEN3

11. GEN3B

12. GEN4

13. GEN4A

14. GEN5

15. GEN5A

16. GEN6

17. GEN6A

Non-Sequential Work File Sort

Non-Sequential Logic Processor, determines
records to be selected and creates a
summary file when directed.

SHL Output Source Statement Compiler

Output Source Statement Compiler

OP Library Maintenance Program

Retrieval Logic Processor (Periodic)

Retrieval Logic Processor (Non-Periodic)

Output Data Sort

Work File Sort

Output Logic Processor (Periodic)

Output Logic Processor (Non-Periodic)

RETRIEVAL AND OUTPUT SYSTEM FLOW

K GENI
ROLIB2 W MUVL "N ;

GEAM)

4-1-J-

K
GEN 3

R0LIB2)—K ^)

GEAL

) V GEAB)

K GENS \
(GEN5AIF)/

GENsTy^c geam y

{J^T)

0 * GENAA and GEN6A, next page, replace GENA and GEN6 fer

non-periodic processing.

il -1-3

* GEN4A and GEN6A replace GEN4 and GEN6 for non-periodic processing.

**AIF processing calls the routines GEN0AIF, GEN4AIF, GEN5AIF, and GEN6AIF

instead of GEN0, GEN4A, GEN5A, and GEN6A. The corresponding programs are

virtually identical except for data record description. GEN4AIF and

GEN6AIF include the same subroutines as do GEN4A and GENOA, and in add o ,

include the AIF record expansion subroutine GEAIF. No further mention is

made of AIF processing.

GEAM

DB LIB

(,b) ALC Subroutines.

1.

2.

3.

4.

5.

6.

7.

8.

9.

GEAA

GEAB

GEAC

GEAD

GEAE

GEAG

GEAL

C-EAM

GEAN

10. GEAP

11. GEAS

12. GEAT

13. GEAX

14. GEAE

Provides System Date

Locates Called Load Modules

Decodes Periodic Set Control

Loads Reusable Subroutines

Set Exit List

Flags Periodic Data Sets

Link Routine

Moves Logical String

Moves e Name Parameter to DDname location

of a random file DCB.

Performs Periodic Subset Sort

Builds Sort Key

Locates Excess Core Storage for Tables

Compares Two Fields

Executes Output Object Statements

(c) The ALC routines are small and each performs a special

function. They would be relatively easy to recode in another machine's
assembly language.

(2) The currently operational Retrieval and Output modules include
the following general capabilities:

(a) Fiuchine transferability - Retrieval and Output has been
implemented on both the IBM 360 and the HIS-635.

(b) Retrieval and Output support variable length and fixed

length records, either blocked or unblocked, periodic or non-periodic.

(c) They will process sequential files on drum,

disc, data cell, magnetic tape, card, paper tape, or any other

device supported by that operating system.

(d) They include a multi-file retrieval and output

capability that will process up to 60 files in a single query.

(e) The maximum record size ic 10,000 characters.

(f) Retrieval and Output will automatically batch

up to 60 independent queries and search each file only once.

(g) Thev will accept explicit and implicit convert

routines. A convert routine is a user-writlen subprogram or sub¬

routine that contains an algorithm to convert data from one format

♦o another format - an explicit convert routine is specified by name
by the user at execution time. An implicit convert routine on the

other hand, is identified within the Fi!2 Format Table so when that
defined field is compiled, this conveit routine will automatically

be invoked.

(h) The user's language is simple to use and easy to

learn. It is an explicit language that simplifies learning and use

by a non-programmer.

(i) There are only a few reserved words in Retrieval and

Output: SUBQUERY, SUBQUERYX, SORTKEY, ZERO, ZEROS, ZEROES, SPACE, SPACES,

TABLE, and MATRIX. These reserved words allow a user to gain access

to the subquery number within a query and to the contents of the

sort key, to express the value zero or space, and to define an internal

table or matrix. All other words may be used freely without restriction.

(j) Queries and reports are easy to modify to suit

the user's changing requirements. There is a skeleton query capability

and a skeleton report that provides the capability to change a stored

query or report.

(k) Retrieval will accept user-written special operators

to satisfy unique requirements that cannot be met by the standard

language operators. These special operators may be written in any

language supported by that machine.

(l) The system is fast and efficient, particularly in

a batching environment.

4-3

(m) Up to nine levels of parentheses may be used to

accommodate virtually any conceivable query logic.

(n) There aro three stages of conditional statements

available. The primary conditional statements operate against the

data file itself to select certain records. The secondary conditional

statements are applied against the record already selected by the

primary conditional statements. Additionally, there is a capability

for conditional statements within Output to further condition those

records that have gone through primary and/or secondary conditional

logic.

(o) The design of Retrieval and Output is modular to

simplify conversion, system maintenance, and expansion.

(p) The system runs on a 128K 360/40.

(q) Blanks in a numeric field are edited and processed

as zeros.

(r) The user is able to perform groups of statements

from different paragraphs of a report to eliminate redundant coding.

This perform capability is particularly useful in conjunction with

the IF COMPLETE/IF CHANGE and MATRIX operators.

(s) The user has a comprehensive subscripting capability.

(t) The system has a non-sequential capability. A user

utilizes this capability by writing standard MIDMS retrieval source

statements under the non-sequential designator, SUBQUERYX. The statements

are used to query the appropriate reference lists to determine the records

satisfying the retrieval request. The selected records are directly

retrieved.

(3) The design concept in Retrieval and Output is functionally

interpretive. There are three basic elements in this process: the

compiler, the linkage editor, and the logic processor. The compiler

and linkage editor are not to be confused with the COBOL compiler and^

the OS linkage editor. The compilers in this system compile the user's

language and generate an object code with the COBOL programs tnat make

up the system. This object code is then processed by the linkage

editor which essentially resolves the addressing within core. From

there it goes into execution of the logic processor.

4-4

(A) Retrieval and Output exist as a single module. The

execution of both is a one-step job. The following describes the sixteen

COBOL programs that make up most of the system along with a description
of the ALC routines that they call.

(a) The Main Control Program is a supervisor and it

calls other COBOL program in sequence by uuing the ALC subroutine

GEAL. This subroutine provides the actual linkage between the COBOL

programs. GENO enables the Retrieval and Output system to execute in

a single step. This has enabled the system to interface with the

Remote Inquiry Control System (RIGS) and provide the on-line query and

report capability. GENI through GEN6 are the actual working parts
of the system.

(b) The Task Builder is the first processing program

called. It reads the source program and attaches an 18-character

sort key to the beginning and a 10-character trailer at the end of

each record. It edits and special processes certain control statements

(LIBRARY, QUERY, SUBQUERY, SUBQUERYX, REPORT, MODIFY, DEFINE).

(c) GEN1A sorts all the queries and subqueries together
by file name so that all the statements for a particular file are
grouped together.

(d) GEN2 is the Sequential Retrieval Source Statement

Compiler. It edits and compiles the query and subqueries, and outputs

object records containing: a-field, b-field, operation code, retrieval

mode, and other information It also outputs all the constants found in

the retrieval source language, and error vectors for invalid source

statements. This program also executes any retrieval convert routines
applicable, either explicit or implicit.

(e) GEN2X is the Non-Sequential Source Compiler. It

edits and compiles the non-sequential queries (SUBQUERYX). The result

of the compilation is a series of object vectors, constant pool strings,

and an error vector. The object vectors contain the a-field, b-field,

and operation code, and are sorted so that all vectors for any list

appear together (a list is only read once). The constant strings

represent uhe values used in the retrieval expression. The compiler

provides any necessary conversion of constants. The error vector
indicates any errors if they are found.

(f) GEN4X1 is the first non-sequential logic processor.

GEN4X1 analyzes the appropriate lists for the user's retrieval criteria.

If the query that contains the non-sequential statements contains an

error, the remaining portion of the non-sequential process is bypassed.

4-5

(g) GEN4X2 is the Non-Sequential Work File List. GEN4X2

sorts the keys which were retrieved using the list processor GEN4X1.

(h) GEN4X3 is the second non-sequential logic processor.

It accepts the sorted output from GEN4X2, and analyzes the sorted output to

determine the acceptable records (according to the user's retrieval re¬

quest) and when directed, it creates a summary file by directly retrieving
the acceptable records.

(i) GEN3A is the Shorthand Language source statement

generator. It perfo-ms error detection functions on source shorthand

statements and generates equivalent standard output statements. The

shorthand compiler also creates internal save areas for counts, totals,

etc., and extracts the current date from the operating system.

(j) GEN3 is the Output Source Statement Compiler. It edits
and compiles the reports and outputs the same three types of records as the
Retrieval Source Statement Compiler.

(j.l) GEN3B is the OP Library Maintenance Program. It

stores OP reports in source and object form on the MIDMS library.

(k) GEN4, the Retrieval Logic Processor, uses the output

from the Retrieval Source Statement Compiler. Queries that contained any

errors are bypassed. GEN4 performs two functions; it is a retrieval linkage

editor and is also the retrieval logic processor. The linkage editor builds

a set of tables, called vector arrays, which the logic processor uses to

retrieve against the data files. The vector arrays are built only once for

each job and they are structured to execute drop out logic against the re¬

cords in the input buffer. This is also the subprogram in which special

operators are executed. All qualifying records from all queries in the job

are written on an answer file. The only exception to this is the summary

file. In case the summar r file is being generated, the records are written

directly onto the new file and do not go into an answer file. GEN4 calls

seven ALC subroutines to help in its retrieval function.

GEAM - moves a string of characters from one area
of core storage to another.

_2. GEAX - compares two fields and returns a code

showing if the a-field is less than, equal to, or greater than the b-field.

_3. GEAG - examines periodic data sets and flags the
ones that meet the specified ser'.ch mode and user requirements.

GEAC - decodes the periodic set control words

which contain the number of subsets that exist for that set in a particular
record and the starting address of the set.

4-6

_5. GEAS - builds the 85-charact*r user-specified

sort key and returns it to the calling program.

6. GEAL - loads and links user-tr eel fled special

operators.

7. GEAD - causes leasable special operators to

remain in core for the duration of the job when adequate ore is

available.

GEN4A is similar to GENA except that it only
processes non—periodic files. GE\C and GEAG are not used oy GEN4A.

Either GEN4 or GEN4A will be called, but not both in the same job.

(l) GEN5 is the Output Data Sort. It uses tho 15-

character system-built key and the 35-character user-buili. key to

sort the answer file and restore the records to the matching report.

(m) GEN5A sorts work file records to accoraiodate

flysheets.

(n) The Output Logic Processor is the last program

called. It uses the output from the Output Source Statement Gcinoiler

and the sorted data from GEN5 to generate the required output reports.

Any queries that contained errors are skipped. The progrpn is the

output linkage editor and logic processor. In addition, it executes

output convert routines and table lookups. Up to 60 batched reports

can be printed, punched, or written as a single job. GEN6 calls six

ALC subroutines to assist in the output function:

1^. GEAM - moves a string of characters from one

area of core storage to another.

2. GEAZ - processes virtually all logical state¬

ments (arithmetic statements, TMOVE, EMOVE, etc.).

_3. GEAT - searches areas of core storage such

as the statement area, special operators area, and constant pool area

for unused portions to fill up with load module tables.

routines.

4. GEAL - loads and links user-specified convert

_5. GEAD - causes reusable convert routines to

remain in core for the duration of the job when sufficient core is

available.

jj. GEAP - executes a sort of periodic subsets

within a record.

4-7

GEN6A is similar to GEN6 except that it only processes

non-periodic fields. GEAP is not used by GEN6A. Either GEN6 or GEN6A will
be called, but not both in the same job.

b> Subprogram Identification and Description.

(!) GENO.

(a) Abstract of Driver.

i- Function. GENO's function is to call the other
COBOL routines in the proper order.

2« Calling Sequence. GENO calls the ALC subroutine
GEAL using three paremeters:

Length Type

Module name 8 A

SAVEREG 20 FULLWORDS B

QUERY-COMMUNICATIONS

AREA-ZERO 120 N

AREA-DD 24 A

AREA-COUNT HALFWORD B

NSAX-AREA 136 MIXED

Name of Called Routine

Save Area for Registers

Error Vector

Word File Names

Occurs 120 times

OP Statement Count

Non-Sequential Parameters

(b) Description. GENO is the main COBOL program of the

MiDMS System. Its purpose is to call the twelve MIDMS COBOL routines (GENI,

•iENlA, GEN2, GEN3, GEN3A, GEN3B, GEN4, GEN4A, GEN5, GEN5A, GEN6, or GEN6A)

in tne proper order through the ALC subroutine GEAL. If GEN2 references

periodic fields, GEN4 is called, otherwise GEN4A. If GEN3 references
periodic data, GEN6 is called, otherwise GEN6A.

(c) Limitations, ’’he PNAME or name of the called program
must be eight characters or less.

(d) I/O Data Sets. None.

(Z) GENI.

(a) Abstract of Task Builder.

!• Function. The Retrieval and Output Task Builder reads
from the card reader the MIDMS source statements. These statements can refer

to stored queries on the library and they can temporarily modify the stored

queries according to user specifications. An 18-character sort key is built

and piaced at the beginning of every retrieval and output source statement.

A 10-character trailer is also added to each record giving it a new length

li0lChara^terS' A 8yntax check is Perf°™ed on special control statements:

DEFINE^ °r C0MP 0P’ LIB °r LIBRARY’ ^UERY» SUBQUERY, REPORT, MODIFY, and

4-8

2. Calling Sequence. The module calls two subroutines:

parmi

parm2

parm3

parmA

parm5

a. GEAM.

Length

HALFVJORD B

HALFWORD B

HALFWORD B

HAuFWORD B

HALFWORD B

b. R0LIB2.

Base Address of Sending Area

Displacement of Sending Area

Base Address of Receiving Area

Displacement of Receiving Area

Length of String to be Moved

Length

CALL-SEQ

OPERATION 1

ITEM-NAME 5

SUFFIX-NAME 2
FILLER 1

ITEM-DATE 5

ITEM-SIZE 4

Receiving Area 80

A Value R for Read

A Library Member Name

N Member Number
A Not Used

A Not Used

N Number of Characters Brought In

A Occurs 125 Times

(b) Description. In G1 input cards are read into a working
storage area called CARDIN. In G2 the first eight characters of the source

input record are checked for one of the nine special control words which

must be processed further. Control words with the exception of DEFINE must

start in column 1 or they will be processed as an 'ALL OTHER' source state¬
ment .

If the control word is COMP-OP or COMP OP the nroeram ="ltcV'CP'>. —s the card .„age lato the workiag'^rage
rea called oOMP-JCL and scans the card to determine the COMP-OP name. If

the name is not 5 characters in length and/or does not end in 'R', ap¬

propriate error messages are generated and displayed. If all is correct

the system will set the sort keys (COPOUT) so the COMP-OP card will be the

tirst card in the input stream. Control is then returned to G1 and a new

card is read. If one of the next cards is a LIB or LIBRARY card and the first

card was a COMP-OP (CP-1), the card image is moved to the working storage

area and TYP-ST (2) Is set to 8 to Indicate that both sourceand object

reports are to be stored. If a subsequent LIB or LIBRARY card is used to

obtain a complete source REPORT (or SHL-RPT) from the library, TYPE-ST (2)

will be set to 7 to indicate that only an object report is to be stored.

If
preceded by a COMP-OP

5 characters long and

if the conditions are

the control card is a LIB or LIBRARY and was not

card, the program checks the next word which should be

end in Q, R, F, or J. An error message is generated

not met (G13). This is the name of the stored

4-9

member on the library. The subroutine LB is called to retrieve the first

record from the named member (G15). If the named member is not on the lib¬

rary, an error message is generated and further library processing is by¬

passed for this card (G20). If the library name is located, the length

of the member must be a multiple of 80 and there must be 125 or less card

images or appropriate error messages are generated (G16), unless the program

is processing on object report (name ends in 'J') Jn which case the length

must be a multiple of 108 and there must be 92 or less images. The SWT1

switch is set to 1 to inform GENI to read the next input record from the

library rather than the card input stream (G16). The SWT2 switch is set to

the number of card images in the stored query (G17). The first card image

from the library is moved to CARDIN and the process of checking for a control
word is initiated (G19).

If the control word is QUERY, the TYP indicator is set

to 1 and the REPORT-SWT indicator is set to spaces to indicate that a QUERY

control card has been processed. The QUERY counter in the sort key is

incremented by 1. The FILENAMEA and FILENAMEB are set to spaces and the

SUBQUERY counter and card sequence counter CARD-NUM are set to zeros. This

record is written to SIGEF1 which is the input file to the card procedure.

When sorted, the key is now set so that this record will be the header card
for the query.

If the control word is SUBQUERY, the TYPE indicator is

checked to determine if a QUERY card was processed (G30). If TYPE is not

equal to 1, a QUERY card is generated by the system, TYPE is set to 1, and

an error message is written (G30). The constant COUNTER keeps track of the

card position (CG 1 to CC 72) as the program scans across the card image.

GENI looks for the next word, skipping commas, blanks and the word FILE if

encountered (G32). The next word will be the file name and the first 8

characters are moved to FILENAMEA and FILENAMES (G37). The counter SUB¬

QUERY is incremented by 1 and the sequence counter CARD-NUM is initialized

to zero. This record is written to zero. This record is written to SIGEF1,
the card input file and CARD-NUM is set to 1000 (G34).

If the control word is REPORT, the REPORT-SWT indicator is

checked to determine if a QUERY card was processed (G70). If REPORT-SWT

is not equal to spaces, a QUERY card is generated by the system and an error

message is written (G70). FILENAMEA and FILENAMES are set to 99999999, the

SUBQUERY and CARD-NUM counters are set to zero, and the TYPE indicator is set

to 5 to indicate a report. The output record is written to SIGEF1 and CARD-
NUM is set to 1000 (G71).

If the control word is SHL REPORT or SHL RPT, a switch is
turned on and the TYP indicator is set to 4 to indicate a shorthand language
(SHL) report.

4-10

If the control word is MODIFY, the program scans
for the next word, skipping commas and blanks if encountered, looking

for either SUBQUERY or REPORT. If SUBQUEKY is found (G44), the

program checks the file name (G50-G52A) and the subquery number

entries to see if they are valid. FILENAMEA and FILENAMEB are set

to the value on the card images (G53), the TYPE indicator and CARD-NUM

counter are set to 1 (G54) and the SUBQUERY counter is set to the

value found in the card image (G46). The record is then written to

SIGEF1. If the word REPORT was found, FILENAMEA and FILENAMEB are

set to 99999999, the TYPE indicator is set to 5, CARD-NUM is set to 1,

the SUBQUERY counter is initialized to zero and the record is written’

to SIGEF1 (G43). If the words SUBQUERY or REPORT are not found or

if the file name or subquer number entries are invalid, the indicators

are reset and the record is written to SIGEF1 with an error message.

If the control word is DEFINE, CARD-NUM is
incremented by 2 (G6) and the record is written to S1GEF1 (G3).

In all other source statements, CARD-NUM is
incremented by 20 (G7) and the records are written to S1GEF1 (G3).

After each record is processed, the program
checks to see if the next input record should come from a card or

the library (G18). The next record is read and processing proceeds

(c) Limitations. None.

(d) I/O Data Sets.

A* CARD—INPUT. This is an 80 character fixed
length input file used as the source statement input.

—* CARD-OUT. This is an output work file used
for sequential processing.

-2* CARD-OUTX. This is an output work file used
for non-sequential processing.

A* FILE-OUT. If no sort is required after GENI,
the CARD-OUT file is copied to the FILE-OUT work file to maintain

synchronization of work files. If a sort is needed, FILE-OUT is not
used.

4-11

(3) CENIA.

(a) Abstract of Driver.

-i' Function. A COBOL sort is performed to
group all subqueries together by file name.

. , 1* Calling Sequence. The program calls one
subroutine, GEAM.

Length Type

parmi HALFWORD B

parm2 HALFWORD B

parm3 HALFWORD B

parm4 HALFWORD B

parm5 HALFWORD B

Base Address of Sending Area

Displacement of Sending Area

Base Address of Receiving Area

Displacement of Receiving Area

Length of String to be Moved

(b) Description. GENlA's only function is to sort
user source statements and check for a sort error.

(e) Limitations. None.

(d) I/O Data Sets.

1* ÇARD-OUT. This is the work file created by
GENI. It is used as input to the sort and subsequently as output from

The sort work files
JCL.

1' SORT-REC. This is the record being sorted,

are variable in number and as described in the

(4) GEN2.

(a) Abstract of Retrieval Compiler.

1* Function. The Retrieval Source Statement
Compiler (GEN2) performs syntax editing of the formatted retrieval

source statements and writes an error message for the first error

encountered in each retrieval source statement. GEN2 builds vector

arrays for each retrieval source statement, a constant pool string

containing constants, literals, and defined values, and a query

vector containing non-zero entries for those queries which contain

an error in the source statements. The program passes all of its

output along with the output from the Batch Build (GENI) and the

input source statements to the Output Compiler (GEN3) for further
processing.

4-12

sub routines:
2. Calling Sequence. The program calls four

CALL-SEQ

OPERATION

ITEM-NAME

SUFFIX-NAME
FILLER

ITEM-DATE

ITEM-SIZE

Receiving Area

a. ROLIB2.

Length I*E£

A Value R for Read

A Library Member Name

N Overflow Counter
A Not Used

A Not Used

N Number of Characters Brought In

A Occurs 125 Times

b. GEAL.

Length

module name g

SAVEREG lg FULLWORDS

parametcr(s) Variable

c« GEAB»

Length

SNAME g

RET-CODE HALFWORD

Name of Called Routine

Save Area for Registers

Parameter(s) being passed

to called routine but not
used by GEAL

Name of Routine Being Checked

Return Code from Routine

Type

A

B

Variable

IZBi

d. GEAM.

Length Type

Sending Area

Sending Area Offset 2

Receiving Area

Receiving Area Offset 2

Number of Chara ters 2

Address of Sending Area

Character Subscript (Base 1)

of Sending Area

Address of Receiving Area

Character Subscript (Base 1)

of Receiving Area

Number of Characters to Move

4-13

(b) Description. Records are initially read in the

NFW-STATE SECTION. The read statement is skipped if the MISSING-SWT

equals 1 in which case the program has read a card previously, found

that the record was continued by a character in cc. 72, read the

next card and found that it was not the continuation card. An error

message is generated and the read statement is bypassed bacause the

next record has already been read. Extensive error checks occur

throughout GEN2 including syntax, logic, system limits, and

Retrieval control parameters. The error messages generated by the

program are Intended to be s^lf-explanatory. When the exact card

columns of the error are known, they are specified in the error message.

The input records are checked to make sure they are in ascending

sequence by filename and a copy or the input record is written to

the output file. If the record type is REPORT (TYPE-IN = 5) further

processing is bypassed.

NEW-STATE1 checks for any change in the SUBQUERY

field of the sort key and various counters, switches, and work areas

are initialized in INITIAL-REC.

The first word, including control words, found in

the retrieval source statement is decoded by FIRST-WORD and if it is

in error, a message is generated. The FATAL-ERROR paragraph is

executed when input source statements are not in ascending order.

Paragraphs C-SHL1 and C-SHL1A search all source

statements fer SHL statements (TYPE = 9). If one is found EXTRACT-WORD

is performed to search for either LIST or FILE SHL statement.

Paragraphs C-SHL4 through C-SHL6 provide data from

FFT tables 2, 7, 8, and 9 required when processing the LIST statement

in this module.

The processing required when the subquery entry

in the sort key changes is contained in SUBQ-HK through SHI. A test

is made to insure that the parentheses for the preceding subquery are

balanced. Likewise, the processing required when the filename field

of the sort key change is contained in C-POOL through CPI. A test is

made to insure that the literal pool does not exceed 9000 characters.

When the end of the input file is reached, END-STEP,

ESI, and ES2 are executed. If unbalanced parentheses or a constant

pool overflow occurred, error vectors are written.

The retrieval and modification, if required, of

the FFT tables specified by the file name on the subquery card is

accomplished by paragraphs C-SUBQUEPY through S6S.

4-14

In C-SORT thru CS51 the sort control information
is generated specifying ascending or descending for each field to be
sorted in the record.

Error messages that contain no card column ident¬
ifications of where the error occurred are written out by the WRITE-ERR1
SECTION and the error messages that do contain card column ID are written
out by the WRITE-ERR SECTION.

If a continuation card is encountered while executing
the EXTRACT-WORD SECTION, the READ-OP SECTION is performed.

The C-LIST paragraphs are executed when a LIST card
is encountered. The paragraphs in C-LIST do not edit the items but create
define statements which contain internal labels, edit mask or convert
routines for each EFT name found in the LIST statement. Logical
records 7 and 8 are used to retrieve the data for the labels. Logical
records 7 and 9 are used for edit mask or convert routines. It is
possible to have a label and an edit mask or a convert routine, but
not edit and convert together with a label. To prevent a user from
using these define statements, the letters LL$, EE$, and CC$ are used
to prefix the EFT define name.

In the WRITE-STATE SECTION, edits are performed on
each compiler statement before it is outputted. The WRITE-NOP SECTION
is performed each time a group of left parentheses comprising a paren¬
thetical expression is encountered.

The ELD-PART SECTION processes partial notation
following a valid A-NAME or B-NAME.

The identification of the operation code encountared
in logical statements and placing of corresponding entries in the OP

field of the compiler statement record is accomplished in the DECODE-OP
SECTION.

The OP codes are listed below for the different
valid operators:

LESS 1

EQUAL 2
GREATER THAN 3
BETWEEN 4
SATISFIES 5
SPECIAL OP 6
NOT LESS 7
NOT EQ 8
NOT GT 9

4-15

NOT BET 10

STOP 11

NOT SPEC OP 12

RECEIVE 13

SELECT 14

FLAG 15

SORT 16

MERGE 17

NOP 18

SET-DECODE 19

TRUE /GO/ 20

FALL /NOGO/ 21

LIMIT 22

KEEP 23

LOAD 24

CONTAINS (F&P) 25

CONTAINS (VAR) 26

The LMODE codes are as follows:

ANY NAME 4

ALL NAME 5

ANY HIT NAME 6

ALL HIT(S) NAME 7

The DECODE-A SECTION determines whether an

A-NAME is a periodic field, fixed field, or a defined field. A

check is made for duplicate DEFINE statements, and if one is

encountered for which a corresponding modify flag was not set, an

error message is generated. Fields Al, A2, A3, and A4 in the

output compiler statement are filled.

Multiple b-fields are processed in the DECODE-B

SECTION. Fields Bl, B2, B3, and B4 in the compiler statement are

filled. Before literals and constants are added to the constant pool,

the SNAME is checked to see if a conversion routine must be executed

utilizing the literal or constant as input.

The EXTRACT-WORD SECTION scans a card picking up

all the characters between delimiters and moving them to a hold area.

This section is executed each time the next word in a source statement

is required. If a // is encountered as a delimiter, spaces are moved

to SNAME which suppresses conversion. If the word does not exceed

14 charact^ra, the hold area is padded with trailing spaces until the

sun of che word and trailing spaces equal 14.

In the LEAD-ZERO SECTION, leading zeros are placed

before constants so that the lengths of the A-NAME and constant are

equal and likewise the TRAIL-SPACE SECTION places trailing spaces

after literals to match the length of A-NAME.

4-16

Numeric data is edited in the KXTRACT-NUM SECTION.

The RIGHT-PARNI SECTION decodes right parenthesis used in parenthetical

expressions and the TYPE-TEST SECTION checks to insure that the A-NAME

and B-NAME have the same data type, i.e., numeric.

HLD-REC SECTION is performed when a LIST statement

continues to another card.

S806-TRAP SECTION performs a load module validation
on all corvert routine names.

KEEPP SECTION performs validation on all field-names

referenced in KEEP statements prior to being written out at the end

of the subquery as KEEP object vectors.

WRITEV SECTION creates the KEEP object vectors at
the end of each subquery.

END-STEP SECTION generates the "AT END" object

vectors required for each subquery.

(c) Limitations. The limitations of the Retrieval
Compiler are enumerated below:

Numeric a-fields and b-fields cannot exceed
15 digits.

2^. Alphanumeric ¿-fields and b-fields cannot
exceed 360 characters.

3. SORT FLAGGED statements must be the last

statements in a subquery and may reference fields from only one periodic
set.

The length of the constant pool comprising

literals, constants, and defined data for all subqueries against the

same file cannot exceed 9000 characters.

_5. User convert routines cannot exceed 10,000
bytes of core storage.

jj. The total number of batched retrieval source

statements pertaining to the same data file, including those internally

generated cannot exceed 500.

per card.
_7. Only one retrieval source statement is allowed

4-17

(d) I/O Data Sets.

FILE-IN. This is an input work file that was
the output work file in the previously called load module.

2.* FILE-OUT. This is the output work file and
will be used as input by the next-called load module.

(5) GEN2X.

(a) Abstract of Driver.

_1. Function. GEN2X is called when GENI finds
non-seqi.ential source statements. GENI separates sequential and
non-sequential source statements into two separate work files. The
non-sequential work file is input to GEN2X.

GEN2X is the non-sequential counterpart of
GEN2. GEN2X reads the non-sequential source card images and generates
the appropriate object vectors and constant pool strings.

The output of GEN2X is an ordered list of
object vectors, constant pool strings, edited source images with any
error messages or warnings and the query error vector (if an error
is discovered in the source statements the query containing the
non-sequential statement is set to 1).

The edited source statements and GEN2X messages
are passed to GEN5A to be merged with the standard sequential query data.

GEN4X1.

The object and constant vectors are passed to

subroutines:
Calling Sequence. The program calls four

a. R0LIB2.

Length Type
CALL-SEQ

OPERATION 1
ITEM-NAME 5
SUFFIX-NAME 2
FILLER 1
ITEM-DATE 5
ITEM-SIZE 4

Receiving Area 80

A Value R for Read
A Library Member Name
N Overflow Counter
A Not Used
A Not Used
N No. of Characters Brought In

A Occurs 125 Times

S NAHT.
RET-CODE

b. GEAB.

Length Type

g A Name of Routine Being Checked

HALFWORD B Return Code from Routine

module name

SAVEREG
parameter(s)

c. GEAL.

Length Type

8 A Name of Called Routine

18 FULLWORDS B Save Area for Registers
Variable Variable Parameter(s) being passed

to called routine but

not used by GEAL.

d. GEAM.

Length Type

Sending Area N
Sending Area Offset 2 N

Receiving Area N
Receiving Area Offset 2 N

Number of Characters 2 N

Address of Sending Area
Character Subscript (Base 1)

of Sending Area
Address of Receiving Area
Character Subscript (Base 1)

of Receiving Area
Number of Characters to Move.

(b) Description. GEN2X is a subset of GEN2. Two types

,f modifications are made to GEN2. The first type of modification
tripped GEN2 of the functions and options which are not appropriate
o the level of processing which was proposed for non-sequential
.rocessing. This type of modification eliminated logic modes,
larenthetical expressions, special operators, sorting, etc.

The second type of modification changed the limits

of certain types of fields and added the final auxiliary processing

to sort the object vectors.

4-19

The final process of GEN2X is to sort the object

vectors which it has stored in an array. The array can contain 100

object vectors which is one of the new limits on the retrieval

expression. The sort groups all object vectors which are associated

with the same list.

The other portions of GEN2X are directly from

GEN2. Refer to the GEN2 for a further description.

(c) Limitations. The same limitations as GEN2 plus the

following:

1. No more than 100 generated object statements

(generally one object statement per retrieval

statement).

2. No parenthesis.

3. Operators: LESS, EQUAL, GREATER, NOT LESS,

NOT EQUAL, NOT GREATER.

U. The b-field of an object vectcr cannot refer

to an FFT item.

(d) I/O Data Sets. Same file structure as GEN2 except

with different names.

(6) GEN 4X1.

(a) Abstract of Driver.

1. Function. GEN4X1 reads the object vectors

created by GEN2. The object vectors are used to query the list files.

GEN4X1 reads the list files one at a time and executes the group of

vectors that concern each list. The result of GEN4X1 is the key

file (DDname - KEYFL). The key file is the cumulative result of the

keys (of each list) that satisfied the object vectors for a particular

list. The key file is passed to GEN4X2.

2. Calling Sequence. GEN4X1 calls two subroutines.

4-20

a. GEAh

Length Type

Sending Area

Sending Area Offset 2

Receiving Area

Receiving Area Offset 2

Number of Characters 2

N Address of Sending Area

N Character Subscript (Base 1)

of Sending Area

N Address of Receiving Area

N Character Subscript (Base 1)

of Receiving Area

N Number of Characters to Move

b. GEAX.

Length

Record Area

instant Area

Vector Area

TyPe

N Address of Record

N Address of Constant Area

N Address of Object Vector

Description. GEN4X1 reads all the sorted object

vectors from GEN2X for one list. The list is opened, read, and

analyzed according to the object vectors.

As each vector is processed, the keys for the list

values which satisfy the object vector are written in a sort file.

When the list is exhausted or the object vectors have been satisfied,

GEN4X1 begins reading another set of object vectors.

When all object vectors have been satisfied, GEN4X1
returns control to GENO.

(c) Limitations. Not applicable.

(d) I/O Data Sets.

_1. NSW1. NSW1 is the vector/constant file created

by GEN2X. NSW1 also includes the original source/error records.

2^. NSW2. All type one records, source and error

records, from NSW1 are written in NSW2. Any error messages from GEN4X1

are written on this file.

4-21

3. LISTFILE. Dummy DCB for the list files.

4. NSAX. NSAX is the key file. When a list entry

satisfies the vector which has examined it, the key to that entry is

written in the NSAX file. NSAX file is passed to a sort, GEN4X2.

(7) GEN4X2.

(a) Abstract of Driver.

was created by GEN4X1.

2.
GEAM.

Sending Area

Sending Area Offset

Receiving Area

Receiving Area Offset

Number of Characters

Function. GEN4X2 sorts the key file which

Calling Sequence. GEN4X2 calls one program;

Length Type

2

2

N

N

N

N

Address of Sending Area

Character Subscript (Base 1)

of Sending Area

Address of Receiving Area

Character Subscript (Base 1)

of Receiving Area

Number of Characters to Move

(b) Description. GEN4X2 sorts the key ¿ile which was

created by GEN4X1. The completion code of the sort process is tested

after the sort has terminated. If the completion code indicates an

unsuccessful sort, NSW1 and NSW2 files are opened. NSW1 is an input

file and contains the output source/error file from GEN4X1. All records

in NSW1 plus an error message (bad sort) are written on file NSW2.

(c) Limitations. Not applicable.

(d) 1/0 Data Sets.

1. KEYFL. KEYFL contains the keys from GEN4X1

which are to bo sorted and replaced in the KEYFL.

2. NSW1. Input source image file. Only opened

to transmit an error in the SORT procedure.

3. NSW2. Output file for source/error images.

Only opened to transmit an error in the SORT procedure.

4-22

(S) GEN4X3.

(3) Abstract of Driver.

i* Function. GEN4X3 reads the sorted key file,

determines the acceptable recoid numbers and when directed, creates

a summary file by directly returning those records.

2. Calling Sequence. GEN4X3 calls two programs,

a. GEAM.

Length Type

Sending Area N

Sending Area Offset 2 N

Receiving Area N

Receiving Area Offset 2 N

Number of Characters 2 N

Address of Sending Area

Character Subscript (Base 1)

of Sending Area

Address of Receiving Area

Character Subscript (Base 1)

of Receiving Area

Number of Characters to Move

P-FNMt
File name

b. GEAN.

Length Type

8 A/N DDname

8 A/N File name

(b) Description. GEN4X3 analyzes the sorted key output

from GEN4X2. If a sequence of keys satisfies the user's request, a

check is made to determine if a summary file is to be created. If

the summary is to be made, the record is retrieved and written on the

summary file.

When all the sorted keys have been processed, GEN4X3

transmits a number which is the number of acceptable records.

(c) Limitations. Not applicable.

4-23

Bl

(d) I/O Data Sets.

1. KEYFILE. KEYFILE is the sorted output
from GEN4X2. It contains the keys which were retrieved by GEN4X1.

2. SUMMFL. SUMMFL is the dummy file which is

used to write the summary file.

3* INFILE. INFILE is a packed random file.
Standard sequential MIDMS files are packed into fixed length random
records. The key to retrieve a standard MIDMS record from the packed
record is contained in the POINTR file. The POINTR file documents
which packed random record(s) contain the standard record.

4. POINTR. The POINTR file documents where
a particular standard record has been placed in the packed file.

5. NSW1. NSW1/NSW2 are the input/output files
respectively. If GEN4X3 discovers an error (i.e., in the pointer of
packed files), NSW1 records are written in NSW2 with an error message

which describes the error.

6. NSW2. (Refer to 5).

(9) GEN3A.

(a) Ads tract of Shorthand Language (SHL) Output Compiler.

1. Function. This module performs the syntax
editing of a free formatted Shorthand Language output source statements;
creates output object vectors (TYPE = 5s) required by the Output logic
processor; builds constant pool strings containing: (1) constants,
literals, and defined values encountered in SHL source statements,
(2) literal labels, edit fields, and convert routines found in FFT
tables, and (3) COUNT and SUM work areas as specified in SHL source
statements; builds a query vector containing non-zero entries for
those queries that contain errors in either retrieval and/or standard
output source statements or SHL output source statements; writes an
error message for the first error encountered in each invalid SHL
output source statement; passes to the retrieval and logic processors
all output from the Retrieval Compiler and the SHL Output Compiler.

2. Calling Sequence. GEN3A calls five programs.

4-24

WÊÊÊKKM
m

a. P0LIB2.

CALL-SEQ
OPERATION
ITEM-NAME
SUFFIX-NAME
FILLER
ITEM-DATE
ITEM-SIZE

Receiving Area

Length

1
5
2
1
5
4

80

Type

A
A
N

A
A
N

Value R for Read
Library Member Name
Overflow Counter

Not Used
Not Used
No. of Characters Brought In

Occurs 125 Times

module name
SAVEREG
parameter(s)

b. GEAL.

Length Type

8
18 FULLWORDS
Variable

A Name of Called Routine
B Save Area for Registers

Variable Parameter(s) being passed to
called routine but not used
by GEAL.

c. GEAB.

SNAME
RET-CODE

Length

8
HALFWORD

Type

A
B

Name of Routine Being Called
Return Code from Routine

d. GEAA.

ARG
RG1
RG2
OUTX

DA
MO
YR

Length Type

6
6

2
3
2

ID
ID

A
A
A

Parked Decimal, Used hy OS

Packed Decimal, Used by OS

Day of Month
Month
Year

4-25

parmi

pann2

parm3

parm4

parm5

e. GEAM.

Length Type

HALFWORD B

HALFWORD B

HALFWORD B

HALFWORD B

HALFWORD B

Base Adàress of Sending Area

Displacement of Sending Area

Base Address of Receiving Area

Displacement of Receiving Area

Length of String to be Moved

(b) Description. All initial housekeeping is performed

in HOUSE-KEEP.

Reinitialization of work areas, counters, and

switches prior to processing of each new SHL report is performed in

NEW-REPORT.

Input source statement records are read to determine

when the last record in th2 input file (FILE-IN) has been encountered

(TYPE = 4), when c' SHL source statement has been encountered, and when

each new SHL report has started. The latter tests are performed in

NEW-STATE, NEW-STATE1, and NEW-STATE2.

Extensive error checks occur throughout GEN3A

including syntax, logic, system limits, and SHL output control

statements. The error messages generated are intended to be self-

explanatory. When the exatt card columns of the error are known they

are specified In the error message.

This program processes SHL source statements

(TYPE-IN = 9) which are changed to TYPE-IN * 5 just prior to being

copied to the output file.

Paragraphs NS1B, NS1C, NS1E, and NS1CC through

NS1Z contain the processing required for the previous SHL report

when the query number associated with each SHL report changes and

when the end of file condition occurs for the input file.

The END-ROUT through XEND-ROUT paragraphs are

executed at the end of each query. These paragraphs produce the

user header and trailer lines only if the CLAS-SWT equals one.

The movement of data comes from the saved vectors produced by C-CLASS,

HED-HN, and TRL-TN in the hold area called SHL-VECT. If the CLAS-SWT

equals zero a fatal error occurs with a message at the end of the query.

Reinitialization required for each new SHL source

statement is performed in paragraphs INITIAL-REC and PPP.

4-26

each Sm n„tn ► The first word* including control words, found in
each SHL output source statement is decoded by FIRST-WORD.

(Type * m íq a ► í" LAfT~0NE through L02, the error vector record
(TYPE 4) is updated to indicate those queries for which errors
were encountered in the SHL report.

logical records 1,
FILE statement.

Paragraphs C-FILE through S8S retrieve and modify
2, and 3 for each unique file name specified on a

Paragraphs which start
SHL source statements are identified by C-
C-OR, C-OMIT, C-STOP, C-RESET, C-SET, etc.’

processing the
i.e., C-FINAL,

appropriate
C-IF, C-AND,

-ic r,o f j L in Para8raPh C-LIST through LST5A, syntax checkine

partial°data Tr, ^a/151 “he" Palais are’encojerad ^
If Íhe dítí fí ÍÍ 5 Pinters to the partial data are processed.
If the data fields and partíais in a LIST statement are valid,
p cessing of the data field entries starts and proceeds in the
sequence: define names, fixed FFT fields, periodic FFT f elds
variable FFT fields. nexos,

without flaacHna i-k warn-MESSAGE paragraph writes caution messages
without flagging the query number in the error vector.

or LINES!7K narA i ^ C-LSIZE Paragraphs are executed when an LSIZE
f \ rd 8 encountered- The numbers or letters (see line

size format) after LSIZE indicate the number of positions required for

oíeseír1 T f n^û Theusystem defaults to 132 if no LINESIZE card is
present. If the number for line size is 20 or less the system will

eTf„r8Sa8e- “ CRT 18 P88“ 72 positions are allocated if
TTY is used 100 positions are allocated, and if PRT is specified 132
positions are „oved to the line size area. In the case of
data EXTRACT-NUM is used for verification of digits.

Paragraphs C-CLASS through PRT-T0P-LINE7 are
eben compiler GEN3A receives a CLASS stateme't. A brief delcripHon o
each paragraph is as follows: description of

_ , „ C-CLASS picks up and verifies the literal within

.pSL"8„rdvii!HF
— -a- i" tb?“-Ä'0\be“

4-27

.......

pool and inserts the vector into a hold area using WRT-VECT ADD-PAGENn
adds one to the reserved word "PACEÑO" and moves the result to tí¡

ïntotanî fr1 USÍng the CONSTANT section and moves the vector
into a hold area using WRT-VECT. EMOV-PAGENO suppresses leading
zeros in the page number and moves the vector into the nold
using WRT-VECT. CALL-SYSDATE, using the ALC routine "DATETIME",

t-iWfT 8 the Julian date to day» “onth, year. MOV-SDATE moves data
to the constant pool using CXXX1 and moves the data to the hold
usine WRT-vktt cDAop o* . a aaca 1:0 tne hold area

^ SPA^-26 crates the vector for spacing before
P g and moves the vector to a hold area using WRT-VECT PRT top itwf?

UToV^tZrzfor pririn8 the £irst ii"e i'.;1? ¡LINE7

to fhl °ne t0 the lndex <S»L-ID» and moves vectors to the hold area called SHL-VECT. vectors

Hin When compiler GEN3A encounters the HI through
H10 cards, paragraphs HED-HN through HN-3 are executed for creation

wn»í ne The Para8raPh8 verify the literal Liíg
EXTRaÍtIÜI^ ae^(Jf nu”erlc data is found after the literal,

verifies this data. If no data is found CNTER-HN

SnvInmTth^ Uteral f0r 0UtPUt deRe"di"R - the nL size,

and reLnsTh^SmT "°Ved t0 3 h<,ld ar“ U8ln8

and TM i When T1 through T4 are received paragraphs TRL-TN
and TN-1 are executed for outputtln6 trailer vectors. In paragraph

a TN"SUT 18 Set t0 onc a,,d 8oes t° HED-HN. In
a check is made on TN-SWT: if equal to one the program goes to

SIME “hlCh the VeCt°r “ a hold ataa aad “turns to

When a DISPLAY card is received in GEN3A the

HZTn meralteld “ C-DISPLAY‘ A “ISPLAY statement can
contain literals, define names, SPn and/or a numeric number The
paragraphs that follow C-DISPLAY perform validation^0^0^
format, use, and positioning of data for output. If SPn (SPACE n)
is used between data elements the "n", a numeric 1 to U2 will be
checked using EXTRACT-NUM or if a numeric starting position is

« lí se EÍÍL™^11 beJdrÍfled USÍng EXTRACT-NUMi aH others litt U8e ^^CT-WORD for validation. Since the FINAL-OUTPUT can
have conditional statements a period check is made at the end of
**Ch.SP”’ nuineric number, define name, and literal. If present

í to ^Tü XFALSE “'u11 be lnitlaUaad fP 1- In orderPf„ m"í; a
SE in paragraph DP-1A, a 2 is moved to SWTX and when WRT-REr

is performed and SWTX equals 2, a 1 is moved to XFALSE and the
record is written out by using WRITE-STATE.

4-28

t i;;-

I " m,T fre referenced i" “>e latter type of stateme““

nam;s to determine «"an ^teinirioSN^ors™""6“ ^
been set up for each PFT na^'êl“™« U IZ

internal „ork areas with appropriate define Les are created'.

identification of uhp^1°L“2883868 that require no card column

WRITE-ERR1 SECTION and error^essages^hat do^eo 1Î°Ut *7
identification are written out in WRITE-ERR SECTION^ ** ^ C°lumn

encounte’-eH ini í ^6 identification the operation code

entry codes in ^ placing of corresponding

accomplished by the DECODE-OP 5^110^11^ StateiDent record ls

valid operators: ^ ^ ^6 liSted below for the different

LESS, LT, BEFORE, EARLIER
EQUAL, EQ, EQUALS

GREATER, GT, LATER, AFTER

NOT (LESS, LT, BEFORE, EARLIER)
NOT (EQUAL, EQ, EQUALS)

NOT (GREATER, GT, LATER, AFTER)

1
2

3
4
5
6

following a valid A-^^r'B-N^^îeW.^°°68868 ^31 n0tation

is a periodic field ^tedTeld ”hether a"

define statements aU h ckf o; ZYf ?
a corresponding modify flag is íot seí ,7 cncounl:ered for “hich

Fields Al. A2. A3, and A4 In the 8e"erated-

are processed in the^CODE-B^ÉcTION. ^nllds Bl’ ““ l7 °R Stf ™ents
the compiler statement are filled. Before lierai'. ÍL 3’ ln

added to the constant pool, the SNAME is checked íõ sêí ír" “8 "?
routine must be executed utilirlno checked to see if a conversion

Load module valida^

4-29

mmw

"“tf-"^"e'^™^™esEaís»““Dsaíerí„c:tírnal
area rather than being immediately written out.

executing the EXTRACT-WOR^SFrTTnM10^03^ ls encountered while
Tha EXTRACT-WORD SECTION scans a c«d aIs Per£<)™d'
between delimiters and moving them to l hoínf P U H characters
is executed each time the next word in a ^63, ThÍS section
required Tf a < in a source statement is

to SNAM^'which slnrJsaal,coered f “ deU,"lter' are moved ruu. wnicn suppresses conversion. If thp unra
H characters the hold area la padded with tramng spices “

constant pool, In LOAD-CONSTANT, literals are moved to the

that contain ™st r.““a“ mPE 7)

data. EXTRACT-NUM SECTION scans a field for non-numeric

loads a table „1th vale's' SlyCm 1^31 2 e"trleS and
variable. t ymg FFT fields as fixed, periodic, or

................."Kr^tr.s ™“.:: sxr..?™,u.
generated during the^exêSon ofa'user^^róúílne"0'' ^353865

on convert routines.SECTI°N perioras a l^d "odule validation

DUP—CHIC SECTION dctenninpQ if a
been created that has a mnemonic Identical ío an m name

the LIST statement. “^ïdateVfîï^rÎiaU^ ^ d£
partial, and saves this d ta in a hninP 1 XfÎ Processes data for each
pointers. " 3 h°ld area whlch is addressable by

types of data names,““L* SEC™N ^ ^ °£ ~la£ad
the corresponding starting position of ° b6 ,!rritten on one line and contents. carting position of each associated label and data

4-30

field-names in a LIST^taftmenf ÍS ^ t0 dete™ine "hat
LLbl statement had a partial associated with it.

,. DEFINE-SEARCH SECTION searchp«î i-ho e

s:“ =¾¾ :::S; r« “ “
generated LINE and BEGINSparagraph . corrett placement In each

field name in the cona^^oT^Lh^fl/h! ^701° °f 3 PFT
processing the LIST statement. USed 38 the label when

GEN-LABELS SECTION eeneraM^o „k i .

fhe BLP s tatement^ptio^hã^not ^been ^ ^

for object vectora cre^¡5 Üo «Ue^aíels“!’ ^ B3’ and B4 ,Íeld¡¡

OLN-J4 SECTION is performed when

count's tatements?nerated dUrlng the Pr0CeS3ln* of th

LINE and BEGIN
LIST. SUM, and

-- —— 9 WRITE-STATF cpptthm a X DJeCt statement that

filenaL a„d”m!18 n the f°Uouln8 flelds: L(“DE- ™UE.

qui red for periodic rCt°rS Ce'

appropriate LINE and BEGINS paragraphs are created' 7^77

ta ^ cm. ^.B-iaUbUa btCTION is performed for LIST
and SUM statements which are conditioned Co^hm Í . ’ wuni*
arp «-u . »uitionea. Conditional ooiect vector«?
are written at the appropriate positions in LINE and rfptmq vectorf
required for processing the latter statements! Paragraphs

output the data
statement.

UC.11-U/UA btiailON generates the obi
contents of all field-names referenced

vectors to
a LIST

4-31

LOAD-A SECTION loads the FFT name Ini-n
constant pool when it is required as a label ThiTi, ï ,
when it an ptt j «ocx. This is required only

it an FFT field-name does not have an internal label.

data field's

report.

væ.«—uv£.KrLOW SECTION is performed when a single

contents exceed the line size specified in the SHL

vector is required.
GEN-SPACE SECTION is performed when a space object

ihe PERIOD-SCAN !
the end of a sequence of characters.

nanes for SUM and COmT^äreas"10" ^ ““ °f defl"e

area nanes to the ^ C°UNT “°rk

at a/ ui m i0ll°wing sections are used to fill A1 at

müÍe-fL »ve^a! m^Mrles ln °bJect - «= ¿oveIdb

required to add oceurren^f^daf^Í^a86"“^“ the °bJe,:t vectocs
work areas and the contents of nunerlí fíl^ 'bc ^rresP»^'ng COUNT
SUM work areas. tields to the corresponding

to wriff n ^ aC-OUTPUT SECTION generates the object vectors

FINAL-OUTPUT. C°ntentS of a11 the SUM and COUNT work areas in

vw laxmxcacions. in
Statement Compiler are listed below:

awe .nullcations v/wcpuL ouurc

characters. - Alphanumeric field-names cannot exceed 360

per card.

supported.

-* Numeric field-names cannot exceed 15 digits.

3. Only one output source statement is allowed

- IF C0MpLETE and IF CHANGE operators not

4-32

5. Table lookup not supported.

6. System formatted output. LIST statement
processes EFT field-names according to the sequence in which they
appear in EFT tables. All data fields are printed in this order:
DEFINE, FIXED, PERIODIC, and VARIABLE.

2- FFT field names may not have both an
internal edit mask and convert routine name.

(d) I/O Data Sets.

2* FILE-IN. This is an input work file that
was the output work file in the previously called load module.

Ã' FILE-OUT. This is the output work file and
will be used as input by the next-called load module.

(10) GEN3.

(a) Abstract of Output Compiler.

2» Function. The Output Source Statement
Compiler (GEN3) performs the syntax editing of the free formatted
output source statements; builds vector arrays for each output source
statement; builds constant pool strings containing constants, literals,
and defined values encountered in output source statements; builds a
query vector containing non-zero entries for those queries that
contain errors in either a retrieval or output source statement;
writes an error message for the first error encountered in each
invalid output source statement; passes to the Retrieval Logic
Processor all output from Retrieval and Output compilers.

2» Calling Sequence. No parameters are passed
to this module when it is initially called. The program calls four
subroutines:

CALL-SEQ
OPERATION
ITEM-NAME
SUFFIX-NAME
FILLER
ITEM-DATE
ITEM-SIZE

Receiving Area

a. R0LIB2.

Length Type

1
5
2
1
5
4

A Value it for Read
A Library Member Name
N Overflow Counter
A Not Used
A Not Used
N Number of Characters Brought In

80 Occurs 125 Times

4-33

module name
SAVEREG
parameter(s)

b. GEAL.

Length

8

18 FULLWORDS
Variable

-Type

A Name of Called Routine
B Save Area for Registers

Variable Parameter(s) being passed
to called routine but not
used by GEAL.

SNAME

RET-CODE

c. GEAB.

Length

8

HALFWORD

Type

A

B
Name of Routine Being Called
Return Code From Routine

d. GEAM.

Length

parml HALFWORD
parm2 HALFWORD
parm3 HALFWORD
parm4 HALFWORD
parmS halfword

(b) Description.

Type

B

B

B

B

B

Base Address of Sending Area
Displacement of Sending Area
Base Address of Receiving Area
Displacement of Receiving Area
Length of String to be Moved

Records are initially read in the

processes records whose TYPE-IN equals 5 (REPORT RECORDS).

of the sort key. tests for a change in the query field

4-34

Paragraphs NSIB through NSIZ contain the processing

required for the previous report when the query field value changes.

Reinitialization of work areas, counters, and switches

prior to processing of a new report is done in NEW-REPORT.

The first word, including control words, found in

the output source statement is decoded by FIRST-WORD and if it is an

error, a message is generated.

In LAST-ONE through L02, the error vector record

(TYPE = 4) is updated to indicate those queries for which output source

errors were encountered.

Paragraphs C-FILE thru S6S retrieve and modify the

FFT tables for the filename specified on the file card.

In the C-STOP paragraph, the STOP parameter is

examined when the STOP is used In conjunction with a conditional; the

output can be terminated when it reaches a certain user-specified limit.

The MOVE-WARNING and WARN-MESSAGE paragraphs write

warning messages without flagging the query in the error vector.

Error messages that contain no card column

identification of where the error occurred are written out by the

WRITE-ERR1 SECTION and the error messages that do contain card column

identification are written out by the WRITE-ERR SECTION.

The identification '•f the operation code encountered

in logical statements and placing of corresponding entry codes in

the OP field of the compiler statement record is accomplished by the

DECODE-OP SECTION.

The OP codes are listed below for the different

valid operators:

LESS, LT, BEFORE, EARLIER 1

EQUAL, EQ, EQUALS 2

GREATER, GT, LATER, AFTER 3

NOT (LESS, LT, BEFORE, EARLIER) 4

NOT (EQUAL, EQ, EQUALS) 5

NOT (GREATER, GT, LATER, AFTER) 6

The FLD-PART SECTION processes partial notation

following a valid A-NAME or B-NAME field.

RECODE-A SECTION determines whether an A-NAHE
is a periodic field, fixed field, or a defined field. Duplicate

define statements are checked for and if one is encountered for which

FisîdrÂÏ0nA2n8A7dIfH "aü n0t Set’ an err0r messa8e 18 «'"«ated, fields Al, A2, A3, and A4 in the output compiler are filled.

-nelas t0unQ in IF, AND, and OR statements nuitipie ^

are processed in the DECODE-B SECTION. Fields Bl, B2, B3, and B4 in'

the compiler statement are filled. Before literals and constants are

added to the constant pool, the SNAME is checked to see if a conversion

routine must be executed utilizing the literal or constant as input.
Load module validation is also performed on SNAME.

In the WRiIE-STATE SECTION, edits are performed on
each compiler statement before it is outputted.

■ ^ a cont;inuation card is encountered while executinc
the EXTRACT-WORD SECTION, the READ-OP SECTION is performed The 8

EXTRACT-MOP,, SECTION scans a card picking up all the characters between

e imiters and moves them to a holding area. This section is executed

each time the next word in a source statement is required. If a if
is encountered as a delimiter, spaces are moved to SNAME which

suppresses conversion. If the word does not exceed 14 characters the
hold area is padded with trailing spaces.

,, *n t^-e LEAD-ZERO SECTION leading zeros are placed
before constants and likewise the TRAIL-SPACE SECTION places trailing
spaces after literals that require padding. 8

Numeric data is edited in the EXTRACT-NUM SECTION
and the TYPE-TEST SECTION checks to insure that the A-NAME and B-NAME
have the same data type, e.g., numeric.

from a
In the USER-ERROR SECTION, invalid data returned

convert routine is written out along with an error message.

The PERIOD-SCAN SECTION looks for a period at
the end of a sequence of characters. If one is found, PERIOD-SWT

vLfoí’ 3 Sp3Ce iS wrltten over the period, and a one is moved to
XFALSE•

U) Limitations. Thi
Statement Compiler are listed below:

limitations of the Output Source

1.
exceed 360 characters .

Alphanumeric a-fields and b-fields cannot

4-36

2,. Numeric a-fields and b-fields cannot exceed 15 digits.

2- The program does not process FFT labels.

2* All retrieval must be performed before output is
generated.

2* Implicit convert routines are not available (must be
defined explicitly).

2» ZERO and SPACES are invalid as a b-field entry.

Only one output source statement per card.

(d) I/O Data Sets.

A* FILE-IN. This is an input work file that was the
output work file in the previously called load module.

2. FILE-OUT. This is the output work file and will be
used as input by the next-called load module.

(10.1) GEN3B

(a) Abstract of OP Library Maintenance

2- Function. The OP Library Maintenance program main¬
tains reports (RIT's) in object form on the MIDMS Library. Since the source
version of each object report will also be maintained on the library, GEN3B
will automatically add or replace a source report (if necessary) each time
a corresponding object report is updated (i.e., added or replaced). Source
and their corresponding object reports always appear on the library with
names of the form XXXXR and XXXXJ, respectively. In addition to updating
the MIDMS library, this program provides a standard RTOP listing plus
messages giving the names of the object (and possibly source) reports which
were added/replaced. At most, one object and one (corresponding) source
report will be added/replaced during a single execution of GEN3B.

2. Calling Sequence. The program calls three sub¬
routines :

a. GEAM

Length Type

parmi HALFWORD B
parm2 HALFWORD B
parm3 HALFWORD B
parm4 HALFWORD B
parmS HALFWORD B

Base Address of Sending Area.

Displacement in Sending Area
Base Address of Receiving Area
Displacement in Receiving Area
Length of String to be Moved

A-37

ffMMMflpim

parmi

parmi

b. DATESUB

Length Type

5 BYTES N

c. DBLIB

Length Type

18 BYTES A

Current Date (YYDDD)

Address of Parameter Buffer, as

follows:

parm2

1 BYTES

5 BYTES

2 BYTES

1 BYTE

5 BYTES

4 BYTES

10K BYTES

A Operation Code (Read, Write, etc.)

A Name of Report (XXXXR or XXXXJ)

A Member number (01, 02, etc.)

A Unused

A Date member written to library

A Size of member

A Address of Library Read/Write Buffer

(b) Description. Program initialization consists of opening

the input and output data sets and printing the "MIDMS START PROCESSING"

page. TYP1-S (2) is then tested to determine the run type. If TYPE-S (2)

equals 7 or 8 a COMP-OP card has beer, encountered. TYPE-S (2) equal 9

implies a normal MIDMS RTOP execution and GEN3B should nojt be called; this

is a fatal error and processing terminates. If GENI detected an error in

the COMP-OP card the next record read will be the error message (Q-IN equal

0 and TYPE-IN equal 3); otherwise, a QUERY card must be found. The "QUERY"

page is printed, DUPLICATE-CHECK (see below) is performed and the report
processing commences.

As the input data set is read it is sequence checked.

Source records (TYPE-IN equal 4 or 5) are placed in the library buffer (if

the source report is to be replaced) and printed. Object records (TYPE-IN

equal 6 or 7) are always placed in the library buffer since object reports

are always updated. Updating is controlled by TYPE-S (2) which is set by

GENI: if TYPE-S (2) equals 7 only the object report is updated; if TYPE-S

(2) equals 8 both the source and object reports are updated. Since library

member lengths may not exceed 10,000 bytes multiple writes to the library

for a source or object report may be required. No library updating occurs

if the error indicator (Q-SWT (1)) is non-zero. When the end of the input

file is reached, the library buffer is flushed, messages indicating the

names of the reports which were added/replaced are printed, the "QUERY" and

and "END MIDMS PROCESSING" pages are printed, the data sets are closed and
control is returned to GEN0.

There are two major subroutines included within GEN3B.

They are WRITE-LIBRARY and DUPLICATE-CHECK. WRITE-LIBRARY is executed each

time a member is to be written to the library. MCOUNT is incremented by

one at each execution to maintain a count of, and uniquely name, each

4-37.1

member written to the library. For example, source reports exceeding

10,000 bytes will be stored in successive library members having names of

the form XXXXR01, XXXXR02, XXXXR03, etc. The purpose of DUPLICATE-CHECK

is to delete existing library members if a replace operation is to occur.

Successive calls to the librarian subroutine are made (incrementing MEMBER-

SUFFIX at each call) until all members constituting a single report are

deleted.

(c) Limitations. The limitations of this program are:

U A maximum of one source and one object report may be

updated in a single execution.

2.. Library members may not exceed 10,000 bytes.

J3. Reports cannot by deleted using oENSB.

(d) I/O Data Sets.

JL. OPSTATE. This is the input data set; it contains a

COMP-OP record, a QUERY record, a source report (either Standard or SHL)

and an object report. If errors were detected by GENI or the language

compilers, the error messages are included on this data set. Record types

on this data set are Standard Language (TYPE-IN equal 5), Shorthand Language

(TYPE-IN equal 4), Instruction vectors (TYPE-IN equal 6) and Constant Vectors

(TYPE-IN equal 7).

2. REPORTO?. This is the printer output file used for

writing the hardcopy report.

(11) GENA.

(a) Abstract of Retrieval Periodic Logic Processor.

i* Function. The Retrieval Logic Processor retrieves

and processes data records using vector arrays and constant pool strings

created in the Retrieval Compiler. The queries that were flagged due to

errors in either retrieval or output compilation are bypassed and corres¬

ponding vector arrays and constant pool strings are not processed. All sub¬

queries referencing the same file and found in queries that contain no

retrieval or output source errors are loaded into a hold area. A link edit

is performed on these statements, bypassing those which logically do not

contribute to final go or no-go decision. For each subquery for which the

data record satisfies the retrieval logic, a copy of that record is written

out.

routines :

2. Calling Sequence. The program calls seven sub-

4-37.2

■MMMMBaifc*....aJL ■ wf..... ,M» ul,:,,,:
i||||l|l||g|M ■ W*1 ,,W. ... ■ .» "'*•*" ■ ..
. . . ___ __

a. GE AL

Length Type

module name

SAVEREG

parameter(s)

8 A

18 FULLWORDS B

Variable Variable

Name of Called Routine

Save Area for Registers

Parameter(s) Being Passed to

Called Routine but not Used

by GEAL

parmi

parm2

parm3

parm4

parm5

b. GEAM.

Length Type

HALFWORD B

HALFWORD 3

HALFWORD B

HALFWORD B

HALFWORD B

Base Address of Sending Area

Displacement of Sending Area

Base Address of Receiving Area

Displacement of Receiving Area

Length of String to be Moved

c. GEAX.

Length Type

RX

CONX

STATE-FORM

N

9999 A

9000 A
12 HALFWORDS B

HALFWORD B

Data Record

Constant Pool

Object Statement

Subscript of Active Statement

d. GEAG.

Length Type

RX 9999 A

SET-TABLE 12 A

SL HALFWORD B

ABM HALFWORD B

FLAG-AREA

OP HALFWORD B

SWTGO HALFWORD B

Data Record

Occurs 50 Times - Contains Description

of Each Set in Record

Subscript of Last Used Occurrence

in SET-TABLE

Number of Flags in Buffer

Address of Flag

Operation Code for Current Statement

Return Code

4-38

j.' h '

'

G. G£AC•

Length Type

RX 9999 A
SET-W-TBL 12 A

SL HALFWORD B

Data Record
Occurs 50 Times - Contains Description

of Each Set in Record
Subscript of Last Used Occurrence in
SET-W-TBL

f. CEAS.

RX
CONX
STATE-FORM
KSR1

Length Type

9999 A
9000 A

12 HALFWORDS B

85 A

Data Record
Constant Pool
Object Statement
Sort Key

j>. GEAD.

Length Type

SNAME 8 A
SAVEREG 18 FULLWORDS B
AREALINKED

IN-LENGTH FULLWORD B

Subroutine Name
Save Area for Registers

Load/Delete Switch

(b) Description. Processing starts by opening CON-FILE,
the data set created by the language processors. This file contains
source statements, generated tables from the source statements, constant
pools, error and warning messages. From CON-FILE, GEN4 picks up an
error vector (QUERY-SWT) which indicates which queries contain source
statement errors and are not to be processed. GEN4 then selects all
table and constant pool records from all error-free queries for the
first file to be processed. The GEN4 subsystem then determines the
structures of the data file from tables that were created by file
structuring. The cata file could be a MIDMS file or another type of
file, such as the Binary Coded Decimal Automated Intelligence File
(BCD AIF). The actual record structure of a file, whether fixed
or variable length, peri die or non-periodic, is of no consequence to
the subsystem, as long as there is a description of the data format
available to the system. This means that virtually any existing data
file can be processed by the retrieval subsystem if its record structure
has been described to MIDMS.

4-39

The operator is notified on the console that

processing is starting of a particular data file. If the file is

on-line, processing will commence immediately, otherwise the system

will go into a wait state, and a mount command will be Issued on the

console for the particular volume^ needed. When the volumes are

mounted, processing will begin. To avoid this wait state, the user

may omit the DEFER MDUNTING parameter in the JCL. In this case, the

volumes will be asked for when the system goes into execution, thereby

allowing the operator more time to get the volumes mounted, however,

this means the svstem will tie up the peripheral resources of the

installation; if that is not acceptable, the DEFER MOUNTING parameter

may be used.

The data record will be read in and the periodic

control words, if any, will be extracted from the data record and

saved in an -»rea called SET-W-TBL. Then the location, in the case

of the first subquery program, is obtained from the Q3 table. Subquery

statements are processed individually and in an order dictated b> the

logic indicated by the user. If the logic of this subquery is

satisfied by the data in the record, this particular record will be

written out as an intermediate answer file (OUT-FILE). If the user

has specified that he wants a summary file the record will be written

on the particular volume specified by the user rather than on the

intermediate answer file.

If there is another subquery directed against this

record the location of the next subquery is obtained from the Q3 table

and the cycle is repeated until all subqueries have been processed

against this data record. Then a new data record is obtained from

the input data file and processing of all subqueries will be repeated

as Indicated before.

There is a statement, STOP, which may be conditioned

with logical statements. If such a statement is satisfied in a

particular subquery, at that point the said subquery will be purged

from the module and processing will continue with the remaining

subqueries. There is a special case when all subqueries may be purged

before the end of data file has been reached. In this case, GENA

will simulate an end of file condition for the input data file and

will proceed with the next data file, if any are left to be processed.

If GENA does, in fact, encounter an end of volume for the input data

file and the user has specified as concatenated another data volume

in his JCL, the system will issue a mount command to the operator

on the console for that particular volume. If there are no concatenated

volumes left to process and the volume was of a direct access type,

GENA will proceed to the next data file to be processed. However,

if the volume were to be on magnetic tape, GENA will interrogate the

A-AO

T

operator on the the console to determine whether there is another reel
left to be processed for this particular data file. The operator
may answer YES or NO. If the answer is YES, GENA will issue a mount
command for that particular reel and processing will continue. If
the answer is NO, the system will proceed to process the next data
file. This next data file may be an old file or a summary file just
previously created in this same run. This cycle of processing will
continue until all input data files are processed.

In processing a subquery, the user may indicate,
with the LIMIT operator, the maximum number of answers desired from
a particular file and a particular subquery. This limit applies only
to this subquery and will not affect the rest of the subqueries being
processed against said data file. The LIMIT operator will not
terminate processing as does the STOP operator but instead will bypass
writing of answer records after the maximum has been written.
Consequently, at the end of job the user will be provided with the
number of answer records, up to the maximum indicated in the LIMIT
operator, and also with the total number of records in the input data
file and the count of how many answer records he would have had if
no LIMIT operator was used. This is a simple way to obtain counts
and to limit the output to a small number of answers, even zero.

The answers produced by GENA are of two kinds,
intermediate answers and summary files. They are very different in
nature and format. The intermediate answer records are of a MIDMS
system format that is not used externally. Records from each file
are reformatted to this MIDMS system format and sort keys are
attached to the records. This makes it possible for the sort phase
of the system to sort and merge answers from different files in a
sequence desired by the user. Having them in such a sequence, the
output processor will be able to produce reports from multiple
data files in a sequence based on the values of the data fields
of the records rather than files. All the data elements of the
input record are available to the output subsystem, including free
text type fields. The summary file type of records are of the same
format as the input data file from which the records originate with
the exception of the blocking factor if the user desires a different
one. Each subquery within a query may ask for a summary file as
output. Since a summary file created in a subquery may be the
input to another subquery of the same query it is possible to
create up to 60 summary files in a single query. Also, a summary
file created in a subquery may be passed as input data to another
subquery of a different query in the same run. Since there could
be 60 queries batched into a single run, there could theoretically
be 3600 work files or permanent files within a single run. This

A-Al

number cannot be practically achieved with the present hardware

since there is not enough core for the operating system to maintain

the pointers required for so many files attached to a singlu job,

but it can be said that the MIDMS system will handle as many input

and/or output files as the particular operating system or a particular

hardware is capable of supporting, not to exceed 3600 such data files.

The summary file created in a job may be saved as output data files

and/or work files for further processing within the same job. The

same summary file created in a job may be used as input to several

subqueries within the same job. The same volume that the summary

file was created on may be used for another summary file after the

first summary has been used as input to other subqueries. This

allows the user to utilize limited external storage for larger volumes

of data to be processed in the same run. The summary files created

in GENA are also available as source direct input to GEN6. Since

GEN6 is capable of producing a report from 58 different files, i.e.,

a line of print, a card, a record, some of the data items retrieved

from a file can very easily be used as values to qualify records

from another input data file. This is not a true interfile logic,

but with some skill on the part of the user it very rapidly approaches

the capabilities of interfile logic as presently known. The design

of this system is oriented toward data base processing rather than

file processing. Interfile logic has not been achieved in the present

system due to the ^^rict requirement of being able to operate within

128K bytes of core memory, including t. e operating system with all its

functions. At the time the core restriction is eliminated the system

will operate upon data bases rather than files and the interfile

logic capability will be achieved with ease in such an environment.

In fact the intermediate answer file created by GENA is the embryo of

such a data base.

Processor are listed below:

(c) Limitations. The limitations of the Retrieval Logic

JL. The program does not process inter-file logic.

2. Only 500 retrieval source statements can be

processed against any one file.

GENA.

3. Only BCD sequential files are processed by

A. There are four reserved words:

SPACE (S)

ZERO (S,ES)

SUBQUERY

SORTKEY

A-A2

_5. The sortkey is 85 characters in length.

(d) I/O Data Sets.

2* OPSTATE. This is the output work file and
will be used as input by the next-called load module.

SUMMFILE. This file is usee as output for a
summary file creation. Otherwise it is not used.

_3. CONFIEE. This is an input work file that was the
output work file in the previously called load module.

A* INFILE. This is the input data file used for
reading variable length MIDMS data file records.

file.
OUTFILE. This is the answer record output

(12) GEN4A.

(a) Abstract of Retrieval Non-Periodic Logic Processor.

A’ Function. Same as GEN4, except that only non¬
periodic data is processed by GEN4A.

Calling Sequence. Same as GEN4, except that
GEAG and GEAC are not used by GEN4A.

(b) Description. Same as GEN4.

(c) Limitations. Same as GEN4.

(d) I/O Data Sets. Same as GEN4.

(13) GEN5.

(a) Abstract of Data Sort.

Function. GEN5 is a program that does nothing

but sort data. The data records which are sorted include the retrieved

records that satisfied the user-specified logic requirements, the copies

of the retrieval and output source statements, the error message records,

and the constant pool strings. The data is sorted on the first 100

characters of the 412 character records. The first characters contain

the control fields (query counter, type, subquery counter, and card

counter). The last 85 characters of the sert key contain user-specified
sort fields.

4-43

subroutines.
2. Calling Sequence. This routine calls no

(b) Description. The sort statement is the first

significant statement in the program. The input procedure INSRT

SECTION reads the records to be sorted and releases them to the sort

procedure. It also opens and closes the input file. The output

procedure OUTSRT SECTION gets the sorted records and writes them

to the output file. The standard COBOL sort/merge is used in GEN5,

and the records can be sorted in either ascending or descending order,

(c) Limitations. This program uses the standard OS
COBOL sort routine and all limitations that apply to the SORT package
also apply to this program.

(d) I/O Data Sets.

-1* CARD—OUT. This is the data record answer file
created by the previous load module. It is used as input to the sort
and subsequently as output from the sort.

—• SORT-REC. This is the record being sorted.
The sort work files are variable in number and are as described in
the JCL.

(M) GEN5A.

(a) Abstract of Work File Sort.

1. Function. GEN5A sorts the work file prior to
output processing to accommodate multiple fly-sheets.

subroutine, GEAM.
1* Calling Sequence. This routine calls one

parmi

parm2

parmi

parm4

parm5

Length

HALFWORD

HALFWORD

HALFWORD

HALFWORD

HALFWORD

Iype
B

B

B

B

E

Base Address of Sending Area

Displacement of Sending Area

Base Address of Receiving Area

Displacement of Receiving Area

Length of String to be Moved

(b) Lescription. The program GEN5A sorts and

resequences the source and object statements in the work file

and determines whether fly-sheet source statements are to be

printed.

(c) Limitations. This program uses the standard OS

COBOL sort routine and all limitations that apply to the SORT

package also apply to this program.

(d) I/O Data Sets.

1. OPSTATE. This is the work file created by

the previously callea retrieval logic processor. It is used as input

to the sort and subsequently as output from the sort.

2. SORT-REC. This is the record being sorted.

The sort work files are variable in number and are as described in

the JCL.

(15) GEN6.

(a) Abstract of Output Periodic Logic Processor.

1. Function. The Output Logic Processor processes

retrieved data records using vector arrays and constant pool strings

created in the Output Compiler. Queries that were flagged due to

errors in either retrieval or output compilation are bypassed and

corresponding vector arrays and constant pool strings are not processed.

This program is the report generator for the system. The report

formats are set up according to the user-specified requirements in

the output source statements and are printed, punched, or written onto

user-specified devices such as tape or disc.

2. Calling Sequence. No parameters are initially

passed to the Output~Logic Processor. The program calls six subroutines

a. GEAM.

Length Type

parmi HALFWORD B

parm2 HALFWORD B

parm3 HALFWORD B

parm4 HALFWORD B

parmS HALFWORD B

Base Address of Sending Area
Displacement of Sending Area
Base Address of Receiving Area
Displacement of Receiving Area
Length of String to be Moved

4-45

mmm. wpa

N
RX
MATRIX
STATE-FORM

Length

HALFWORD
9999

Variable
12 HALFWORDS

b. GEAZ.

I22£

B
A

Variable
B

Subscript of Active Statement
Data Record
Matrix Area, If Used
Object Statement

parmi
parm2
parm3
STATE-FORM
RX

ç. GEAT.

Length

29117
FULLWORD
FULLWORD

12 FULLWORDS
9999

TyP6

A
B
B
B
A

Base Address of Receiving Area
Displacement of Receiving Area
Size of Receiving Area
Object Statement
Data Record

module name
SAVEREG
parameter(s)

d. GEAL.

Length

8

IZ£i

A
18 FULLWORDS B

Variable Variable

Name of Called Routine
Save Area for Registers
Parameter(s) Being Passed to

Called Routine but not Used

by GEAL

SNAME
SAVEREG
AREALINKED

IN-LENGTH

e.

Length

8
18 FULLWORDS

FULLWORD

GEAD.

Type

A
B

Subroutine Name
Save Area for Registers

Load/Delete Switch

4-46

f. GEAP.

(b) Description. The output logic processor performs the

report generating function of a query. The inputs used by this module
are: (1) compiled object vectors (TYPE 6 and 8 records), (2) constant
pool strings (TYPE 7 records), (3) a single error vector indicating what
queries had errors during processing of the retrieval anti output compiler
(TYPE 4 records), (4) retrieval and output source statements (TYPE 1
and 5 records), (5) data records that were retrieved during execution
of the retrieval logic processor (TYPE 9 record), and (6) data records,
although not retrieved during execution of the retrieval logic processor,
but made available through use of the SOURCE DIRECT option specified

in the report section of a query.

Processing starts with general housekeeping, opening

as input both Opstate File (consisting of TYPE 1, 2, 3, 4, 5, 6, 7, and
8 records) and Answer File (consisting of TYPE 1, 5, 8, and 9 records),
opening as output Report File (which is generally assigned to a printer)
and the printing of a header page containing the message, MIDMS START

PROCESSING.

The following narrative is performed on each report

that is processed by this module.

The Opstate File is read until the first TYPE 5

record for a query is found. Next, the Answer File is read until the
first source statement of a query is found (TYPE 1 or 5 record). At
this point a header page for the report is printed containing the first
source statement in a query. Reading of the Answer File continues during
which time all TYPE 1 and 5 records are printed providing the user with
a listing of both his retrieval and source statements. This continues
until a TYPE 8 or 9 record is encountered having a query number equiv¬
alent to the query number of the last record read from the Opstate
File or a record is found containing a different query number.

If the latter occurs this indicates that an error

occurred during compilation of the source statements; no data is
available for processing; the logic flow goes back to processing
the next report in the input job stream. Note that the error vector

4-47

R
S3
STATE

IX
S2

Address of Record
Number of Subsets
Object Statement
Number of Fields to Sort
Length of Subset

1
HALFWORD

24
HALFWORD
HALFWORD

Li.«

(TYPE 4 record) is used primarily as an end of file indicator for the

Stateop File and is not used to test each compiled report statement

to determine _f it comes from a query containing an error as was done
in the Retrieval Logic Processor.

Once the first data record available for processing

(TYPE 9 record) or a record indicating that source direct option must

be performed (TYPE 8 record) is found in the Answer File, control

goes back to the reading of the Opstate File. As the Opstate File

is being read, TYPES 1, 2, 3, 4, and 5 records are bypassed for the

query being processed. When a TYPE 6 record is encountered it is

moved into a working storage area, STATE. The working storage area

can hold up to 1000 compiled report statements. Also, all TYPE 7

records which are encountered are moved into another working storage

area, CON-IN. The latter working storage area can hold up to 9000

characters of constants, literals, and defined values. During reading

of the TYPE 6 record the following occurs: (1) pointers are set

indicating where in the holding area (STATE) the REPORT Section,

TRAILER Section, and FINAL REPORT Section begin, (2) pointers are set

to determine where in the holding area, FILEX, the file name associated

with each FILE Section, and (4) stores statement numbers to later

determine the length of each FILE Section. Since FILEX can hold up to

58 file names, a report may contain up to 58 unique FILE Sections.

Reading of the Opstate File continues until a

record is read with a different query number which indicates that the

last TYPE 6 or 7 record for the report being processed has been read

and control now goes to the link-edit portion of the CTL-RET Section,
LINK-EDIT through LOOP-E.

Within LINK-EDIT a test is being performed to

determine if any output is required to be written. If so, the output

file, Fileout, is opened with the DCB parameters modified to reflect

information found in both the format report source statements and the

JCL parameters supplied by the user. During LINK-EDIT, the TYPE 6

record are processed. The true pointer is used to indicate what statement

should be executed if the logic found in the current statement is

satisfied. The false pointer serves the same function but is used

when the logic found in the statement being processed is not met.

Upon completion of the LINK-EDIT, control goes

to STEP2 Section. It is from this point in the program that the

TYPE 6 statements in State are executed and data from the Answer File,

if retrieval occurred, or data from another file of the SOURCE DIRECT

option was specified, is made available for processing.

4-48

In processing the data records, the program logic

determines functionally what operation should be performed next. At

the beginning of output the HEADER Section of the reprrt, if provided,

is executed. The HEADER pointers previously created direct the program

to execute those TYPE 6 records in the holding area that comprise the

HEADER Section of the report. Upon completion of this HEADER Section,

pointers are reset to start processing these TYPE 6 records that pertain

to the appropriate FILE Section for which data records are being

processed. These latter statements are executed in sequence until an

end of data file is encountered or the number of body lines printed

exceeds the page size parameter for printed output.

When the page size is exceeded, pointers are reset

to that portion of the holding area (State) which contains those

TYPE 6 records comprising the TRAILER Section. Upon completion of

the TRAILER Section, pointers are reset to execute those TYPE 6 records

comprising the HEADER Section. When the latter is completed, a check

is made to see if any label-lines are required, i.e., output was

specified in the LINE paragraph of the appropriate FILE Section. (The

first time the TYPE 6 records, comprising the LINE paragraph of a

FILE Section are executed, the generated output from these statements

is also saved in another holding area, LAB-LINES. LAB-LINES provides

space for 6 body lines of print output.) If LABEL-LINES are available

and required, they are written out and the pointers are reset to execute

the TYPE 6 records comprising the BEGINS Section of the leport. If

periodic data is processed in any one of the TYPE 6 records comprising

the BEGINS Section, pointers are reset to access the next subset of data

to be processed and those TYPE 6 records comprising the BEGINS Section

are executed again. Output continues until all data in subsets requested

are exhausted.

When executing the BEGINS Section of the report,

should the numoer of body lines exceed the pagesize parameter, pointers

are reset to execute the TRAILER and HEADER Sections, respectively.

Any required label lines are printed and pointers are set back to

continue executing those statements just prior to when the pagesize

was exceeded. When the processing of data for a report is completed,

pointers are set to execute the TYPE 6 records that comprise the

FINAL-REPORT Section. At the end of each individual report, a trailer

page is written which consists of the same data as appeared in the

header page of the report.

4-49

Execution of the TYPE 6 records comprising the

various File Sections continues with the execution of headers,

trailers, and label-lines when appropriate until the end of the

data file is encountered when using the source direct option and

when the last retrieved data record from the Answer File corresponding

to the current report query no. has been processed, or when a TYPE 6

record with an Operation Code of 28 is executed.

Should any of the latter conditions occur,

processing of the current data file is stopped. Immediately following

this, the TRAILER and FINAL-OUTPUT Sections of the report are executed,

a trailer page is printed, intermediate housekeeping is performed which

closes the Output File or the Source Direct File if these options were

used, and the logic flow of the program returns to start processing

the next report. The termination of a report can occur before the end

of file condition occurs in any of the input files if the user utilizes

the STOP statement in his report.

(c) Limitations. The program does not process implicit

output convert routines. All convert routines used for output must be

executed by a CMOVE or DEFINE statement.

(d) I/O Data Sets.

A* MATRIS. This is a dummy file used to acquire

core dynamically for MATRIX processing. It is only used when a MATRIX

is called for.

2. GEW0RK3. This is a dummy file used to acquire

space dynamically for loading the output object vectors.

3. FILEDIR. This file is used as the SOURCE

DIRECT input data file when required.

OPSTATE. This is the input work file created

by a previous load module.

_5. ANSWERIN. This is the input data record answer

file created by a retrieval logic processor.

J3. REPORTOP. This is the printer output file

used for writing the reports.

]_. PUN CHOP. This is the output punch file, used

as required for punching decks.

4-50

—* FILEOUT. This file is used as required for
writing an output file with variable length records onto tape or disk.

!• FILEOUTF. This file is used as required for
wr ting an output file with fixed length records onto tape or disk.

(16) GEN6A.

Abstract of Output Non-Periodic Logic Processor.

.,., -* Function. Same as GEN6, except that only non¬
periodic data is processed by GEN6A.

™AD , 2* Calling Sequence. Same as GEN6, except that
GEAP is not used by GEN6A~

(b) Description. Same as CEN6.

(c) Limitations. Same as GEN6.

(d) I/O Data Sets. Same as GEN6.

(17) GEAA.

(a) Current System Date.

,.. -i* Function. This ALC subroutine extracts from
the Julian date the current system date and returns the result to the
calling program.

programs are called
below:

_2. Calling Sequence,
but does return via the

No data is passed and no
call the data described

Length
2
3
2

TyPe
N
A
N

Description
Day of the Month
Abrr. Month (e.g., Aug)
Current System Year

^ Description. This subroutine is executed only when
a CLASS statement is encountered in the GEN3A compiler. In GEN3A the
CLASS statement is mandatory. Omission of the IS card causes a fatal

(c) Limitations. None.

(d) I/O Data Sets. None.

4-51

'íÈíJÉÉS'

(18) GEAB.

(a) Abstract of Build.

1. Function. The ALC subroutine GEAB determines

whether or not a user-specified subroutine is available to the system.

2. Calling Sequence. GEAB calls no programs

The data passed and returned is described below:

Length Type

SNAME

RET-CODE

8
HALFWORD

A

B

Name of Routine Being Checked

Return Code from Routine

(b) Description. The program searches the system load

module library indexes to confirm the existence of a load module of

the name requested prior to actually calling it. If a non-existent

load module was called, MLDMS would ABEND.

(c) Limitations. GEAB only determines the existence

of a named load module; it does not determine whether the load module

is executable.

(d) I/O Data Sets. None.

(19) GEAC.

(ay Abstract of Control.

Function. The subroutine GEAC decodes periudic

set control words and checks to see if the file has any periodic sets.

Calling Sequence. GEAC calls no programs.

The data passed and returned is described below:

Length Type

RX

SET-W-TBL

9999

12
A

A

SL HALFWORD

Data Record

Occurs 50 Times - Contains Description

of Each Set in Record

Subscript of Last Used Occurrence in

SET-W-TBL

4-52

i

(b) Description. GEAC computes the address of the

first periodic set control word and checks to see if the file has any

periodic sets. If it does not, it returns control back to the calling

program, GEN4. If it does contain periodic information, it processes

the control word and goes on to compute the address of the next

Periodic Set Control Word. The program is executed once per data

record.

(c) Limitations. None.

(d) I/O Data Sets. None.

(20) GEAD.

(a) Abstract of Subroutine Loader.

_1. Function. The subroutine GEAD loads subroutines

into core and considers them reusable. It also deletes subroutines when

they are no longer needed.

2. Calling Sequence. The data passed and returned

is described below:

Length

SNAKE 8

SAVEREG 18 FULLWORDS

AREALINKED

IN-LENGTH FULLWORD

IZEi
A Subroutine Name

B Save Area for Registers

B Load/Delete Switch

(b) Description. GEAD is intended for use under

operating system MFT, as a normal call to a subroutine under that system

would cause the subroutine to be loaded each time it is executed.

This routine causes the called subroutine to be loaded only once and

subsequently to be reused in core. MVT provides this service.

(c) Limitations. The called subroutine must be

reusable.

(d) I/O Data Sets. None.

4-53

(21) GEAG.

(a) Abstract of Flag.

A* Function. The ALC subroutine GEAG flags the

periodic subsets which satisfy the retrieval logic and search mode

specified by the user in the Retrieval Source Language.

2. Calling Sequence. GEAG calls no programs.

The data passed and returned is described below:

RX

jET-TABLE

SL

ABM

FLAG-AREA

OP

SWTGO

Length Type

9999 A

12 A

HALFWORD B

HALFWORD B

HALFWORD B

HALFWORD B

Data Record

Occurs 50 Times - Contains Description

of Each Set in Record

Subscript of Last Used Occurrence

in SET-TABLE

Number of Flags in Buffer

Address of Flag

Operation Code for Current Statement

Return Code

(b) Description. GEAG processes the periodic sets of

the input data. The programs check the type of search mode being used

and then check each part of the periodic set against the user logic to

determine if flags should or should not be set. The program is called

after each execution of a subquery for each subset.

(c) Limitations. None.

(d) I/O Data Sets. None.

(22) GEAL.

(a) Abstract of Link.

JL Function. The ALC subroutine GEAL provides

the link between the called program, its resulting output, and the

calling COBOL program.

2. Calling Sequence. This subroutine calls a

subprogram depending on the SNAME parameter which is passed to the

routine by the calling program. The data passed and returned is

described below:

4-54

■P m 1 1
'' '^.S’-î'ISWJr^W!'" . 1 fl. Tl ... I- ,

Length Type

module name

SAVEREG

parameter(s)

8
18 FULLWORDS

Variable

A Name of Called Routine

B Save Area for Registers

Variable Parameter(s) Being Passed to

Called Routine but not Used

by GEAL

O3) Description. GEAL links the MIDMS main control

program GENO to each of the COBOL routines. GENO passes the name

of the routine being called to MARINE and the ALC routine provides

the actual link to the called program. This routine is also used to

establish linkage with user-specified special operators and convert

routines through the standard calling sequence.

t (c) Limitations. The limitations of GEAL are listed

below:

1. The called program name cannot exceed 8

characters.

2. A maximum of 360 characters of output can be

received from the called program.

(d) I/O Data Sets. None.

(23) GEAM.

(a) Abstract of MOVE.

1. Function. The ALC subroutine GEAM moves a

logical string of characters from one area to another.

2. Calling Sequence. GEAM calls no programs.

There are five parameters passed.

Length Type

parmi

parm2

parm3

parmA

parm5

HALFWORD B Base Address of Sending Area

HALFWORD B Displacement of Sending Area

HALFWORD B Base Address of Receiving Area

HALFWORD B Displacement of Receiving Area

HALFWORD B Length of String to be Moved

t

4-55

(b) Description. GEAM starts with the address

generated by the first base address and displacement passed and

moves it to the address generated by the record base and displacement

passed. It continues moving until the passed length parameter has

been satisfied.

(c) Limitations. A maximum of 32768 bytes of core

storage can be moved.

(d) I/O Data Sets. None.

(24) GEAN.

(a) Abstract of Random File DCS Override.

1. Function. GEAN moves a ddname parameter into

the random file DCB.

2. Calling Sequence.

Length Type

DDname 8 A/N Name to be Moved

Filename HALFWORD B File Name, DEC Address

(b) Description. GEAN moves a name to the DCB of

a random file. COBOL passes the address of the DEC when the filename

of a random file is used. The DCB address is one of the parameters

of the DEC (offset 8 bytes).

(c) Limitations. None.

(d) I/O Data Sets. None.

(25) GEAP.

(a) Abstract of Periodic Sort.

A* Function. The subroutine GEAP sorts the

subsets of a periodic set within a single record according to the

sort key identified in the calling sequence.

4-56

described bel >w:
2* Calling Sequence. The data passed is

R
S3
STATE
IX
S2

Length Type

1
HALFWORD

24
HALFWORD
HALFWORD

A Address of Record
B Number of Subsets
A Object Statement
B Number of Fields to Sort
B Length of Subset

(b) Description. GEAP sorts in either ascending
or descending sequence. No data is returned, as the periodic set
remains in its original location in the record.

(e) Limitations. None

(d) I/O Data Sets. None

(26) GEAS.

(a) Abstract of Sort Key Builder.

1* Function. The ALC subroutine GEAS builds the
sort key specified by the user in the retrieval source language.

2. Calling Sequence. GEAS calls no programs.
The data passed and returned is described below:

RX
CONX
STATE-FORM
KSRT

Length Type

Data Record
Constant Pool
Object Statement
Sort Key

9999 A
9000 A

12 HALFWORDS B
85 A

(b) Description. GEAS builds the sort key for the
data that has aet the search requirements. The actual sort takes
place in GEN5. The program gets the sort fields from either the
record buffer pool or the constant pool. If the descending SORT/MERGE
Option is specified, the data is inverted by binary translation.
The sort field is built according to user specifications and is
returned in the 85-character KSRT parameter.

4-57

(c) Limitations. The maximum length of the user

sort field is 85 characters. An inverted sort key is not printed.

(d) 1/0 Data Sets. None.

(27) GEAT.

(a) Abstract of Table-Loader.

A* Function. Attempts to find unuseu core

storage areas in which to place module tables.

2. Calling Sequence. GEAT calls no programs.

The data passed and returned is described below:

parmi

parm2

parm3

STATE-FORM

RX

Length Type

29117 A

FULLWORD B

FULLWORD B

12 FULLWORDS B

9999 A

Base Address of Receiving Area

Displacement of Receiving Area

Size of Receiving Area

Object Statement

Data Record

(b) Description. GEAT attempts to find unused core¬

storage. It checks the partition of core where the program is located

and the subpartitions such as the statement area, the special operators

area, and the constant pool. If it finds enough space, it loads in

a load module table and passes the starting address back to the calling

program.

core together,

unused core.

(c) Limitations. It does not chain small parts of

It only loads a table if it finds enough contiguous

(d) I/O Data Sets. None.

(28) GEAX.

(s) Abstract of Compare.

A- Function. The ALC subroutine GEAX compares

two alphanumeric or numeric fields and passes the results of the

compare back to the calling program.

4-58

■ ™ 1 ' '' r> "»wjWWiülff
liiiiSiiiwiwnwîi êxmm

'

_2« Calling Sequence. GEAX calls no programs.
The data passed and returned is described below:

RX

CONX

STATE-FORM
N

Length Type

9999 A

9000 A

12 HALFWORDS B

HALFWORD B

Data Record

Constant Pool

Object Statement

Subscript of Active Statement

(b) Description. The program determines from the

passed parameters the type of fields being compared (alphanumeric

or numeric). It also determines whether the a- and b-fields are in

the record buffer pool or the constant pool. It then compares the

two fields and sets a switch to show if the a-field is greater then,
equal to, or less than the b-field.

(c) Limitations. Alphanumeric fields cannot exceed

360 characters in length, and numeric fields cannot exceed 15 digits.

(d) I/O Data Sets. None.

(29) GEAZ.

(a) Abstract of Edit.

A* Functions. The ALC subroutine GEAZ is
called by the Output Logic Processor (GEN6) and is used to individually

execute most of the logical statement op-codes.

A* Calling Sequence. GEAZ calls no programs.
The data passed and returned is described below:

Length Type

N

RX

MATRIX

STATE-FORM

HALFWORD B

9999 A

Varifibie Variable

12 HALFWORDS B

Subscript of Active Statement

Data Record

Matrix Area, If Used

Object Statement

4-59

(b) Description. GEAZ is called by the Output Logic

Processor to execute most logical op-codes, including arithmetic

statements, TMOVE and EMOVE. The program does not execute any I/O

statements. It does not duplicate the function of any other routine

in GEN6, but it processes all remaining op-codes.

(c) Limitations. Numeric fields cannot exceed 15

characters.

(d) I/O Data Sets. None.

4-60

e. Module Error Messages.

ABNORMAL COMPLETION OF SORT IN GEN4X2 RETURN CODE XX

GEN4X2

XX * return code of sort utility. User action -

rerun job; if error re-occurs submit a discrepancy

report to the MIDMS support group.

AFIELD AND SORT KEY SIZE INCONSISTENT

GEN 2

The length of the sort key space a-field is moved

to must be equal to the length of the field being

moved.

A-NAME AND B-NAME LENGTHS DIFFER

GEN 2

Alphanumeric a-field and b-fields must be of the

same length.

A-NAME AND B-NAME LENGTHS DIFFER

GEN 3

Alphanumeric a-field and b-fields must be of the

same length.

A-NAME CONVERSION SUPPRESSED

GEN 3

The convert routine associated with an FFT field

name was suppressed utilizing the It sign around
a literal b-field. This is a caution.

4-61

A-NAME EXCEEDS 15 DIGITS

GEN 2

A-field is numeric and cannot exceed 15 digits.

A-NAME EXCEEDS 15 DIGITS

GEN 3

A-field is numeric and cannot exceed 15 digits.

A-NAME EXCEEDS 15 DIGITS

GEN3A

A-field is numeric and cannot exceed 15 digits.

A-NAME EXCEEDS 360 CHARACTERS

GEN 3

The a-field data name exceeded 360 characters.

Use partíais if data must be extracted from

data fields that physically exceed 360 characters.

A-NAME HAS AN IMPLICIT CONVERT ROUTINE

GEN 2

There is an FFT designated convert routine

associated with this data field.

A-NAME HAS AN IMPLICIT CONVERT ROUTINE

GEN 3

There is an FFT designated convert routine

associated with this data field.

4-62

A-NAMF rlAS AN IMPLICIT CONVERT ROUTINE

GEN3A

Advisory message. The file format table will

cause conversion to take place unless overridden.

A-NAME NOT NUMERIC

GEN 3

A-fieli is nut numeric as required by the statement

format corresponding co the first word.

A-NAME NOT PERIODIC FIELD

GEN 2

The statement format corresponding to the first word
requires a periodic a-field.

A-NAME NOT PERIODIC FIELD

GEN 3

The statement format corresponding to the first

word requires a periodic a-field.

A-NAME TOO LONG

GEN 2

FFT field names cannot exceed 5 characters and

defined names cannot exceed 8 characters.

A-NAME TOO LONG

GEN 3

FFT field names cannot exceed 5 characters and

defined names cannot exceed 8 characters.

4-63

A-NAME TOO LONG

GEN3A

FFT field names cannot exceed five characters and

defined names cannot exceed 8 characters.

A-NAME UNDEFINED

GEN 2

Encountered an a-field that is poither a valid

5-character mnemonic associated with an FFT field

for a previous subquery nor is equivalent to a

previously encountered defined mre.

A-NAME UNDEFINED

GEN 3

Encountered an a-field that is neither a valid

5-character mnemonic associated with an FFT field

for a previous File Section nor is equivalent to

a previously encountered defined name.

A-NAME UNDEFINED

GEN3A

Encountered an a—field that is neither a valid

5-character mnemonic associated with an FFT field

for a previous File Section nor is equivalent to
a defined name.

A PROGRAM MUST APPEAR WITHIN A SECTION

GEN 3

The PROGRAM statement must be within a FILE SECTION
after all LINEs and BEGINS.

4-64

BLOCK IN MIDMS LIB NOT A MULTIPLE OF 80

GENI

The size of a card-image source statement data block

on the Library must be a multiple of 80. Resubmit.

If error persists, submit a discrepancy report to
the MIDMS support group.

B-NAME CONTAINS NONNUMERIC DATA

GEN 2

The b-field contains an alphabetic or special character.

B-NAME EXCEEDS 15 DIGITS

GEN 2

B-field is numeric and should not exceed 15 digits.

B-NAME EXCEEDS 15 DIGITS

GEN 3

B-field is numeric and should not exceed 15 digits.

B-NAME EXCEEDS 15 DIGITS

GEN3A

B-field is numeric and should not exceed 15 digits.

B-NAME MISSING

GEN2

The statement format as defined by the first word

requires the use of a b—field. See the Users Manual
for proper statement formats.

4-65

B-NAME MISSING

GEN 3

The statement format as defined by the first word

requires the use of a b-field. See the Users Manual

for proper statement formats.

B-NAME MISSING

GEN 3 A

The statement format as defined by the first word

requires the use of a b-field. See the Users Manual

for proper statement formats.

B-NAME NOT NUMERIC

GEN3

A numeric a-field requires a numeric b-field.

B-NAME TOO LARGE

GEN 2

Alphanumeric a-field and b-fields must have the

same lengths .

B-NAME TOO LARGE

GEN 3

Alphanumeric a-field and b-fields must have the

same lengths.

B-NAME TOO LARGE

GEN3A

Alphanumeric a-field and b-fields must have the

same lengths.

4-66

F

CAN APPEAR ONLY IN FILE, LINE OR BEGIN PARAGRAPH

GEN 3

This statement may only be used in the file

oriented paragraphs, not in HEADERS or TRAILERS.

CAN APPEAR ONLY IN FILE, LINE OR BEGIN PARAGRAPH

GEN3A

This statement may only be used in the file

oriented paragraphs, not in HEADERS or TRAILERS.

****** CAUTION, NO SUMMARY FILE WILL BE CREATED ******

GEN2X

A summary card was not included in the job,
only a count will be made.

COMMA OR BLANK MISSING

GEN 2

A required comma or blank was not found.

COMMA OR BLANK MISSING

GEN 3

A required 'omma or blank was not found.

COMMA OR BLANK MISSING

GEN3A

A required comma or blank was not found.

4-67

COMPARE WORD MISSING OR INVALID

GEN 2

The compare operator was either misspelled or is missing.

COM®ARE WORD MISSING OR INVALID

GEN 3

The compare operator was either misspelled or is missing.

COMPARE WORD MISSING OR INVALID

GEN3A

The compare operator was either misspelled or is missing.

*COMP-OP AND LIBRARY NAME DO NOT MATCH

GENI

lhe names on the COMP-OP card and on the library card are not
the same.

COMP-OP CARD MISSING - FATAL ERROR

GEN3B

COMP-OP card must be the first card in a COMP-OP r in.

COMP-OP NAME DOES NOT END IN -R-

GENI

The fifth character of the name for rhe COMP-OP card nust be
an "R."

CONFLICTING DATA TYPES

GEN 2

A-field and b-field must both be either alphanumeric or numeric.

CONFLICTING DATA TYPES

GEN 3

A-field and b-field must both be either alphanumeric or numeric.

4-68

mmmm
WP!

.. ..PI'!.I.«.lililí.

CONFLICTING DATA TYPES

£ GEN3A

A-field and b-field must both be either alphanumeric or numeric.

t
4-68.1

tj

CONSTANT A-NAME NOT ALLOWED

GEN 3

Constants cannot be used as a-fields in this

statement format.

CONSTANT A-NAME NOT ALLOWED

GEN3A

Constants cannot be used an a-fields in this
statement format.

CONSTANT B-NAME NOT ALLOWED

GEN 3

The constant in the b-field cannot be used in the

statement format corresponding to the first word.

CONSTANT EXCEEDS A-NAME

GEN 2

The length of the constant is greater than the

length of the a-field data name. Alphanumeric

a-field and b-fields must have the same lengths.

CONSTANT EXCEEDS A-NAME

GEN 3

The length of the constant is greater than the
length of the a-field data name. Alphanumeric

a-field and b-fields must have the same lengths.

4-69

CONSTANT EXCEEDS A-NAME

GEN3A

The length of the constant is greater than the

length of the a-field data name. Alphanumeric

a-field and b-fields must have the same lengths.

CONSTANT POOL OVERFLOW OCCURRED IN THIS QUERY

GEN 2

The length of all characters comprising defined

values, constants, and literals exceeds 9,000

characters.

CONSTANT POOL OVERFLOW OCCURRED IN THIS REPORT

CEN3

The length of all characters comprising defined

values, constants, and literals exceeds 9,000

characters.

COlwTAKT POOL OVERFLOW OCCURRED IN THIS REPORT

GEN3A

Tee length of all characters comprising defined

values, constants, and literals exceeds 9,000

characters.

CONVERSION NOT ALLOWED

GEN 3

Improper use of the conversion routine option.

See the Users Manual.

4-70

CONVERSION NOT ALLOWED

GEN3A

Convert routine/special operator not permitted

with this statement type.

CONVERT OUTPUT EXCEEDS LINESIZE

GEN3A

Output from convert routine exceeds line size

specified in SHL report - truncation will occur.

CONVERT ROUTINE MISSING

GEN 3

A required convert routine enclosed in asterisks

was not found in the statement.

CONVERT ROUTINE NOT ALLOWED

GEN 3

The use of a convert routine is not permitted in

the statement format corresponding to the first

word.

CONVERT ROUTINE RETURNS LENGTH EXCEEDING 360 CHARACTER

GEN 2

A convert routine may not return more than 360

characters of data in the OUT-DATA field. The

OUT-LENGTH parameter exceeded this limit.

4-71

CONVERT ROUTINE RETURNS LENGTH EXCEEDING 360 CHARACTER

GEN 3

A convert routine may not return more than 360

characters of data in the OUT-DATA field. The

OUT-LENGTH parameter exceeded this limit.

CONVERT ROUTINE RETURNS LENGTH EXCEEDING 360 CHARACTERS

GEN3A

A convert routine may not return more than 360

characters of data in the OUT—DATA field. The

OUT-LENGTH parameter exceeded this limit.

CONVERT ROUTINES EXCEEDED

GEN3A

A maximum of 25 convert routines are permitted.

DATA FOUND AFTER PARENTHESES

GEN 2

Right parentheses used in parenthetical expressions

must be the last entry on a source statement.

DATA FOUND AFTER PERIOD

GEN3

A period, when used, must be the last character on

a source statement card.

DATA FOUND AFTER PERIOD

GEN3A

A period, when used, must be the last character

on a source st^ement card.

4-72

DATA IN S/M STATEMENTS NOT FROM THE SAME SET

GEN 2

Periodic fields being sorted or merged should

be from the same periodic set.

DATA NOT NUMERIC

GEN 2

An alphabetic or special character was found

in a numeric field.

DATA NOT NUMERIC

GEN 3

An alphabetic or special character was found

in a numeric field.

DATA NOT NUMERIC

GEN3A

An alphabetic or special character was found

in a numeric field.

DATA NOT PROPERLY STORED ON LIBRARY

GENI

An improper card type has been retrieved from

the library.

DEFINE LENGTH EXCEEDED

GEN 2

The length parameter in the DEFINE statement is

not consistent with the length of the constant

or literal following it.

4-73

DEFINE LENGTH EXCEEDED

GEN 3

The length parameter in the DEFINE statement is

not consistent with the length of the constant

or literal following it.

DEFINE LENGTH EXCEEDED

GEN3A

The length parameter in the DEFINE statement is

not consistent with the length of the constant

or literal following it.

DEFINE NAME ILLEGAL

GEN3A

Define names may not be referenced in a COUNT or

SUM statement.

DEFINE OR FFT NAMES NOT ALLOWED

GEN 2

A defined or FFT name is not allowed in this

statement.

DEFINE OR FFT NAMES NOT ALLOWED

GEN3

Notify the MIDMS support group.

DEFINED MATRIX EXCEEDS 32K

GEN 3

The product of the element length, number of rows,

and number of columns in the defined matrix may

not exceed 32,000.

4-74

defined name required

GEN 2

A defined an»e, up to 8 characters In length,

is missing in the DEFINE statement.

DEFINED NAME REQUIRED

GEN 3

A defined name, up to 8 characters in length,

is missing in the DEFINE statement.

DESCENDING MUST PRECEDE A-NAME

GEN 2

The descending parameter must precede the a-field

rifFERENT DATA TYPE

GEN 2

This s a caution message. A defined £ame
data type (ALPHANUMERIC/NUMERIC) was changed by

utilizing the Modify Subquery Option.

DIFFERENT DATA TYPE

GEN 3

This is a caution message. A defined name's
data type (ALPHANUMERIC/NUMERIC) was changed

bv utilizing the Modify Report Option.

DIFFERENT DATA TYPE

GEN3A

This is a caution message. A defined aame'®
data type (ALPHANUMERIC/NUMERIC) was changed

by utilizing the Modify Report Option.

4-75

? DUPLICATE DEFINE STATEMENT

GEN 2

A duplicate defined name was encountered.

DUPLICATE DEFINE STATEMENT

GEN 3

A duplicate defined name was encountered.

DUPLICATE DEFINE STATEMENT

^ GEN3A

A duplicate defined name was encountered.

DUPLICATE FILE SECTIONS

GEN 3 {

Duplicate file sections were submitted.

DUPLICATE FILE SECTIONS

^ GEN3A

Duplicate file sections were submitted.

DUPLICATE PROGRAM NAME

GEN 3

Each program must have a unique number.

4-76

t

■yir —^ Wpni i ;i¡;;:)ii^’tiiiiiii^^ ,mmm

t

»

END OF PAGE MARGIN CANNOT EXCEED 9 LINES

GEN 3

EJECT ON n statement Joes not allow the value oí n to be greater

than 9.

ERROR CODE RETURNED FROM CONVERT ROUTINE _

GEN 2

An error was encountered while processing a user convert routine

specified in the error message. If this occurred in other than

a DEFINE statement check to see what convert routine is associated

with the FFT field name used as the a-field entry.

ERROR CODE RETURNED FROM CONVERT ROUTINE _

GEN j

An error was encountered while processing a user convert routine

specified in the error message. If this occurred in other than

a DEFINE statement check to see what convert routine is associated

with the FFT field name used as the a-field entry.

ERROR CODE RETURNED FROM CONVERT ROUTINE _

GEN 3 A

An erro?: was encountered while processing a user convert routine

specified in the error message. If this occurred in other than

a DEFINE statement check to see what convert routine is associated

with the FFT field name used as the a-field entry.

****** ERROR ENCOUNTERED WRITING (name) TO LIBRARY CONTENTS INVALID -

RELOAD REQUIRED ******

GEN3B

An error was encountered while trying to write the named item to
the library. Recheck set-up and rerun. If error persists,

restore library fi.om backup tape before proceeding.

*** ERROR *** MORE THAN ONE SUBQUERYX

GENI

Non-sequential subqueries may not be batched.

EXPECTED QUERY CARD MISSING

GENI

A QUERY card is expected to be the first card of

each user's job, regardless of whether the remainder

of that job is on the library or SOURCE DIRECT is

used.

FATAL ERROR, BFIELD CANNOT REFER TO AN FFT ITEM

GEN2X

♦

B-fields cannot refer to FFT item - remove source

statement.

FATAL ERROR GEN4X1, TOO MANY OBJECT VECTORS

GEN4X1

User action - submit a discrepancy report to the

MIDMS support group.

FATAL ERROR IN GEN4X1, ILLEGAL OPCODE OF XX

GEN4X1

XX = opcode processed by GEN4X1. User action -

submit a discrepancy report to the MIDMS support

group.

FATAL ERROR IN GEN4X3 AAAAAAAA AND BBBBBBBB FILE DATA

GEN4X3

Data in either file AAAAAAAA or BBBBBBBB is
inaccurate or erroneous; please check file content.

t 4-78

FATAL ERROR, MORE THAN 100 GENERATED STATEMENTS

GEN2X

User's retrieval expression contains t

statements - reduce source statements.
oo many

fatal error, only one subqueryx card per job is permitted

GEN2X

At least two non-sequantial subqueries
processed; only one is allowed.

were

fatal error, only one set and fixed set are permitted

GEN2X

-- in axrterenl
sets only one ret and fixed set can be used in
a subqueryx - alter request.

FATAL ERROR, OVERFLOW GEN4X1 CONSTANT POOL

GEN4X1

User action - submit a

MIDMS support group.
discrepancy report to the

FATAL ERROR, PARENTHESIS ARE NOT ALLOWED

GEN2X

Parentheses were encountered in source
remove parentheses.

statements

FFT AND DEFINE ARE THE SAME

GEN 3

The DEFINE statement

to an FFT field-name.

DEFINE statement.

contains a mnemonic identical

Change mnemonic name in

4-79

FFT AND DEFINE ARE THE SAME

GEN3A

The DEFINE statement contains a mnemonic identical

tu an FFT field-name. Change mnemonic name in

DEFINE statement.

F^T LR7 MISSING

GEN2

FFT Logical Record 7 could not be found for the

file name found in the current File Section.

FFT LR8 MISSING

GEN2

FFT Logical Record 8 could not be found for the

file name found in the current File Section.

FFT LR9 MISSING

GEN 2

FFT Logical Record 9 could not be found for the

file name found in the current File Section.

FFT NAMES NOT ALLOWED

GEN 3 A

The DEFINE statement cannot contain FFT names.

FFT TABLE 2 MISSING

GF'!2

FFT Logical Record 2 could not be found for the

file name specified in the current subquery.

4-80

FFT TABLE 2 MIoSING

G EN 3

FFT Logical Record 2 could not be found for the

file name specified in the current File Section.

FFT TABLE 2 MISSING

GEN3A

FFT Logical Record 2 could not be found for the

file name specified in the current File Section.

FFT TABLE 3 MISSING

GEN 2

FFT Logical Record 3 could not be found for the

file name specified in the current subquery.

FFT TABLE 3 MISSING

GEN 3

FFT Logical Record 3 could not be foind for the

file name specified in the current File Section.

FFT TABLE 3 MISSING

GEN3A

FFT Logical Record 3 could not be found for the

file name specified in the current File Section.

FIELD NAME IN FILE REQUIRED

GEN 2

A field name from the data file is required.

4-81

FIELD NAME IN FILE REQUIRED

GEN 3

An FFT field name is required.

FIFTH CHARACTER NOT-A

GEN 2

Ihe file name specified is incorrect.

FILE NAME EXCEEDS 8 CHARACTERS

GEN 3

A file name can vary in length from 5 to 8
characters, inclusive.

FILE NAME EXCEEDS 8 CHARACTERS

GEN3A

A file name can vary in length from 5 to 8
characters, inclusive.

FILE NAME NOT AT LEAST FIVE CHARACTERS

GEN 3

The file name specified cannot be less than
5 characters .

FILE NAME NOT AT LEAST FIVE CHARACTERS

GEN3A

The file name specified cannot be less than five
characters .

4-82

mm

FILE NAME NOT VALID

GEN 2

File names must be at least 5 characters long

but cannot exceed 8 characters. The fifth

character must be an "A".

FILE SECTIONS EXCEED 60

GEN 3

Up to 60 unique file sections may be used in any

report.

FILE SECTIONS EXCEED 60

GEN3A

Up to 60 unique file sections may be used in any

report.

FINAL-OUTPUT CARD MISSING

GEN3A

DISPLAY statements not preceded by FINAL OUTPUT

statement.

FIRST CHARACTER MUST BE NUMERIC

GEN 3

An alphabetic or special character was found in

a numeric field.

FIRST CHARACTER MUST BE NUMERIC

GEN3A

Notify the MIDMS support group.

4-83

FOLLOWING LOAD MODULE NOT EXECUTABLE

GEN 2

A convert routine or special operator cannot be

executed due to an uncorrectable I/O error.

FOLLOWING LOAD MODULE NOT EXECUTABLE

GEN 3

A referenced convert routine or table lookup

name cannot be executed due to an uncorrectable
I/O error.

FOLLOWING LOAD MODULE NOT EXECUTABLE

GEN3A

A referenced convert routine or table lookup

name cannot be executed due to an uncorrectable
I/O errer.

FOLLOWING LOAD MODULE NOT FOUND

GEN 2

Could not find a convert routine or special
operator on libraiv.

FOLLOWING LOAD MODULE NOT FOUND

GEN 3

Could not find the referenced convert routine
or table lookup in the library.

4-84

FOLLOWING LOAD MODULE NOT FOUND

GEN3A

Could not find the referenced convert routine
or table lookup in the library.

HEADER/TRAILER LINES EXCEEDED

GEN3A

A maximum of 9 header lines are permitted. A
maximum of 3 trailer lines are permitted.

ILLEGAL A-NAME

GEN 3

The data name is incorrect.

ILLEGAL FIRST CHARACTER

GEN 3

The first character for all data names must be
alphabetic.

ILLEGAL FIRST WORD

GEN 2

No retrieval statements start with this word.

ILLEGAL FIRST WORD

GEN 3

The fi. c word encountered at the beginning of
the statement is not a valid fi st word.

4-85

ILLEGAL FIRST WORD

GEN3A

The first word encountered at the beginning of the
statement is not a valid first word.

IMPROPER STATEMENT FORMAT

GEN 2

The format of the statement is not consistent
with the options required by the first word of
the statement. See the Users Manual.

IMPROPER STATEMENT FORMAT

GEN 3

Refer to the Users Manual, Appendix I, for proper
format.

IMPROPER STATEMENT FORMAT

GEN3A

The format of the statement is not consistent with
the options required by the first word of the
statement. See the Users Manual.

INCOMPLETE STATEMENT

GEN 2

The statement as written is not complete. Refer
to the Users Manual for proper formats.

INCOMPLETE STATEMENT

GEN 3

The statement as written is not complete. Refer
to the Users Manual for proper formats.

4-86

INCOMPLETE STATEMENT

GEN3A

The statement as written As not complete. Refer

to the Users Manual for proper formats.

INCORRECT PLACEMENT OF PERFORM PARAGRAPH

GEN 3

Notify the MIDMS support group.

INCORRECT PLACEMENT OF PERFORM STATEMENT

GEN 3

Refer to the Users Manual for proper use of the
PERFORM statement.

INCORRECT PLACEMENT OF WRITE OR PUNCH STATEMENT

GEN 3

WRITE and PUNCH statements may not be used in
HEADERS or TRAILERS.

INVALID ALPHANUMERIC MOVE

G EN 3

A-field ind b-field must both be alphanumeric.

INVALID ALPHANUMERIC MOVE

GEN3A

Notify the MIDMS support group.

4-87

INVALID A-NAME

GEN 2

The data name is not defined and is not an EFT field name.

INVALID A-NAME

GEN 3

The data name is not defined and is not an EFT field name.

INVALID CALL TO GEN3B - FATAL ERROR

GEN3B

Probable hardware or system error.

INVALID CHANNEL VALUE

GEN 3

The value of the channel option field must be between 2 and
11, inclusive.

INVALID COMBINATION OF PARENTHESES

GEN 2

The number of left parentheses does not equal the number of
right parentheses.

INVALID COMPARE

GEN 2

The COMPARE operator is misspelled or multiple CoMPAREs were
encountered.

INVALID COMPARE

GEN 3

Invalid use of the COMPARE operators.

4-88

INVALID COMPARE

GEN3A

Invalid use of the COMPARE operators.

INVALID DELIMITER

GEN 2

The expected delimiter must be a space.

INVALID END OF FILE

GEN 2

The error vector record is missing. Submit a

disciepancy report to the MIDMS support group.

INVALID END OF FILE

GEN 3
The error vector record is missing. Submit a

discrepancy report to the MIDMS support group.

INVALID END OF FILE

GEN3A

The error vector record is missing. Submit a

discrepa icy report to the MIDMS support group.

INVALID FIELD LENGTH

GEN 2

An alpha field must have a length between 1 and

360, inclusive.

4-89

INVALID FIELD LENGTH

GEN 3

The field length is incorrect.

INVALID FIELD LENGTH

GEN3A

The field length is incorrect.

INVALID FLAGGING OPTION

GEN 2

In^^rrect statement format. Refer to the Users

Manual for valid flagging options.

INVALID LENGTH

GEN 2

A constant value is expected as a length parameter.

INVALID LENGTH

GEN 3

The length of the data field was specified incorrectly

INVALID LENGTH

GEN3A

The length of the data field was specified incorrectly

INVALID LIMIT NUMBER

GEN 2

Limit number does not contain numeric data.

INVALID LINE SIZE

GEN3A

Incorrect parameter in line size statement.

INVALID LITERAL

GEN 2

Nctiiy the MIDMS support group.

INVALID LITERAL

GEN 3

The literal contained data inconsistent with

the data type of a-field.

INVALID LITERAL

GEN3A

The literal contained data inconsistent with the

data type of a-field.

INVALID MATRIX SUBSCRIPT

GEN 3

The matrix subscript must be of the fore
MATRIX (r,c).

INVALID MODIFY STATEMENT

GENI

The MODIFY card must identify the subquery or

report it applies to. See the Users Manual

for proper statement formats.

4-91

♦INVALID NAME

GENI

The name of a member stored on the library must

have a fifth character equal to Q, R, or F.

INVALID NUMBER

GEN 3

Either a flysheet number or a program number is

not in the range 1-99.

INVALID NUMBER OF B-FIELDS

GEN 2

To many b-fields were used.

INVALID NUMBER OF SUBSETS

GEN 2

A negative subset number was specified.

INVALID OPERATION

GEN 4

A compiler error has occurred. Rerun the job.

If error persists, submit a discrepancy report

to the MIDMS support group.

INVALID OUTPUT AREA

GEN 3

The boundary of your output field is incorrect.

4-92

INVALID PARTIAL

GEN 2

The partial parameters are used improperly.

INVALID PARTIAL

GEN J

The partial parameters are used improperly.

INVALID PARTIAL

GEN3A

The partial parameters are used improperly.

INVALID PROGRAM NUMBER IN PERFORM

GEN 6

The number of the PROGRAM being performed may
not be less than on' nor more than 99. Correct
and resubmit.

INVALID PROGRAM NUMBER IN PERFORM

GEN6A

The number of the PROGRAM being pen. 'rmed may not
be less than one nor more than 99. Correct and
resubmit.

INVALID PROGRAM NUMBER IN PERFORM

GEN6AIF

The number of the PROGRAM beiig performed may not
be less than one nor more th. n 99. Correct and
resubmit.

4-93

INVALID RECORD SIZE

GEN 3

The output-field records!ze

characters nor be less than
cannot exceed 9999

15 characters.

INVALID RETURN CODE FROM CONVERT ROUTINE

GEN 2

- invalid return code was received from a user

convert routine. Correct the convert routine t

comply with MIDMS standard calling sequence con

ventions as specified in the Users Manuaî

INVALID RETURN CODE FROH CONVERT ROUTINE

GEN 3

an invalid return code was received from a user

convert routine. Correct the convert routine t<

comply with MIDMS standard calling sequence con¬

ventions as specified in the Users ManuaT

INVALID RETURN CODE FROM CONVERT ROUTINE

GEN3A

an invalid return code was received from a user

convert routine. Correct the convert routine t,

comply with MIDMS standard calling sequence con¬

ventions as specified in the Users Manual.

INVALID SET/SUBSET NUMBER

GEN 3

The number specified for the

incorrect.
s°t or subset is

4-94

INVALID SET/SUBSET NUMBER

GEN3A

The number specified for the set or subset is

incorrect.

INVALID SORT KEY

GEN 2

The sort key specified in this statement is

incorrect.

INVALID SOURCE DIRECT STATEMENT

GEN 3

The SOURCE DIRECT statement must immediately follow

the FILE SECTION card.

INVALID SOURCE DIRECT STATEMENT

GEN 3/

The SOURCE DIRECT statement must immediately follow

the FILE SECTION card.

INVALID SOURCE QUERY STATEMENT

GEN 3

lue SOURCE QUERY statement must be of the form

SOURCE QUERY nn, where nn is the number of the

query in the answer file used by this report.

INVALID STATEMENT

GEN 2

Invalid statement format associated with the

first word in the statement.

4-95

r

INVALID STATEMENT

GEN 3

Invalid statement format associated with the
first word in the statement.

INVALID STATEMENT USING VARIABLE DATA

GEN 3

A-field may be variable only in MOVE or VMOVE
statements. B-field can never be variable.

INVALID STATEMENT USING VARIABLE DATA

GEN3A

A-field may be variable only in MOVE or VMOVE
statements. B-field can never be variable.

INVALID S806-TRAP RETURN CODE _

GEN 2

An invalid return code was received from a system

routine. Submit a discrepancy report to the
MIDMS support group.

INVALID S806-TRAP RETURN CODE _

GEN 3

An invalid return code was received from a system

routine. Submit a discrepancy report to the

MIDMS support group.

INVALID USE OF (CHAR

GEN 3

Subscripts may not be used with the operator in

this statement.

INVALID USE OF OPTIONS

GEN 2

An invalid combination of options was encountered

for the SORT/MERGE statement. Refer to the Users

Manual for valid options.

INVALID USE OF OPTIONS

GEN 3

An invalid combination of options was encountered

for this statement. Refer to the Users Manual

for valid options.

INVALID USE OF SATISFY

GEN 2

Incorrect statement format or improper use of

statemert. Refer to Users Manual for proper

format.

INVALID USE OF VARIABLE DATA

GEN 2

The variable data specified was used incorrectly.

4-97

INVALID USE OF VARIABLE DATA

GEN 3

A-field may be variable only in a MOVE or VMOVE

statement.

INVALID USE OF VARIABLE DATA

GEN3A

A-field may be variable only in a MOVE or VMOVE

statement.

INVALID WORD

GEN 2

The data name is invalid for the statement format

corresponding to the first word.

INVALID WORD

GEN 3

A word was found that is not in the statement

format corresponding to the first word.

INVALID WORD

GEN3A

A word was found that is not in the statement

format corresponding to the first word.

LABEL TOO LONG

GEN3A

Labels may not exceed linesize.

4-98

KEEP ON FIXED FIELD INVALID _

GEN 2

The KEEP option of the SORT FLAGGED statement

applies only to periodic and variable sets.

LABEL EXCEEDS LINESIZE

GEN3A

Label exceeds line size specified in SHL report -

truncation will occur.

LAST CHARACTER NOT — A

GFN3

In the file name the fifth character is not an A.

LAST CHARACTER NOT — A

GEN3A

In the file name the fifth character is not an A.

LAST WORD NOT PROPERLY DEFINED

GEN 2

Notify the MIDMS support group.

LAST WORD NOT PROPERLY DEFINED

GEN 3

Notify the MIDMS support group.

4-99

LEFT PARENTHESES ARE EXCEEDED

GEN 2

The number of right pr^entheses exceeds the

number of left parentheses in the retrieval logic.

LEFT PARENTHESES EXCEED 9

GEN 2

There are more than 9 left parentheses used in

the retrieval logic.

LENGTH EXCEEDS 12 DIGITS

GEN 3

Notify the MIDMS support group.

LENGTH RETURNED BY CONVERT ROUTINE EXCEEDS A-NAME

GEN 2

The length returned by a convert routine exceeds

the size of the alphanumeric a-field.

LENGTH RETURNED BY CONVERT ROUTINE EXCEEDS A-NAME

GEN 3

The length returned from a convert routine is

greater than the length of the alphanumeric

a-field.

LENGTH RETURNED BY CONVERT ROUTINE EXCEEDS A-NAME

GEN3A

The length returned from a convert routine is

greater than the length of the alphanumeric a-field.

4-100

LIB CARD CANNOT BE STORED

GENI

A LIB or LIBRARY card may not be stored on the library.

*LIBRARY NAME DOES NOT END IN AN F OR AN R

GENI

The five character library name must end in either an t or

and R in a COMP-OP run.

*LIBRARY NAME IN ERROR OR IS MISSING

GENI

The library name in a tOMP-OP run must be five characters in

length and be separated from the word COMP-OP by at least

one space.

LINE PARAGRAPH NOT PRECEEDED BY FILE SECTION OR BEGINS PARAGRAPH

GEN 3

Line paragraph not immediately following File Section or
BEGINS paragraph is omitted.

LINE SIZE EXCEEDED

G EN 3 A

Data larger than specified line size.

LITERAL A-NAME NOT ALLOWED

GEN 3

Literals cannot be used as a-fields in this statement
format.

LITERAL A-NAME NOT ALLOWED

UEN3A

Literals cannot be used as a-fields in this statement
format.

4-101

LITERAL B-NAME NOT ALLOWED

GEN3

The literal found in the b-field is not permitted in th

statement format tort, „ponding to the first wÓÍd

4-101.1

UÉNiattlÉlMMÉKJiÉIlÉÉMlMÉI

LOWER LIMIT EXCEEDS UPPER LIMIT

(JEN 2

The lower limit Is greater than the upper limit.

MARGIN PARAMETER MISSING

GEN 3

The EJECT ON nn statement requires the inclusion
of the nn parameter.

MISSING A LINE OR BEGIN SECTION IN REPORT

GEN 3

Each LINE paragraph requires a corresponding

BEGINS paragraph - even if the latter paragraphs

consist of only a LINE card or BEGINS card,
respectively.

MISSING CLASS STATEMENT

GEN3A

The CLASS statement is always required in the

shorthand language. If not, CLASS lines are to

be printed; the value associated with the CLASS
statement should be blank.

MISSING CONSTANT OR LITERAL

GF

This statement is missing a constant or a literal.

MISSING CONSTANT OR LITERAL

GEN 3

This statement is missing a constant or a literal.

4-1C2

MISSING CONTINUATION CARD

GEN 2

Column 72 contained a non-blank character but a
continuation card did not follow.

MISSING CONTINUATION CARD

GEN 3

Column 72 contained a non-blank character but

a contirjation card did not follow.

MISST >IG CONTINUATION CARD

GEN3A

Column 72 contained a non-blank character but a

continuation card did not follow.

MISSING DELIMITER

GEN 2

The second delimiter enclosing a literal was missing.

MISSING DELIMITER

GEN 3

The second delimiter enclosing a literal was missing.

MISSING DELIMITER

GEN3A

The second delimiter enclosing a literal was missing.

4-103

MISSING FILE NAME

GEN 2

The file name is missing from this statement.

MISSING FILE NAME

GEN 3

The file name is missing from this statement.

MISSING FILE NAME

GEN3A

The file name is missing from this statement.

MISSING OUTPUT FILE NAME

GEN 3

The report specified the WRITE option but output

file name was not provided.

MISSING THE WORD - IF

GEN 2

The word IF is missing.

MISSING THE WORD - IN

GEN 2

In the SORT statement the word IN is required.

4-104

MULTIPLE B-NAMES NOT ALLOWED

GEN 2

Only one b-field can be used in the statement

format corresponding to the first word.

MULTIPLE B-NAMES NOT ALLOWED

GEN 3

Only one b-field can be used in the statement

format corresponding to the first word.

MULTIPLE B-NAMES NOT ALLOWED

GEN3A

Only one b-iieid can be used in the statement

format corresponding to the first word.

MULTIPLE DATA FIELD

GEN 2

This field has previously been defined.

MULTIPLE DATA FIELD

GEN 3

A DEFINE statement cannot have more than one

constant or literal.

MULTIPLE DATA FIELD

GEN3A

A DEFINE statement cannot have more than one

constant or literal.

4-105

MULTIPLE MATRICES NOT ALLOWED

GEN 3

Only one MATRIX may be defined in a report.

NAME EXCEEDS 8 CHARACTERS

GEN 2

Defined and file name.' cannot exceed 8 characters.

FFT field names cannot exceed 5 characters.

NAME EXCEEDS 8 CHARACTERS

GEN 3

A defined name cannot exceed 8 characters.

NAME EXCEEDS 8 CHARACTERS

GEN3A

A defined name cannot exceed 8 characters.

NAME IDENTICAL TO FFT NAME

GEN 2

A defined name was encountered which is identical

to an FFT name.

NAME IDENTICAL TO FFT NAME

GEN 3

The define name used is the same as an FFT name.

4-106

NAME IDENTICAL TO FFT NAME

GEN3A

The define name used is the same as an FFI name.

NAME PREVIOUSLY DEFINED

GEN 2

Encountered a defined name identical to a previous

defined name for which the Modify Option was not

used. Each defined name must be unique unless the

Modify Subquery Option is used.

NAME PREVIOUSLY DEFINED

GEN 3

Encountered a defined name identical to a previous

defined name for which the Modify Option was not

used. Each defined name must be unique unless the

Modify Report Option is used.

NAME PREVIOUSLY DEFINED

GEN3A

Encountered a defined name identical to a previous

defined name for which the Modify Option was not

used. Each defined name must be unique unless

the Modify Report Option is used.

NAME REDEFINED

GEN 2

This is only a caution. A defined name's value

was changed by utilizing the Modify Subquery
Option.

4-107

NAME REDEFINED

GEN 3

This is a caution message. A defined name's value was changed

by utilizing the Modify Report Option.

NAME REDEFINED

GEN3A

This is a caution message. A defined name's value was changed

oy utilizing the Modify Report Option.

NEGATIVE PAGESIZE

GEN 3

A negative pagesize was found.

NEGATIVE PAGESIZE

GEN3A

A neagtive pagesize was found.

NO DATA FOLLOWING COMP-OP CARD - FATAL ERROR

GEN3B

COMP-OP card not followed by required information - check

deck set-up.

NO DATA ON INPUT TAPE - FATAL ERROR

GEN3B

No data on input tape - check deck set-up.

NO ENTRIES IN FFT TABLE 7

GEN2

This is only a caution. Logical Record 7 has been referenced

but there are no entries in that table.

NO FFT TABLES FOUND

GEN2

Unable to find FFT Logical Record 1 for the file name found in

the current File Section.

4-108

NO FFT TABLES FOUND

GEN 3

Unable to find FFT Logical Record 1

File Section.
for the file specified in the

NO FFT TABLES FOUND

GEN3A

Unable to find FFT Logical Record 1

File Section.
for the file specified in the

NO FURTHER COMPILATION FROM THIS POINT

GEN 3

The table cannot be

meaningless.
processed and further compilation would be

*N0 LljRARY NAME ON COMP-OP CARD

GENI

oum-up card must contain a 5 character name ending in R and

eparated by at least one space from COMP-OP.

NO LIMIT NUMBER PROVIDED

GEN2

This is only a caution,

default to 0 records.
Limit number not provided; system will

NO OF GENERATED STATEMENTS EXCEED 490 AGAINST THIS FILE

GEN2

A maximum of 490

permissable.
generated object statements per file are

NO PERFORM STATEMENT ASSOCIATED WITH PROGRAM =

GEN 3

This is a caution,

a PROGRAM will not
Unless referenced by a PERFORM

be executed.
statement.

4-109

NO QUERY CARD BAD OP PROCEDURES

•rm

GENI

The first card in each user's job is expected to be

a QUERY card. Omission of that card is a bad
operating procedure.

NO QUERY FOR THIS REPORT

GENI

Each REPORT must be preceded by a QUERY.

NON-NUMERIC DATA RETURNED BY CONVERT ROUTINE

GEN 2

An alphabetic or special character was returned

by the convert routine in a statement which has
a numeric a-fieid.

NON-NUMERIC DATA RETURNED BY CONVERT ROUTINE

GEN 3

An alphabetic or special character was returned

by the convert routine in a statement which has
a numeric a-fieid.

NOT ALLOWED IN THIS PARAGRAPH

GEN 3

The EJECT statement cannot be used in the HEADER

or TRAILER paragraphs.

NUMBER EXCEEDS ONE DIGIT

GEN 3

The number in the statement format corresponding

to the first word must be one digit.

4-110

NUMBER EXCEEDS 4 DIGITS

GEN2

The value of the constants in a SATISFY operator

may not exceed 9999.

NUMERIC A-NAME EXCEEDS 15 DIGITS

GEN?

All numeric data cannot exceed 15 digits.

NUMERIC A-NAME EXCEEDS 15 DIGITS

GEN3A

All numeric data cannot exceed 15 digits.

NUMERIC FIELD EXCEEDS 15 DIGITS

GEN 2

The numeric field specified is greater than 15 digits.

NUMERIC FIELD EXCEEDS 15 DIGITS

GEN 3

The numeric field is larger than 15 digits.

NUMERIC FIELD EXCEEDS 15 DIGITS

GEN3A

The numeric field is larger than 15 digits.

4-111

OCCURS AREA EXCEEDS CONSTANT POOL

GEN 3

The table definition has caused overflow. The

combined length of all defined space and values

may not exceed 9000 characters.

ONLY VALID IN TRAILER PARAGRAPH

GEN 3

The SKIP statement can only be used in the TRAILER
Section.

0P4-SWT

GEN 2

Compiler error. Resubmit the job. If error

persists, submit a discrepancy report to the

MIDMS support group.

0P5-SWT

GEN 2

Compiler error. Resubmit the job. If error

persists, submit a discrepancy report to the

MIDMS support group.

OPTION TO ABORT ON ANY ERROR HAS BEEN EXERCISED

GEN 6

One or more of the queries or reports in the

batch have a compilation error, therefore all

were prevented from executing.

4-112

OPTION TO ABORT RUN ON ANY ERROR HAS BEEN EXERCISED

GEN6A

One or more of the queries or reports in this

batch have a compilation error, therefore all
were prevented from executing.

OPTION TO ABORT RUN ON ANY ERROR HAS BEEN EXERCISED

GEN6AIF

One or more of the queries or reports in this

batch have a compilation error, therefore all
were prevented from executing.

OUTPUT FILE PREVIOUSLY DEFINED

GEN 3

This is a caution message. The output file

parameter was changed utilizing the Modify
Report Option.

PAGESIZE PREVIOUSLY DEFINED

GEN 3

This is a caution message. The pagesize parameter
was changed utilizing the Modify Report Option.

PAGESIZE PREVIOUSLY DEFINED

GEN3A

This is a caution message. The pagesize parameter
was changed utiiizing the Modify Report Option.

4-113

PARAGRAPH 1 IS MISSING

GEN 3

The BEGINS paragraph does not immediately follow

the LINE paragraph.

PARTIAL EXCEEDS FIELD LENGTH

GEN 2

Incorrect length was specified for a partial field.

PARTIAL EXCEEDS FIELD LENGTH

gen:

The partial parameter is too large.

PARTIAL EXCEEDS FIELD LENGTH

GEN3A

The partial parameter is too large.

PARTIAL NOTATION OUTSIDE FIELD BOUNDARIES

GEN 2

The partial notation specified is outside the field

size.

PARTIAL NOTATION OUTSIDE FIELD BOUNDARIES

GEN3

The partial notation is greater than the field

size.

4-114

PARTIAL NOTATION OUTSIDE FIELD BOUNDARIES

GEN 3 A

The partial notation is greater than the field size.

PROGRAM NUMBER EXCEEDS 2 DIGITS

GEN3

The program number must be between 1 and 99, inclusive.

PROGRAM NUMBER MISSING

GEN3

A program number, ranging in value from 1 to 99, must be

included as part of the PROGRAM name, bee the Users
Manaul.

PROGRAM SECTION = _ is MISSING

GEN 3

A referenced PROGRAM paragraph is either missing, improperly

identified, or incorrectly located in the REPORT. See the
Users Manual.

QUERY CARD MISSING - DUMMY CARD WILL BE GENERATED

GEN3B

This is a warning. No QUERY card was found and GEN3B
generated one.

QUERY CARD SHOULD NOT BE STORED

GENI

This is a caution. The QUERY card should not be stored on
the source statement library.

4-115

RECED-ID valuel SET-ID value2 PSS-ID

value3 CHARACTER POS valueA

GEN4

This .Bessage is generated upon receipt of a return

code of 4 from a special operator. Value 1 is the

record ID, value 2 the set number, value 3 is the

PSS field, and value 4 is the character position

within that subset of the data passed to the special

operator.

RECED-ID valuel SET-ID value2 PSS-ID

value3 CHARACTER POS value4

GEN4A

This message is generated upon receipt of a return

code of 4 from a special operator. Value 1 is the

record ID, value 2 the set number, value 3 is the

PSS field, and value 4 is the character position

within that subset of the data passed to the special

operator.

RECED-ID valuel SET-ID value2 PSS-ID

values CHARACTER POS value4

GEN4AIF

This message is generated upon receipt of a return

code of *4 from a special operator. Value 1 is the

record ID, value the set number, value 3 is the

PSS field, and value 4 is the character position

within that subset of the data passed to the special

operator.

RECEIVING FIELD LONGER WILL ADD TRAILING SPACES

GEN 3

This is only a caution. The receiving field was

larger than the sending field. Contents of the sending

field will be sent to the receiving field, left-

justified, with trailing spaces added.

4-116

RECEIVING FIELD SHORTER - WILL TRUNCATE

GEN 3

This is a caution message. The number of

characters moved from the sending field will be

equal to the length of the receiving field and

will be left-justified.

RECCRDSIZE PREVIOUSLY DEFINED

GEN 3

This is a caution message. The recordsize
parameter was changed utilizing the Modify

Report Option.

KEPUPT OBJECT STATEMENTS EXCEED 1333

GEN 2

The number of object statements generated from the

user source statements found in the report exceed

1333. Report must be shortened. Multiple b-fields

are expanded into one object statement for each

b-field.

REPORT OBJECT STATEMENTS EXCEED 1333

GEN3A

The number of object statements generated from the

user source statements found in the report exceeded

1333. Report must be shortened. Multiple b-fields

are expanded into one object statement for each

b-field.

RETRIEVAL LOGIC STATEMENTS FOLLOWING SELECTIVE LOGIC

GEN 2

Once a secondary conditional statement is written

no primary conditional statements may be written

in the reminder of the subquery. See the Users

Manual.

4-117

RETRIEVAL VECTOR MISSING - RERUN - IF ERROR PERSISTS CONSULT SE

GEN3

Submit a discrepancy report to the MIDMS support

group.

RIGHT PAREN MISSING

GEN 3

A right parenthesis is required to close subscript

expressions .

RIGHT PARENTHESES EXCEED 9

GEN 2

There art more than 9 right parentheses used in

the retireval logic.

RIGHT PAPEN MISSING

GEN 2

A right parenthesis is required to match the

left parenthesis previously encountered.

RIGHT PAREN MISSING

GEN 3

A right parenthesis is required to match the

left parenthesis previously encountered.

ROUTINE EXCEEDS 8 CHARACTERS

GEN 3

A special operator, convert routine, or table

lookup name cannot exceed 8 characters.

4-118

ROUTINE EXCEEDS 8 CHARACTERS

GEN 3 A

A special operator, convert routine, or table

lookup name cannot exceed 8 characters.

SAME AS DEFINE NAME

GEN 2

A referenced FFT name is the same as a name

previously DEFINEd.

SECOND WORD MISSING

GEN 2

The second word in the statement format corres¬

ponding to the first word is missing.

SECOND WORD MISSING

GEN 3

The second word in the statement format corres¬

ponding to the first word is missing.

SKIPPING TO NEXT REPORT

GEN 3

Further compilation of this report is meaningless

based on errors already encountered.

SKIPPING TO NEXT REPORT

GEN3A

Further compilation of this report is meaningless

based on errors already encountered.

4-119

SKIPPING TO NEXT SUBQUERY

GEN 2

Syntax checking was not performed on all retrieval statements

following this error message up to the next subquery card.

****** SORT ERROR - LIBRARY CONTENTS MAY BE INVALID

GEN3B

Restore library from backup tape before proceeding.

SORT ERROR, ANSWER FILE NOT IN SEQUENCE

GEN 6

Allocate additional space for the sort work files and re¬

submit. If error persists, submit a discrepancy report to

the MIDMS support group.

SORT ERROR, ANSWER FILE NOT IN SEQUENCE

GEN6A

Allocate additional space for the sort work files and re¬

submit. If error persists, submit a discrepancy report to

the MIDMS support group.

SORT ERROR, ANSWER FILE NOT IN SEQUENCE

GEN6AIF

Allocate additional space for the sort work files and

resubmit. If error persists, submit a discrepancy report

to the MIDMS support group.

SORT ERROR, JOB KAPUT, ERROR*****************

GEN5A

Check JCL for sort work space. If adequate, submit a dis¬

crepancy report to the MIDMS support group.

4-120

SORT ERROR, JOB KAPUT, ERROR *****************

GEN LA

Check JCL for sort work space. If adequate,

submit a discrepancy report to the MIDMS support
group.

SORT FIELD NOT PERIODIC

GEN 3

The ASORT and DSORT field names must be periodic.

SORT KEY EXCEEDS 85 CHARACTERS

GEN2

This is only a caution. The sort key has exceeded
85 characters. Truncation will occur.

SORT/MERGE FLAGGED STATEMENT MISSING

GEN 2

KEEP statements require a SORT/MERGE FLAGGED
statement be present.

SORT/MERGE FLAGGED STATEMENT NOT AT END

GEN 2

Retrieval sort or merge statements containing

the flagged option must be the last physical
statement in a subquery.

SORT/MFRGE STATEMENTS NOT AT END OF SUBQUERY

GEN 2

The SORT/MERGE statements must be at the end of

the aubqutry and can be followed only by a

SORT/MERGE statement with the FLAGGED option.

4-121

SORT STATEMENT NOT IN LINE PARAGRAPH

GEN 3

The ASORT and DSORT operators may only be

used in a LINE paragraph.

SPECIAL OP EXCEEDS 8 CHARACTERS

GFN2

The special operator name cannot exceed 8

characters.

STATEMENT NOT PROCESSED

GEN 2

This statement was not processed because of

misspelling or incorrect use.

STATEMENT NOT PROCESSED

GEN 3

A previously encountered error condition

precluded processing of this statement.

SUBQUERY CRD MISSING

GEN 2

The only cards that may precede a SUBQUEkY

card within a QUERY are LIB cards.

SUMMARY CARD DOES .\()T IMMEDIATELY FOLLOW SUBQUERY CARD

GEN 2

The placement of the summary card is incorrect.

4-122

table define missing

GEN 3

Referenced table name has not been defined.

TABLE ELEMENT MISSING

GEN 3

The control field containing the number of elements

in the table has a greater value than the number

of elements actually found.

TABLE ELEMENT TOO LONG

GEN 3

The combined length of an argument and function

exceeded 68 characters.

THE WORD, OF, IS MISSING

GEN 2

The word OF is misspelled and is required in the

statement format corresponding to the first word.

THE WORD, TO, IS MISSING

GEN 3

The word TO is required in the statement format

corresponding to the first word.

TOO MANY CONDITIONALS

GEN3A

Only nine conditionals may be used.

4-123

TOO MANY COUNTS/SUMS

GEN3A

More than 100 unique field names were found in

SUM and COUNT statements of type 1 format in the

SHL report.

TOO MANY DEFINES

GEN3A

The valid number of define names including the

system generated ones for internal labels, edit

masks, and implicit output convert routines was

exceeded.

TOO MANY KEEP NAMES

GEN 2

The maximum number of KEEPs is 50.

TRUNCATION IN SORT KEY

GEN 2

This is only a caution. The rightmost characters

in the sort key were truncated.

UNDEFINED B-NAME

GEN 2

The data name in the b-field was not found in the

list of defined names or in the list of FFT names

associated with the current subquery. If intended

to be a literal, the value must be enclosed in

delimiters.

4-124

UNDEFINED B-NAME

GEN 3

The data name in the b-field was not found in t ie

list of defined names or in the list of FFT names

associated with the current File Section. If

intended to be a literal, the value must be

enclosed in delimiters.

UNDEFINED B-NAME

GEN3A

Thp data name in the b-field was not found in the

list of defined names or in the list of FFT names

associated with the current File Section. If

intended to be a literal, the value must be

enclosed in delimiters.

UPPER LIMIT MISSING

GEN 2

The upper limit in the SATISFIES operator cannot
be found.

VALUE EXCEEDS 999

GEN2

The HIT parameter in SELECT statement exceeds 999.

VALUE EXCEEDS 999

GEN 3

The value specified may not exceed 999. See the
Users' Manual.

♦

4-125

VARIABLE DATA NAME REQUIRED

G EN 3

The VKOVE operator requires that the a-field be

a va’iable set field name.

VMOVE OPERATOR CHANGED TO MOVE

GEN 3

VMOVE may only be executed for a BEGINS paragraph.

YOU ARE IN A LOOP, FRIEND ...

GEN 6

A paragraph of output statements has been executed

without interruption more than 11111 times. This

can be caused by an invalid control word or by

illegal modification of a control word.

YOU ARE IN A LOOP, FRIEND ...

GEN6A

A paragraph of output statements has been executed

without interruption more than 11111 times. This

can be caused by an invalid control word or by

illegal modification of a control word.

YOU ARE IN A LOOP, FRIEND ...

GEN6AIF

A paragraph of output statements has been executed

without interruption more than 11111 times. This

can be caused by an invalid control word or by

illegal modification of a control word.

98 LOGIC ERROR - QUERY DELETED, ERROR

GEN 4

A logic processor error has occurred. Rerun the job;

if error persists, submit a discrepancy report to

the MIDMS support group.

4-126

CHAPTER 5

RETRIEVAL AND OUTPUT DOCUMENTATION

PART II

Flowcharts and Narratives:

a. Program Flowcharts

(1) CENO

5-1

CHAPTER 5

RETRIEVAL AND OUTPUT DOCUMENTATION

PART II

Flowcharts and Narratives:

a. Program Flowcharts

(1) GENO

5-1

5-2

. MÉHkMÉü lÉÉÉiNaWBÉkl

P3A

5-3

5-4

mmmmm

5-4.1

■MMwia

2. GENl o

P3. 1\7

0

(2) GENI.

5-5

TO INDICATE SOURCE STATEMENTS
WILL BE COMING FROM LIBRARY;
OTHERWISE SWT1 REMAINS ZERO.

WRITE
RECORD
OUT

5-7

5-8

NO

•&>

MOVE 1 TO TYPE, QUERY; MOVE 0 TO SUBOUERY, CARD-NUM; GIVE ERROR MESSAGE;
MOVE CARD TO WORK AREA; GO TO PI.

5-9

5-10

5-11

MOV
T

CARD-

E 1
0
NUM

\ WRITE 7
\ RECORD /

VJUT /

MO\
1000
CARD-

IÍ
TO
NUM

SET SWITCHE'1
TO TELL

GEN0 NSAX
ERROR

5-12

SET SWITCHES
TO TELL GEN0
TO BRING IN
NSAX MODULES

.maiMi iNÉÉlNÉáli

5-l¿. 1

■MiHiiiiaiMMiiikkÉÉiÉÉ

15-12.2

ÉÉMyauiaMiaNÉftMi

(3) GEMA.

5-13

■■■■■Mi

(4) GEN2.

SOURCE
STATEMENTS

ON DISK

HOUSEKEEPING

INITIALIZE
WORK AREAS,

SWITCHES

♦

PROCESS
CHANGE

©
5-14

PICK UP
FIRST WORD

SEE
PX1

IF FIRST WORD

5-15

©
MOVE SPECI¬
FIC INFO. TO
OUTPUT AREA

SEE PX5

WRITE
RECORD
(VECTOR)
OUT

SEE PJ&-

SEE PX2

5-16

/ Ï'V yrr < NXT WORD XYE¿
XHIT" CR/

MOVE ZLPO
TO

SWT4

\ .
NO

7
DECODE THE
a-field .

SEE PX8

5-18

5-19

5-20

5-21

VERIFY
LOAD MOD-
ULE NAME
SEF PXi:

5-22

5-24

5-25

«MUMMfeHMMIiaa

PI 3

5-26

5-27

5-28

-- ' **“^n*«*

THIS SWITCH INDICATES
A SORT OF THE ANSWER
FILE.

ADD 1 TO

MOVE 1
TO

SWT4

VALIDATE]
SORT

PARA¬
METERS

SEE ¿114

IPU
5-29

5-30

5-31

5-32

r

©

5-33

X

5-34

I GET
NXT WORD

^ yes'-
SEE PX2

MOVE
MESSAGE

TO
MSG-AREA

.'Data is \ no
\numeric

WRITE OUT
RECORD
(VECTOR)

SEE PX6

5-35

lliariMiMMIHMIIIHinfl

/ WRITE OUT 7
/ SAVE AREA /
USING SECTION
/WRITE-CDYN

-
5-37

END LAST .
;SUBQUERY j
I-
SEE PX15

23.1

GET
NX! WORD

SEE PX1

5-39

5-40

.

PXl EXTRACT-WORD Section picks uo each word, letter, or
number from a user's source statement and moves it to
a work area called CARDW. If a continuation is required,
another read will be executed using the READ-OP Section.
If errors are encountered during the extraction, an
appropriate error message is written out.

PX2 The bypass switch is initialized to zero before each
record is processed. If an error is encountered, a
one (1) is moved to this switch signifying the end of
syntax checking and the writing out of the appropriate
error message.

PX3 When errors occur within the processing program, an
appropriate error message is moved to an error message
area and then written o^^. In addition, a one (1) is
moved to bypass switch and, depending upon the severity
of the error, a decision is made as to what step the
program will execute next (see PX7).

PX4 The LOAD-CONSTANT Section is used to move a character
string to a work save area called CONSTANT-POOL. It:
length depends upon the value in a numeric area called
IL. If the CONSTANT-POOL area exceeds 90 characLers,
this area is written out and a new one is created using
a special write section called WRITE-CDYN.

PX5 For each user's statement submitted, a record (vector)
for that operation is written out containing information
needed for processing by the next program. See list
of vectors.

PX6 WRITE-STATE Section is used to write out records (vectors).
In this section certain criteria in the vectors must be
checked for each operator or operation before the vector
is written out and processed by the next program. If an
error is encountered the appropriate message is written
out (see PX7).

5-41

PX7 WRITE-ERR and WRITE-ERR1 Sections are used to write out all
error records. In addition, they move a one (1) to bypass
to stop further processing of such records.

PX8 DECODE-A Section is used for decoding and syntaxing of the
a-field of the user source statement. Such statements
can contain a user defined name, convert routine, special
operator, literal, constant, or FFT name - all of which
must be decoded into pointers, locations and/or values and
moved to a specified area in the record (vector). If the
statement requires the extraction of another word, SWT4
will equal zero. If errors are encountered, the appropriate
message will be written out.

PX9 DECODE-OP Section extracts the next word. If partial
notation is encountered as the next word, Section FLD-PART
performs a validity check and, if no errors are found, the
proper information is placed into the a-field output area
before another word is extracted. If a convert routine
name or special operator is found, a verification of the
name, using a section called S806-TRAP, is performed before
continuing to the next word. The logical operator (e.g.,
EQUAL, NOT EQUAL, LESS, GREATER, etc.) is next retrieved.
Upon comparing this word against a table of operators, a
numeric value is placed into the operation field (OP) of
the output area. Before leaving this section another word
will be retrieved for further processing. All errors found
will use the WRITE-ERR or WRITE-ERR1 Sections to write out
the appropriate messages.

PX10 DECODE-B Section is used for syntaxing and decoding the
b-field of the user source statement. Such statements
can contain a FFT name, a user defined name, special
operator, output area, multiple b-fields, and/or a numeric
value associated wi .h the b-field as required by the
statement itself. The DECODE-B Section verifies the number
of parentheses given by the user for equality using
RIGHT-PARN1 Section. When numeric values are found in
the b-field the EXTRACT-NUM Section is used to validate
these digits. When a word in the b-field requires numeric
or alphanumeric characters to be saved for further
processing, the LOAD-CONSTANT Section (see PX4) is performed.

5-42

If leading zeros or trailing spaces are necessary,
LEAD-ZEROS and TRAIL-SPACE are executed for that
particular word. When a multiple b-field is encountered
by using EXTRACT-WORD Section (see PX1), the previous
record will be written out if it is not a partial notation
parameter (see PX6). If partial notation is found, the
FLD-PART Section is used tc check its validity and, if
no errors are found, the appropriate information is moved
to the b-field output area. If a special operator is
retrieved as the next word, the name is validated by using
the S806-TRAP Section before continuing to the next word.
All errors found while processing the b-field words will
use the WRITF-ERR and WRITE-ERR1 Sections to write out
error messages.

LMODE is a data name in the vector output area. This area
contains a numeric value to indicate what type of retrieval
is to be applied against the data file when it is processed
by the following program.

EXTRACT-NUM Section is used to verify numeric digits found
in the user's source statement. If an error is found, the
appropriate error message is written out.

PX13 S806-TRAP Section is used to validate that a special operator
or convert routine name exists in the system library. If
not found, the appropriate error message is written out.

FLD-PART Section is used to syntax the format provided by
the user when validating a partial notation or an output
area. If errors are found, the appropriate message is
written out.

END-STEP Section is used to complete the processing of a
subquery. If the query number is equal to zero, this
function is not performed. This section also writes out
from a saved area all KEEP names that were previously saved.

5-43

(5) GEN2X.

5-44

(6) GEN4X1.

ENTER FROM GEN0
GEN4X1

5-45

PLACE VECTOR
IN

VECTOR TABLE

PLACE "X" IN
STEP VECTOR
ACCORDING TO
STEP NUMBER

SET SWITCHES
TO INDICATE
FATAL ERROR
IN NSAX

STORE
CONSTANT
STRING

MOVE 1 TO
ALL POSITIONts
QUERY ERROR
VECTOR

3E

RETURN TO GEN0

5-47

MOVE LISTNAM

TO DD NAME

OPEN

sms—

PLACE VECTOR

IN
WORK AREA

I
INITIALIZE

OUTPUT KEY

FROM VECTOR

L.

STEP NUMBER &

SET NUMBER

GO TO
DEPENDING

ON OPERATION

1=LESS 4J 7“NOT LESÍ

2=EQUAL—8“NOT EQUAiÍ^m]

-XóN J 9“NOT-4 6P I

\y GREATER
3=GREATER

ANYTHING ELSE IS AN ERROR

£-48

5-49

ïh
\y

5-50

(7) GEN4XP.
GEN4X2

ENTER FROM GEN0

TRANSMIT
ERROR
MESSAGE

MOVE 1 TO
ALL POSITIONS
IN QUERY
VECTOR

Ö
y

FINISHED
CLOSE ANY OPENED
FILES, RETURN TO GEN0

5-51

■HUlAIIIMIIIHIÉBHBÉlMIfl

(8) GEN4X3.

ENTER FROM GEN0 GEN4X3

-*©

RETURN TO GEN0 5-52

5-53

ADD 1 TO

SUCCESS

STATISTICS

T

(9) GEN3A.

/ ÊNtftY " \
GEN3A J

)PEN WORK FILEJ5
INITIALIZE

ÎWITCHES, SET
JEFAULT VALUES

5-55

5-56

P3A

SET FINAL
OUTPUT

PARAGRAPH
INDICATOR

CLOSE
FILES

RETURN

5-58

5-59

5-60

5-6]

PSA

JES

IF

NO

YES

AND

NO

OR
[ES

NO

BUILD
OBJECT

STATEMENT

BUILD
OBJECT

STATEMENT

BUILD
OBJECT

STATEMENT

JES

SET

NO

DETERMINE
OPTION

REQUESTED

WRITE
OBJECT
TATEMENT/

WRITE
OBJECT

STATEMENT,

WRITE
OBJECT

iSTATEMEN,

SAVE VALUES
IN

WORK AREA

-^ptaJ

JES
FILE P14/

NO

JES
P13A

fES

STOP P13/

NO

JES

DEFINE

NO

BUILD
OBJECT

STATEMENT

WRITE
OBJECT

VSTATEMENl

5-62

5-63

.. III 1

5-64

5-65

BUILD
OBJECT

STATEMENT
-!-

WRITE
OBJECT

5TATEMEN]

X

5-66

ANY
LOGIC X NO

X^ATE^
(ÄF

'

lENTSX
(AJÊO
'"yes

‘

\ WR]
\GENEF
\ LOf
\tati

TE / WTED/
îIC /
:mfn/s

BUILD
OBJECT

STATEMENT

WRITE
OBJECT
TATEMEN

X

5-67

«■MUHIMMi

5-68

5-69

MW! ■

5-70

5-71

Sä* >8*

5-71

■MMÉMÉIMHHWMIM

«

I

P18A

5-72

iaiaiHaiÉl MÉÉHÉéCIm

wmmm

(10) GEN3.

5-73

NO

YE5 —V
VMOVE >-* P25\

NO
5-75

A

■ ■««TOUIlii .i., .111^1)1

MÉAÉMflMÉHlHdMI

■■«■■P

WRITE OUT /
VECTOR

SEE PX6

5-80

OPERATIOfrv YES I \
NOT EO "R" ER1>

IF THE RETURN
FIELD, "OPERATION"
FROM THE CALLED
PROGRAM CONTAINS
ANYTHING OTHER
THAN AN "R", AN
ERROR EXISTS.

PIO

iiinif win in niiPHiii liii.imfcrM i, imiip ...

aümüi in

HMiifliiMiaiia«

5-85

—... ¥

^NO

MOVE 5
TO LMODE SEE PX11

MOVE 16
TO
OP

Zj rrr
I NXT WORE

SEE PX1

-1_
GET
NXT WORD

SEE PX2 GET
NXT WORD

SEE PX1 rSEE PX1

5-87

5-88

MOVE
NAME TO
SAVE ARE/I

5-89

YES

GET
NEXT WORD

SEE PX1

A "5" IN DATA¬
TYPE INDICATES
THAT THIS FIELD
IS NUMERIC.

A "1" INDICATES
A TABLE STATE¬
MENT IS BEING
PROCESSED.

5-90

5-91

YES
IF

)ELIMITER
^ SPACE

»NO

DATA \ Nn
JS NUMERIC

119.2j

[YES

«MiaaiiaiMllHaMMMM

9

5-94

A

rWRITE OUT
VECTOR

SEE PX6

MOVE 2
TO
LMODE

SEE PX11

■MOVP 7
TO OP

— _

f
MOV
"TO

TO
XYZ

E
II

MOVE 9
TO OP

_L
MOVE
"BY"

TO
XÏ4-

5-96

5-97

... i
MOVE 13

TO
OP

5-98

5-99

;

THE ^"INDICATES A PROGRAM
STATEMENT HAS BEEN SUBMITTED
BY THE USER AND THAT A PER¬
FORM STATEMENT SHOULD BE
FOUND ASSOCIATED WITH THE
PROGRAM STATEMENT.

NXT WOR[

SEE PX1

5-101

5-102

5-103

PlOl

5-104

5-105

PXl
nEí~RD SeCti?n P1’cks up each word> better, or
number from a user s source statement and moves it to
anntho area ca]l®d CARDW. If a continuation is required,
another read will be executed using the READ-OP Section
If errors are encountered during the extraction an
appropriate error message is written out

PX2 The bypass switch is initialized to zero before each
nnp°nV- proce^sed- If an error is encountered, a

syntax checking• nH îî1s S"Íích end of
eiío? resfag¡ 6 Wr 9 °Ut 0f the »PP^P^ate

PX3 When errors occur within the processing program, an

a^°anTîh err°LrSSa9e is moved t0 an error message
™“da;0d iipeansr^ncVauSd, ^ <i>e^ of

wil^execute Zl^VltT “ t0 “ J ^ ^ ^9-

PX4
Iîrin^C0NSTA?T SeCti0n is used t0 a character A ï0rk Save area called COMSTANT-POOL. Its
length depends upon the value in a numeric area called
IL. If the CONSTANT-POOL area exceeds 90 characters
íhln*r!ie? 1s.fritten out and a new one is created using
a special write section called WRITE-CDYN 9

PX5 Tor each user's statement submitted, a record (vector) for

nPpLr/atl0n iS written out containing information
vectorsf0r process1ng by the next Program. See list of

PX6 WRITE-STATE Section is used to write out records (vector«;)
In this section certain criteria in the vectors must be

is writJnrnTh SPerator or °Per£tion before the vector
ritten out and processed by the next program If an

oitTs« wrtered’ the appropr1ate ^ written

5-106

WRITE-ERR and WRITE-ERR1 Sections are used to write out
all error records. In addition, they move a one (1) to
bypass to stop further processing of such records.

DECODE-A Section is used for the decoding and syntaxing
of the a-field of the user source statement. Such
statements can contain a user defined name, convert
routine, special operator, literal, constant, or FFT
name, all of which must be decoded into pointers, locations
and/or values and moved to a specified area in the record
(vector). If the statement requires the extraction of
another word, SWT4 will equal zero. If errors are
encountered, the appropriate message will be written out.

DECODE-OP Section extracts the next word. If partial
notation is encountered as the next word. Section FLD-PART
performs a validity check and, if no errors are found, the
proper information is placed into the a-field output
area before another word is extracted. If a convert routine
name or special operator is found, a verification of the
name, using a section called S806-TRAP, is performed
before continuing to the next word. The logical operator
(e.g., EQUAL, NOT EQUAL, LESS, GREATER, etc.) is next
retrieved. Upon comparing this word against a table of
operators, a numeric value is placed into the opeíation
field (OP) of the output area. Before leaving this section
another word will be retrieved for further processing
All errors found will use the WRITE-ERR or WRITE-ERR1
sections to write out the appropriate messages.

DECODE-B Section is used for syntaxing and decoding the
b-field of the user source statement. Such statements
can contain a FFT name, a user defined name, special
operator, output area, multiple b-fields, and/or a numeric
value associated with the b-field as required by the
statement itself. The DECODE-B Section verifies the number
of parentheses given by the user for equality using
RIGHT-PARN1 Section. When numeric values are found in
the b-field the EXTRACT-NUM Section is used to validate
these digits. When a word in the b-field requires numeric
or alphanumeric characters to be saved for further processing,

5-107

the LOAD-CONSTANT Section is performed (see PX4). If
trai1in9 sPaces are necessary, LEAD-ZEROS

and TRAIL-SPACE are executed for that particular word.
uïoS Î mü¡tip]e b-fie]d is encountered by using EXTRACT-
WORD Section (see PX1) , the previous record will be written
out (see PX6) if it is not a partial notation parameter.
If partial notation is found, the FLD-PART Section is used
to check its validity and, if no errors are found, the
appropriate information is moved to the b-field output
area. If a special operator is retrieved as the next word
the name is validated by using the S806-TRAP Section
before continuing to the next word. All errors found
Whi un?TrCrnnin^ ^ b_field words wí11 use the WRITE-ERR
and WRITE-ERR1 Sections to write out error messages.

The word LMODE is a data name in the vector output area.
This area contains a numeric value to indicate the section
and/or paragraph in which the user's source statement is
located.

EXTRACT-NUM Section is used to verify numeric diaits found
in the user s source statement. If an error is found, the
appropriate error message is written out.

S806-TRAP Section is used to validate that a special operator
or convert routine name exists in the system library. If
not found, the appropriate error message is written out.

FLD-PART Section is used to syntax the format provided by
the user when validating partial notation or an output area.
If errors are found the appropriate message is written out.

(,0 1) GENiß

5-106.1

5-108. ¿

5-108.3

M 1 \ nrw/l anH fîFNdA

V PRINT
query

ANNE I

RETURN

5-108 4

Pi h illii itoiWnimmm miwf il.ul... ■ «i 'll lilf'F

(11) GEN4 and GEN4A.

5-109

wrm

5-110

CREATE TRUE &
FALSE VECTORS
FOR ALL VCTRS
IN STATE TBLE

I
OVERRIDE

DCB PARAMETER
TO PROCESS
RETRIEVAL FIL

CLOSE FILE,
IF SUMMARY

CLOSE
SUMMARY FILE
-t-

UNLOAD
USER ROUTINES

CREATE IN/OUT
STATISTICS

INITIALIZE
COMPARE

ADDRESSES
DECODE SETS

+ REPRESENTS
RECORDS-IN

CLOSE ANY
OPENED
FILES

RETURN

UNFLAG
SETS -©

INITIALIZE
CONSTANTS TO
START PROCES
SING SUBQUERIElS

5-111

GET 'FIRST!
VECTOR OF A
SUBQUERY FROlj
Q3 TABLE

GET NEW
VECTOR USING
L7 POINTER
TABLE <3

MOVE VECTOR
TO

WORK AREA

** CONTAINS
LESS
EQUAL
GREATER
BETWEEN
SPECIAL OP
STOP
NOP
LIMIT

NOT CONTAINS
NOT LESS
NOT EQUAL
NOT GREATER
NOT BETWEEN
NOT SPECIAL OP
FLAG
SET DECODE
KEEP

MOVE IN SETS
THAT ARE

REFERENCED BY
THE VECTOR

These Operations Will Flag
Subsets When appropriate.

ZERO OUT
iO. OF SUBSETS
PROCESSED,
ITEM S6A

lFPEAT=0P/50
)P=OP-REPEAT

*50
REPEAT IS USED FOR
MULTIPLE B-FIELDS
IN CONSTANT POOL

5-112

PUT TRUE
POINTER IN L7
(BYPASS THIS

TEST)

GET SAME
VECTOR FROM
STATE TABLE

MOVE LOGIC
MODE TO SET
TABLE S7A

INIT. SUBSCRIRT
TO GET VECTOR
WHICH TRUE
POINTER POINTS

INITIALIZE SU
SCRIPT TO GET
VECTOR WHICH

ADD 1 TO
S6A (NUMBER

SUBSETS
PROCESSED)

REPLACE
SET TABLE

DATA

é)
5-113

MOVE FALSE
POINTER TO

BYPASS
TABLE L7

MOVE FALSE
INDICATOR
TO SET
CONTROL

REPLACE SET
INFORMATION
BACK INTO
SET TABLE

ADD 1 TO
S6A (NO. OF
PROCESSED
SUBSETS)

NIT. SUBSCRIP'
TO GET VECTOR
WHICH FALSE
POINTER POINT*

GET SAME
VECTOR FROM
STATE TABLE

ifiïïT subscript)
TO GET VECTOR
WHICH TRUE

POINTER POINT;

é
5-114

GET VECTOR
FROM

STATE TABLE

BLANK OUT
SET CONTROL
NFORMATION OF

FIXED SET

RETRIEVE
SET CONTROL
FOR VECTOR

ZERO NUMBER
OF PROCESSED

SEIS IN
SET CONTROL

*A-FIELD SET
B-FIELD SET

LESS
EQUAL
GREATER
BETWEEN
SPECIAL OP
STOP
SORT
NOP
KEEP
CONTAINS

NOT LESS
NOT EQUAL
NOT GREATER
NOT BETWEEN
NOT SPECIAL I
FLAG
MERGE
LIMIT

NOT CONTAINS

These Operators Work on Flagged
Subsets

5-115

5-116

r ' , ’‘*r' • " "Ii: ..

5-117

5-118

mm:

9 5-119

Wmm

(12) GEN5.

5-120

•MUM , „ g r (1

MWIII Ilf ll<|^||^]i||i|l!i i^miw

(13) GEN5A

5-1^1

..- • ■ —

" ..

0
5-122

CLOSE
INPUT
FILE

5-124

5-125

5-126

5-127

lilHMlliaNflMIIMH

5-128

5-129

5-130

t P7A

5-131

MM——HÜ I-- MI

r

r

t

5-132

»

5-134

PU

5-135

■HHaiailümNaiMii

5-136

muam ■HflNMHIrilÉÉÉlHN

COMPUTE ADDRESS
(F NEXT STATE-
f ENT TO BE EXE-
(UTED BASED ON
\ALUES SAVED
lPON ENTERING
faSEÑT PARA,

A ©

5-137

iÉMaMMIÉMIMIIMIÉ

b. Program Narrative.

(1) GENO.

PROCEDURE DIVISION

Initialize

STEPl

Offset OP-CNT.

Execute GENI.
Periorm COMP-OP processing if TYPE-S (2) is not equal

nine (i.e. tyPE-S (2) = 7 or 8).

If multiple subqueries, execute GEN1A.

Q-SWT (108) equal to five indicates bad sort; terminate.

STEP1A

Flip-Flop work files. If non-sequential is present,

flip-flop for NSAX.

STEP2

Check for subqueries and shorthand language.

STEP2A

Call GEN2 and flip-flop work files.

STEP3A

If SHL is indicated by TYPE-S (4), call GEN3A and

flip-flop work files.

STEP 3
<C!

If OP is indicated by TYPE-S (5), call GEN3 and

flip-flop work files.

5-138

¡MNlAltttM««

STEPA

If NSAX is required, call NSAX compiler and processors;

flip-flop work files.

STEP4-1

If no subqueries, go to work file sort. If TYPE—S (11)

equal to zero, no periodic fields were referenced by

retrieval, otherwise call GENA.

STEPAA

Only called when no periodic fields are referenced in

any subquery.

STEPS

Check for ABORT condition or user requested sort.

STEP55

Tall answer record sort, check for invalid sort.

STEP5A

Call work file sort, check for invalid sort.

STEP 6

If periódica are referenced by OP, TYPE-S (12) not

equal to zero, call GEN6 and stop run.

STEP6A

GEN6A is only called if no periodic fields are referenced

in any report.

5-139

STEP7

ÍS¡íle 3 Shorthand Langage or Standard Language report.
(GENI sets TYPE-S (4) = 1 if an SHL-RPT card is encountered)

STEP7B

S°rt the source input and object vectors
them on the MIDMS library (GEN3B).

(GEN5A) and save

FLIP

This paragraph is PERFORMed to alternate input and output
riles for intermodule communication

5-139.1

(2) GENI

DATA DIVISION

(GENI Data Division Additions for COMP-OP)

Name

COMP-OUT

COMP-JCL

COMP-NAM

LDJ-CARD-SAVE

CURR-NAM

CARD-ERR

Function

Working storage area of 108 bytes

for output of object vectors.

Working storage area for COMP-OP

and Library card scans.

Working storage area for storage and

testing of library and COMP-OP names.

Working storage area to insure the

proper saving of LINKAGE SECTION

data.

One byte with value of space for

testing and loading in card scan.

Element * 1 byte Purpose

(1) Indicates COMP-OP Card

(2) Not used

(3) Report or SHL Card

(4) Library name ends in

"R"

(5) Library name ends in
"F"

(6)

Not

. Used

(10)

5-139.2

GENI COMP-OP SWITCH TABLE

Switch- Variable

Name or Fixed
(V)

(F) Values
Purpose

HI y

H2 y

H3 y

J-SWT V

X V

CP V

I V

J V

K y

ERR y

Depends on name

Depends on LIB Card

Depends on LIB Name

Counter used in COMP-OP
Scan

Counter used in LIB Card
Scan

Counter used in LIB Name
Scan

u Initial Value

1 Indicates execution of an

object report

Depends on COMP-OP Counter used in COMP-OP

Scan

Dependent on number Indicates number of LIB
of LIB cards cards

Depends on Name

Depends on Name

Depends on Name

Counter used in Card Scan

Counter used in Card Scan

Counter used in Card Scan

Initial Value

Indicates error vector has
been written

5-139.3

PROCEDURE DIVISION

The first paragraph is the entry point of the load module GENI called

by GEMIDMS, the driver. DD-INPUT and DD-OUTPUT are Linkage Section

labels containing the names of the input and output work files,

respectively. The two calls to MARINM move the specified DD names to

the DCB's in the program. The files are opened and housekeeping is

performed. The first record is read to determine whether the ABORT

option is to be exercised. This option is only permitted on the first

card in the MIDMS job and must precede all QUERY cards. If the ABORT

is found, the QUERY error vector will have a one moved into position

one hundred. Each preceding position in QUERY-SWT corresponds to the

query number of the jobs in the batch. A one in any position indicates

an error in that query and will prevent that query from being executed.

Gl.

The first statement initializes ERR, which is set to one whenever an

error condition is encountered processing a COMP-OP or COMP-OP and

LIBRARY card combination. A source card is then read, and if this

card is a COMP-OP Card, CARD-ERR(l) is checked to see that it is the

first COMP-OP card encountered. If it is not, an error routine is

performed and an exit made from the program.

G2.

If the first card is a COMP OP Card, CARD-ERR(l) is loaded to so

indicate and 8 is moved to TYP-ST(2) to indicate a COMP-OP run and

the input image (CD-IN) is moved to the COMP-JCL Work area. The

Switch CP is set to one to indicate a COMP-OP run and the COMP-OP

card scans are performed to load the COMP-OP name. In the case

where CP is equal to one (.COMP-OP card processed) and the card in

question is a LIBRARY Card, 8 is moved to TYP-ST (2) to indicate

a COMP-OP run, the input image is moved to the working storage

area, and the routines which extract the library name are performed.

The "ERR" Switch is then checked to see if an error occurred in the

processing of the COMP-OP or Library Card, and if so, it is

initialized and the program is routed back to Gl. I* no error

occurred, the normal GENI processing continues.

G2-2

Checks for significant first words or source cards. LIB and LIBRARY

test will only be true if a LIB card has been stored. SUBQUERY,

QUERY, and REPORT cards are major break cards. MODIFY causes a

change in the source input stream and SHL-SWT indicates the shorthand

compiler will be involved.

G2-3

Error condition - LIBRARY card has been stored on the MIDMS Library.

5-140

G2-4

Causes SUMMARY card to be located at the front of a
subquery.

G3

Checks for missing query card and causes error message
to be written.

G3A

Writes source image on output work file.

G4

Initialize column counter.

G5

Look for first word on card.

G5A

Shift card image one position.

G6

Identify first word, DEFINE is sequenced by three.

G7

All source cards except SUMMARY and DEFINE are
sequenced by twenty.

G10

Check for library name.

5-141

GlOA

A LIB call must be preceded by a QUERY card - if not, process an
error.

Gil

Check for name of item being called from library.

G12

Look for word.

G12A

Shift source image arl loop back.

G13

Invalid library name error processing.

G13A

Flag error and write out source image.

G13B

Process error message.

G14

The fifth character of the library name is checked to insure

validity (Q, R, F or J) and if valid, processing continues;

if not, a branch to G13 occurs and an error is processed. If

the name ends in "J", J-SWT is set to indicate that object vectors
are to be processed.

G14B

Library name must be five characters; if not, process an error.

G14A

Write out source image, initialize library segment number.

5-142

G15

An "R" is moved to operation to indicate a read (an "N" will be i- — *».v*xv.<n.c d reaa ^an N will be

sSfpÎx n^ f ir(lld Ct,"dlti0") *»d 1» incremented end moved to
SUFFIX-NAME to Indicate the name of the member on the library. If

procesaed*reater ^10 ^ ln<llCateS obJe<;t are be ng

G16

G17

G18

G19

Operation is first checked to determine if a valid read has occurred
(Operat on - R) and If so. J-SWI la checked to aee ïf an object

SIZE°L ^ht0 hÎ Lr0r;8ed- If SO, 3 branch to 0B-C0DE °«uis. ITEM-

cefsed Ír0 íVÍded by 8° dnd lf equal t0 zero' an i« pro- ™
cessed. If Q is greater than 125, it indicates the improper storaee
of data on the library member, and an error is processed. 0 is thfn
multiplied by 80, and if it is equal to ITEM-SIZE, it indicates no
images were dropped due to the block not being a multiple of 80
and processing continues. If not, QUERY-SWT (QUERY) is set to one
to indicate an error and an error message is processed.

read °f Cards (source ima8es) in the library member just

Check for end of library cards.

íectoíeCÍoMesÍ?rioare being Processed (J-SWT =« 1) and it is the firs!
vector, COM-SAV is perrormed to insure the proper processine of this

s heir'" and rCrSÍng COnti— If not,PandPiTan obfec íec c

n^lVo~ed- the VeCt°r 18 “m“" ^ ~ -

G20

G21

If first member is missing, name is erroneous.

Process library error.

G22

Process Library error.

5-143

G30

Initialize NSAX switch.

G30-1

Has query card been read?

5-143.1

G30A

T

Process missing query and error.

G31

Determine NSAX source type.

X-DICK

Check for NSAX file name.

G32

Look for word.

G32-1

Process NSAX error message.

G32A

Shift left and loop back.

G33

Initialize for change in file name.

G34

Initialize new subquery headers.

G35

Check for optional word.

G36

Look for next word.

5-144

G3tA

Shift and lookback.

037

Save filename.

G40

CP is checked '.o sit if this is a COMP-OP run, and if so, an error

is processed. If not, the sort switch is set as required by the MODIFY
statement.

G41

Look for MODIFY name.

G41A

Shift and loop back.

G42

Set error vector and process error message for bad MODIFY

statement.

G43

Check next work on MODIFY card.

G43A

Reports have a high value ’’file name".

G44

Initialize for searching next word.

5-145

GAS

Look for word.

GASA

Shift and loop back.

GA6

• !>

Check for numeric subquery number.

GA7

Check number.

GA8

Check for numerics.

G50

Check for word.

G50A

Shift and loop back.

G51

Check for optional word.

G52

Look for file name.

5-1A6

G52A

Shift and loop back.

G53

Save filename.

G54

Process missing QUERY card error.

G54A

Sequence and write out card.

G60

Check for stored QUERY card.

G60A

Initialize a new query.

G70

Check for prior QUERY card. If none, process error

G71

Initialize a shorthand language report.

G71A

Adjust card number to place at front and write out
image.

G75

Is a sort required? If so, indicate with TYPE-ST (9).

5-147

G99

Go back.

G100

If no sort, set up to copy work file.

G10.

Copy work file to align supervisor calls.

G102

Return.

COP.

Scan begins looking in C.C.8 for the COMP-OP name. If none is found,

NO-NAME is performed and one is moved to ERR to indicate improper

input and control is returned to Gl. SCAN1 is then performed

to load the COMP-OP name into the COMP-NAM Area in Working Storage.

The name is then checked to insure it ends in 'R' and, if not, ERR

is set and control is returned to Gl. If all is O.K., COP-OUT is
performed.

SCAN.

C0MP2-KI), a character in the COMP-OP card, is moved to a dummy
field, CURR-NAM, until a non-space is found.

SCAN1

(Described in COP)

COP-OUT.

The sort-keys are set so the COMP-OP card is the first card in the

output stream, the COMP-OP name moved into the Working Storage area
and the entire source image is written out.

BAD-END.

An error message is written indicating that che COMP-OP name
did not end in 'R'.

NO-NAME.

An error message is processed to indicate that no name was found on
the COMP-OP card.

5-148

LIB-R.

Much the same theory of processing was used here that was used in

COP: A COMP-OP run LIBRARY card is scanned to determine its "name"

and store it. CURR-NAM, the dummy field, is initialized, and SCAN

is performed until the first space is found after "LIB" or "LIBRARY"

on the card. LIB-SCAN is then performed to load the library name into

the working storage area LIB-NAME. Then, depending on the value of the

fifth character in the library name ('R' or 'F') the appropriate element

of CARD-ERR is loaded for later error checking. The fifth element

of the library name is then checked to be certain it is an "R" or an

"F"; if not, an error message is processed. If the fifth character is

an "R" and CARD-ERR (3) = 1 (Report or SHL Card encountered) an error

message is processed and control is returned to Gl. LIB-CARD is then

checked. If it is not equal to zero an 8 is stored in TYPE-ST(2)

indicating both source and object are to be stored. LIB-NAME (5) is

again checked, and if it is not equal to "R" at this point, it indicates

a Fly-sheet (F) and a branch is effected to LIB-R5. The last pro¬

cessing consists of setting TYP-ST (2) to 7 to indicate that object

only is to be stored.

LIB-R5.

One is added to LIB-CARD to indicate the successful processing of a

Library Card, and to indicate to the LIB-R Routine that should.

another library card be encountered, it must end in an "F".

LIB-SCAN.

The name of the library member is taken character by character and

stored in the area LIB-NAME.

LIB-ERR2.

The error vector is loaded and error 14 is written.

LIB-ERR1.

The error vector is loaded .ind error 16 is written.

LIB-ERR3.

The error vector is loaded and error 15 is written.

OB-CODE.

The processing theory here is much the same as in G16, except that

object vectors are being processed rather than source images. Note

that the branches on unsatisfactory conditions are to the same areas

5-148.1

OB-CODE (contM)

as occur .ln G16. Again, the ITEM-SIZE is divided by 108 (rather than

80) to enable tüe testing of Q for the proper blocking. If there are

errors, branches to the appropriate error routines occur, and if

correct, a branch to B]" occurs and normal processing continues; if not
error 2 is written Into the stream.

LIB-ERR.

Error message 13 is piocessed.

COM-SAV. *

(See G19) This paragraph stores the compiler/logic processor

communication data into the Linkage Section.

LIB-ERR4.

Error vector is loaded and error message 17 is processed.

LIB-ERR5.

Error vector is loaded and error message 12 is processed.

LIB-ERR6.

Error vector is loaded and the error message indicating the illegality

of batching COMP-OP runs is processed.

LIB-ERR7.

SUBQUERY cards are not allowed in COMP-OP runs.

WRITE-CARD SECTION

Write work file record.

5-148.2

(3) CENIA. O

PROCEDURE DIVISION

Entry point for source statement sort Q-SWT (108) is reset.

G7 5

Initiate COBOL sort.

G99

Check for sort error; if one exists, indicate in Q-SWT (108).

SORTOK

Normal return.

INSRT SECTION

Open input file.

INSRT1

Provide records to the sort.

OUTSRT SECTION

Open output file.

0UTSRT1

Receive records from the sort, rearrange fields, and

write out.

< *

5-149

(A) GEN2.
A*

\ *

\P

♦

PROCEDURE DIVISION

The first paragraph is the entry point of the load

module, GEN2, which is called by the supervisor,

GEMIDMS. DD—INPUT and DD-OUTPUT contain the names

of the work files to be used as input and output for

GEN2. These names are moved to the appropriate DCB's
prior to opening the files.

HOUSE-KEEP

The files are opened and initialization is performed.

NEW-STATE

MISSING-SWT, if equal to one, indicates that a user

did not submit a continuation card properly. Input

records are sorted by file name. If FILE-INA is less

than FILE-S the input file is out of sequence. TYPE-IN,

if equal to one, indicates retrieval source statements.

CARD (1), if equal to asterisk, indicates a note card.

NEW-STATE1

SUBQ-IN, if equal to zero, indicates a LIB or QUERY card.

SUBQ-S, If equal to zero, indicates object statement
header not built.

SUBQ-S, if not equal to SUBQ-IN, indicates a change
in subquery number.

QUERY-IN, if net equal to QUERY—S, indicates a change

in query number, causing also a change in subquery.

FILE-INA indicates a new data file. If SKIP-SWT is

equal to one, an error exists. SKIP-SWT remains one until

the subquery changes. Its purpose Is to indicate an

error in processing of the current subquery.

* Jr
5-150

INITIAL-REC

Initialize pave areas. EXTRACT-WORD extracts a word

from the source input card. If an error is detected,

EXTRACT-WORD moves a one to BYPASS. The 3YPASS switch

is used throughout as an error-indicator switch.

EXTRACT-WORD returns the length of the word, in

characters, via IL. If IL is equal to zero, no word
was found.

FIRST-WORD

The first word of a card determines the statement type.

Most types result in a GO to C-name corresponding to

the first word name. LIB and MODIFY cards are dropped,

QUERY cards are trapped above by their header information.

Notice that most, but not all, first words are followed

by a blank. If the first word is not in the list, an

error is processed and the next card image is read.

NEW-STATEQ

Reset error switch. This is done with each new query

since errors are not carried acrcss queries unless the

ABORT is used. IC is set to one, to indicate card column

1 as the starting position for EXTRACT-WORD.

CHECK-SHL

END-STEP closes the previous subquery by writing object

Break statements. TYPE-IN, if equal to four, indicates
a SHL statement.

C-SHL1

TYPE 1 was trapped earlier, TYPE 4 now. If neither, no

processing is necessary in GEN2 except that all other types

of records must be written on the output work file for

subsequent processing. If the query numbers are the

same, the card is a continuation of the current SHL

report being processed. If different, and each SHL

report must have a unijue query number, the number is
saved and LIST-SWT is initialized.

5-151

C-SHL1A

Initializes switches, IC indicates starting card column.

Extract the first word, check for error (BYPASS), look
for LIST or FILE type card.

C-SHL2

Write a record.

C-SHL3

Loop back.

C-SHL4

To enter, the card must have been a SHL FILE card.

Continuation card is not permitted. Initialize header

part of record, save old filename. Extract filename

and check for length between five and eight. If not

OK, continue to next card; this error will be picked

up later by the output compiler. If no change in

filename, get next card. Value of one in LIST-SWT

indicates a SHL file name has been encountered. The

fifth character of the name must be an 'A'. Change the

file name to an FFT name, set up LB calling sequence,

call LR7. If LR7 has length of zero, it does not
exist; issue warning.

C-SHL4A

Save the sizes of the logical records. Load LR-2,

LR-8 and LR-9 into appropriate save areas. Check for

a proper return from the call to the librarian.

C-SHL4B

If LR-9 exists, load it into the area LR99.

5-152

C-SHL4C

Change the FFT name back to the file name and save it.

C-SHL5

Process an error.

C-SHL6

Initialize switch for next statement and go back.

C-LOAD

Get the next word on the LOAD card. BYPASS, equal to one,

is an error meaning no word was found. The word extracted

should be the name of a convert routine or special operator

surrounded by asterisks. CARDW8 is the name padded with

trailing blanks to 8 characters. S806-TRAP determines

whether the named load module exists. If not, BYPASS

will equal one. ICNT contains the total number of

characters in the constant pool, which can be user

defines, constants, or literals. In this case, it indicates

the starting position of the location at which the name

of the subroutine will be stored. IL, equal to eight,

is the length of the constant being stored by the

perform LOAD-CONSTANT. The constant pool is built up

as a series of records. CDYN is used for counting

each (haracter in the constant pool. When the counting

reaches 90, the consta.c pool data is moved to the output

area DATA-C and written out as a TYPE 3 record for further

processing by the logic processor. The object statement

is built up; A1 is the starting position of the name in

the constant pool, A2 is the length of the name, A3 is

the type (alpha or numeric), A4 is the set number which is

always a one for the constant pool, and the op-code is

twenty-four. The object statement is written out and the
next statement is processed.

5-153

\ 0
IF-TEST

IPAR is used as a pointer to the location of a parenthesis.

IPAR is set to three to indicate the location of the beginning

of the left parenthesis in the user source statement.

A null (no-op) statement is written for later filling, to

resolve parenthetical logic. SWT4 will be equal to one in a

conditional statement after a left parenthesis is encountered

in the a-field, or in a sircpje conditional statement when

there is one a-field before the logical operator. It is used

to determine if another word in the a-field is to be decoded.

OR-TEST

XTRUE is a field in the object statement. SAWE is a hold area.
Check for parentheses.

FATAL-ERROR

Further processing cannot continue with reliability. Terminate
execution of this overlay.

FRANK-D

Return to supervisor.

SUB Q-HK

WRITEV generates KEEP object statements if any are needed.

Between subquery, housekeeping is accomplished. SKIP-SWT

is reset for the next subquery. If LPAR is equal to zero,
parentheses balance.

Create 0P20 and 0P21 statements; these are break, or separator

statements. Check for summary file requirement (SUMMARY-SWT

equals one). Do additional between-subquery initialization
and housekeeping.

5-154

C-POOL

The size of the constant pool

write an error message and set

vector for that query number.

is limited to 9K. If exceeded,

an error flag in the error

CPI

Write the final segment of the constant pool. Do more
reinitialization and return.

WRITE-4

Close work files.

QUERY-CHK

If there is no card sequence number, exit. Otherwise, set

the error vector to indicate an error in that

an error message, and go do the next card.
query, process

C-SELECT

The SELECT statement is a secondary conditional

CCS1

5-155

p-'Tii-ir"'-—

. .

X 0
CCS 2

Process an error message without card column indicators. Go
to next statement.

CCS 3

Process an error message with card column indicators. Go to
next statement.

C-KEEP

Identify statement type. Get next word, must have one.

CK1

CK2

The second word of the source statement must be delinuced by a
space. If not, write an error message.

SWT4 is turned on to indicate that the data name used in the

KEEP statement must be a periodic or variable name. DECODE-A

describes the a-field in the object statement. KBPS is used as

an index when moving a KEEP field name to a hold area. One is

added to KEPS for each field name encountered in a source KEEP

statement. A maximum of fifty KEEP statements can be used in a

subqaery. Add the name to the list of KEEPs. Find out if there

Since°ïher If S°’ 8° baCk; lf n0t’ 80 t0 next statement.
Since they are not written out here, they must be the last

statements in a subquery. Otherwise, the generated object
statement will be lost. J

CK3

ÏLthf^are tifT°ne “««“"‘s, writs an error. If mors

5“ err°r has alread>' Men written, so first
skip to next statement.

5-156

X * OS UMMARY

CARD-CNT indicates the number of retrieval statements found

in each subquery. It is checked to verify that a summary

card, if used, is the card immediately following a subquery
card.

C-SUMMARY-1

The constant pool record is written out to clear the area.

The summary name must be in a separate record so it may be

sorted with its proper key value. The 9's in FILE-S will

cause it to sort after all other file names. The object

statement is built and written, and the file name is restored.

C-SUMMARY-2

Get the next word. "FILE" is optional. The word should

contain the name of the summary file to be created. The name

must be between five and eight characters in length, and is

treated as eight, padded with trailing blanks if necessary.

The name is stored in the constant pool. SUMMARY-SWT indicates
a summary file has been called for.

C-SUMMARY-3

Process an error message without card column indication. Go
to next statement.

C-SUMMARY-A

Process an error message with card column indication. Go to
next statement.

C-STOP

Get next word. Check for valid option. If OK, continue;
otherwise, write an error.

5-157

C-STOPI

Simple stop statement has only one entry in object statement.

C-ST0P2

Write out the object statement - process next card.

C-STOP3

This is a stop with an implied condition (limit).

C-LIMIT

Initialize, get next word. If none (IL equal to zero), process

error. Word must be a constant; if not, get next word. The

value 240 is the binary equivalent of a BCD 0 on the 360.

Numerics have values above binary 239, alpha character equivalents

are below 240. If there is a period, replace it with a space.

C-LIMIT2

Check each character in the word until a delimiter (space) is

found. If any are not numeric, it is an error. Accummulate

the value of the constant in the field Al.

C-LIMIT3

Write the object statement using OP and Al. Go to next card.

LIMIT-W

Write a warning message, do not set error vector. Go to next
statement.

LIM1T-ERR

Write a error message that sets error vector.

5-158

C-SUBQUERY

Thl¿ is a significant break point. Housekeeping is reinitializing

values for a new file. Get the next word. There must be a file

name specified and it must be between five and eight characters

in length. If it is the same as the last one (FNAME equals CARDW5),

skip remaining reinitialization. The fifth character of a MIDMS

file name must be an "A". Change the A to a T and call the

library to get LR-1 for this file. Obtain the lengths of LR-2

and LR-3 Load in LR-2 and modify the set numbers (FIX-F). Load

LR-3, restore the file name and save it.

Initialize set-decode processing.

This is a loop executed for each set in the records format. Get

a table entry, move it to a work area. Move the set-control

position to A1 and the set length to A2. Compute a positive

set number in A4 from the set-ID. The fixed set will be a one,

and each subsequent periodic set will be incremented by one.

Therefore, in later processing, SET equal to one will determine

a fixed set, and SET greater than one determines periodic sets.

A3 equal to one indicates a fixed set, for all others A3 equals

two. When done, go to next statement.

S3S

Write the object statement with OP, Al, A2, A3, A4. Go back
to next table entry.

S4S

Write an error message with column indication.

S5S

Write an error message without column indication.

5-159

S6S

Write an error message, set SKIP-SWT to indicate an error in

processing of the current subquery.

C-MERGE

Sort and merge compilation is similar, except for the OP.

Merge has OP equals seventeen.

C-SORT

Initialize object statement with OP equal to sixteen.

TYPE-ST is an indicator in the linkage section. It is used

by GENO to determine the proper order of execution of load

modules. The LM-SWT switch is checked in the WRITE-STATE

section if periodic data is specified in source statements.

It is used to indicate when the user has submitted sort flag

parameters and/or secondary logic. Its purpose is to cause

verification that primary logic is not mixed with periodic

secondary logic. SORT-SWT indicates that a sort will be

necessary. LMODE greater than eight indicates a sort.

CS1

Get the next word. LMODE equal to eight is ascending sort.

LMODE equal to nine is descending sort. SWT4 equal to one

indicates that DECODE-A is to extract a word before descending.

If not set, the word is already available to DECODE-A. In

this case, the switch is set and DECODE-A will build the A

fields of the object statement from the data field specified

in the next word.

Get the next word. The word "DESCENDING", if used, must precede

the field name. If no more words, go to next card.

5-160

CS2A aric If alpha, skip

Check first a partial notation,
ahead. If nomerlc. the « ^ ,,etl£y that K Is not

^ertfr ranPr-^;-:-/;ralTd

:;£“: i: r^Terfh^UtVord. «
^ the -length is Placed

;s3
Check for the optional word
ahead. The SFUG-SWT indicates th at zero and

the SORT RAGGED ;nced by a previous sort fl»|
„ill contain the set re hasn,t been usea □

statement, if ^^SF^SWT. If a different set is
put the set number in btu*
referenced, process an err

CS3C ! indicates the flagged option
LHODE eaual to eleven or twelve oiust ^ pecioillCi and

^ thJ^irwlifr^Rteat« than one.

ÎS3A
fr> next statement. NOTE***

Get the next word. If -ne, go to next ^ statemen It

The word "ALL" is "O': a vd tha results are nnpredlctable.
ia meaningless and If us*d;ha uord ia FLAGGED, go back
U should be removed- f continue_

CS3B

Process an error message.

5-161

CS4

Again, the word "ALL" should be removed, it is not a legal
option. The word IN is mandatory.

Get next word. The word following IN should be a partial,

representing positions in the sort key. IW is base zero;

the positions must fall within the 85~character sort key.

IN represents the second position of the partial. It must

be to the right of the first value. The starting position

IW is moved to Bl, the length IL is moved to B2. The LMODE

test should be changed - the legal values are nine, ten,

eleven, and twelve. K, the ending position, should not be

outside the sort key. If it is, issue a warning.

The lengths of the a-field and the position in the sort key

must correspond, no truncation or padding is permitted. This
has been done at user's request.

CS 50

Process an error with card column indication. Go to next card.

CS51

Process an error without card column indication. Go to next
card.

C-SEARCH

Get next word. If none, search mode is the default, SEARCH,

and SMODE equal zero. Otherwise, move one, two, or three to

SMODE as appropriate. If not a legal word, issue an error

message. Go to next statement. No object statement is created

from this statement. Before the processing of each user's
source statement, SMODE is moved to LMODE.

5-162

C-FLAG

Initialize PSS-SWT. Decode the a—field. A4, equal to one,

indicates fixed data, an error; FLAG may only be used with

periodic fields. SWT2 is initialized to zero at the beginning

of the DECODE-A section. A one is moved to SWT2 if the field

is periodic. If a PSS control field is encountered, activate

PSS-SWT. Get next word; there must be another one and it

must be one of the four literals identified in this paragraph.
Otherwise process an error.

FIG

LMODE equals one if a control field is used.

LMODE equals three if not. This is the flag LOW option.

F2C

Flag HIGH option. LMODE equals two if a control field is used.
LMODE equal to four is not.

F3C

Get the next word. If none, process an error. It must be a

constant and its value is returned in N. N must be a positive

integer. If OK, move to B1 and write the object statement.

F5C

Process error with card-column indication. Go to next card.

F6C

Process error without card-column indication. Go to next card.

C-1F

Initialize SWT4 to indicate EXTRACT-WORD will not be performed
in DECODE-A.

5-163

CFI

Get the next word. If no parenthesis, activate SWT4 and skip

ahead. IPAR equal to one indicates a left parenthesis was

found. Write an object NOP statement to indicate parenthesis.

Initialize OP to zero. Conditional OP's are derived from an

accummulation of values, whereas most other OP's are finite

and are moved. LPAR greater than nine is an overflow condition.

PE-SWT, not equal to zero, indicates a parenthesis error has

already been written. If this is the first parenthesis inbalance

condition, write an error message and go to next statement.

CF3A

Beginning 01 intra-set logic statement processing.

CF4

Resolve the a-field. LMODE, equal to six or seven, indicates

secondary logic.

CF5

A4, equal to one, indicates fixed set or define - these are

not allowed.

CF6

Build the OP and b-fields portions of the object statement and

write it out.

C- RECEIVE

Set up object statement OP code. Since statement is not a conditional,

XTRUE equals one. Get next word, if none, process an error.

5-164

CRI

SWT4, equal to one, no-ops the extract word section in DECODE-A.

If parentheses are found, process them. Generate a-field object

vectors.

CRIA

Get the next word, check for and process parentheses. If no

word, statement is complete. If anything is found, it should

be a field partial. If so, adjust a-field addresses.

CR3

Get next statement.

C-ANY

LMODE, equal to four, indicates ANY type statement. Get

next record; if none, process an error.

CAN1

Distinguish between primary and secondary logic statement.

CAN 2

LMODE equals six for ANY HIT type statement.

LM-SWT equals one to indicate secondary statement has been

encountered. Once LMODE is greater than five, all subsequent

statements must have an LMODE greater than five or it is an

error.

C-ALL

LMODE equals five for ALL type statement. Get the next word;

if none, process an error.

5-165

CALI

Distinguish between primary and secondary logic statements.

CAL 2

LMODE, equal to seven, indicates ALL HIT type statement.

LM-SWT indicates initiation of secondary logic processing.

C-DEFINE

Initialize, assume alpha (DATA-TYPE equals four), unless

overridden.

Cl

Get next word, must have eight or less characters in the name.

C3

K, greater than DKD, indicates items not found in define name

table. Lo'ip through table to determine whether this name has

previously been defined.

C4

Issue an advisory warning that this named field is being

changed by a modify statement. If data-types do not match,

issue an error message.

C4A

Set up error message.

5-166

C5

IL, equal to or less than five, could be FFT name.

C6

If the name exists, write an error message.

Loop through until done.

C7

If being modified, disregard further processing of this card,

since the remainder is changed by the MODIFY card. Otherwise,

build new entry for defined name table.

C8

G?t next word. An asterisk indicates a convert routine so

set switch and save the name of the convert routine.

C8B

LPARN indicates length parameter has been specified.

C9

Check matching parenthesis, adjust starting point of value.

C9A

Decode value and check for limits. If OK insert length and

starting position into define table. Get next word; if none,

done.

Check length of literal. If convert routine is indicated, see

if it exists. If it does, set up and execute it. EXIT-FLAG

equal to one is OK, EXIT-FLAG equal to two is an error. Any

other code is illegal.

5-167

CIOA

Transfer results of conversion and check length.

Cll

SWT3 means length was specified, compare with actual.

C13

Decode numeric constant.

CJ5

Check size of numeric field, insert leading zeros.

C16

Load defined value into constant pool, add spaces if necessary.

C17

Insert line into define table, check rest of card - should be nothing.

C25

Error message with column indicators.

C26

Error message without column indicators.

C-LIST through XDECODE-A

Generate output define statements to accommodate the LIST

statement in the shortnand language. These pseudo source

statements will be compiled by GEN3A.

5-168

WRITE-ERRl SECTION

Bypass indicates an error was encountered. TYPE-S, equJ. to

one, will print error message as a source statement.

Write out error message with record (card) sequence number one

greater than previous record so message will print right after

source statement. QUERY-SWT (100), equal to one, indicates

ABORT. Change to two so ABORT error message will be printed
in GEN6.

W-El

Propagate 1's (error codes) through error-vector to cancel
execution of ail queries.

WRITE-ERR SECTION

BYPASS, equal to one, indicates error upon return from perform

Set up card column indication to identify word in source

statement that caused error to be identified, move message, am
write out error. Check for ABORT condition.

W-El

Propagate error codes for ABORT option.

READ-OP SECTION

Read a continuation card.

R1

Read a record from the input work file (source statement card
images).

5-169

R5

Copy to output work file.

R6

TYPE-IN, equal to one, indicates retrieval source statement.

Continuation card header information must match previous

source card. Check for possible error conditions.

R2

Process an error.

R3

Type 4 in shorthand. Trap errors.

R4

Continuation card must start in card column 4.

WRITE-STATE SECTION

Check for KEEP or SET DECODE OP's.

WSO

Check for numeric a-field.

WSOO

Check for numeric b-field.

5-170

HÈÉHMA IMIilMKIÉItHlIIHNmMNi

WS 000

OP greater than twelve, indicates directive statements.

OP equal to six or twelve, indicates special operator.

A2 equal to B2 is a match of field lengths.

A2 must equal B2 for alpha compares.

WS1

Determine whether data-types match.

WS2

Check for primary conditionals following secondary conditionals.

WS2A

Determine whether periodic fields are referenced, which will

cause GENA to be called rather than GEN4A.

WS2B

Indicate parentheses, check for previous errors, and check

total number of generated object statements.

WS2C

Write the object record.

WS3

Provide space for the name and address of a special oeprator.

5-171

WS3A

Check whether sort statements follow conditional statements.

WS3C

Check whether sort flagged statements follow all other statements.

WS4

Write an error message.

WS3

Numeric a-field length cannot exceed fifteen digits.

WS6

Numeric b-field length cannot exceed fifteen digits.

WRITE-NOP SECTION

Write a no-op statement.

WN1

Determine level of parentheses.

WN2

Adjust image to clear parentheses.

FLD-PART SECTION

Check size of partial notation character string for excessive

length.

5-172

Extract first number of partial set.

Fl F

F2F

Check hyphen separator and set up for second number.

F3F

Extract second number.

F4F

Check for valid delimiter.

»

F4AF

Check length of field defined by partial limits for validity.

F5F

Process an error message.

F6F

Reset alpha/numeric check field.

DECODE-OP SECTION

DID

Get next word, check for partial from the a—field. If one

exists, decode and adjust a-field starting position and length.

5-173

D2D

Get next word. Check for noise word or missing operator

D3D

An asterisk indicates a special operator. If none, skip ahead.

Otherwise, check name and determine whether that special

operator is on the library. If it is, save the name and
increment the OP code.

D6

A negation of a compare opetator increments the OP code by six.

D7

Check for legal operators and adjust the OP code accordingly.

T-SCAN

Set up for text-scan (CONTAINS) operator.

T-SCAN1

Get next word, must be one for valid statement.

D8

Negation of a SATISFY is illegal,
exceed twelve.

A conditional OP may not

D8A

LMODE less than four is a standard conditional, no ANYs or

5-174

D9

Get next word; if a noise word, get another one.

DECODE-A SECTION

Initialize. Determine whether word is available (SWT4

not equal to zero).

A1A

Get a word.

A2A

Check validity, must be alpha. IL greater than five means

word cannot be from EFT.

A3A

A defined name cannot exceed eight characters.

A4A

Determine whether a-name is in the EFT. The KEEP and variable

sets are special cases.

A5A

If not in EFT, Check defined name table.

A6

Loop through define table. If not found here, it is an error.

5-175

kl

Move a-field, defined name descriptors to the object statement.

A14-1

For the variable set, describe the location of the variable
set control field.

DECODE-B SECTION

Check for legitimate word.

BO

Check for OP's with mandatory multiple b-fields.

BIB

Check for and process parentheses, if found.

B2B

Check for textscan.

B3B

If a convert routine is called for, execute it here. Check

for valid return code and process returned error message, if any.

B4B

Recover from successful convert routine call.

5-176

B4C

Type must be numeric.

B4D

Describe a defined field as the b-field.

B4A

Check length.

B4T

Extract a constant, set type as numeric.

B5

Length of b-field cannot exceed length of a-field.

B6

Describe defined b-field. Check for SATISFIES operator

B7

Check type, 2 or 5 means numeric.

BS

If numeric, insert leading zeros.

B9

If alpha, fill with trailing spaces.

5-177

Lr^.r“í.fleld nameS aS b-,l0lds O" BETWEEN a„d SATISFY

B10A

Write an error.

Bll

Check for legal conditionals.

B12

Initialize counter.

B13

Search FFT for name.

B14

Special oeprator may not have an FFT b-field.

B15

Check for data after a right parenthesis.

B16

Check for parentheses and partial notation.

B16A

Adjust parenthetical counters.

B16B

Get next word, check for required parentheses.

B18

Check defined name table for b-field name.

B19

When found, load address into object statement.

B20

Any more data after a parenthesis?

B20A

Process a parenthesis.

B20B

If net a special case, write out the object statement.

B21

Adjust vector pointer (XTRUE) to reflect parentheses.

B22

0P4-SWT is initialized at zero at the beginning of DECODE-B

section. When decoding the BETWEEN statement, 0P4-SWT is

incremented by one for each range parameter and the corrector

"AND" for a total value of three. The maximum value of

0P4-SWT is, therefore, three and values other than zero and

three are considered invalid.

B23

OP5-SWT is somewhat similar to the 0P4-SWT, except that

0P5 is concerned with extracting and accounting for-the proper

number of fields for the SATISFIES operator.

5-179

B24

Check number of b-fields.

B25

Value Indicates state of progress through the required

"satisfy" b-fields.

B26

The second b-field.

B27

The third b-field, also the number of remaining b-fields.

B28

The first of the last set of SATISFY b-fields; that is, the

first search va'ue.

B29

Successive search values.

B31

Starting point for SATISFY processing. Get the first b-field,

the number of required bits.

B32

Check progression through the BETWEEN operator b-fields.

B33

The second b-field.

5-180

B34

The third b-field.

B35

Is parenthetical logic involved?

B36

Check type of a-field to determine type of b-field.

B50A-B51

Process error messages.

USER-ERROR SECTION

Extract and print a user-supplied error message from a convert
routine.

EXTRACT-WORD SECTION

Initialize.

W1

IC is card column. Check for continuation card; if found,
start scan in column 4.

W2

Check delimiters; if space, check next column.

W2A

Got something - find out what.

5-181

W3

Beginning of word.

W4

Save as W1

W5

COM-SWT equal to A, indicates comma was found after a data name

W6

Increment counters and loop back.

W6A

Check for required delimiter.

W6C

Write an error.

W7

Check delimiters.

W8

Fill with spaces .

W9

Initialize the query number checker switch. If RIA equals
one, a new query number has been encountered.

5-182

HLD-REC SECTION

This is a temporary statement hold area used to process shorthand

language statements requiring the generation of parao^ph
statements (HEADERS, etc.).

LEAD-ZERO SECTION

Inserts leading zeros into a numeric field to pad its length.

LOAD-CONSTANT SECTION

Moves a constant value to the constant pool record area and

adjusts the pointers to the last used area in the constant
pool.

TRAIL-SPACE SECTION

Adds training spaces to an alpha field to pad to the desired

length. Sometimes executed on a numeric field after a LEAIKZERO

is perfo-med, effectively NOPing the trail space execution.

WRITE-CDYN SECTION

Writes out a constant pool record of ninety uPHtul characters.

Also inserts appropriate key information into the record prior
to writing.

EXTRACT-NUM SECTION

Extracts the value of a numeric field and returns tftat value
in the field N.

RIGHT-PARN1 SECTION

Keeps track ot how many parentheses have been encountered and
the relative degree of imbalance between left and right paren'
theses.

5-183

FIX-F SECTION

Recompute values in the FFT Logical Record 2. Eliminate

negatives and signed zeros.

TYPE-TEST SECTION

Check for a legal match of data types.

S806-TRAP SECTION

Execute a BLDL macro to determine whether a named load module

exists on the system or not . Return code of zero is OK, others

are errors.

KEEPP SECTION

Keep track of the number of KEEP statements associated with a

SORT FLAGGED statement. Variable sets must be isolated.

WRITEV SECTION

Write an OP23 object statement for each valid KEEP encountered.

END-STEP SECTION

Wrap up an object statement set for a core-load (file).

DUP-CHK SECTION

Check for duplicate DEFINE'd names.

5-184

(5) GEN2X.

GEN2X is a subset of GEN2. GEN2X is GEN2 minus the capabilities

that are not included in the current level of Non-Sequential

Access (NSAX). The logical flow and narrative for GEN2 are

the same for GEN2X except for some additional final processing.

GEN2X has no secondary processing since it does not flag

subsets. The basic operators are LESS THAN, EQUAL TO, GREATER
THAN, and their negations.

The additional final processing for GEN2X sorts the resultant

output vecotrs to group all the vectors for a particular list.

A check is also made on which sets have been used so that only

the fixed set and/or one other set are used in the retrieval.

5-185

(6) GEN4X1.

PROCEDURE DIVISION

Initialize.

APAR

Read input tile from GEN2X. If the record is a source record

ype equal to one, go to source processing. Check to see if ¡n

error „as encountered If an error „as encountered gHo "

APAS If Input record is a vector record, type equalco c„o

go to vector processing. If the record is a constant record
go to constant processing. *

SOURCE-OUT

Write source record.

ASW

This is a switch paragraph. Its purpose is to initialize the

ïs initÍ6! a "T' After the re^erence list name, RLSTNME^
is initialized, the switch is altered to point to ACMP.

ACMP

Check for a list name change.

ACMPA

Check to see if there is room in the vector array

BPAR

Move vector into vector array. Set selection element.

5-186

CNST-PROC

Check to see if

constant string

there is room in the constant pool,

to constant pool.

Move

CPAR

Constant pool overflow.
initialize error message.

CCPAR

Vector array overflow,
initialize error message.

CCCPAR

Close key file. Set switches to indicat

Check for ABORT processing.

error in NSAX processing.

LOP-3

Set Query Vector Error Elements to one

LOP-4

Write error message.

PUT-OUT

Write source output file.

VECT-EOF

j r f-t i¢. fine EOF-FLG, to indicate end of file.
Set end-of-fil g> encountered, go to
Close source input. If an error

final processing.

5-187

DPAR

Initialize list file DCB.

Update reference list name.
Open list file.

EPAR

Check to see if there

Read list file.

Set addresses for any

are any active vectors,

compare procedures.

GPAR

Get au active

Go to correct
vector. Initialize sort key record,

operator (op field of vector).

ERR

Invalid operation code.
Close list file.

Initialize error message.

HPAR

Check to determine if all active
to the list record. vectors have been applied

FPAR

Close list file.

Check to see if there
Close key file.

are nay more list files to process.

FINISH

initialize selection vector.

Close output source file.

5-188

FINISUX

Return to GENO.

LS thru LS-E

LESS Operator: Modified binary search until the number of
search entries is less than sixteen. When there are less
than sixteen list entries to be searched, a sequential search
is used. Tests are made to de-activate the vector (i.e.,
when a vector is de-activated it is eliminated. List elements
are no longer less than the test value). When a sequence of
entries is known to satisfy the operator, the keys of those
entiies are written on the key file without comparing every
entry's value.

EQ thru EQ-CC

EQUAL Operator; Modified binary search until the number of
search entries is less than sixteen. When there are less than
sixteen list entries to be searched, a sequential search is
used. Tests are made to de-activate the vector (i.e., test
value greater than list elements). When a vector is de-activated,
it is eliminated.

GR thru GR-C

GREATER Operator: Modified binary search until the number of
search entries is less than sixteen. When there are less than
sixteen list entries to be searched, a sequential search is
lased. Tests are made to bypass this vector when the last list
entry is not greater than the operator value. When a sequence
of entries is known to satisfy the operator, the keys of
those entries are written on the key file without comparing
every entry's value.

NLS thru NLS-C

NOT LESS Operator: Modified binary search until the number of
search entries is less than sixteen. When there are less than
sixteen list entries to be searched, a sequential search is
used. Tests are made to bypass this vector when the last list
value is less than the search argument. When a sequence of
entries is known to satisfy the operator, the keys of those
entries are written on the key file without comparing every
entry's value.

5-189

NEQ thru NEQ-A

NOT EQUAL Operator: Comparisons are made to determine not

equal keys. When a sequence of entries is known to satisfy

the operator, the keys of those entries are written on the

key file without comparing every entry's value.

NCR thru NGR-D

NOT GREATER Operator: Modified binary search until the

number of search entries is less than sixteen. When there are

less than sixteen list entries to be searched, a sequential

search is used. Tests are made to de-activate the vector

(i.e., list elements are greater than search argument). When

a vector is de-activated, it is eliminated. When a sequence

of entries is known to satisfy the operator, the keys of

these entries are written on the key file without comparing

every entry's value.

COMPARE

Execute subroutine to compare list value and vector argument.

WRTC

Move key to output area. Write key on key file.

DE-ACT-VECT

Move 'X' to corresponding inactive element of the vector.

Subtract one from the number of active vectors.

WRTNC

Move key to output area. Write key on key file.

FLSHD SECTION thru FLSHDX

This section extracts keys from a series of entries which are

known to satisfy the current operator. FL is initialized by

the calling routine. The process starts with the FL entry

and terminates with the ST entry (usually the first list entry).

5-190

FLSHU SECTION thru FLSHUX

This section extracts keys from a series of entries which are
known to satisfy the current operator. FL is initialized by
the calling routine. The process starts with FL and terminates
with the EN entry (usually the last list entry).

FLSHULS SECTION thru FLSHULSX

This section sequentially searches u series of list entries.
Each list entry is tested to see if it satisfies its operator.
As soon as the operator is not satisfied, the process ends and
the procedure exits. The sequential search begins at the FL
entry and continues upward until a bad comparison is made. FL
is initialized by the calling routine.

FLSHDNLS SECTION thru FLSHDNLSX

This section sequentially searches a series of list entries.
Each list entry is tested to see if it satisfies its operator.
As soon as the operator is not satisfied, the process ends and
the procedure exits. The sequential search begins at the FL
entry and continues downward until a bad comparison is made.
FL is initialized by the calling routine.

FLSAVEQ SECTION thru FLSHUEQX

This section sequentially searches a series of list entries.
Each list entry is tested to see if it satisfies its operator.
As soon as the operator is not satisfied, the process ends and
the procedure exits. The sequential search begins at the FL
entry and continues upward until a bad comparison is made. FL
is initialized by the calling routine.

FLSHDEQ SECTION thru FLSHDEQX

This section sequentially searches a series of list entries.
Each list entry is tested to see if it satisfies its operator.
As soon as the operator is not satisfied, the process ends and
the procedure exits. The sequential search begins at the FL
entry and continues downward until a bad comparison is made.
FL is initialized by the calling routine.

5-191

FLSHDER SECTION thru FLSHDERX

This section sequentially searches a series of list entries.
Each list entry is tested to see if it satisfies its operator.
As soon as the operator is not satisfied, the process ends
and the procedure exits. The sequential search begins at the
FL entry anc continues upward until a bad comparison is made.
FL is initialized by the calling routine.

FLSHUNGR SECTION thru FLSHUNERX

This section sequentially searches a series of list entries.
Each list entry is tested to see if it satisfies its operator.
As soon as the operator is not satisfied, the process ends
and the procedure exits. The sequential search begins at the
FL entry and continues upward until a bad comparison is made.
FL is initialized by the calling routine.

FLSHUNEQ SECTION thru FLSHUNEQX

This section sequentially searches a series of list entries.
Each list entry is tested to see if it satisfies its operator.
As soon as the operator is not satisfied, the process ends
and the procedure exits. The sequential search begins at the
FL entry and continues upward until a bad comparison is made.
FL is initialized by the calling routine.

FLSHDNEQ SECTION thru FLSHDNEQX

This section sequentially searches a series of list entries.
Each list entry is tested to see if it satisfies its operator.
As soon as the operator is not satisfied, the process ends
and the procedure exits. The sequential search begins at the
FL entry and continues downward until a bad comparison is made.
FL is initialized by the calling routine.

5-192

PROCEDURE DIVISION

Initialize. Sort the Key File. Check to see if Sort

was successful. Set switches to indicate an jrror in

NSAX processing.

LOP

Initialize DCB’s of source files. Open source files.

L0P1

Write all input source to output source.

LOP 2

Write error message. Close source files. Check for

ABORT processing.

LOP 3

Set Query Vector Error Elements to one.

LOP 4

FINALX

Return to GENO.

INPAR SECTION

Open Key File for input.

INPAR-A

Read Key File. Move Key File record to sort record.

Release sort record.

5-193

INPAR-B

Close Key File.

INPAR-E

Exit from section procedure.

OUTPAR SECTION

Open Key File for output.

OUTPAR-A

Return sort file record. Write key file from sort file
record.

OUTPAR-B

Close key file.

OITPAR-E

Exit from section procedure.

5-194

■i»—

(8) GEN4X3.

PROCEDURE DIVISION

Initiaiizatioa.

JPAR

Read key file. Eliminate duplicate records. Check for

change in record number (record number is the relative record

number of the standard sequential MIDMS record).

K.PAR

Check for secondary key changes, go to processing required for

that level of key change. Reinitialize reference keys» (reference

keys resemble previous key record). Initialize selection vector.

KKPAR

Initialize selection vectors. Change reference vector to

trigger an automatic change.

KKKPAR

Set an element in both selection vectors. Check to see if

a record is to be retrieved.

LPAR

Set an element in selection vector. Check to see if a record

is to be retrieved.

MPAR

Move the number which represents the number of records which

satisfied the user's request into the NSAX statistics field.

Close any opened files.

5-195

MMP AR

Return to GENO.

NEPAR

Process error. Set switches to indicate fatal eiror in NSAX
processing.

LOP

Initialize source files. Open source files

I.0P1

Write all input source to output source.

LOP 2

Write error message. Close source files. Check for ABORT
processing.

LOP-3

Set Query Vector Error Elements to one.

LOP-4

Go to return paragraph.

NPAR

Add one to the number which indicates the number of records

which satisfy the user's request.

5-196

NSW

This paragraph is a switch which controls whether a summary

file will be written and if it was opened. Initially, it is

set so that a summary file will not be written. If a summary

file is to be written, it is altered to point to the open

paragraph. After the open paragraph is processed, the switch

is altered to point to summary file processing.

NSWA

Initialize DCB's of the Pointer and Packed NSAX files.

Open files.

IPAR

Read the Pointer file. Check to see if there are any valid entries.

NNPAR

Check to see if the record to be retrieved is on this particular

pointer record. Compute subscript of entry.

OPAR

Check to see if the proper entry is available.

OOPAR

Initialize summary record length. Check to see if it is necessary

to read a packed record. Initialize pack file record-ID.

RPAR

Read a packed file record (random file).

5-197

RRPAR

Check to see if the standard record is spanned (o\ r several

packed records). Move standard record element from the packed
record to the summary record.

PPAR

Spanned record processing: move standard record element from

the packed record to the summary record, initialize parameters

to read and process another packed record.

SPAR

Write summary file record.

NRPAR

Read pointer file. Check for valid entries.

5-198

(9) GEN 3A.

PROCEDURE DIVISION

This is the entry point for the module GEN3A, the shorthand

statement compiler. Set up the appropriate DD names for

the work files S1GEF1 and S1GEF2.

HOUSE-KEEP

Open the vork files. Initialize the switches. Set the query

number to one, the subquery number to one, and create the

imbedded define names, sort key and subquery.

NEW-STATE

The missing switch is tested to determine if a new input record

is to be read. If an invalid continuation statement or a required

continuation source statement is not found in the READ OP Section,

this switch is turned on.

NEW-STATE3

Check for generated source DEFINE statements.

NS 4

Bypass all except TYPE 4 statements.

NEW-STATE1

Check for a change in a query number and bypass comment

s tatements.

NS IB

Initialize skip switch. If logical record 1, 2, or 3 is not

found while processing a file source statement, this switch

is turned on. All subsequent statements which have the same

query number as the file statement in which this error occurred

are simply written to the output file, FILEOUT, with no

processing performed.

5-199

NS IC

The item DKSC is used as a counter for the number of define

names, internal and external, to be summed and/or counted.

END-ROUT

CLAS-SWT equal to zero indicates thf.t a classification has not been

indicated for this report. Classification is required entry.

Switch 99 equal to one indicates that headers are present.

BEG-AGAIN

OP88 is a generated HEADER statement. OP99 is a generated TRAILER

statement.

CREATE-LINE

Write out a statement.

SOP-6

SMODE of six indicates final output logic mode.

HDRS

Switch 99 equal to one indicates headers and 0P11 is a MOVE

statement.

WRT-REC

Switch À equal to a two is a period.

PRT-77

Write out a generated vector.

5-200

PAGE INTENTIONALLY LEFT BLANK PER CPT. RUSELLL OF DEFENSE INTELLIGENCE

AGENCY AND MADELINE CRUMBACKER OF DDC.

5-201

PRT-7

Write the previous record. Check for a period and write the
current record.

XXXXO

Write out a generated vector.

TRLS

Save the current object vector. Switch 99 with the value other

than zero indicates that there are trailers to be generated.

TRL-1

Generate the OP34 and OP35 separator statements. An SMODE of two
indicates a TRAILERS paragraph.

TRL-2

Save the generated object statement. Generate a MOVE statement.

SKIP-OUT

If no trailers are indicated generate a SKIP statement 0P19.

Write the record out and generate a PRINT statement.

HDR-SECT

Generate an OP34 and OP35 separator statement. An SMODE equal
to one indicates headers.

MISSING-CLASS

Generate an error message.

5-202

Preceding page blank

XEND-rouT

for ™Ís%“^HeLteêd"^eLxímmnãn»abíJe':íf88tôte"erS error message. ‘»-‘-iowaoie. if so, write an

NS ICC

Check for overflow of the
constant pool area.

NS ID

Write a constant pool record.

PAGESIZE has been overridden.
Determine whether the default for

NS IX

Generate an OP34 and OP35 object
statement.

NS1Z

Write an error message.

new-report

Initialize switches,

imbedded names PAGENO
Set up default values.

COUNT, and SUM.
Generate the

rNITIAL-R£C

Save the header information from the record

PPP

Initialize the statement area.

5-203

NSI

Get the next word. If none, go back for another.

FIRST-WORD

This is a "GO TO depending on" the value of the first word in

a source statement. Notice that many of these statements are

allowable in the standard longhand output language and are not

available in the shorthand language. These include the MOVE

statement, the variations of the MOVE statement, the arithmetic

statements, and the LINE and BEGIN paragraph identifiers.

C-LABEL

Process a LABEL statement. A valid FFT name must be included as

part of the statement. If not, process an error.

LAB-1

Mask into the FFT name the indicator LL to indicate that a label

is being created for that FFT name. Continue processing as

though this were a normal define name.

L02

This is a return point from the routine GEN3A.

C-PSIZE

This paragraph is executed when the default value for PAGESIZE

is overridden by a user's statement.

XPG1

Process an error message.

5-204

XP-WARN

Process a warning message.

C-FILE

This paragraph initiates the processing for a FILE Section.

The OP34 and OP35 separator statements are generated and

written out.

SOS

Perform syntax checking of the file name. It must not be

greater than eight nor less than five characters. The

fifth character must be an A.

SOSA

There may not be multiple FILE Sections with the same file name

in the same report.

SOSB

Load in the FFT for this file name. Logical record 1 describes

the lengths of logical records 2 and 3. Once this has been

determined, load in logical record 2 and logical record 3 in

their corresponding work areas.

SIS

Generate a SET-DECODE object statement.

S2S

Recompute the values in the logical record so that all fixed and

periodic set numbers are positive integers.

5-205

S3S

Write an object statement.

SAS

Process an error.

S6S

The fatal error has been encountered. Further compilation is

meaningless. Skip to the next report and put out a corresponding
error message.

S8S

Recompute the TYPE A entries in the F FT logicr.i record 2.

C-FINAL

Generate the 0P3A and 0P35 separator statements. Generate an
EJECT statement.

C-LOAD

Generate an OP38 object statement which will cause the named

subroutine to be loaded into core. This is intended to be used

only with the MFT operating system and not with the MVT operating
system. 0

C-FLY

Check for the end of the fly sheet and for proper format of the
fly statements.

5-206

FLY-1

Write out the fly sheet
statements as TYPE P records.

FLY-2

be not^process "USt

C-IF

Initialize processirt

8 °f the con^itional statement.

CF1X

Generate an object statement for
e conditional source stateme

nt.

C-AND

The AND is synonymous with the IF.

C-OR

Other than the value of XTRUE t-h

0r an °R S— t

C-OMII

The OMIT statement may only

C-STOP

The STOP statement

appear in a FILE Section.

"ey only appear 1„ a FILE Section.

5-207

C-RESET

Periodic set number must be specified and, of course, it may

not exceed sixty.

C-SET

The second word in this statement is a number that denotes the

periodic set to which this statement applies. The third word

indicates which option of this statement is being chosen. An

appropriate OP code is moved into the object statement.

CST1

Continue decoding the words on the SET statement. Check for set

selection options with respect to flagged and unflagged statements.

CST2

The finally computed OP value must be between twenty-two and

twenty-five.

CST2A

The 1000 indicates that all subsets are of interest.

C-SOURCE

A source direct generation is indicated by the value eight

in the error vector for that particular report.

C-DEFINE

Processing for the DEFINE statements is identical with the

processing for the DEFINE statements in the standard output

compiler.

5-208

C-LIST

Initialize the values for list process generation. Check for

a period and adjust values if one is encountered.

LST2

Decode the a-field and check for partial notation.

LST3

Check the limits of the partial notation.

LST4

Extract the value of the partial and determine whether the

type is alpha or numeric.

LST5

Initialize the area to zero.

LST5A

Indicate that this LIST statement will be executed within a

BEGINS paragraph.

LST6

If periodic fields are specified, perform the necessary generation.

WARN-MESSAGE

Process a warning message.

5-209

FATAL-ERROR

An error has been encountered from which there is no recovery.

Close all files and stop.

C-LSIZE

Establish a default for line size based on the type device specified

and if a specific size is mentioned, use that. Check to determine

whether it is within the appropriate limits of twenty and one
hundred thirty-two.

C-CLASS

Process a CLASS statement. Move the value into an appropriate
area.

CENT-CLASS

Center the classification on the output page.

CL-1

The value 10032 is the first position in the output area. The

center of the output line is computed from that starting address.

MOVE-PAGE

Generate a MOVE statement to handle the automatic generation of

page numbers on the output page.

ADD-PAGENO

Generate a defined area called PAGENO for saving the current

page number.

5-210

EMOV-PAGENO

Generate an edit MOVE statement so the page number will be
printed with zero suppression.

CALL-SYSDATE

Get the current date from the operating system.

MOV-SDATE

Generate a MOVE statement to move this system date to the output
area.

SPACE-26

Generate a SPACE statement to skip two lines.

PRT-T0P-LINE7

This will generate a PRINT statement.

HED-HN

Compute the size and location of a header line.

CNTER-HN

Center the value of the header information.

TRL-TN

Define a trailer line of which there may not be more than
three.

5-211

V

C-DISPLAY

This statement may only appear in the FINAL OUTPUT Section.

C-DISP

The following series of DP paragraphs generate the appropriate
statements to display specified literals or fields. User
provided spacing is indicated by SP parameter.

C-COUNT

The COUNT and SUM operators are processed in the paragraphs
starting with a CS. This series of paragraphs causes appropriate
statements to be generated to cause either a COUNT or SUM of
an appropriate fiele to be maintained while the file records are
processed.

CLA-HED SECTION

Generate a MOVE statement for the classification header line.

MOV-CH SECTION

Load a value into the constant pool and generate the appropriate
object statement indicators to identify where that value has been
loaded.

WRITE-ERROR SECTION

Gene:ate an error message with card column indication.

WRITE-LRR1 SECTION

Generate an error message without card column indication.

5-212

DECODE-OP SECTION

This section is virtually identical witn the same named

section in the GEN3 output compiler.

ELD-PART SECTION

This section is virtually identical with the same named section

in the GEN3 output compiler.

DECODE-A SECTION

This section is virtually identical with the same named section

in the GEN3 output compiler.

DECODE-B SECTION

This section is virtually identical with the same named section

in the GEN3 output compiler.

READ-OP SECTION

This section is virtually identical with the same named section

in the GEN3 output compiler.

EXTRACT-WORD SECTION

This section is virtually identical with the same named section

in the GEN3 output compiler.

LEAD-ZERO SECTION

This section is virtually identical with the same named section

in the GEN3 output compiler.

5-213

LOAD-CONSTANT SECTION

This section is virtually identical with the same named
in the GEN3 output compiler.

section

TRAIL-SPACE SECTION

This section is virtually identical with

in the GEN3 output compiler.
the same named section

WRITE-CDYN SECTION

This section is virtually identical with the same named section
iri the GEN3 output compiler.

EXTRACT-NUM SECTION

This section is virtually identical with the same named
in the GEN3 output compiler.

section

FIX-F SECTION

This section is virtually identical with

in the GEN3 output compiler.
the same named section

TYPE-TEST SECTION

This section is virtually identical with th
in the GEN3 output compiler.

e same named section

USER-ERROR SECTION

This section is virtually identical with

in the GEN3 output compiler.
the same named section

5-214

S806-TRAP SECTION

in^he^FNn" ^ VÍrtUal]y ^entical with the same named
in the GEN3 output compiler.

DUP-CHK SECTION

This section is virtually identical

in the GEN3 output compiler.
with the same named

section

section

(10) GEN3.

PROCEDURE DIVISION

This is the entiy point for the program GEN3, the output

compiler. The work file names are moved into the appropriate
DCBs so the files can be opened.

HOUSE-KEEP

The work files are opened. Switches are initialized. Sort

key is identified as a reserved word. It is defined with a

length of e ghty-five and a type of alphanumeric. Subquery

is defined s a reserved word. It has a length of two and
is numeric.

NEW-STATE

The subscript switches are initialized. A record is read from
the input work file.

NEW-STATE3

The input record is compied onto the output work file and

written out. Only output source statements are used by the

compiler. Any other type (i.e,, a type that will not equal
five) is copied and bypassed.

NEW-STATE1

Determine if this statement is from the same report or another
report. Bypass comment cards.

NS1B

If REPORT-SWT is greater than zero, at l'îast one report has been
encountered in a MIDMS batch job.

5-216

NSIC

CTR6 is the count of the number of generated object statements

for report. It may not exceed 1333

NS1CC

A constant pool cannot exceed 9000 characters. Since the initial

point in the constant pool is 20030, 29030 indicates the 9C00

increment.

NS ID

This paragrapn checks to confirm that there is a program for

each perform statement. If the WRITE-SWT is not eoual to

zero, it indicates that an output file is to be created. If

this is so, then there must he a format statement describing

the file name or record size.

NS1A

Check the legal values for the page size parameter. Default

value is fifty. LINE-KT indicates the number of LINE paragraphs

encountered. BEGIN-KT indicates the number of BEGINS paragraphs

encountered. These numbers must be equal.

NS IX

This paragraph performs a wrap-up function for a report. It

generates a OP34 and 0P35 statement and provides page size,

record size, and file name for the appropriate output files.

ICNT contains the number of characters comprising the constant

pool.

NS1Z

Write an error message.

5-217

NEW-REPORT

Initialize switches and counters for a new report. The two

in DKD represents the two imbedded define names.

INITIAL-REC

If logical record 1, 2, or 3 is not found while processing

a file source statement, SKIP-SWT is turned on. All subsequent

statements which have the same query number as the file statement

in which this error occurred are simply written to the output
file with no processing performed.

PPP

Initialize the header portion of the output work file records.

NS1

Get a word from the last output source statement read in.

FIRST-WORD

Identify the first word on a source statement. All legal first

words, not including continuation cards, are indicated by this
list.

L02

C ose the work files and return to the supervisor program.

C-CAT

This paragraph generates an OP39 object statement.

5-218

P-SORT

This paragraph generates the object statement for the periodic
sort.

C-FLYA

This processes a fly sheet statement. Get the next word. If

none, the fly sheet is not numbered. If there is a word, check

to determine whether it is numeric. If it is numeric, it must

be in a range from one to ninety-nine. This number then

constitutes the identification for this fly sheet.

C-FLYB

If that word was alpha, the only legal possibility is the word

SHEET. If it was SHEET, go back and get the next word.

C-FLY

A string of fly statements is expected. The TYPE-IN should be

-.ive for all these statements. The query statement should not

change until the end of the string is encountered. The statements

are required to be in a fixed format where the fifth column is

blank and the fourth column is either an R or an L.

FLY-1

The first three characters of a fly statement are the line number.

They must be numeric. Set up the headers. If everything is

ÛK, write out the record. Go back and get the next fly statement.

FLY-2

If an error is encountered, write out the record and an

appropriate error message.

5-219

FLY-3

Indicate the end of a fly sheet.

C-FORMAT

Indicate that a format statement has been encountered.

CFO

Get the next word. There must be one.

CF1

That word must indicate either page size, output file, or

record size or one of the abbreviations for those three.

If not, process an error.

CF2

If page size is equal to zero, print the warning message.

CF3

Get the next word. If none, process an error. This word

should be numeric and indicate the proper page size.

CF4

If record size is not equal to zero, it indicates that a DEFOME

statement ^s being overriden by a MODIFY. If so, produce an

appropriate warning.

CF5

Get the next word. There must oe one and it must be numeric.

This number indicates the record size specified. Record size

may not be greater than 9999 characters.

5-220

CF6

If X file name is not equal to spaces, it means that a

previously defined file name is being overridden by a

MODIFY statement. If so, produce an appropriate warning
message.

CF7

Get the next word. If none, produce an error. This word must

not be greater '.han eight characters in length and must be

alphabetic. This word indicates he file name being defined.

CF48

If a format statement was specified by format switch and no

specifications were found, produce an error.

CF9

Get the next word.

CF49

Set up an error message.

CF50

Write an error message.

CF51

Write an error message.

5-221

C-LOAD

Get the next word. It should be delimited by an asterisk.

If not produce an error. Since this is a name, its length

cannot be greater than eight characters. Perform the S806

trap to determine whether or not that routine exists. Load

the name of that routine into the constant pool and check

for constant pool records space overflow. Generate an OP38

:? hW^e 11 0UÎ* ThiS Ftatement should only be encountered
operating system. It is not appropriate for MVT.

C-FILE

The presence of a fij* statement indicates the conclusion of

the^revious file section, therefore, generate an OP34 and ar

SOS

uet me next word. - mere must be one and it must be a file
name, its iength cannot be greater than eight characters no

less than five characters. To comply with standard MIDMS

specifications, the fifth character must be equal to an A.

SOSA

DKX indicates the number of unique file sections found in a

report. There may not be two file sections referencing the
same file in the same report.

SOSB

Check the number of file sections referenced. It may not

exceed sixty. Save the new file name in each file (DKX).

et up for a call to the librarian to get the FFT logical

records for this file. LR1 contains the length for LR2 and

LR3. Save these in DKF and DKS. Set up a call for logical

record 2 to the library. Check the validity of that cfll.

Generate the additional FFT names /RX and /RN. These each

have a length of 9999. The first is alpha and the second

is numeric. Next load in the logic record 3 of the FFT.

5-222

sis

Generate an OP29 statement for each set in the FFT.

S2S

Fill out the a-fields and the object statement for the OP29
SET DECODE statement.

S3S

Write the object statement.

S4S

Write an error message.

S5S

Write an error message.

SbS

indicates that a fatal error has occurred and further

compilation is meaningless. Therefore, generate an error message
to indicate a skip to the next report.

C-HEADER

Generate an 0P34 object statement. This identifies the

beginning of a paragraph. Generate an OP35 object statement
to indicate the end of the previous section.

C-FINAL

Generate OP34 and OP35 object statements to identify the
beginning of the FINAL OUTPUT Section.

5-223

C-FINl

Get the first word. Check for the noise word OUTPUT. If

anything else, process a first word in a statement.

C-TRAILER

Generate an OP34 and OP35 object statement to indicate the

beginning of the TRAILERS paragraph. The logic modes are as

follows: HEADERS (LOGIC MODE 1), TRAILERS (LOGIC MODE 2),

FILE (LOGIC MODE 3), LINE (LOGIC MODE 4), BEGINS (LOGIC MODE 5),

FINAL OUTPUT (LOGIC MODE 6).

TRAIL-A

Get the next word. If non»;, OK. If there is one, determine

whether it is the noise word CHANNEL. If it is, get the next

word. If not, it must be numeric and must be between the values

two and eleven.

TRAIL-B

Generate an error message.

TRAIL-C

N is the number of the carriage control channel.

TRAIL-D

OP75 indicates the carriage control TRAILERS option. If

A1 is zero there is no change required.

TRAIL-E

Loop back.

5-224

C-FINl

Get the first word. Check for the noise word OUTPUT. If

anything else, process a first word in a statement.

C-TRAILER

Generate an OP34 and OP35 object statement to indicate the

beginning of the TRAILERS paragraph. The logic modes are as

follows: HEADERS (LOGIC MODE 1), TRAILERS (LOGIC MODE 2),

FILE (LOGIC MODE 3), LINE (LOGIC MODE 4), BEGINS (LOGIC MODE 5),

FINAL OUTPUT (LOGIC MODE 6).

TRAIL-A

Get the next word. If none, OK. If there is one, determine

whether it is the noise word CHANNEL. If it is, get the next

word. If not, it must be numeric and must be between the values

two and eleven.

TRAIL-B

Generate an error message.

TRAIL-C

N is the number of the carriage control channel.

TRAIL-D

OP75 indicates the carriage control TRAILERS option. If

A1 is zero there is no change required.

TRAIL-E

Loop back.

5-224

C-BEGIN

An LMODE of four iidioates a line. This BEGINS paragraph

must nave been preceded by a LINE paragraph.

CB1

Update the LMODE to indicate that a BEGINS paragraph is being

processed. LMODE equals five.

CB2

Process an error message.

C-LINE

A BEGINS paragraph may only follow a FILE section or a LINE

paragraph. Otherwise, write an er?or.

CL1

Generate the 0P34 separators and begin processing a LINE

paragraph. LMODE equal to four.

u- IF

This is the entry point for compilation of conditional

operators .

CF IX

Extract the a-field and set up the appropriate Al, A2, A3, A4

object fields. Decode the operator. If the OP is a 36 or

a 37, there is no b-field. Otherwise, decode the b-field and

write the object statement.

C-AND

AND is synonymous with IF.

5-225

C-OR

XTRUE equal to eleven signifies an OR operator.

AND are denoted by a one in XTRUE.

The IF and

C-WRITE

A WRITE statement cannot appear in a HEADERS or TRAILERS

paragraph. Move a one to WRITE-SWT to indicate that an

output file is to be created by this report. 0P18 designates

the WRITE statement.

C-PRINT

This is an 0P16 object statement.

PI

Check for a period. If found, indicate in the XFALSE field.

Get the next word. The only thing that can follow a PRINT

statement is a PERIOD or an EJECT statement. Otherwise,

generate an error message.

P2

Get the next word. If there is one, generate an error.

P3

Write an error message.

P4

Write an error message.

P5

Check for a numeric value. If it is not numeric, there must

be a noise word. Go back and get another one. If it is a

numeric value, it should be corresponding to the EJECT ON N

statement. If the noise word is found, there must be a numeric

value after it.

5-226

PSA

Extract a number. This is the EJECT ON number and it may not

be greater than nine. The only legal expression that can

follow this word is a period. If anything else, process an
error message.

If a period is found, adjust the length of the word in CARDW.
Check the length of N and loop back.

Process an error message.

C-PUNCH

The PUNCH statement may not appear in HEADERS or TRAILERS

paragraph. If it does, process an error message. Otherwise,

indicate with an 0P17 in the OBJECT statement.

C-SKIP

The SKIP statement may only be used in the TRAILERS paragraph.

Logic mode equal to two. Otherwise, write an error message.

CS1X

This sets up the OP for the SKIP statement.

C-EJECT

An EJECT statement may not be used in a HEADERS or TRAILERS

paragraph. Set up the 0P21 for this OBJECT statement.

5-227

C-SPACE

SPACE statement has an OP20. Extract the next word. There

must be a word and the length of that word should be either

one or two depending on whether or not a period is found.

CSO

Check the word to determine whether or not it is numeric. If

it is numeric, it is OK. Otherwise, write an error message.

CS1

Compute the actual value of that digit.

CS2

Process an error message.

C-OMIT

The OMIT statement may only be used in a file line or BEGINS

paragraph. Set up Hie OP code of 27 for the object statement
and write it out.

C-STOP

This statement may only appear in a file line or BEGINS

paragraph. Set up an OP equal to 28 and write the object
statement.

C-ADD

This is an 0P7 statement. Set up the noise word COMI ARE
and skip ahead.

C-SUBTRACT

OP is equal to 8. Set up FROM as a noise word COMPARE.
Skip ahead.

5-228

C-MULTIPLY

OP is equal to 9.

skip ahead.
Set up BY as a noise word COMPARE and

C-DIVIDE

OP is equal to 10. Set up the word BY as a noise word COMPARE.

CD1

CD2

CD3

Decode the a-field and determine whether or not the a-field

s numeric. If U Is numeric, field A3 will either be e,Íal

to a two or a five. If it is not, write an error message.

Get the next word. If there is none, process an error message.

The value A in AB-SWT indicates that the a-field is being checked

If it rbrrlP:- Det®r,”ine if the "ext word is numeric or alpha
f it is numeric, it is assumed to be a partial notation field

n»îa’.Îeî°ue the partl81 and readjust the object statement
field that describes the a-field.

CD4

CD5

Check for a noise word that is reaulroH i-f ■-•■at. required, it not present, wrlt-p

checkrthentvõe8e'A Get 'l!' DeC°de the b-tIeld ^ check the type. Again the type indicated by A3 must be either
equal to a two or a five. Otherwise, write an error.

Write the object atement.

5-229

CD6

Write an error message.

C-DMOVE

Set up the OP to be equal to 40.

C-MOVE

This is the initial paragraph in processing a MOVE statement.

CM1

Get the next word. Check for possible use of a reserved word

and the MOVE statement. SWT4 equal to one indicates that the
EXTRACT word has already been performed and need not be done
on entering DECODE-A.

CM2

Decode the a-field and insert the appropriate addresses in
fields Al, A2, A3 and A4.

CM3

Get the next word. Check the delimiters. A delimiter must be

either an asterisk or a space. Otherwise, process an error.
Set up the index to search the a-field for a subscript. Check

for partial notation. If found, adjust the a-field addresses

appropriately. Check the limits on the partial notation. They
cannot exceed the length of the original field.

CM3A

Get the next word.

5-230

Check for the noise word TO. It is not optional. The CMOVE

and the TMOVE are the only legitimate operators that can have

a field with asterisks as delimiters.

CM5

Decode the b-field. If OK, write out the object statement.

CM6

At this point only a CMOVE, TMOVE, or DMOVE are acceptable.

CM6A

Check the field to deteraine whether it is alpha or numeric.

It must be alpha. It must not h.'ve a length greater than

eight. This is a name of a called subroutine or a table.

S806-TRAP determines whether or not this subroutine exists on

a library and is available to the system. SOP NAME is the

name of a save area where the special operator name will be

held.

CM6D

Get the next word.

CM7

If this operator name is equal to spaces, produce an error

message.

CM8

Get the next word. Decode the b-field. Set up the parameters

for the object statement fields, Bl, B2, B3 and BA. Save the

name of the routine in a constant pool aid set up the pointers

to indicate its location in that constant pool. Check for

overflow of a constant pool record.

CM9

Write an error message.

CM10

Write an error message.

CM11

This must be an OPll.(i.e., a standard :«VE statement)
the OP code and get the next word.

CM6B

Initialize K.

CM6C

Search the FFT table to determine whether or not this

exists. If it does not, process an error message.

CM6F

Write an error message.

C-MOVE

CMOVE is an OP12.

C-TMOVE

TMOVE is an OP14.

C-EMOVE

EMOVE is an OP30.

mmmm

. Save

field

5-232

C-VMOVE

VMOVl- is an OP13. The VMOVE may only be used in a BEGINS

paragiaph. If found somewhere else, issue a warning message

to indicate that there will be no repetition of the VMOVE.

That is, it will be converted to a standard MOVE statement.

C-SET

Get the next word. It should be numeric. Add one to the set

number. This is because the fixed set is considered to be SET1.

The first periodic set is considered to be SET2 and so on.

Therefore, SET1 is SET2 in the EFT. Get the next word and it

must be one of those specified in the list, otherwise process
an error message.

CST1

Get the next word. It should be numeric. Move its value to the

object statement and extract the next word. If a word exists,

compute the new OP corresponding to the value of the word found.

CST2

This recomputed OP for the set statement must be in a range

between twenty-two and twenty-five, otherwise issue an errer
message.

CST2A

If no other value is found, a 1000 will cover all available

subsets within a set since that number exceeds the maximum
allowable 599.

CST3

Write an error message.

5-233

CST4

Write an error message.

C-REPORT

This will initialize a new report process that will be handled
within a new STATE Section.

C-SOURCE

Get the next word. If there is none, it is an error. The eight

in QUERY-SWT (Q-S) indicates that this is a source direct
statement.

C-Sl

Check for the valid words for the source initial statement word.

CSiA

Process an error message.

C-ANS1

Reset the source direct switch and continue to process a SOURCE

QUERY type statement. Get the next word. The next word, if it

exists, should be numeric. This number will indicate the number

of the query in the answer file from which the answers will be

provided for this report. Generate an OP77 statement and write
it out.

C-ANS2

Process an error L.css?ge for SOURCE QUERY.

C-S2

Get the next word.

5-234

C-TABLE

Add one to TABLE-SWT to indicate the number of tables included

within this report. There must be another word. If not, process

an error message. This word should be numeric. TABLE-SWT

indicates which of the parameters ave being processed that
define the table.

C-TAB1

Load the table dimensions into the constant pool. Compute the

size of the table. The combined length of the functioi anu the

argument may not exceed sixty-eight characters.

C-TAB2

Read in each of the table elements and check the total number

at that point to determine it does not exceed the number

identified within the size specification for that table. If

there is a discrepancy, process an error message.

C-TAB2A

Write out the table entry record.

C-TAB3

Identify the table name in a list of defined names.

C-TAB4

Process an error message.

C-DEFINE

Initialize the DEFINE statement switches. Assume the type will

be alpha unless otherwise specified.

5-235

Cl

Get the next word. In any case the word must not exceed eight

characters and might be one of the names Included in a list

of words checked for. If the word is a type indicator, go
back and get the next word.

C3

Check to see whether the name exists in a define name table.
If it does, set up an error.

C4

Process a warning message.

C5

Check the length. If the length is greater than five, it
might be a defined name.

C6

Determine whether the field exista in the FFT.

C7

If the name is not a duplicate, set up an entry to create

another line in the defined name table.

Determine whether a convert routine will be required for
this define.

5-236

C8B

Determine whether a length parameter has been specified for

this define.

C9

Tf a left parenthesis has already been specified, there must be

a corresponding right parenthesis. If not, process an error.

Adjust IL to remove the parenthesis.

Check to determine whether this field is alpha or numeric. It

must be numeric to be a length parameter. Compute the actual

value of the numeric digits. This value will be found in N.

A define field may have a length between one and three hundred

sixty characters if it is alpha. Identify this field's location

in a constant pool. Check to see whether matrix processing is

invoked and whether this is an OCCURS type DEFINE statement.

Check the length of the return value from a convert routine.

Determine whether or not the convert routine exists. Call a

convert routine and check the error code returned by that

convert routine. If an error code was returned, an exit

flag determines whether a returned error message is to be put

out. If so, process.

C10A

Reposition a return value from the convert routine.

Cll

SWT3 indicates whether a length parameter was specified in the

DEFINE statement. The length returned by the convert routine

must not exceed the length allowed for in the definition of

that statement.

5-237

C13

If a numeric field is being defined and the length has not

been specifi'-.d, the next value found in that state'"'’*''*- must

be the numeric constant which represents the value of that

field.

C15

If the field is numeric, its length cannot exceed fifteen

characters. Insert leading zeros to fill the field to its

proper length.

C1Í

Load the value in a constant pool. Check for overflow of the

constant pool record. A caro number less than one thousand

indicates that this define is being redefined and a1ready exists

in the table.

C17

Move this new name entry into the define table.

CIS

Get the next word. Save the value of N. Extract the number from

that last word. Compute the size of the OCCURS field. Check

for overflow in the constant pool. If the field is numeric,

initialize at zero. Otherwise, initialize at spaces.

C20

The small card number indicates the MODIFY statement.

C-MATRIX

Determine whither a matrix has been defined previously. If so,

process an error.

5-238

C-MATl

Set up a define table entry for the matrix. Get the next

word. The next string of characters must be a length

parameter with parentheses as delimiters.

C-MAT2

Check the type of the matrix. If it is numeric, the length

cannot exceed fifteen characters per element.

C-MAT 2 A

Get the next word. This next word must be numeric and will

indicate the number of rows to be xn a matrix defined. Get

the next word and check for the noise word row or rows which

is required.

C-MAT3

Get the next word. This must also be numeric and must indicate

the number of columns to be present in a DEFINE matrix. Then

check the next word for COL or COLS which are required words.

C-MAT4

Generate and write out the define matrir object statement which

is an OP76 and move the define matrix name to the table of define
names .

CD-LIN

The SLANT LINE operator may be defined only once in a report.

C-LIN1

Set up the constant pool to accept the definition of the SLANT

LINE operator. Fill an entry ter a define name table and check

the size of the occurrence on a slant line.

5-239

C-PROG

The program must appear after the last line BEGINS paragraphs

before the FINAL OUTPUT Section. If not, write an error

message.

CPI

Get the next word. This word should be numeric and indicate the

number of the program that is to be performed. This number

should be between one and ninety-nine, inclusive. If acceptable,

generate an OP34 and OP35 OBJECT statement. Also check to see

whether this program has been previously defined with the same

number. If so, create an error message.

CP2

Flip a switch to indicate that this number has been used and

may not be used again.

C-PERFORM

Check the LMODE. This statement may not be used in the HEADERS

or TRAILERS paragraph. Check for the optional noise word PGM

program. If found, skip back and get the next word. Set up an

OBJECT statement for an OP33, the PERFORM statement. Extract

the next word. This should be a program number that is to be

performed. Try for another word. If it is found, this program

is to be performed as a PERFORM statement. Requires execution

of a program the number of times. This latest word that is

extracted indicates how many times. Then check for the noise

word TIMES or TIME.

CPP4

Get the next word and check for a period.

CPP2

Set up an error message.

5-240

CPP3

Write the OBJECT statement.

CPP5

Process an error message.

WARN-MESSAGE

Set up the error message fields to process a non-fatal warning

message.

MOVE-WARNING

Move the warning message Into the output area and set up card

column indication for the word to cause the message to be

generated.

WRITE-ERR SECTION

Set up card column indication for an error message. Increment

the card sequence numbers so the message will come out directly

after the source statement on the output listing. Write out

the message. Set the error vector in QS. Check for an ABORT

flag. If an ABORT flag exists in QUERY-SWT (100), propagate

error vectors throughout the remaining queries in the query vector.

W-El

This is the loop that propagates the error vector for the ABORT

operator.

WRITE-ERR1 SECTION

Set up the headers for and write out an error message that does

not have card column indication. Also check the ABORT switches

the above paragraph does.

5-241

V-El

Propagate the error vectors switch for the ABORT operator.

DECODE-OP SECTION

DID

Get the next word. This should be an operator but first

check to see whether there is a subscript involved in the

a-field. After the subscript is checked for, get the next

word and check for a numeric field which indicates partial

notation on the a-field. If this occurs, process it at this

point and readjust the object statement indicators for the

a-field.

Check for the noise word IS. If it is found, bypass and get

the next word.

D3D

Check for an asterisk delimiter. If found, indicate that

special operators may not be used in the output module.

Check for negation of the operator. If the word NOT is found,

increment the OP code by three to indicate that negation will

occur.

Check for a legal operator. Increment the OP code correspondingly

and continue. If not a legal operator, set up an error message.

5-242

T-S CAN

If the OP i> equal to zero, this indicates that the TEXT SCAN

is against tie fixed or periodic field. If OP is equal to

twenty-six, it indicates that the TEXT SCAN is against a
variable field.

T-SCAN1

Get the next word. If none, process an error. Otherwise

exit the DECODE-CP Section.

CHA-COM

Check the error vector for a compilation error preceding this

statement. Establish a save area to be used by the CHANGE

COMPLETE operators for comparing against the previous value.

D8

A valid COMPARE operator cannot have an OP with the value greater
than six. 6

D9

Check for the noise word connector between the operator and the

b-rield. There must be one present.

DIO

Write an error message.

Dll

Write an error message.

5-243

FLD-PART SECTION

Initialize the subscripts for the field partial extraction

section. Check the length of the combined partial. It may

not exceed thirteen.

Fl F

Check the first digit. It should be numeric. Compute the

value of the numeric field. Loop back again for the next digit

until a hyphen is encountered.

F2F

The only valid connector for partial notation fields is a dash.

Set up for the decoding of the second half of the partial.

F3F

Flip through the digits in the last half of the partial and

compute the actual value of the number found.

The only valid character at the end of this notation is either

a space or a period.

F4AF

Check the value of the new length defined by the partial. It

must be greater than zero.

F5F

Check to see the partial does not exceed the legal bounds.

F5FA

Process an error message.

5-244

F6F

Reset the alpha numeric checker.

DECODE-A SECTION

Initialize the DECODE-A switches.

A1A

Get the next word. If none, process an error.

A2A

Check the word for alpha or numeric. If the word is alpha and

its iength is greater than five, check its maximum length.

If the word is five or less, it might be in the FFT.

A3A

Check for a maximum length of eight. If it exceeds that, process

an error message.

A4A

If the field is in the FFT, set up the a-fields in the object

statement to so Indicate. Convert routine may only be used as the

standard COMPARE operator with an operator code of six or less.

A5A

Loop through the FFT logical record 2 to determine whether the

field exists or not.

A6

Loop through the table of define names to determine whether the

field exists or not. If the end çf the table is reached without

making a hit, process an error message. This means the name has

not been defined.

5-245

M

A7

Check for a MATRIX operator. If none, set up the define name

entries in the object statement fields Al, A2, A3, A4. The

A-MAT-SWT is used to decode the variable names used in the

subscripts for matrix processing.

A-MAT1

Set up for a matrix oper^rion in the object statement. Save this

object statement as built so far. Another statement must be

generated and written out before this one is completed.

A-MAT2

Get the next word. If there is none, process the error message.

A-MAT 3

Write an error message.

A-MAT4

The subscripts for MATRIX operator must be bounded by parentheses.

Shift the value left one position with the subroutine MARINM to

eliminate the parentheses. Check to determine whether the subscript

is a variable or constant. If it is a constant, extract the

number to derive its actual value. Save this value in a constant

pool and identify its location in the operators Al, A2, A3, A4.

A-MAT-ERR

Process an error message.

A-MAT10

Check the length to decermine whether the field could be in the
FFT.

5-246

r

A-MAT11

The set number In a MATRIX statement must be one. The variable

name used as a subscript in a MATRIX statement must be r imeric.

If not, process an error.

A-MAT20

The RC-SWT indicates whether rows or columns are being processed.

Check for a comma separating the two values within the double

subscript. If there is not a second value or second subscript,

process an error. Check for matching parentheses. Overlay

the parentheses for this space. Check for a minimum length of

the word. Determine whether that word is numeric or alpha.

If numeric, save the value in a constant pool and indicate in

the b-fields of the object statement where that constant pool

location is.

A-MAT 30

Save the a-field parameters to take advantage of previous coding

and decoding and loading descriptions into the a-field area.

A-MAT 31

Shift the values back so the a-field indicators point toward

the first subscript and the b-field indicators point toward

the second subscript.

A-MAT40

Set up the OP code of 47 and write out the statement. Now

restore the object statement values to those built prior to

processing the MATRIX statement.

A8

Write an error.

5-247

A9

Check for MOVE, ADD, or SUBTRACT operator.

A10

The search value cannot be greater than 360 characters in length.

Save this value in a constant pool and indicate the pointers to

it in the a-fields.

All

Transfer a value from the input card area to the constant pool.

Check the length of the constant pool record and write it out
if necessary.

The constant value can only be an a-field on a MOVE, ADD,

SUBTRACT, or PERFORM statement. Otherwise, process an error.

Check for a MATRIX, MOVE, or VMOVE statement. No other statement
may access variable data.

A14-1

Generate the variable set control field information.

A15

The VMOVE may only reference variable data.

A16

The a—fields for the PERFORM and EDIT statements must be numeric.

A17

Check for a numeric field.

5-248

•V r DECODE-B SECTION

Initialize switches. Determine that a word exists for

b-field. If not, produce an error. Check for a valid

at the end of the Wurd which must be either a space or

the

delimiter

a period.

BJB

Check for a period after the b-field name.

B2B

If the delimiter is not a space, then the b-field is a literal.

All the OP codes mentioned may have literals as b-fields.

Otherwise, an error is produced.

B3B

If SNAME does not equal spaces, then the value of SNAME indicates

the name of the convert routine. Execute the convert routine.

Check the return code indicated in EXIT-FLAG.

BAB

Recover and restore fields from the convert routine CALL.

BAD

To get to this paragraph, the OP code must have been a nine or

a ten, which is a multiply or divide. In this case, the b-field

must be numeric.

BAG

Save the b-field value in the constant pool area.

5-2A9

B4A

The length returned from a convert routine cannot exceed the

length of the a-field.

B5

Determine whether the b-field constant length exceeds the ANAME

length.

B6

Set up the b-field object vector to indicate that the value is in

the constant pool.

B7

Determine whether the a-field is alpha or numeric.

B7A

If the a-field is numeric, the b-field must also be numeric.

B8

Insert leading zeros if necessary into a numeric b-field.

B9

Load the value into the constant pool and add trailing spaces

if necessary.

BIO

Determine whether the first character is an alpha character or

a numeric digit. For the OP codes not mentioned within this

paragraph, a constant is not legal as a b-field.

5-250

Bll

It' the length Is five or less, it may be either an F FT item

or a constant pool name. If the length is greater than five,

yet less than nine, it may only be a constant pool name, as

all FFT names must be five or less characters in length.

B12

Initialize the search or the name.

B13

Search the FFT table for the name.

B14

If the name has been found in the FFT table, move its description
to the b-field vector.

B14A

Establish the location on the card source image.

B15

COM-SWT is used to determine if a comma was encountered when reading

a word from the source statement in the EXTRACT WORD Section. If

a comma was found prior to the word, a B is moved into the switch.

If a comma was the last character of the word, then A is moved into

the switch. When a range parameter is encountered, this switch

is tested in DECODE-B to determine whether the range parameter

is a partial or an output area.

B15A

Distinguish between a blank or a non-blank delimiter.

5-251

Check for a subscripted b-field
and/or partial notation.

B16D

Check for a period at the end of
the statement.

B16A

If a period has not been found

scan the rest of the card for
at the end of this

a period.
s tatement,

B16B

Check for another word after a

an illegal condition.
period has been found. This is

B16C

Process an error message.

B17

Initialize a search for
a name in the defined name table.

B18

If a name is not found, process an error

B19

If a name has been found,

the b-field of the object
set up the appropriate fields in
statement.

B20

Check for another word in that statement.

B20a

Chock for a period in the statement.

B20B

Complete the rest of the fields In the object statement. Write
it out. Go back and check for another b-field.

B21

B22

Set the period indicator switch.

Check for partial notation and if found, adjust the b-field object
statement appropriately. J

B-MAT1

Move the length and type of the matrix element to the b-field

statement and save that statement. Additional object statements

need to be generated for the subscripts on the matrix.

B-MAT2

Get the next word.

B-MAT3

Process an error.

B-MAT4

This paragraph decodes the double subscript. The first character

must be a left parenthesis. If so, shift the field left to

eliminate the left parenthesis. Determine whether the first

matrix subscript is alpha or numeric. If numeric, it is a constant.

If alpha, it is a field name. If it is numeric, identify in the

Qbject vector the location in the constant pool where the value
will be saved and save that value.

5-253

B-MAT-ERR

Process an error message.

B-MAT11

The matrix subscript field must- be numeric.

B-MAT20

The RC-SWT determines whether the row or column subscript is

being processed on this pass through. The row subscript

will be loaded into the a-fi.eld of the object statement. The

column subscript descriptor will be loaded into the b-field
of the object statement.

B-MAT21

Processing the second subscript of the matrix subscript fields

determine whether it is alpha or numeric and process similarily
to the first one.

B-MAT30

The value '0' in RC-SWT indicates that
column subscript.

we are processing the

B-MAT40

An 0P48 indicates the b-field subscript. Write the matrix

object statement out. Restore the statement previously
generated.

WRITE-STATE SECTION

This paragraph is, in effect, a "GO TO depending on" the
operation code of this statement.

5-254

'■-¡M« ..íüíííIP

A-SORT

The periodic sort must be in a BEGINS paragraph and must specify

that a periodic field be sorted. Otherwise, process an error.

WSO

Determine that, where required, t^e ANAME is in fact numeric.

WSO A

Process an error message.

WSOO

Determine that, where necessary, the b-fi«ld is in fact numeric.

WS000

Separate the conditionals, directives, and move statements.

WS1

Determine that the a—field and b—field types match.

WS3A

A b-field TYPE 6 is equivalent to an alpha field.

WS3

The TYPE 5 statement is an output object statement.

5-235

WS 33

Check for an error vector on this query will report. Then

separate the generated object statements. Periodic set

decode statements and break statements in A4 or D4,

greater than one, indicate the periodic fields were referenced

and that GEN6 will have to be called rather than GEN6A.

WS01A

Increment the object statement COUNT and write this statement
out.

WS4

The lengths of the a- and b-fields must either have been equal

or have been adjusted to equal before they get to this paragraph.

WS5

Validate the types of the a-fields and b-fields.

WS6

On a MOVE SPACES statement, the b-field must be alpha.

WS6A

Write an error message.

WS7

Trap out a variable MOVE and EDIT statement.

WS8

If the a-field is numeric, its length cannot exceed fifteen.

5-256

WS 9

If the b-field is numeric, its length cannot exceed fifteen.

WS10

If the b-field is shorter than the a-field, truncation will
occur. Issue a warning message.

WS11

Shorten the a-field length to the b-field length.

WS12

If the b-field is longer, trailing spaces will be added.
Issue a warning message.

READ-OP SECTION

Read in an output source statement. Copy it onto the work

file. Output source statements are TYPE 5. If the statement

read is not a TYPE 5, go back and read another until one is

encountered. An asterisk in column 1 indicates a comment card.
Bypass and go back for the next card.

R2

Issue an error message.

R3

Issue an error message.

R4

Process an error.

5-257

EXTRACT-WORD SECTION

Initialize counters.

Check for an end-of-card condition. If a continuation card

was indicated on a previous statement, initialize the card
columns search on column 4.

Check for non-blank, non-delimiter type characters.

W2A

IC is the active column on the card.

W3

Save thî delimiter.

W4

Check for an end-of-card condition.

W5

Check for the end of the word.

W6

Save the next character of the word.

W6A

Check for a delimiter.

Process an error.

W7

Check for a valid delimiter.

W7A

IW is the last character of the word.

W8

Add trailing spaces to the name to fill
character name.

out to a fifteen-

LEAD-ZERO SECTION

Insert leading zeros in a numeric field
to the specified length.

to pad the field

LOAD-CONSTANT SECTION

Perform a character move to load the value into the constant

ar": is ^ Wth °i the value to be moved cdyJ

¿hiíÍetbUíSCr Pt ?£ th£! l0CatI°n o£ tha “„étant pool to which that value is to be moved. H

TRAIL-SPACE SECTION

Insert trailing spaces in the field
its specified length.

whose value is less than

WRITE-CDYN SECTION

Set up the headers for a constant pool
type of this record is 7.

tyoe record. The

MOVE-CON

If an error has not been indicated in the query switch, write

out the constant pool record. Initialize the subscript to the

next available location in the constant pool record work area

(the value of CDYN). Increment the sequence number in the header
for the constant pool record.

EXTRACT-NUM SECTION

Initialize the counters.

MOV-CK

A numeric value is expected by the EXTRACT-NUM Section. If the

binary value of the character is less than 240, that character

is alpha and not numeric. Therefore, process an error message.

Compute the actual value of the number digit-by-digit based
on its binary value minus 240.

M0V-CHK1

Process an error message.

S806-TRA’' SECTION

Execute a BUILD L macro to determine whether or not that named
subroutine exists on the library.

S806-A

Process an error message.

S806-B

Process an error message.

5-260

S806-C

Process an error.

FIX-F SECTION

Recompute the values and logical record 2 of the FFT to give

positive set numbers for all fields and eliminate plus and

minus zeros. The fixed set will be set 1. Each periodic set

will be incremented by one after that. Therefore, periodic

set 1 will be considered tc be set 2 and so on.

TYPE-TEST SECTION

If the types of the fields match, everything is OK. TYPE 1

or a TYPE 4 indicates an alpha field. A TYPE 2 or a TYPE 5

indicates a numeric field. A TYPE 6 is considered to be
alpha.

USER-ERROR SECTION

Write out an error message returned by a user from a convert

routine. Also set the error switch to indicate that a compilation
error has occurred in processing this report.

PERIOD-SCAN SECTION

Search for and remove any periods found in the CARDW area

CKCK SECTION

Determine whether a program exists for each PERFORM statement
that requires a specific program number.

DUP-CHK SECTION

Initialize the counter. Search through the define name table

looking for a duplicate name. If one is found, process an
error message.

5-261

DCODE-PARITAL SECTION

Partial notation, if specified, must be within the boundaries

of the field.

HYPHEN-SEARCH SECTION

If a hyphen character is found in the CARDW area, indicate with

the value one in the hyphen switch.

BUILD-OCCURS SECTION

Create space in a constant pool for a DEFINE OCCURS type statement.

S-INDEX SECTION

A subscript must be preceded by a left parenthesis.

S- 16

A subscript value must be followed by a right parenthesis and/or
a period.

S-I7

Procesa in error message.

S-IO

A subscript may be used only on a conditional statement or

a variation of a MOVE statement, except that it may not be

used on a variable move.

S-I00

Process an error message.

s-ll

Initialize the values for shifting the f-fnia
the parenthesis. 8 ield left to eliminate

S-I2

Dgtcrinin© whether the siih^n-fnf- <»

it is a constant, load the value of the08^"!? ^ field naine- If
pool and set up th" a-field areas tn consint0 the constan

that -tant and its ^LT^L^o" p^l^1- "

S-I3

(

S-I4

generatingdaradditionIldstaterae^ejuftSp-rioÍ reqUÍre£
containing the subscript. J P lor to the statement

S-I8

Shift the field name left, character-by-character.

S-19

Reset the AB-SWT.

INDEX-PROCESS SECTION

Set up an object statement tor a subscript type operator.

5-263

INDEX-PR0C2

subscripíed^íhís b~fÍeld ÍS bein8

INDEX-PR0C3

Check the error vector for this

If none, write out the subscript
report for a compilation

object statement.
error.

INDEX-PR0C4

Restore the saved object statement.

WRD-PAIR SECTION

Extract and edit partial notation

°y a hyphen delimiter.
fields. They must be separated

WP-C

If followed by a period,
indicate with a one value in XFALSE.

WP-A

If CARDW contains a period

one to XFALSE and replace
, indicate its

the period with
presence by moving
a space.

a

5-264

(10.1) GEN3B.

DATA DIVISION

Name

CONREC

OUTOP

BLANKLINE

COMP-OP-CARD-SAVE

QUERY-CARD-SAVE

HOLD-DATE

LAST-KEY

FILE-NAME-SAVE

LINE-SEP

LIB-CALL-SEQ

LIB-BUFFER

NAMER

NAMEJ

MSG1, MSG2

CONTROL-REC

Function

Input record with its redefinitions to

accommodate either input vectors or
card Images.

Output record.

Used to slew line.

Area used to save COMP-OP card.

Storage Area for QUERY card.

Area used to store date

Area used to compare with CURRENT-

KEY for valid sequence (Sort) check.

Storage area for file name.

Print-Image for Separator pages.

Parameters for library subroutine.

Buffer for source and vector images

to be written to the library.

Area for source report name.

Area for object report name.

Output messages to indicate addition

or replacement of library member.

Storage area used to build vector

which holds communication data from

the compilers for the logic processors

(This is the data normally passed via

the Linkage Section (i.e. QUERY-

COMMUNICATIONS)).

5-264.1

GEN3B SWITCH TABLE

Switch Name

NAHER-SWT

NAMEJ-SWT

MCuUlîT

LENGTH

LINESUSED

I

Variable/ Values Purpose

Fixed

"A" Source member being added to

library (initial value).

"R" Source member replacing existing

source member.

V Object member being added to

library (initial value).

"r" Object member replacing

existing object member.

0 thru 99 Contains the number of the last
member written to library.

V 8u

180

V 0 thru 56

Multiplier to determine length

of source library data.

Multiplier to determine length

of object library data.

Counter of lines for page

control

Counter/index used for writing

source and object vectors to

the library.

PROCEDURE DIVISION

The first paragraph is the entry point of the OP Library Maintenance

program called by GEN0. After the input and output files are opened, the

MIDMS START PROCESSING (COMPILE OP)" banner page is written. ïhe dite

subroutine is then called and the current date is stored in YYDDD
format in the area HOLD-DATE.

GIO-BEGIN-PROCESS

TYPE-S (2) of the Linkage Section is tested to determine the type of

run to be processed. If TYPE-S (2) equals 9, the run is a normal RTOP

execution and GEN3Í’ should not have been called. The next test is for a

COMP-OP card (Q-IN eiual zero and TYPE-IN equal 1); if this is not found,

a fatal error is processed and the run terminates. The name on the

COMP-OP card is then saved in the areas NAMER (source member name) and

NAMEJ (object member name) and a 'J' is placed in the fifth character

position of the object member name. The next card is read and printed if

it is an error message; otherwise QUERY card processing begins.

G15-PROCESS-QUERY-CARD

The input stream is then checked for a Query card and one is generated

if not found. The Query" banner page is printed with the query sequence

number. DUPLICATE-CHECK is then performed to delete existing library
members if a replacement operation is to occur.

G20-MAIN-SLCTION

The main processing loop begins by checking for a possible sort sequenc«

error by testing CURRENT-KEY against LAST-KEY. TYPE-IN is then tested to

determine whether source or object images are to be processed.

G30-PROCESS-SOURCE

rvnv ^f ^pE-IN equal. 4 or 5 source-image processing is indicated. When

iii'h-b» equals 7, object vectors only are to be updated. If TYPE-S (2)

n ÍS d?ne t0 accominodate b°th source and object updating. When
Q-bWi U) equal one an error condition exists and the image is written

out. Also, if the card image encountered is a library card this image is

bypassed and a new image is read. The processing for source images then

continues; I is incremented by one to index the source image and the image

is then loaded into the library buffer. A check is then made to insure

that the library buffer is not larger than 120 images and if true, the

image is printed and a return to the main processing section is accom-

WRITE-LIBRARY)rWÍSe' ^ ^ Written t0 the library (PERFORM

5-264.3

G40-PRINT-CARD-IMAGE

The report source card images are printed.

GIOO-PROCESS-VECTORS

Begin the vector-buffer loading. If TYPE-IN indicates the image to be

a compiled object vector (6), constant pool string (7) or a compiled fly¬

sheet object vector (8), any remaining source images will be flushed from
the library buffer.

GllO-FLUSH-SOURCE

This switch is reset alter its initial execution to bypass flushing of
source images from the library buffer.

G120-FSA

Reset the above switch and flush the source images from the library

(PERFORM WRITE-LIBRARY). Compiler generated information is then saved

in the first vector to bo stored in the vector library buffer.

G140-SAVE-VECTORS

Error checking is first done and if passed, the necessary initialization

takes place and a check is made to insure the integrity of the file name in
each vector.

G150-SAVE-VECTORS

I is then incremented by one to index the vector being processed

and the vector moved to the library buffer. If the number of vectors

moved (I) is less than 90 a return to the main section is accomplished; if

not, the vectors are written to the library and control is then given to
the main processing section.

G200-END-OPSTATE

This paragraph is executed when an EOF is encountered on the input file.

An immediate check is done to insure completion of the processing of

vectors (i.e. flush buffer). The action message describing the disposition
of the source report is then printed, if necessary.

G210-EO-MSG2

The action message describing the disposition of the object report is
printed.

G220-EO-QUERY

The terminal QUERY page is printed.

5-264.4

G40-PRINT-CARD-IMAGE

The report source card images are printed.

GlOO-PROCESS-VECTORS

Begin the vector-buffer loading. If TYPE-IN indicates the image to be

a compiled object vector (6), constant pool string (7) or a compiled fly¬

sheet object vector (8), any remaining source images will be flushed from
the library buffer.

G110-FLUSH-SOURCE

This switch is reset after its initial execution to bypass flushing of
source image3 from the library buffer.

G120-FSA

^eset the above switch and flush the source images from the library

(PERFORM WRITE-LIBRARY). Compiler generated information is then saved

in the first vector to be stored in the vector library buffer.

G140-SAVE-VECTORS

Error checking is first done and if passed, the necessary initialization

takes place and a check is made to insure the integrity of the file name in
each vector.

G150-SAVE-VECTORS

I is then incremented by one to index the vector being processed

and the vector moved to the library buffer. If the number of vectors

moved (I) is less than 90 a return to the main section is accomplished; if

not, the vectors are written to the library and control is then given to
the main processing section.

G200-END-OPSTATE

This paragraph is executed when an EOF is encountered on the input file.
An immediate check is done to insure completion of the processing of

vectors (i.e. flush buffer). The action message describing the disposition
of the source report is then printed, if necessary.

G210-EO-MSG2

The action message describing the disposition of the object report is
printed. r

G220-EO-QUERY

The terminal QUERY page is printed.

5-264.4

G230-END-PROCESS

The MIDMS END OF PROCESSING page is printed and the files are closed.

G240-END

Return to GEN0.

WRITE-LIBRARY SECTION

This section writes individual members to the MIDMS Library. The

member number and length are computed before the librarian subroutine

(LB) is called. If OPERATION code is set to N upon return, an error

was encountered and a message is printed.

DUPLICATE-CHECK SECTION

This section deletes library members to prevent the occurrence of

duplicately named members. If Q-SWT (1) equals one, an error condition

exists and no addition/replacement will occur. If TYPE-S (2) is equal to

7 a replacement (or addition) of the object only will occur (DC-OBJECT)

and if TYPE-S (2) equal 8 both source and object will be replaced (DC-

SOURCE-LOOP). MEMBER-NAME is the area through which the member name is

passed; MEMBER-SUFFIX indicates the number of successive member and is

incremented at each library call .

WRITE-SEP SECTION

Separator pages are written.

EJECT-FAGE SECTION

Reset linecount and eject page.

PRINT-CARD SECTION

Print a source report card image.

ERROR SECTIONS

The remaining sections print error messages.

5-264.5

(U) GENA and GENAA.

ífev?nMframJÍN4 ÍS the l08iC Processor °f the Retrieval Subsystem
ot MIDMS. This is a brief description of the INPUT/OUTPUT Section.

FILE-CONTROL

There are five data files defined in GENA. The first is

CONFIEE which is generated by the MIDMS compilers, GEN2.

GEN3, GEN3A. This file contains all the constant pools

generated by the compilers and vectors generated from

statements the user has provided. Part of this data is

used by GENA and part is placed in OPSTATE output file

for further processing by the remaining modules of MIDMS

Subsystem. The record formats of the CONFIEE and OPSTATE

file are identical. The logical records are of a fixed

nature containing 108 characters and the blocking factor

may be specified in the JCL cards. The third file is

the INFILE which provides the input data files from which

data will be retrieved. The logical records in this file

area are of a variable nature and the first four characters

in each logical record must be a binary control word.

Maximum size of a logical record is 10,000 characters.

The blocking factor could be determined by the size of

the buffer and the block size that is specified in the DD

cards. When records are retrieved for subquery, they may

go as output in one of the two remaining files. First is

the OUTFILE or answer file and contains fixed length records

which are restructured by the output of the GENA program

and contain sort information, rank, query number, and

subquery number. The second possibility is that the records

may go into the SUMMFILF. which is identical to the input

file. The answer records which are placed in a summary

file are identical to the retrieval. However, the blocking

-actor may be changed at the user's discretion by the JCL
cards.

DATA DIVISION

There are four groups of tables in the Data Division.

(1) Q-TABLE, (2) SET-TABLE, (3) STATEMENT TABLE, (A) MISCELLANEOUS.

5-265

Q-table

The Q-TABLES are a collection of nine vectors, each having 99

entries and are under the title of Q-TABS. The Q-TABLES

contain information about each subquery that is to be

processed per file. The following is the information in the

Q1 - is five characters long. First two characters

are query numbers. Third character is a 2-type.

The last two characters are subquery numbers.

Q2 - contains the periodic set number which means that

in this subquery, a sort flag or a merge flag
statement has appeared.

Q3 - is a subscript into the STATEMENT TABLE, which

gives the location of the first statement of this
subquery.

Q4 - is the location of the first sort/merge statement

or if none appear, the end of the subquery.

Q5 a one in Q5 will cause the subquery to stop

processing when the limit of output has been

reached. See STOP-ON-LIMIT statement.

Q6 - is not used at the present time.

Q7 - contains the number of ir.mt records that were
processed for this subquery.

Q8 - is the number of answe'.s that were created for
this subquery.

Q9 " the limit answers that the user has specified
for this subquery.

5-266

SET-TABLE

The SET-TABLE does the bookkeeping on the periodic sets.

Each set is represented in this table by one row.

51 - contains the starting position of the first

subset, data set, or periodic set.

52 - contains the length of a subset in that particular

periodic set.

53 - contains the number of subsets present in this

periodic set.

55 - is a flag switch which means that one of the

subsets has been flagged.

56 - indicates how many subsets have been processed

at this time.

57 - is a work switch which indicates what search

mode was applied against this subset and if

the logic was satisfactory or not.

STATE-FF

STATE-FF matrix is loaded with vectors that were created by the

compilers for each user source statement. Each of these

statements contain information about a-field and b-field

operation and what search mode is being applied against the

subsets to be processed. Information in a-field and b-field

is starting position, length, type of the field, numeric

or alphanumeric, set number to which it belongs, and operation

that is to be performed (equal, greater than, not less than,

etc.). See GEN2 compiler for detailed explanation of values

of these fields.

PROCEDURE DIVISION

Entry point of GEN4 is EGEN4, using query communications which

is an area defined in the supervisor GENO. This area contains

information about each subquery concerning presence of errors,

summary file, if it is a source direct and quantity of statements

in the output. GEN4 uses this area to obtain the data set

names for both input and output and to print the processing of

query errors .

5-267

HOUSEKEEPING - GENA

bInrWo61^°fi>OP?ra^0nS are Perfonned on the DCB data control

: : suttfrh?utr,fiie8-ihe ngcn on the DCB, the block size and the record format are
all turned to aero. This facilitates the operatic system
to insert this parameter from the Ja control carS

°f the INFILE is saved ln DCB. The
OPSTATE and OUTFILE are output and CONFIEE is Input.

STEP 1

Read a record from the CONFIEE.

STEP 3-a

Housekeeping is done for a new data file for retrieval m
zero to number of answers retrieved from rMc ^ M°VÉ

of tub periodic sets existing In this to íh!’

subqueries applied against this file and to the number of °

reroTurthrsií11thUb',l,erieS aPPUed a8alnSt thls £1U-

"^d1 d3^.1 of a set- s2a- aubaat Move snarPQ m e k WOr;jvector- Move spaces to FILE-NAME.

nlld N to be Try id\ntification QKl). Move one to
tield N to be used as a subscript for loading the vector
statements to the statement table. Move one to I to be

“m t °bae SUbrery ‘"‘o™'“»" £° the Q-TABLES! SoVe one
to Nl, to be used as a backup for N. Go to Step 4-1.

STEP 4

Read a record from the CONFIEE.

STEP 4-1

Goeto“erpe:d“foe; mÉ-raTt? JUSt read IS SaVad £" flald "
coming from CONFIEE TYPE 1 typeS °f statement
retrieval TYPP a -i the SOurce statements and the
TYPE 5 is source qc ^ source statements and shorthand languag

and TYPE Q ? 3 3 !mentS and 0Utput- ^ 8 is fly sheets

Sirs “
5-268

T6

T7

T2

£hL\ Tnt indicates that this vector is for the Output
Subsystem A new card number sequence is computed and inserted in
the output record. If the logic mode is equal to zero the
previous logic mode is inserted into this statement.

querv Til l ^ A °ne ln Positi°n 1 means that
is an eríor ! ’ 3 ^ in Posltion 2 indicates that query 2
is an error. An error record is not written in the output file
If the query is not an error, go to T1 to place the record in
the output files for the output module.

CONFILE executed "hen a TYPE 2 statement comes from the
CONFIEE. The query for this subquery Is checked for an error.

to sÎep ïerya “a err0r’ the Statement ls "°t loaded. Go to STEP 4 and read another record.

STEP 5

Movp .P E0J switch to indicate no end of the CONFIEE.

^ îf PreSenî 0f the input file t0 the file name to save
thP mlf name ?f fÍle f°r thiS statement just read compares with*
If TYP^iÜT T Previously- If not equal, g° to LINK-EDIT
If TYPE-IN is equal, go to STEP-6 if the type of record is a
constant pool segment. Ql (I) ls the identification of the
present subquery and Q1 contains query number and subquery number
If Q1 is equal to Ql (I), go to STEP 5-1. Otherwise a newTi!

ofTübaÍêri1 eqUal t°1QL + 1# represents the last number
zero^n sÍÍpMÍ3 ”erenloaded for this file. QL was set to

. ^et Qi' equal to I. Move the subquery ident¬
ification to Ql (I). Move 5555555 to Q9 (I). Q9 (I)

represents the system limit of answers to be retrieved for this

itâZV a Í 1S 8 SyStem de£ault- Q7- O8- O4. and qSaT
iíf Cr°' place h in Q3 (I). N Is the location

Ubïe SmEVFFt0r Staten,ent Ul11 be loadad 'he statement

5-269

STEP 5-1

logical y the comPilers with values for the
nR8í ?\a0nneCt0rS °f the statement» IF. AND, OR, etc. An
OR outside parenthesis is equal to eleven. If the statement
was not an OR. bo to STFP S-t tf -u . statement
Fho V 7 ^ ^ L* If the statement was not of
the primary logic class, go to STEP 5-L. If the previous

sÍÊp^lÍ " 0r 7 out8lde parenthesis, go to
f the previous statement was an OR outside

parenthesis, go to STEP 5-LC. Otherwise go to sîËp 5L?

STEP 5-LC

to StÍEpP5eLÍ0ULHtFÍement WaS n0t an eqUal CO,DPare tP8t. go to STEP 5-L. Add the previous b-field length to the starMna
position of the previous b-field. Test possibility of buiin?

e statewent table. If MAME eqoals one,P?”e! .even! orliÎe"®

ableCancLTËf\ÎablË and tha Statement BU1 -a“» that '
position wíí Í6 Characteristlcs of the file such as

eouaí if 8 ’ T’ Set number for a-fleld b-fieid, are
go to STEP Tl 0na0f, thesa characteristics do not match,

5"L: If hey a11 raatch» it: is possible to do a
ble look-up here. Retrieve the previous statement from the

statement table STATE (LL). LL is the last statement loaded
Increase the operation of that field by fifty. Reload the ’

statement under STATE (LL) and go back to get another record.

STEP 5-L

The first half of the vector is converted from BCD numbers

numbers^ ST T th8 ““P11«. binary half-word’
SUBOUERY háí . °peratl°" (0P> ia «qual to twenty-two, the 7s a user-provided limit of answers to be relieved

e ata file. The limit is moved to 09 (l). it is
not loaded into the STATE table. Go to to STEP 4 torread
another record. reaa

ií ÎÏË 0P 15 ?0t a'1“31 to aiaaan, go to STEP 5-LL. Eleven

tyPM ,,fPSTOP « T £°r “ SI°‘' statenent. There are two
rafsTOP rnTm?; nnndltional STOP and a STOP ON

,}„• f STOP-ON-LIMIT statement will contain a one in

ind °Pherulse A1 uiU be aero. The one is paired in Q5 (I)
and the statement is no longer needed, therefore it is no
loaded into the STATE table. Go to STEP 4 to read a^tü«

5-270

STEP 5-LL

The second half of the statement vector is converted from BCD

to binary. If LMODE equals eleven, it is a flag statement and

the set number is placed in Q2 (I). If LMODE equals twelve,

it is a merged flag statement and the periodic set number is

moved to Q2 (1). If the length and type of b-field (B2 and B3)

are equal to zero, the length and type of a-field is moved to

b-field. When OP equals nineteen, the statement contains

information about coding the periodic set control words. If

OP does not equal nineteen, go to STEP 5-2. Otherwise, if SL

(the. last subset from which information has been obtained) is

greater than Aa, go to STEP 4. The vector S4 contains the

starting position of each periodic set control word in the

file. This information is placed in A1 of the vector and moved

to S4 (A4). A4 is the periodic set number. A2 contains the

length of each of the subsets and is placed in S2A. SET-A

is moved to SST-W (A4). It is placed into the SET-TABLE matrix.

Also SL picks up the value of A4. Go to either of the statements
in STEP 4.

STEP 5-2

Insert this vector statement into the STATE-FF matrix which is

redefined as STATE (N). N being the number of statements at

this particular time. Place N in the name field LL. LL

indicates the last statement loaded. Increment N by one to be

ready to load the next statement. If LMODE contains a value

greater than eight, it means that the statement just loaded

is a sort statement, a merge statement, or the last statement

in the subquery. If that is the case, check if Q4 (I) contains

any information. If Q4 (I) is equal to zero, it means that

it is the first statement that has been encountered and the

location is saved in Q4 (1). Go to STEP 4 to read another
record.

STEP 6

The constant pool is loaded with the constants generated by the

compiler. The CARD—IN field contains the subscript and the

constant pool of this constant segment. The constant segment

is ninety characters long and is moved to CONST64 (AL) which is

a redefinition of the constant pool. Go to STEP 4 to obtain
another record.

5-271

LL-TYPES

This step will be executed when an END-OF-FILE is sensed in

the input CONFIEE. Set the E-O-J switch to X.

LINK-EDIT

At least two statements are required to exit a SUBQUERY. The

user does not specify any condition logic or sort statement,

but by heading the subquery card, the compiler will create

two statements. They are OPCODE 20 and OPCODE 21. If two

statements are loaded, go to LINK1. Otherwise, check if E-O-J

switch is equal to X, which is the end of the input CONFIEE

and no more subqueries to be processed. If that is the case,

go to GE-EOJ to terminate job. If E-O-J switch is not turned

on, go to STEP 3-1 to read another file.

LINK1

A very important function of the retrieval is performed in

steps LINK1 through LINK-END. After testing for a statement in

the subqu^ry, there is a condition of true or false. This

condition determines the next statement to be executed. When

the statements a^e embedded in parentheses and nested parentheses,

then operation becomes more complex. This resolution is done

at this time and at execution time later on. Load the number

of statements which are contained in LL to N, SAVE-N, L7 (1),

L7 (2), L7 (11), and L7 (12).

LINK2

If N is less than one go to LINK6, as the first phase of linkage

has been completed. The second phase of linkage will be performed

in LINK6. Obtain vector from STATE (N) and move to STATE-FORM

work area. If OP is equal to thirteen, it is a RECEIVE statement.

Subtract one from N and go to LINK2 to obtain a new statement.

No modification takes place in this case. ATRUE contains the

logical connector of this statement, that is, a one for an IF,

an eleven for an OR and if this statement is under parentheses,

the level of parentheses is added to the values up to nine level

of parentheses. If OP equals twenty-one, it is the end of subquery

and this number is p aced in SAVE-N. If the operation is a STOP

statement, the SAVE-N is computed to its equal with the present

subscript plus one, then change this code in ATRUE to a one.

Move SAVE-N to ABM. It ATRUE is less than eleven, that is, if

the statement has a logical connector of IF or AND, go to LINK4.

However, if ATRUE is not less than eleven, subtract ten from I.

Finally pick up pointer from L7 (I) and move it to AFALLS field.

5-27.°

LINK3

Move the location of the statement to vector L7 (I) (see step

LINK2 for computation of I). Increment I by one. If I is less

than twenty-one, go to LINK3 to repeat operation until

value is propagated to vector L7 from I position to the 21st

position. Reinsert the statement vector back to STATE (N)

table. Decrement N by one and go to LINK2 to retrieve the next
statement.

LINK4

The pointer for this connector is located in vector L7 (I) and

is moved to AFALLS. Decrement I by one and note that ABM

contains, at this point, the pointer where the statement is

false. If I is greater than zero, the logic connector is

under parenthesis anu the TRUE NO-GO pointer is located in L7 (I).

Move L7 (I) to ABM. Increment I by one.

LINKS

Propagate the NO-GO pointer which is located in the ABM from

L7 (I) to this level of parenthesis. When propagation is

finished, the vector is inserted back into STATE MATRIX (N).

Subtract one from N and go to LINK2 to retrieve a new statement.

LINK6

Move the last subscript of the STATE table to N, SAVE-N, L7 (1),
L7 (2), L7 (11) and L7 (12).

LINK7

N, with the value leas than one, indicates that all of the

statements have been processed. Obtain a vector from STATE (N)

and move to the STATE-70RM work area. If OP is equal to eleven,

it is a STOP statement. If I is less than eleven, then the

statement is an IF or an AND type statement. However, if I

is eleven or greater, it is an OR type statement.

5-273

Z L1NK8A

Propagate the value of AL through L7.

LINKS

The number of the current statement goes to L7 (I). This

number is then propagated through L7 (20).

LINK9

Check for a NO OP statement. If it is a NO OP statement, increment

the TRUE and FALLS fields by one.

LINK10

Insure that there is a value in the AFALLS field and restore the

statement to the table. If a LOAD statement is encountered,

perform the load program section. Once this is done, the LOaD

statement is logically deleted by decrementing the subscript.

s

LINK-END

The S fields, the set table and the set WTVL describe the

characteristics of each of the sets within a record. Modify

the data control block to identify the file name to be processed

as the next data file. Display a start processing message on

the console and open the input data file.

RECIN

Read a record. Call a COMPARE routine to initialize the values

of the calling sequence areas. Do the same thing for the routine

MARING. Shift the L-TAB7 left one character. Call a control

field decode routine.

FILE-END

Close the data file and rewind.

5-274

NEXT-FILE

If a summary file is being created, close the summary file.

UNLOAD-PG

If any programs were loaded, now is the time to unload them.

UNLOAD

Increment through the object statement table looking for load

statements. For each load statement a two in a B1 field indicates

that the program is to be unloaded.

STEP100

Determine whether this is the end of job or end of file.

END-TOT

Write out a record containing the query number, subquery number,

the number of input records processed and the number of answer
records produced.

QSQ SECTION

Initialize the special operator switch.

TEST-FLAG

If flag switches were set, reinitialize them.

UN-FLAG

Restore the flagging indicators.

QSQ-1

Initialize switch ALL.

5-275

QSQ-2

Initialize for the next subquery. Mo^e the SET-W-TBL to the

SET TABLE area. Q3 (I) contains the subscript of the firs«-

statement of this subquery in the statement MATRIX.

CALARASI

When an entry in L-TAB7 is non-zero, the corresponding statement

in the STATE-FF will not be executed. It will be replaced by

a new statement which is located in STATE-FF at the subscript

value of the L-TAB7 entry.

QSQ-3

Get the next statement. Extract from this statement the set

numbers of the a-field and b-field. If a logic mode indicates

a search all or search terminate type operation, initialize

the number of subsets already processed in the S6A field to zero.

QSQ-5

"GO TO depending on" the operator for that particular statement.

Check for invalid OP codes.

OP 24

A load statement is not executed.

OPOl

If number of subsets already processed equals or exceeds the

number of subsets in a record for either the a-field or the b-field,

the condition is not met. Otherwise, compute the address of the

next subset for both the a-field and the b-field. Call a

compare routine to deterrine whether the less than condition is

true.

5-276

QSQ-2

Initialize for the next subquery. Move the SET-W-TBL to th.

SET TABLE area. Q3 (I) contains the subscript of the first

statement of this subquery in the statement MATRIX.

CALARASI

When an entry in L-TAB7 is non-zero, the corresponding statement

in the STATE-FF will not be executed. It will be replaced by

a new statement which is located in STATE-FF at the subscript

value of the L-TAB7 entry.

QSQ-3

Get the next statement. Extract from this statement the set

numbers of the a-field and b-field. If a logic mode indicates

a search all or search terminate type operation, initialize

the number of subsets already processed in the S6A field to zero.

QSQ-5

"GO TO depending on" the operator for that particular statement.

Check for invalid OP codes.

OP 24

A load statement is not executed.

OPOl

If number of subsets already processed equals or exceeds the

number of subsets in a record for either the a-field or the b-field,

the condition is not met. Otherwise, compute the address of the

next subset for both the a-field and the b-field. Call a

compare routine to determine whether the less than condition is

true.

5-276

OP26

Set up the TEXT-SCAN

EQUALS statement.
operatoi to be treated as a standard

OP25

A TEXT-SCAN against a

normal EQUAL operator
non-variable field is treated as a

except that a repetition occurs.

OP02

Check the number of subsets processed and

starting addresses of the active subsets.
compute the new

OP02R

Call a compare routine,

the address of the field
to be executed.

The repeat switch indicates whether

is to be bumped and the next compare

0P03

Check the number of subsets Drore«5«f>ri
starting address Call d' ComPute a ne* subset
ereatarf-h* U comPare butine and check for a
greater than operator which has a return code of three

0P04

adhderCeksshoefn^enre°tf nllT ^ Staftin8

first half of between orators is "h““"6; ” the
Compute the addresses of the next field! ^ statement,

again and check the second half of the

5-277

0P05

SATISFIES operator must find an equal condition for the number

of fields specified and of the values specified, each match
must be a unique match.

OP06

Check the number of subsets processed. Compute the address

of the next one. Set up the linkage for the call to the

special operator. Provide the address of the record and of

the constant pool. Link to the special operator and check

the return codes. A return code of one is a hit. A return

•.ode of two is a miss. A return code of four is an error.

If an error is encountered, adjust the pointer from the false

part of the special operator statement to match that of the

true. Move an eighteen to the OP code which will NO OP

further execution of this statement.

RET-ERROR

The retrieval error paragraphs process an error message returned

from the special operator. Provided along with the message

are an indication of the record ID, the set number, the subset

number, and the position within that subset of the data passed

to the special operator which caused tue error to occur.

LOAD-PG SECTION

Load the name of the program to be loaded into the calling

sequence. Call MARINO which executes a load macro and restore
the statement to the table.

COMPARE SECTION

Check the number of subsets processed. Compute the address of

the next subset. Call a compare routine.

5-278

0P13 SECTION

OP13 is a received statement which accepts the return value

from the special operator column. Check the subsets

processed and check the length of the value to be returned.

Move the data being returned to the record area as specified

in the statement.

0P13-C

If the statement indicates the values to be returned to the

constant pool, A3 will be greater than three. This move

will be accomplished in the 0P13-C paragraph.

OP07

Check the number of subsets executed. Compute the address of

the next fields. Call a compare routine. If the NOT LESS

condition is met, the statement is true.

OP08

Similarly check for a NOT EQUAL condition.

OP09

Check for a NOT GREATER THAN condition.

OPIO

Check for a NOT BETWEEN condition.

0P11

If a summary file has been opened, close it. Produce the

required counts of records read and accepted.

5-279

m

OPll-l

Once the STOP condition has been met the Q vectors are NO OP'ed.

0P11-2

If there are no more subqueries against this file, close the

input data file. If this is the last subquery, go to end of

job.

0P12

This is a negation of the special operator.

OPU

For the SELECT statement, determine whether the number of

hit subsets matches the number required by this statement.

0P14-1

Loop through and count the number of hits in the subsets.

0P15

Initiate unconditional flagging depending on the logic mode

specified in the object statement for either determination

by location or value.

OP 16

Directive statements are NO OP'ed at this time.

C-YES

Set the appropriate indicators for a true condition. Get the

next statement.

5-280

C-NO

Set the appropriate indicators for a false statement. Get
the next statement.

OP 20

OP20 and 0P21 are break points for a subquery. A limit check

is made to determine the boundary of the statement table has

not been exceeded and the flagging routine is executed.

LOGIC-ERROR

If there is an addressing problem on the statement table, an

error message will be put out.

AG-1

The value of zero in S7A indicates that there is nothing

special to consider on this subset. If S?A is equal to twenty-
one, the subset was referenced but the logic was not satisfied.

BGO

Check the I/O switch to see whether there is a file to be written

Q2 is the set number that has a sort flag statement or a merge
flag statement. 6

BG-1

Initialize the processing for a secondary logic.

SQSQ-5

This is a GO TO depending on" for the secondary conditional

statements. The execution of the secondary conditional statements,

each paragraph of which is preceded by an SP with the OP code

number is an SP24, SP01, SP02 and so on,, is virtually identical

with the execution of the primary conditional logic paragraphs,

the only real distinction is in the manner in which the S TABLES

are set up to indicate the subsets available for processing. This

similarity continues down to the WHAT-SOMETHING Section.

5-281

WHAT-SOMETHING SECTION

Logic mode of six indicates ANY HIT type logic. Under this

condition, set up the address of the next statement for a true

condition and loop back to execute it. For a logic mode of

seven, the ALL HIT operator, additional passes will have to

be made to validate the acceptance of all subsets of that record.

S-NO

The S-NO paragraph and the appendages to the S-NO paragraph

process the different variations of a NO HiT on the execution

of the statement depending on the logic mode, depending on the

flagging mode and the position within that record.

SP17

The merge statement zeros out the subquery number so that when a

sort is executed the sort will be performed by query.

SP16

The SP16 paragraphs set up the sort key. Determination is made

as to whether the records should be written out. If it is to be

written out, all processing has been completed against it prior

to the sort statement. If all is satisfactory, then the field

specified in the sort statement is moved into the sort key area.

SP14

This processes a select statement. Within paragraph 14-1 the

B1 field contains a number of required hits against the subsets.

If that number is greater than the number of available subsets,

the condition is false.

SP23

This processes a keep statement. In creating a sort flagged

answer file the fixed set in any periodic sets that are to be

kept are moved to the high order position of the record area.

Then each of the tabsets within the sort flagged set are added

on individually to the end of this fixed portion of the record.

By processing in this manner, only the data unique to that

particular copy of a record need be moved for each WRITE operation.

5-282

SP20

Q8 contains the number of output answer records. Q9 contains

the limit of answer records if one was specified. If no limit

was specified, the default value is 5,555,555.

SP20-1

Compute the number of segments required to write out this output

record onto the answer file.

OUT-WRITE

In this paragraph the answer record is written out as a series

of segments. The number of segments is a decrement from the

value 99 so that when segment number 99 is reached, the last

segment has been written. That is the end of that record

OP-SUMMARY SECTION

This paragraph is executed if a summary file is being written.

This paragraph will write a record onto the summary file. Data

record is moved to the summary file buffer and written out.

SUM-OPEN

This paragraph sets up the DCB parameters for opening the

output summary file.

SUM-CLOSE

This paragraph closes the summary file.

SHIFT-R SECTION

In this paragraph the data record is shifted so that the sort

flagged record contains only the requested sets of data.

9
5-283

SHIFT-RR SECTION

This paragraph moves the segments of the
answer file to be written out.

ri ird for the standard

SHIFT-R1

Compute the number of
record.

segments required for the output answer

MOUT-WRITE

Write out the

equal to 99,
answer record segments. When segment number

the last segment has been written out.
is

MQSQ

Determine whether another pass is required
logic. through the secondary

GE-EOJ

Close the files and return to the supervisor program

5-284

(12) GENS.

PROCEDURE DIVISION

This is the entry point for the module GENS. Q-SWT (108) with

a value other than zero, indicates that the sort was no good.

This is the sort of the answer records with the key as specified

in the field FST-18. If an error has been encountered during

the execution of this sort routine, the value five will be

moved to Q-SWT (108). In addition to this, an error message will
be displayed.

SORT OK

This is a normal return point from GENS routine.

INSRT SECTION

This opens the input file to the sort.

INSRT1

Read an input record and release that record to the sort routine.

INSRT2

At the end of the file, close the input file.

OUTSRT SECTION

The output file is opened.

OUTSRT1

ihe records received from the sort routine are written out onto
the CARD OUT file.

OUTSRT2

This is a return point from the OUTSRT Section. Notice that the

input file and output file are the same for this routine.

5-285

PROCEDURE DIVISION

work m1: as opposed tooths‘gENS Sf'' iS a »f »e

is again an error indicator that shows whether^rnora0^ fÍle¿ Q_SWT (1°8)
in the execution of this sort- n °r not an error has occurred

for sorting the work file, if an erroí UP the DCB ParameterS
of the sort, -ove the vaL ^ ““Utl0"

SORTOK

This Is a normal return point from the execution of the sort

INSRT SECTION

Open the input file.

INSRT1

Read an input record. Resequence TYP = rnv nui
Test for FLY-SHEET line cards (TYP = 8) (° *tv Vectors) records,
a data card of the font, nnnL^.. or nnnM t u* FLY-SHEET liae card is
SHEET statement.) For error-free (Q-SWT ¡1) folTows a FLY-

(2) not equal 9) release all line cards to the^V E0MP‘0P runs (TYPE-S
printed (at INSRT 11). the sort and cause them to be

INSRT11

(TfP ^“ti^nVpr^ S" —' ~

INSRIO

Sequence the TYPE 5 statements. Delete thP tvpf 9 ^
Release the remaining records to the sort program. E 3 records‘

INSRT2

Close the input file. Cherk fr,r- ^

nonsequential switches are on, it indicates^haríí^^ rep0rt- If the
the input work file, for the DCr ! that the lnPut X will be
file. ’ the DCB Parameters are modified to accept this

5-286

fl

INSRT2X

Release nonsequential work file records to the sort.

« *

* '

« *

OUTSRT SECTION

Open the output file from the sort which is the same file as

was used for the input file.

OUTsRT1

Receive a record from the sort and write it on the output file.

0UTSRT2

This is a return point for the OUTSRT Section.

GEN5A is identical to the GEN5 sort routine except that the length of

the answer records being sorted is different.

5-287

(14) GEN6 and GEN6A.

INPUT-OUTPUT SECTION

The MATRIS file is a dummy file used to acquire space for

building a matrix. Nothing is written to or read from this

file. The answer file contains the sorted answers produced

by the retrieval module and as sorted by the GEN5 routine.

The GEW0RK3 file is used to acquire space to load in the

object statements. Like the MATRIS file, there is no input

or output on this GEW0RK3 file. The S1GEF2 tile is the input

work file to the output logic processor. The REPORT OP print

file is used as the printer output file. PUNCH OP is for a

card punch output when required. FILEOUT is for a created

output file in th2 output module with variable length for

variable blocked records. F1LE0UTF is a similar type file

except that the DCB record form on this file is fixed or fixed

blocked rather than variable or variable blocked. FxLEDIR

is used as an input file for source direct processing.

DATA DIVISION

The significant data division entries are as follows.

XMATRIX

This area is used as a save area for the object statement that

generates a matrix.

C-X

This is a short table that contains the possible values for th

carriage control channel options.

DCB-AREA

This space is used as a work area to modify DCB parameters.

PROGG

This table is used as a set of pointers for performed programs

H 0
LAB-LINES

This area is used to save print lines contained within a

LINE paragraph on a page eject so that the labels will be
repeated at the top of the next page.

SAVE-LINE

This area is used tc save a print line.

STATE-FORM

This area is used as a work area for the object statements. As

Fa^:XtraCted ufr0m the table’ they are to the
area tC\ e operated uP°n- The contents of the

STATE-FORM area and output is the same as it was in retrieval.

But the organization of the STATE-FORM object statement is

sorewhat modified. Notice that A4 and B4 fields are at the

end of the statement rather than towards the center

FILE-LIST

This table is used to save the file names
a report.

to be processed by

4f •*

*

PROGRAM-DATA

This area contains the input data record, the output area,
and the constant pool, in that order.

SET-TABLES

This table contains a description of each set within a record.

It contains the starting position, the length of the subset,

number of subsets and similar information concerning flagging.

These values may change between each record and therefore are
computed after each record is read.

4 *>.

5-289

* 0
R-H

This area is used to extract the binary value of a BCD character.

AREA LINKED

This area contains the calling sequence for user routines.

UUSS

This area is used to hold the name of the user-called routine.

PROCEDURE DIVISION

This is the entry point for the module GEN6. Upon entry to this

routine the appropriate DCB modifications are made for the input

file and the work files. TYPE S (1) equal to zero indicates that

G«rLar£i™ If there are °P*n — file.

BY-BY-ANSWER

Open the printer file. Eject to the

the MIDMS start processing separator
top of a page and print
page.

PLACE-R

Read the next work file record.

PLACE-RR

If the query number has changed, write a separator page

FIND1-R

Zero out the W area.

0 %

5-290

STEP-X

Initialize the S1000 and S10 fields for all possible periodic

sets. Initialize the perform program address table.

NEW-RIT

If processing of a report has been completed(release the space

occupied by the object statements. PHASE 1 equal to 8 indicates
source direct.

START-RIT

At the beginning of each report a separator page is written

which contains a source image of the query card for that query

or report combination. Q-SWT (QN) equal to one indicates a

compilation error and the report will not be executed. If

the switch is not equal to one, it means that the execution

will proceed. LQL (7) equal to a $ will suppress the printing

of the source statements for the query. LQL (8) equal to a $

will suppress the printing of the source statements for the

output report. Q-SWT (100) equal to two indicates that the

ABORT option is to be exercised. In this case the ABORT message
will be printed ten times.

NO-ERRORS

The default value for the carriage control channel is nine, as

indicated by TCC-CTL (9). OPCOUNT (QN) contains the number of
statements for this report.

PLACES

Q-SWT equal to eight indicates a source direct process.

NEXT-RIT

Read all the object statements applicable to this report.

5-291

SAME-RIT

Within the SAME-RIT the input work file statements are processed

according tc their type. TYPE 1 statements, or retrieval source

statements, are printed out if the printing has not been

suppressed. The TYPE 4 and TYPE 5 statements are printed out

if the printing of the output source statements has not been

suppressed. Q-SWT equal to one indicates that an error has

occurred in compilation and execution will not continue. If

there has been no error, the TYPE 6 statements are loaded into

the statement area. The TYPE 7 statements are loaded into the

constant pool and the TYPE 8 statements are processed as fly

sheet statements.

PRINT-CARD

This paragraph causes the source card images and error messages

to be printed on the output listing. If a fly sheet is to be

produced, the output lines are formatted and printed in these

paragraphs .

LD-MATRIX

If a matrix is to be created, the appropriate computations are

made to determine the size of the required matrix. These values

are then loaded into the DCB parameters and the output file

matrix is opened which acquires sufficient core in which to

build this matrix.

OP48

S7 contains the starting position of the current subset for the

periodic set indicated by the A4 B4 fields in the object

statement. The call to MARINE executes the MATRIX statement.

LOAD-CONST

The constant pool record is loaded into the constant pool area.

5-292

LOAD-STATE

The appropriate DCB values are moved into the GEW0RK3 DCB area

so that space can be acquired for the object statements. SWT-

W with a value of zero indicates that the GEW0RK3 file is

closed. A two is moved to SWT-W just prior to opening and

immediately after the open, a one is moved to switch W.

This is done to assist in debugging in cases where there is an
abnormal termination caused by the open statement.

STEP99

This is a wrap-up paragraph for the printing of a report. Final

output is performed, files are closed, and the final separator
page is written.

UNLOAD

Upon completion of a report, any subroutines that were loaded by a

load statement will now be unloaded. The same call to the

subroutine will be used except that the value two is used rather

than the value one. The value one causes a subroutines to be

loaded; the value two causes a subroutine to be deleted.

STEP100

If a matrix has been created, delete the matrix.

GET-RIT SECTION

If the default value for the trailer channel of nine is being

overridden, place the new value into the carriage control area

of the output record. If a matrix has been defined, compute

and acquire the space required for the matrix. An OP77

indicates a source query type report. If this is the case,

the answer file is closed, rewound, and reopened.

FROM-ITS-Q

Determine whether there has been a change in the file name

5-293

GET-RIT2 * >

Convert the object statement fields to binary. Determine

whether additional output files are required. For any

additional class of output, indicate with an X in the

appropriate switch. A logic mode of one indicates headers.

GET-RIT2A

If trailers are to be printed as indicated by a LMODE of

two, move the address of that statement to the trailers
save area.

GET-RIT2B

Final output indicated by an LMODE of six is indicated by

moving the statement address to the final output save area.

GET-RIT2C

If the LMODE is greater than ten, it indicates that a program

is being performed within a paragraph.

GET-RIT2D

Load the statement into the table and go back for another.

PASS 2

SWTS indicates whether the work file is opened or closed. The

value of zero moans it is closed, the value of one means that

the work file is open. SWTA performs the same function for

the answer file. PHASE1 equal to eight indicates a source direct
type process.

T 5-294

PASS21

The value of eight indicates source direct. Loop through the query
vector looking for a source direct type flag.

PASS22

If the work file is closed, open it.

LINK EDIT

Q-SWT with a value tf one indicates that an error has occurred and

execution will not take place. However, if Q-SWT has a value of eight,

it indicates that source direct processing will occur within this execution

of the report. LL indicates the number of statements that exist for this

report. For an executable report there must be more than two statements.

The call to GEAZM initializes the address areas for the record, the matrix

and the object statement to be executed. The default for P/.GESIZE if fifty

lines. If it has been modified by user statements, it still may not be

less than five. If PUNCHSWT contains an X, that indicates that a card deck

is to be produced by this report. If the WRITE-SWT has a value other than

spaces, an output file is to be created. (Note: The description for the

remainder of this paragraph is IBM 360/AN'S COBOL dependent.) Since the

user may specify an output file having either a variable (RECFM = V or VB)

or fixed (RECFM - F or FB) format, both file formats must be supported

y EN6. However, ANS COBOL (and its associated execute time subroutines)
will, under certain conditions, override the user's specifications and,

consequently, change the contents of the user's DD in the JFCB during

execution of the OPEN. SETXLIST is an ALC subroutine which reads and saves

the original contents of the JFCB and, during the OPEN, forces the user

ríiecÍfÍCatÍOnS Ínt0 the DCB' By teiitin8 rec™ following the OPEN OUTPUT
FILEOUT, the user specifications are determined. If the user specified a

variable format, FILEOUT will be used; otherwise, FILEOUTF is used.

LOOP-A

This paragraph is executed if a source direct file is to be processed.
The appropriate modifications are made to the data control block and the
file is opened.

5-295

mm

\ S
loop-aa

s: 18
also is the subscriDt of rho ï ^ate®ents ln this report which

ch8t - — - - :UpheVr0^i-r;0::0:rt:r88
LOOP-B

STATE (J) „ill be the last object statement In this stack.

LOOP-BB

alpha'o^two^r T* ^ ™ for
the four or five „111 conv™'^t ' ^the”''1"8 fr°m
maintains the Inteerltv of ííe',1 n °r tuo “hich stlll
LMODE of four Indicates a LI Sr alphan™1frlc distinction. An

has a subscript of tTs Íaat sta^Úu Th‘ "■ n°“

LOOP-C

DMOVEPoperator8Cr^PtS ln the trUe/falsa . Check for

LOOP-D

can be l^ded into^^683 bef0re this £able

LOOP-L

a^tíh'^rlíe^peíatorln^he^'s^té^t?"“ t0

loop-ll

Move the address of the table t-n t-ho a ^
the OP code to a fifteen t < tH lnstruction area. Change
resident. t0 lndlcate tha' this table Is core

5-296

-
-
-

.«BW

LOOP-F

This paragraph is executed whin a search of the convert

routine name table does not result in a match. The failure

to find a name in the table indicates tne table has not

yet been loaded. The p; ragraph includes a call to the

MARINT routine which will issue a load macro and move that

loaded table inside the GEN6 working storage area and then
delete the loaded copy.

LOOP-DD

Once this table has been loaded, its name is added to the

list of loaded tables. A maximum of sixty names may appear

on this list.

LOOP-ODD

The object statement, as modified, is returned to the table

of statements. An OP38 will cause a program to be loaded.

An OP34 indicates the end of the paragraph. In this case

the counteis are reinitialized.

LOOP-E

If there are more statements to process, go back through the

LINK EDIT cycle again.

V *

END-STATE

The value zero in S'.*T S indicates that the S1GEF4 work file is

closed. If there are more than two statements, perform a LINK

EDIT process. Produce a separator page and continue.

GET-ANSWER SECTION

Read a segment of an answer record and add one co the count of

the segments so that a check can be made to determine whether

all sorted segments have been properly read.

5-297

á¡

.

V A ANSWER-END

The value of zero in SWT A indicates that the answer file has been

closed.

EJECT-P SECTION

This will eject to the lop of a page knd print a blank line on

the first line of that next page.

V ✓

PRINT-IMAGE SECTION

This paragraph is used to print the source statements and the

error messages, if any. The source listings will print fifty

lines on a page.

STEP2 SECTION

Skip to the top of a page.

STEP4

If the input is a source direct file, read a direct file record.

If the answer file is closed, go to the end type processing.

If the query number of the last read answer is less than the

current RIT number, get another answer. The source query

statement will cause the answer file to be skipped through until

a current query number is matched.

STEPS

If the file name is not changed, continue.

STEP 6

If the file changes, find the appropriate file name and list.

If K is greater than the FILEN (1), it indicates that the end

has been reached.

5-298

V /> STEF7

The OP35 is an end of paragraph indicator. Initialize for the

processing >. f the next record and read it depending on

whether it is a source direct record or an answer file record.

STEP44

If the answer file has been exhausted, go to the wrap-up sectioi.

in STEP99.

SEQUENCE-ERROR

If a discrepancy has been encountered in reading the answer file,

put out an error message.

STEPS

Initialize processing for the next record.

STEPS-RET

Read additional answer record segments until the enfre data

record has been built up. When record segment equals ninety-

nine, this has occurred.

STEP9

Save the sort key and the subquery number. Identify the address

of the first statement to be executed for that file's records.

READ-DIR

Rend a record from the source direct file. Since this is a

source direct file, there will be nc '-egmentation or building

of a record required. Save the file name, any entry point

subscripts for the instructions.

STEP9-1

Compute the limits of the instruction addresses for this record.

5-299

STEP9-2 V *

This is the number of subsets to be processed.

CALARASI

Get the next statement and check for an end of a paragraph.

The end of paragraph is indicated by an OP34 except that if the

OP is 34 and a logic mode is four, that indicates the beginning

of a LINE paiagraph. An OP of less than seven is a conditional

operator. A non-conditional operator will cause the next

statement to be executed.

MONTANA

This is a "GO TO depending on" paragraph. The OP code in the

object statement determines which paragraph is to be executed.

There is a distinction between the BPs and OPs. That is, the

OPs cause direct execution of a statement based on the contents

of the object statement pointers to the a-field and b-field.

The BPs have a preprocessing involved to resolve subsets and

flagging.

OP38

The 0P38 is NO OP'ed at this point since during the LINK ED'T

phase the required routine has already been loaded.

OLTENIA

Get the next statement and check for an end of paragraph.

BP44

This is a DSORT operator. Since it involves a sort of periodic

subsets, if there is no more than one subset, there is no point

in executing a sort and therefore the statement will be NO OP’ed.

The field S3 contains the number of subsets within that

periodic set.

3-300

V ✓ BP43

Get the next statement. If there are multiple periodic sort

statements, they are stacked up. If a different periodic set

is involved, however, branch out and execute the previous
one.

BP43-1

SI contains the starting position of the periodic set to be

sorted. The call to MARINPS will cause a periodic sort to

be executed. R (Al) is the address of the periodic set.

S3 (J) is the number of subsets in a record. STATE (I) is

the address of the object statement. IX contains the number

of sort statements against this periodic set and S2 (J) is the
length of the subset.

BP01

If the a-field is not periodic, bypass this processing. The

BP01 paragraphs resolve the flagging on the subsets and indicate

which subsets are qualified and non-qualified for processing of

the statements based on either flagging or on a set selection
statement.

BP01-2

Once^the subset qualification processing has been completed,

the "GO TO depending on" for the execution of the OP code can
be accomplished.

BP02

Subscripting at this point will cause a statement to be NO OP'ed.

A conditional need not be executed since there is no possible

way for the condition to be met. This includes a condition
based on the CHANGE/COMPLETE operators.

5-301

0P41

This paragraph, with its included call to MARINZ, will resolve

the subscript address on the data field.

OPOl

For those OP codes executed by the MARINZ routine, the address

of the b-field is incremented to indicate the address of the

next available periodic subset.

0P14

Since the 0P14 and 0P15 statements may not have a periodic o-field,

they are injected between the increment for the b-field periodic

subset updated address in the a-field address updating. The call

to MARINZ will execute this statement and return for another

statement.

0P12

The 0P12 is a CMOVE. Adjust the address to the BSTART field to a

base of one. Move the name of the routine into the save area.

Compute the starting address of a-field. Move the contents of

the a-field to the calling sequence area. Set up the remaining

calling sequence param-ters. Execute a call to the MARINI routine

which will cause the name convert routine to be called and

executed. Check for a valid return code from the convert routine

and check the length of the value return from that convert routine.

Then move that value to the proper b-field location.

OP 16

The OP16 is a print statement. If it is found in either the

HEADERS or TRAILERS Section, skip ahead. If within the body of the

page, check the number of lines printed and if there is space

remaining, skip ahead. Otherwise, save the label lines and

execute trailers and headers. If the page is exhausted and if

it is in the middle of a periodic set processing, eject to

the page and put out the continued message.

5-302

OP16-A

If there are save label lines, move these out and print them.

0P16-C

Save the print line.

OP16-2

If within a LINE paragraph, add a blank line to the label lines

saved if there are less than six.

OP 16-16

Print the data line and blank out the print line image. Go

get the next statement.

OP 17

The PUNCH statement will print a card using the stacker select

indicator.

0P18

The OHS will write a record to the output file. If the file

has a record form of variable or variable blocked, the record

will written in this paragraph.

0P18-F

This paragraph is used Lo write out an output file record that

has either a fixed or fixed block format.

OP26

This is a move of variable set data. The field IX contains the

subscript of the variable set control field. If the control

field is spaces, it means that there is no variable set for

this record. If there is a variable set for this record,

move the variable set control field to a work area. Replace

the value of the set control field in a record with spaces. The

control field contains the starting position and the length of

the variable field within this record.

5-303

OPI 3-1

Backspace across the area to be printed and check for

truncation of the word. Wherever possible only full words

will be printed toward the end of the variable print line.

OP13-2

Restore the updated control field to the record area.

OP26-1

Move a s.ftuient of the variable field to the b-field area.

OP 19

The 0P19 is a SKIP statement. It will skip to the bottom of

a page assuming that carriage control channel 12 of the value

C indicates the bottom of a page on the printer.

OP20

This is a space operator. The ASTART field contains a number

of lines to be spaced. If at the bottom of a page, spacing

is not necessary, continue.

OP20-1

Loop through writing blank lines with either one, two, or three

lines spacing depending on the value of ASTART. Continue looping

until the appropriate number of spaces have been generated.

OP 21

This is the EJECT operator. The value in B1 indicates that the

EJECT is only to be executed if thoie are Bx lines or less

remaining at the bottom of the page.

5-304

0P21-1

Execute the EJECT by performing trailers and headers.

OP22

The OP22 is a set selection statement. S6 indicates the first

subset of interest, and S5 indicatts how many subsets are to

be made available.

OP23

This is similar to the OP22 except that the indication in S6

means that only flagged subsets are to be considered.

OP24

The OP24 will select the last N subsets whether flagged or not.

If there are fewer actual subsets than are called for in the

statement, this statement is synonymous with the OP22; that is,

they will be made available. If there are more subsets than

are requested, then computation is performed to determine the

first desired subset.

OP 2 3

This is similar to the OP24 except that only flagged subsets are

to be considered.

OP 2 7

The OMIT statement causes further processing of that record to

terminate.

OP28

The STOP statement causes further processing of this file for

the report to be terminated. The answer records from this same

query number are read and looped through until the end of the

answers for this query are reached. At this point the branches

are made to STEP99 to v/rap up the report.

5-305

OP 29

An OP29 is the set decode type object statement. One of the set

decode statements is generated for each set that is identified

in the FFT. This includes the fixed sets and the periodic sets.

Begin by initializing the set table work area.

OP29-A

If the set is not periodic, skip ahead. Each entry in a set

table is based on the sat number as a subscript. SI contains

the high order position of the set. This can vary from record to

record. The value of this high order position must be obtained

from the set control field which is located within the fixed

portion of each record. S2 contains the length of the subset

and S3 contains the number of subsets in a record which also must

be derived from the periodic set control field information.

OP29-1

Loop through the OP29 statements and update the addressing for

each set within this record.

OP33

An OP33 is a PERPORM statement. Decode the number of the program

to be performed and the number of times the program is to be

performed. Check for a valid program number. Identify the

address of the first statement in the program to be performed.

Extract that statement. The last statement in a program being

performed must also be extracted and the GO TO fields must be

updated to indicate the return point from the performed program.

If an error condition is encountered, issue an error message

and execute a STOP statement so that further processing of the

report will not continue.

OP34 SECTION

This is an end of the paragraph. The next paragraph to be

executed depends on the logic mode of the current statement.

5-306

LINE-START

If the logic mode is four, that indicates that this is the

beginning of a LINE paragraph. The periodic set tables are

reinitialized so that additional processing can continue

without being affected by any previous LINE paragraphs, if
any.

LINE-END

Each time a LINE paragraph is executed, the DUPPY-SWT is

incremented. If the user invokes an internal loop which could

be caused by modification of control fields, he is not permitted

to execute a paragraph more than 11,000 times.

OP 30-2

At the end of a LINE paragraph, if periodic processing is

involved, a determination must be made as to whether that

line is to be executed again for the next qualified subset.

This determination is made in the OP30- paragraphs.

DUPPY-LOOPY

Issue an error message. If the user is in a loop, stop the

execution of this report.

OP 36

This is a CHANGE operator. The change condition is true if

either this is the first value in a string of values or if

this current value is different from the previous value.

OP36-1

Initialize R (BSTART) for a base one type subscript.

5-307

OP 36-3 7

If

the

and

the CO> ’LETE/CHANGE statement has been found to be true

current value must now be saved for further comparison^

OP 3 7

The COMPLETE operator will not cause a condition to b

Í i n¿,?CCUrrenCe 0f 3 data element. Otherwise it
to the OP36 statement.

e met on

is identical

OP37-1

Set up for a call to MARINE with a NOT EQUAL operator to

determine whether a change has in fact occurred between this
element and a previous element.

OP 39

rl h\ ^lureAT operator* /TOPCAT will cause the input

record to be moved to the output record area and written out
as a variable length record.

OP46

This is a TEXT SCAN operator. The pointers in this object

statement are initially to the variable set control field rather

than to the actual field itself since this is variable from

record to record. Once the variable set control field has

been moveu to a work area the value of set high order position

If thî í Í VÏ6 nUmber °f characters in this variable set.
I6,3- being searched for has a greater length than the

to MARIEZ I* 16 !ld’ rhere Cann0t be a match- A call to MARINE Wixl execute the TEXT SCAN.

LOAD-PG SECTION

The object statement contains the address

program to be loaded. This name is moved

sequence area. From there a call is made

which executes a load macro.

of the name of the

to the calling

to the MARINO routine

5-308

HEADERS SECTION

Initialize the body line count. Check the header switch.

1Í HEAD-S is equal to zero, it means that no headers are

included in this report; therefore, bypass. Eject the page

and set up the pointers so that the next statement to be

executed will be the statements that are logic mode 1 or

headers type statements. Upon return from executing the

headers statements the saved pointers to the body lines

paragraph statements are restored and the section is exited.

WRIT-SEP SECTION

This will write a separator line.

TRAILERS SECTION

The SWT TR equal to spaces indicates the trailers have not yet

been executed. During the execution of a report, a normal

sequence is to execute trailers and then headers, however,

this should not be done on the first page. If the SWT TRAIL-S

is equal to zero, it indicates that there is no TRAILERS paragraph

for this report and, therefore, the section is bypassed. If

there are trailers, set up the address of the TRAILERS paragraph

statements, that is logic mode 2 statements. Execute the
statements .

TRAIL-RETURN

Upon return from executing the TRAILERS statements, restore the

pointers to the statements as they were originally for the

printing of the body of the text.

FINAL-OUTPUT SECTION

The FINAL-S switch indicates whether there is a FINAL-OUTPUT

Section or not. If there is one, save the pointers to the

statements, adjust them to execute the logic node 6 statements
and perform the necessary executions.

J-309

FINAL-RETURN

Restore the pointer and exit the processing for this report.

NO-DATA

If there are no answer records and if there are no source direct

statements, create MIDMS end-of-processing separator page.

ANSWER-ERR

Once all reports have been published or if there is an error

encountered in the answer file, determine that all files are

closed and returned to the supervisor.

5-310

(15) GEAA.

DATETIME START

SAVE

BALR

USING

ST

LA

L

TIME

ST

ST

XC

SR

LR

SRA

0
ST

CVB

UNPK

MVZ

MVC

D

CL

BE

LA

B

SETLEAP LA

CONT N

XC

ST

CVB

COMPARE L

CR

BH

S

L

SR
CVD

UNPK

MVZ

MVC

MVC

0
(14,12)

10,0
*,10
13.SAV+4

13.SAV

2,0(1)
DEC

1,0(2)
0,4(2)

HOLDl.HOLDl
4,4

GET SYSTEM DATE

SAVE RI3

PUT SA ADD IN RI3

GET ADD OF PARAM LIST

STORE PACKED DATE BACK INTO CALLING PROGRAM
STORE PACKED TIME BACK

CLEAR OUT HOLD1

CLEAR R4

5,1 MOVE PACKED DATE INTO R5

5,12 SEIFT RIGHT 12 BITS TO DROP DAYS
5,*F'15' SET PACKED SIGN TO PLUS

5,HOLD1+4 PUT IT INTO HOLD AREA

5,H0LD1 SO THAT YOU CAN CONVERT IT

HOLDl.HOLDl UNPACK IT FOR OUTPUT

H0LD1+7(1),HOLDI+6 MOVE ZONE OF F

13(2,2).HOLD1+6 MOVE IT INTO CALLING PROGRAM

4,=F'0'
DIVIDE BY A

IS THERE A REMAINDER

SETLEAP NO REMAINDER- IT IS A LEAP YEAP-
6,NONLEAP

CONT

6,LEAP

l.MASK

HOLDl.HOLDl

1,HOLDl+4

3.HOLD1

4,0(0,6)

3,4

SET UP ADD OF NONLEAP TABLE

SET UP ADD OF LEAP YEAR TABLE
CLEAR OUT YEAR

MOVE DAY TO HOLD

INTO R3 AS BINARY

LOAD MONTH VALUE FROM TABLE

R3 HAS DAYS R4 HAS TABLE VALUE
NEXT ACTUAL DAYS STILL HIGHER

6,=F'8' DEC TO GET LAST MONTH

5,0(0,6) GET LAST MONTH

3*5 SUB TO GET DAYS OF MONTH
3.HOLD1 CVD IT

HOLDl.HOLDl UNPACK IT

HOLD1+7(1).HOLD1+6

8(2,2).HOLD1+6 BACK INTO CALLING PROGRAM

10(3,2),12(6) MOVE FULL AEBR OF MONTH -JACK

5-311

NEXT

SAV
H0LD1
MASK

NONLEAE

L 13,SAV+4
RETURN (14,12)
A 6,=F'8'
B COMPARE
CNOP 0,4
DS 18F
DS D

DC X'OOOOFFFF'
DC F'000'
DC CL4'XXX'
DC F'031'
DC CL4'JAN'
DC F'059'
DC CL4'FEB'
DC F'090'
DC CL4'MAR'
DC F'120'
DC CL4'APR'
DC F'151'
DC CL4'MAY'
DC F'181'
DC CL4'JUN'
DC F'212'
DC CL4'JUL'
DC F'243'
Dl CL4'AUG'
DC F'273'
DC CL4'SEP'
DC F'304'
DC CL4'0CT'
DC F'334’
DC CL4'NOV'
DC F'365'
DC CL4'DEC'
DC F'000'
DC CL4'XXX'
DC F'031'
DC CL4'JAN'
DC F'060'
DC CL4 ' FEB '
DC F'091'
DC JL4'MAR'
DC F '121 '
DC CL4'APR'
DC F'152'
DC CL4 ' MAY '
DC F'182'
DC CL4'JUN'

LOAD R13 BACK

BUMP TO NEXT TABLE VALUE

5-312

DC F'213'
DC CU'JUL'
DC F*244'
DC CL4'AUG'
DC F'274'
DC CL4'SEP'
DC F'30 5'
DC CL4'OCT'
DC F'335'
DC CL4'NOV'
DC F'366'
DC CL4'DEC'
END DATETIME

5-313

(16) GEAB.

MARINB START
SAVE
BALR
USING
LR
L
MVC
ST
LA
BLDL
L
L
STH
RETURN
DS

REGI3 DS
SREG DS
LISTADDR DC

DC
NAMEADDR DS

DS
END

0
(14.12)
10,0
*,10
3,1
2,0(3)
NAMEADDR(8) ,
13,REG13
13,SREG
0,LISTADDR
13.REG13
2,4(3)
15,0(2)
(14.12) ,T
OF
IF
18F
X'OOOl'
X'0040'
CL 8
28H
MARINB

DETERMINE EXISTENCE OF LOAD MODULE

ADDRESS OF ADDRESS OF NAME
LOAD 2 WITH ADDRESS OF NAME

2(2) MOVE NAME TO SAVE AREA
SAVE BACK ADDRESS
LOAD ADDRESS OF CURRENT SAVE AREA
EXECUTE BLDL MACRO
RESTORE BACK ADDRESS
LOAD ADDRESS OF RETURN CODE FIELD
STORE BLDL RETURN CODE IN CALLING PROGRAM
GO BACK

5-314

(17) GEAC.

MARINCTL START

SAVE

BALR

USING

LM

LH

AH

BCT

B

LOOP LA

PACK

CLI

BNE

MVI

AOK CVB

STH

PACK

CLI

BNE

MVI

BOK CVB

STH

LA

BCT

RETX RETURN

DS

FLDA DS

END

0
(2,5)

15,0

M5

2,4,0(1)

4,0(4)

2,2(3)

4, LOOP

RETX

3,12(3)

FLDA,0(4,2)

FLDA+y.X^'
AOK

FLDA+7,X'OF'

5, FLDA

5,4(0,3)

FLDA,4,(4,2)

FLDA+7,X'04'

BOK

FLDA+7,X'OF'

5,FLDA

5,0(0,3)

2,8(0,2)
4,LOOP

(2,5) ,T

OD

CL 8

MARINCTL

DECODE PERIODIC SET CONTROL WORDS,

CONVERT TO BINARY AND LOAD IN SET-W-TBL.

PICK UP ADDRESS OF RX,SET-W-TBL,SL.

LOAD VALUE OF SL IN REG. 4.

COMPUTE ADDRESS OF FIRST PSC.

CHECK TO SEE IF FILE HAS ANY PERIODICS.

IF NO RETURN TO THE CALLING PROGRAM.

LOAD ADDRESS OF NEXT ROW IN SET MATRIX.

PACK FIRST HALF OF PSC, NUMBER OF SUBSETS

CHECK FOR BLANK

IF NOT, SKIP AHEAD

REPLACE BLANK WITH ZERO

CONVERT TO BINARY, NUMBER OS SUBSETS

STORE RESULT IN THIRD COLUMN OF MATRIX

PACK SECOND HALF OF PSC, STARTING POSITION

CHECK FOR BLANK

IF NOT, SKIP AHEAD

kEPLACE BLANK WITH ZERO

CONVERT TO BINARY

STORE RESULT IN FIRST COLUMN OF MATRIX

COMPUTE ADDRESS OF THE NEXT PSC.

IF THERE IS ONE BRANCH TO LOOP

GO BACK

5-315

(18) GEAD.

T

MARINO START 0

SAVE (14,12)

BALR 10,0

USING *,10

L 12,4(1)

ST 13,4(12)

ST 12,8(13)

L 3,8(1)

L 3,0(3)

L 2,0(1)

BCT 3,DELX

LOADX LOAD EPL0C=(2)

B RETX

DELX DELETE EPL0C=(2)

RETX L 13,4(12)

RETURN (14,12) ,T

END MARINO

LOAD OR DELETE LOAD MODULE

LOAD ADDRESS OF REGISTER SAVE AREA

SAVE RETURN POINT IN SAVE AREA

SAVE ADDRESS OF SAVE AREA IN CALLING PROGRAM

LOAD ADDRESS OF LOAD/DELETE SWITCH

LOAD VALUE OF LCAD/DELETE SWITCH

LOAD NAME OF SUBROUTINE

IF LOAD/DELETE SWT = 1, DO A LOAD,

OTHERWISE DELETE

EXECUTE LOAD MACRO

DONE

EXECUTE DELETE MACRO

RESTORE BACK CHAIN

GO BACK

+ ►

5-316

(18.1) GEAE

SETXLIST

RJFDCBAD

DDOVRIDE

VARDCB

DCBADDR

OVEXLIST

JFCBLIST

JFCBAREA

LISTADDR

JFCBLADR

OSHK

USING IHADCB.R2

L R2,0(R1)

Mvc Fxi save,dcbexlst+i
MVC DCBEXLST+1(3),LISTADDR

L R2,4(R1)

LA R2,0(R2)

ST R2,DCBADDR

MVC RJFDCBAD(3),DCBADDR+1

MVC VXLSAVE,DCBEXLST+1

MVC DCBEXLST+1(3),JFCBLADR

STM 14,12,12(13)

CNOP 0,4

BAL 1,*+8

DC ALK128)

DS AL 3

SVC 64

LM 14,12,12(13)

MVC DCBEXLST+1(3),LISTADDR
B OKRET

DROP R2.R13

USING *,R15

USING IEFJFCBN,R4

USING IHADCB.Rl

LA R4,JFCBAREA

MVC DCBBUFL(2),JFCBUFL

MVC DCBRECFM(l).JFCRECFM

MVC DCBBLKSI(2),JFCBLKSI

MVC DCBLRECL(2).JFCLRECL

LA RI,0(R1)

C RI,DCBADDR

BE VARDCB

MVC DCBEXLST+1(3),FXLSAVE

BR R14

MVC DCBEXLST+1(3).VXLSAVE

BR R14

LTORG

DS OD

DS F

DC X'85'

DC AL3(DDOVRIDE)

DC X'87'

DC AL3(JFCBAREA)

DS 44F

DC AL3(OVEXLIST)

DC AL3(JFCBLIST)

SET UP SAVE/RESTORE

GET ADDRESS OF DCB (FIXED)

SAVE COBOL EXIT LIST ADDRESS

SET EXLIST TO DDOVRIDE

GET ADDRESS OF DCB (VARIABLE)

CLEAR HIGH ORDER BYTE

SAVE ADDRESS OF VARIABLE DCB

MOVE DCB ADDR TO RDJFCB PLIST

SAVE COBOL EXIT LIST ADDR

STORE RDJFCB EXLIST ADDR

STORE REGISTERS

BRANCH AROUND PARAM

TO SET HIGH ORDER BIT ON

AREA TO HOLD DCB ADDRESS

RDJFCB SVC

RESTORE REGISTERS

SET EXIT LIST ADDR TO DDOVRIDE

RETURN

THE EXLST SET ABOVE WILL CAUSE

/FOLLOWING CODE TO BE EXECUTED

/DURING THE OPEN

R1 HAS DCB BASE ADDRESS

LOAD R4 WITH JFCB ADDRESS

SET BUFL

SET RECFM

SET BLKSIZE

SET LRECL

CLEAR HIGH ORDER BYTE

IS VARIABLE FILE BEING OPENED

BRANCH IF YES

RESTORE EXLIST ADDR (FIXED)

RETURN

RESTORE EXLIST ADDR (VARIABLE)

RETURN

DCB ADDR (FOR COMPARE)

DCB EXLIST OPTION FLAG

ADDRESS OF DCB EXIT ROUTINE

RDJFCB EXLIST OPTION FLAG

ADDR OF JFCB AREA

44 WORD JFCB HOLD AREA

DCB EXLIST ADDRESS

JFCB READ EXLIST ADDRESS

5-316.1

(18.1) GEAE. (CONTINUED)

VXLSAVE DS AL3
FXLSAVE DS AL3
lEFJFCBN DSECT

lEFJFCBN
DCBD DSORG=PS,DEVD=TA
END

SAVE COBOL EXLIST (FIXED)
SAVE COBOL EXLIST (VARIABLE)

DSECT FOR JFCB
DSECT FOR DCB

5-316.2

(19) GEAG

GEAGM CSECT

BALR

USING

MVC

BR

MARINGO SAVE

ENTRY

BALR

USING

LM

LH

CL I

BE

AH

AH

LOOP1 MVI

BCT

B

LOOP2 LA

CL I

BE

CLI

BE

CLI

BE

CLI

BE

CLI

BE

B

GO 2 BAL

G021 LH

LA

STH

CH

BL

B

SWTGO MVI

B

GO3 CLI

BE

CLI

BE

LH

BCTR

15,0

*,15

SAVEADDR(32),

14

(14,12)

MARINGO

15,0

*,15

2,8,SAVEADDR

1,0(4)

1(7),X'15'

OP21

6,0(5)

6,0(5)

11(3).X'OO'

1.LOOP2

RETX

3,12(3)

11(3),X'00'

LOOP1

11(3).X'Ol'

GOl

11(3),X'02'

GO 2

11(3),X'OS'

GO 3

11(3),X'15'

G021

LOOP1

14,FLAG

7,8(3)

7,1(7)

7,8(3)

7,4(3)

SWTGO

LOOP1

1(8),X'Ol'

LOOP 1

7(3),X'OO'

GO 2

9(3),X'OO'

GO 2

7,8(3)

7,0

ENTRY POINT FOR INITIALIZATION

SET ANALYSIS ROUTINE

0(1) INITIALIZE BY SAVING ADDRESSES

OF PARAMETERS

RX,SET-TABLE,S L,ABM,FLAG-AREA,OP,SWTGO

ENTRY POINT FOR EXECUTION

PICK UP ADDRESSES

PICK UP NUMBER OF DATA SETS IN FILE

IF SUBQUERY LOGIC WAS FALSE

GO TO OP21

POSITION FLAG-AREA ADDRESS WITH

THE VALUE OF ABM

MOVE ZERO TO S7 - SET STATUS

BRANCH IF A PSET REMAINS TO BE PROCESSED

OTHERWISE RETURN

COMPUTE ADDRESS OF PSET ROW IN MATRIX

IF THERE WAS NO SEARCH ON SET THAN

GO TO GET NEXT DATA SET.

IF TYPE OF SEARCH IS SEARCH

BRANCH TO GOl

IF TYPE OF SEARCH IS SEARCH-ALL

BRANCH TO GO2

IF TYPE OF SEARCH IS SEARCH-TERMINATE

BRANCH TO GO3

IF SET WAS ACTIVE BUT LOGIC WAS FALSE

GO TO GET NEW SUBSET.

ANY OTHER STATUS IS NOT SIGNIFICANT HERE

LOAD RETURN ADDRESS AND GO TO FLAG

PICK UP ACTIVE SUBSET NUMBER

ADD 1 TO IT

STORE IT IN S6

IF THERE IS ONE MORE SUBSET

BRANCH TO SWTGO

INDICATE PROCESSING NOT COMPLETE

IF PSET NOT PREVIOUSLY FLAGGED

BRANCH TO DO IT NOW

IF THIS IS THE FIRST SUBSET

BRANCH TO FLAG IT, OTHERWISE

PICK UP SUBSET NUMBER

COMPUTE ADDRESS OF PREVIOUS SUBSET

5-317

MH

AH

AR

CU

BL

B

GOl CLI

BNE

LA

FLAG LH

MH

AH

LA

STH

BCTR

LA

AR

Ol
NI

MVI

LH

LA

STH

BR

OP21 MVI

BCT

B

LOOP3 LA

CLI

BNE

LH

LA

STH

CH

BL

B

LOOP4 MVI

B

RETX RETURN

SAVEADDR DS

END

7,2(3)

7,0(3)

7,2

0(7),X'FÜ'

GO 2

LOOP1

7(3).X'OO'

LÛOP1

14,LOOP 1

7,2(3)

7,8(3)

7,0(3)

7,1(0,7)

7,0(6)

7,0

6,2(6'
7,2

OC) ,x'co'
0(7),X'CF'

7(3),X'01'

7,0(3)

7,1(7)

7,0(5)

14

11(3),X'00'

1,LOOP 3

RETX

3,12(3)

11(3),X'15'

OP 21

7,8(3)

7,1(7)

7,8(3)

7,4(3)

LOOP 4

OP 21

1(8),X'01'

OP21

(1A,12),T

16F

MARINGO

FOR SEARCH-TERM1NATE LOGIC

IF THE PREVIOUS SURSET IS FLAGGED

BRANCH TO THIS ONE ALSO

IF THE PSET IS ALREADY FLAGGED ONCE

DO NOT FLAG IT AGAIN, OTHERWISE

LOAD RETURN äTDRI'SS TO LOOP1 AND PROCEED.

PICK UP LENGTH OF SUBSET IN THIS PSET, AND

MULTIPLY IT BY NO. OF PRECEDING SUBSETS, ANu

ADD TO IT THE STARTING POSITION OF PSET

SAVE RELATIVE ADDRESS OF FLAG IN BUFFER

POSITION SAVE AREA FOR NEXT FLAG.

AND FINALLY UPSET IT BY ADDRESS OF IN-BUFFER

MASK OUT STRAY ZONE BITS

INSERT FLAG IN FIRST POSITION OF SUBSET

INSERT FLAG IN S5 - PSET FLAG STATUS

PICK UP VALUE OF ABM

ADD 1 TO IT AND
STORE IT IN ABM - NUMBER OF FLAGS IN BUFFER

RETURN VIA 14

MOVE ZERO TO SET STATUS

BRANCH IF A PSET REMAINS TO BE CHECKED

OTHERWISE RETURN

COMPUTE ADDRESS OF PSET ROW IN SET MATRIX

IF SUBSET DID NOT NEGATE THE LOGIC

BRANCH TO CHECK NEXT PSET, OTHERWISE

ADD 1 TO ACTIVE SUBSET NUMBER

IF SUCH A SUBSET IS PRESENT THEN

BRANCH TO LOOP4, OTHERWISE

FORGET IT

INDICATE THAT FALSE LOGIC IS NOT EXCLUSIVE

(20) GEAL.

MARINE START 0
SAVE (14,12)

BALR 10,0

USING *,10

L 12,4(1)

ST 13,4(12)

ST 12,8(13)

L 2,0(1)

LR 13,12

LA 1,8(1)

LINK EPL0C=(2)

L 13,4(12)

L 14,12(3)

RETURN (0,12),T

END MARINE

USER MAY ENTER THIS ROUTINE AT WILL.

18 WORD AREA PROVIDED BY USER AS

SECOND PARAM.

SAVE BACK CHAIN ADDRESS

SAVE ADDRESS OF USER SAVE AREA

ADDRESS OF CALLED PROGRAM NAME,

FIRST PARAM.
ADDRESS OF SAVE AREA TO BE PASaED ON.

THIRD PARAM TO BE PASSED ON AS

ADDRESS OF LIST

EXECUTE SUBROUTINE

LOGIC RETURN CHAIN

RESTORE R14
GO BACK AND PRESERVE RETURN CODE

IN R15

5-319

(21) GEAM.

MARINM

MOVEEX

MOVE

REIM

START 0

SAVE (2,7)

BALR 15,0

USING *,15

LM 2,6,0(1)

LH 6,0(6)

BCTR 6,0

AH 2,0(3)

BCTR 2,0

AH 4,0(5)

BCTR 4,0

EX 6,MOVE

SRDL 6,8

SLA 6,8

BZ RETM

SRL 7,24

LA 2,1(7,2)

LA 4,1(7,4)

BCT 6,MOVEEX

MVC 0(0,4),0(2)

RETURN (2,7),T

END MARINM

MOVE LOGICAL STRING

ADDRESSES OF SENDING FLD, SUBSCRIPT, REC. FLD. ,

SUBSCRIPT, LENGTH - LOAD LENGTH

SUBTRACT 1 FROM LENGTH
BASE + DISPLACEMENT OF SENDING FIELD

SET TO BASE 0
BASE + DISPLACEMENT OF RECEIVING FIELD

SET TO BASE 0
MAX MOVE IS 256 ON ONE EXECUTE MVC

SHIFT TO SUBTRACT NUMBER MOVED IN REG6

AND SAVE THAT NUMBER IN REG7

DONE
SLIDE NUMBER TO LOW END OF REGISTER

ADJUST NEW SENDING ADDRESS

ADJUST NEW RECEIVING ADDRESS

IF ADJUSTED LENGTH 1 LOOP BACK

MVC WITH 0 LENGitt WILL MOVE 1

GO BACK

i
GEAN. (22)

MARLNN START O
SAVE (2,4)

DS OH

STM 2,4,28(13)

BALR 2,0

USING *,2

L 3,0(1)

L 4,4(1)

L 4,8(4)

MVC 40(8,4),0(3)

RETURN(2,4),T

LM 2,4,28(13)

MVI 12(13),XT?'

BR 14

END MARINN

TRANSFERS 8 CHARS TO DCB OF A DIRECT FILE

CAl,L sequence chars, filename

SAVE REGISTERS

SET UP BASE REGISTER

LOAD REGISTER WITH ADDRESS OF DONAME

LOAD REGISTER WITH ADDRESS OF DEC

RELOAD REGISTER WITH DCB ADDRESS

MOVE DONAME TO DCB DONAME

RETURN

RESTORE THE REGISTERS

SET RETURN INDICATION

RETURN

5-321

(23) GEAP.

MARINES START 0

SAVE (14,12)

PS040

PS050

~ALR 15,0

USING *,,15

LM 2,6,0(1)
LH 3,0(0,3)

LA 2,1(0,2)
LH 5,0(0,5)

LH 6,0(0,6)

LR 0,5

LR 1,6

LR 7,3

BCTR 7,0

LR 8,2

LR 9,2

AR 9,6

BCT 3,PS 100

B PSEXIT

CALLING SEQUENCE IS AS FOLLOWS

R(S1(A4)),S3(A4),STATE(N).NFIELDS,S2(A4)

THIS SORT PROGRAM IS A REENTRANT SUBROUTINE

USE OF GENERAL REGISTERS IS AS FOLLOWS

0 NUMBER OF SORT FIELDS

1 LENGTH OF SUBSET

2 ADDRESS OF THE PERIODIC SET

3 NUMBER OF SUBSETS IN THIS SET

4 ADDRESS OF THE FIRST SORT STATEMENT

5 NUMBER OF SORT FIELDS

6 LENGTH OF SUBSET

7 NUMBER OF SUBSETS

8 ADDRESS OF A-SUBSET

9 ADDRESS OF B-SUBSET

10 ADDRESS OF SORT STATEMENT

11 ADDRESS OF A-SORT-FIELD

12 ADDRESS OF B-SORT-FIELD

13 ADDRESS OF SAVE AREA FROM CALLING PGM

14 LENGTH OF SORT FIELD

15 BASE REGISTER, BAD NEWS

CALLING SEQUENCE PARAMETERS ARE

1 ADDRESS OF PERIODIC SET-1

2 ADDRESS OF NUMBER OF SUBSETS

3 ADDRESS OF FIRST SORT FIELD FARMS

4 ADDRESS OF NUMBER OF FIELDS TO SORT

5 ADDRESS OF SUBSET LENGTH

LOAD ADDRESSES OF PARAMETERS

NUMBER OF SUBSETS

ADDRESS OF SET BUMPED TO BASE 1 FROM BASE 0

NUMBER OF FIELDS TO SORT

LENGTH OF SUBSET

NUMBER OF FIELDS TO SORT

LENGTH OF SUBSET

NUMBER OF SUBSETS

SUBTRACT 1

ADDRESS OF A-SUBSET

ADDRESS OF B-SUBSET IS ADDRESS OF A-SUBSET

PLUS SUBSET LENGTH, OR NEXT SUBSET

IF THERE ARE SUBSETS, CONTINUE, OTHERWISE
GO TO EXIT

5-322

V

PSIOO

PSllO

PS 150

PS160

PS 200

PS222

MC VI

MVC2

MVC3

COMPX

PS 300

PS 400

PS410

PSEXIT

LR 10,4

LH 11,0(0,10)
LR 12,11

AR 11,8

AR 12,9

LH 14,2(0,10)

EX 14,COMPX

BE PS 400

BL PS 150

CLI 7(10),X'2C'

BE PS 200

B PS 160

CLI 7(10),X'2B'

BE PS 200

LR 8,9

AR 9,6

BCT 7,PS 100

CR 2,8

BE PS 300

LR 9,2

BCTR 6,0

EX 6.MVC1

EX 6.MVC2

EX 6,MVC3

SRDL 6,8

SLA 6,8

BZ PS 300

SRL 7,24

LA 8,1(7,8)

LA 9,1(7,9)

B PS222

XC 0(0,8),0(9)

XC 0(0,9),0(8)

XC 0(0,8),0(9)

CLC 0(0,11),0(12)

LR 6,1

AR 2,1

B PS040

LA 10,24(0,10)

BCT 5,PS 110

LR 5,0

B 'S 200

RETURE (14,12),1

END MARINPS

ADDRESS OF SORT STATEMENT

FIELD A1 OF STATE (START POS OF REC)

IS BASE ADDRESS FOR SORT FIELD

INCREMENT BASE BY SUBSET POSITION TO

GET ACTUAL SUBSET ADDRESSES

FIELD A2 OF STATE (LENGTH OF SORT KEY FILED)

COMPARE 1ST SORT FIELD WITH 2ND SORT FIELD (A-

CHECK FOR ANOTHER SORT FIELD
B)

IF LOW, SUBSET FIELDS ARE IN ASCENDING
IS DESCENDING SORT CALLED FOR (OP44)’
IF SO, SUBSETS ARE OK
CONTINUE

IS ASCENDING SORT CALLED FOR (OP43)’

SUBSETS ARE OK

SEQUENCE

SHIFT B-SUBSET TO A-SUBSET

COMPUTE NEXT B-SUBSET

IF MORE SUBSETS, LOOP BACK

HAS A-SUBSET BEEN INCREMENTED

IF NOT, NO FLIP-FLOP NEEDED

SET UP FOR FLIP-FLOP

SET LENGTH TO BASE 0

EXCLUSIVE OR'S ACCOMPLISH

THE FLIP-FLOP OF THE

SUBSETS IN PLACE

SUBTRACT NUMBER OF BYTES OR'D AND SAVE IN REG7

LÛ ORDER 8 BITS ARE WIPED OUT

IF NOT 0 r.IE SUBSET IS LONGER THAN 256
SET UP FOR NEXT OR PASS

COMPUTE NEW A-SUBSET STARTING POSITION

COMPUTE NEW B-SUBSET STARTING POSITION

DO IT AGAIN

THESE THREE EXCLUSIVE OR'S WILL

SWAP UP TO 256 BYTES

OF DATA WITHOUT A BUFFER

SORT KEY COMPARE

RESTORE LENGTH OF SUBSET

INCREMENT TO NEXT SUBSET

LOCATION OF NEXT SORT STATEMENT

IF ANOTHER SORT FIELD EXISTS, PROCESS IT

RESTORE SORT STATEMENT COUNT

PROCESS NEXT SUBSET

RETURN

5-323

(24) GEAS.

r

MARINS

AREC
ADDR

MO VEX
TRANS
INVERT
RETX
TBLE

START
SAVE
BAER
USING
EM
EH
CEI
BE
AR
B
AR
EH
LA
EH
BCTR
EX
CEI
BE
CEI
BE
B
MVC
TR
EX
RETURN
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
END

0
(1,5)
15,0

M5
2,5,0(1)
1,0(4)

5(4),X'04'
A1EC

1,3
ADDR

1,2
2,10(4)

5,0(2,5)
2,2(0,4)
2,0
2, MO VEX

19(4).X'OA'
INVERT

19(4),X'OC*
INVERT
RE^X
0(0,5),0(1)

0(0,5),TBL
2,TRANS

BUILD SORT KEY tJJD INVERT IF CALLED FOR

RX,CONX,STATE-FORM,KSRT
BASE ADDRESS OF SORT FIELD (Al)
A3 FIELD OF STATEMENT (FIELD TYPE)
IF LESS THAN 4, FIELD IS FROM RECORD
SORT FIELD IS FROM CONSTANT POOL.

SORT FIELD IS FROM RECORD BUFFER POOL
SORT KEY BASE ADDRESS (Bl)
ACTUAL SORT KEY ADDRESS

PICK UP LENGTH OF FIELD
SUBTRACT 1 TO ADJUST TO BASE 0
MOVE FIELD TO SORT KEY

SORT/MERGE DESCENDING
GO TO INVERT DATA

IF SORT/MERGE FLAGGED DESCENDING
GO TO INVERT DATA

ACTUAL MOVE OF FIELD IN SORT KEY

ACTUAL .NVERSION BY BINARY TRANSLATION
INVERT Di TA

(1,5) ,T

X’ FFFEFDFCFBFAF9F8F7F6F5F4F3F2F1F0'
X'EFEEEDECEBEAE9E8E7E6E5E4E3E2E1E0'

X'DFDEDDDCDBDAD9D8D7D6D5D4D3D2D1DO'
X'CFCECDCCCBCAC9C8C7C6C5C4C3C2C1C0'
X'BFBEBDBCLBBAB9B8B7B6B5B4B3B2B1B0'

X'AFAEADACABAAA9A8A7A6A5A4A3A2A1AO'

X'9F9E9D9C9B9A99989796959493929190'
X'8F8E8D8C8B8A89888786858483828180'

X'7F7E7D7C7B7A79787776757473727170'

X'6F6E6D6C6B6A69686766656463626160'
X'5F5E5D5C5B5A59585756555453525150'
X' 4F4E4D4C4B4A49484746454443424140 '

X'3F3E3D3C3B3A39383736353433323130'

X'2F2E2D2C2B2A29282726252423222120'
X'1F1E1D1C1B1A19181716151413121110'
X'0 FOEODOC OBOA090 80 70 60 50 40 30 2010 0'
MARINS

5-324

(25) GEAI.

*

MARINI

REIM

MOVEX
DONE
RETX

TADDR
TN AME
MASK
REG13

START
SAVE
LM

BALR
USING
LH
AR
MVC
L
ST
LA
LA
LOAD
LR
LH
AH
MH
LA
C
BH
MVC
STH
A
ST
L
SR
ST
LR
BCTR
EX
SRDL
SLA
BZ
SRL
LA
LA
BCT
MVC
MV I
LA
LA
DELETE
L
RETURN
DS
DS
DS
DS
DS
DS
END

0
(14,12)
2,6,0(1)

12,0
M2
8,3(0,5)
8,6

DYNAMICALLY LOAD TABLE INTO
WORKING STORAGE
BASE ADDR OF REC AREA, DISP OF REC AREA, SIZE

OF REC AREA, ADDRESS
OF STATEMENT, ADDRESS OF RECORD

RELATIVE ADDR OF BFLD (Bl)
ACTUAL ADDR OF BFLD

TADDR(12),0(8)GET NAME TABLE AND NEW ADDRS
11,TADDR ADDRESS OF NAME
13.REG13 SAVE BACK - CHAIN
13,MASK ADDRESS OF SAVE AREA FOR REGISTERS
O.TNAME NAME OF TABLE TO BE CALLED
EPLOC“(0) GET TABLE
13,0 ADDRS OF TABLE
7,0(13) LENGTH OF FIRST PARAM (LENGTH OF ARGUMENT)
7,2(13) LENGTH OF SECOND PARAM (LENGTH OF FUNCTION)
7,4(13) COMPUTE LENGTH OF TABLE (NO OF OCCURRENCES)
7,6(7) ADD LENGTH OF PARAMS TO GET TOTAL TABLE LENGTH
7,0(4) IS THERE ROOM FOR TABLE IN WORKING STORAGE
RETX VERY SORRY....
16(2,5),10(5) SAVE BLENGTH IN NOGO
11,14(0,5)
2,0(3)
2,8(5)
8,0(4)
8,7
8,0(4)
8.7
8,0
8,MOVEX
8.8
8,8
DONE
9,24
2,1(9,2)
13,1(9,13)
8.RETM
0(0,2),0(13)
7(5).X'OF'
13,MASK
O.TNAME
EPLOC=(0)
13.REG13
(14,12) ,T
OD
CL 4
CL 4
CL8
20 F
2F
MARINT

SAVE ADDRESS OF NAME
COMPUTE ACTUAL STORAGE ADDRESS
LOAD IT IN BSTART OF STATE-FORM
LENGTH OF STORAGE PASSED AS NOT USED
NEW AMOUNT OF STORAGE FREE
RECORD IT IN LENGTH PARAM
LENGTH OF TABLE
SUBTRACT 1 TO ADJUST TO BASE 0
MOVE TABLE IN WORKING STORAGE
SHIFT RIGHT THE LENGTH MOVED
REPOSITION THE LENGTH LEFT
BRANCH IF TABLE MOVED
COMPUTE LENGTH MOVED
RECOMPUTE RECEIVING ADDRESS
RECOMPUTE SENDING ADDRESS
BRANCH IF MORE THAN ONE BYTE
ACTUAL MOVE INSTRUCTION
SET NEW OP CODE FOR MACRO **15**
PROVIDE SAVE AREA FOR MACRO CALL
LOAD ADDRESS OF NAME TABLE
WIPE OUT LOADED COPY OF TABLE
RESET REGISTER 13
GO BACK

5-325

(26) GEAX.

GEAXM

MARIMX

AREC

ADDRS

BREC

LOOP

CSECT

SAVE (1,7)

BALR 15,0

USING *,15

LM 2,5,0(1)

STM 2,5, SAVEADDR

RETURN (1,7) ,T

SAVE (1,7)

ENTRY MARINX

BALR 15,0

USING *,15

LM 2,4,SAVEADDR

LH 5,4(4)

LH 6,14(4)

LH 1,0(4)

LH 7,10(4)

CLI 5(4),X'04'

BL AREC

AR 1,3

BCTR 5,0

BCTR 5,0

BCTR 5,0

B ADDRS
AR 1 9

CLI 15(4),X’04'

BL BREC

LR 2,3

BCTR 6,0

BCTR 6,0

BCTR 6,0

AR 2,7

CLI 9(4),X'19'

BE TEXTSC

CLI 9(4),X'1A'

BE TEXTSC

BCT 5,COMPN

LH 6,2(4)

BCTR 6,0

EX 6,COMPX

BL LONE

BH LTHREE

SRDL 6,8

SLA 6,8

BZ LTWO

SRL 7,24

LA 1,1(1,7)

LA 2,1(2,7)

B LOOP

COMPARE ROUTINE

INITIALIZATION SECTION

RX, CONX, STATE-FORM, N

SAVZ P/RAMETER ADDRESS
GO 3ACF

EXECUTION SECTION

ADDRESSES OF PARAMETERS

LOAD TYPE OF A-FIELD (FIELD A3)

LOAD TYPE OF B-FIELD (FIELD B3)

STARTING POSITION OF A-FIELD (Al)

STARTING POSITION OF B-FIELD (Bl)

IF FIELD A3 (TYPE) IS LESS THAN 4,

THE A-FIELD IS FROM THE RECORD.

A-FIELD IS IN CONSTANT POOL

SUBTRACT 3 FROM THE A-FIELD TYPE

TO MAKE TYPE EQUAL TO 1 (ALPHA)

OR 2 (NUMERIC)

A-FIELD IS IN RECORD BUFFER POOL

IF FIELD B3 (TYPE) IS LESS THAN 4,

B-FIELD IS IN RECORD BUFFER POOL

B-FIELD IS IN CONSTANT POOL

SUBTRACT 3 FROM TYPE TO MAKE

TYPE EQUAL TO 1 (ALPHA) OR

2 (NUMERIC)

COMPUTE ABSOLUTE ADDRESS OF B-FIELD

OP 24 IS A CONTAINS OPERATOR

GO SET UP FOR TEXT SCAN

OP 25 IS A CONTAINS OPERATOR

CO LET UP FOR TEXT SCAN

BRANCH TO COMPARE NUMERIC (TYPE = 2)

COMPARE ALPHA-NUMERIC HERE - ADD DISPLACEMENT
SET A-FIELD ADDRESS TO BASE 0
ALPHA COMPARE

BRANCH IF A-FIELD IS LOW

BRANCH IF A-FIELD IS HIGH

SAVE NUMBER OF CHARS. COMPARED IN REG 7

SUBTRACT NO. OF CHARS. COMPARED FROM REG 6

IF DONE GET OUT OF LOOP

MOVE Save NO. TO LO ORDER END OF REGISTER

COMPUTE NEW A-FIELD STARTING POSITION

COMPUTE NEW B-FIELD STARTING POSITION
DO SOME MORE

5-326

LTWO

LIBREE

TEXTSC

LOUPT

MVI

B
MVI

B

LH

LH

SR

BL

BCTR

SIC

LA

LA

CLC

BE

BXLE

9(4),X'02'

RETX

9(4),X'Ü3'

RETX

7,2(4)

5,12(4)

7,5

LONE

5,0

5,LOOPT+l

7,0(1,7)

6,1(0,0)
0(0,1),0(2)

LTWO

1,6,LOOPT

EQUAL COMPARE, RETURN CODE OF 2

ALL DONE, FIELDS ARE EQUAL

A-FIELD IS GREATER, RETURN CODE OF 3
ALL DONE A B

LENGTH OF A-FIELD

LENGTH OF B-FIELD

IF THE A-FIELD IS SHORTER THAN THE B-FIELD

THERE CAN BE NO MATCH, SO GET OUT.

ADJUST B-FIELD LENGTH TO BASE 0

INSERT THE B-FiELD LENGTH INTO THE LOOPT
CLC INSTRUCTION

THE LAST HIGH ORDER A-FIELD CHAR. THAT CAN
MATCH

VALUE 1, THE BXLE INCREMENT

COMPARE A-FIELD AND B-FIELD ACCROSS THE
B-FIELD LENGTH

ITS A HIT

BUMP THE A-FIELD CHARACTER, AND IF NOT DONE

LONE MVI

B

COMPX CLC

PACKA PACK

PACKB PACK

COMPN LH

BCTR

N

EX

CL I

BNE

MVI

LOADB LH

BCTR

N

EX

CLI

BNE

MVI

COMPP CP

BL

BH

B

RETX RETURN

DS

SAVEADDR DS

AFLD DS

BFLD DS

FLDOF DC

END

9(4) ,X'01'

RETX

0(0,1),0(2)
AFLD,0(0,1)

BFLD,0(0,2)

6,2(4)

6,0
6,FLDOF

6,PACKA

AFLI^.X^'
LOADB

AFLDf7,X'OF'

6,12(4)

6,0
6,FLDOF

6,PACKB

BFLDf 7,X'04'

COMPP

BFLDf 7,X'OF'

AFLD,BFLD

LONE

LTHREE

LTWO

(1,7),1

OD

16F

CL8

CL8

X'OOOOOOOF'

MARINX

LOOP BACK

A-FIELD IS LESS. RETURN CODE OF 1

ALL DONE A B, OR NO HIT IF TEXTSCAN

COMPARE LOGICAL A-FIELD WITH B-FIELD
PACK A-FIELD

PACK B-FIELD

PICK UP A-FIELD LENGTH *A2*
ADJUST TO BASE 0

ACCEPT 15 DIGITS OR LESS

PACK THE A-FIELD

BLANKS?

IF NOT, CONTINUE

REPLACE BIANK WITH 0

LENGTH OF B-FIELD (B2)

ADJUST TO BASE 0

ACCEPT 15 DIGITS OR LESS

PACK THE B-FIELD

BLANKS?

IF NOT, CONTINUE

ACCEPT BLANKS AS ZEROS

COMPARE PACKED DECIMAL

BRANCH IF A-FIELD IS LESS

BRANCH IF A-FIELD IS GREATER

BRANCH IF EQUAL COMPARE

GO BACK

5-327

..

(27) GEAZ.

GEAZM

MARINE

ADDRS

RECfi

BDONE

AMAT

BMAT

APK

BPK

CSECT

SAVE (14,12)

BALR 15,0

USING *,15

LM 2,5,0(1)

ST 4,MATRIX

LR 4,3

STM 2,5,SAVEADDR
BR 14

SAVE (14,12)

ENTRY MARINZ

BALR 15,0

USING *,15

LM 1,4,SAVEADDR
LH 5,6(0,4)

SLA 5,2

LA 6.TBL0P-4

L 14,0(5,6)
BR 14

LH 5,0(0,4)

LH 6,2(0,4)

LH 7,4(0,4)

LH 8,8(0,4)

LH 9,10(0,4)

LH 10,12(0,4)

CLI 21(4),X'00'

BE AMAT

AR 5,2

CLI 23(4),X'OO'
BE BMAT

AR 8,2

BCTR 6,0

BCTR 9,0

BR 14

A 5,MATRIX

B RECB

A 8,MATHIX

B BDONE

N 6.FLD0F

EX 6.PACKA

CLI AFLI>f7,X,04 '

BNE 0(0,14)

MVI AFLIH^.X'OF'
BR 14

N 9.FLD0F

EX 9.PACKB

CLI BFLD+7,X'04,

EXECUTES MOST OUTPUT, CONDITIONAL, AND

DIRECTIVE STATEMENTS

INITIALIZE BY SAVING PARAMETERS

N,RX, MATRIX, STATE-FORM

ADDRESSES OF PARAMETERS

SAVE MATRIX ADDRESS

RECORD ADDRESS

N, RX, RX, STATE-FORM
EXIT

SECOND ENTRY POINT WITHOUT PARAMS

NORMAL EXECUTTON ENTRY POINT

N, RX, RX, STATE-FORM

GET OPERATION CODE

MULTIPLY IT BY 4, EACH TBLOP ENTRY IS 4 BYTES

GET LIST-ADDRESS OF OP-SECTIONS (TBLOP BASE 0)

GET ADDRESS OF OP-SECTION (OP NO TO BE EXEC.)
EXECUTE THE OP-SECTION

A-FIELD, RELATIVE ADDRESS (Ai OF STATE-FORM)

A-FIELD, LENGTH (A2 OF STATE-FORM)

A-FIELD, TYPE OF DATA (A3 OF STATE-FORM)

B-FIELD, RELATIVE ADDRESS (B1 OF STATE-FORM)

B-FIELD, LENGTH (B2 OF STATE-FORM)

B-FIELD, TYPE OF DATA (B3 OF STATE-FORM)

CHECK FOR SET NO. ZERO IN A-FIELD (A4)

MEANS ADDRS IS IN MATRIX

ABSOLUTE ADDRESS OF A-FIELD

B-FIELD SET NO. (B4) EQUAL ZERO MEANS
B-FIELD IS A MATRIX

ABSOLUTE ADDRESS OF B-FIELD

ADJUST A-FIELD LENGTH TO BASE G

ADJUST B-FIELD LENGTH TO BASE 0
RETURN

COMPUTE A-FIELD MATRIX ADDRESS
CHECK B-FIELD

COMPUTE B-FIELD MATRIX ADDRESS

ACCEPT 15 DIGITS OR LESS FOR A NUMBER
PACK THE A-FIELD

CHECK FOR A BLANK

IF NOT, RETURN

OTHERWISE CHANGE IT TO ZERO
AND RETURN

ACCEPT 15 DIGITS OR LESS FOR A NUMBER
PACK THE B-FIELD

CHECK FOR A BLANK

5-328

PACKA

nACKB

CONV

AOK

CONVB

CONVG

BOK

AZP

BZP

ZAPA

ZAPB

OPOl

COMPX

OP02

0P03

OP04

0P05

BNE

MV1

BR

PACK

PACK

BCT

BAL

B

BAL

BCT

B

BCT

BAL

BR

BAL

BR

N

EX

BR

N

EX

BR

ZAP

ZAP

BAL

BCT

EX

BL

B

CLC

BAL

BCT

EX

BE

B

BAL

BCT

EX

BH

B

BAL

BCT

EX

BL

B

BAL

BCT

EX

BE

B

0(0,14)

BFLIHT.X'OF’

14

AFLD,0(0,5)

BFLD,0(0,8)

7, AOK

14,APK

CONVB

14,AZP

10,CONVG

ATRUE

10,BOK

14.BPK

12
14,BZP

12
6.FLDOF

6,ZAPA

14
9.FLDOF

9,ZAPB

14

AFLD,0(0,5)

BFLD,0(0,8)

14.ADDRS

7.0P01N

6,COMPX

ATRUE

AFALLS

0(0,5),0(8)

14.ADDRS

7,OP02N

6,COMPX

ATRUE

AFALLS

14,ADDRS

7.0P03N

6,COMPX

ATRUE

AFALLS
14,ADDRS

7,OP04N

6,COMPX

AFALLS

ATRUE

14.ADDRS

7.0P05N

6,COMPX

AFALLS

ATRUE

IF NOT, RETURN
OTHERWISE, REPLACE WITH A ZERO

AND RETURN
ACTUAL PACK INSTRUCTIONS

HAS A-FIELD BEEN CHECKED FOR BLANKS & PACKED?

IF NOT, CHECK AND PACK

NOW DO THE B-FIELD
GO TO THE LEADING ZERO FILL SECTION

ARE WE READY TO EXIT YET?

IF SO, SET UP RETURN
HAS B-FIELD BEEN CHECKED AND PACKED?

IF NOT, CHECK AND PACK

RETURN TO 12
GO TO LEADING ZERO FILL SECTION

RETURN VIA 12
ACCEPT 15 OR LESS DIGITS AS A-FIELD LENGTH

ZERO FILL A-FIELD

RETURN VIA 14
ACCEPT 15 OR LESS DIGITS AS B-FIELD LENGTH

ZERO FILL B-FIELD

RETURN VIA 14
INSERT LEADING ZEROS IN AFLD

INSERT LEADING ZEROS IN BFLD

DECODE INSTRUCTION (LESS THAN)

BRANCH IF A-FIELD NOT ALPHA-NUMERIC

COMPARE ALPHA-NUMERIC, LOGICAL

A-FIELD IS LESS THAN B-FIELD

IT IS NOT LESS
LOGICAL COMPARE OF UP TO 256 CHARACTERS

DECODE INSTRUCTION (EQUAL)

BRANCH IF A-FIELD NOT ALPHA

COMPARE A-FIELD WITH B-FIELD

A-FIELD IS EQUAL TO B-FIELD

IT IS NOT EQUAL
DECODE INSTRUCTION (GREATER THAN)

BRANCH IF A-FIELD NOT ALPHA

COMPARE A-FIELD WITH B-FIELD

A-FIELD IS GREATER THAN B-FIELD

IT IS NOT GREATER
DECODE INSTRUCTION (NOT LESS THAN)

BRANCH IF A-FIELD NOT ALPHA

COMPARE A-FIELD WITH B-FIELD
A-FIELD LESS THAN B-FIELD, CONDITION FALSE

CONDITION TRUE
DECODE INSTRUCTION (NOT EQUAL)

BRANCH IF A-FIELD NOT ALPHA

COMPARE A-FIELD WITH B-FIELD

A-FIELD IS EQUAL TO B-FIELD, CONDITION FALSE

CONDITION TRUE

5-329

*
0P06

OP07

OP07N

STRB

STRBN

STRBNX

UNPKB

STRBZ

ZAPBB

OP08

I

OP08N

0P11

OP11F

BAL

BCT

EX

BH

B

BAL

LR

BCT

B

BAL

AP

LH

BCTR

LR

BCT

B

BCT

SLA

EX

B

UNPK

SLA

EX

B

ZAP

BAL

LR

BCT

B

BAL

SP

3
BAL

LR

BCT

CR

BE

MV I

ST

ST

LR

EX

SRDL

SLA

BZ

SRL

LA

BCT

14.ADDRS

7.0P06N

6.COMPX

AFALLS

ATRUE

14.ADDRS

11,10
7,OP07N

ATRUE

12.CONV

BFLD.AFLD

9,10(0,4)
9,0

10,11
10,STRBN

STRBNX

10,STRBZ
9,4

9,UNPKB

OPXX

0(0,8),BFLD
9,4

9,ZAPBB

OPXX

0(0,8),BFLD

14.ADDRS

11,10
7.0P08N

ATRUE

12.C0NV

BFLD.AFLD

STRB

14.ADDRS

11,10
7.0P11N
6,9

OP.11X

0(8),X'40 ’

6.SAVE6

8,SAVES

6,9

6.M0VEF

6,8
6,8
OP11XC

7,24

8,1(7,8)

6.0P11F

DECODE INSTRUCTION (NOT GREATER THAN)
BRANCH IF A-FIELD NOT ALPHA

COMPARE A-FIELD WITH B-FIELD

A-FIELD GREATER THAN B-FIELD (CONDITION FALSE)
CONDITION TRUE '

DECODE INSTRUCTION (ADD)
B-FIELD DATA TYPE

BRANCH IF A-FIELD NOT ALPHA

NOP THE INSTRUCTION

PACK FIELDS IF NECESSARY

ADD A-FIELD TO B-FIELD IN WORKING STORAGE
B-FIELD LENGTH

ADJUST TO BASE 0

B-FIELD DATA TYPE

BRANCH IF B-FIELD NOT ALPHANUMERIC
STORE AN ALPHA B-FIELD

ADJUST LENGTH OF REC. AREA FOR UNPK INSTR.

UNPACK THE B-FIELD FOR DISPLAYING
ON THE WAY BACK

CONVERT B-FIELD TO BCD IN BFLD

ADJUST LENGTH PARAMETER FOR ZAP INSTRUCTION
ZERO AND PACK B-FIELD
ON THE WAY OUT

INSERT LEADING ZEROS AND PACK INTO

DECODE INSTRUCTION (SUBTRACT)
B-FIELD DATA TYPE

BRANCH IF A-FIELD NUMERIC

NOP THE INSTRUCTION

PACK THE FIELDS IF NECESSARY

SUBTRACT AFLD FROM BFLD

RESTORE THE B-FIELD TO PROPER FORM

DECODE INSTRUCTION (MOVE)
B-FIELD DATA TYPE

BRANCH IF A-FIELD NUMERIC
COMPARE LENGTHS

NO PADDING NECESSARY

INSERT BLANK IN RECEIVING AREA

SAVE ADDRESS OF LENGTH OF A-FIELD
SAVE ADDRESS OF B-FIELD

B-FIELD LENGTH

SAVE AREA

PROPAGATE BLANKS IN RECEIVING FIELD
SAVE NUMBER MOVED

SUBTRACT NUMBER MOVED

IF DONE, SKIP AHEAD

RIGHT JUSTIFY NUMBER MOVED

COMPUTE NEW STARTING ADDRESS

IF GREATER THAN ONE, BO BACK

5-330

MOVEF MVC

0P11XC L

L

OP11X EX

SRDL

SLA

BX

SRI

LA

LA

BCT

MOVEX MVC

B

OP11N BCT

BAL

B

OP11Z BAL

MOVEA MVC

B

OPOIN BAL

CP

BL

B

OP02N BAL

CP

BL

B
0P03N BAL

CP

BH

B

OP04N BAL

CP

BL

B

OP05N BAL

CP

BE

B
OP06N BAL

CP

BH

B

OP31 BAL

MV I

1(0,8),0(8)
6.SAV6

8,SAV8

6,MOVEX

6,8
6,8
OPXX

7,24

5,1(7,5)

8,1(7,8)

6,0P11X

0(0,8),0(5)
OPXX

7,0P11Z

14,APR

MOVEA

14.AZP

BFLD, AFLD

STRB

12.CONV

AFLD,BFLD
ATRUE

AFALLS

12,CONV

AFLD,BFLD
ATRUE

AFALLS

12.CONV

AFLD,BFLD
ATRUE

AFALLS

12.CONV

AFLD,BFLD

AFALLS

ATRUE

12,CONV

AFLD,BFLD

AFALLS

ATRUE

12,CONV

AFLD,BFLD
AFALLS

ATRUE

14,ADDRS

0(8),X'40 '

PROROGATE CHARACTER

RESTORE A-FIELD LENGTH

RESTORE B-FIELD ADDRESS
ALPHA MOVE

SAVE NUMBER MOVED

SUBTRACT NUMBER MOVED

IF DONE, THIS IS THE WAY OUT

RIGHT-JUSTIFY NUMBER MOVED

COMPUTE NEW SENDING ADDRESS

COMPUTE NEW RECEIVING ADDRESS

IF MORE THAN ONE LEFT, GO BACK

MAX STRING LENGTH IS 256, MIN IS
WAY OUT

IF DEFINED AREA, BRANCH OUT

RECORD FIELD MIGHT HAVE BLANKS
MOVE

LEAD ZEROS AND PACK, NO BLANKS
MOVE AFLD TO BFLD

MOVE BFLD TO THE B-FIELD
PACK

COMPARE

A-FIELD LESS THAN B-FIELD
A-FIELD NOT LESS
PACK

COMPARE

A-FIELD LESS THAN B-FIELD
A-FIELD NOT LESS
PACK

COMPARE

A-FIELL GREATER THAN B-FIELD

A-FIELD .ÎOT GREATER
PACK

COMPARE

A-FIELD LESS

A-FIELD NOT LESS THAN B-FIELD
PACK

COMPARE

A-FIELD EQUAL

A-FIELD NOT EQUAL
PACK

COMPARE

A-FIELD GREATER

A-FIELD NOT GREATER THAN B-FIELD
MOVE SPACES

MOVE BLANK TO B-FIELD

1

5-331

*
4i

OP323

OP 32

AT RUE

AFALLS

v OP30

OP36N

EDIT

(I V.

EDI TP

PROED

LR 5,8

LA 8,1(0,8)

LR 6,9

SLA 9,8

BZ ATRUE

BCTR 6,0

B 0P11X

BAL 14,ADDRS

MV1 0(8),X'FO'

B OP323

MVC 0(2,1),14(4)

B OP99

KJC 0(2,1),16(4)

B OP99

BAL 14,ADDRS

LR 11,8

BCT 7.0P36N

B OP11

BCT 7,OP36P

BAL 14,APK

LH 6,2(0,4)

LA 5,MASK

MVC 0(0,5),0(11)

MVC 1(31,4),0(5)

LA 7,16(0,5)

SR 7,6

LR 10,6

EX 9,MOVEM

LA 8,0(0,0)

IC 8,9(0,5)

LA 6,TBLE

AR 6,8

CLI OOKX'FO1

BNE EDITP

MVI 1(5),X'21'

MVC TBLES,0(6)

MVI OÍÓÍ.X’ZO'

LA 8,16(0,0)

SR 8,10

AR 8,9

EX 8,TRAN

EX 8,EDITX

EX 9.MOVEE

MVC 0(0,6),TBLES

B ATRUE

B-FIELD ADDRESS

ADD 1 TO B-FIELD ADDRESS

B-FIELD LENGTH

WILL WE NEED TO PROPAGATE''

NO, WE’RE DONE

ADJUST LENGTH TO BA^E 0

GO DO A MOVE

MOVE ZEROS.

MOVE ZERO TO B-FIELD

PROPAGATE ZEROS

LOAD ADDRESS OF NEXT STATEMENT TO BE

EXECUTED IN N
GET OUT

LOAD ADDRESS OF NEXT STATEMENT TO BE

EXECUTED IN N

GET OUT

ELIT SECTION (EMOVE)

B-FIELD ADDRESS

IF A-FIELD IS NUMERIC, BRANCH

IF ALPHA, DO A REGULAR MOVE

IF DEFINED A-FIELD, BRANCH

PACK THE RECORD FIELD

LENGTH OF A-FIELD

EMOVE - THE MIDMS MASK IS

CONVERTED TO THE HEX CONFIGURATIONS

ACCEPTED AS CONTROL SYMBOLS

BY THE 360 ED (EDIT) INSTRUCTION.

THE MASK IS ASSUMED TO

ALREADY EXIST IN THE B-FIELD

STARTING WITH POSITION Bl.

THIS MIDMS EMOVE CLOSELY

RESEMBLES THE 1410 EDIT

FEATURE.

5-332

4* MOVEM

TRAN

EDITX

MOVEE

OP36P

OP09

OP09N

STRA

S T RAN

UNPKA

STRAZ

ZAPAA

OPIO

OP ION

CONT

OP 15

MVC

TR

ED

MVC

BAL

LH

SLA

BCTR

B

BAL

LR

BCT

B

BAL

MVC

MP

LH

BCTR

LR

BCT

B

BCT

SLA

EX

B

UNPK

SLA

EX

B

ZAP

BAL

LR

BCT

B

BAL

CP

BNE

MVC

B

MVC

DP

MVC

B

L

LH

AR

MVC

LH

LH

0(0,7),0(11)

1(0,5),TBLE

0(0,5),AFLD

0(0,11),0(7)

14,AZP

6,2(0,4)

6,1
6,0
EDIT

14,ADDRS

11,7

7.0P09N

ATRUE

12.C0NV

QFLD.ZFLD

QFLD(16),BFLD

6,2(0,4)

6,0
7,11

7.STRAN

ATRUE

7,STRAZ

6,4

6,UNPKA

ATRUE

0(0,5),AFLD

6,4

o,ZAPAA

ATRUE

0(0,5),AFLD

14,ADDRS

11,7

7,OPION

ATRUE

12.C0NV

SFLD(8),BFLD

CONT

AFLD.SFLD

STRA

QFLD.ZFLD

QFLD(16),BFLD

AFLD.QFLD

STRA

8,8(4)

5,0(4)

5,2

BFLD(6),0(8/

6,BFLD

9,BFLD+2

DECODE INSTRUCTION (MULTIPLY)

A-FIELD TYPE

BRANCH IF NUMERIC

NOP IF ALPHA

PACK

MOVE ZEROES TO QFLD (HIGH HALF OF QA PAIR)

MULTIPLY QFLD BY BFLD (AFLD BY BFLD)

LENGTH OF A-FIELD

ADJUST TO BASE 0

A-FIELD TYPE

IF NUMERIC, BRANCH

NOP THE INSTRUCTION

IF A DEFINED AREA, BRANCH

ADJUST POSITION OF LENGTH FOR EX UNPK

CONVERT TO BCD

THE WAY BACK

ID TO EBCDIC

ADJUST LENGTH POSITION IN REGISTER

ZERO FILL AND PACK THE A-FIELD

TIME TO EXIT

INSERT LEADING ZEROES

DECODE INSTRUCTION (DIVIDE)

TYPE OF B-FIELD

BRANCH IF NUMERIC

NOP THE INSTRUCTION IF ALPHA

PACK

DIVISION BY ZERO?

IF NOT, CONTINUE

DIVISION BY ZERO RESULTS IN ZERO

MOVE AFLD TO A-FIELD

MOVE ZEROS TO QFLD (HIGH HALF OF QA PAIR)

DIVIDE AFLD BY BFLD, RESULT IN Q

MOVE RESULT TO AFLD

MOVE AFLD TO A-FIELD

B1 FIELD OF STATEFORM

A1 FIELD OF STATEFORM

ABSOLUTE ADDRESS OF A-FIELD

GET TABLE PARAMS

LENGTH OF ARGUMENT

LENGTH OF FUNCTION

5-333

41

0P15C

0P15B

OPXX

OP14

LOOK1

LH

LA

BCTR

EX

BE

LA

LA

BCT

MVC

B

BCTR

LA

LH

AR

EX

LH

LA

STH

B

LH

LR

ST

AR

MVC

ST

LA

LA

LOAD

LR

L

LR

LH

AR

MVC

LH

LH

LH

LA

BCTR

EX

BE

LA

LA

BCT

LA

DELETE

LP

10,BFLIH-4

8,6(8)
6,0
6.COMPX

OP15B

8,1(6,8)

8,0(9,8)

10,OP15C

8(4,4),14(4)

OP11

9,0

5,1(8,6)

8,14(4)

8,3

9,MOVEX

2,0(1)
2,1(2)
2,0(1)
OP99

8,8(0,4)

7,15

1. REGl

8.2 COMPUTE ACTUAL B-FIELD ADDRESS

TADDR(12),0(8)ADDRESS OF NAMED TABLE

13,REG13

13,MASK

2. TNAME

EPLOC-(2)

15,7

l.REGl

13,0

5,0(0,4)

5.3

8(2,4).TADDR+2

NUMBER OF OCCURRENCES

STARTING POINT IN TABLE

ADJUST LENGTH TO BASE 0

COMPARE ARGUMENT WITH SEARCH VALUE

BRANCH ON MATCH

ADD LENGTH OF ARGUMENT (BASE 1) TO STARTING

POT NT

ADD FUNCTION LENGTH TO GET ADDRESS OF

NEXT ARGUMENT FOR NEXT PASS

NOT IN TABLE-SET UP FOR A

REGULAR MOVE

ADJUST FUNCTION LENGTH TO BASE 0

FUNCTION SUBSCRIPT

SET UP FOR FUNCTION MOVE

ACTUAL B-FIELD ADDRESS

MOVE THE FUNCTION TO THE B-FIELD

N, SUBSCRIPT OF CURRENT INSTRUCTION

ADD 1

N = N + 1

EXIT

TMOVE

SAVE REGISTERS

LOAD THE TABLE

RESTORE REGISTER

LOCATION OF TABLE

RELATIVE AFLD ADDRESS

COMPUTE ACTUAL AFLD ADDRESS

SAME ADDRESS OF TABLE

6,0(0,13) LENGTH OF ARGUMENT

9,2(0,13) LENGTH OF FUNCTION

10,4(0,13) NUMBER OF ENTRIES IN TABLE

8,6(0,13) FIRST ARGUMENT IN TABLE

6,0 ADJUST TO BASE 0

6,COMPX COMPARE VALUE WITH ARGUMENT

FOUND IT'S A HIT

8,1(6,8) COMPUTE NEXT ARGUMENT

8,0(9,8) ADDRESS

10,LOOK1 IF MORE ENTRIES, GO BACK

13,MASK NO HIT

EPLOC=(2) WIPE OUT TABLE

15,7 RESTORE REGISTERS

5-334

%
4*

FOUND

LOOK2

0P40

OP42

OP420

OP421

OP46

L l.REGl

L 13.REG13

LR 2,3

B OP11

CH 9,10(0,4)

BE LOOK2

BL LOOK 2

LH 9,10(0,4)

LA 5,1(8,6)

BCTR 9,0

L 8,TADDR

AR 8,3

EX 9,MOVEX

LA 13,MASK

DELETE EPLOC=(2)

LR 15,7

L l.REGl

L 13,REG13

B OPXX

LH 8,14(4)

MVC 14(4,4),8(4)

AR 8,3

ST 8,8(4)

B OP15

LH 5,0(4)

AR 5,2

LH 6,2(4)

BCTR 6,0

BAL 14.APK

CVB 14,AFLD

LA 6,2(0,0)

CR 14,6

BL OP421

BCTR 14,0

MH 14,10(0,4)

STH 14,0(4)

B ATRUE

SR 14,14

B OP420

LR 3,1

LH 1,0(0,4)

AR 1,2

BCTR 1,0

LH 8,8(0,4)

AR 8,2

LH 6,2(0,4)

LH 9,10(0,4)

BCT ?. 9,0

SET UP FOR REGULAR MOVE

AND EXECUTE IT

DO LENGTH MATCH?

SAME, OK

FUNCTION SHORTER, OK

TRUNCATE FUNCTION

SET UP FOR MOVE

OF FUNCTION TO

THE B-FIELD AREA

MOVE THE FUNCTION

SAVE REGISTER

WIPE OUT TABLE

RESTORE REGISTER

SET UP STATEMENT SUBSCRIPT FOR NEXT

ONE AND RETURN

GET RELATIVE ADDRESS OF TABLE

SHIFT BFLD PARAMS

COMPUTE ABSOLUTE ADDRS OF TABLE

SET ADDRESS AS FOR TABLF LOOKUP, OP15

DO A REGULAR TABLE LOOKUP

SUBSCRIPT ADDRESS - SUBSCRIPT STATEMENT

ABSOLUTE ADDRESS OF SUBSCRIPT FIELD

LENGTH OF SUBSCRIPT FIELD

ADJUST TO BASE 0

PACK THE SUBSCRIPT VALUE

CONVERT THE OCCURRENCE TO BINARY

VALUE 2

CHECK FOR NEGATIVE SUBSCRIPT

BAD SUBSCRIPT

SUBTRACT ONE FROM OCCURRENCE

NO. OF OCCURRENCES TIMEf LENGTH OF OCCURRENCE

NEW STARTING ADDRESS

RETURN

SET TO 0, INDICATING NO SUBSCRIPT OFFSET

SUBSCRIPT HAS BEEN NOPED

ADDRS OF N

RELATIVE TEXT ADDRESS

ABSOLUTE TEXT ARDR

TEXT ADDL MINUS 1

RELATIVE ADDRS OF VALUE

ABSOLUTE ADDRS OF VALUE

LENGTH OF TEXT

LENGTH OF VALUE

SUBTRACT 1

5-335

BCTR

SR

BL

LA

SR

IC

LA

AR

MV I

OP46F EX

BL
BH

EX

BE

LR

SR

B

OP46A SRDL

SLA

BZ

SRL

LA

BCT

OP46H EX

BE

OP46N LA

OP46Y MVC

MVI

B

OP46T TRT

OP46C CLC

0P48 BAL

BAL

BAL

CVB

BCTR

STH

CVB

BCTR

STH

B

T635 DC

DS

SAVEADDR DS

DS

TADDR DS

6,0
6.9

OP46N

10,0(1,6)
c. r

s’,0(0,8)
2,T635

5,2

0(5),X'FF'

6.0P46T

OP46A

OP46H

9 ,OP46C

OP46Y

6.10
6,1
OP46F

6,8
6,8
OP46N

7,24

1,1(1,7)
6.0P46F

9,0P46C

OP46Y

4,2(0,4)

0(2,3),14(4)

0(5).X'OO'

OP99

1(0,1),T635

0(0,]).0(8)
14,ADDE3

14,APK

14,BPK

14,AFLD

14,0

14,0(4)

14,BFLD

14,0

14,8(4)

Al’RUE

256X'00'

OD

16F

CL 4

CL4

SUBTRACT 1

SUBTRACT FROM TEXT LENGTH VALUE

BRANCH IF TEXT SHORTER

ADDRS OF LAST TRANSLATE

ZERO OUT RX5

PICK UP FIRST CHAR OF VALUE

GET ADDRS CF TABLE

COMPUTE ADDRS IN TABLE

SET BITS ON

EXECUTE TRANSLATE AND TEST

BRANCH IF NOT FOUND

BRANCH IF LAST CHAR IN LENGTH

EXECUTE COMPARE

BRANCH IF VALUE FOUND

LOAD LAST ADDRS TEXT

SUBTRACT PRESENT ADDRS TEXT

GO TO LOOP

SHIFT RIGHT DOUBLE LOGICAL

SHIFT LEFT

BRANCH IF END OF SEARCH

SHIFT RIGHT LOGICAL

RECOMPUTE TEXT ADDRS

BRANCH TO LOOP SUBTRACTING 1

EXECUTE COMPARE

BRANCH IF VALUE FOUND

END OF TEXT NO MATCH

VALUE MATCHED

RESET TABLE TO 0

GO TO EXIT

TRANSLATE AND TEST

COMPARE TEXT TO VALUE

DECODE MATRIX INSTRUCTION

PACK A-FIELD AND COMPUTE SUBSCRIPT

PACK B-FIELD AND COMPUTE SUBSCRIPT

CONVERT A-FIELD ADDRESS TO BINARY

ADJUST TO BASE 0

PLACE ADDRESS IN FIELD A1 OF STATEFORM

CONVERT B-FIELD ADDRESS TO BINARY

ADJUST TO BASE 0

PLACE B-FIELD AODRESS IN B1 OF STATEFORM

EXIT

5-336

TN AME

MASK

REGI

FL DOF

FLD70

ZFLD

S FED

MATRIX

OFLD

AFLD

BFLD

REG13

OP99

TBLE

TBLES

SAVE6

SAVES

TBLOP

DS

DS

DS

DG

DC

DC

DC

DS

DS

DS

DS

DS

DS

RETURN
DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DS

DS

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

CL8

CL160

2F

X'OOOOOOOF'

X'0000007Û'

X'OOOOOOOOOOOOOOOO'

X'OOOOOOOOOOOOOOOF'
IF

OD

CL8

CLP

CL8

4F

(14,12),T GO BACK

X'00010203040506O7O8090A0B0CODOE0F

X'101112131415161718191A1B1C1D1E1F

X'20212223242526272P292A2B2C2D2E2F

X' 303132333435363738j93A3B3C3D3E3F

X'404142434445464748494A4B4C4D4E4F

X*505152535455565758595A5B5C5D5E5F

X'6ÜÓ162636465666768696A6B6C6D6E6F

X' 707172737475767778797A7B7C7D7E7F

X'808182838485868788898A8B8C8D8E8F

X'909192939495969798999A9B9C9D9E9F

X'A0A1A2A3A4A5A6A7A8A9AAABACADAEAF

X'B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF

X,C0C1C^J3C4C5C6C7C8C9CACBCCCDCECF

X'D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF

X'E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF

X'21F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF
X'20'

IF

IF

A(0P01) 01

A(OP02) 02

A(0P03) 03

A(OP04) 04

A(0P05) 05

A(0P06) 06

A(OP07) 07

A(OP08) 08

A (OP 09) 09

A(OPIO) 10

A(0P11) H

A(0P12) 12

A(0P13) 13

A(0P14) 14

5-337

DC A(0P15) 15
DC A(OP99) 16
DC A(OP99) 17
DC A(OP99) 18
DC A(OP99) 19
DC A(OP99) 20
DC A(OP99) 21
DC A(OP99) 22
DC A(OP99) 23
DC A(OP99) 24
DC A(OP99) 25
DC A(OP99) 26
DC A(OP99) 27
DC A(OP99) 28
DC A(OP99) 29
DC A (OP 30) 30
DC A(0P31) 31
DC A(0P32) 32
DC A(0P99) 33
DC A(OP99) 34
DC A(OP99) 35
DC A(OP99) 36
DC A(OP99) 37
DC A(OP99) 38
DC A(OP99) 39
DC A(OP40) 40
DC A(OP42) 41
DC A(0P42) 42
DC A(OP99) 43
DC A(OP99) 44
DC A(0P46) 45
DC A(OP46) 46
DC A(0P48) 47
DC A(0P48) 48
DC A(0P99) 49
DC A(0P99) 50
DC A(0P99) 51
DC A(0P99) 52
DC A(0P99) 53
DC A(0P99) 54
DC A(0P99) 55
DC A(0P99) 56
DC A(0P99) 57
DC A(OP99) 58
DC A(OP99) 59
END MARINZ

5-338

