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A PRACTICAL ON-LINE FILTER TO PROCESS GYROCOMPASS DATA

‘Ronald E, Janosko, Captain, USAF
Research Associate
‘Prank J. Seiler Research Laboratory (AFSC)
United States Air Force Academy, Colorado 80840

L oot ... ... . Introduction and Prcblem Statement . . . .

. The basic problem addressed in this paper is that of providing an
accurate real time estimate of a heading direction on a reference test

pad, This situation is symbolically depicted in Figure 1. In this figure

y

/L
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] Figure 1. Symbolic Definition of Problem Variables

Note: The main concepts in this report were presentod at the 1973 AIAA
Guidance and Control Conference, Key Biscayne, Florida, 20-22 August.
This report is a revised and corrected form of AIAA Paper No, 73-841.
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the three dimensional slab represents the test pad to which is fixed an
azimuth measuring device. The function of this device is to measure the
angle betwee;x a {ixed inertial direction and some arbitrary pad reference.
Let us assume that the quantity a is the desired fixed heading vector
and that it is located at an angle A from the pad reference heading

vector O. Because the instrument is sensitive to other variables, we

cannot messure ' A directly but must obtain an estimate of the a direc- .

tion by measuring the angle m formed between the reference ¢ and the
indicated heading vector b.

‘ Much work has been done in modeling the error. sources involved in
this pr-oce.s;sl [1,2]. It is not the aim of this papef to derive a new
error model but rather to demonstrate a method by which a referer_xce
heading can be obtained from raw gyrocompass data. Only a simplified
error model will be presented but the proposed technique can be used
equally well with any error model,

In order to demonstrate the proposed method let us assume that only
the platform North-South tilt, TNS' and East-West tilt rate, '}EW’ are
modelled as error sources, Further it is assumed that the difference
between the angle m and the angle A 1is a linear function of the
modelled error sources. Thus we can approximate the mathematical

relationship between A and m by

Mo A+ G Tyt Co Ty - (1)

Note that in Equation (1) the coefficients C; and C, must be
determined along with the heading A.
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A problem arises in that even in the best of error models other
variables not modelled may aflect the difference between the meusurement
m and the heading angle A. That is to say, an equation in the form of
(1) is most likely not an accurate model of the measurement process. In
order to account for these model inaccuracies we can assume that the

quantity A is variable with time. If A were assumed tc be a constant

" ‘quantity along with the coefficients C, and C, then there would be

little hope of obtaining long term, real time estimates of the heading‘
direction. At best all that could be obtained would be average estimates
of A for discrete time intervals., Further, if a standard Kalman filter
were used to try to track thesé paraineteré the filter oufput would
actually diverge [3]. Thus the problem is now to estimate the constant
error model coefficients and to track the variable Ak' where now' Ak
represents the value of A at the kth time instant.

A further problem occurs in that the measurement of m will also
be corrupted with measurement noise. The processing technique developed
must also account for this fact. Thus Equation (1) can be more

accurately represented by

In the above equation Vi Trepresents the noise and the subscript k
indicates that the quantities so subscripted are time varying and that

their value at the kth measurement is (-)‘,.
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Our task is thus to develop a method by which the measurements
My s TNSk and i'EWk can be processed so as to yleld accurate estimates

of the coefficients C; and C, while also tracking a time variable
quantity Ak We will now proceed to derive a method which can perform

the above task.

~ Method of Approach

Before procesding to develop the method used to solve the proposed
problem, Equation (2) will be rewritten here in @ more general form.
To do this the parameters to be estimated will he written as the colum

vector X namely

X = [Ak, G, cz] . (3)

Also the measurement matrix will be defined as a row vector M(k),

that is,

M(k) = [1, TNsk, TEwk] . )

Now using the symbol Yy to represent the measurement M s

Equation (2) can be written as

T M(k) X * Vg oo (5)
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Equation (5) will be referred to as the measurement equation. In the
above equation, Vi is the random measurement noise with zeroc mean and
covariance vak VIU = R, In the above it is assumed that the measure-
ment equation is scalar, If more than one heading measurement is to be
processed at one time this approach is still applicable though appro-
priate changes must be made to the equations throughout this paper.

It should be noted here that any error model equation can be used
8s long as the resultant measurement equetion is of the same form as
Equation (5).

In general the value of the state vector at time tysq can be
related to its value at time t,, by means of the state transition

matrix ¢(k+1/k). This allows us to write

X = 0(VK) X+ T(R) W 6)

Equation (6) will be referred to as the state equation. In this equation
Wy is the system noise and (k) is the system noise coefficient matrix
at time e The system nolse coefficient matrix relates the effect that
the system noise has upon the states. The quantity Wi is a random
varigble with mean zero and covariance given by E Wy w{{ = q.

For the present problem it is assumed that the states are constant
between measurements, thus ¢(k+1/k) = I. Because it was assumed that
the system noise is only in the first state, Tr(k) can be given as

rT(k) = [1, 0, 0). Thus all quantities in the state and measurement

equations are specified.




[l MV, ST I IR TN Ry v ey e

The vbject of the approach presented below is to allow for varia-
tions in the parameter A by estimating the system noise covariance q.
This will be done by using the residual between the actual measurement
and a predicted moasurement that is based upon past values of the
states [4,5].

Assume that we have processed the measurement Yk and now wish to
bring the filter and states forward to time LRE In the processes of
going forward in time we wish to use that q value which yields the
predicted residual, r(k+l/k), that is the most probable. In other

words, find q according to

max p[r(k+1/k)] (7
q>0

where pf ] is the probability density function. The q that
maximizes (7) will be denoted by ﬁk.
Let us now define the predicted residual by

r(k+1/K) = yp.q - M(k+l) X(k+1/K) . (8)

In this equation Xx(k+1/k) is the estimate of the state at time el

given the measurements wp to Yy The mean of the predicted residual

can now be given by

L o




Bir(el/K)] = Ely,,, - MOs1) X(e1/0)]
= M(k+1) B[xk*l " i(k"'l/k)] + B[Vk.,.l] ’

- 0. )
This is by virtue of the fact that the expected value of the measurement

the error hetween the predicted state and the true state.

Further the variance of the residual can be given by

E [r (k+1/k) rT(k+1/k)] -

B{[ym - MR/ [V - MCk+-1)>‘<ck+1)]T} :

or

mamﬁmmﬂ-

E{{M(kﬂ) [xk,k1 - i(k+1/k)] * Vieq] {MOeD) [xk+1 - X(k 1/k)] + vk_*lgT; :

(10)

Letting €ys1 D€ the error in the estimate at time L that is,

1 ™ Fpol " x(k+1/k), equation (1) can be simplified to vield

%mmﬂmmﬂ-

E%DM(k+1)ek+1 * Viwy) MO e vk+1]T§

noise is assumed to be zero as is the expected value of [xk+1 - k(k+1/%)1,




or

Blrae1/oraem] -
M(k+1) Elck*l ekzli ME (k+1) + E;vk+1 kalg

T | T
Viap Eaq] M (kD)

* ML) Eley,) V| * E

The residual's variance can now be written as

E[r(k+1/k) rT(k+1/k)] -

M(k+1) P(k+1/K) MI(k+1) + R(k*1) , (1)
where the state error covariance matrix is denoted as
P(k+1/K) = E;ekﬂ r,k'fl} . (12)
Recall from the equations for the basic Kaliman filter that the

system noise covariance enters into the calculation of P(k+1/k) [6]. 3

This relationship can be given by
P(k*1/k) = o(k+1/k) P(K/K) ¢ (k¢1/k) + q (k) IO (K) ,  (13)

or for this problem

P(k+1/k) = P(k/K) + (14)

o o [
O O O
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Now if we assume a gaussian distribution of the residuals for the R

scalar measurement case

p[raerio] - i (15) ,
where
o? = E[r(k+1/k) rT(k+1/k)] (16)
and
r? = rl(kel/K) r(k+1/K) . 17 i
Thus the variance o¢° is a function of q and hence (15) is also

dependent on the quantity q.
This fact allows us to minimize Equation (15) with respect to q

2
by differentiating it with respect to o? because 9%—)- is constant.

Proceeding with the differentiation and equating the result to zero

we get
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~This implies that

r? 1
—_—- e = ()
20t 202

which says that the maximum probability occurs when
r2 = g2
or equally when
r2(k+/K) = 5[r2(k+1/k)] , (18)
Now using Equation (13) in (11) we can get

E[r2(k+1/k)} -

M(k+1) o(k+1/K) PCk/K) of (kr1/k) MY (ke1)

+ q Mks1) (k) riek) MI(k+1) * R(k#1) . (19)

Letting

E[rz(k+1/k)q - o] = ' ; 

M(k+1) ¢(k+1/K) P(k/K) ol (k#1/k) M (k+1) + R(k+1) ,

we can get {rom (18) and (19)

10




r2(kel/k) - B[r2(el/K) 9= 0] e, g
M(k+1) T(k) (k) MT(k+1)
q (20)

G -
0 otherwisc,

where q, must be > 0 from the physical meaning of the veriance.
Equation (20) can now be simplified for the specific prohlem
described, This simplification allows us to write

M(k+1) T(k) TT(k) ML (k+1) =

[I,TNS,TBw]k 1l pooy M -1
g Tns
oy

and
E[r(k+1/k)q . o] = M(k+1) P(k/k) MI(k+1) + R(k+1).
So

r2 (k+1/K) -M(k+1)P(k/KOMT (k#1)-R(k#1)  if > 0
Gy ™ (21)
0 otherwise.

If preferred Equation (22) can also be expressed in terms of the

measurement yp,  as




l{)’kﬂ‘M(hl)i(kﬂ/k)]2-MCk*1)P(k/k)MT (k+1) -R(k+1) if > 0 %
ak - l |

e otherwise,
(22)
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Referring to Bquation (20) wenote 'that ﬁk is directly proportionil
to the excess of the Tesidusl squared over the predicted value of the

' residual squaved where the predicted value is based upon the assumption
that the system noise is zero. If the residual squared is greater than
the value predicted under the assurption of no system noise, then a
positive value of &k is generated which indicates that the no noise

B3 o om 2o il

assutption was most likely false. This value of dj 1s then used in

- later processings to produce more cons istenq? between the residuals and
1 their predicted statistics,

The filter adapts to the system noise level as follows, If
Equation (20) yields a non-positive value for &k then the residuals

are within their 1l¢ values and the assumption of no input noise was

= probably true. The residuals are thus behaving according to their
| statistics, are relatively small and the filter is operating satis- 1
factorily. On the other hand if the residuals are larger than the pre-

dicted 10 values, the filter is actually diverging. This then ' %

generates a positive g, value which then ceuses P(k+1/k) to increase

, as seen from Equation (14).

. The Kalman gain can be given by [7]

e i S e ek ke 2

] K(k+1) = P(k+1/k) M (k+1) [M(k*l) P(k+1/k) M: (ke1) + R(km]’l . |
' (23) i
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We note that increasing P{k+1/k) causes the gain to increase. The
increased gain then causes the fiiter to become more sensitive to the
latest data. This allows the filter to follow parameter changes that
become evident as later data is processed. This is in contrast to the

: stmdard filter that tries to fit constant parameter values to all of
- the ‘data and whick in truth is ,biesegi_to\irqrds ”earli_er data., This L.as

comes sbout from the fact that filter .zdn.,.docf!ﬂ!z! as more and more

data are processed and P(k+1/k) decreases [5].

The approach presented can be used processing one residual at .
time or processing many residuals at once. This later approach is more
stnﬁstically significant although does complicate the filter computa-
tions. Because the value of q) Tesponds to large measurement noises
as well as to large system noises, a statistical approach to calculate

&k may be preferred. To process mary residuals, we use the sample

mean given by

N
- 1 T(i+l/i
T = = —-é——-l—l . (29

i=1

This value is then used in the equations for ak with appropriate

modifications.
The main advantage of using an adaptive filter is that it allows

the estimates of the states to follow the variations in the true states,

13
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Thus the filter should yield varying parameters that track the true
parameters .accurately, rapidly and with minimal computational burden.
Figure 2 shows the basic flow of information within the filter.

It should be noted that this differs from the standard Kalman filter

Ry

1 k=1
f N e
.
\ | : | x(k/k)
?,:; e : P(k/K) o
A | I ;
L o
£ " % (k+1/K) + |
H . :
y INPUT DATA OOMPUTE
mk+l) N 4
b4 i y.
&
o = 0
L 2 . !
P (k+1/k) ©ol
K(k+1)
COMPUTE k = k+l
% (k+1/k+1)
P (k+1/k+1) + :
T - |

Figure 2. Adaptive Filter Information Flowgram




only in thq,blocks that calculate &N-‘ lnd that update P(ktl/k) if a
~ positive qy is found.

‘heading Ak A san'ple program was simulated using the Fortran IV
o llnguqo on a ‘Burroughs. B6700 couputar. For this simlation it was
F assv.md t.lut the variation in Ak wus simaoidal with a iean of 15.0

“hour. and varied as the sine and cosine respectively. Both ye:je assu:pd

To test the sbility of the adaptivn filter to follow the varisble

and . peak to peak variation of 6,0. The period of this signnl was
taken to be 24 hours. The tilt and tilt rate used had a poriad of 1

to have a zero mean with peak to peak variations in the tilt of 2.6 and
in the tilt rate of 1.6. The true values of C, and C; were chosen
to be 0.4 and 0.2,

For this simulation three residuals were averaged and three measure-
ments were processed simultaneously. Each time a new measurement was

available the oldest measurement was discarded and the three newest

measurements were processed. In this manner a new estimate of Ay
could be obtained each time a data point was available., It was also
assumed that the measured heading, tilt and tilt rate were sampled every
10.5 minutes.

The results obtained when the above case was simulated with measure-
ment noise free data being processed through the filter are shown in
Figure 3. For the simulation shown the initial values of A, € and
C, were chosen as 12.0, 0.1, and 0.0. In this figure we see plotted

the noise free measurement Mo the true heading Al.,f and the heading
estimate obtained from the adaptive filter, AF Figure 4 shows the
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- error in estimating A‘k' C and C, as a function of the mmber of .

_perform as well, In Figure 5 we sce:the results when the measurement

" “noise’ has “a standard deviation of 1.0, Here the noisy measurement my

points processed, As seen from these two figuml the adaptive filter
is sble to give quite accurate results.

‘On the other hand when the same situation is simulated using
measurements- that are corrupted with random noise the filter does not

N el

-— cEmen, - -

N { R
0 120 40 60 80 100
NUMBER OF POINTS PROCESSHD

Figure 5. Results of Processing Noisy Data through
the Adaptive Filter

‘is shown along with the true and estimated headings Ap and Ape As

seen in this figure the adaptive filter does not perform satisfactorily

17




for this large a measurement noise. Even using the averaged residual
the filter stiil reacts to the measurement noise a3 well as to the
actual variations in the heading.

In order for this filter to behave properly, the noise level of the
input signal must be relatively small. The next pertion of this paper
shows how this secondary task can be accomplished,

*~Noting that-in general the measurement signal will bc of a lower
frequancy than fhe measurement nolse, it appears that a low-pass filter
is needed. This type of filter will allow low frequency signals to
pass almost unattenuated while attenuating the higher frequency compo-
nents. Many different types of digital filters have been derived that
are sble to perform this task. A large number of these are the exten-
sion of analog filters into the digital domain [8,9].

Bach of the available filter types has advantages and disadvantages.
For this spplication a Butterworth filter will be chosen because it is
monotonic in both passband and in stopband. This type of filter is asble
to be represented in digital form by the following squared magnitude
function

H 5“” 2 = 1 25
(‘ ) 1 . tmzn @Uz) ‘ ( J

tan®" (u_1/2)

In this equation n is the number of poles of the filter and T is the
is the frequency at

time between samples. The cutoff frequency, u
which the filter gain falls off to 3 db.

cl
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Figure 6 shows the gain of the digital Butterworth filter as a
function of frequency for various values of n. While at first it may
sppear that a large value of n is desirable it should be pointed out
that the phase difference between the signal and the filter output

increases with increasing n. ‘Thus the value of n should not be any

larger than necessary if real time data processing is desired.

Figure 6. Digital Butterworth Filter Gain versus Frequency
for a Variety of Poles

In order to determine the minimum number of poles to be used in the
filter the desired operating criteria have to be specified. We will
assume that the highest signal we want to pass through the filter is
1 cycle/hr., corresponding to the tilt and tilt rate effects, Thus the
cutoff frequency will be 1 cycle/hr. or 27,78 x 10°° Hz., Assuming that
that we have a sample every 10.5 minutes gives a sampling rate of
158,73 x 10~ Hz. Further it is specified that at least a 40 db drop

19
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is required at 2 cycles/hr. This implies that the squared magnitude
function equal 10" at 55.56 x 10°5 Hz. Using these numbers in Equation
(25), n is readily calculated to be 3,95, which implies that a 4 pole
Butterworth digital filter can perform the required task.

| Proeooding with the design of the filter we first express the
general fourth order Butterworth filter as [10)

H(s) = sonstent . (26)
s+ 2,6 83+ 3.4 32+26 s+1

Replacing s by s/a, where a will equal tan (we1/2), Bquation (26)

can be rewritten

" .
H(s) = a . 27
s + 2,6 as? + 3,4 a%s2 + 2,6 ads + gt

In this form the constant has heen adjusted so that the gain at s = 0
is equal to umity,

Bquations (26) and (27) are still in analog form and must now be
tronsformed into the digital domain, This is accomplished by letting
s » (z-1)/(z*+1). This transformation allows the filter transfer

function to be written as

a'(zh + 423 + 622 » 42 + 1)

H(z) =
azh + p23 + yz? + sz + ¢

. (28)
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The Greek symbols used in Bquation (28) are defined by

o = 1+26a+34a2+ 2.6ad+a"

-4-52a+52a8%+4a

6 - 6.8 a2+ 6 a" (29)
§ = ~4+52a-52a3+4a

e » 1-~26a+3.4a2-26a4a%+a"

i
a

and were pbtained after algebraic simplification of the resulting
equation when the s to 2z transform was used in Equation (27).

In order to express Equation (28) in terms of measurement sanple
timés a few more substitutions are required. First Equation (28) is
mltiplied by z"%/z"% to obtain

H(z) = B4(1 + 4271 + 6272 + 4273 + 2°4)
o+ B2°1 4 y272 4 8273 4 gzb

Recalling that the transfer function relates the output of a system to
its input, Equation (30) can be written as

Ye(2)  ghg s 471 4+ 6272 4 4273 4 2oY)
Ym(z) o+ Bzl + yz"? 4+ 8273 4 ez7b

(31)

vhere Yf(z) is the filter output and Ym(z) is the filter input.

21
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Equation (31) now relates the output of the filter to the input in the
J z plane. The transformation to the time sampled domain is now rather
i straightforward.

! This process is begum by expressing Equation (31) in block diagram
form. Figure 7 is the result of performing a direct transform from the

¢ _
; . ¥, (nT)

g1 g1 z

! + nT-T) |

: +3 +ev_(nT-21
2 dov (nr-37) D |-
i | +% 4+

1 mgn'I‘-4'1‘) - __j

bl +4.

v €Y o (MR-4T) € |-

- (pT-3T) $ lam

=¥y . (nT-2T) [y
YenI-T)] g

e YRR 2

+

T A

S T
Q'

. Y £ (nT)

Figure 7. Block Diagram of Digital Filter
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equation of the transfer function to its block diagram form. Also in
this figure it is shown how the z™! block relates to the samples,
that is, a block whose transfer function is z"! represents a delay of
one time sample. This block diagram form now allows the equation that
relates the filtered output to the input to be written as

aY(nT) + BY (NT-T) + yY (nT-2T) + 8Y(nT-3T) + eY(nT-4T) =

AY, (nT) « BY (nT-T) + CY (nT-2T) + DY (nT-3T) + EY (nT-4T) ,
(32)

where the symbols used are defined below.

- gt
4 at
= 6 g*

4 gt

G W >
5

m o
|

. gh

a = 1+2.6a+3.4a2+2,6ad+at
B = -~4-52a+5,2a%+4a"

y = 6-6.8a%+6a"

§ = -4+52a-5,2a%+4a4

¢ »~ 1-2,6a+3.4a2-2,6a%+ at

It should be noted that Equation (32) is the filter realized i.-

direct form and may not be the best to use for the processing of actuul

{
i
f
i
'




data. The subject of how to realize the filter as well as more details

onthe s and z transform are covered in many texts and the interested

J reader is referred to some of them [11,12,13,14], ‘Iii .
Equation (32) indicates that the present filter output Yf(nT) is .'C _ﬁ

related to the last four filter outputs as well as to the last four

measurements as well as the present measurement Ym(nT). It is this
iy dependence on past measurements as well as past outputs that introduces

i the increasing phase difference between the input and cutput. The order

i ‘ of the filter determines how many past data values are to be used. It ,
' is for this veason that the order of the filter should be kept relatively
small., Also the lower the filter order, the easier it is to program.

The results obtained when noisy data were passed through the digital

filter just presented are shown in Figure 8, This figure shows the true

e i R S

e e T
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NUMBER OF PQOINTS PROCESSED

Figure 8, Results of Processing Noisy Data through
the Digital Filter
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signal, Brs the measured signal, M arxi the filtered output, g
It shoulid be noted that the filtered output is a large improvement over
the raw data in indicating the true signal. The phase diffevence is
also evident in this figure.

Results and Conclusions

The results obtained when the noisy data is first passed through
the digital filter and then through the adaptive estimator are presented
in Figure 9. In this figure we see the actual heading angle, A.l., the
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Figure 9. Results of Processing Noisy Data
through both Filters




actual messurcient, m, the filtered measurement m. and the estimated
heading angle Ap. Comparing this figure with Figure 5 it is noted that
digital precessing of the measurement is indeed an improvement over
passing the raw data directly into the adaptive estimator.

Using actual gyrocompass data has been investigated and some results
are presented in Figure 10. This figure shows the results of passing
normelized raw gyrocompass data through the digital filter es well as

o 20 40 60 80 100
NORMALIZED TIME SCALE

Figure 10, Results of Processing Actual Gyrocompass Data
‘ through the Digital Filter

depicting the normalized raw data. No statement can be made as to how well
this approximates the true heading angle because this fact is not con-
tinuously known. The passing of this digitally filtered dataz through the
adaptive filter could not be accomplished because the concurrent tilt and

tilt rate i.. “ormation was not available.




| Based upon the results obtained using the simulated data, where a
comparison can be made to the truth, it appears that the proposed process
u blc to s'atisflctor:lly track a variable heading while simultanecusly

| solvlna for error model coefficients, This system can be utisfactorily
: med for rnl time data processirg because the total time required to

- digitally filter and then to gdaptively estimate the paransters is much
less than the time between sanples. Consequently, this analytical tech-
nique should be of great value in the determination of a continuous heading

reference that can be used as a lsboratory standard.

Theoretically, this procedure can be modified to further improve the
azimuth measurement accuracy of a gyrocompassing system. The provision
for the incorporation of additional measurable error model terms allows

for this ameliorationm.
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