
MACHINE INDEPENDENT DATA MANAGEMENT
SYSTEM (MIDMS) SYSTEM SPECIFICATIONS.
CHAPTER 1 - FILE STRUCTURING
CHAPTER 2 - LIBRARIAN

Defence Intelligence Agency
Washington, D. C.

1 July 197 4

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

CO*
o
CO
00
i>
o
<

Rtr’cn r docu.v.izntatidh page kV-;AD INSTR'Jt'" IONS
ftKOKK co.vri.KTiNG ! o:.:"i

I. Ht HcP' NUVSt.A

4. Titl:: ;V.ld Su.Vir.'c.l

Machine Independent Data Management System
(Mint'S) System Specifications ‘
CHfiPfeK 1 - File. ^irrutTuv-iricj-
CLHf^p-r£R b rat-ian

7. author's;
Defense Intelligence Agency (DIA)

3. PEHFORMINO organization name / ^'D add;.ESS

Defense Intelligence Agency
ATTN: Information Processing Division (DS-5)
Washington, D.C. 20301

H. CONTROLLING CFFiCF NAME ANO AIDLESS

Same as 9

'u. MOI.ITCRINIW GENCY NAML*6 ADOREiEf/Y di7 l.-om Conlrolltng Ollize)

(S. TYP>rOF REPORT A PERIOL COVEREr

User Documentation
6. PERFORMING ORG. REPORT NUMBER

6. CONTRACT OR GRANT NUMBERfsy

to. PROGRAM element. PROJE :T. TASN
AREA a AORK UNIT NUMBERS

tZ. REPORT DATE

1 July :974
'3. NUMBER OF PAGES j_____ ud_IS. SECURITY CLA^S.'ro/ ttiia rrpori)

UNCUSSIFIED
I5«. OEC'_ Assmc/VION/DOWKCRADING

SCHEDULE

16. DISTRIBUTION STATEMENT ;o/ this tieport)

Approved for public release; unlimited distribution

V
17. DISTRIBUTION STATEMENT (cl the rbelrcct entered In Block 30, II dillercnt Irom Rkporiy

I *
r-:: 12 "VT'

*e. supplementary notes

19. KEY WOR03 fConf/nue on reverse side i/ necessery etd identify by block nusiber)
MIDMS Subsystem Fixed Set
File Structuring Subroutine Variable Set
Librarian Retrieval Module
File Maintenance Output
Language Processor Periodic Set

■ /

20. ABSTRACT fConr/nu0 on roverjo side H necessary and Identity by block nun.ber)
This document describes the MIDMS system specifications. Each module of
the system is described in detail to include its subsystem structure,
subprogram identification and description, flow charts, and error messages.
Differences between the IBM and Honeywell versions of MIDMS are documented.

DD 1 JAN 73 1473 edition OF I NOV 6S IS OBSOLETE

MACHINE INDEPENDENT DATA MANAGEMENT SYSTEM

(MIDMS)

SYSTEM SPECIFICATIONS

FOREWORD

This manual has been developed by the Defense Intelligence Agency

(DIA) for technical purposes. It does not reflect either explicitly

or implicitly official DIA policy or intelligence matters. Its

purpose is to provide a detailed description of the Machine

Independent Data Management System (MIDMS) programs. DIA assumes

no system installation, program maintenance, or system operation

responsibility, nor is DIA responsible for the data upon which the
system operates.

TABLE OF CONTENTS

PACE

CHAPTER 1 - FILE STRUCTURING

1. Subsystem Structuring . 1-1

2. COBOL Data Division Entries . 1-3

3. FS Subprogram Identification . nd Description. 1-22

a. FSX (Supervisor) . 1-22

b. FSSNX (Word Scan) . 1-29

c. FSPRX (Print/Error Subroutines) . 3-33

d. FSJBX (Job Card) . i-36

e. FSEDX (EDITS) . 1-39

f FSSBX (Subroutine and Table) . 1-41

g. FSFLX (Field Card) . 1-44

h. FSIOX (Input Output Function) . 1-50

i. FSDTX (Management Date) . 1-53

j. FSGOX (FIELD Card Continued) . 1-55

k. FSGRX (CROUP Card) . 1-57

l. FSVSX (VSET Card) . 1-64

m. FSENX (ENDFS Card) . 1-66

n. FSDDX (COBOL Data Division) . 1-70

4. File Structuring Error Messages . 1-74

5. Quantitative Limits . 1-84

CHAPTER 2 - LIBRARIAN

1. Subsystem Structure . 2-1

2. Subprogram Identification and Description . 2-1

a. LBLB . 2-2

b. LBCMPRS . 2-13

c. LBEXPAND . 2-14

d. LBMOVEC

. LBJBNAME .

LBENQ ... 2-18

g. 2-19
.2-19

arror Messages . 2-20

CHAPTER 3 - FILE MAINTENANCE (FM) - /) 0 - 7 V 3 / C V
Overview '

1. General . 3-1

2. File Maintenance (FM) Subprograms . 3-3

a. FM. 3-3
b. FMIOX . 3-5

c. FMSCN . 3-6

Section I - File Maintenance Language Processor (FMLP)

1. Overview . 3-1-

2. FMLP Subprograms

a. FMLP . 3-I-:

b. FMLP2 . 3-I-I

c. FMLPVAL. 3-I-:

I

i

Maintenance (Ordinary) Input Processor (FMIP)

Subprograms

a. FMIPX . 3-III-5

b. FMIPCD . 3-III-13

c. FMIPREC . 3-III-26

d. FMIPUN . 3-III-44

e. FMIPVAL . 3-III-57

f. FMIPTRN... 3-III-117

g. FMIPBIN . 3-III-130

h. FMIPSRT . 3-III-I32

3. IP Error Messages . 3-III-133

Section IV - File Maintenance Maintenance Proper (FMMP)

1. Overview . 3-IV-l

2. FMMP Subprograms . 3-IV-3

a.
b.

c.
d.

e.

f.

FMMPX ..

MPCDl ..

MPCD2 ..

OMMPX ..

OMMPTIO

OMMPTRN

3-IV-3

3-IV-30

3-IV-49

3-IV-62

3-IV-125

3-IV-128

VI

■atiiaMn

PAGE

g. LMMPX . 3-IV-146

h. MPSRTX . 3-IV-147

i. FMMPSRT . 3-IV-148

j. FMMPMRG ... 3-IV-149

k. OMOVL . 3-IV-156

3. File Maintenance Confirmations and Error Messages ... 3-IV-158

Section V - Logical Maintenance

1. Subsystem Structure . 3-V-l

2. Subprogram Identification and Description . 3-V-8

a. LMLP 3-V-8

b. LMLPASN ... 3-V-ll

:. LMLPATC . 3-V-13

d. LMLPBLD . 3-V-16

e. LMLPCNG ... 3-V-19

f. LMLPDDS . 3-V-23

g. LMLPDEF . 3-V-25

h. LMLPDEL . 3-V-29

i. LMLPFLD . 3-V-32

j. LMLPFMT and LMLPFMT1 . 3-V-42

k. LMLPGEN . 3-V-46

l. LMLPGRP . 3-V-47

m. LMLPMLT . 3-V-50

n. LMLPMOV . 3-V-52

o. LMLPNM0 . 3-V-55

p. LMLPNM1 . 3-V-57

q. LMLPNM2 . 3-V-60

r. LMLPNM3. 3-V-62

s. IJiLPPGl . 3-V-64

t. LMLPPG2 . 3-V-67

u. LMLPPRT . 3-V-69

V. LMLPPUT . 3-V-72

w. LMLPRFD . 3-V-75

X. LMLPRLN .. 3-V-78

y. LMLPRMN1 . 3-V-81

z. LMLPRMS . 3-V-86

aa. LMLPRST . 3-V-89

ab. LMLPRT1 . 3-V-94

ac. LMLPRT2 . 3-V-98

ad. IMLPSCN . 3-V-102

ae. LMU 0. 3-V-106

af. LMLPbPl . 3-V-lll

ag. LMLPSTE . 3-V-114

ah. LMLP SUB . 3-V-116

ai. LMLPTAB . 3-V-122

aj. LMLPVPT . 3-V-125

ak. LMLPWPO. 3-V-127

31. LMLPWP1 . 3-V-129

am. IÜLPWP2 . 3-V-133

an. LMLPWP3 . 3-V-136

vii

PAGE

3.

CHAPTER

a.

b.

c.
CHAPTER

a.

ap. LMLPWP5 .

aq. MLMPZNO .

ar. LMLPZN1 .

as. LMLPZN2 .

at. LMLPZN3 .

LM Error Messages .

4 - RETRIEVAL AND OUTPUT DOCUMENTATION PART I

Subsystem Structure ...

(1) Modules and Subroutines .

(a) COBOL Programs .

(b) ALC Subroutines ...

Subprogram Identification and Description .

(1) GENO...

(2) GENI ...

(3) CENIA.....

(4) GEN2 ...

(5) GEN2X .

(6) GEN4X1 ...

(7) GEN4X2 .

(8) CEN4X3 .

(9) GEN3A .

(10) GEN3 .

(10.1) GEN3B .

(11) GEN4 .

(12) GEN4A..

(13) GEN 5 ..

(14) GEN5A .

(15) GEN6..

(16) GEN6A..

(17) GENA/. ..

(18) GEAB .

(19) GEAC .

(20) GEAD .

(21) GEAG .

(22) GEAL .

(23) GEAM .

(24) GEAN .

(25) GEAP .

(26) GEAS .

(27) GEAT .

(28) GEAX .

(29) GEAZ .

Module Error Messages .

5 - RETRIEVAL AND OUTPUT DOCUMENTATION PART II

Program Flowcharts ...

(1) GENO...

(2) CENI ...

(3) CENIA .

(4) GEN2 ...

(5) GEN2X...

(6) GEN4X1 .

. 3-V-142

. 3-V-144

. 3-V-146

. 3-V-150

. 3-V-152

. 3-V-154

no - y
. 4-1

. 4-1

. 4-1

. 4-2

. 4-8

. 4-8

. 4-8

. 4-12

. 4-12

. 4-18

. 4-20

. 4-22

. 4-23

. 4-24

,. 4-33

,. 4-37

,. 4-37.2

,. 4-43

,. 4-43

.. 4-44

.. 4-45

.. 4-51

4-51

.. 4-52

.. 4-52

.. 4-53

.. 4-54

.. 4-54

.. 4-55

.. 4-56

.. 4-5(

.. 4-57

.. 4-58

.. 4-58

.. 4-59

.. 4-61

.. 5-1

.. 5-1

.. 5-4.2

.. 5-13

.. 5-14

.. 5-44

.. 5-45

viii

PAGE

(7) GEN4X2 . 5-51

(8) GEN4X3 . 5-52

(9) GEN3A... 5-55
(10) GEN3 ... 5-73

(10.1) GEN3B ... 5-108.1

(11) GEN4 and GEN4A . 5-109

(12) GEN5 ... 5-120

(13) GEN5A... 5-121
(14) GEN6 and GEN6A . 5-125

b. Program Narrative

(1) GENO. 5-138
(2) GENI . 5-139.2
(3) GEN LA . 5-149

(4) GEN2 . 5-150

(5) GEN2X. 5-185
(6) GEN4X1 ... 5-186

(7) GEN4X2 . NONE
(8) GEN4X3 ... 5-195

(9) GEN3A . 5-199

(10) GEN3 . 5-216
(10.1) GEN3B . 5-264.1

(11) GEN4 and GEN4A . 5-265

(12) GEN5 . 5-285
(13) GEN 5A . NONE

(14) GEN6 and GEN6A. 5-288

(15) GEAA. 5-311
(16) GEAB . 5-314

(17) GEAC . 5-315
(18) GEAD. 5-136

(18.1) GEAE . 5-136.1

(19) GEAG . 5-317
(20) GEAL. 5-319

(21) GEAM. . 5-320
(22) GEAN . 5-321

(23) GEAP . 5-322

(24) GEAS . 5-324

(25) GEAT. 5-325
(26) GEAX. 5-326

(27) GEAZ . 5-328

ENCLOSURE A - USER-WRITTEN SUBROUTINES . A-l

ENCLOSURE B - SPECIAL OPERATORS AND CONVERT ROUTINES

1. Circle Search (CIR2SP) . b-1

2. Polygon Search . B-13

3. Route Search Conversion Subprogram (RTCVS) ... B-19
4. Route Search Special Operator . B-24

5. Date Conversion Subprogram (CE&TS) . B-26
6. Coordinate Conversion Subprogram (CROPS) . B-40

7. Coordinate Conversion Subprogram (CRD6S) . B-41

8. Coordinate Conversion Subprogram (CRDGS) . B-41

^ /t 4 J) — //j r y y y cÿ

ix

PAGE

9. Coordinate Conversion Subprogram (CRD7S) . B-43
10. Country Code Conversion Subprogram (CTY1S) . B-43

11. Comparison of Mark III and MIIMS Geographic

Operators and Convert Routines . b-44

12. Route Search Special Operator (RTS3X) . B-45

13. Route Search Conversion Module (RTC3X) . B-57
ENCLOSURE C - ANCILLARY SYSTEM ROUTINES
Section 1 - IBM

1. ABGET .

2. GALLIC .c-1-1
3. COMABSY .’*]’ c-i.2

4. COMALL .!!!!!!! c-1-4

5. GOMARAYS .!.*.*!!.* C-l-7

6. COMLIST.,!!!!!! C-l-9

7. COMNUMS .!!.*!!!! C-l-11
8. COMREC .c-1-13

9. DATESUB ..!!!!!!!”!! c-l-14
10. ExpNsp.!.*!!!!!!!!!.’! c-1-14
n. link.!.!!!!!!!!. c-1-15
12. lmlook.!!!!!!!!!!!!] c-i-ie
13. LMTABGEN.!!!!!!!!!!!!! c-1-21
14. LOAD. C-l-22

15. LOADTAB . C-l-23

16. MOCHA .c-1-24

17. MovALF..*!!.*!!!!!!! c-1-27
18. MovcMP.!!!!!!!!!!!.* c-1-29
19. MovcoN.!!.!.*!.*]!!!!.*!! c-1-31
20. MovNUM..!!.!!!!!!!!!!.!!!! c-1-32
21. MovRAY..!!!!!!!!!!!!!!! c-1-34
22. MUVE . .C-1-34

23. OPR34....!!!!!!!!!!!!!” c-i-36
Section 2 - Honeywell

1. BIBCS c-2-1

2. COMLST c-2-4

3. comray....!.!!!!!!!!!!!! c-2-7
4. MovNUM...!!!!!!!!!!! c-2-11
5. MovPAc...!!!!!!!!!!!!!! c-2-14
6. mo’tray.!!!!!!!!!!.’ c-2-16
7. OPR34 . c-2-18

8. PUTPSC c-2-20

9. RDPSCS C-2-22
10. WTPSCS . c-2-24

u. WOOD.c-2-26
ENCLOSURE D - Honeywell Differences

1. File Structuring. j 1
2. File Maintenance .

3. Logical Maintenance d_5
4. Special Operators .

5. Retrieval and Output ... p.g

X

CHAPTER 1

/

y

File Structuring

1. SUBSYSTEM STRUCTURE. The File Structuring module of the Machine

Independent Data Management System (MIDMS) consists of 14 subroutines that

are executed during processing of this module. Through the use of the

overlay structure, File Structuring requires only 84K bytes of core. All

of the subroutines use the File Structuring Data Division (FS-DD) with the

exception of the calls to the date subroutine (DATESUB). The parameter

used in the calling sequence to DATESUB is HDR-DATE, which is defined in

FS-DD. The date is taken from the computer system and passed to MIDMS FS

for its use during the execution of a job. Parameters used in the calling

sequence to the MIDMS table librarian are CALLING-SEQ and the particular

logical record work area that is being written on the library.

1-1

FSX

DATESUB

FSPRX

[-r -

I I
FSIOX FSDTX FSDDX FSGOX FSSNX

n
LIBV2*

* Library subroutine LIBV2 includes several object modules.

FIGURE 1-1. IBM OVERLAY STRUCTURE

1-2

JF/J)

2. COBOL DATA DIVISION ENTRIES. The following description of the COBOL

data division is divided into three basic sections. The first section

contains a description of the eleven logical records which File Structuring

(FS) generates. The second section contains a description of the tables

and work areas that are used by FS to generate the logical records. The

last section describes how the generate! COBOL data division entries are

produced from the hierarchial field structure provided in logical record

1C.

a. File Format Table (FFT). The MIDMS FFT is a collection of eleven

tables which describes a data file to all MIDMS modules. These tables are

called logical records and are numbered LR1 to LR11.

(1) FFT Logical Record 1.

(a) Data Statements:

01 FS-DD.

02 FFT.

03 FFT-LR1.

04 FILE-MNEMONIC-1

04 FILE-ID-1

04 HIST-IND

04 XCHG-IND

04 FIND-CNT

04 CTL-LEN

03 PSC-LR OCCURS 11 T

04 CNT-LR

PICTURE IS X(5).

PICTURE 999.

PICTURE IS X VALUE IS SPACE.

PICTURE IS X VALUE IS SPACE.

PICTURE IS 99.

PICTURE IS 99.

i.
PICTURE IS 9999.

(b) Description: FF'.’-LRl is the identification record for

the FFT pertaining to the particular file.

FILE-MNEMONIC. Contains the five-character name assigned to this

file. This nar .. must be unique within the system and must consist

of alphabetic or numeric characters, starting with a letter and

ending with "A."

FILE-ID. Is a unique three-digit code that takes the place of the file

mnemonic for the purposes of internal processing.

HIST-IND. Indicates whether or not a History File is to be maintained by
FM.

= No History File

F = History File consisting of fixed fields only

A = History File consisting of all fields

XCHG-IND. Tells whether or not Data Exchange is needed.

14 = No Data Exchange

Y = Exchange desired for this file.

1-3

FIND-CNT. Contains the number of file indexes (FINDS) associated with the

file. FIND-CNT may not exceed 25 (future use).

CTL-LEN. Contains the number of characters in the record control group.

CTL-LEN may not exceed 30.

PSC-LR. Contains the number of entries in each of the eleven logical

records of the FFT. PSC-LR(l) always has the value 1.

(2) FFT Logical Record 2.

(a) Data Statements:

01 FS-DD.

02 FFT-LR2.

03 LR2-DATA OCCURS 299 TIMES.

04 RET-SUBRT.

05 FILLER PICTURE IS XXXX.

05 DATA-TYPE PICTURE IS X.

04 FIELD-SIZE-2 PICTURE IS 9999.

04 REL-HOP PICTURE IS 9999.

04 SET-ID-2 PICTURE IS S99.

04 FIELD-TYPE PICTURE IS 9.

04 MNEMONICS-2

05 MNM-3 PICTURE IS XXX.

05 MNM-2 PICTURE IS XX.

(b) Description: FFT-LR2 provides detailed format regarding
the fields and groups within the records.

name of the conversion routine for a Retrieval

The last character DATA-TYPE specifies the nature
contents. >

0 = Variable field (no subroutine)

1 = Alpha field (no subroutine)

2 = Numeric field (no subroutine)

3 = Signed numeric field (no subroutine)

S * Right-most character of the conversion

subroutine (alphc field assumed)

9 = System generated field

FIELD-SIZE-2. Contains the character size of the field group. Since

variable sets are variable in length, their field lengths will be
described as 9999.

REL-HOP. For fixed fields or groups, this element locates their

position relative to the first character in the data record.

For periodic fields or groups, REL-HOP locates their position

relative to the first character of the periodic subset in which

they are included. For subset IDs fields (PSSnn) and variable
sets, REL-HOP will always be 0000.

RET-SUBRT contains the

Search Parameter,

the data field

1-4

SET-ID-2. Contains the number and type of the set in which this field

is included. Zero (actually +00) identifies fixed fields. Negative

numbers indicate periodic sets. Positive numbers indicate variable

sets. For example:

+00 * Fixed Set

-01 = Periodic Set 1

-02 = Periodic. Set 2

1-01 = Variable Set 1

+02 - Variable Set 2

FIELD-TYPE. Is a one-character code, indicating the kind of field within

a data record.

1 = Control field or group

2 = Fixed field or group ^

3 = Periodic field or group

4 = Variable Set

5 = Periodic subset ID

6 = Periodic Set control field

7 = Variable Set control field

MNEMONIC-2. Contains a five-character field or group name which frequently

is used to find applicable entries in the table.

(3) FFT Logical Record 3.

(a) Data Statements:

01 FS-DD.

02 FFT-LR3.

03 LR3-DATA OCCURS 50 TIMES.

04 SETCTL-HOP PICTURE IS 9999.

04 SET-LENGTH PICTURE IS 9999.

04 SET-ID-3 PICTURE IS S99.

(b) Description: FFT-LR3 contains information pertinent to

the sets defined for a MIDMS file. The sequence of entries will

be the fixed set, followed by all periodic sets in sequence, followed

by all variable sets in sequence.

SETCTL-HOP. Contains the relative high order position within the

data record of the set control field (PSCnn or VSCnn) which

pertains to the particular set. For the fixed set, SETCTL-HOP

will contain 0000.

SET-LENGTH. Contains the size of the fixed set or periodic subset

in the file. For a variable set, the value of SET-LENGTH is 0000.

1-5

SET-ID-3. Contains the number aud type of the set being described.

Zero (actually +00) identifies the fixed set. Negative numbers

indicate periodic sets. Positive numbers indicate variable sets.

See the description of SET-ID-2 in FFT LR2 for an example.

(4) ^FT Logical Records 4 and 5.

(a) Data Statements: (FFT-LR4 and FFT-LR5 for future use)

01 FS-DD.

02 FFT-LR4.

LR4-DATA OCCURS

04 'FIELD-SIZE-4

04 FIELD-HOP

04 SUBRT-NAME

04 SET-ID-4

04 FIND-HOP

04 FIND-LENGTH

01 FS-DD.

02 FFT-LR5.

03 LR5-DATA OCCURS

04 TYPE-ID

04 LR4-ENTRY

04 FIND-ID

04 MNEMONIC-5

23 TIMES.

PICTURE IS 9999.

PICTURE IS 9999.

PICTURE IS X(5).

PICTURE IS S99.

PICTURE IS 999.

PICTURE IS 9999.

75 TIMES.

PICTURE IS X.

PICTURE IS 99.

PICTURE IS 99.

PICTURE IS X(5).

(b) Description: FFT-LR4 and FFT-LR5 contains information
required to support the file index (FIND) capability of MIDMS. They

describe the fielas/groups in the file that affect FINDs. These logical

records will be referenced by the RETRIEVAL program to process query

terms against the FINDs and by File Maintenance which will build the
FINDs. (They are not currently used.)

(5) FFT Logical Record 6.

(a) Data Statements: (FFT-LR6 not used at present)

01 FS-DD.

02 FFT-LR6.

03 LR6-DATA OCCURS 99 TIMES.

04 OPR-ID PICTURE IS XXXX.

04 MNEMONIC-6 PICTURE IS X(5).

(6) FFT Logical Record 7.

(a) Data Statements:

01 FS-DD.

02 FFT-LR7.

03 LR-DATA OCCURS 299 TIMES.

04 OP-SUB.

05 LDIT-LOC PICTURE IS 9999.

05 OP-ID

04 REL-SIZE

PICTURE IS X.

PICTURE IS S999.

PICTURE IS 9999.

PICTURE IS 9999.

04 OUTPUT-SIZE

04 LAB-LOC

(b) Description: FFT-LR7 contains output information for
each field/group in the data file.

OP-SUB. Contains three kinds of information. When OP-ID is blank,

all of OP-SUB consists of spaces and indicates that no conversion

is needed for Output. When OP-ID haa the value "S," OP-SJB

contains the name of a conversion subroutine to be used for

outputting the field. When OP-ID has the value "E," Output

editing is specified and ED1T-LOC contains the subscript of

the LR9 character starting the edit information for this field.

Since EDIT-LOC has a numeric specification, it can only be

referenced when OP-ID ir. "E," OP-SUB must he used whenever

OP-ID is or "S" to avoid the problem of alphanumeric

characters in a numeric field.

REL-SIZE. Specifies the size of the Output extract label relative

to the output size of the field/group which it references.

OUTPUT-SIZE. Specifies the actual output size of the field/group.

When subroutine conversion is specified the output size of the

subroutine is used. For editing, the size of the edit literal

is used. For all other fields, OUTPUT-SIZE is the same as FIELD-
SIZE-2 in LR2.

LR2-ENTRY. Contains a pointer to the FIELD/GROUP definition within

LR2 in order to obtain the field's mnemonic.

LAB-LOC. Is the subscript of the LR8 character at the high order

position of the OUTPUT extract label for this field. For

fields with no extract labels, LAB-LOC has a zero value.
Checks for LR8 overflow.

(7) FFT Logical Record 8.

(a) Data Statements:

01 FS-DD.

02 FFT-LR8.

03 LR8-DATA OCCURS 3000 TIMES.

04 LR-8 CHAR PICTURE IS X.

(b) Description: FFT-LR8 contains all Output extract labels

for the fields in the file. It is defined as 3000 individual characters

because COBOL cannot directly handle variable length items. The LAB-

LOC field of LR7 indicates the beginning of the label for a particular

1-7

data field/group, lhe length of che label is computed as the sum of
REL-SIZE and OUTPUT-SIZE, also in LR7.

(8) FFT Logical Record 9.

(a) Data Statements:

01 FS-DD.

02 FFT-LR9.

03 LR9-DATA OCCURS

04 LR9-CHAR

02 SAMPLE-LR9

03 EDIT-SIZE

03 DATA-SIZE

03 EDIT-WORD

03 FILLER

3000 TIMES.

PICTURE IS X.

PICTURE IS 999.

PICTURE IS 999.

PICTURE IS X(20).

PICTURE IS X(2974).

(b) Description: FFT-LR9 contains all edit information

for the fields in this file. It is defined as 3000 individual characters

because COBOL cannot directly handle variable length items. The EDIT-

LOC field of LR7 indicates the beginning of the edit information (the

first character of EDIT-SIZE) for the particular field whenever OP-ID

contains an "E." The edit data characters are associated ir the manner

described in SAMPLE-LR9. The names EDIT-SIZE, DATA-SIZE, and EDIT-WORD

cannot be used by any program. The definitions are used only as
documentation of the format of an item in LR9.

EDIT-SIZE. Contains the number of characters in the edit literal. It ma^
not exceed 132 characters.

DATA-SIZE. Contains the maximum number of characters in a data field

to be edited by the edit literal. Its value is derived from

the number of blanks and zeros in EDIT-WORD.

EDIT-WORD. Contains the actual literal. Its length is indicated by

EDIT-SIZE. The PICTURE length of 20 is for an example only and

is not necessarily the length of any particular EDIT-WORD.

(9) FFT Logical Record 10.

(a) Data Statements:

01 FS-DD.

02 FFT-LR10.

03 LR10-DATA OCCURS 500 TIMES.
04

04

04

04

LEVEL-NO

ITEM-TYPE

PURPOSE

LR2-ENTRY

PICTURE 99.

PICTURE X.

PICTURE X.

PICTURE 999.

1-8

(b) Description: FFT-LR10 contains information necessary

to build COBOL Data Division statements describing the data file.

LEVEL-NO. Is a two-digit number containing the Data Division level

number associated with the item.

ITEM-TYPE. Is a one-character code, indicating the kind of Data

Division statement to be generated. Possible values for

ITEM-TYPE are:

F - field

G - group

P - PSCnn or VSCnn

C - control

S - set (fixed or periodic)

V - vset

PURPOSE. Is a one-character code, specifying the variations in

the Data Division statement to be generated. Possible

values for PURPOSE are:

D - define

N - define of a numeric group

S - special define (used for overlapping ç'oups)

R - redefine (used for overlapping group.*;)
F - filler

LR2-ENTRY. Is a three-digit field, containing the subscript of the

LR2 entry associated with this item. The entry in LR2 is used

to obtain the field/group mnemonic and PICTURE information.

LR2-ENTRY is zero for "C" or "S" item types because they refer

to group definitions with standard MIDMS-generated names.

(10) FFT Logical Record 11.

(a) Data Statements:

01 FS-DD.

02 FFT-LR11.

03 LR11-DATA OCCURS 303 TIMES.

04 MNEMONIC-11 PICTURE X(5).

04 LR2-LR7-ENTRY PICTURE 999.

(b) Description: FFT-LR11 contains the sorted field mnemonics

of LR2 and a pointer to the LR2 and LR7 item, which contains information

about the field so that FM, RT and OP can locate field mnemonics by a

modified binary search technique and obtain the FIELD'S associated LR2
or LR7 entry.

1-9

MNEMONIC-11. Contains a field name. For the first two entries

in LR11, MNEMONIC-11 has the value LOW-VALUE. MNEMONIC-11

has the value HIGH-VALUE for the last two entries in LR11.

The modified binary search requires these special values to

operate properly.

LR2-LR7-ENTRY. Contains the subscript of the entry in LR2 and LR7,

where MNEMONIC-2 or MNEMONIC-7 matches MNEMONIC-11. (LR2

and LR7 always have the same number of elements and corresponding

entries have the same mnemonic.) When MNEMONIC-11 has the value

LOW-VALUE or HIGH-VALUE, LR2-LR7-ENTRY contains zero.

b. FS Tables and Work Areas.

(1) ALL-INFO AREA.

(a) Data Statements

01 FS-DD.

02 ALL-INFO.

03 WORD-COUNT PICTURE lb 99 USAGE COMPUTATIONAL.

03 DATA-WORDS.

04 DATA-ITEM OCCURS 50 TIMES.

05 CHAR-COUNT PICTURE IS 9 USAGE COMPUTATIONAL.

05 DATA-WORD.

06 DATA-CHAR OCCURS 9 TILES PICTURE IS X.

03 LITCOUNT PICTURE IS S999 USAGE COMPUTATIONAL.

03 LIT-DATA.

04 LIT-CHAR OCCURS 132 TIMES PICTURE IS X.

(b) Description: ALL-INFO is an area composed of two tables

made from the data in the STORAGE-WORD Group in STORAGE-AREA. The FSSNX

SUBROUTINE builds this area each time a statement is read, i.n order to

aid in the analysis of the statement. There is one entry of DATA-ITEM

for each valid word (a series of characters terminated by a comma).

WORD-COUNT. Contains the number of entries in DATA-WORDS.

CHAR-COUNT. Contains the length of the word.

DATA-WORD. Contains the characters of a word, as defined above,

left-justified, in the 9-character area. For words longer

than 9 characters only the leading characters are present,

since the maximum valid word size is 9.

LITCOUNT. Contains the length of the literal in LIT-DATA. If no

literal is present, the value of LITCOUNT is set at -999. If

there is only one at-sign, the value is set at -1. Valid

literals have lengths between 0 and 132 characters.

LIT-DATA. Contains the literal from an FS card, left-justified, in

the 132-character area. Only the first 132 characters of a

literal exceeding 132 characters are present.

1-10

(2) STORAGE-AREA.

(à) Data Statements:

01 FS-DD.

02 STORAGE-AREA.

03 THIRTEEN-FIRST.

04 FILLER

04 CARD-ID

04 FILLER

04 FS-CARD-TYPE

04 FILLER

03 STORAGE-WORD.

PICTURE IS X.

PICTURE IS X(5).

PICTURE IS X.

PICTURE IS X(5).

PICTURE IS X.

04 STORAGE-CHAR OCCURS 236 TIMES PICTURE IS X.

03 STORAGE-INFO REDEFINES STORAGE-WORD.

04 STORAGE-DATA OCCURS 4 TIMES PICTURE IS X(59).

(b) Description: STORAGE-AREA is an area composed of two

parts which allow for the building of a single statement when continuation

cards are used. The first part, THIRTEEN-FIRST, is used to identify the

card. The second part, STORAGE-INFO, holds the continued card image.

CARD-ID. Contains the name field of the card.

FS-CARD-TYPE. Contains the statement identifier.

STORAGE-WORD. A 236-character area into which column 14 thru 72 of

up to four cards (the original and three continuations) comprising
an FS statement are placed.

(3) ERROR-INFO.

(a) Data Statements:

1-11

01 FS-DD.

02 ERROR-INEO.

03 FILLER PICTURE IS X(40)

'FFT IN LIB. IT WILL BE CHANGED

03 FILLER PICTURE IS X(40)

'NOT IN LIBRARY

03 FILLER PICTURE IS X(40)

'EXTRA PARAMETERS ON STATEMENT IGNORED

03 FILLER PICTURE IS X(40)

'NEXT JOB CARD OUT OF ORDER

03 FILLER PICTURE IS X(40)

'HAS SAME ID AS SUBROUTINE

03 FILLER PICTURE IS X(40)

'SUBROUTINE TABLE OVERFLOW

03 FILLER

'LR10 OVERFLOW

03 FILLER

'LR9 OVERFLOW

03 FILLER

'LR8 OVERFLOW

03 FILLER

'LR6 OVERFLOW

03 FILLER

'LR5 OVERFLOW

03 FILLER

'LR4 OVERFLOW

03 FILLER

'LR3 OVERFLOW

03 FILLER

'LR2 OVERFLOW

PICTURE IS X(40)

PICTURE IS X(40)

PICTURE IS X(40)

PICTURE IX X(4l)

PICTURE IS X(40)

PICTURE IS X(40)

PICTURE IS X(40)

PICTURE IS X(40)

PICTURE IS X(40) 03 FILLER

'OUTPUT SIZE IN ERROR

03 FILLER PICTURE IS X(40)

'THE 4TH CHAR OF SUBNAME MUST BE N OR T

03 FILLER PICTURE IS X(40)

'ILLEGAL SUB NAME

03 FILLER PICTURE IS X(40)

'DOUBLY DEFINED SUBROUTINE ID

03 FILLER PICTURE IS X(40)

'DOUBLY DEFINED MNEMONIC

03 FILLER PICTURE IS X(40)

'FIELD OUT OF SEQUENCE

03 FILLER PICTURE IS X(40)
'UNDEFINED FIELD ID

03 FILLER PICTURE IS X(40)

'MAX NUMBER OF FIELDS PER GROUP EXCEEDED

03 FILLER PICTURE IS X(40)

'EXCEEDS CAPACITY OF EDIT FIELD

03 FILLER PICTURE IS X(40)

'UNDEFINED INPUT FUNCTION

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

1-12

03 FILLER PICTURE IS X(40)

'O/P OF I/P FLNCT. NOT EQUAL TO FLD SIZE

03 FILLER PICTURE IS X(40)

’FUNCTION REQUIRES SUBSCRIPT

03 FILLER PICTURE IS X^40)

'ILLEGAL SUBSCRIPT

03 FILLER PICTURE IS X(40)
'MISSING ASTERISK

03 FILLER PICTURE IS X(40)

'MORE THAN THREE CONTINUATION CARDS

03 FILLER PICTURE IS X(40)
'ILLEGAL FILE NAME

03 FILLER PICTURE IS X(40)

'JOB NOT COMPLETED BECAUSE OF ERRORS

03 FILLER PICTURE IS X(40)
'ILLEGAL MNEMONIC

03 FILLER PICTURE IS X(40)

'CARD MUST PRECEED THE FIELD-GROUP CARDS

03 FILLER PICTURE IS X(40)

'UNDEFINED SUBRT SPECIFIED FOR BASE

03 FILLER PICT IRE IS X(40)

'FIELDS HAVE DIFFERENT SET IDS

03 FILLER PICTUKE IS X(40)

'FIELDS HAVE DIFFERENT TYPE IDS

03 FILLER PICTURE IS X(40)
'ILLEGAL SUB BASE

03 FILLER PICTURE IS X(40)

'SUBROUTINE OR TABLE DEFINED BUT NOT USED

03 FILLER PICTURE IS X(40)

'MISSING QUOTE ON EDIT LITERAL

03 FILLER PICTURE IS X(40)

'UNDEFINED OUTPUT FUNCTION '

003 FILLER PICTURE IS X(40)

'UNDEFINED FIELD/GROUP ID ON OPR CARD '

03 FILLER PICTURE IS X(40)
'FIND ID OUT OF SEQUENCE '

03 FILLER PICTURE IS X(40)

'COLUMN 4 OF CARD MUST CONTAIN B OR F '

03 FILLER PICTURE IS X(40)

FUNCTION LENGTH CANNOT EXCEED 50 '

03 FILLER PICTURE IS X(40)

ELEMENT FOR FIND BASE EXCEEDS 20 CHARS '

03 FILLER PICTURE IS X(40)

'DOUBLY DEFINED EDIT HELD ID »

03 FILLER PICTURE IS X(40)
'SET ID OUT OF SEQUENCE '

03 FILLER PICTURE IS X(40)

'CNTL FLD MUST BE THE FIRST FLD DEFINED '

03 FILLER PICTURE IS X(40)
'ILLEGAL CARD TV JE •

03 FILLER PICTURE IS X(40)
'CARD ILLEGAL HERE '

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

1-13

03 FILLER PICTURE IS X(40)

'CREATE, CHANGE, OR TESTIT MODE REQUIRED

03 FILLER PICTURE IS X(40)

'FILE ID NOT AVAILABLE IN FICON TABLE
03 FILLER

'INVALID OPTION
PICTURE IS X(40)

PICTURE IS X(40)

PICTURE IS X(40)

PICTURE IS X(40)

PICTURE IS X(40)

PICTURE IS X(40)

03 FILLER

'INVALID LITERAL

03 FILLER

'ENDFS CARD MISSING
03 FILLER

'FIELD SIZE INVALID
03 FILLER

'ILLEGAL SET ID
03 FILLER

'SUBROUTINE USED FOR BOTH I/P AND O/P

03 FILLER PICTURE IS X(40'

CONTROL FIELD EXCEEDS 30 CHARACTERS

03 FILLER PICTURE IS X(40'
RECCT CANNOT BE GROUPED

03 FILLER PICTURE IS X(40}
'FIELD NOT IN LR10 - PROGRAM ERROR

03 FILLER PICTURE IS X(40)

'INCORRECT GROUP TYPE - PROGRAM ERROR

03 FILLER PICTURE IS X(40)

'LAST FIELD IS NOT LAST FIELD DEFINED

03 FILLER PICTURE IS X(40)
SPACES .

03 FILLER PICTURE IS X(40)

THIS CARD FORMAT CANNOT BE FIRST IN SET

03 FILLER PICTURE IS X(40)
'ASSUMED CONTROL FIELD

03 FILLER PICTURE IS X(40
'ASSUMED FIXED FIELD

03 FILLER PICTURE IS X(40)
'ASSUMED PERIODIC SET

03 FILLER PICTURE IS X(40)
ASSUMED ALPHA INPUT FUNCTION

03 FILLER PICTURE IS X(40)
ASSUMED BLANK OUTPUT FUNCTION

03 FILLER PICTURE IS X(40)
ASSUMED VSET SIZE, 100 CHARACTERS

03 FILLER PICTURE IS X(40)
EXCEEDS MAXIMUM RECORD SIZE

02 ERR-DATA REDEFINES ERROR-INFO.

03 ERR-MSG OCCURS 72 TIMES PICTURE IS X(40)

VALUE IS
»

VALUE IS
V

VALUE IS
f

VALUE IS
»

VALUE IS
f

VALUE IS
i

•

VALUE IS
i

•

VALUE IS
f

•

VALUE IS
f

•

VALUE IS
i

•

VALUE IS
i

VALUE IS
I

VALUE IS
I

VALUE IS

VALUE IS
f

VALUE IS
t

*' VALUE IS
»

value is
*

VALUE IS
V

VALUE IS
»

VALUE IS

VALUE IS

1-14

(b) Description: ERROR-INFO is a table containing all

of the FS error diagnostics. Each FS subroutine references this table

upon encountering an error. Reference to the ERROR-INFO Table is achieved

by supplying ERR-CODE with the subscript number of the desired diagnostic.

The subscript value is determined by simply counting the number of entries

in ERROR-INFO. An indication of the ERR-MSG is provided by a NOTE statement

whenever it is referenced. MAX-CODE holds the number of error diagnostics

contained in the table, so that, if a new diagnostic is added to ERROR-

INFO, the only modification to the existing program will be:

J.. Changing the value of MAX-CODE.

2. Adding a filler to ERROR-INFO.

3. Changing the "OCCURS" clauses of ERR-MSG.

(4) JOB TYPE TABLE.

(a) Data Statements:

01 FS-DD.

02 FSJOB-TYPE.

03 FILLER

03 FILLER

03 FILLER

03 FILLER

03 FILLER

03 FILLER

03 FILLER

03 FILLER

03 FILLER

03 FILLER

PICTURE

PICTURE

PICTURE

PICTURE

PICTURE

PICTURE

PICTURE

PICTURE

PICTURE

PICTURE

02 JOB-TYPE-TBL REDEFINES FSJOB-

03 TYPE-CARD OCCURS 10 TIMES

IS X(5)

IS X(5)

IS X(5)

IS X(5)

IS X(5)

IS X(5)

IS X(5)

IS X(5)

IS X(5)

IS X(5)

•TYPE.

PICTURE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

VALUE IS

X(5).

'FSJOB

'EDIT

'SUB

'TAB

'FIELD

'GROUP

'VSET

'OPR

'FIND

'ENDFS

(b) Description: FSJOB-TYPE is a table of all the control

cards acceptable to File Structure. The FS supervisor identifies

each card read in by scanning the FSJOB-TYPE Table. TYPE-CNT holds the

number of card types contained in the Table, so that, if a new card type

is later added to FS, the only modification to the existing program will
be:

JL Changing the value of TYPE-CNT.

2. Adding a filler to FSJOB-TYPE.

3. Changing the "OCCURS" clause of TYPE-CARD.

4. Adding another "Go To" label to the TYPE-ROUTINE
paragraph in the supervisor.

1-15

(5) FS-JOB-OPTICNS TABLE.

(a) Data Statements:

01 FS-DD.

02 FS-JOB-OPTIONS.

03 FILLER

03 FILLER

03 FILLER

03 FILLER

03 FILLER

03 FILLER

03 FILLER

03 FILLER

03 FILLER

03 FILLER

03 FILLER

03 FILLER

03 FILLER

03 FILLER

02 JOB-OPTIONS REDEFINES

03 JOB-OPTION OCCURS 15

PICTURE IS XXXX VALUE IS

PICTURE IS XXXX VALUE IS

PICTURE IS XXXX VALUE IS

PICTURE IS XXXX VALUE IS

PICTURE IS XXXX VALUE IS

PICTURE IS XXXX VALUE IS

PICTURE IS XXXX VALUE IS

PICTURE IS XXXX VALUE IS

PICTURE IS XXXX VALUE IS

PICTURE IS XXXX VALUE IS

PICTURE IS XXXX VALUE IS

PICTURE IS XXXX VALUE IS

PICTURE IS XXXX VALUE IS

PICTURE IS XXXX VALUE IS

FS-JOB-OPTIONS.

TIMES PICTURE IS XXXX.

'DATE'.

'HFIX'.

'HALL'.

'XCHG'.

'LST1'.

’LST2'.

'LST3'.

'LST4'.

'LST5'.

'LST6'.

rLST7'.

’LST8’.

'LST9\

'NOOK*.

(b) Description: FS-JOB-OPTION is a table of all the options
which may be specified on a JOB card. OPTION-CNT holds the number of

options contained in the table, so that, if a new option is later added

to the JOB card, the only modification to the existing program will be:

1. Changing the value of OPTION-CNT.

2. Adding a filler to FS-JOB-OPTIONS.

3. Changing the "OCCURS" clause of the JOB-OPTIONS.

Adding another "Go To" label to the OPTION-LU
paragraph in FSJOB subroutine.

The existing FS—JOB-OP,.ION Table contains the following options:

DATE. Allows for the management date fields, CREDT and CHGDT, to be

included in the FFT. The analyst cannot specify them on the source
card.

HFIX. Causes a History Tape containing fixed fields of obsolete records
to be maintained by FM.

HALL. Causes a History Tape containing entire obsolete data file
records to be maintained.

XCHG. An indicator which is placed in the FFT if a Data Exchange Tape

is to be written, whenever the file defined by the FFT is updated.

1-16

LSTx. Specifies the number of extra listings to be produced by FS for

a valid FFT. The last digit specifies the number of listings

desired, in addition to the one that is always produced.

NODK. Has no current purpose, other than compatibility with Mark III.

It is acceptable, but otherwise ignored.

(6) EDIT-TABLE.

(a) Data Statements:

01 FS-DD.

02 EDTBL.

03 EDIT-INFO OCCURS

04 EDIT-NAME

04 EDIT-USE

04 EDIT-LEN

04 DATA-LEN

04 EDIT-POINTER

02 EDIT-WORDS.

03 EDIT-CHAR OCCURS

100 TIMES.

PICTURE IS X(5).

PICTURE IS X.

PICTURE IS 999.

PICTURE IS 999.

PICTURE IS 9999.

3000 TIMES PICTURE IS X.

(b) Description: EDTBL and EDIT-WORDS describe EDIT fields

so that they can be referenced on FIELD or GROUP cards. There is one
er try of EDIT-INFO for each valid EDIT card.

EIIT-CNT. Contains the number of entries in EDTBL.

EDIT-NAME. Contains the name that is specified on the EDIT-CARD.

EDIT—USE. Indicates whether or not an EDIT has been referenced on

a FIELD/GROUP card. (A value of space means not used, a "U"
means used.)

EDIT-LEN. Contains the length of the EDIT literal.

DATA-LEN. Contains the maximum size ;.ata field which can he edited

by the EDIT literal. It is determined by counting the number of
blanks and zeroes.

ElIT-POINTER. Contains the subscript of the HOP within FFT-LR9 when
EDIT-USE has the value of "U."

EDIT-CHAR. Contains the number of characters which have been used
in the EDIT-WORDS area.

(7) SUBROUTINE AND TABLE TABLE,

(a) Data Statements:

1-17

01 FS-DD.

02 SUB-TAB.

03 SUB-ITEM OCCURS

OA SUB-NAME

04 I-O-SUB

OA LEN-CNT

OA OUT-POINT

02 OUT-TAB.

03 OUT-ITEM OCCURS

100 TIMES.

PICTURE IS X(5).

PICTURE IS X.

PICTURE IS 9.

PICTURE IS 9999.

300 TIMES PICTURE IS 999.

(b) Description: SUB-TAB and OUT-TAB describe subroutines

or tables, so that they can be referenced on FIELD/GROUP cards. There

is one entry of SUB-ITEM for each valid SUB-TAB card. There is an

OUT-ITEM entry for each OP size of every subroutine or table defined in
the FFT.

OUT-CNT. Contains the number of elements in OUT-TAB.

SUB-CNT. Contains the number of entries in SUB-TAB.

SUB-NAME. Contains the name that is specified on the SUB-TAB card.

I~0-SUB. Indicates whether or not a subroutine has been referenced and

the use of the subroutine. (Blank means not used, "I" means Input

Conversion Subroutine and "F" means Find Base Generation Subroutine.)

LEN-CNT. Contains the number of OP size defined for the subroutine.

OUT-POINT. Contains the subscript of the OUT-ITEM for the first or only OP

size of the subroutine. Any other OP sizes for the subroutine are

contained in subsequent OUT-TAB entries in the order specified on the
SUB/TAB card.

c. COBOL Generated Data Division. The File Structuring (FS) sub¬

system of MIDMN produces a series of COBOL Data Division statements

describing the hierarchy of fields and groups defined for a data file.

These data descriptions are eventually placed in MIDMS-generated COBOL

programs so that user-defined field and groups names can be referenced.

The method which FS uses to produce the COBOL data descriptions from the

FS statements consists of two separate algorithms which together permit

the proper statements to be generated. One assigns level numbers, the

other determines the sequencing of the lines in the Data Division. The

various rules are used each time a new FS card is processed.

(1) Basic Rules for Assigning Level Numbers. FS uses the

following basic rules to assign level numbers:

(a) Originally, each field gets a level number of

A9 to allow the most possible levels in the field/group hierarchy
(fields within groups within groups).

(b) Each group is given a level one less (numerically)

than the lowest level of any field or group within the new group.

1-18

(c) All fields/groups within a group are assigned the

level number equal to the lowest level of any of those fields/groups

if they have not previously been included in a group.

For example, suppose the following statements are input to FS:

1 AA FIELD

2 BB FIELD

3 CC GROUP AA.BB

4 DD FIELD

5 EE GROUP CC.DD

As cards (1) and (2) are processed, fields AA and BB are given level

49. Group CC gets level 48 because the minimum level number of its

component fields/groups is 49. The level numbers for field AA and BB

remain at 49 since both already have the "lowest level" mentioned

in paragraph l.c.(l)(c). In accordance with paragraph l.c.(l)(a),

field DD is initially given level 49. Since group EE contains

a field and a group at different levels, the level of DD is changed

to 48 (the lowest level number) and EE is assigned 47.

(2) Basic Rules for Determining Sequence. As cards are

processed by FS, one entry is generally added to the end of a table

containing level numbers and an indication of the kind of Data Division

statements to be produced. In addition, a special sequence number field

is attached to each taule entry so that the entries can be resequenced

at the completion of the data description. The table entries are not

physically reordered as processing takes place; only the sequence number

field is actually changed until after the last field or group card is
interpreted.

(a) The following are the basic rules used by FS to

determine the value of the sequence number field and eventually
the order of the Data Division statements:

i* A field is initially given the next available
sequence number.

j2. A group is given the lowest sequence number found
in the table after the entry for the first field/group in the
specification list.

_3. The sequence number of all table entries with
numbers greater than or equal to the sequence of the group is
increased by 1.

1-19

(b) Continuing with the example given for assigning level

numbers, figure 1-1 entries 1-5 indicate changes in sequencing for

the fields and groups. On the left is a list of the field/group

specifications. The top of the table indicates when the sequence

number in the table is changed.

(c) Note that during the processing of group CC, the sequence

number of CC comes from the sequence of AA and the sequence of AA and

BB are each adjusted by 1. Since CC is the first field/group for EE,

EE gets the sequence of CC and all other sequence numbers are
increased.

(3) Additional Rules. The basic rules taken into account the

vast majority of formats specified in MIDMS, i.e. fields within groups

within larger groups. The basic rules do not cover situations where

overlapping groups are defined. Overlapping groups are two groups

containing the same fields without one of the groups containing the

other. Specifically, groups will be considered overlapping whenever

the same field/group appears in the field/group list of two or more

groups. Since FS statements are not saved after they are processed,

FS determines that overlap is present when either:

(a) The sequence number for any table entry after the first

field or group in the list is lower than the sequence number for the
first field or group, or

(b) An overlapping group entry is located in the

series of table entries after the entry for the first field/group
in the new group.

(c) The extended rules required as a result oí allowing
overlapping groups are:

When the new group overlaps a previous groin,

the table entry for the group is considered a "special group" item

The level number and sequence number is the same as described in

paragraphs l.c.(l)(b) and l.c. (2) (a)J2.

2^. Another table entry is built for a "group

redefine" item. Its level number is the same as described in

paragraphs l.c.(l)(b) and l.c.(2)(a)2.

_3. For each field in the table with a sequence number

greater than the sequence of the new group and smaller than the sequence

of the first field/group on the group card, a new table entry is produced

for "filler field" to represent the space in the special g*.oup before

the definition of the group. Each of these entries is given level 49
and the next available sequence number.

1-20

A* A table entry for the group is built after the first

"f? ,!Í0üPi:í8 ®ncountered fay Paragraph l.c.(3)(c)3. The entry specifies
a ield define item instead of the usual "group define". The level

num er of the entry is 49 and the next available sequence number is used.

^ J o, (d), Fi8ure 1-2 entry (6) shows field FF and group GG being
defined. Since both EE and GG include DD in their field/group lists,

a special group item (indicated by -S) is placed in the table followed

y a group redefine (-R). Then filler fields for AA and BB (-F suffix)
are generated as is a field define for group GG.

_ , , (e) As a result of examining column (7) of the table in
igure 1-2, COBOL Data Division statements are produced in the sequence

shown in figure 1-3.

(1) AA FIELD

(2) BB FIELD

(4) DD FIELD

(6) FF FIELD

EXTENDED

AA

BB

BASIC (3) CC GROUP AA.BB CC

DD

(5) EE GROUP CC.DD EE

FF

(1) (2) (3) (4) (5) (6) (7)

(7) GG GROUP DD.FF GG-S

GG-R

AA-F

BB-F

GG

2

3

3

4

2

5

1

4

5

3

6

2

7

1

8

9

10

11

FIGURE 1-2. FIELD/GROUP SEQUENCING

1-21

1

46 GG-S.

47 EE.

48 CG.

49 AA _.

49 BB_.

48 DD_.

47 FF _.

46 GG-R REDEFINES GG-S.

49 FILLER_.

49 FILLER _.

49 GG

FIGURE 1-3. GENERATED DATA DEFINITION

3. FS SUBPROGRAM IDENTIFICATION AND DESCRIPTION,

a. FSX (SUPERVISOR).

(1) Summary. FSX is the supervisor subroutine for the File

Structuring module; it initializes various switches and work areas. FSX

calls the DATESUB subroutines in order to obtain the system date for

MIDMS use in generated reports. RSX also reads all cards and their

continuations into a work area. The card scan subroutine (FSSNX) is

called to perform preliminary processing on each card read. Control is

returned to the supervisor which then determines the card type. Once the

card type is determined, the appropriate subroutine is called to perform

detail analysis of the card in question. After a certain amount of

processing is completed by one of the subroutines, control is thtn given

back to FSX. FSX then determines whether the PRINT subroutine ''fSPRX)

should be called to print a message and whether it should return to the

processing subroutine or whether the next card should be read.

(a) Function. Controls the execution of all FS subroutines.

(b) Calling Sequence.

CALL ’DATESUB'

CALL 'FSSN'

CALL 'FSDD'

CALL 'FSPR'

CALL 'FSJB'

CALL 'FSED'

CALL 'FSSB'

CALL 'FSFL'

USING HDR-DATE

USING FS-DD

USING FS-DD

USING FS-DD

USING FS-DD

USING FS-DD

USING FS-DD

USING FS-DD

L

1-22

CALL 'FSGR

CALL 'FSEN

CALL 'FSML

CALL 'FSER

USING FS-DD

USING FS-DD

USING FS-DD

USING FS-DD

(2) Description

PROCEDURE DIVISION. Initializes switches and storage area, makes I/O

areas available for use and obtains date from Operating System.

READ-AFTER-JOB. Reinitializes work areas and switches for new input card.

BUILD-AREA. Reads input card into temporary hold area.

COME-BACK. Determines if card is a COMMENT or ENDFS card.

NEW-CARD. The first thirteen columns of the card image just read in and

which is now located in a temporary hold area is compared to the

first thirteen columns of the preceding card which is held in a

storage area called ALL-INFO to determine if the card is to be

continued. If continuation is required, a multi-card statement is

built in ALL-INFO area. If there is no continuation, control is
passed to FSSN to generate the word tables.

CALL—FSbN THRU CALL2-FSSN. Calls subroutine which examines the storage

area for the presence of words. A word is indicated by a string of
characters separated by a comma.

ERROR-PRINT. Prints error message which states that there are too
many continuations.

END-OF-CARDS. Prints error message which states that the ENDFS
card is missing.

JOB-ERROR. Prints error message which states that the job did not

run to completion because of diagnostic errors.

STOPIT. Stops the execution of the File Structuring program.

ANALYZE/WRONG-CAPD. Analyzes card type and branches to the appropriate

subroutine. Also prints listings, multiple copies, errors, and

advisory messages. Determines if subroutines are to be re-entered

to continue processing of ALL-INFO or to return and process a new card.

(3) FSX Flowchart.

1-23

FSX 1

FSX 2

NO

1-25

r r y

..

t

Si

FSX 3

1-26

..

FSX4

1
4
\ /
V

FSX 5

1-28

b. F3SNX (WORD SCAN).

(1) Sununary. FSSNX is the card scan subroutine. This subroutine

performs initial processing of every card by scanning forward, looking for

a comma. If a comma is found, the preceding string of characters is

placed in a word table. The scan is continued until a period is found

which indicates that the rest of the card is treated as comments or the

scan is continued until an at-sign (@) is found which indicates a literal

is on the card. The literal is validated and placed in a literal table.

Certain switches are set and used later by certain subroutines.

(a) Function. Builds the word table.

(b) Calling Sequence.

ENTRY 'FSSN' USING FS-DD

(2) Description. Procedure Division receives control from
calling sequence.

CHECKIT/REVERS-SCAN. Locates last character on card. A reverse scan is

performed on the card SAVE-AREA (the original and up to three

continuations are stored there, if this is the situation).

BUILDIT/LEAVE-PERFORM. A forward scan is performed on the card SAVE

AREA to determine the first character of the word. The first

forward scan is continued until a comma is found. This comma

indicates that a word is completed. The word and its length

is moved to the word table. If the word is longer than nine

positions, a length of nine is entered into the word table.

With each ;ord encountered, a word count is incremented by one.

This process is continued until either an at-sign is encountered,

which indicates the beginning of an extract label, or a period

is encountered which indicates the remaining positions will be

treated as comments, or the last character is encountered,

which indicates there will be no extract label or comments on
the card image.

FOUND-AT-SIGN/LIT-SCAN. When an at-sign is encountered, the

building of words is terminated and the building of a literal

is begun. The beginning and terminating at-signs (@) are located.

LIT-MOVE/NO-LIT. The number of characters between two at-signs is

put into a count area and the literal itself is put in a

literal hold area. It also checks to see if the maximum

size of 132 for a literal has been exceeded. If only one at-sign

is found, minus one (-1) is entered into the literal count area.

If the two at-signs are adjacent, zero is moved to the literal count

area. If more than 132 characters are found between the two at—signs,

-999 is entered into the literal count area and only the first 132

characters are moved into the literal hold-areas. If none of the

1-29

above, the actual number of characters found between the at-signs Is

entered Into the literal count area and the literal is moved into

the literal hold area.

LEAVE-SUB/FSSN-EXIT. Initialize area counters and switches for the next

card. Return control to calling subroutine.

(3) FSSNX Flowchart.

FSSNX 1

1-31

FSSKX 2

1-32

Ie 3 5 AJ \ ti-

ÉHMHÉi

c. FSPRX (PRINT/ERROR SUBROUTINES).

(1) Summary. FSPRX is the print subroutine for File Structuring.

It contains three entry points—FSPR, FSER and FSML. An entry into FSPR

simply allows a single line of data to be printed. An entry into FSER

results in the selection of a single error message from a table of

messages and the printing of the message. A entry into FSML allows the

multiple listing of a FFT as specified by the user.

(a) Function. Handles all FS printing requirements.

(b) Calling Sequence.

ENTRY 'FSER' USING FS-DD

ENTRY 'FSPR' USING FS-DD

ENTRY 'FSML' USING FS-DD

(2) Description.

PROCEDURE DIVISION/FSER. Receives control from calling subroutine

for entry into ERROR MESSAGE selection. Based on the value of

ERR-CODE an error message is taken from a table of messages.

PRINTITN. Moves error message to print line for later printing.

Contains entry point to printing subroutine.

FSPR/PRT-HDG. Prints heading at top of page after making necessary

spacing requirement. Prints a line of data and writes the same line

on extra listing file. (Record data for use with extra copy
option.)

FSML/MULTI-LIST. Entry point to multi-listing coding. Opens extra

list file reads and writes records until end of file is

encountered. Closes file and tests LIST-SW to see if all copies

have been printed. If not, opens file and repeats the operation.

(3) FSPRX Flowchart.

1-33

1-34

-^

FSPRX 1

FSPRX 2

FSML

d. FSJBX (JOB CARD).

(1) Summary. FSJBX is the first subroutine to be executed for

the generation of an FFT. It initializes all logical records and a large

number of hold areas, switches and counters used by itself and other

subroutines. It also validates the file name, sets switches for other

subroutines for user specified options FSJOB determines whether the mode

of operation is TESTIT, (which allows for the debugging of the file's

format definition deck) or whether the mode is CREATE which indicates the

FFT is to be a new version of the MIDMS TABLE LIBRARY.

(a) Function. Processes the FSJOB card.

(b) Calling Sequence.

ENTRY 'FSJB' USING FS-DD

(2) Description.

FSJB thru CLEAR-TOTALS. Initialize counters, switches, and hold areas.

TEST-MODE. Checks to see if the FFT to be built is in CREATE, CHANGE,

or TESTIT mode.

M0VE4A. Prints error message if mode is incorrect.

FILE-NAME. Checks validity of file name.

BAD-FILE-NAME. Prints error message if file name is invalid.

FILE-NAME-1 thru EXIT1. Checks to see if all options are valid and

sets appropriate switches. The indicators for History and Data
Exchange are in LR1.

JOB-PRINT/FSJB-EXIT. Sets switches and controls the printing of error

messages which were found on the job card. After the printing of

error messages, control is returned to the calling subroutine.

(3) FSJBX Flowchart.

1-36

FSJBX 1

FSJBX A
J

1-37

FSJBX 2

YES_

i _L
Print All

Error

Messages

(FSER)

NO

■i

FSJBX-EXIT N

1-38

e. FSEDX (EDITS).

(1) Summary. The editing function of MIDMS is performed during

output time; however, the FSEDX subroutine validates the name and the

EDIT word length and determines the data size which the EDIT can handle.

The edit mask consists of characters between the first and last at-signs.

Using continuation cards, the edit mask may be as long as 132 characters.

The EDIT name must not have embedded blanks and special characters.

(a) Function. Processes the EDIT card.

(b) Calling Sequence.

ENTRY 'FSED' USING FS-DD

(2) Description.

FSED. Checks to see if an EDIT is legal at this point.

TEST-NAME-CHAR. Checks the name to see if there are no embedded

blanks, special characters and to see that the fifth character
is not "S."

NAME-TST/TEST-NAME. Scans Edit Table, checking for doubly-defined
name.

TEST-LITCNT. Validates the literal count. It must be greater than

zero but less than 133 characters.

TEST-WORDCNT. Checks to see if there is an additional word other

than the EDIT word. If there is, the extra word or parameter
is ignored by FSED.

COUNT-CHARS/HOLES. Determines the number of zeros and blanks in
the EDIT word.

EDIT-MOVE/FSED-EXIT. Builds the Edit Table, first by building

the EDIT character-by-character, then by moving the EDIT to
a string of EDITs.

(3) FSEDX Flowchart.

1-39

nutjtum

FSEDX

1-40

f. FSSBX (SUBROUTINE AND TABLE).

(1) Summary. FSSB processes the Subroutine and Table cards.

FSSBX makes no distinction between SUB and TAB cards. The types are

provided for file designers' purposes only. SUB and TAB should not

be used to specify input conversion. This is done with a DSD. The

program validates the name, the size and the output of SUB and TAB

cards. The program builds the Subroutine Table and the Out Table,
which contains a listing of all output sizes.

(a) Function. Processes the subroutine and table cards.

(b) Calling Sequence.

ENTRY 'FSSB' USING FS-DD

(2) Description.

FSSB. Determines if the SUB or TAB card is legal at this point.

All EDIT, SUB, and TAB cards must precede the FIELD and GROUP

cards. Validates the name by checking the first and fifth

characters for an alpha and "S" character respectively. Also,
checks for special characters.

NAME-CHECK. Checks for doubly-defined names.

WORD-CHK-FSSB/LIT-CHECK—FSSB. Validates output size and determines

whether there should be single or multiple output. Makes a

check to see if a literal is present on the card. If so, the
literal is ignored by FSSB.

TAB-BUILD/FSSB-EXIT. Makes entries into the Subroutine Table and

inserts all output sizes into the Output Table.

(3) FSSBX Flowchart.

1-41

FSSBX 1

iHÉIIINMitaiÉ

ESSEX 2

1-43

g. FSFLX (FIELD Card).

(1) Summary. FSFLX performs initial processing of the FIELD

card. It validates the name and the size, and checks for duplicate

defined names. FSFLX checks the set type specification to see whether

the field should be placed with control, fixed or periodic data.

(a) Function. Processes the FIELD card.

(b) Calling Sequence.

ENTRY 'FSFL' USING FS-DD

CALL 'FSDT* USING FS-DD

CALL 'FSIO' USING FS-DD

CALL 'FSGO' USING FS-DD

(2) Description. Procedure Division receives control from
calling subroutines.

FSFL. Determines if the FIELD card is legal at this point. If so,

and it is the first FIELD card, (a) put RECCT field entries

into LP.2 and LR7, (b) put first entry into LR3, and (c) put

first three entries into LR10.

RECCT-MOV-PFRM/RECCT-hOVE. Moves output label for RECCT to LR8.

CHECK-tlELD. Initializes D-FFT--LR? »nd D-FFT-LR1 (dummy logical

records). Validates field name.

N0T-IN1/LR2-LU. Checks for duplication of field names in LR2.

N0T-IN2. Moves field name to dummy logical records and validates
field size.

FLSIZ-ERR. Prints an error message concerning the invalid size.

FL-FIELD-TYPE/FL-FIELD-TYPE. Checks for and validates different
types of set ID formats.

CHKcTL-LEN/CNTL-SET. Checks to see if control fields have been
defined.

MOVE?. Updates LR3 and dummy LR2.

FL-X. If "X" type card is legal at this point, make appropriate

entries into dummy LR2 and set switches to indicate "X" type.

CTL-MOVE-XTYPE-MOVE. Adjust field sequence level numbers.

XTYPE-M0VE1/NODATE. Updates LR10 and test DATE-SW to see whether

the date option was specified. If so FSDTX will be called

to generate CREATE DATE and CHANGE DATE fields.

FL-IP/FIELD-ID. Checks to see whether 'N,' 'S,' 'I,' 'T,' or a

blank (Mark III FFS Retrieval Mode Specification) is on the

card. If one of the above specifications is on the card,

a pointer is set to skip over the position. FSIOX is than called

to process the input and output functions.

WORD—MOVER/CALL—FSGO. Controls the initial and subsequent calls
to FSGOX.

1-44

FSFLX-EXIT. Return control to calling subroutine.

(3) FSFLX Flowchart.

1-45

FSFLX 1

1-46

r r
/ O « ¡LX

FSFLX 2

1-47

^CLX A

FSFL 3

NO

NO

rT—*_

Print Error

Message

(FSER)

T
4A

\y

1-48

FSFLX 4

4A

Print

Error

Message

I (FSER)

NO

4

Make

Appropriate

Subroutine

Entries

^Literal Vali^>

?

YES

Make
Appropriate
Entries in
Logical Recorc s
7,8,9,10

Create,
Change Dates'

Insert Change

Create Dates

1-49

r

h. FSIOX (INPUT OUTPUT FUNCTION).

(1) Summary. FSIOX validates the input function as well as the

output function for FIELD and GROUP cards. It checks whether an input

subroutine is being used for both input and output functions, whether the

subroutine has been defined in the subroutine table, or whether the output

of the input function is equal to field size. The subroutine also

validates the extract label. An extract label is a name or title of a

single data field, which can be used for outputting data with specified
output names.

(a) Function. Validates the input and output functions
of the field and group cards.

(b) Calling Sequence.

ENTRY 'FSIO' USING FS-DD

(2) Description.

PROCEDURE DIVISION. Receives control from calling subroutine and

tests IO-SW to determine where processing should be continued.

FL-IPFUN. Determines whether I/O functions are specified. If so, are

there any Mark III multi or single input function indicators

(*$,*1) specified; if there are, skip to next word; otherwise

go to IPOP-CHK to see if the present word is an I/O function.

MORE-IP. This paragraph handles the skipping over of multi-input

functions (specified on Mark III FDD's only). MIDMS

accepts only the first input function specified on a FIELD card.

Tests are performed for the presence of an output function.

IPOP-CHK. Checks for presence of input and output functions.

CHK-ALLIPFUN. Checks and validates all input functions, ALPHA,

NUMER, SGNUM, conversion subroutines and tables.

ALPHA-ASSUMED. If input subroutine is not specified, then assume
alpha input function.

TEST-NUM-SIZE. Tests numeric field for size greater than 18, (COBOL

limitation on maximum numeric field size).

IP-SUB-CHK/FL-IP-SIZ. Validates input subroutines and tables, for

definition, for size of output, for subscripts accuracy, etc.

FL-OPFUN/OP-NOW. Checks to see whether multi-input functions are

being processed, if so, continue with multi-input processing.

Checks to see if an output function has been defined.

BLANK-ASSUMED. If output function is not defined, assume blank
output function.

OP-RETURN. Is there an output conversion subroutine or edit specified.

0P-SBTBL-PFRM/FL-ENTRY1. Validates conversion subroutines, table)

and edits making the following checks:

1-50

UNDEFINED OUTPUT FUNCTION

SUBROUTINE USE FOR BOTH INPUT AND OUTPUT

FUNCTION REQUIRES SUBROUTINE

ILLEGAL SUBSCRIPT

EXTRACT-CHK. Tests LITCOUNT for existence of extract label.

If LITCOUNT is equal to -1 or LITCOUNT greater than 13?, then the
extract label is invalid; otherwise, it is an accepted literal.

FL-LAB-SIZE. Determines relative size of output label for dummy LR7.
FL-LAB-MOVE. Checks for LR8 overflow.

FL-LMOV-PFRM/FL-LABEL-MOVE. Moves output label to LR8.
MOVE-X. Go to FL-SUMMARY.

OP-EDIT/FLD-EDTBL. If output function can be an EDIT, check to

see if EDIT has been defined. If so, make sure the edit will
hold the data.

FL-LR7-FIN. Moves output edit information to dummy LR7. Makes entry

into EDTBL to show that the edit has been used.

FL-ENTRY2. Moves edit information into dummy LR9.

FL-EDT-M0VE1. If LR9 will not overflow, move edit length into LR9.

FL-EDT-2/FL-EDIT-3. If LR9 will not overflow, move edit capacity
into LR9.

FL-EDT-4/FL-EDT-5. If LR9 will not overflow, move the edit word into

FL-SUMMARY. Checks for LR2 overflow. Checks to see if length

of control fields is greater than 30 characters. Makes
updates to LR10.

(3) FSIOX Flowchart.

1-bl

FSIOX

FSIOX 1

Assume Input

Function

YES

i
Validate

Input

Function

1-52

F-n c /

i. FSDTX (Management Date).

(1) Summary. If the date option is specified on the FSJOB card,

FSDTX will be called by FSFLX and FSENX in order that CREDT and CHGDT

entries may be added to logical record two, seven, eight and ten.

(a) Function. Generate CREDT and CHGDT fields.

(b) Calling Sequence.

ENTRY 'FSDT' USING FS-DD

(2) Description.

PROCEDURE DIVISION. Receives control from calling sequence.

DATE-MOVEl/ADD-LR3-FIÍ. Moves 'CREAT DATE' and 'CHANGE DATE' literals

to LR8. Makes necessary adjustments to LR2, LR7, and LR10.
FSDT-EXIT. Returns control to calling subroutine.

(3) FSDTX Flowchart.

1-53

FSDTX

^-

FSDTX

YES

Move 'CREDT'

and 1CHGDT'

field
mnemonics to
LR2

Move CREATE
DATE' ana
'CHANGE DATE'
Literals to
LR8

1 r .
Update
Counte
Pointe
LR7 an

rs and '
rs in
d LR10

4

FSDTX-EXIT

¡Write Error r
Message LR2
LR8 Overflow

(FSER)

1-54

j. FSGOX (FIELD Card Continued).

(1) Summary. FSGOX performs further processing of the FIELD card.

When the set type is missing, FSGOX assumes the set type based on the

previous set defined. Entries are added to logical records two, three,
seven, eight, nine and ten.

(a) Function. Continued processing of the field card.

(b) Calling Sequence.

ENTRY 'FSGO' USING FS-DD

(2) Description.

PROCEDURE-DIVISION. Receives control from calling subroutine. Test

for return paragraph within subroutine.

SHIFT-WRDTAB/SHIFT-IT. Moves words which are specified on the

card down by one position to make room for the insertion
of set type.

BUILD-SETYPE. Based on the previous card's set membership, a

set type is generated and placed into the space created by the

above paragraphs. Control is than returned to FSFLX to validate
the set type.

FL-NUM/FL-TYPE-M0VE1. Validates and, if correct, saves periodic
set ID with three character format.

GO-ON-1. Checks to see if periodic set ID is in its proper order.

FLDTYPE—MOVE. Updates LR10 if new periodic set.

FLDTYPE-M0VE1/FLTYPEM0VE1. Updates LR10.

FIRST-SET. If first set, make appropriate entries into LR10.
FLTYPEM0VE2. Updates LR10.

M0VE4. Checks for LR2 overflow. Updates size fields for LR2, LR7
and LR8 in LR1.

M0VE2. Saves periodic set ID and moves it to PSS and PSC entries in
LR2.

M0VE3. Makes entries for PSS and PSC fields into LR2 and LR3.

GO-ON. Makes entries for PSS and PSC fields into LR2 and LR7. Checks
for LR8 overflow.

OP-MOVE-1. Puts output label for PSC field into LR8.

G0-0N2/OP-MOVE-2. Puts output label for PSS field into LR8.
G0-0N3. Save LR2 and LR7 pointers.

M0VE6. Builds dummy LR3 entry.

FSGOX-EXIT. Returns control to calling subroutine.

(3) FSGOX Flowchart.

1-55

FSGOX

ï
Generate the PSC and

PSS Fields LR2

FSGOX-EXIT j

6o,X

1-56

k. FSGRX (GROUP Card).

(1) Sununary. FSGRX processes the GROUP card specification until

it exhausts the list of fields to be grouped. Entries are built for

logical record two, seven, and ten. FSGRX determines that: (a) the

group mnemonic is in the proper format and has not been previously defined

and (b) the list of fields have been defined and they are adjacent.

A single field may be grouped, the group may be grouped and that group

may be grouped. Thus, one data item may be referenced by several

different names to any practical level. The grouping scheme makes it

possible to referenca fields as well as Groups by several different
names.

(a) Function. Processes the GROUP card.

(b) Calling Sequence.

ENTRY 'FSGR' USING FS-DD

CALL 'FSIO' USING FS-DD

(2) Description.

FSGR. Checks the format of the group mnemonic.

DUP-NAME-CHK. Verifies that the group mnemonic has not been
previously defined.

GR-SFT-CHKl. Verifies that RECCT has not been grouped.

GR-FLD-RETURN/GR-FIELD-FIND. Finds the first field definition in
LR2.

GR-SET-CHK2. Verifies that all field types in the group are the

same and locates the fields in LR10.

FIND-LAST-FIELD. Places a pointer at the last field in the list

for the FIELD routine when an error is encountered which makes
execution impossible.

GR-LAST-FLD. Finds the last field in the group list during
processing.

LR10-SEQ-FIND. Finds the position of tne first entry in LR2.

LR10-SEQ-CHK/GR-TYPE-TEST. Obtains specifications of the group

from the first field specifications in LR2. Verifies that the
group type is correct.

GR-SEQ-CHK. Checks if the last field in the group is the last
field defined.

GR-FIELD-MOVE thru GR-HOP-CHECK. Checks to see it the fields are

sequential, if they have been defined, and if their field
types are the same.

LR10-CARD-CHK. Finds the field entries in LR10 and modifies the

group specifications as necessary.

GR-LR2-BLD. Builds a dummy LR2 to pass to the FIELD routine.

1-57

SPECIAL-GROUP thru FSGR-EXIT. Builds special group and adjusts

sequence level numbers in LR10.

(3) FSGRX Flowchart.

1-58

FSGRX 1

1-59

f.ZQ,R1

FSGRX 2

?
i

1-60

... ... ÉMIÜ.ÉMMI ..—...

FSGRX 3

1-61

F ^0) s:

FSGRX 4

1-62

FSGRX 5

Scan Group Fields

Making all Sequence

Numbers equal to

Lowest Seq. Number

Scan Group Fields

Making all Level

Numbers equal to

Lowest

FSGRX-EXIT

1-63

1. FSVSX (VSET Card).

(1) Summary. FSVSX processes the Variable Set card. The

variable set consists of the defined variable field, which may appear

only at the end of the data record. Up to 49 variable sets may be

defined per file. Checks for correct format and length of the

variable set. The VSET literal may not exceed 132 characters.

(a) Function. Processes the VSET card.

(b) Calling Sequence.

(2) Description.

FSVS. Determines if the VSET card is legal at this point.

FSVS-NAME-CHECK. Validates the format of the VSET name.

DUP-NAME-FSVS. Checks for doubly-defined name by performing a

table lookup in LR2 for peviously used name.

WORD-CHK/WORD-CHK-RETURN. Checks for correct format of the VSET card and

checks the length of the variable set literal for validity. If the

literal size is not specified, a size of 100 will be assumed.

LIT-CHECK. Checks for valid output label.

ERROR-CHK. Verifies that the number of fields and/or the number of

allowed sets has not been exceeded.

VSLR10-CHK/MIN-LEV-ASG. Assigns min-level to all field groups which

are not contained within groups.

VSW-CHK/FS-VSET1. Sets switches for later use and assigns level numbers
for date fields.

VS-ALL-CRD/VS-INSERT. Adjust sequence of LR10 items so that an

item for VSC can be inserted.

VSLR10-BLD. Insert LR10 item for VSC (variable set).

LR2-BLD1/M0VE-LIT2. Generate LR2, 3, 7, and 8 items for variable
set.

UPDATE-LR-LENGTH/FSVS-EXIT. Resets error switches.

(3) FSVSX Flowchart.

1-64

FSVSX 1

^ YES

JQ_Nai

?

1-65

.-.

m. FSENX (ENDFS Card).

in i i Î nummary. FSENX completes the processing of certain fields
in logical records 1, 2 and 7 and completes the fields of LR10 (which

are at that time stored in the working storage WORK-LRIO). FSENX

®rr^íeSfí°fíCal reCOrd í!leVe,, aR11) b>r P«f°™lns an alphabetlc sort
of LR2 s field mnemonics. The sorted results and two low values at the

eginning of the table and two high values at the end of the table

printing ^ eaCh °f the eleven lo8lcal rec°rds for

(a) Function. Processes the ENDFS card and controls the
writing of Logical Records on the MIDMS Table Library.

(b) Calling Sequence.

ENTRY 'FSEN' USING FS-DD

CALL 'FSDT' USING FS-DD

CALL 'FSDD' USING FS-DD

MULTIPLE ENTRIES TO ’LB'

(2) Description.

X1/X4. Processing of LR10 is as follows:

If^rfSl^TTiiri1168 the entrifeS of LR10-ITEM in UNGROUPED-LIST.
it any LR10-ITEM is not zero, the LRIO-ITEM-Nth entry of
LEV-NO is set equal to MIN-LEVEL.

Paragraph X2 sets LEV-N0(2) and LEV-N0(3) equal to MIN-LEVEL

minus 1, provided CNTL-SW-W is not equal to one. If CNTL-SW is
equal to one paragraph X2 is bypassed.

Paragraph X3/X4 moves the items of WORK-LRIO into FFT-LR10

W0RK"LR1°-DATA is moved into that position of
FFT-LR10-DATA which is shown only by the associated LR10-SEQ.
For example: v

WORK-LRIQ-DATA

1 aaaaaaa

2 bbbbbbb

3 ccccccc

4 ddddddd

5 eeeeeee

LR10

SEQ

2
3

5

1
4

fft-lriq-data
ddddddd

aaaaaaa

bbbbbbb

eeeeeee

ccccccc

1-66

PlA/PlCl. Format and print LR1.

P2A/P2B1. Format and print LR2.

P3A/P3B1. Format and print LR3.

P4A/P4B1. Format and print LR4.

P5A/P5B1. Format and print LR5.

P6A/P6B1. Format and print LR6.

P7A/P7A1. Format and print LR7.

P8A/P8C. Format and print LR8.

Paragraph P8B first determines the length of the entry as the

sum of the contents of fields REL-SIZE and OUTPUT-SIZE (from

LR7). The size of the entry calculated is stored in the

print area LR8-LI1-EN. The high-order position (leftmost

position) of the entry is also stored in LR8-LI1-EN. This

position is set at 1 for the first entry and then maintained

by accumulating the total of all entry lengths.

P9A/P9C. Format and print LR9.

Paragraph P9A processes the entries of LR9 in much the same

way as P8A works on LR8. The main difference here is that

the length of the entry is found in decimal form as 3

characters preceding the entry proper. More precisely, the

entry looks like this:

aaabbbxx. ..x

where aaa is the length of the string, xx...x (decimal form)

and bbb is the length of the field to be processed by

XX...x as a data-word. The number aaa must be transformed from a

PICTURE XXX to a PICTURE 999 field in order to be used

computationally as the length of field xx...x. This is done

by moving aaa into field ALPHA-TRIPLET with PICTURE of xxx

and redefining it as NUM-TRIPLET with PICTURE of 999.

P10A/P10C1. Format and print LR10.

LRl 1-S0RT/LR11-S0RTING. Sorting of LR2's field nmemonic to produce
LR11.

P11A/P11C1. Format and print LR11.

LIB-FFT-WRITE/LIB-LR-EXIT. Handles the calling of Librarian

subroutine in order to write structured FFT's on the MIDMS

Table Library.

FFT-COUNT/FSEN-EXIT. These paragraphs calculate the total size of

an FFT, print the size out and than return control to the

calling subroutine.

(3) FSENX Flowchart.

1-67

FSENX 1

FL-C0N-GEN2

Build Fieldfe

for Dates

(FSDTX

Set LEV-NO

for Create

Change Dates

FSENX 2

Set LEV-NO

for Create &

Cnange Date

c

▼
FSENX-EXIT '

1_a9

-.—-

a. FSDDX (COBOL Data Division).

(1) Summary. FSDDX interprets logical record ten (LR10) and

based on data found in LR10 a COBOL data division is produced and

stored on MIDMS Table Library. When a Logical Maintenance run is made

COBOL programs are generated to perform certain tasks. The CfBOL

programs use the generated COBOL data division which FSDDX has stored

in the MIDMS Tablt Library.

(a) Function. Generates COBOL Data Division.

(b) Calling Sequence.

ENTRY 'FSDD' USING FS-DD

(2) Description.

PROCEDURE DIVISION. Receives control from calling subroutine.

FSDD. Opens the temporary Data Division file. Checks to see if the

data division is already on the Library or whether this is the first
creation of it.

READ-ITEM. Checks for end of input, checks for change of sets.

Determines the type of Data Division statement to be generated.

CREAT-FILLER. When a filler is required, the appropriate level

number, size and picture is moved to the filler print line.

FF/FN. Tests for the variations in the data division statements

to be generated. Possible values are '0' for DEFINE, 'N'

for define of numeric group, 'S' for special define used for

overlapping groups. 'R' for REDEFINE also used in overlapping
groups and 'F' for filler.

DISPLAY1. Performs the writing of a generate statement and controls

the reading of more data to create a new statement.

FFD/SE. Determines if picture is numeric or alphanumeric.

ADD-UU/ADD—P. Handles the adding of -U to a user defined item name

and the adding of 'S,' 'R,' 'N,’ or 1.' to the item name
area.

FSD/WX. Processes special defines (SD) and performs the generation

of description for GROUP DEFINE (GD). Writes generated
statement out.

FGS. This paragraph processes the group special define (GS). It

must be noted that the -S must be added.

FGR/FGROUP-R. This coding processes the GROUP REDEFINE.

FGN. This paragraph is used to process GROUP numeric type card (GN).

The action required is the generation of two cards—the first

is simply a group card with a picture and the second is a
redefinition of the field.

1-70

FPD/NOGEN. Controls the execution of a Periodic Define (PD).

When the first PD item is encountered the following items must
be generated:

46 PSC-INFO

48 PSC-DATA OCCURS (CNT-LR3(3)-1) TIMES.

49 PSC-CNT PICTURE 9(4).

49 PSC-HOP PICTURE 9(4).

46 PSC-INFO-R REDEFINES PSC-INFO.

FFF/F-PICTURE. These two paragraphs generate a filler card required

by the redefinition of a group. Filler cards are identified
by FF in LR10.

FED. When the definition of the control field is detected, the record

control group (RECID) is generated. Tne name 'REC-CTL' is move

to the GROUP name. The level number is taken from LR10. The

RECID will consist of all field/group definitions having

a level number algebracally higher than the REC-CTL level number.

START-PSET. This paragraph handles the reinitializing of the counter used

for the start of a new periodic set. It also determines if a

variable set 'N' has been detected in which case the generation
is terminated.

WRITEL/WRITET. Handles the writing of a generated record.

END-OF-FFT/FSDD-EXIT. Determines whether all items have been

generated before returning control to the calling subroutine.

(3) FSDDX Flowchart.

1-71

FSDDX 1

/

1-72

■.

FSDDX 2

1-73

MMnaMMaÉMuaHMii

4. FILE STRUCTURINC ERROR MESSAGES.

a. 'ASSUMED ALPHA INPUT FUNCTION'

(1) FSIOX: ALPHA-ASSUMED.

(2) No input function was specified on the field or group card.

System assumed the data to alphabetic. Check for correctness.

b. 'ASSUMED BLANK OUTPUT FUNCTION'

(1) FSIOX: BLANK-ASSUMED.

(2) No output function was specified on a FIELD/GROUP card.

The system assumed that no output conversion is needed. Check for

correctness.

c. 'ASSUMED CONTROL FIELD'

(1) FSGOX: BUILD-SETYPE

(2) No set type specified and the card was either the first FIELD

in the Format Definition Deck or the previous defined field contained
control data.

d. 'ASSUMED FIXED FIELD'

(1) FSGOX: BUILD-SETYPE

(2) No set type was specified and previous defined field

contained fixed data. Check for correctness.

e. 'ASSUMED PERIODIC SET'

(1) FSGOX: BUILD-SETYPE

(2) "N" set type specification or omission of the set type

resulted in the automatic assignment of periodic set numbers. (The

assigned set number is represented by the 'NN' of the advisory message.)

f. 'ASSUMED VSET SIZE, 100 CHARACTERS'

(1) FSVSX: WORD-CHK-RETURN

(2) There was no size specification on the VSET card.

The system assumed a size of 100.

1-74

g. 'CARD ILLEGAL HERE'

(1) FSX:

FSGRX:

FEFLX:

FSVSX:

ED-CHECK-PERFORM

FSGR

FS FL

ï S VS

(2) Card type is out of sequence, see the MIDMS User's

Reference Manual, chapter 2, figure 15 (FS Deck Squence), for correct
card type sequence.

h. 'CARD MUST PRECEED THE FIELD-GROUP CARDS'

(1) FSSBX: FSSB

(2) A SUB or 1AB card is out of sequence. All subroutines

and tables must be defined before any FI ILD or GROUP cards are

defined. Place cards in correct sequence and rerun job.

i. 'CNTL FLD MUST BE THE FIRST FLD DEFINED'

(1) FSFLX: CNTL-SET

(2) A control field was defined after fixed or periodic field

was defined. Correct the card sequence and rerun job.

j. 'COLUMN 4 OF CARD MUST CONTAIN B OR F'

Not used at present.

k. 'CONTROL FIELD EXCEEDS 30 CHARACTERS'

(1) FSIOX: FL-SUMMARY

(2) The maximum size of the RECORD ID is 30 cnaracters.

Redesign the FDD to reflect the correct size and rerun job.

l. 'CREAT, CHANGE or TESTIT MODE REQUIRED'

(1) FSSBX: TEST-MODE

(2) Modes of operation acceptable to FS are CREATE, CHANGE

or TESTIT. Check columns 14 through 19 of FSJOB card for correct mode.
Correct and rerun job.

1-75

m. 'DOUBLY DEFINED EDIT FIELD ID'

(1) FSEDX: TEST-NAME

(2) A previously defined item has the name. Make the name
unique and rerun the job.

n. 'DOUBLY DEFINED MNEMONIC'

(1) FSSBX: NAME-CHECK
FSGRX: DUP-NAME-CHK
FSFLX: LR2-LU
FSVSX: DUP-NAME-FVS

has the
(2)

name.
A previously defined subroutine, table, field or group
Make name unique and rerun job.

o. 'DOUBLY DEFINED SUBROUTINE ID'

(.1) FSSBX: NAME-CHECK

(2) A previously defined item has the name. Make the name
unique and rerun the job.

p. 'ELEMENT FOR FIND BASE EXCEEDS 20 CHARS'

Not used at present.

q. 'ENDFS CARD IS MISSING'

(1) FSX: END-OF-CARDS

(2) The ENDES card was omitted. Place an ENDFS card after
the last FDD in the job and rerun.

r. 'EXCEEDS MAXIMUM RECORD SIZE'

(i) FSFLX: MOVE?
FSGOX: MOVE6
FSDTX: ADD-LR3-FIX
FSVSX: LR3-BLD
FSENX: FIX-CHK

(2) The total of
FDD to reflect a size under

field sizes is greater than 10,000.
10K characters and rerun job.

Redesign

1-76

s. 'EXCEEDS CAPACITY OF EDIT FIELD'

(1) FSIOX: FL-EDTBL

(2) The EDIT card is accepted by MIDMS (FS) for compatibility

only. Correct card to reflect the proper edit or delete the EDIT card
and all references to it in every FIELD or GROUP card.

t. 'EXTRA PARAMETERS ON STATEMENT IGNORED'

(1) FSEDX

FSSBX

FSIOX
FSVSX

TEST-WORDCNT

LIT-CHECK-FSSB
FL-ENTRY1

WORD-CHK

(2) All parameters for the particular card type have been
satisfied. Additional words on card will be treated as comments by
the system. Check for correctness.

u. 'FFT IN LIB. IT WILL BE CHANGED'

Not used at present.

V. 'FIELD NOT IN LRIO-PROGRAM ERROR'

(1) FSGRX: LR10-SEQF-PRFM,LR10-CRDCHK-PFRM

(2) See a MIDMS system programmer,

w. 'FIELD OUT OF SEQUENCE'

(1) FSGRX: GR-HOP-CHK

(2) The mnemonics specified in the field list of the GROUP card
are not in the same sequence as the fields defined in the FDD. Correct
and return job.

X. 'FIELD SIZE INVALID'

(1) FSFLX: NOT-IN2, FLSIZ-ERR,

FSIOX: TEST-NUM-SIZE,

FSVSX: WORD-CHK-RETURN,LIT-CHECK

(2) Field size may be one, two, or three digits with leading
zeros permitted, the field size of numeric or signed numeric data
may not be greater than 18 digits.

y. 'FIELDS H/.VE DIFFERENT SET ID'S'

(1) FSGRX: GR-SET-CHK2, GR-HOP-CHECK

1-77

(2) Two or more fields in the field list of the GROUP card
are members of different sets. Correct and rerun job.

z. 'FIELDS HAVE DIFFERENT TYPE ID'S'

(1) FSGRX: GR-HOP-CHECK

(2) Two or more fields in the field list of the GROUP card have
different type ID's. Correct and rerun job.

aa. 'FILE ID NOT AVAILABLE IN FICON TABLE'

Not used at present.

ab. 'FIND ID OUT OF SEQUENCE'

Not used at present.

ac. 'FUNCTION LENGTH CANNOT EXCEED 50'

Not used at present.

ad. 'FUNCTION REQUIRES SUBSCRIPT'

(1) FSIOX: FL-IP-SIZE, OP-SBTBL

(2) The subroutine or table specified should be a multiple
output function. Specify the appropriate subscript on the function
and rerun job.

ae. 'HAD SAME ID AS SUBROUTINE'

Not used at present.

af. 'ILLEGAL CARD TYPE'

(1) FSX: WRONG-CARD

(2) See DIAM 65-9-9, MIDMS User's Reference Manual, chapter 1
for correct card types.

ag. 'ILLEGAL FILE NAME'

(1) FSJBX: BAD-FILE-NAME

(2) MIDMS file name must be five characters; the first
character must be alphabetic and the fifth character must be an "A."
The other characters ajj be letters or digits. Check columns 21 through
25 for correct file name. Correct and rerun iob.

1-78

ah. ’ILLEGAL MNEMONIC'

(1) FSFLX: FSFL

FSEDX: TEST-NAME-CHAR

FSGRX: FSGR

FSVSX: FSVS-NAME-CHK

(2) A field mnemonic may be one to five characters; the first

character must be alphabetic, no embedded blanks and no special

characters are allowed. Correct and rerun job.

ai. ' ILLEGA! SET ID'

(1) FSGOX* Go-ON-1

(2) Set type specified is not periodic. Correct and rerun job.

aj. 'ILLEGAL SUB BASE'

Not used at present.

ak. 'ILLEGAL SUB NAME'

(1) FSSBX: FSSB

(2) Subroutine and table names must be five characters long,

the first character must be alphabetic, the fifth character must be "S,"

and the other characters may be letters or digits. Correct and rerun job.

al. 'ILLEGAL SUBSCRIPT'

(1) FSSBX: M-SS-CHK

FSIOX: FL-IP-SZ, FL-SZ-9

(2) Check multiple output functions for valid pound signs (//)

and for valid subscript sequence. Correct and rerun job.

am. 'INCORRECT GROUP TYPE-PROGRAM ERROR'

(1) FSGRX: LR10-SEQ-CHK, GR-TYPE-TEST

(2) See a MIDMS system programmer.

an. 'INVALID LITERAL'

(1) FSIOX: EXTRACT-CRK

1-79

(2) The FIELD or GROUP extract specification is incorrect or the

literal on a VSET card is incorrect. See the MIDMS User's Reference

Manual, chapter 2, paragraphs 5.c.(5), (6), and (7), for correct

specification and rerun the jul>.

ao. 'INVALID OPTION'

(1) FSJBX: OPTION-ERROR

FSVSX: LIT-CHECK

(2) Each FSJOB card is exactly four characters long and is

separated by a preceding comma. Valid options may be in any sequence,

i.e. DATE, LSTn XCHG, HFIX, HALL, etc. See MIDMS User's Reference Manual,

chapter 2, paragraph 5.c.(l), for detailed explanation. Check options for

validity starting with column 26 of the FSJOB card. Correct and rerun job.

ap. 'JOB NOT COMPLETED BECAUSE OF ERRORS'

(1) FSX: JOB-ERROR

(2) The FDD contains errors, correct and rerun job.

aq. 'LAST FIELD IS NOT LAST FIELD DEFINED'

(1) FSGRX: GR-SEQ-CHK

(2) The last name in the fiel^ ''ist specification of the GROUP

card is the immediately previous field or group that was defined. Correct
and rerun job.

ar. 'LR2 OVERFLOW'

(1) FSDTX

FSGOX

FSIOX

FSVSX

FL-C0N-GEN2

MOVE4

FL-SUMMARY

ERROR-CHK

(2) More than 300 fields, groups and system generated mnemonics

have been placed in logical record two. Redesign FDD to reflect the proper

number of mnemonics by adding (1 for the RECORD COUNT, and 2 if the DATE

option is used on FSJOB card, 2 for each periodic set defined, and 1 for

each variable set defined) to the number of fields and groups defined in
the FDD.

as. 'LR3 OVERFLOW'

(1) FSGOX: MOVE3

FSVSX: ERROR-CHK

1-80

(2) More than the maximum of 50 sets have been defined. Correct

FDD to reflect the proper number of sets and rerun job.

at. ' LR4 OVERFLOW

Not used at present.

au. 'LR5 OVERFLOW

Not used at present.

av. 'LR6 OVERFLOW

Not used at present.

aw. 'LR8 OVERFLOW'

(1) FSDTX

FSIOX

FSGOX

FSVSX

FL-CON-GEN2

FL-LAB-MOVE

GO-ON

LR8-BLD1

(2) More than 3000 characters have been placed in Output

Extract Label table. Shorten the output extract label on iach FIELD
or GROUP card and rerun job.

ax. 'LR9 OVERFLOW'

(1) FSIOX: FL-EDT-M0VE1, FL-EDT-3

(2) More than 3000 characters of edit words have been put into

logical record nine. Remove all edit specifications and rerun job.

ay. 'LR10 OVERFLOW'

(1) FSDTX:

FSGOX:

FSIOX:

FSVSX:

FSGRX:

F1-C0N-GEN2

FLTYPEM0VE2

FL-SUMMARY

VSLR10-BLD

LR10-BLD

(2) LR10 contains information necessary to build COBOL Data

Division. Redesign FDD to reduce the number of COBOL statements to be
generated and rerun job.

1-81

az. 'MAX NUMBER OF FIELDS PER GROUP EXCEEDED'

(1) FSGRX: FSGR

(2) There are FIELD specifications in the field list of the

GROUP card than what is allowed. See the MIDMS User's Reference Manual,

chapter 2, paragraph 5.c.(6), for correct specification.

ba. 'MISSING ASTERISK'

Not used at present.

bb. 'MISSING QUOTE ON EDIT LITERAL'

(1) FSEDX: TEST-LITCNT

(2) A quote has be omitted from the literal on the EDIT card.
Correct edit literal and rerun the job.

be. 'MORE THAN THREE CONTINUATION CARDS'

(1) FSX: ERROR-PRINT

(2) Only the original and three additional cards are used for
continuation purposes.

bd. 'NEXT JOB CARD OUT OF ORDER'

(1) FSX: ED-CHK-PERFORM

(2) FSJOB signals the beginning of a group of input cards

containing the data for constructing an FFT. There must be one FSJOB
card for each FFT.

be. 'NOT IN LIBRARY'

Not used at present.

bf. 'O/P OF I/P FUNCT. NOT EQUAL TO FLD SIZE'

(1) FSIOX: FL-IP-Sz-CHK, FL-IP-SIZ

(2) The field size is greater than the output size of the

subroutine or table specified. Correct and rerun job.

bg. 'OUTPUT SIZE IN ERROR'

(1) FSSBX: WORD-CHK-FSSB, MULTI-OUT-CHK

1-82

(2) An output size may be one, two or three digits. Correct
and rerun job.

bh. 'RECCT CANNOT BE GROUPED'

(1) FSGRX: GR-SET-CHK1

(2) "RECCT" is specified in the field list of the GROUP card.
Delete "RECCT" specification and rerun job.

bi. 'SET ID OUT OF SEQUENCE'

(1) FSGOX: CHKCTL-LEN, FL-X, GO-ON-1

FSFLX: FL-X

(2) Set types are placed in an arrangement other than C,X,01,..

See the MIDMS User's Reference Manual, chapter 2, figure 19 (FIELD Card)
for detailed explanation.

bj. 'SUBROUTINE OR TABLE DEFINED BUT NOT USED'

(1) FSX: FS-ENDFS

(2) The subroutine or table was not referenced by a FIELD or
GROUP card.

bk. 'SUBROUTINE TABLE OVERFLOW'

(1) FSSBX: TAB-BUILD

(2) Ex. eeds maximum table size of 100. Redesign FDD to reflect
proper number of subroutines and rerun the job.

bl. 'SUBROUTINE USED FOR BOTH I/P AND 0/P'

(1) FSIOX: FL-IP-Sz, OP-SBTBL

(2) The same subroutine or table is used for the input function

as well as the Output functions. Make correct specification and rerun
job.

bm. 'THE 4TH CHAR OF SUBNAME MUST BE N OR T'

Not used at present.

bn. 'THIS CARD FORMAT CANNOT BE FIRST IN SET'

Not used at present.

1-83

bo. 'UNDEFINED FIELD/GROUP ID OR OPR CARD'

Not used at present.

bp. 'UNDEFINED FIELD ID'

(1) FSGRX: GR-SET-CHK1, GR-FLD-FIND-PFRM, GR-FLD-PFRM

(2) The name in the field list of a GROUP card has not been

defined as a field.

bq. 'UNDEFINED INPUT FUNCTION'

(1) FSIOX: UNDEF-INPUT

(2) The input function specified is not "ALPHA," "NUMEP." or

"SGNUM" and it is not a valid subroutine or table. See the MIDMS

User's Reference Manual, chapter 2, figure 19 (FIELD Card), for

correct specification. Rerun the job.

br. 'UNDEFINED OUTPUT FUNCTION'

(1) FSIOX: UNDEF-OUTPUT

(2) Subroutine or table specified was not found in the

subroutine table. Correct and rerun the job.

bs. 'UNDEFINED SUBRT SPECIFIED FOR BASE'

Not used at present.

5. QUANTITATIVE LIMITS. One of the considerations in the design of a

data file is the quantitative limits placed on the various data

elements. These limits have been set, based on the limits of an

earlier system (1410 Formatted File System Mark III). MIDMS programs

have been written in a manner which allows several of these limits to

be altered without the necessity of significant reprogramming (assuming

that the computer configuration can accommodate the change). MIDMS has

the following restrictions currently (with absolute limitations

indicated, based on conditions which cannot be easily changed).

a. 9999 Characters/Data Record (depending on storage device).

b. 50 Set/Record - 1 Fixed, 49 Periodic or Variable (can be

increased to 99 Periodic plus 99 Variable).

c. 600 Subsets/Set (cannot be increased due to FM convention).

d. 299 Fields or Groups/Record - including MIDMS-generated control

fields (can be increased to 450).

1-84

e. 999 Characters/Alpha Field (Alpha groups have no size

limitations other than that of the record size).

f. 18 Digits/Numeric Field or GrDup (COBOL limitation).

g. 30 Characters/Record Contro] Group (can be increased to 99).

h. 132 Characters/Extract Label or Edit Word (cannot be

increased due to printer size, a lower maximum may be necessary).

i. 3000 Characters/Total of Extract Labels - including labels

for MIDMS-generated control fields (can be increased to 9999).

j. 3000 Characters/Total of Edit Words and Control Information -

six characters are added to each edit word (can be increased to 9999).

k. 45 Levels of Grouping Hierarchy/Set - groups within groups

within groups (overlapping groups result in extra labels - cannot be
increased).

l. 500 Lines in Generated COBOL Data Division/File - 3 lines/set,

1 line/field, at least 1 line/group depending on hierarchical

relationships (can be increased to 1400).

m. 100 SUB or TAB Cards/FS Deck (can be increased to 900).

n. 300 Total Subscripts on SUB or TAB Cards/FS Deck - 1 to 9

per SUB or TAB card; 1, if no subscripts specified (can be increased
to 999).

o. 100 EDIT Cards/FS Deck (can be increased to 450).

1-85

CHAPTER 2

Librarian

1. SUBSYSTEM STRUCTURE. The MIDMS Librarian is a collection of

programs that act as the interface between the MIDMS functional

programs, FS, FM, RTOP, LIBUT, etc. and a MIDMS library. Each

functional program calls the main librarian module, LBLB, when it

wishes to read from, write to or delete members on the library.

The Librarian consists of COBOL program LBLB and several assembly

language subprograms.

2. SUBPROGRAM IDENTIFICATION AND DESCRIPTION. The Librarian

consists of one COBOL program LBLB and seven assembly language
programs.

LBLB performs all the library operations, read, write,

delete, and size and is the program called by the

functional programs.

LBCMPRS compresses a string of data characters by

replacing four or more consecutive blanks with a three

character blank compression code.

LBEXPAND expands a compressed data string produced by

LBCMPRS into its original format.

LBMOREC is used to increase the speed of character moves.

LBJBNAME obtains the job name specified in the // JOB card

for inclusion in the directory record.

LBENQ obtains exclusive or shared control of the library
being accessed.

LBDEQ releases control of a library when LBLB has finished

processing.

LBRNAME provides the data set name of the library to the
calling program.

2-1

LBLB

LBCMPRS LBEXPAND LBMOVEC LBJBNAME

LBENQ LBDEQ LBRNAME

a• LBLB.

(1) Abstract.

(a) Function. This program provides the interface

between MIDMS processing modules and the MIDMS library. It services

requests from these modules for reading, writing, and deleting

members of the library. During its operation, LBLB calls several

assembly language subroutines which perform special services. In

addition to servicing MIDMS modules requests, it also maintains

the STATISTICS Record (Record 0) of the library which contains a

variety of data necessary for the library operation.

(b) Calling Sequence. This program is called at entry
point 'LB* and is passed two parameters:

1. The address of an 18-byte area containing
the following four fields:

a. A one-byte code which informs LBLB of
the action to be performed, W«write, R=read, D*delete, S=size.

b. A four-byte size field which either
contains the size in bytes of the entry to be written or will be

filled in with the size of the entry which is read by LBLB.

£. An eight-byte name field which contains
the name of the library entry to be affected.

cl. A date field which either contains a date
indicating when the entry was written into the library or which will
be filled in with a date when an entry is read.

2-2

2^. The address of a 10,000 byte area which

either contains the entry to be written into the library or is

filled in by LBLB with an entry from the library.

(2) Description.

(a) LB is called by a MIDMS processing module when

it wishes interaction with a MIDMS library. The data fields

described in paragraph 2.3.(1)2^. are passed as parameters

and determine the actions LBLB will perform. When entered LBLB

immediately calls LBENQ to request control of the MIDMS library.

This insures that no other LBLB program in another job will modify

the library during the time LBLB is executing. After gaining

control of the library, the switch "WAS-DELETED-BY-LB-DELETE"

is blanked. This switch will be turned on if an entry is deleted

hv the LB-DELETE portion and will indicate the proper return

code to be placed in LKOP when LBLB returns to the caller. The

original LKOP is saved in LKOP-SAVE and examined during clean¬

up to indicate whether the statistics record 0 should be written

to the library. The library file is then opened as a relative

I/O file to be accessed by physical block number. The block

number field "REGNO" is set to 0 indicating file physical record

0 which is then read into STAT-REC since record 0 in a MIDMS library

is the statistics (see paragraph 2.a.(4) for the statistics record

format). LKOP is now checked to determine the operation to be

performed. LB-READ processes "R" and "S," LB-WRITE processes

"W," "L," "A" and "B" and LB-DELETE processes "D." If LKOP is

not one of these codes, a "not done" response, "N," is placed in

LKOP and LBLB exits. The calling program determines successful

or not successful operation of the library request by examining

LKOP when LbLB returns control. If "N," LBLB could not successfully

perform the operation requested and the calling program should

take the appropriate .•’ction.

(b) LB-DELETE through LB-DELETE-EXIT deletes an entry

from the library and adjusts the statistics record. It first

moves the name of the entry to be deleted to DR-SEARCH-NAME and

the first letter of the naro : to DR-SEAFCH-LETTER and performs

FIND-DIREC-ENTRY which searches the library directory records for

an entry with that specific name. If REGNO equals 0 after

FIND-DIREC-ENTRY has completed, a directory entry for the given

name was not found (i.e., the given entry does not exist in the

library). If LKOP equals "D," which means the calling program

wishes to delete the entry, an "N" is placed in LKOP indicating

the entry does not exist and LB-DELETE exits. If LKOP does not

equal "D," then LB-DELETE was performed by LB-WRITE prior to writing

an entry to the library and LB-DELETE exits without altering LKOP.

If REGNO does not equal 0, then the directory entry for the member

to be deleted was found and REGNO contains the record number of the

2-3

directory record containing the directory entry, the directory

record is setting in DIREC-REC of LIB-FILE and I certains a

number from 1 to 16 indicating the appropriate directory entry

in the directory record. Since we will delete the member from

the library, "WAS-DELETED-BY-LB-DELETE" is turned on to so

indicate. The directory entry is moved to a work area, DIREC-

ENTRY-WORK to save its contents, the entry slot in the directory

is set to all '9' to indicate an emptry directory entry and the

directory record is rewritten to the library. The operation has

deleted the member's entry from the directory record but has not

deleted the data portion of the member. The counter "STAT-DIREC-

ENTRIES-USED" in the statistics record is decremented to indicate

one less directory entry used. The field "DWPTR" in the directory

record, which points to the first data record associated with the

entry being deleted is moved to RECNO in order to free the data

records. If this pointer is 0, that indicates there are no data

records associated with the member, the delete process is finished

and LB-DELETE exits. If the pointer is not 0, the data record is

read, the next record pointer in the data record is saved in J,

the entire data record is blanked out, the fields "THIS-REC"

and "NEXT-REC" are placed back in the data record from RECNO and

J, respectively, and an "F" is moved to REC-TYPE to indicate

it is a free record. If the next record pointer is not equal 0

indicating that another data record follows the one being freed,

one is subtracted from the number of data records counter, one is

added to the free records counter in the statistics record, the

freed record is rewritten to the library, the next record pointer

is moved to RECNO from J and control returns to LBD-READ-DATA-REC

to read and free the next data record. If the next record pointer

is 0 indicating this is the last data record associated with the

member being deleted, the data records and free records counters

are decremented, the record number of the first free record on

the free record chain is moved to the next record pointer field

of the free record being worked on to effectively add the records

just freed to the beginning of the free record chain, the current

free record is rewritten to the library and the record number

of the first record of the chain just deleted is placed in STAT-

FREE-REC-PTR in the statistics record to complete adding the

records freed to the free records chain. At this point the library

member has been completely deleted and LB-DELETE exits.

(c) LB-READ through LB-READ-EXIT performs two

functions for a calling program. It will return the size of a

member of the library if LKOP is "S" and will read the member into

a work area if LKOP is "R." The first action LB-READ performs

is try to find the member's directory entry. It does this using

FIND-DIREC-ENTRY as LB-DELETE did. After FIND-DIREC-ENTRY returns,

if RECNO is 0, the directory entry was not found, "N" is placed

in LKOP to indicate this and LB-READ exits. If RECNO is not 0,

2-4

the directory entry is moved to the directory entry work area,

the size from the directory entry is moved to LKSIZE in the

calling parameters and also saved in SIZEX for use later during

possible moving of the data portion of the member. The date is

moved to the calling parameter. LKOP is now checked to see

which operation is to be performed. If LKOP is "S," only the

size of the member is requested and LB-READ exits. If LKOP is

not "S," then it is "R" and the member data is desired. If the

size of the member is 0, then LB-READ exits since there is no

data to be moved. If the size is no 0, the pointer to the first

member data record is placed in REGNO and the data record is

read. At this point SIZEX is checked to determine the type of

data move which should be performed. If SIZEX is less than 501

indicating that this will be the last data moved for the member,

subroutine LBMOVEC is called to move the remaining characters

into the receiving area. If SIZEX is greater than 500, this

means that the full 500 characters of the data record are to be

moved and the data is moved to the 500-character segment indicated

by the segment number contained in the dat record. The segment

numbers begin at 1 and increase by 1 for each subsequent data

record up to a maximum of 20. After the data has bee moved to

the receiving area, SIZEX is decremented by 500. The next record

pointer is moved to REGNO from the data record. If the pointer

is 0, this is the last drta record of the member and reading of

data records ceases. If the pointer is not 0, the next record

is read and moved. After the entire data portion of the member

has been moved, the REG-FORMAT field is checked to determine the

format of the data stored on the library. If it is "C," the

data is stored in a compressed format with each four or more

consecutive blanks replaced by a three character code. Before

returning to the caller, the data has to be expanded to its

original format. This is done by performing EXPAND which calls

subroutine LBEXPAND. At this point, the read function is
completed and LB-READ exits.

(d) LB-WRITE writes a member to the library. The

data written is passed to LBLB by the calling program in an up

to 10,000 character area. LB-WRITE first performs L7i-DELETE to

insure that the member being written does not exist on the library.

When LB-DELETE returns, the member to be written is not on the

library. An "E" is moved to the REC-FORMAT-X field to indicate

a default expanded format for the data. This will be changed to

"C" if the data is later compressed. If LKOP is "AM or "B,"

the data being written came from a backup tape and is already

compressed. "C" is moved to a REC-FORMAT-X and the compress test

is bypassed. If the fifth letter of the member is "Q" or "R" or "F"

indicating that the member is a stored query, report as flysheet

or it is a member indicating the member is a data division produced

2-5

by File Structuring, COMPRESS is performed which eliminates each

four or more consecutive blanks and replaces them with a three

character code. After the compression process has been done,

the number of data records which will be written xs computed.

Each data record will contain 500 characters. The last data record

will contain 500 or less characters. The number of data records

required for this member plus one for a possible new directory

record is compared to the number of free rtcords in the library.

If there are not enough free records left in the library to

accommodate the new member, "N" is placed in LKOP and LB-WRITE

exits. If there are enough free records, the directory entry

for the new member is now created in the directory entry work atea,

DIREC-ENTRY-WORK. The name and size come from the calling

parameters. The size is also placed in SIZEX for use later when

the data is actually moved to data records. The date field is

initially filled in from the LKDATE6 field of the calling

parameters. If the date is legal, it is accepted; otherwise

spaces are r^oved in. If the date is not legal, the current system

date is used. If LKOP equals "W" or "A," the job name of the

current job is placed in the job name field of the directory entry;

otherwise, the job name field is filled in from the calling

parameters. If the size is 0 indicating there is no date to be

written, the date record pointer field is set to 0 and control is

passed to add the directory entry to the library. If the size is

not 0, data is to be written and the record number of the first

record on the free record chain is placed in the data record pointer

of the directory entry. This pointer is placed in RECNO for

subsequent reading of the free records and I is initialized

to 0 to be used as the data segment counter. The free record is

not read and formatted. The segment indicator is incremented

to indicate the current 500-character segment being processed.

REC-TYPE is set to "X" to indicate a data record. The record format

character is placed in the data record. The member name and

segment number are also placed in the data record header. The data

segment is now moved to the data portion of the record. If there

are less than 500 characters left to move, LBM0VEC is called to

move the characters; otherwise the entire 500-character sepnent is

moved from the input area to the data record. SIZEX is decremented

by 500 to indicate 500 characters have been moved and the number

of data blocks counter is decremented by 1 to indicate one more

data block has been processed. If this is not the last data block

to be processed, the next record pointer in the data record is

saved in J, the data record is written to the library, the

statistics record is updated, the record number of the next free

record is moved to RECNO for subsequent reading and control passes

again through LBW-READ-DATA-REC to format the next data record.

If this is the last data record to be processed, the free record

pointed to by this data record will be the first free record on the

free record chain and its record number is placed in the statistics

record. The next record pointer in this data record is set to 0

2-6

to indicate that this is the last data record for the member being

added. The data record is written to the library and the

statistics record is updated. At this point all the data records

have been written to the library and to complete the processing,

the directory entry for the new member must be placed in an

appropriate directory record on the library. The parameters

used to find a free directory entry slot are set up by moving the

first character of the member name to DR-SEARCH-LETTER and all '91

to the DR-SEARCH-NAME field. FIND-DTREC-ENTRY is not performed

which searches the directory records associated with the first

letter of the member name for an empty entry slot indicated by

an entry name of all '9.' If RECNO is 0 when FIND-DIREC-ENTRY

returns, a free directory entry was not foound. It is neccessary

then to perform ADD-DIREC-REC-TO-CHAIN to create a new directory

record for that letter which contains empty entries and add it to

the directory record chain. When this routine returns or if

FIND-DIREC-ENTRY did find an empty entry slot, RECNO will contain

the record member of the directory record, I will contain an index

to the empty entry in the record and the directory record will be

in DIREC-REC. The new directory entry is then placed in the

empty slot, the updated directory record is written to the library,

the statistics record is updated to show that one more directory

entry exists and LB-WRITE exits.

(e) LBLB Subroutines. The following subroutines are

performed by the previously described main processing portions,

LB-DELETE, LB-READ and LB-WRITE.

1. ADD-DIREC-REC-TO-CHAIN is performed by

LB-WRITE when no free directory entries were found for the letter

specified. Its purpose is to create a new directory record for

the letter, format it with 16 empty entries and place it as the

first record of the directory record chain. When entered, it

determines the number to be used as an index in the statistics

record to point to the proper DIREC-PTR for the specified letter.

For example, letter C corresponds to number 3 and the third

DIREC-PTR is a pointer to the first directory record for the letter.

If the DIREC-PTR is 0, no directory records exist for that letter.

The proper index is placed in I. Next the record number of the first

record on the free record chain is moved to RECNO to become the

new empty directory record. This record is read and the record it

points to becomes the first free record on the chain. The free

record counter in the statistics record is decremented. Now the

directory record is formatted by moving all '9' to it, placing
RECNO back into the THIS-REC field, moving the DIREC-PTR to

the NEXT-REC field so that this new record points to the first

record of the existing directory chain, moving THIS-REC to the

DIREC-PTR so this record becomes the first record in the chain,

making the REC-TYPE equal ’D," placing the specified letter in the

REC-FORMAT field. The number of directory records counter in the

statistics record is incremented by 1 and 1 is placed in I to

2-7

indicate to LB-WRITE that entry number one is is an empty entry.

The routine then exits back to LB-WRITE.

2^. COMPRESS is performed by LB-WRITE when it

determines that the data to be written should be compressed. If

the size is 500 or less, there will only be one data record and

compressing is not necessary or desirable; COMPRESS immediately

exits. If the size is more than 500, "C" is moved to REC-FORMAT-X

to indicate the record is compressed and LBCMPRS is called to do

the compression.

3. EXPAND is called by LB-READ when it finds

the member read from the library to be in compressed format. It

places the compressed size in SIZEX, calls "EXPAND" to expand

the data and places the expanded size into the calling parameter

field, LKSIZE.

FIND-DIREC-ENTRY is performed by LB-DELETE

and LB-READ when this wish to find the directory entry of a

particular member and by LB-WRITE when it wishes to find an empty

entry in the directory records for a particular letter. When

entered, DR-SEARCH-NAME contains the member name and DR-SEARCH-

LETTER contains the letter of the directory record chain to be

scanned. The routine first determines the index number corresponding

to DR-SEARCH-LETTER. It then moved the appropriate DIREC-PTR

pointing to the first directory record on the chain to RECNO.

If RECNO equal 0, no directory records exist and control is returned

to the calling routine. RECNO equal 0 indicates the directory

entry was not found. If RECNO is not 0, the directory record is

read and the entries are scanned. If a matching entry is found,

I contains the index of the entry and the routine. If a matching

entry is not found, the pointer to the next record is put in RECNO.

If RECNO now equals 0, there are no more directory records and

the routine exits; otherwise the next directory record is read and

scanned.

j). NOOP is a dumm' paragraph used by various

routines for scanning purposes.

6. LB-EXIT is the common exit point when the

main routines have aished processing. LKOP is checked to sae if

the statistics record has been altered. If it has, the statistics

record is rewrittan. If the member was deleted by LB-DELETE, "D"

is placed in LKOP to so indiiate. This could occur when the

calling program passed "W" as LKOP and LBLB had to delete a member

of the same name before writing the new version. The LIB-FILE

is now closed- LBLEQ is called to relinquish control of the library

and control is returned to the calling program.

2-8

(3) Limitations. The maximum size member which may be

written on the library is 10,000 characters.

(4) Input and Output Data Set Description. A MIDMS

library is a random access data set containing fixed length

532-byte record (Honeywell--540 character records). The first

12 characters of each library record contain four fields as follows

1- 5 The record number of this record (the first is 00000).

6-10 The record number of the next record in a chain of

records. This field contains 00000 if this is the

last record in the chain.

11- 11 A one-character code indicating the function of the

record, F-free, S=statistics, D=directory, X=data.

12- 12 A one-character code with different meanings for each
record type:

Record Type

F (free)

12-12 Meaning

Blank

S (statistics) l*first statistics record

D (directory) A=this is a directory record

for the letter A

X (data) E«3xpanded data

Ocompressed data

(a) Free Record Format.

1-12 Record Header 1- 5 Record i;<imb‘¿r of this record

6-10 Record number of the next record in

the free record chain or 00000.
11- 11 "F"

12- 12 Blank

13-532 Blank (Honeywell:13-540)

2-9

éâ

(b) Statistics Record Format. The format of the

STATISTICS record (record 00000) is:

1-12 Record Header (OOOOOOOOOOSl)

13-17 Five-byte number of records in the library

18-22 Five-byte number of directory records in the library

23-27 Five-byte number of data records in the library

28-32 Five-byte number of free records in the library

33-37 Five-byte number of directory entries in the library

38-A2 Five-byte record number of the first free record on the

free record chain

43-172 Twenty-six five-byte record numbers of the first record

number of each directory record chain

173-532 Not used (Honeywell:173-540)

(c) Directory Record Format. Each directory record

contains 16 directory record entries of 32 bytes each.

1-12 Record Header 1- 5 Record number of this record

6-10 Record number of the next record in

the directory record chain or 00000

11- 11 "D"

12- 12 An alphabetic letter A-Z

13-524 Sixteen directory entries of 32 bytes each

Directory Entry Format

1- 8 Entry Name

9-13 Entry Size

14-19 Entry Date

20-24 Record number of the first data record of

this entry

25-32 Job name of the job that created this entry

(Honeywell:not used, blank)

525-532 Not used (Honeywell:525-540)

(d) Data Record Format. Each data record contains

the entry name, segment number and up to 500 bytes of data.

1-12 Record Header 1- 5 Record number of this record

6-10 Record number of the next recoro in

the data record chain or 00000

11- 11 "X"

12- 12 "E" if the data is expanded (contains

spaces)

"C" if the data is compressed (four or

more spaces elimi?iated)

2-10

13-20 Entry name; matches an entry name in a directory record

21-22 Segment number; 1-20

23-32 Reserved; not used

33-532 500-byte data area

(Honeywell:533-540 not used)

(e) Initialization.

JL. When created, the library is formatted as
follows:

a. Record 00000 is made the STATISTICS
record and its header is 0000000000S1.

b. Records 0001 thru the last record of the
library are formattted as free records and are chained together.

2. When created, the record headers would appear
as follows for a 2000-record library:

OOOOOOOOOOSl

0000100002F

0000200003F

thru

0199801999F

0199900000F

3^ The STATISTICS record contains the following
information after the library is created (assume a 2000-record
library).

1-12 "OOOOOOOOOOSl"

13-17 "02000" number of library records

18-22 "00000" number of directory records

23-27 "00000" number of data records

28-32 "01999" number of free records

33-37 "00000" number of directory entries

38-42 "00001" record number of first free

record in free record chain

43-172 "00000.00000" there are no

directory records.

2-11

mmm

(5) Tables, Switches and Major Work Areas.

(a) LIB-FILE.

_1 • LIB-REC describes the common 12-byte header
of each library record.

2^. DIREC-REC is the format of a directory
record and each directory entry.

DATA-REC is the format of each data record.

(b) DIREC-ENTRY-WORK is the work area for constructing
or using a directory entry.

(c)
directory entries

DR-ENTRIES-PER-DIREC defines the number of

in a directory record.

(d) DR-SEARCH-LETTER and Dk-SEARCH-NAME are

parameters filled in prior to searching the library for a particular
directory entry.

(e) LETTERS and LETTERS-A is used to convert an

alphabetic letter into the corresponding numeric value (i.e.,
C=3).

(f) REC-FORMAT-X is used when writing a data record

to the library to contain either "E" or "C" depending on whether
the data is expanded or compressed.

(g) RECNO is used as the nominal key for the

relative tile LIB—FILE and contains the relative block number for
all read and write operations.

(h) SIZEX is a work area used during moving of data
and contains the number of remaining characters to be moved.

(i) STAT-REC is the definition of the statistics

record in the library. The statistics record is read into this

area each time LBLB is entered and it is updated and written back

to the library during WRITE and DELETE operations.

(j) LKINFO and LKDATA are the definitions of the
parameters passed to LBLB by the calling program.

b. LBCMPRS.

(1) Abstract.

(a) Function. This program compresses a string

of data characters by replacing four or more consecutive

blanks with a three character blank compression code.

(b) Calling Sequence. This program is entered at

LBCMPRS" or "COMPRESS" and is passed to two parameters:

1. the address of the beginning character of the string to be

compressed and _2. the number of characters in the character

string. When it returns to the calling program, the character

string has been compressed in its original area and the compressed

size is passed back in the original size field.

(2) Description.

(a) When entered, the program obtains the size of

the data to be compressed, the address of the data and computes

the address of the character past the end of the original data.

It then begins scanning the data looking for a blank. If a blank

is found, a counter, N spaces, is incremented. If the counter*

99 (99 consecutive spaces have occurred) the subroutine, SPACERTN,

is executed to indicate a compression of 99 blanks up to this

point. If NSPACES does not equal 99, the scan continues. If the

data character is not a blank, the data character is checked for

the code indicating compressed blanks, X'FF.’ If the data

character is X FF, the data is already compressed and the program

returns to the calling program. If the data character is not X'FF,'

NSPACES is checked to see if any blanks have occurred prior to this

non-blank character. If there have been blanks, SPACERTN is executed

to process them. In either case, the non-blank character is moved

to its output position, the input and output character pointers are
incremented and the next character is checked.

(b) When the character to be checked is past the
end of the original data, the program branches to "FINISJ " At

this point any blanks remaining are processed, the compressed

size is computed and returned to the calling program and control is
returned to the calling program.

(c) When consecutive spaces have been found and the

compression code is to be placed in its proper output location,

subroutine SPACERTN is executed. If the number of consecutive

blanks is 3 or less, actual blanks are placed into the output

location since no compressional may occur for three or less blanks.

If there are four or more blanks, the number in two-byte EBCDIC

is placed in the second and third positions of "CODE" creating a

compression code (e.g., X'FF^S). This three-byte code is then

placed in the proper output location and the blank counter,

NSPACES, is zeroed.

(3) Limitations. None.

(4) Input and Output Data Set Descriptions. None.

(5) Tables, Switches and Major Work Areas. None,

c. LBEXPAND.

(1) Abstract.

(a) Function. LBEXPAND expands a compressed data string

produced by program LBCMPRS into its original non-compressed format.

It does this by scanning the string for the three-character blank

suppression code and moving into the output location the appropriate

number of blanks.

(b) Calling Sequence. This program is entered at

"LBEXPAND" or "EXPAND" and is passed to two parameters: 1^. the

address of the compressed data string and 2. the address of the

number of characters in the data string.

(2; Description. When entered, LBEXPAND moves the address

of the compressed string and its length into storage areas. Then

the data string is right-justified in the 10,000-byte area in which

it is initially left-justified. This allows the data string to

be expanded back into the left portion of the area. If the

compressed data string is less then 5001 characters, LBMOVEC is

called to mcve it to the right. If more than 5000, the data is moved

byte-by-byte from the right end of the data to the right side of the

area. When the right-justification is completed, R2 is initialized

with the address of the first data string character,

R3 with the address of the first character of the data area and R4 with

the length of the compressed data. The program then begins scanning

the compressed data string. If a character is not a blank code

(i.e., X'FF'), the character is moved to the output location, the

pointers are incremented by one, the length is decremented by one and

the next character is checked. If the character is X'FF', the next

two characters indicate the number of blanks that have been

eliminated. The blanks are moved to the output area, the pointers

adjusted, the length count reduced by three and the next character is

checked. When the entire compressed data string has been scanned

and the original data string reconstructed, the expanded length is

computted and passed back to the calling program. Control is then

returned to the calling program.

2-14

(3) Limitations. When called, the compressed data string

must be left-justified in a 10,000-byte area because I.BEXPAND will

right-justify the compressed cata and expand it into the left

portion of this area overlaying the compressed data.

(4) Input and Output Data Set Descriptions. None.

(5) Tables, Switches and Major Work Areas. None,

d. LBMOVEC.

(1) Abstract.

(a) Function. LBMOVEC is an assembly language

subroutine called by LBLB to speed up character moves.

(b) Calling Sequence. This routine may be called

at either of two entry points, LBMOVEC or MOVEC, and is passed

three parameters:

PARAMETER

1 The address of the first

byte of the sending field

2 The address of the first

byte of the receiving

field

3 The number of characters to

be moved from the sending

field to the receiving

field.

(2) Description. LBMOVEC is entered at either LBMOVEC

or MOVEC and uses R15 as the base register throughout the program.

R2, R3 and R4 are saved since the three parameters passed will be

placed in them. The addresses of the sending and receiving areas

and of the number of characters to be moved are placed in R2, R3,

and R4, respectively. The actual length is then placed in R4.

At "MOVEXXXX" the number of characters to be moved is checked.

If greater than 256, 256 characters are moved, the count is reduced

by 256, the sending and receiving field addresses are increased by

256 and control passes to "MOVEXXXX" to check the count. If less

than 256 are to be moved, the count less one is stored in the move

instruction (MVC), tue last characters are moved, R2, R3, R4 are

restored and control is returned to the calling program.

2-15

(3) Limitations. The numbers of characters to be moved
may not be zero.

(A) Input and Output Data Set Descriptions. None.

(5) Tables, Switches and Major Work Areas. None.

(6) Subprogram Flowchart.

RETURN

TO

CALLER

e. LBJBNAME.

(1) Abstract.

(a) Function. This program obtains the job name

specified in the // JOB card from the Task Input Output Table

and returns it to the calling program.

(b) Calling Sequence. This routine may be called

at either entry points "LBJBNAME" or "JOBNAME" and is passed one
parameter, the address of an eight-byte area in which LBJBNAME
will place the job name.

(2) Description. When entered, LBJBNAME saves registers,

obtains the address of the TIOT via the CVT and TCB, and moves

the job name (the first eight bytes of the TIOT) to the receiving

area provided by the calling program.

(3) Limitations. None.

(4) Input and Output Data Set Descriptions. None.

(5) Tables, Switches, and Major Work Areas. None,

f. LBENQ.

(1) Abstract.

(a) Function. This program allows the librarian,

LBLB, to gain exclusive or snared control of a library

preventing the librarian in cnother job from altering the library

before LBLB has finished processing. This control is gained by

using the ENQ macro with a QNAME of "MIDMS" and an RNAME of the

library's data set name. See IBM System/360 Operating System

Supervisor Services GC28-6646 for an explanation of the ENQ macro.

(b) Calling Sequence. This program is called at

entry point "LBENQ" and is passed to two parameters: 1^ the

address of the library file's DECB and 2. the address of the LKOP

field denoting the particular operation being performed.

(2) Description. The program moves the LKOP character into

a save area. It then determines of the library's data set name has

already been obtained and stored in the program. If location DSN

does not contain X'58', then the 44-byte data set name has been

obtained and resides at DSN. The program then branches to WHICHENQ

to continue processing. If the data set name has not been

obtained, the Job File Control Block is read into a 176-byte area at

2-18

JFCB. The first 44-byte of the JFCB is the data set name. The

type of ENQ is now determined. If LKOP is "S" or "R," only shared

control is required sincy the library will not be altered. However,

if LKOP is "D" or "W," exclusive control is required. The

appropriate ENQ macro is issued and the program returns to the

caller.

(3) Limitations. None.

(4) Input and Output Data Set Descriptions. None.

(5) Tables, Switches and Major Work Areas. None,

g. LBDEQ.

(1) Abstract.

(a) Function. This program releases control of a

library by issuing a DEQ macro to cancel a preceding ENQ issued

by LBENQ.

(b) Calling Sequence. This program is entered at

"LBDEQ" and is passed no parameters.

(2) Descriptions. When entered, the address of the 18-word

save area (ENQSAVE) in the LBENQ module is obtained and used as the

save area for this program. The addresses of the QNAME and

RNAME are obtained and placed in registers 2 and 3 and the DEQ

macro is issued to release control of the library. The program

then returns to the calling program (LBLB).

(3) Limitations. LBENQ must have been called previously

to gain control of the library being released.

(4) Input and Output Data Set Descriptions. None.

(5) Tables, Switches ?nd Major Work Areas. None,

h. LBRNAME.

(1) Abstract.

(a) Function. Tais program provides the data set name

of the library to the calling program.

vb) Calling Sequence. This program is entered at

"LBRNAME" and is passed one parameter, the address of a 44-byte

area for the library data set name.

2-19

(2) Description. When entered, the address of the 18-word

save area (ENQSAVE) in the LBENQ module is obtained and used as

the save area for this program. The address of the RNAME field in

LBENQ which contains the library data set name is obtained and the

name is moved into the calling programs receiving area.

(3) Limitations. LBENQ must have been called before

this program is entered to insure that RNAME contains the data set

name.

(A) Input and Output Data Set Descriptions. None.

(5) Tables, Switches and Major Work Areas. None.

3. ERROR MESSAGES. There are no error messages associated with

the Librarian. Any abnormal conditions found during its

execution are indicated to the calling program by placing a "N"

in the operation field of the calling parameters before returning

control to it. The meaning of the "N" depends on the request

operation:

OPERATION "N" MEANING

R (READ) The library member was not found on the

library.

W (WRITE) Insufficient room is left in the library

to write the requested member.

D (DELETE) The member was not found on the library.

S (SIZE) The member was not found on the library.

2-20

