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Evaluation

This effort was a study to investigate, theoretically
and experimencally, the possibility of Burst Communication
by radio transmission from an antenna buried for conceal-
ment. Low transmitter pover, 1 watt, maximum antenna
width of 5 inches and VHF frequency were major parameters.
The emphasis was on antenna design and not commiunications
system design. The results of the study indicate theoreti-
cally useful ground to airborne communications,

In view of the theoretical and experimental feasibility
indicated, an expansion of the effort is recommended. It
should include further experimentation and flight testing
to expiore the more practical aspects of adapting the
experimental antennas to existing buried transmit devices.
An experimental buried antenna/transmit combination unit
should be constructed for this purpose,
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1. INTRODUCTION

o

3 The cbjective of this effort is to provide engineering
- services to study the feasibility and practicality of low power
S radio frequency transmissions from antennas chat are buried

L just below the surfsce of the earth. Burial is for concealment
S only.

The main purpose is to predict the communications range
: to an assumed receiver from a buried transmitting antenna. In
. doing this the theory of buried antennas. which is available in
E the literature. is outlined; experiments were performed to con-
ﬁ 2 firm the theory; and small resonant antennas for burial were
developed and tested. Construction details are given for some
candidate antennas.

Compromises and trade-offs are described for various types
of antennas, e.g., vertical and horizontal dipcles. The main

TRV

t

|

t

|

| factor in the research is the requirement of a small antenna to
§ allow convenient burial deployment. This requirement was ac-

|

cormplished by the use of rescnant antennas at the assigned fre-

quency, 145 MHz.

The theory of emission from a buried source to the air space
is discussed in section 2. The general properties of resonant

antennas are described in section 3. The effects of burial on
impedance, bandwidth, efficiency, and pattern are described in
section 4, and a series of candidate antennas is described.

Experimental results for the candidates are given in section 5.

The maximum communication range is predicted in section 6.
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2. THEDRETICAL FIELD CALCULATIONS
A. INTRODUCTION

A theoretical discussion of the effect of burial in the
ground on antenna performance consists of three main aspects:
one aspect is the change of the efficiency of the antenna; the
second aspect is the exact field pattern calculation; and the
third aspect is the change in impedance, and especially the change
in the resonant frequency of resonant antennas. The determination
of efficiency of buried antennas by theoretical methods has been
done only for certain antennas, e.g., for a spherical dipole [1].
Theoretical work on efficiency was not done in the present con-
tract. Experimental determinations of efficiency are discussed
in a later section.

The field at a receiving point in the air may be compared
to that from a monopole set on the ground at the place where the
radiation emerges from the buried antenna. This method makes it
clear how much loss arises from the burial. A more rigorous
method is to state the loss relative to an isotropic sourcs.
This method shows the total effect of the burial and the propa-
gation. Both presentations will be used.

B. GAIN PATTERN IN AIR OF A BURIED DIPOLE

The field in the air space is greatly influenced by the
burial. The notation TM and TE waves will be used to denote*
the wave components with horizontal magnetic vector and hori-
zontal elzctric vector respectively. Table 1 indicates some
characteristics of the waves from buried dipoles and from a
reference quarter wavelength monopole set on the earth. The
latter is a useful basis for comparison. It has approximately
-3 dB gain with respect to isotropic at 10° elevation angle.

*Another notation for TM and TE is vertically and horizontally
polarized respectively.
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Dipole antennas, including a small loop which is a magnetic
dipole, are considered almost exclusively. The following nota-
tion will be used:

VED, vertical electric dipole;
VD, vertical magnetic dipole;
HED, herizontal electric dipole;
HMD, horizontal magnetic dipole.

A buried vertical dipole gives a weaker field throughout the
air space than does a buried horizontal dipole, other things
being equal, and the dielectric constant, €', of the ground being
greater than 2, which is almost always the case. This is due to
the cone of emission from the ground into the air space (fig. 1).
For €' = 6 the cone angular radius is 24°. The vertical dipoles
give no emission straight up and at 24° the underground pattern
factor of the dipole is 8 dB weaker than the maximum, which
occurs in the broadside direction.

The buried horizontal dipole sends maximum energy straight
up. The horizontally traveling surface wave is emitted at
24° from maximum of the dipole, for both the TE and TM polari-
zations, causing at most 0.7 dB loss due to the underground
pattern factor of the dipole at 24° from broadside, € being 6.

For any antenna system the field strength decreases at low
elevation angles, as indicated in table 1. At low angles the
buried antenna exhibits an approximately constant loss compared
to an antenna on the surface, see last line of table 1. This
extra loss due to burial is explained in sections C and D below.
The loss is about 30 dB for T wave and 40 dB for TE waves at
1° elevation angle, €' being 6. The TM wave is almost always
stronger than the TE wave and is therefore more useful. Also
it gives a ground wave, useful for nearby on-the-ground
reception.

Power gain is defined in the footnote of table 1.
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Table 1. Fields of a moncpole, and various dipoles buried in
earth, with dielectric constant = 6 and conductivity = 0.003 S/m,
stated relative to an isotropic emitter. Depth is assumed zero.
The eighth line shews the depth attenuation per meter.

2 in(2)

4 T™/TE Power Gain

) Antenna Character 10° Elevation 1° Elevation 2° Elevation
A/4 monopole ™ v -3 dB A~ -18 dB A~ -14 dB

with A/2 radius
metal ground

g plane
3 Buried VED ™ -21.8 dB -38.7 dB -33.0 dB
_ Buried VMD TE -25.9 dB -46.1 dB -40.2 dB
§ Buried HED ™ -14.6 4B -31.7 dB -26.1 db
v
3 TE -19.0 dB -38.3 dB  ~ -3z.6 dB
Buried HMD T™ -13.8 dB -30.9 dB -25.4 dB
TE -19.8 dB -39.1 dB -33.3 dB
1 meter depth TE,T™™ -2.19 dB -2.20 dB - 2.20 dB
absorption :
]
Buried HED re- ™ -11.6 dB -13.7 dB -12.1 dB j
lative to ;
surface “
monopole ]
!
&
4
| 3
; (a) The power gain of an antenna at any angle is the ratio of 3
| the power density observed to the theoretical power density k
that would have been furnished by an isotropic emitter in 1
free space at the same distance. n
;
4
5
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Figure 1, a. Rays at critical angle; b. divergence.¥ %

¥Long captions for all figures are given in the "List of Figures”. The capiioa
accompanying each figure will usually be abbreviated.
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C.  THEORETICAL DERIVATION OF THE PATTERN GAIN

A convenient summary of buried anteana theory .i5 that of
Hufford [1}. Earlier results include [Z], [3}, [4]. The
Sommerfeld method for a dipoie in a half space is used. The
final results are given below. The notation is as follows:

€g» ¥y are the constitutive parameters of free space.

In the ground ¥ = g, and the complex refractive index,

n, is given by

2

- z ot . . * = ;
n¢ = elleo e' + 1 o/(mso), also ¢ e;/¢g-

o = conductivity, S/m.

= % = Vi Tes
kg = wlugegd ™, 2o = YHy/ey,
kl = nko, Z1 = Zoln,
sin 61 = sin 8/n (complex Snell's law),
pJ
cos 0, = (n2-sin26)#/n,
loss tangent = €'"/eg' = o/(e'eow), w = 27nf.

A ray at the critical angle of incide=wce in the ground, 8.>
emerges horizontally with sin 6 = 1 in the air, figure la, thus

1
sin 8_ = 1/n, cos 0. = (n%-1) /n.

The equations for the far fields in the air at a height
greater than a few wavelengths, due to dipoles buried in a flat
earth (half space), for 1f and TM waves cespectively, are stated
relative to the field of an isotropic emitter in free space as
follows [1]:

P.e/Ef =LC, D Ae

Em/Ef = L Cm D Am
L = 2/(Re n) ,
D =exp (1 ko h(n cos el—cos 0)} l
Ce = cos 8/(n cos 91+cos 8)
Cm = cos 0/(cos 61+n cos 0), (1)

where

. b e ML % . . o e ) -
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A, =0, VED
1
A = -i(3/2)? sin 8., VED (2)
. L
Ae = 1(3/2)“ cos ¢, HED
A, = 1(3/2)*% cos 8, sin 4, HED (3)
A, = in/[n] x (3/2)* sin 6, VMD
=0, VMD (43
o = -in/[nj x (3/2)% cos 6, sin 4. HMD
A, = in/|n| x (3/2)% cos ¢, HMD (5)

¢ = the azimuth angle measured from an axis that
is perpendicular to the horizontal dipcles.

Equations (2) to (5) are equations (7.18), (7.19), (7.23),
and (7.24) of [1]. The p.oduct LCD of equation (1) would be
used for a buried isotropic pvoint source. The factor A repre-
sents the effects of coupling the dipole pattzrn to the angular
cone of emission. The field Ef of an isotropic emitter of power
¥ watts in free space is

Ec = (W Zo/d,TrRz)’/2 V/m, rms

(30 W) %/R. (6)

The range R is measured in meters.

The simplicity and utilit, of Hufford's normalization (to
an isotropic source) should be noted. Many of the theoretical
formulations give the field pattern for a dipole with a speci-
fied current or = specified dipole moment, which leives the reader
with some wori to do, to find the current or moment from the
power. By che presert method [1] from W and R, the E field of
an isotropic source is found from equation (6), assuming 100 per-
cent efficiency. Then one applies the gain pattern of the buried
source, equations (1)-(5), and gecs the predicted field in the air.
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The predicted ground wave is found in the same way using
] equations (18)-(20), secticn E, below.

D.  PHY. .CAL OPTICS OF BURIED ANTENNAS, [9]
It is instructive to try to obtain the transmitted far

field based on physical optics. There are three main steps:
one step is to find the power transmission factor of the inter-

L L

face using plane wave concepts; a second step is to obtain the
change in the spherical wave divergence factor at the interface,

considering the point source aspects; and the third step is to

calculate the absorption in the ground.

The interface transmission coefficient may be found from
Fresnel's equations and conservation of energy. The refrac-
tive index is temporarily assumed to be real, and losses are
added later. The power transmission coefficients for a plane
wave in the dense medium refracted into the vacaum (air) are:

4n cos e1 cos 6

1l = , (7)
(n cos 6,+cos 8)2

Tﬁ ) 4n cos 91 cos O , 3)
*  (cos 8,+n cos 8)?

where e and m denote TE and TM waves respectively. These are
obtained from Fresnel's field equation, section 9.5 of [5].
taking into account changes of the impedance and the area of
a beam at an interface.

Considering the spherical wave from an elementary doublet

as a bundle of rays we find the change in the solid angle due ‘
to refraction into the air space, figure 1. The spherical %
angles are

dQe

il

1 sin 01d61d¢1, in the earth

k! dQ? = sin 0d6d¢, in the air. (9)
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It is true that

49, = do. (10)
From Snell's law
. ) sin 8 = n sin el, (11)
and by differentials
cos 8d6 = n cos eldel. (12)

Using equation (10) and equation (12) in equation (9) we have
dQ = sin Bd¢1 n cos eldellcos 8. (13)

The power per solid angle in the air relative to the
power per solid angle in medium ] is the power gain of the
interface transmitting into the air. Denoting this as plZ,e
for a TE mode wave

P 4n cos 6, cos 6

1
+cos 6)2 sin ad¢1 n cos eldellcos 6

p =
12,6 (n cos 8,

P
sin eld91d¢1

4 cos? 6
P1z,e 7 (n cos 6 +cos 6)% n e
Likewise for the TM case
4 cos? 9
= (15)

P
1z,m (cos 6,+n cos 8)% n

Equations (14) and (15) are identical to (L Ce)2 and (L Cm)2
of equations (1) using a real refractive index. The inclusion

of complex n and 6, requires that the squares be replaced by

1
absolute values squared.
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The pattern factor A of a dipole in the ground includes
Y3772, and sin 61 for vertical dipoles, cos 61 for horizontal
dipoles, end fire, and a sine or cosine of ¢ appears, see
equations (2) to (5).

Finally the attenuation ir the ground may be obtained
approximately from the propagation factor in the ground and
the ray optical distance,

ik.d/cos o!
Dt = ¢ 1 LS (16)

i is a real

angle defined as the direction of a plane wave refracted by the
ground using the velocity in the ground, c/n'. An approximate

where kl = kon is the complex wave number and 6

Snell's law with this assumption is

sin 8] = n'"! sin 0, (17)

where n' is the real part of the complex refractive index of

the ground. The attenuations given by D of equations (1) and

by D' of equation (16) are nearly the same in spite of the
different forms. The attenuation exponent in equation (16)
becomes 1 percent greater than in equations (1) when the loss*
tangent is 0.6. A correct electromagnetic treatment of equation
(16) is given in section 9.8 of reference [5] as well as in [1].

E. GROUND WAVE

The ground wave (6 = 90°) is obtained from a Sommerfeld
type nf theory. Equations (1) are replaced by [1],

Ee/Ef
E /Eg

8,U, DA,/ (-ikyR)
s U DA /(-ikiR), (18)

where R is the horizontal distance to the field point, and
1
2/ ((Re n)* x (n2-1)),
1
S, = 2 n3/((Re n)? x (n%-1)), (19)

*Provided also €' > 5.
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Ue =1 -1 k0 z Z0 cos BC/ZI,

U, =1 - i ko z Z1 cos GC/ZO, (20)
where z is the height of the field point above the intertace;
z is restricted to a few wavelengths. At greater heights the
‘ space wave approximation, equations (1), are used. Equations (18)
E state that the ground wave field decays at 1/R relative to the
reference field Ef which already decays as 1/R, equation (6).
The ground wave is not important when the receiving station is
an aircraft. There is evidence of the ground wave in the field
trials described below. The receiving tower was 30.5 m horizon-
tally from the point of burial. The theoretical loss at low
angles is greater than that observed at low angles. For example,
the gain at 2° elevation angle should be approximately 12 dB less
than the gain at 10° elevation angle. The experiments show ap-
proximately a 6 dB difference. We therefore usually discuss
results at 10° elevation angle. Another evidence of the ground
wave occurs in figure 11, With no ground wave the resuits for
the two reference monopoles would nearly coincide, as in figure
9. The ground wave, stronger at lower frequencies, shows clearly
as a difference in the fields at low angles.

F. CALCULATION OF THE FIELD FROM EQUATIONS (1)

A computer program was written to evaluate the field in

the air of a buried dipole, from equations (1). The important

factor from these equations for low-angle reception is LC which,
ﬁ as we have seen in section 2D, arises from divergence and from

the Fresnel transmission. The power gain due to LC combined

with the broadside power gain of a dipole, 1.5, will be denoted
v as the interface gain, I. However, the term interface loss will
1 also be used for I. Figure 2 shows the TM wave interface loss
in dB, at certain angles, versus €' of the earth. Specifically
the curves give the value in dB of

f I = 1.5[LC|? = 6 cos? 8/(n'|cos 6.+n cos 0]2?).

1
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The transformation frow toe oir'ed dipole to the air space is
often adequately repi =ai2d vy §, since depth attenuation and
underground pattern i-.cic. m: be <aken as zero dB.

The next factor von~:ilered is depth attenuation computed
from |D|2 in equations (1. Figure 3 shows the depth attenuation
in dB/m for a range 9f yround conditioms.

Ther» are some simple factors remaining to obtain a
complete evaluation of equations (1):

1. The azimuthal variation of a horizontal dipole is either
sin ¢ or cos ¢ as indicated in equations (2)-(5).

2. The vertical dipole has an important factor |sin 61|2, see
figure 4. (This factor is sufficient to remove the fullv
buried vertical dipcle from consideration fer high €'; how-
ever, partial burial will be discussed.)

3. The horizontal dipole has a factor |cos? ell for the
end fire comporent. Thiz is of interest for the T™™
wave from the HED. It is a small factor under
usual conditions (fig. 4).

In summary, figures 2, 3, 4 can be used to determine the
loss {neglecting inefficiency) of the T wave from a buried
horizontal elementary dipole, or a buried VED.

The graphs, which concentrate on low elevation angles, are
based entirely on equations (1). For the TE wave emitted end
fire from a HMD use figures 3, 4, and 5. The TE and TM waves
emitted broadside from the horizontal electric and magnetic
dipoles do not suffer the underground pattern factor, figure 4.

An example of using the curves may be useful. Consider the
T™M wave of a horizontal electric dipole buried 0.1 m deep in
ground with €' = 10 and ¢ = 0.01 S/m. The receiving point is
at 2° elevation angle. We sum the following losses

Interface loss (fig. 2)------=------ 27.0 dB

Depth attenuation (fig., 3)--------- 0.55 dB

Underground pattern (fig. 4)------- 0.45 dB
Total loss 28.0 dB
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At an elevatior angle of 10°.

Interface loss (fig. 2)------------ 16.0 dB

Depth Attenuation (computer)------- 0.54 dB

Underground pattern (computer)----- 0.44 dB
Total loss 16.98 dB

The main factor during shallow burial will be the interface
loss, and it depends strongly on the elevation angle.

The T™ wave from a horizontal magnetic dipole (HMD) has
a small advantage over that from the HED in that the underground
pattern factor is zero dB.

Figure 4 shows that the vertical dipoles have more loss
than the horizontal dipoles. This is because the vertical
dipole is working mainly end fire in exciting the interface
within the critical angle ec.

G.  EFFICIENCY
The received field strength also depends on the efficiency

of the antenna, which is influenced by burial. Efficiency will
be treated experimentally, below.
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3. EXPERIMENTS COMPARED TO EQUATIONS (1)

A. INTRODUCTION

Experiments were carried out initially mainly to verify the
theory contained in equations (1). Later, the main purpose was

E to develop resonant antennas where the focus is on efficiency,

3 impedance, Q factor, and ground effects on these. The compari-

i son with theory was quite satisfactory, thus allowing the main
E emphasis to be on the resonant antenna development in the later
3 work which is described in sections 4 and 5.

The agreement of the experiments with the theory contained
in equations (1) occurs mainly in two areas:

; (1) The predicted absolute value of the fields relative to an
isotropic source are approximately correct, including the

: fact that the TE waves are weaker than TM waves.

E {2) The gain pattern as a function of elevation angle 1is
approximately correct.

% The remainder of this section describes the experimental

] measurement method and illustrates results that yield the

above conclusions.
Figure 6 shows the main elements of an experimental system
g for measuring [8] field strength and antenna gain.

B. TRANSMITTED POWER 3

Direction couplers measure the forward and reverse power,

j denoted as P1 and P2 respectively. The attenuation (fig. 7) of

the RG-9 cable of length u was measured at 72° and 32°F using

a network analyzer. The curve shown for S50°F was interpolated.
Assuming that the directivity cf the two couplers is

infinite, the power delivered to the antenna is

-dB /10 +dBC/10

= ¢ -
P, =P 10 P, 10 R (21)

18
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where dBc is the one way attenuation of the cable with reflec-
tionless terminatioms.

The radiated power, P
J, of the antenna

r? is Pa multiplied by the efficiency,

P_=J0P,. (22)

The efficiency of an antenna is the ratio of radiated power to
the total input power, which consists of ohmic heating power plus
radiated power

J =P /P =P [(PP ), (23)

where PCu denotes ohmic heating power.
The efficiency of the antennas was measured and estimated,
as will be discussed in section 4E.

C. FIELD STRENGTH CALIBRATION

The field intensity meter (FIM) at the receiving terminal
consists of a calibrated rf voltmeter and its associated antenna
and cable of known characteristics and calibration factors. The
rf voltmeter had an internal calibration system. This was re-
calibrated and corrected where necessary.* The antenna and
impedance factors were measured by the NBS standard field
method [6], with results as shown in figure 8. At 145 MHz
the factor is 9.3 dE, which can be approximately explained as
follows:

1. The effective length conversion factor, from the field in
V/m to the voltage across an open circuited half wave
dipole is A/%, or -3.63 dB at 145 MHz.

2. The conversion from an open circuited generator to a
matched load, the receiver, is 0.5 in voltage or -6 uB.

3. A conversion factor, arising from the mismatch of t¢he
antenna and receiver tn the cable, and consequent inter-
actions, is unknown,

*This calibration includes the loss of the czable.
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The sum of factors 1 and 2 nearly equals the measured conversion
factor, -9.3 dB, which implies that the third factor was small.

D. COMPARISON OF THEORY AND EXPERIMENT FOR A “REFERENCE"
MONOPOLE

A quarticative comparison using the rather predictable

4 field of a “"reference" monopole adds considerable confidence to

the evaluation of unknown HF and VHF antennas. (The term reference
is in quotes. The gain pattern of this type of antenna has

shown good agreement between theory and experiment.) The so-

C (0 A kb

called reference monopole is a quarter wavelength slim wire
antenna on a ground plane one wavelength in diameter set on

the earth. Available well-developed theory [7] is then applied
to predict the space wave over an earth with dielectric param-
eters €' and 0. The use of a reference monopcle in compact

range experiments, as in the present work, thus provides a

I check on the transmitted power calibration and the FIM cali-

| bration described above. Figure 9 exhibits the theoretical far-
field power gain pattern of the reference monopoles at two
frequencies, for certain ground constants.

\ Measurements to be compared with theory were made at a

rented alfalfa field site, 5 miles east of Boulder, Colorado.

The horizontal distance from the monopole antenna to the re-

ceiver tower (fig. 6) was 100 feet (37.5 m).

Table 2 gives the steps in comparing the theoretically
calculated field and the measured field of reference monopole
antennas at 145 and 300 MHz. The comparison is made at an eleva-
tion angle of 10° where the field is less dependent on surface

imperfections and surface waves than at low angles.
The predicted and measured voltmeter readings with all :

conversion factors taken into account are seen to agree tc
within 1 dB.

[0 T R A e R




Table 2. Theoretical and measured field strengths of the
reference monopoie antennas at 145 and 300 MHz. The ground
was dry, €' = 5,0 + 1,0 at the surface. Elevation angle of
receiving point is 10°.

Rghdi i "\v:'w v i

‘Frequency 145 MHz 300 MHz
‘" Theoretical field(® at 30.5 m 105.1 105.1
of 1 ¥ isotropic source,
: dB > 1 pV/m
E Resonant dipele field strength -9.3 dB -16.0 dB

conversion factor (fig. 8)

Theoretical(b) gain pattern factor -3.1 dB -3.0 dB
4 at 10°, ¢t =5, 0 = 0.05 S/nm

% Predicted voltage of receiver, 92.7 dB 86.1 dB
dB > 1 uV (theoretical).

Measured voltage at 10° elevation 101.5 dB 90.7 dB
] Conversion to 1 W source(c) -11.0 dB -7.0 dB
Transmitter cable and VSWR factor, +1.5 dB +2.1 dB
Experimental 10° reading converted 92.0 dB 85.8 dB

to 1 W radiated

(a) From equation (6).
(b) Reference [7].

(c) At 145 MHz P1 is 12.56 W; 5 W were indicated but the direc-

tional coupler was -4 dB from the rated value at 145 Mc.
At 300 Mc P1 is 5 W. Values of P2 are 0.32 Wand 0.19 W

at 145 and 300 MHz respectively.
24 4
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From this close agreement we conclude that the transmitted
3 power, the FIM voltage, and the cable attenuations have been

' accurately determined. It is estimated that the power delivered
i to the antenna and the field strength at the receiving antenna

: | are being measured with an accuracy of +* 1.0 dB.

=

L. E. FAR FIELD PATTERN VERSUS ELEVATION ANGLE

7N

The height dependence of the field pattern is quite similar
for a buried source and for the monopole set on the interface.
As shown in table 3, the theoretical patterns differ by nearly
a constant ratio (constant number of dB), and the difference is
due to interface loss plus depth attenuation. We may say that
o the buried antenna becomes, to a good approximation, a weakened
? virtual monopole on the surface.

; The presentation in table 3 makes it clear that loss due
: to burial at low angles is mainly an interface loss, plus depth

I ey Lo

F g attenuation if present, and not a change in shape of the space
, wave pattern compared to the pattern of a monopole at the inter-
: face.

F.  MEASURED LGSS OF RATHER IDEAL BURIED DIPOLES

Experiments were done to check the loss of a buried horizon-
tal dipole against the theory [1].
A sleeved dipole was constructed using handbook values of

3
3
§
k.
E,

length and diameter to attain resonance at 145 MHz and an im-
pedance of 56 ohms. The dipole diameter was 2.5 cm and the
length was 98 cm. The dipole was contained in a 10 cm diameter

o s

iucite tube to reduce the effect on the resonant frequency of

the surrounding ground. A
The dipole was buried as a HED 15 cm below the surface.

i The TM wave was received in the end fire direction.
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Table 3. TM-wave gain pattern of a "reference" monopole set on
the interface and of a buried horizontal magnetic dipole (inter-
face gain only, depth loss is zero). Ground constants are

e' =10, o = 0.03 S/m; frequency = 145 MHz.

dB Gain, Interface
Elevation Reference dB Gain dB
Angle Monopole(a) of nMp(P) Difference
2 -12.28 -27.01 14.73
4 -7.16 -21.86 14.70
6 -4.46 -19.14 14.68
8 -2.75 -17.38 14 .63
10 -1.53 -16.13 14.60

(a) Reference [7], by an approximate calculation.

(b) Only the interface gain is given. Depth attenuation would
be nearly constant versus angle, see figure 3.
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The dielectric constant of the undisturbed ground (quite wet),
based on a core sample, was approximately 13. The disturbed
dielectric constant of the dug-up ground is estimated as 10.

The estimated theoretical end-fire loss of a

buried horizontal electric dipole, €' = 10,

o = 0.068 S/m, at 10° elevation, relative

to an isotropic emitter, from figures 2, 3,

and 4 is---------e---e--ccmccemmce e ece e 19 dB.

Rt L A R G

we

The measured loss in the same condition was-------- 19 dB

Figure 10 shows curves for the sleeved dipole. The field
strength of the end fire above-ground test is questionable.
Figure 11 gives results for a folded dipole at 300 MHz.
The above-ground end fire results are quite weak, and thus do
not agree with the sleeved dipole end fire above ground. For
this buried dipole the loss at 10° elevation angle relative to
an isotropic radiator is again 19 dB. The agreement with theory

is very good, but does depend heavily on having assumed that €' 3
of the repacked dirt is 10. 1

YOI T TT

G. EFFECT OF SHALLOW BURIAL

This section is concerned with the interface loss and the
- . 3
underground pattern loss, see figures 2, 4, and 5, as functions 1
of the burial depth. (For simplicity, the depth loss is assumed
to be negligible.) When an elementary dipole is raised above
the interface, the field strength at low angles in the far

field increases. The Sommerfeld height-gain function for this
effect is [1]

E(z) v1 -1 kO 6§z, z2>0 (24)

where z is the height, § = Z1 cos 6C/Zo for TM waves, and other
symbols are defined above equations (1).

30

i
2
y
d
A
3

<
% A s
n -
> o
- 2 4 - N . -, s o) 5 . _
. v on oo o S s gl oty i g X o e B a1 . A7 A Nt it KRR N e TR #Ee. L ndia PERET N



100 T T T

, 4B>1uV/m
0
-1

@
Q
1

E-FIELD AT 10° EL.

al

: % 6% 1 1 1 i

| - -20 -0 0 10 20

% DISTANCE OF BASE FROM INTERFACE, cm

?

:‘
.'. ! Figure 12, Field versus height of a VED, 5
¥ §
31

derz
L Tt A o5 4 ST e e ALl e e D s

FAOAV R

oy

M § e ) Ty N AT Gk S R MK rr e



When an encapsulated miniature dipole penetrates the earth
3 the interface loss is initially less than would occur for a bare

Y

dipcle because the encapsulant initially prevents the antenna
from being covered. Figure 12 shows measured height (and depth)
gain results for the A3 antenna (furnished by Frank Reggia,
Harry Diamond Laboratories), a 2.54 cm length vertical monopole#*
on a 10 cm diameter ground plane. A polyfoam encapsulant 10 cm
in diameter extends 2.54 cm above the top of the antenna.

The experimental curve shows that such a vertical monopole
loses approximately 10 dB when the base is 5 cm below the inter-
] face, and appreximately 20 dB when the base is well below the
1 interface.

: Equation (23) is nct quantitatively obeyed above the inter-
1 face in figure 12, probably due to the RG-9 cable feeding the
bottom of the antenna. As the antenna is raised its effective
length may increase duec to the exposed cable.

T

The results in figure 12 suggest that a good candidate
antenna is the low profile miniature vertical monopole on a
small base plate, set in the ground with its top near the inter-
face. The diameter of the base plate and encapsulant must be
4 or 5 times the height of the antenna, so that fairly low angle
radiation can be emitted without intercepting the earth.

H. SUMMARY

Experiments using the "reference' monopole, see table 2,
indicate that the experimental field measurements are quite
accurate. Therefore, confidence can be placed in the charac-
teristics of the buried antennas measured with the same system.

The experiments with rather ideal buried dipoles, as dis-
cussed in section F, indicate reasonable agreement with the

theory of such buried antennas. 3

*The design is rather similar to that of antenna A8, figure 13. E
This type of antenna, a so-called monopole, is of course mainly b
- a dipole because the ground plane is small compared to a wave- 3
A length.
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It is therefore assumed that both the theory and the experi-
mental measurements of the characteristics of buried antennas are
well in hand. The remaining effort concentrates on practical
construction and testing of miniature resonant antenna for
burial.

Theory and experiment agree that buried dipoles exhibit
considerable 1loss, except when €' is small, as in dry sand. The
low silhouette vertical monopole at the surface as described in
section G has advantages of being simple and less lossy than
fully buried designs. The monopole is further examined below.
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4. DEVELOPMENT GF MINIATURE RESONANT ANTENNAS

3
3

2

E A.  INTRODUCTION

] This section describes useful miniature antennas for

3 burial, including principles of design and practical construc-
1

tion. The assigned frequency is 145 MHz and the allow.ed dimen-
sions are a circular cylindrical form approximately S inches
(12.7 cm) in diameter and of the order of 1 foot (30 cm) in

1 length.

a As concluded from the theory and theoretical comparisons,
i an ideally buried antenna has an unavoidable interface loss, I,
é as well as the smaller depth loss, and in scme cases a small
underground pattern loss (figs. 2, 3, 4, 5). The possibility

of employing directive gain to counteract these losses was of
course considered. Rather thorough reports on aperture antennas
and traveling wave antennas with gain when buried [8], and arrays
with gain [9], are available, but such methods are not suitable
for the present purpose because of size and complicated burial
requirements. Therefore the remaining task is to develop
convenient miniaturized antennas for burial. The main concerns
in designing the miniature antennas are as follows:

1. Impedance matching, coupling to the generator.

2. Efficiency.

3. Bandwidth.

4. Changes in the above as the capacitive stray field of the

resonant antenna interacts with the burial medium.
S. Practicality and convenience.

B. CONSTRUCTION DETAILS

Figure 13 to 19 are schematic mechanical layouts for sewven
of the candidate antennas. In each case the antenna is built

above an inverted copper cup, 12.7 c¢m in diameter and 12.7 cm
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7.6 Dian Unper Plati.

13 Diam Base Plei¢

A

Plastic Cyl.|
!
- 3% Turn Coil of
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1

|
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|
i |
i I
| [
| f
| l
! |
! i
|

"ype N
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Copper Base,
Inverted Cup.

‘Dimen. cm'

Figure 13, Vertical electric dipole, VED, AS8.
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Figure 14, Antenna C4, a VED.
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Figure 15, B3, a HED.
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- W - -

- =~

Base Plate

-

Plastic Cyl.
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5 Turn Coil of No. 10
Wire, 3.2 Diam

Capac Pla-.:
5 x 10

[*~Link, 1 Turn, |
1.9 Diam

N Connector

Base, 13 x 13
cm)

Figure 16, B4, a2 HED,
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Plastic Cover

Capacitor, Circular

(—-E D"”/ | Piates, 5 Diam,

‘)——\ | G.3 Spacing
I
l
|

Strap, 1.3 Wide ‘/._L 1 Turn Loop,
l Cu Strap
[ 2.5 Wide
| ! |
I

d

(9]

; - +O7
- | 1 |
3 i I
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Base 13 x 13 .
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Figure 17, D3, a HMD.
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in length (5" x 5%) as a base., In each case the coupling con-
sists of either a link which couples to the magnetic field of
the antenna coil, or a tap on the coil. In each case a type N
connector is mounted in the base near the feed point of the
antenna. In our experiments the feed cable comes to the con-
nector from below. In each case the antenna is "“encapsulated"
by setting a 12.7 cm diameter plastic cylinder over it with a
top cover approximately 3 cm above the top of the antenna.

One requirement in design is to obtain a resonant fre-
quency, near 145 MHz. This was obtained empirically. The size
of the coil and the size of the capacitor plates at the ends
of the coil were thus determined experimentally. Measurements
of resonant frequency werz made initially with a grid dip meter,
and finally with the network analyzer; the latter tests will
be described later.

Another requirement is to adjust the coupling coefficient
of the antenna system for approximately 100% absorption of the
energy from the transmission line. This adjustment requires
that the antenna be critically coupled (which will be explained),
which requires that the impedance be equal to that of the trans-
mission line. The automatic network analyzer was the main instru-
ment for studying the coupling.

C. IMPEDANCE MEASUREMENTS WITH THE NETWORK ANALYZER

Measurements of impedance versus frequency in the neighbor-
hood of resonance may be analyzed to obtain the coupling coef-
ficient, resonant frequency, and Q of a resonator. The antenna
is a l-port resonator insofar as the impedance measuring system
is concerned. T{Strictly it is a multiport resonator because
it is coupled by radiation to the surrounding space.)

Impedances were measured with the antenna radiating into
a small anechoic chamber near the automatic network analyzer.
Calibratiuon of the analyzer was obtained in the usual way by an

42

B P 3 S SR R -

X

PRITSA PRI AN




open circuit, short circuit, and pad successively connected to
the end of the cable in the anechoic room. Then tihe antenna
was connected to the cable and the complex impedance R + jX

was measured at the plane of the connector. These results were
plotted on the impedance circle charts for analysis. Figurr 23
shows an example of the plots. The bandwidth, reflection coef-
ficient and coupling coefficient, and frequency ot resonance
may be analyzed from the impedance plot. The main requirements
3 are that the impedance curve vass near R = 50 ohm at the desired
frequency and that the bandwidth be sufficient. The bandwidth
is defined as the frequency separation of two points on the
impedance curve at which the VSWR is 6:1, i.e. at which half of
the power is reflected from the antenna (and half is accepted).
Having exhibited the results qualitatively, we now go to a cir-

A SN
'

cuit analysis and a more quantitative analysis of the impedance
1 data.

D. CIRCUIT REPRESENTATION AND Q ANALYSIS

Circuit analysis is useful in finding the antenna effi-
ciency. Figure 20 shows two prossible circuit representatioas
of a resonator (the antenna) terminating a transmission liane [10].
Part a. represents a series resonant circuit and part b. trans-
forms to the parallel resonator circuit shown in c. The experi-
mental data agreed with the parallel resonance, parts b. and c.
The measured impedance at the input to the primary induc-

tor L1 in figure 20b is given by the formula

Z = jul; + (mM)Z/(R(1+j2Q06)) (25)

where § = (w-mg)/w, and the Q of the resonance is
4 Q = R/uL. (26)

The (angular) £frequency of resonance 1is wy = ano; and w is the

test frequency. The first term in equation (25) is a shift
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Figure 20, Circuit representations of a resonator
coupled to a transmission line.
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along the imaginary axis of an impedance plot. The second term
is a circle in the complex plane. Normalizing to the charac-
teristic impedance of the input transmission line, Z0 (50 ohms
in all of the present work), and separating the second term into
real and imaginary parts gives

G tal e )

3 Z - jxl R' + jX*

g - = (w?M2/RZ)) (1-52Q,8)/ (1+4Q36%)  (27)
E Z Z

] 0 0

’ where Xl = le, and R' + jX' is the impedance of the transformed
1 parallel resonator shown in figure 20c.

e

The ratio X'/R' is -ZQOG from equation (27) and is the
tangent «f the angle e; of the ith impedance point of the

i et

impedance circle plotted in the rectangular impedance pliane
(fig. 21). ei is measured from the real axis to the radius
vector from R = 0 to the ith pcint. From this we find

X'/R' = tan 8; = 2Q)(w;-wy)/w; , (28)

which shows that frequency displacements from the point of
maximum R on the real axis are proportional to % tan 6.5 assuming
high Q. This fact from equation (28) permits accurate nonlinear
interpolation of frequency around the circle. 1In figure 21 for
example, from 61 and 62 and the corresponding frequencies, we
find that a difference of tan 6 of 1 between two impedance

points corresponds to a frequency shift of 0.186 MHz. Then the
frequencies at R' = £ X', 6, = % 45°, may be found and from
equation (28)

QO = 0.5 mo/(wo"w4so); (29)

which gives a Q for this case of 392.
The Q may be found from any two points on the circle plot
using a difference formula from equation (23)

Qy = 0.5 (w; tan 6;-w, tan 8,)/(w;-w,), (30)

where points 1 and 2 would usually be chosen near the * 45°

points.
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daving fitted the circle to the measured data, the re-
sistance R6 at X = 0 may be found, and Q0 is proportional to
this Ré, from equation (26). .

E.  ANTENNA EFFICIENCY

Antenna efficiency is defined as the ratio of power radiated
to the total power delivered to the antenna, equations (22) and
(23). Twc ways to measure efficiency are as follows:

1. Measure the power to the antenna, the antenna gain pattern,
and the resulting field strength in the air, and attribute

any discrepancy to inefficiency, i.e., chmic losses [20].

2. Measure the resistance of the antenna, or its Q, when the
antenna is radiating in the open and when it is enclosed

in a small metallic enclosure which prevents all radiation

[11]. Efficieacy is obtained from the equation,

J=1- Ropen/Renclosed’

where the representation is a parallel resonant circuit.
From equation (26) one finds

(31)

J=1- Qopen/Qenclosed‘ (32)

The resistances in equation (31) are each evaluated at
resonance.

Efficiency was measured by the second method. The network
analyzer was used to meastre the impedance of the antennas
near resonance, first when the antenna was radiating into
the anechoic chamber, and second when the antenna was enclosed
in Wheeler's so-called radiansphere [11], which for this work
was a closed circular cylinder of copper, 0.6 m in diameter
and 0.6 m long. These dimensions, for £ = 145 MHz, satisfy
the criterion that the spherical enclosure radius shall be less
than the wavelength divided by 2w.
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Figurs 21, Q analysis, antenna enclosed in a box,
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145.6 MHz

20 30 40 50 60 70 80

Figure 22, Same as Figure 21 but antenna radiating,
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Figures 21 and 22 show the circular plots of X versus R
in the rectangular impedance plane, for the enclosed and
radiating conditions respectively. The Q is 392 enclosed and
235 when radiating, from which in equation (31), E = 0.4, The
resistances, R5 in the plots, are 125 and 75 respectively from
which in equation (32), E = 0.4. A similar analysis was made

of impedance data for five of the resonant antennas. The re-

Kk St 14

AR 0 4t wle L ot

>

sults are given in table 4.

The efficiencies obtained by this method are quite high.
The accuracy of the method was not investigated; however, the
results appear to be reasonable, and the network analyzer data
certainly indicates a very definite increase in the Q when the

Dot o s st S v e

A

antenna is enclosed.

Thecretical estimation of the efficiencies is of interest,
] and may be based on the estimated radiation and ohmic resistances
. of the antennas. The radiation resistances of antennas that

are small compared to the wavelength may be obtained from
straightforward analysis [12]. The equations are

R = 20 (n&/A)?, dipole in free space 9
R = 40 (%2/))?%, monopole on a ground plane g
R = 20 w*N?*(D/A)", loop in free space

where 2 is the length of the dipole or monopole, D is the diam-
eter of the loop, A is the wavelength, and N is the number of
turns. For example at 145 MHz, for a 10 cm dipole and a 10 cm
diameter one-turn loop we find

R = 0.5 ohm, dipole
R = 0.11 ohm, 1loop.

Ohmic loss must be kept small in order to obtain useful ef-
ficiencies.
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Table 4. Q and maximum R', and the efficiencies calculated
from the Q's and R's.

WO T AT T

Antenna '
E Designation Qopen Qin cav. Eépen Rin cav. J(R) J(Q)
i A8 78.9 337 145 615  0.77 0.76
’ c4 40.6 734 631 12120  0.948 0.945
; B3 70 81 2780 3350 0.17 0.14
L D3 234 392 75 125 0.4 0.4
D5 37.6 2279 96 7600  0.987 0.983
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Theoretical estimates of the efficiency will be given for
comparison with the measurements in table 4. Consider the
antenna D5, which, for purposes described later, has a coil
diameter and spacing calculated to give approximately the same
radiaticn resistance from its electric dipole moment and from its
magnetic dipcle moment. Using the skin depth of copper at 145
MHz, 0.0055 mm, and the dimensions in figure 19, the ohmic
resistance of the fuil length coil is 0.16 ohms. Using sine
squared current dependence on length only half of this, or
0.08 ohms, is effective. From equations (33) radiation resist-
ances are 0.44 oims for the magnetic dipole component and 0.32
ohms for the electric dipole component. The predicted effi-
ciency is then

J=1-0.08/(0.08+0.44+0.32) = 0.90,

which is less than the value for DS by the radiansphere method,
table 4. There is, however, at least qualitative agreement on
the high efficiency.

This sort of estimate of the resistances was made for six
of the antennas. The results are given in table 5, and compared
with the measured values. It would appear that efficiencies
can be estimated to within approximately 3 dB.

F. COUPLING COEFFICIENTS, THEORY, AND EXPERIMENTS FOR ONE
ANTENNA

The coupling coefficient of a one-port resonator to a
trancmission line has been defined [10] as

6 = (uM)?/ZR (34)

which is the first term in the numerator of equation (27). B8
is the ratio of coupled in resistance from the line (mM)z/Z0

B LR, A R I R G TP e




- Table 5. Estimated ohmic resistance, R_ , and radiation resist-
- ances, R, and consequent estimated efficiency.
J, J,

: Antenna R, Rcu Estim. Meas.
? A8 1.5 6.27 0.85 0.76

C4 1.5 0.13 0.92 0.95
B3 0.5 1.5(8) 0.25 0.14
? B4 0.27 0.21 0.56
? D3 0.1 0.03 0.78 0.4
z DS 0.76 0.08 0.50 0.98
é

Rt b mat et A

3
. (a) The magnetic loss tangent of the ferrite was 0.011; the 3
1 electric was 0.014, i
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to the resonator resistance R, and R is composed of two resist-

ances in series
R = Rr + Rcu’ (35)

where Rr is radiation resistance and Rcu is ohmic recistance.

Rcu includes ohmic losses in conductors, magnetic losses in
magnetic cores, and dielectric losses in the dielectrics in-
cluding encapsulation, and in the earth when buried, due to

near field interaction (see section 6 and figure 11 of reference
[1]1). The coupled-in resistanc- is proportional to the mutual
inductance squared represented in figure 20t. 1In the present
antennas the larger the link or the higher the tap point from

the base, the larger the mutual M. The resonator is overcoupled,
critically coupled, undercoupled accordingly as B is greater
than, equal to, less than 1. The mismatch reflection of the
resonator (antenna) is a function of R' + jX'. 1If le is suitably
annulled, usually by a series capacitor for link coupling, then
the reflection coefficient at resonance (6§ = 0 in equation (27))
is

IT ol = (1-8)/(1+8), (36)

which is zero when B8 = 1. This means that the antenna accepts
maximum power from the line when it is critically coupled, pro-
vided ijl has been annulled.

In general the expected qualitative relationship between
input impedance and the size of the coupling link occurs. Figures
23 to 33 are Smith chart impedance plots of the type of net-
work analyzer impedance measurements previously discussed.

The results of adjusting the coupling coefficient are il-
lustrated by figures 23 to 25, and a change due to burial 1is
shown by figure 27. In figure 23 the height, d, of the tap
(shown in fig. 17) is 6.7 cm and the input resistance near
resonance is some 210 ohms. When d = 4.5 cm the input resistance
is 72 ohms (fig. 24), and when d = 2.5 cm (fig. 25) the resist-
ance near resonance is approximately 30 chms. In figure 26 the
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E ‘ link was returned to approximately 4.5 cm and R was 200 chms.
The antenna was then "buried"™ by putting it in a hole in a con-
crete cylinder in the anechoic room, which adds te R through
‘ the dielectric losses in Rcu of equations (35), which brings
3 the antenna nearer to critical coupling as shown in figure 27.
If the concrete were more lossy the antenna would probably
become undercoupled.

This work indicates that the coupling and impedance depen-
3 dence on the geometry of the link and the dependence on near
5 field dielectric losses behave qualitatively as would be ex-
: pected from the theory, equation (34).

G. COUPLING, AND RADIATION RESISTANCE DISCUSSION OF ALL
ANTENNAS

The impedance measurements of six of the antennas detailed
in figures 13 to 19 are shown in figures 28 to 33. These meas-
urements were made prior to making field tests discussed in
figure 35 below. The impedances will be individually discussed.

The impedance plot (fig. 28) versus frequency for antenna
: A8 shows undercoupling, R' ~ 30 ohms, and lack of capacitance.

The diameter of the input link should be approximately 1.2"
(3 cm). Also a small capacitor such as that in figure 14 should
i be in series with the link.
This antenna probably acts as an asymmetrically fed
dipole, length 18 cm, radiation resistance 1.5 ohms.
The impedance of C4 (fig. 29) is too capacitive. The
input capacitor should be slightly reduced. The tap at 7/8
turn gives approximately critical coupling. The radiation

v
Wi N WYRTIE TR TION PP

resistance is similar to that of AS8.
The impedance of B3 is nearly 50 ohms at 146 MHz (fig. 30).
The dipole length, 10 cm, gives 0.5 ohms for R..
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The impedance plot of B4 (fig. 31) attains its bandwidth
by leaving the input link inductive so that the curve is rather
parallel to the real axis. Rr is of the order of 0.3 ohms for
the 7.6 cm length coil.

The impedance plot for D3 is shown in figure 32. The
coupling is correct for burial in low loss ground. The radia-
tion resistance Rr of this loop is very low 0.11 ohms; however,
the resistance RCu is also low. Furthermore, a small loop has
much smaller interaction with the burial medium than does an
electric dipole. Therefore, the small loop probably maintains
its efficiency after burial better than electric dipoles do.

The impedance of antenna D5 (fig. 33) is inductive; some
input series capacitance is needed, which would improve the
bandwidth as well as the impedance match. The two radiation

1 resistances of DS are discussed in section 4E.

| The coupling development may be summarized by stating

: that automatic network analyzer data plotted on a Smith chart
is extremely valuable in adjusting the coupling. Funds did
not permit optimization of all the antennas, but the methods are
rather straightforward and desirable modifications have been
pointed out.

H. INTERACTION WITH THE BURIAL MEDIUM

The near electric field of the antenna interacts with
the complex permittivity of the surrounding medium. As a

result, the resonant frequency is lowered; the apparent ohmic

3

loss of the antenna increases; and the radiation resistance de-
creases, which lowers the efficiency.

ST R ade

Figure 34 shows a circuit that we have used for analysis
of the above-mentioned dielectric effects. It is assumed, a)

D« S T

that Cq arises from the electric field that does not fringe

intc the burial medium; b) that C3 arises from the electric
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field in the burial medium; and c) that C, arises from electric

field lines within the encapsulation that: in their continua-

tions, fringe out into the burial medium and contribute to C3.
The equation for the frequency of resonance w, in terms of

LA

the circuit elements and the permittivity of the burial medium,

Y

ei, where i denotes the ith e¢xperiment, is
2

‘ w;"= LC1(1+C2C385/(Cl(C2+2csei))), (37)
% Of the four unknowns in equation (37), three combinations,
viz., LCI, CZ/CI’ and C3/C1, were evaluated from the measured

; frequencies of resonance in three burial media, namely, air,

dry sand, and concrete, with relative permittivities of 1, 2.85,
and 6.5 respectively. Three antennas were so measured (takie 6).
The unknowns were evaluated for two of the antennas, in the
third case the iterative solution employed did not converge.
From the results the resonant frequencies are predicted for
permittivities of 8 and 15.

The minimal encapsulation used (12.7 cm diameter plastic
cover) does not provide sufficient isolation of the electric
dipole antennas from the burial medium. The isolation is
marginal even for the loop, D3. It will be necessary to allow
a larger encapsulation; the required size was not determined:
more research is needed.

I. BANDWIDTH IMPROVEMENT
Attaining required bandwidth in a resonant antenna is a

research problem. Bandwidth may be increased by making longer
dipoles, thus increasing the radiation resistance, and perhaps

by so-called active antenna techniques [13,14]. (These two
references refer to many papers on miniature and active antennas.)
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Table 6. Measured frequencies of antennas buried in air, sand,
and concrete; evaluation of CZ/CI and CS/C1 and predicticn of
resonant frequency for e€* = 8 and 15. Frequencies are in MHz.

] Meas. Freq.

% in the three Calculated Freq.
Antenna Media C2/C1 CS/Cl €' = 8 e' =15

i B4 150.9
133.5
128.5

D3 167.35 0.29 0.02 162.8 161.2
165.49
163.35

D5 150.8 3.53 2.39 132.4 130.7
138.14
133.16

63




g
"

Small antennas have very low resistances, see tabie 5.
Rescnating them provided a way of raising the impedance for more
convenient matching to a generator. Active antenna techniques

T TSI WYY

provide another method of impedance matching, and at the same
time usually a broadband characteristic can be obtained. Ap-

iy

plication of active antenna techniques was not made in the

present research. Attention was confined to resonant techniques.
The bandwidths were measured by means of the impedance

plots on Smith charts. Circular arcs representing a VSWR of

6:1 are drawn on the chart. The portion of the measured anterna

impedance cvrve that has less than 6:1 VSWR is useful and repre-

sents the bandwidth (see figs. 28 to 33). The measured band-

widths of the antennas before modification are given in table 7.
Section 4H showed that the small loop, D3, exhibits the

least interaction with the medium, which was a useful develop-

AR E et et b e

ment. However, table 7 shows that D3 has a narrow bandwidth,

which has some obvious disadvantages:

1. The bandwidth may be insufficient for the communications
system; a spread spectrum system with 10 MHz baniwidth is
a possibility,

g el A G L i L L b I St 1

2. The frequency shift due to burial, although small, is
larger than the bandwidth, for a permittivity of the
burial medium greater than approximately 2. This problem
may be overcome by a larger encapsulation.

J. ADDITIONAL MODIFICATION COF ANTENNAS; RESULTING BANDWIDTH
AND INTERACTION WITH MEDIA

Last-minute modifications of the antennas were performed
with the purpose of making the frequency when buried ncarer

to 145 MHz, or improving the coupling, e.g., by the cxperiments
on D3 described in part F. The changes were not always benefi-
cial but are of interest especially for bandwidth and frequency
shift purposes. The changes and measured characteristics are
listed in table 8.
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Table 7. Measured bandwidths of the antenna in the anechoic
chamber, defined as the frequency region where more than half
of the power is accepted from the transmission line, i.e.,

VSWR less than 6:1. ¥
3 Antenna Bandwidth, MH:z
E A8 11.6
i Cc4 27
B3 4.4
B4 6.7
D3 1.5
D5 5.9

LY % N )

ke ats il
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1 Table 8. Characteristics of the changed antennas
] Frequency Bandwidth (P)
: (MHz) (MHz)
: in in in in
: Antenna air concrete air concrete Changes Made
i A8-2 164 14903 29 8 Coil=3.25 turns.
é (a) Coupling tap at % turn.
1 C4-2 147 135 47 13 Coil=2.5 turns, 9.4 cm
9 high.
' Coupling tap at 3/4 turn.
3 B3-2 150 139 2.8 2.6 Capac plate now circular.
3 Coupling link, approxi-
; mately as in DS.
; B4-2 152 129 5.5 4.9 Coil stretched out=6.3 cm.
E Coupling, no change.
: D3-8 153 150 2.9 3.5 Capacitor spaced 0.25 cm.

; Input link 0.94 cm gap
| and 4.6 cm to the short.
j D5-2 153 148 1.4 0.8 Coil=2.8 turns with

t 1.6 cm turn spacing.

' Coupling link centered

l on coil, coil rotated

90° around its axis.

I Deé 149 138 0.8 1.1 Similar to DS, but with
8.9 cm diameter capa-
citocr plates on the
ends.

Coupling link similar
to that of DS.

(a) Frequency when set at interface, not puried, A8-2 = 163 ;
MHz, and C4-2 = 146 MHz.

(b) Bandwidth is obtained from Smith chart impedance plots, and
is defined as the frequency region in which the VSWR is
less than 6:1.
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Usually the bandwidth decreased on burial in concrete, in
the anechoic room. From the impedance plots (not shown) it
appears that only antenna D3-8 is suitably coupled. The others
are too inductive, and overcoupled or undercoupled. Antenna
C4-2 is incorrectly coupled but does have very large bandwidth.
The results indicate that trial and error experiments on impedance
and coupling are usually required in order to approach an
optimum.

K. CONCLUSIONS FOR SECTION 4

Section 4 contains construction details for six resonant
antenn>s, and a detailed account of using impedance data to
study Q, coupling, efficiency, bandwidth, and interaction with
the burial medium. Theoretical circuit analysis of resonant
antennas has been described and applied to the mentioned charac-
tersitics,

An outstanding conclusion from this work arises from a
synthesis of the findings. From theory and by inspection of
the results in tables 6, 7 and 8, we make the hypothesis that
the frequency shift due to burial is approximately proportional
to the bandwidth. For example a long dipole has more stray
field, giving more C3 in the circuit representation (fig. 34),
and because of its length, more radiation resistance. Thus
the Q will decrease and the bandwidth will increase, which is
very desirable; but the frequency shift due to more stray field
is larger, which is undesirable. Table 8 shows that in most
cases the shift in the resonant frequency due to burial in
concrete, €' = 6.5, is greater than half the bandwidth, which
means that the oscillator and antennas must be tuned beforehand
in anticipation of the burial. According to equation (37) and
the predictions in tzble 6 the frequency decrease saturates
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as €' increases, This fact might be useful in offsetting the
frequency of the generator and the antenna in air in anticipation
of the shift of resonance upon burial.

) Footnote (a) of table 8 shows that the so-called monopole

3 antennas, A8 and C4, shift frequency only by 1 MHz when the top

i of the copper base is flush with the interface. Unfortunately,

the frequency shift for partial burial (antenna top flush with

the surface) was not obtained. In view of the suggestion in

section 3G, to partially bury the monopoles, flush with the

1 surface, it would be important to obtain a curve of frequency

1 shift as a function of the penetration through the interface.

g

E Active antenna techniques versus resonance techniques should

also be investigated.
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5. FIELD TESTS OF BURIED ANTENNAS
A, INTRODUCTION

Some field test results have been presented already in
section 3. The important remaining field tests indicate per-
formances of candidate antennas, which for reasons stated are
small antennas.

If the theory is obeyed, as was concluded in section 3,
and if the efficiency is known from the various methods in
section 4, then comparison measurements as presented here are
unnecessary; however, measurements were made and are believed
to be worthwhile for verification. Also, the theory of a par-
tially buried finite dipole was not treated; therefore, experi-
ments are necessary for low-profile vertical dipoles.

B. THEORETICAL AND PRACTICAL CONSIDERATIONS

The space wave field depends on theoretical factors which
are understood. The field after burial is predicted to be

1
E=E.1DPJ?E (38)

£
where Ef is the free space inverse distance field of equation
(6), I is the interface loss of figures 2 and 5; D is the
depth loss of equations (1) and figure 3; P is the underground
pattern factor of figure 4 including in addition cos ¢ or
sin ¢ for angles other than broadside and end fire, and J is
the efficiency from equation (23).

The TM wave of the vertical electric dipole suffers con-

siderable pattern loss P unless the dipole is "low profile,"
not fully buried.
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The TM wave broadside from the horizontal magnetic dipole
is theoretically the strongest possible wave. The pattern fac-
tor P is 1. The efficiency is lieast degraded by burial because
a smali loop has small near electric fields to interact with
the losses of the burial medium. However, as seen in table 4
the ohmic efficiency of the 10 cm diameter loop (D3) is some-
what low; a 13 cm diameter would probably reduce the ohmic in-
efficiency loss to less than 1 dB loss.

The small loop is also attractive as a low-profile antenna,
not fully buried. It does not, however, furnish the convenient
360° azimuthal coverage of the low-profile vertical dinoclc;
crcssed loops for circular polarization on the vertical axis
would be required, and there is a loss of 3 dB compared to the
vertical dipole because approximately half the cnergy of a
herizontal dipole goes into TE waves.

The ontenna D5 was designed with a diameter and pitch to
give equal radiations from the electric and magnetic dipole
moments [15]; furthermore, the theory shows that these two
radiations are 90° out of phase, giving circular polarization.
Thus, considering the broadside and end fire TM waves, there is
360° azimuthal coverage with TM waves from the buried hori:ontal
electric and magnetic dipoles.

C. FIELD SITE PERFORMANCE OF SMALL ANTENNAS

The measuring arrangement is that indicated in figurc 6.
The ficld site is on the NBS grounds and is not as smooth as
the previously mentioned alfalfa field. Burial is accemplished
by placing concrete rings in the ground with outer diameter
30.5 cm and inner diameter 13 cm to accept each 12.7 cm diameter
candidate antenna. Concrete disks are put on top of the
antenna after it is set down in the hole. By this method, to
a good approximation, all antennas are buried under the same
medium of known dielectric constant.
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The concrete was made from a 94% aluminum oxide cement.

It was assumed tu have a relative dielectric constant of 6.5 and
a loss tangent of approximately 0.008, since it was cured at
elevated temperature, 125°C, a: recommended in [§].

Figure 35 shows the received field strength in dB greater
than 1 microvolt per meter at 30.5 m horizontal distance, ror-
malized to 1 ¥ power input into the antenna, for several
antennas. The field strengths were obtained from the received
voltage, taking intc account transmitted power and receiving
conversion factors as outlined in section 3D and 3E. The length,
u, of the transmitter cable was 10.7 m. In addition, 2 small
correction was estimated toc allow for the change in efficiency
of the antenna due to the lower resonant frequency (below
145 MHz) when buried, Table 9 lists the test f{requency and the
conversion factors just mentioned. Bends in many curves of
figure 35 are similar to bends observed in reference [8], which
were due to a mismatch between the concrete and the carth.

The results show that antenna B4, a HED, furnishes the
strongest signal, by a small margin. The loop D3 is slightly
weaker, presumably due to inefficiency, because its radiation
resistance is only 0.11 ohm. The loop needs to be larger.

The circularly polarized design D5 is a very good antenna.
For performance comparisons 3 dB should be added to both measured
fields in order to compare on the same power basis with B3, B4,
and D3. This is true because D5 consists in effect of two
crossed dipoles. B3, B4 and D3 would have to be fabricated as
crossed dipoles fed 90° out of phase to give the same field
coverage as DS, and ‘iould lose 3 dB in the process.

It will be noted that this group of horizontal dipoles,
all of similar performances, (converting to 360° coverage) is

3
i

about 20 dB weaker than the reference monopole. This loss is
unavoidable for a horizontal electric dipole. The theoretical
losses relative to isotropic may be itemized as follows,

i sy
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Table 9. Conversion factors to obtain field strength normalized
to 1 W power into the antenna, and correction for the lower ef-
ficiency due to the frequency being less than 145 MHz.

Conversion Correction(c)
Test to Field for Freq.
3 : Freq. and 1 W Effect on
F i Antenna MHz Normaliz., dB Efficiency, +dB '
E A8 130.3 -1.37 0.06 )
| ca 111.6 -2.05 0.34 3
| ce,ul® 116.5 -2.2 0.34 g
| B3 128.1 -1.2 0.9 ﬁ
| B4 173.1 -2.1 1.0 4
| D3 142.9 +1.0 0.14
D4 146.5 +1.1 --
D5, e () 117.1 -2.2 0.05
ps ,m(P) 116.7 2.2 0.11
Monopole 145 +0.1 --

(a) Antenna buried about 5 cm; other burials were 10 to 20 cm.

(b) The letters e and m signify the electric and magnetic
dipole radiations of the coil, respectively.

(c) Efficiency J = R /(R *+R_); R_is proportionai to f?
for electric dipoles and f' for magnetic dipoles.
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at 10° elevation, and dielectric constant of the burial
medium = 6.5:

a. Interface loss, I, 14 4B
b. Depth loss, D, 0.2 dB
c. Pattern factor, P 0.3 dB
d. Circular polarization 3 dB

power loss
e. Efficiency, J, v 1 to 3 dB
Total Loss, Relative to Isotropic, 18.5 to 20.5 dB.
Some of this loss might be avoidable with D3 as a low-profile
partially buried antenna.

The reference antenna has approximately 0 dB gain with
respect to an isotropic emitter at 10° elevation. The HED
system with 360° azimuthal coverage is approximately 20 dB
weaker than the monopole experimentally; thus the experiment
is in good agreement with the above theoretical estimate.

Figure 36 shows electric field strength patterns, measured
in the same way as in figure 35, but after the candidate antennas
were modified as indicated in table 8.

The D3 antenna, with nearly optimum coupling and the fre-
quency increased by 5 percent, now gives ore signal than B3
and B4. Surprisingly D3 is only 13 dB weaker than the reference
monopele (16 dB weaker, if circular polarization coverage is
added). However, the veference monopole is approximately 4 dB
weaker than in figure 35, presumably because the ground was dry
for figure 36 and wet for figure 35. D3 on an absolute basis
(relative to isotropic) is approximately 1 dB better than in
figure 35. At any rate D3 i: doing as well as can be expccted
for an antenna buried in a iieaium with ¢' v 6.5,

Antenna DS-2 was modified incorrectly and consequently it
lost much of 1ts electric dipole strength, but the magnetic
dipole component is still very good.
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Antennas B3-2 and B4-2, as modified, and D6 are in need of
ferther development.

The vertical dipoles A8-2 and C4-2 were not buried; the top
of the base was at the interface. The resonant frequencies
were only lowered 1 MHz by this partial "burial." These antennas
furnish 360° azimuthal coverage. If the low profiles (7 and
10 cm) are acceptable for concealment, then these are certainly
convenient and useful antennas. They are easy to fabricate,
can have a bandwidth of 10 MHz or more, and give fields about
4 dB weaker than does the reference monopole.

Figure 12 has indicated the variation of loss as a function
of burial depth. However, more work of this type is desirable
in order to know the effect of various parameters, such as

dielectric constant and conductivity, on the curves shown in
figure 12.

D. SUMMARY OF RESONANT ANTENNAS

The low-profile vertical electric dipole, VED, at the
earth's surface conveniently furnishes the desired TM wave (wave
with horizontal magnetic vector) in space without serious in-
efficiency loss or burial loss.

The profile can be flush with the interface by accepting
some additional loss. The amount of this loss (fig. 12) can be
reduced by a larger encapsulation diameter than the 13 cm
diameter used here.

A low profile situated or a '"flush" buried HMD, i.e., an-
tenna D3, figure 17, has approximately 3 dB less gain than the
VED because half of its energy goes into TL waves. It will be
less convenient because crossed dipoles for circular polariza-
tion are required.

The HED either on the surface or buried will suffer the
apparently unavoidable interface loss, furnishing a gain of
-18 to -20 dB below that of a reference monopole on the inter-
face, assuming a dielectric constant of 6.5.
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6, PREDICTED DISTANCE OF COMMUNICATION

A. INTRODUCTION

The gain of a fully buried antenna appears to be that pre-
dicted by Sommerfeld theory [1] as given by equations (1) above.
The gain of a low profile vertical dipole is approximately -4 dB
relative to a high efficiency quarter wavelength monopole on a
one wavelength diameter metal disk, and the latter has well
known gain properties [7]. Using these facts, predictions may
be made of the distance over which communications can be re-
ceived from buried and low-profile antennas.

B. ASSUMED TRANSMITTER POWER AND RECEIVER CHARACTERISTICS

It will be assumed that 1 W is accepted by the buried or
partially buried antenna, of which the fraction J is radiated,
wherve J is the antenna efficiency.

The criterion for reception depends on the bandwidth, noisec
level, and modulation scheme. At 145 MHz the equivalent median
valuc ficld strengths due to various noise sources are estimated
as follows, per kHz receiver bandwidth [16]:

Urban Man-Made Noise ~ -120 dBV/m/kHz

Cosmic Noise v -129 dBV/m/klz
Internal Receiver n~ -138 dBV/m/kHz
Noise

The field specified for equaling internal receiver noise
may be interpreted as follows: The room temperature Johnson
noise of a 50 ohm resistor, approximately -151 dBV/kHz,* has
been converted to equivalent field strength using the dipole
conversion factor of 9.3 dB, section 3C, and a noise figure of
3.7 dB has been included, yielding -138 dBV/m/kliz. A rural
environment without urban noise will be assumed.

*dBV/kiiz denotes dB relative to 1 volt, per kilz bandwidth.

dBV/m/kllz denotes an equivalent field in volts per meter
per kiiz [16].
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The bandwidth of a modern receiver may reasonably bte of

the order of 10 to 100 kHz. Using the cosmic noise level of
-129 dBV/m/kHz as a criterion for reception, the required
signal electric field in the air is

-119 dBV/m, at 10 kHz bandwidth

-169 dBV/m, at 100 kHz bandwidth,
for a 1:1 signal to noise ratio, S/N.

C. GAIN PATTERN OVER A SPHERICAL EARTH

All preceding discussions of the gain pattern in the air
space have been for a flat earth. Fortunately, at the angles
considered, elevation angles of 1° or more, the flat earth
results also apply to spherical earth propagation at UHF fre-
quencies, provided that the elevation angle of the field pat-
tern is measured with respect to a plane tangent to the sphere
at the point where the antenna is buried [17]. Reference [17]
shows that at elevation angles of 1° or more the field of a
monopole or dipole located on or near the earth 1s nearly the
same for a flat earth and rfor a spherical earth. The tangent
plane would be somewhat sphericaj to allow for the earth's
atmosphere, but instead we use the usual 4/3 earth's radius
approximation [18]. Then the height h in feet of the new flat
tangent plane is h = %“/2 where R is the horizontal distance
in miles from the point of tangency. The elevation angle 1is
obtained from the height above this tangent plane.

D. FIELD STRENGTH VERSUS DISTANCE

The chosen communications model is a 1 W source driving
a buried or a low-profile antenna and a receiver 50,000 feet
above the spherical earth. Figure 37 shows the predicted fields
versus the horizental distance for various conditions. Only a

TM wave is considered.
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The curve Ef for free space is evaluated from equation (6).
The elevation angle, measured as previously discussed, is indi-
cated by another curve. The curve marked M (monopole) is
evaluated from

1
E=E; M J? (39)
where M is the vertical monopole pattern factor [7] of figure 9,
and J = 0.4 to represent the 4 dB loss of the low-profile verti-
cal dipole (fig. 36) compared to the "reference'" monopole.

The group of curves with parameters €' = 5, 10, and 15

is evaluated for a buried loop (HMD) using ecquation (38)

E=E.1DPJ2

f
It is assumed that P = 1 for the IIMD, that D = 1 (shallow burial),
and that J = 0.5. The computer routine used for figure 2 was
modified tc include the proper angle and range.

A field strength of -109 dBV/m, as suggested above for
equaling cosmic noise in a 100 kHz bandwidth receiver, will be
used as a criterion for reception. (Reference [19] in a study
of spread spectrum techniques uses an ultimate receiver sensi-
tivity of -107 dBm corresponding to -120 dBV at the receiver and
-110 dBV/m field strength in the air. We have, however, used
-109 dBV/m as a criterion.)

The results for the buried HMD antenna show that a field of
-109 dBV/m occurs at 92 miles for €' = 5, at 79 miles for ¢' = 10,
and at 72 miles for €' = 15. The conductivity was 0.01 S/m
throughout. The curve M for the low profile VED falls to
-109 dBV/m at a range of 172 miles.

The communications range may be found fo. other source
powers by a shift of scale of 10 dB per factor 10 in power.

Also other criteria may be used for the required field strength
for reception; e.g., the assumed dipole receiving antenna may
be replaced by a higher gain antenna to inc:ease R.
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7. DISCUSSION AND CONCLUSIONS

Electrically small resonant dipole antennas were developed
to be buried in the earth for concealment. For a buried dipole,
the gain and the pattern in ~he upper half space are well pre-
dicted by Sommerfeld theory and also in  general by physical
optics methods which were developed. Experiments confirm the
theoretical factors, in particular the interface loss and the
pattern in space. A "reference'" monopole on the surface con-
firmed the accuracy, *+ 1 dB, of the overall measuring systenm,
i.e., of the transmitted power and received field strength
measurements.

In contrast with above-ground antenna experience, the
required TM wave is not best obtained from a buried vertical
dipole. Buried horizontal dipoles, either the HMD or the HED,
provide stronger TM waves, but there is a sine or cosine
azimuthal dependence. Coverage over 360° is provided by crossed
horizontal dipole with circular polarization.

The interface loss due to burial will often be in the range
of 15 to 25 dB; it increases with the dielectric constant of
the grcund. An additional difficulty is the shift of the
resonant frequency and consequent mismatch of the antenna to
the generator, resulting from burial. The resonant electric
dipoles may remain matched to the generator after burial, either
by adjusting for the frequency shift ahead of time, or by using
a larger encapsulation to prevent interaction with the ground.
The preceding statement probably also applies to resonant loops.
The roughly 10 cm diameter loop investigated had a comparatively
small frequency shift, table 6, but still it exceeded the band-
width of the resonance, table 7.

In view of the above problems, methods of avoiding fully
buried antenna are desirable. Convenient vertical dipoies,
figures 13 and 14, may be partially buried, rising 7.5 and 10 cm




above the ecarth's surface respectively. The loss due to burial
is then approximately 4 to 5 dB (fig. 36), and TM waves arc
obtained over 360° in azimuth. The frequency shift due to
burial in €' = 6.5 was small, 1 MHz. Theoretically, crossed
HMD loops with circular polarization would also function well
as a low-profile antenna. Finally, this antenna and the VED
could be set flush with the surface of the ground for conceal-

ment, and with a slightly largevr, 15 to 18 cm, diameter plastic
cover, iuc 1loss due to burial is estimated to be only 5 to 10
dB more than for low-profile above-ground antennas.

Activs nntenna techniques, section 41, remain to be invest-

o Aot e el gt
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igated. These techniques have been used [13] instead of resonance

to match an antenna to generator. The advantage would be that

the impedance match would not be lost if the system were buried. :
Section 4 gives a detailed account of impedance measure-

ments for analysis of the efficiency, bandwidth, coupling, and

interaction with the burial medium.

The predicted maximum range of communication with 1 W power
and a receiver at 50,000 feet altitude is 170 miles using a
low-profile VED. The predicted range when the antenna is a
fuily buried HMD (reswnant loop) is 77 to 90 miles.

According to reciprocity theory the antennas developed
here for transmitting purposes will have thc same burial loss
and efficiency when used as receiving antennas.

It is recommended that the present research be extended to
include a study of the bandwidth, frequency shift, and inter-
face attenuation as functions of shallow burial depth (near
the interface) and as functions of the size of the encapsulation.
Also, the allowed dimensions for convenient tactical deployment

should be redetermined with the idea of obtaining incrcased
bandwidth by a larger structure.
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The active antenna alternative should be investigated
and might obviate the frequency shift and bandwidth problems
encountered,

The buried HED and HMD antennas are useful assuming that
the frequency shift due to burial is engineered into the
design, or reduced by allowing more encapsulation. The VED
antennas A8 and C4, figures 13 and 14, may be used as

convenient low profile partially buried antennas.
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