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ABSTRACT

The parametric reception of a low frequency plane wave by the
use of nonlinear interactions between acoustic waves is examined both
theoretically and experimentally. The parametric reception of a low
frequency wave 1s accomplished by the use of a high frequency acoustic
pump wave which interacts with the low frequency signal wave to produce
soun¢ waves at the sum and difference frequencies. These sound waves are
received by a second transducer placed on the axis of the pump transducer.
This type of parametric array allows for the possibility of narrowbeam
detection of a low frequency acoustic signal wave.

The interaction of two plane waves is examined theoretically in
& manner similar to that considered by Westervelt. Of particular interest
is the case in which the pump wave is assumed to be a plane wave originating
at and propagating perpendicular to somerble.na.r boundary. The low frequency
signal wave 1s assumed to be present over all space. The interaction of
two plane waves is of interest for two reasons.

(1) This interaction produces a truncated end-fire array (i.e.,
the parametric receiving array) with a length equal to the spacing between
the planar boundary and the observer, and (2) this interaction relates
directly to the problem of sound scattered by sound as formulated by

Westervelt.

Next, the sclution for the interaction of a high frequency
spherical wave from a point source and a low frequency plane wave is

obtained thecoretically using a two-dimensional stationary phase solution

iii
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of Westervelt's scattering integral. The point source solution is in turn
used to generate the solution for parametric receiving arrays with various
pump transducers including a truncated line source transducer, a rectangular
piston transducer, and a circular piston transducer. In each case, the
observer is assumed to be in the farfield of the pump transducer. However,
the result includes the effects of interaction in the nearfield of the pump
transducer. The solution of the parametric receiving array with a point
source pump and & truncated line receiver is also found. The theoretical
solutions also include the effects of misalignment of either the pump or
recelving transducer. With either the pump transducer or the receiver
misaligned, the difference frequency beam pattern is an asymetrical beam
pattern and is the mirror imsge of the sium frequency beam pattern. This
property is examined in detail in terms of the problem of two sound waves
interacting at nonzero angles.

A series of experiments were conducted with a 48 ft parametric
receiving array with a pump frequency of 90 kHz. In the experiments,
an omnidirectional transducer was used with either a rectangular piston
transducer or a square piston transducer. Each transducer could be used
a8 elther the pump transducer or the receiver so that a variety of parametric
recelving array configurations could be realized. A small rotator was used
to allow independent rotation of the piston transducer for measurement of
the effects of misalignment of the piston transducer. Theoretical and
experimentel results are compared for the parametric receiving array with
several transducer arrangements. The agreement between the theory and the

experiment was excellent.
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I. INTRODUCIION

It is well known that a finite amplitude sound wave will distort
as it propaga.tes.:l"8 This nonlinear propegation or self-interaction
occurs because the phase velocity is a function of the instantaneous
amplitude of the particle veloeity. It would also be expected that two
sound waves of frequenciles fl and f2 present simultaneously in a medium
would generate sum and difference frequencies, fl t fa. A spurious
difference frequency tone was observed by a German organist, Sorge, in 1TU5,
and later in 1754 by an Italian violinist, Ta.rtini.9 These spurious
frequency components have been known to musicians ever since and are

referred to as "combination tones." In 1875, Helmholtz®

rredicted that a
sum frequency tone should also exist. With the use of a Helmholtz resonator,
Helmholtz showed that the difference frequency tone was generated by such
instruments as the harmonium when two high frequency tones were played
simultaneously. Helmholtz suggested that thils tone was generated in the

air within the instrument. On the other hand, the presence of two notes

from g pipe organ had little effect on a resonator. In this case, Helmholtz
concluded that the difference frequency was either subjective or generated
within the ear. The existence of the sum frequency was a matter of debate
until 1895 when Rucker and Edserll observed its effect on a tuning fork .
of the same frequency. Rauyleigh]'2 discussed the subject in his book

The Theory of Sound in 1910. La.m‘b15 used Airy'52 method of successive

approximations to demonstrate the existence of sum and difference

frequency components. The existence of sum and difference frequency
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components in the throat of a horn was consliered by Roca.rdlu

by Thuras, Jenkins, and O'NeilJ+ in 1935. Thuras, Jenkins, and O'Neil

in 1933 and

measured the sum and difference frequency components experimentally using
a long tube.

The interaction of two sound waves in a bounded region was
considered again in 1956 by Ingard and Pridmore-Brown.™ In 1957,

16,17 generated a solution for the interaction of two infinite

Westervelt
plane waves with no boundaries present.

Despite this activity, the interaction of soﬁnd wvaves did not
receive widespread attention until the early 1960's when Westzervelt'.:L8
proposed the nonlinear or parametric acoustic array for the transmission
or detection of a low frequency acoustic wave. He showed that a highly
directional, low frequency sound beam could be generated with a small
transducer by the use of the interaction of two high frequency carrier
sound beams. This parametric transmitting array has been demonstrated

experimentally by Bellin and Beyerlg, Hobaek,20 Zverev and Kalachev,al

Mulr and Blue,22 Smith,2> Merklinger,2' Truchard and Willette,2 among

others. 26-28

The parametric reception of a low frequency wave, also proposed
by Westervelt ,18 is accomplished by the use of a high frequency acoustic
pump wave which interacts with the low frequency signal wave to produce
sound waves at the sum and difference frequencies. These sound waves are
received by a second transducer placed on the axis of the pump transducer.
The parametric receiving array was first studied by Berkt:ay29’3 & and later
by TJotta.jl An experiment was conducted by Berktay and Al--Tem:l.miBa’3 5

that demonstrated the existence of the parametric receiving array and,

BB o0 R csn =



furthermore, showed that the array had a directivity function which is
very similar to that of a conventional end-fire array with a length
equal to the distance between the two transducers. Similar experiments
have been conducted by Barnard et al. ,3 . Konrad et al. ,55 Muir and
Berlct‘.ety,3 6 Zverev and Ka,fl.za.chev,37 and Dete and 'I‘ozuka..38

Most of the experimenters developed a theoretical model
designed to correspond to the conditions of the particular experiment.
The experiments conducted by Berktay and Al-Temimi were primarily done in
the nearfield of the transducer. Consequently, the theory was appropri-
ately designed for consideration of interaction in the nearfield of the
pump transducer. On the other hand, the numerieal solution by Barnard
et al. assumed that the interaction occurred only in the farfield of the
punp transducer. The theory used by Mulr and Berktay for the analysis
of a single parametric array is described fully in a paper by Berktay and
Shooter.39 A closed form solution was found for the sum and difference
frequency sound field for the parametric receiving array in the farfield
of the narrowbeam pump transducer. The theoretical approach of Zverev and
Kalachev and of Date and Tozuks does not use Westervelt's perturbetion
procedure for finding the value of the sum and difference frequency sound
pressure. Instead, the modulation of the high frequency pump wave by the
low frequency signal wave is considered in terms of the phase modulation
of the pump wave caused by the time varying change in the sound speed due
to the presence of the signal wave. Recently, Rogers et aa,l.llro obtained
8 solution for the parametric receiving arrsy in the nearfield of e small

narrowbeam pump transducer.
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In each of the models described above, the effects of shadowi:z
of the signal wave by the pump transducer were neglected. These effects
were considered by Al-Temimiul and were found to reduce the directivity
o the parametric receiving arrsy when the pump transducer was large
compared to the signal frequency wavelength.

The possibility for utilizing an arrangement similar to the
parametric receiving array for the construction of a traveling wave
parametric amplifier was proposed by 'I‘ucker,‘+2 St:epa.nov,h5 and Berkta.y.Bo
However, each researcher concluded that amplification of the signal wave
is not possible unless the sum frequency wave 1s suppressed or the medium
is dispersive. Such amplification in a dispersive waveguide is predicted
by Ostrovskii and Pa.pilova.m"

Berktay and Al-TemimiM5 have recently related the perametric
receiving array to the problem of sound scattered by sound. This
relationship is an interesting one and deserves attention because it has
continually been debated since Ingard and Pridmore-Brown first studied
the problem.15 Ingard and Pridmore-Brown predicted that a scattered
sound field would propagate outside the interaction region common to the
two primary waves. Their experimentel measurement seemed to verify the
predictions. However, later attempts at verifying these predictions have

Lo, 47,48 16,17 considered the

proved unsuccessful. In 1957, Westervelt
nonlinear interaction of two infinite plane waves intersecting at nonzero
angles and found that the scattered pressure was related only to the
value of the primary sound wave amplitude at the observer point. This

solution did not include the effects of boundaries or sbsorption. Conse-

quently, the solution had a singularity when the primary sound waves were




propageting in the same direction. This result was consistent with
previous predictions by Lord Rayleigh'® and Lembl> which had been verified
experimentally by Thuras, Jenkins, and O'Ne:l._l,u provided we assume that
the interaction occurs over an infinite distance. Furthermore, Westervelt
predicted that no scattered sound exists outside the region of interaction.
Various magnitudes of scattered sound pressure outside the region of

k9

interaction have been predicted by Dean, ~ lLauvstad and 'J.'Jat.t.a,5 & and

Al-Temimi.l+7

In 1972 ,5 1 Westervelt recast the 1957 result into a form which
permitted the singularity to be removed. He furthermore related this
new solution to the truncated end-fire array, i.e., the parametric
receiving array for the case when the frequency of one wave was considerably
higher than the other.

The present study includes theoretical analysis and experimental
investigation of the parametric receiving array. The investigation of the
parametric receiving array is extended to include omnidirectional pump
transducérs and pump transducers which have one dimension up to one wave=
length or more at the signal frequency and two dimensions which are small
compared to the signal frequency wavelength in order to minimize “he
effects of acoustic shedowing. A closed form solution of Westervelt's
scattering integral for an omnidirectional pump transducer will be found
and, in turn, used to obtain the solution for a line pump transducer. The
theory is based on Westervelt's quasilinear solution in which only second-
order interactions are considered. The effects of absorption are ignored

in the derivation of the basic second-order wave equation. However, the

attenuation of the first- and second-order sound waves due to absorption
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is included in the description of these sound waves in a manner similar
to that used by Westervelt. Westervelt's solution for the problem

of sound scattered by sound i1s analyzed and related to the parametric
receiving array for two plane waves. An end-fire array function is
generated from this solution. The parametric receiving array offers an
excellent opportunity to study the scattering of sound by sound since
Interaction occurs at nonzero angles between the direction of propegation
of the two waves. In a manner similar to that used by Westervelt in 1972,
the singularity 1is removed from the 1957 result by the addition of a
solution of the homogeneous wave equation, thereby placing a boundary
condition on the second-order pressure. The second-order sound field is
shown to be nonzero even when the two sound .waves are not propegating in
the same direction. In Chapter III, the significant features of this
solution are interpreted in terms of the properties of the parametric
recelving array.

Also in Chapter III, the solution for the interaction of a
gpherical wave from a point source and a plane wave is found using
Westervelt's scattering integral. The second-order sound pressure is
found by integrating the freefield Green's function over the volume
distribution of sources to form the scattering integral. This scattering
integral is in turn used to find the second-order sum and difference
frequency sound pressure. The integral is evaluated using a two-dimensional
stationary phase integral solution technique which has been used to solve
certain optics problems. This solution is found to have the same end-fire

array properties as the solution for the interaction of two plane waves.
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In Chapter IV, the point source solution is used as a starting
point to solve for the second-order sound field generated by a truncated
line source and a plane wave; the line source was chosen because the
experimental and theoretical models can be made to coincide most easily.
The effects of acoustic shadowing of the low frequency plane wave are
minimized even when the pump has one dimension on the order of a wave-
length at the signal frequency. The large dirmension for the pump allows
the study of the effects of pump size on array beamwidth and sensitivity.
Using the large pump, the scattering of sound by sound can also be investi=
gated.

Lastly, Chapter IV considers the interaction of plane sound
waves and waves produced by a pump transducer that is small in gll three
dimensions compared to a wavelength at the signal frequency. Again, the
point source solution 1s used.

In Chapter V, the experimental arrangement is described. The
experiments were conducted aboard the STEP Barge at ARL's leke Travis
Test Station. The geometry for the theoretical and experimental studies
was such that the results could be readily compared. Several types of
transducers were used to reproduce the geometries preseribed by the
theoretical models. The arrangement of electronle equipment is essentially
the same as that used by the author and described in a paper by
Barnard et a.l.3 ¢

Chapter VI includes a comparison of experimental and theoretical
results. Beam patterns with the pump aligned and misaligned are compared
in the same coordinate systems. Sound pressure level predictions are

compered with the experimental results. The agreement between the theory




and the experiment was excellent. The results are discussed in light of
the problem of sound scattered by sound.
In the final chapter, a summary of the theoretical and

experimental results of the present study is given.




II. THE EQUATIONS OF HYDRODYNAMICS FOR THREE-DIMENSIONAL
WAVE MOTION IN A LOSSLESS FLUID

In elementary treatments of acoustic wave propagation it is
usually assumed that waves of infinitesimal amplitude are being modeled
so that the intrinsically nonlinear acoustic equations can be linearized.
Using this assumption, acoustic wave propagation without distortion is
predicted. Likewlse, if acoustlic waves with two or more frequencles are
present, no intermodulation is predicted for the propagation of these
waves. If the nonlinearity of the acoustic equations is taken into
account, an originally sinusoidal waveform will indeed distort as it
propaegates or, if two waves are present, intermodulation products will be
predicted. These intermodulation products will be present whether the
amplitude of the two waves is large or small. The ability to detect these
intermcdulation products will depend on whether the amplitude 18 large
enough to be detected in the presence of the background noise. In order
to account for this intermcdulation, the elementary wave equation must be
modified to take into account higher order terms present in the propagation
of a wave.

A perturbation method used by Eckart,’? and later by Lighthi1123’5"

16,17 can be used to obtain a wave equation which includes

and Westervelt,
second-order components to provide a better model for the propagation of
a finite amplitude sound wave. In this theory, sometimes referred to as
small-signal nonlinear theory or quasilinear theory, ouly the first

modulation product terms are considered with a second-order wave equation

which has source terms proportional to the time derivative of the square
9
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of the first-order sound pressure. If two sound fields with two different
frequencies are present, a source term 1s predicted that is proportional
to the time derivative of the cross product of the two first-order sound
pressures. In this manner, either of the two sound fields can be a
superposition of several waves each having the same frequency. It must
be noted that this model is valid only i1f the two waves have amplitudes
small enough that the higher order terms can be ignored. In other words,
if excess attenuation or amplitude loss is present due %0 finite amplitude
effects this model will no longer be valid. However, & large number of
problems concerning the parametric receiving array can be solved by using

the second-order or quasilinear solution.

The properties of a fluid can be described in either Eulerian
or Lagrangian coorcline.t'.es.55 The relationship of these two coordinate
systems with real sources present has been studied by IG.ine.56 In the
present study, the Eulerian coordinate system is used throughout.
Whenever necessary, the boundary conditions will be simplified so that

the boundary conditions can be expressed in Eulerian coordinates without

difficulty. ‘ 3

We shall derive a second-order wave equation in a manner similar
to that used by Westervelt.57 The equations for the conservation of mass
and momentum will be given with real sources and viscosity included.
However, absorption and real sources will be ignored in the derivation
of the wave equation. The effects of absorption will be included in an

"ad hoc" manner in the solution of the second-order wave equation in

Chapter III. If the effects of real sources are to be included, the first-
order substitution into the second-order wave equation must include these

sources. The equation of state will be that of an lsentropic fluid.
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In Eulerian coordinates, the equations of the conservation of
mass and momentum with sources present can be expressed as followa:58

Conservation of Mass

)
-;f- + v-pTu =Q (2.1)

Conservation of Momentum
-

O, _ 2

5t + VT = (2.2)
where P is the total density, T is the particle velocity, p - is the ambient
or undisturbed density, Q is the rate of introduction of new fluid mass into
8 unit volume, T it a tensor such that T is the sum of 'CT."S, the stress
tensor, and ".f"M, the momentum flux tensor, and F is the external force

per unit volume.

The momentum flux tensor can be expressed as

pTuxux p'I'uxuy p'.l?uxuz
T ={puu u v u 2.
il L T (2.3)
pu U puzuy :::uzuz

where U, uy, and u, are the three components of iré

The stress tensor can be expressed as

D o u\
XX Xy Xz
T =|o ol+{D D D 2.4
s P v Dy op (2.4)
e 8 R szzy pA

where p is the total pressure and

e e S
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b 0+ 8093 - 33
2.5)
du, du (
Did=-p. FJ-O-&% 1%

where u is the coefficient of shear viscosity and n is the coefficient of

bulk viscosity.

For inviscid fluids, the tensor TS is a simple one with p on the

main diagonal and zeroes elsewhere. In this case, -V’-"]"."S is simply Y—7)p To

obtain the expression for V-TM, we consider the x component such that

(pgu. ) 3(pqu.) d(pmu, ) du
m T
(?- TM)x= ux ox * ux E * Uy oz = + p'I'ux &E
(2.6)
aux X - -
* pTuy = Y ;T Yy §z(‘:'TT;) + pT(u-a) U -
Then we have v'TM = U (pTﬁ’) + pT(l_z’—s)ﬁ’ A (2.7)

The momentum equation for an inviscid fluid now can be expressed as

3 b d
S T+ TR + o@D F (2.8)

The acoustic pressure can be related to the density through the

equation of state:
p = Flop,S) (2.9)
vhere S is the entropy.
For an isentropic fluid we have

p="Flep) - (2.10)

B U
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We shall use a perturbation procedure similar to that used by

52 L1ghthill,”” and Westervelt.®?1T The £ield variables &, ops nd

Eckart,
p can be expanded in series such that:
E’=x?l+x2‘£2’+..., |
Bp = By + Moy + >?p2 + ..., and (2.11)
P=D, *Ap, *+ >~21>2,
where A is a nondimensional mathemetical parameter introduced for con=-
venience and Py is the ambient pressure. We have assumed that G;=o. An

approximate equation of state for an'isentropic fluid can be obtained by

expanding p in a Taylor series and keeping only the first two terms such

that
P = po + (pT-pO)+ 5 ) (pT'PO) (2012
T Jp
5,0 T S,0

vhere S is the entropy.

The infinitesimal sound speed co is defined by

(%) 5 e - (2.13)
T o]
s,0
The pressure can alsc be expressed as
o 2
2 l o [B 2
P = P, + ¢ (DT-DO) + 5 3;- (K) (DT-po) ’ (2.14)
vhere
) 2
B/A = py/e, (Fp/doy) : (2.15)

By substituting Equation (2.11) into Equation (2.14) and assembling like
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powers of A, we get

2
P = ¢, Py (2.16)
and c2
Py = G P 2A Po Pl
(2.17)
(p,)?
=cln +[E) L
=% Ak T\2& 2
Polo

If we assume that the source terms in Equations (2.1) and (2.8) are firste
order functions, we can obtain the first-order equations by substituting
Equations (2.11) into (2.1) and (2.8), keeping terms with first powers

of A. We have the following equations:

Conservation of Mass

dp
31;—1 + p VW) = Q (2.18)

Conservation of Momentum

=y

paulw‘p =F (2.19)
o ot 1 s

Wave Equation for P1» Pps ard O

an
ot
s
dp
2
or ¥p, - =5 ~—= =0°p, = -n, % + D, (2.20)
c® ot
vhere 02 = Vz- -1'-2- at;az is the wave operator,
c

0
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Likewige, the second-order equations can be obtained by equating
terms containing )\2 to obtain the following second order equation,

Conservation of Mass

dp
2 29 2 =
5t + P Uy + Vepyuy =0 (2.21)

Conservation of Momentum

~> -
dp.u
o, % " T}_l. + pcﬁ’l (?.'ﬁ)l) #ip1 (a’l.v)a’l + vpe =0 (2.22)

Wave Equation

Fo,

- COQV?DE =¥ [poﬁ)l(aﬁ’l) + po(a’l’v)ﬁ)l]

ata
(2.23)
+ Vz(p2-00202)
1 ¥ 2
or $-'c—2-gt—2- p2=|:]p2=
(o]
F(p,)?
-po-v*.[ul(v.-31> + (E’l-?)ul] = —l—,;(%) —atal—- . (2.24)

2poco

If we assume U is irrotational, wz can find a scalar ¢ such that
we have ﬁ’=3¢ We shall denote single time derivatives with a dot above
the parameter and double time derivatives with two dots. If we furthermore
assume that no real sources are present, the second order wave equation

can be expressed as




Or, = -0, [(R W) + (W) (W) + 3 F (%))

2
- 1 (2) 32 ( pl)
20 ¢ Al 3

= "’o[p+clr (3,)° + (W) + g0 Ty H)
o o

182-9=a
+ ;:-5 S;g (V¢1‘V¢1{]
0

2
. (g) F(p,)
2poc° A) at2

We can use the following identities to simplify the wave equation:

2 . W F(H,)
él'ié' (8, %,) = (Tt_l) =+ (W)- ( atel )

. T
S la L
po2 p1 51 po
FH,  @,)
(aq_) (V23¢1) = "—155)951 i 21 = 12 apl
c, ot PoCo

and

16

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)
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Then the wave equation for D, is:

F(p.?)
Dz = = l -@-— -—-—-1——-
P> T (2A) 32

Poo

(2.30)

o

- s W) — + PR,

or

52 2
Ofp, = - —— (1 4 B—) it (2.31)

2l 4 1 I

+ [2¢1P1‘ 2P1'2°o“1'“1]

¢ 2p
[o] 0 0

The second-order wave equation can alternatively be expressed in the

following form:

[ PR P(p, )2
1 1 1 B 1
Dep 5 o T (—)

2 T P | T2
(2.32)
P u .
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The first two terms on the right-hand side of Equations (2.31) and (2.32)
are the source terms for the second-order pressure. The first term in each
expression 1is present whether or not the fluid is nonlinear. The second
term is due to the nonlinearity of the fluid. The term 02 (¢) on the right-
hand side of Equations (2.31) and (2.32) is also present whether or not the
fluid is nonlinear. The term Da(-) is ignored by We:-:t:ervelt57 in the
derivation of the second-order wave equation sinze the term yields a local
pressure. Therefore, it is not cumulative and does not prcpegate outside
the interaction region. For the parametric transmitter, the low frequency
sound wave generated by the interaction of two high freyuency waves will
propagate outside the region of interaction and the term can usually be
ignored. For the parametric receiving arresy, the observer is in the
region of interaction; therefore, the term can only be ignored if it is
small compared to the first two terms. The physical significance of
Equation (2.32) can be more readily understood if we obtain an expression
for the second-order pressure in terms of the second-order scalar poten-
tial ¢2. We can obtain such an expression by integrating the second-

order momentum equation over space and using the appropriate first-order

relations to obtain:

) p,
2 1 - =2 1
P =P "2 \Po1"Wr s 2 (2.33)
Po
2
1 = =) Py
where = 5 1Py 1ty - 5 is a local pressure due to the presence of the
Po%o

first-order sound field. The second wave equation (Equation 2.32) includes

this pressure in a simple form.

S W S
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In Chapter III we shall solve the second-order wave equation
(Equation 2.31 or Equation 2.32) for several configurations of the first-
order sound field. The first of these configurations will be two infinite
plane waves and then two plane waves present over a half space. We shall
show that Equations (2.31) and (2.32) are equivalent for a first-order
field consisting of two plane waves. We shall also use a Green's function
solution of Equation (2.31) to solve for the second-order pressure gener=
ated by the interaction of a spherically spreading wave and & plane wave.

For this solution we shall only consider the source term,

32 2
P
- —l-E (1 + -]2-31-) -a—t—é'— s in a manner similar to that suggested by
pc

oo

Westervelt .55
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III. SOLUTION OF THE SECOND-ORDER WAVE EQUATION

In the last chapter, we derived the second-order wave equation
with a source function which is quadratic in the first-order field
variables. For the parametric receiving array, we are interested in the
sun and difference frequency sound pressures which are generated by the
cross-product terms in the source function.

In Section A, we present a simple means to generate the source
function for the sum and difference sound pressures by the use of complex
numbers.

In Section B, we consider the interaction of two plane waves
with an angle 6 between their directions of propagation. The interaction
of two infinite plane waves is of interest because the problem relates
directly to the problem of the scattering of sound by sound as first
formulated by Westervelt. For the lossless case, the source function is
equal to the D'Alembertian of a function of the first-order sound fields.
Hence, the value of the second-order sound pressure is dependent only on
the local sound pressure unless the two first-order sound waves are
propagating in the same direction. In the case of collinear waves,
the predicted value for the sound pressure for the sum and difference
frequency components is infinite as would be expected if no boundaries,
absorption, or finite amplitude effects are present. This result led
Westervelt to predict that no scattering of sound by sound would exist if
the two sound waves were not propagating in the same direct:.ion. In the

last part of Section B, we shall consider the interaction of one sound

20
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field present over all space and a second present over one-half space
starting at some planar boundary and propagating away from and perpen-
dicular to this boundary. To solve this problem, we add a homogeneous
solution of the wave equation to the solution obtained in the first part
of Section B. In this derivation, we shall neglect the effects of real
sources that would be necessary to generate the firste-order fields. In
fact, we shall place the second-order pressure equal to the local pressure
expressed in Equation (2.33) at the planar boundary. If we observe the
second-order pressure at some distance from the boundary, we find that
this pressure is cumulative and propagates in a direction different from
the direction of either of the primary waves. The dependence of the
pressure amplitude on the angle between the propagation vectors of the
two primary waves is very similar to the directivity function of the
parametric receiving array as found by Berktay.

For two plane waves we have no difficulty in solving the wave
equation directly. However, in general, we will find it necessary to
formulate the solution in terms of an integral of a Green's function. A
description of the Green's function solution is given in Section C.

In order to solve the problem of a parametric receiving array
with an arbitrarily shaped planar piston pump, we shall find a solution
which can be used as a starting point for solving more complex problems.
The most obvious solution is the solution of a high frequency point source
punp and a plane wave low frequency signal. If we have the solution for
an omnidirectional pump transducer, the solution for virtually any other
type of two- or three-dimensional pump transducer can be obtained by sum-

ming this solution over the active face or volume of the transducer.
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It ig in this light that we shall generate the solution for the
interaction of a spherical wave from a point source and a plane wave. We
shall use the Green's function integral solution for the second-order wave
equation with a first-order sound field consisting of a spherical source
and & plane wave. This solution yields a rather unwieldy integral which
does not succumb to simple integration techniques. This integral can be
solved using a two-dimensional stationary phase technique similar to one
used in optics. We shall ignore the effects of real sources and the local
pressure. In reality, the second-order pressure contribution at the
source and receiver may not be negligible for a particular application of

the parametric receiving array since we may desire to use the properties

of the directivity function, particularly in the nearfield of the parametric

array, to eliminate an undesired noise source. If an additional pressure
term is present due to the pump source or the local pressure, the perform-
ance of the parametric receiving array may be degraded for an application
requiring a very high rejection of a target at an undesired bearing. In
order to analyze the effects of the real sources and the loczl pressure
terms, a thorough analysis of the particular type of transducer is needed.
Since the transducers are designed to operate at the carrier frequency,
the transducer's properties at the low frequency may be such that the
transducer actuslly moves with the low frequency fluid particle displace-
ment. This condition could significantly change the way the parametric

array would perform as compared to its performance under the assumption

that the transducer's position remains fixed. In this study, this particular

problem will not be considered; however, it does appear to be worthy of

further investigation.
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A. Use of Complex Numbers

In Equation (2.31), we can see that the sum and difference
frequency source terms are generated by cross-products of each of the two
first-order sound fields. It is convenient to use complex numbers o
represent the oscillatory part of the various functions. The real
physical variable is equated to the real part of the complex variable.

In the case where quadratic terms are encountered, special care must be

taken in their calculation. For two complex numbers M and N

Re[M]+Re[N] = = Re M[IN+l*]

] P

vhere Re[M] represents the real part of the complex varisble and the

asterisk denotes the complex conjugate. The transformation

m:%m+%-m*

will be used to generate the quadratic terms when complex variables are

used,

For example, consider the case of two plane waves with wave

vectors intersecting at angle 6. The first-order pressure is

I(®, T, t) J(‘k’z.? t)
_ 1777 %
pl = Plle + P12e

P * Pyp

where Pll and P12 are the peak amplitudes of the two sound waves, .j=\/:]?,
?1 and 122 are the propagation vectors,
T is the vector from the origin, and

@y and w, are the angular frequencies of the two waves.
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Then we have
22 2 2
(p))" = by *+2pyPpp * 2y -
The desired sum and difference frequency components can be obtained by

using
2 2 2 2
=2 = *
(py7)y * (p)7). = 5 PyP)s *+ 5 PyPyp
P._P__e

@) - (ayay)e]
1112

where the + and - subscript denotes the sum and difference frequencies.

In order to simplify the notation, we shall use the subscript (%) on (ple),
w, k, and the absorption coefficient (@) to denote either the sum or
difference frequency term. The upper subscript denotes sum frequency and

the lower subscript denotes the difference frequency.

B. Solution of the Second-Order Wave Equation for Two Plane Waves

We shall now consider the interaction of two plane waves propa-
gating with an angle 6 between their directions of propagation. For the
parametric receiving array, we shall assume that the first plane wave 1is
the high frequency pump wave and the second plane wave is the low
frequency signal wave. We shall ignore the effects of ebsorption. The

first-order sound field is then given by

Py =Py P (3.1)
JE® T t) (R P t
=) BPi e 1 1 + P e k2 ‘“2 ) .

11 12
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The desired sum and difference frequency components of p12 then are

(P]_e);t =P P e;)[(kltkz).r ) (wlmb)tl

1112
16,17
Following the procedures of Westervelt, we find:
2
of (p,); to be
2
F (o8), wo2(a0), - L 0Lt
Py /g 5V APy /g 27T 32
c
°
2
(@ ,)

c
0

E ie(klkz'?l'i’e)(pla): ‘

‘je can solve for (pla) to get
2
e |:1‘2(p1 )y
- =
2(kyky-K) )

2)
’.Dl +

= =
for klk2 &+ klok2 .

The time derivative of (pla) 4 18

a")(pla)i ) wf F (pla)t

% i 2(k1k2-?1°k’£‘)

a5

(3.2)

(3.3)

(3.4)

(3.5)
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and the wave equation (Equation 2.31) is

0,2(2,2), (1+:D)

ofp, =CF |t (3.6)
LRl T
65, |
+ c02 d 2poco (pl ) 2 p ( l'ul) .

Since pl can be expressed as
. J (Tc’l- ?-wlt ) > (R, e T-apt)
P =t Y Tt ’

we have the following first-order relationships

¢l == %‘ fpl at ) (3'7)
[o}
P, J(KeT-at) B, J(ET-ut)
po¢l='j mlLle 1 +§lge k2 e ’ (5-8)
Tl’1 = wl
- P Pt - 2.2
) Plikl eJ(kl r-, t) , hi2’2 ej(kz T-ayt) ’ (5.9)
Po®y Poth
J(k er-m.t J(k, e r=
P = - Jo Pe L Jop Ppoe 2T . (3.10)

Then the appropriate sum and difference frequency terms can be expressed

as

. 1%, %) hife 3 (EyTmyt)
(o} [o}e}

-P,.P._ J(B, T-a,t)
s (p), s R T (3.12)

2 Poo 2poc0
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P PR R) (B, Feap)
e

- % po(ﬁ’l.a’l) = iy . (3.13)
By substituting Equations (3.11), (3.12), and (3.13) into Equation (3.6),
= 2 B 2.2 2
o, P || ) g ) o Bkl
Py = 2o ( 2.2, 2\ o /7 \27 KK 2 3
& (k) k= l°k2) PoCo
or 2. = 2
o, (k) k;) o, (k) k)
D2p2=D2 :t2 (x "’")121 (x —»-))(ﬁ?)
D ap ik kymkycly) 20y ay (K Ky ok o Ky s
e 15

x (l .1 ?1'?2> (pla):t
2 2 klk2 poc°2 *
Equation (3.15) has the same form as we would have obtained if we had used
Equation (2.32) instead of Equation (2.31) as the starting point for the
derivation. Hence, for two plane waves Equation (2.31) and Equation (2.32)

are equivalent. The second-order pressure is then found to be

o LR T s (1o BB ) (3.16)
P2~ 20.@, (k k,-F %) § S
00 LKy Kyoky « Po%

This solution corresponds to the solution for plane waves of infinite
extent with no absgorption or finite amplitude effects present. As can be
seen, the second-order sound pressure is proportional to the local value
of (pla) except when k1k2=i’lc_k’2. This result led Westervelt to conclude
that no scattering of sound by sound existed when two sound waves were not
propagating in the same direction. A conclusion based on Equation (3.16)
is subject to the conditions that

1) no sbsorption is present, and
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2) the plane waves are of infinite extent.
Strictly speaking, conclusions about the scattering of sound by sound
outside the region of interaction cannot be made since the plane waves
are assumed to be present over all space.
If one plane wave is present over all space and the second
present only in the half space x 2 O and propagates in the +x directionm,
then we have

) (klx-a)lt )

P, = Ppe ;, X = O. (3.17)

We assume that the second wave propagates with an angle 6 with respect to
the direction of propagation of the first wave such that we have
= -
I(kyeT-ay t)

Py = Py ; (3.18)

If we neglect the effects of the real source at x = 0, the
pressure at x = O must be equal to the local pressure, the second term in
Equation (3.16). Any solution which satisfies the second-order
homogeneous wave equation

oFo = 0 (3.19)
can be added to the solution to satisfy the boundary conditions. One such

solution is a plane wave such that

K '—k’g ko 2 k2 3 -
ol (&) e e e )]

o =
t - - 4
2005 R8,) ot

. (3.20)
vhere 1 is unit vector in the x direction,

3’ is a unit vector in the y direction, and

kzy is the component of the k,'2 wave vector in the y direction.
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This solution represents & plane wave of frequency

(k, £k, )e
—=5 (3.21)

with a wave vector

-
(k1¢k2)< 1 (—1:-—?-‘:2—)2- ‘1’1&%}'1‘-27 3’) . (3.22)

We can express this solution as

¢, = Fpy' (3.23)
where
(x 23) \/A p ol ¢ rea)|l G
F= - exp|d|(ktk,) x -—-—-E-:tkzysine-r-kltkaj 3.2
. (k, k)
[ ) k22 sin° ] ]
= - + - ——— . °]
exp {J {(k1 ky) x (k tk2)2 k)X J, cos
and :ta) 1 kE x i )
k2 PPy, exp lj(k k)= t]
n,' = 1 (3.25)
2<k1k2 B o,

whereT:’E=k2cose?l’+k2 sine'j’,and

-
r

a1 +y3
If kl > k2 s We can approximate F as
P( ) 1 1:22 sin2 6 (3.26)
F&-exp{J]lk,£ x(1-5%5———] - k xtk, cO8 0 3.2
1 k2 2 (klike)e 1 1‘2

[ LK sin® 0
= ~explJ ikz x (l-cos 8) - 2 —(k—%’—
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The second-order pressure at (x,0) can be expressed as

5" = (1+F) p,’ - Gen)

1:22 sin29
=¢1 - exp{,j[(klikz) x\/. - -ik—l:k:)_?—- kllﬁkz cos 9]]

<ta> )(k;lkk: )PllPlaexp[ [(k +R) om0 t]}

2(k )k} %)) 0,

If kl > kg, we have

sin” 6
p2" =91 - exp[ [ k2x(1 cos 6) - -é-(i-i—-)—jl }

<:ta> )(klll;: ) P11P12exp[ (k Xtk, X cos @ - k2 8in 6 -w )] (3.28)

2(k1k2-k1-k2 cos 6) pocou

2 2
k2 x sin” 6
J(a) )(cos e + B)xPllPlz sin[kgx(l-cos 0)% Ezkl:tkes ]
ok 0,Cy 4 k2x(l-cos 6)
1o 2

11:2 x sin” 6
¢ exp J(kltkz)xs;kzx(l-cos 8) - W + l‘ay sin 6 -0t

11°12

= apocoj kax(l—-cos 8)

I(w,)(cos 6 + 5= )p P. x sin[k? xfl-;os ezl

2

(3.29)

2x sin2 6

o exp J [(klikz)x:kex(l-cos 8) - l—%ri-l-t—k’-a-r— 3 k2y sin 6 -wtt]
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The solution in Equation (3.27) gives the second-order pressure for two
plane waves interacting over a half space. The plane wave with frequency
fl propagates in the x direction from x = O,

The function (1 + F) has a zero for 6 = O which cancels the
singularity in p2' .

The pressure in Equation (3.29) has an amplitude which is pro-
portional to x when 8 = 0. This result is consistent with the result

P and Lauvstad and T,jgtta..so The directivity

predicted by Lamb,” Berktay,-
function is the same as found by Berktay for a parametric receiving array
with a well collimated pump wave. For a given value of x the pressure
has a phase dependence on y of #* k2y sin 8.

The second-order pressure is seen to be cumulative even when
6 # 0. Therefore, we see that cumulative interaction does exist for an

arbitrary angle of 6.

C: Solution of the Second-Order Wave Equation Using the Freefield

Green's Functions

Since 81l of the problems of interest for parametric arrays do
not have the simple geometries of plane waves, it 1s necessary to find a
more generally applicable solution for the second-order wave equation. We
can integrate the freefield Green's function over the volume distribution

of the source. The freefield Green's function is a solution for an

unbounded medium of the equza,tion58
- -
0 &(@,Ir) = - 8(F-7) (3.30)
-
where r = (xo, Yo zo) is the observer point,
r = (x, y, z) is the source point, and
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8(?0-'1"') = a(xo-x) G(yo-y) 8(zo-z) is the delta function for three
dimensions. Thus, g(?o |'1"') is the spatial solution for a simple harmonic

point source at r and has the form
ikR
- __e
g(rol-f") = TR (3.31)
where R = |§i;&? .

When absorption is present, the solution for Equation (3.30) can be
modified by making the wave number complex. We then have a freefield

Green's function of the form

(35 <@)R
8T, IP) = “g— (3.32)

vhere @ is the absorption coefficient.

A particular solution for the equation

2
. P
CFp, = =5 (1gp) —- (3.33)
P.Co dt

can be expressed in terms of the Green's function and has the form

B 2 - - -+ =
5 -(1+§K) a?pl exp i[kilro-rlqztlro-rll
Pa(r:t) = n > - dv
e e ot r-r
o0 (o)

(3.34)

v

vhere V is the volume of integration,
?o is a vector from the origin to the observation point, and
Y

T is a vector from the origin to the point of interaction.

D. A Solution for An Omnidirectional Pump Transducer

The geometry used for the solution for an omnidirectional pump
transducer is shown in Fig. 3.1. The signal source is assumed to be far

from the parametric receiver so that the low frequency wave approximates
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& plane wave in the vicinity of the receiver. Then at the point (x, y, z)

and a time t the sound waves can be represented in complex form as

P, .exp|-(a, =3k )\/x2+y2+zE - Jo.t
p =4 — sy o) (3.35)

X +y +z

and
D, = Pmexpl-(ae-,jkz)(cos 6x + sin 6y)-,ju;2t‘ (3.36)

where al’ a2 and kl’ k2 are the absorption coefficients and the wave

numbers at the frequencies @y and )
P11 is the amplitude of the pump pressure referred to 1 meter, and

P12 is the amplitude of the plane wave signal.

The direction of propagation of the signal wave is assumed to be

parallel to the (x, y) plane.

We find the sum and difference frequency components of p12 to be

P11P12exp[-<311 v x2+y;+zE -,

2(x cos 6 + y sin 9)]

(3.37)

(p,), = 3

Xy 42
. exp[J(kl VxT+y©+2 2 k, x cos 6 % k2y sin 6) - J(wl:tu;a)t]

The source term is then given by

)32p1 +52) P P

1112
- (L )"‘
poco at l_ab

+ exp (-02(x cos 6 + y sin 6)]

. exp F'j(kl ‘/xé' +y'2+z2 * k,x cos 6 - k,y &in 9)]

' exp(- J(wy2a,) t] :
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The integral Green's function solution for the second~-order wave equation

is then

oytay)*(2458) By 1Py
bp e i

00

Py

R (3.39) |

.~ 2 2 a
- exp|-a, \/(xo-x) +y +2° + J(kl\/xE!+y2+z2 t k,x cos 6 * y sin 6)] t

| |

« expl+ J(k;2k,) V(x x)"4y4at - J(wlia;a)t] xdyaz

where O + is the absorption of the sum or difference frequency wave, and
X, is the position of the observer. i
This rather complicated integral does not lend itself to direct
integration. For its evaluation we shall use an alternate method,
commonly used in optics, which is known as the method of stationary phase.
Single integrals are frequently evaluated using this integral technique;

however, double integrals can also be evaluated by the method of stationary

phase.59

The solution for the integral in Equation (3.39) is given in
Appendix I. To the author's knowledge, this use of a two-dimensional
stationary phase solution is the first for a nonlinear acoustics problem.

Thus, the integral over y and z can be expressed in the following form

//s (y,z) e B TWE) 40 | (3.40) |

This integral can be evaluated by the method of stationary phase provided

S(y,z) is a slowly varying function of y and z, and k f(y,z) is a rapidly
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varying function of y and z. The contributions to the asymtotic expansion
of the integral come only from certain critical pointa.59 The critical

point of interest for us is the one within the region of integration where

%=§§=o . (3.41)

This point represents the point on the wavefront of the second-order
pressure at the interaction region which will eventually strike the

receiver. From Appendix A, we find that

%=Oforz=0 (3.42)
and

tk, sin 6 (x)(x -x)

E'°f°”" k(%) tkzﬁ-x)

where we have assumel that k1 >> k2 We see that the coordinate of the
eritical point varies as a function of x.

The second-order pressure is found to be

-(wtw)(l )P
p2= 3

1112

exp(Jk ixo-,jwtt)

2P.%,

exp [-al X -0 (x cos ) = o (xo-x)]
(x -x) 5,1
e XAX X (klikz)x (xo-x)

2 .2

k2 sin” 6 x2
. exp :,jkz(l-cos 6)x + j-z-k—li-ig—)— (% - x) ax

(3.43)
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If we assume that aax(cos f) = % x and that the contributions from
X=-0tox=0and x = X, to » are negligible, we have

PP, exp [-(ai-,j ki) Xy=J wtt]

= By _11 ,
v, = -(0,) (1+57) 3 X (3.44)
00
0 ’ [ : " k)’ sin” 6 f 2 ]
exp }JIF¥k, x(1 ~ cos 6) + = (—--x) dx
. k2‘ 2 lkl:tkzs xo
or
. B, T11F10 &XP [‘ (0= k) %= “’:ﬂ
p, = -(a,) (1457) —
2 /) {h5g O
pOCO xO
X
8]
o %3[*2 Zair cos e)]z ax (3.45)
(]
5. P11Pyp XD [-(ai-,j k,) X3 mit}
= =(w,) (157) = 3

2 poco

expl'xk2 xo(l - cos 6)] -1
;kz xo(l - cos 9)

x (1 - cos 6)
'(‘Di) (l+£) P11P12 exp[—(at-J ki) x ¥ % 5 -J wit]

2poc05

(3.46)

[k2 xo(l - cos 9)]
sin 5
k2 xo(l - cos 0)

2
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In the derivation of Equation (3.45), we have neglected the phase term

This term has & maximym magnitude of

2 2
1 k2 sin” 6 xo
BTy Yo Xtz (3.48)

If we restrict the maximum allowed phase error to% » Wwe have

k,22 X . sin2 ]

This assumption could be removed from the integral answer by completing the

<2n . (3.49)

square in the exponent for x2 and x and meking a change of variables. The
result would be in the form of a Fresnel integral which is tabulated. This
solution will not be ineluded in the present analysis since the assumption
in Equation (3.49) will usually be valid for the cases of interest to us.

The second-order pressure in Equation (3.46) has a magnitude of

) (wi) (l+§-2) P Py, €XP ['(at) xo]

3 (3.50)

A
P
2poco

and a directivity function

[“a x,(1 - cos e)]

sin 5
k, xo(l - cos 0)
2

. (3.51)

D(9) =




Except for absorption, the ampiitude 1s independent of range.

directivity function i1s the same as that found by Berktay.

The
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IV. THE SECOND-ORDER SOUND FIELD FOR SEVERAL CONFIGURATIONS
OF THE PARAMETRIC RECEIVING ARRAY

We shall now find the second-order sound pressure for some
simple pump configurations using the point-source solution found in
Chapter III, Since we are treating "small signal nonlinear" or
"quasilinear" interactions, we can use the principle of superposition on
elther of the first-order sound fields. In this case, we consider the
interactions of a plane wave with an infinite number of spherical waves
from point sources summed over the svrface or volume of the pump source.

Using this procedure, we have a simple means to solve parametric receiving

U,

array problems for a wide variety of geometrical configurations. We shall
only consider the case when the low frequency wave is a plane wave. Other
studies by Berktay and Shooter,39 and Rogers et al. ,ko have considered
cases in which the wavefront of the low frequency wave is spherical,
because the signal source 1s placed a finite distance from the parametric
recelving array. In this analysis, we shall study only planar signal
sound waves.

We shall first consider a finite length line source pump
transducer. Two dimensions of the line source are small compared to
the signal wavelength, and the other dimension is on the order of a
signal wavelength. The theoretical and experimentel results can be easily
compared because the effects of shadowing of the low frequency signal wave

by the pump transducer are minimized. A coordinate system which is the

same as that used in the following chapters for experimental work will be

used. We shall also investigate the effects of migalignment of the line
4o
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gsource transducer on the parametric receiving beam patterns. This
analysis will also enable us to investigate the problem of the scattering
of sound by sound. We will be able to investigate the directional
properties of the second-order sound waves. This geometry will provide
us with a means to observe the so-called "doppler angles” of the propaga=-
tion of the sum and difference frequency sound waves.

In Section B, we shall consider the use of a line hydrophone to
receive the second-order pressure wave generated by a point source and a
plane wave. The line hydrophone will have one dimension which is on the
order of a wavelength at the signal frequency and two dimensions which are
small compared to the signal frequency wavelength. In fact, for the
experimental work, the line transducer used for the hydrophone will be the
same one which is used as a pump in the line source pump experiment.
Again, this geonetry will enable us to study the effects of a misaligned
receiver, and also to observe the properties of the second=-order sound
field. We can observe the "doppler angles' of the sum and difference
frequency waves. Again we shall use a geometry which coincides with the
geometry used for experiments. Ian each of the solutions in Sections A and
B, the effects of the interactions at the real source are not included.

We simply use the scattering integral solution over the volume of inter=
action. We shall likewise ignore the local pressure at the receiver.

In Section C, the interaction of a plane wave and a pump wave
generated by a pump transducer which has all three dimensions, which are
smgll compared to the signal wavelength, will be considered. We shall not,
however, restrict ourselves to the consideration of pump transducers with

beam patterns small compared to the édesired parametric receiving arrsy

%
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beamwidth. The small pump transducer is of interest to us because such a
punp transducer would be used in most practical applications. With a small
punp transducer, the ratio of array length to pump transducer size is
maximized. The solution obtained will be valid for a range of pump
transducers, varying from very narrow beam to very broad beam. In each
case, the obgerver is assumed to be in the farfield of the pump transe
ducer. However, the second-order pressure generated in the nearfield
region of the transducer will be included in our solution. Likewise, the
solution for a finite length line receiver will be valid only when the
omnidirectional pump transducer is in the farfield of the receiving trans-
ducer. A solution could be generated for the nearfield of the pump or
recelving transducer using techniques similar to those used by Stenze1,6
Freedman,él and ot:hers.62

A. Solution for a Line Pump Source

The solution for a line source is obtained by integration of the
point source solution over the length of the line. The geometry used for
this solution is shown in Fig. 4.1. The line of length 2a is assumed to
lie in the (x,y) plane. The propagation vector for the low frequency wave
is also in the (x,y) plane.

\ Then the first-order sound field at @y due to an elemental length

854 at ?=7 of the line source can be expressed as

JP

1]l 52

Bpl(?) = == 5= exp[-(alR-JklR) + ,jmlt] (4.1)
where Pll is the axial farfield pressure referred to 1 meter due to the

line source. Along the x axis, the signal wave can be expressed as
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P, = P]2 exp[—(ae-,jkz)r cos 6 + ,ja.)at] (4.2)

This plane wave must be expressed in terms of the new coordinate system
(r,8) which is rotated by 6" and translated by (£,6'). The position

vector in the new coordinate system is

z= [cos 6" (x-£ sin 6') - sin 6" (y-£ cos 6')];{_’ (h.3)
3
+[sin 6" (x-£ sin 6') + cos 68" (y-£ cos 9')]1’

where Z and I are the basis vectors for the new coordinate system. The

plane wave vector in the new coordinate system is
Tk; = k, cos(68"+9)T + k, 8in(6"+9)3 (4.4)
and then I{Lof is given by
E, «T=% 7 ktsin(e+') . (4.5)
The plane wave pressure expressed in terms of r,8,0', and 68" is
p, = Py exp{-(aa-,jkz)[g cos(6+6") + 8 sin(9+6')]} . (4.6)

Then from Equation (3.46) the sum and difference frequency sound pressure

at L is

(“’11“’2)61)11 12

3
2&(2p°co )

Y exp{-aez sin(6+6') - (ai-,jki)R} :

(4.7)

SP(L,Q:G')GH) .

I

kR
. exp _ijkaz sin(6+0') 7 J - (1- cos(6+6"))]

R
sin|— ka (1 - cos(6+9")i|

—=— (1 - cos(6+9"))




Using the farfield approximation for a line source, we have

I-4 8in 0'

R cos 6

&L -2 8in o (4+.8)

for the phase and amplitude terms of the elemental pressure. Then the

elemental pressure can be shown to be

-( )BP, . P. 58

5p(L,8,8') = o 1; =
2a.(2p°c° )
(k.9)
. exp[—(ai-Jki)L]exp[me,jM-Jcbtt] Biﬁ_'_%‘c
where

A=i-:—281n(9+6') 1'21:'2-8111 ' - k, sin 6' A (4.10)
C = ? [-8in 6' + sin(6+6')] , and (4.11)
M= 22 [L(1 - cos 6)] . (k.12)

The total pressure can be obtained by integrating over # such that

- P..P
p(L,8,6') = (0311’042)6 bl exp[-(ai-Jkt)L] = _/a (4.13)

3 2a J
2°o°o a

expl¥ M + JAL) %%%‘;Q as .

If we assume that sin(M+£C)/Mt4C 1s a slowly varying function of 8,

- (@, %y, )P, , P .
2(5,0,6") & L2 S exp[-(ai-Jki)I;JM-,jwit] sloed sl | (kb

2p°co




The maximum amplitude for 6=0 is

=(wy 20, )BP) P,

2poco5

P = exp(-(a,L)]

The approximation used in Equation (4.1%) can be eliminated by direct
integration of Equation (4.13).

The pressure can be expressed as

- 8
p= % exp[+,jkiL'FJM-Jwit] . '-/a‘ explJAL]

exply(M+CL)] - expl-3(M+Cs)]

24 (M+Ce sl

and with a change of variables, we have

A

(4.15)

(4.16)

_ _ M fy2 exp(Jy) .. _ /yh exp(Jy)
P = Zeagtacj exp[+3k:L‘JM C 3 23y W 4 oy W

yl 3

= @%m exp[+JkiL¥JM - ’-J[Ci(ye) - c1(y,) - Ci(y,) + c1(y3)]

+ [Si(yé) - 8i(y,) - si(y,) + Si(y5)]

where Ci(y) is the cosine integral, Si(y) is the sine integral,

yl = _(_A-(':-_Cl (M-a.C)

s

SA+C!
y2 = C (M’"&C)

’

Y5 = Léa—cl (M-aC) , and

y, = ﬁﬂégl (M+aC)

(%.17)

(4.18)

!
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In order to evaluate the cosine integral in the case when a pair
of the yi's are zero, the limit as each ¥y approaches zero must be taken
in order to obtain a solution. Likewise, if any y equals O over the range
of integration, Cauchy's integral formula must be used to obtain the value
of the integral.

Computed results using Equation (4.17) will be presented in
Chapter VI. The basic properties of a parametric receiving array using
a line source pump can best be seen by an examination of Equation (4.14).
The amplitude 1s seen to be independent of range except for absorption.
This result is subject to the condition that we are in the farfield of the
pump transducer. However, the interaction from the nearfield region of
the transducer is included in the result.

Further examination of the expression for the second-order
pressure indicates that we have a directivity function which is a product
of two functions; one function is iﬁ—m , where M = éé L(1 - cos 9),
which is the directivity function of an end-fire array of length L. This
function is the same as the directivity function for two plane waves

interacting over some distance L. The second function Bi:Aa'A » Wwhere

K, k,

A=tz sin(6+0') t5=sin 8' - k;8in ' ;

is an interesting one because this function includes both 6 and 6'. For
the case when 6 = O the dependence of the directivity function on 8' is
the same as that of the original pump wave. This result does not agree
with the results of a previous investigation by Rogers et al., in which
the second-order sound field was predicted to have the properties of the

pump wave as if it were operated at the sum or difference frequency. We
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shall examine this result further in Chapter VI when it is compared to
experimental data. With further examination of the expression for A ve
see that the array directivity function as the angle 6 1s changed will be
modified for various values of 6'. This result is also in conflict with
the result predicted by Rogers et al. This result will also be compared
extensively with experimental data since it allows us to examine the
problem of scattering of sound by sound when the two waves are propagating
at nonzero angles.

When 6' is zero, we observe that the low frequency directivity
of the parametric receiving array will be modified slightly by the

expression

sin al
& E ]

This modification is less than one might intuitively expect. The reduction
in the side lobes 1s less than that produced by taking the product of the
directivity function of the end-fire array and directivity function of the

pump at the signal frequency.
B. Solution for a Line Hydrophone and a Point Source Pump

As in the previous example, we shall use the point source
solution as a starting point. In the solution for the point source pump,
a emall point receiver is assumed. Using the geometry shown in Fig. 4.2,
we shall consider response of a line hydrophone of length 2a consisting
of an infinite number of point receivers lying in the (x,y) plane. The
propagation vector for the low frequency wave 1s also in the (x,y) plane.

The receiving sensitivity due to an elemental length 5/ at T is

Mc(m)ﬁz
e (%.19)

SMc(w) =
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where Mc(a)) is the receiving response of the line in volts per micropascal
to a plane wave of frequency w propageting in a direction perpendicular to
the line.
The high frequency pump wave has the form
P
Py =JF exp[-(alR-jklR)-Jmlt] (4.20)

where Pll is the farfield pressure referred to 1 meter. The signal wave
at (r,6") can be expressed as

P, = Ppp exp[-(az-,jkz)r cos(9-9")-Ja;2t] 2 (k.21)

The second-order pressure at (r,0") is

(0 2,

ny _
p,(R,0") = 7 AP P
o0

. expg-(at-dki) R * JiR (- cgs(e-en - ot (4.22)

sinlkeR (1 cos(6-6" ))l

2
1 - cos(e-eﬂ) >

.k2R( 2

Again using the farfield approximation, we have

L -2 sin 0!

YYRL =L-4sing' (4.23)

R =

for the phase and amplitude term. The elemental voltage generated by the

second-order sound pressure is

5E = - il e Y P (4.24)
2a 2p c 2 ‘
O 0

. exp I'(ai"jki)l"'jwt]

 exfay 2 (503 - con 001+ ] . SEMD)
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vhere
B=t '_’_:g sin(6-6') ¢ jk, =5— Si“ 8. -k, sing@' , (k.25)
= [-gin 6'+s8in(6-6')] , and (4.26)
M= ;2- [L{(1 - cos 6)] ) (k.27)

The total voltage can be obtained by integrating over £, yielding

)BP. P
E = (i 2y )PP P M, exp[-(ai-jki)L-,jwitl

2poco3

A sin(M+4D
- é exp[ JM+jB4] 7—(5)-1 as . (k.28)

sin $M+£D}
M+ £D

()2, )BP) Py oM,

2poco5

If we assume that is a slowly varying function of #, we have

E -

exp[-(a i-,jki)L'ﬁjM-Jwtt

. sizBaB Siﬁ M ) (h.29)

The maximum amplitude for 6 = 0 is

(@, 2, )BP
e ml l;' 12 exp [«,1] . (4.30)
Po%o

The approximation used in Equation (4.29) can be eliminated by

direct integration of Equation (4.28).
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The received voltage can be expressed as

E
E= g:x exp|+,jki,L$JM-Jcnitl (k.31)
explj(M+DL)] - expl-3(M+DL)]
. f exp[JBJ]{ 23 (WD2 }53

and with a change of varigbles we have
Emax MB
E = m exp[+jkiL$,jM-i-j T - ‘jwi-t] (k.32)

- Jleilyy) - cilyy) - Ci(yy) + Ciy,)]
+ [81(yy) - stly)) - 81(,) + €i(y,)]

where Ci(y) is the cosine iniegral, Si(y) is the sine integral,

_ (B+D)
yl = D (M-B.D)

v, = ﬂ;ﬂ (M+aD)
(4.33)
Y5 = LB—I')I& {M=8D) , and

n, = B3 (wea)

The solution for a line receiver is very similar to the solution
for the line pump. However, upon examination of Equation (4.29), we note
that there is an important difference. The beam pattern obtained by
varying 6' with 6 = O is the same as that obtained by the line receiver at
the sum or difference frequency. When 8' is equal to O, the parametric
receiving array beam pattern is the same as that found for a line source
pump. These properties will be demonstrated in Chapter VI when we

compare the experimentel and theoretical results.
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C. tolutions for the Parametric Receivin ng Array for Pump Source with
Tvvo Finite Dimensions

We shall now consider the interaction of a pump wave produced by
a rectangular piston with one dimension which is small compared to signal
frequency wavelength, and a second dimension which can be a wavelength
or more at the signal frequency. The planar radiator with dimensions 2a
and 2b is assumed to have an angle 6' with respect to the plane x = 0
as shown in Fig. 4.3. The observer is in the plane z = 0. From
Equation (4.17), the solution for an elemental area of length 2a and

height &z for z = O is

1-2?)_5}2_(5 'exp[ (a -Jk, ) LEJM - - Jw t] l

|-3te1(yy) - cilyy) - Cilyy) + cily;)] (4. 34)
+ [51(y,) - Si(y;) - 81(y,) + 8tly5)] |

vwhere y, is as defined in Equation (4.18).

If 2b is small compared to wavelength, the contributions from
the various elemental areas 2a 5M will be equal for a given 8M in the
farfield of the radiator since R' = L and 6''' = O for small values of M.

The total pressure is the same as that found in Equation (4.17).

If 2a is small compared to the signal frequency wavelength,

(o, %, )BP
p=- ilbz ;‘1 12 exp[-(ai-,jki) IFF,jM-,jmit] . %s—iﬁ—M . (4.35)

2p 5C

We shall now consider & circular piston pump transducer with a
radius which is small compared to a signal frequency wavelength. The

geometry for this solution is shown in Fig. 4.4. Again we shall use the
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solution for a line source as a starting point. In the farfield R' is
approximately equal to L, and the pressure contribution from a line source

of length \/az-z J and width of 8z is given by

)BP ,/’2—'2')_
B = = *“*2 ;.1 12 |2 Va 2z (4.36)
2poco Ma

sinM.sin g -2 A
M
a =~ 2 A

. exp -(at-JkiLfFjM-Ja)it) . 52

I 9.2

the incremental area over &4 such that we have

A bz 54 "7 .
a = 2

We now consider the integral

where (2 Y2 -2 s the normalization for the area found by integrating

dz . ()+.37)

3 2 sin Va -zeA

-8, Al a2

dz

With a change of variables, this integral is

/ sin gta.A}d

1-t

Thi: integral can be evaluated using Sonine's integral described by
Wa.tson.63 This integral is a definition of a Bessel function of order m

and has the form

m=-n 1
J (x) = —2X / 3 (xt) £ (1-2)m-n-l gy (4.38)
o Em-nI‘(M n) Yo D
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where Jm(x) is a Bessel function of order M,
I is the Gamma function, and
Jn(xt) is a Bessel function of order n.

For n = % and M = 1, this integral has the form

2 1 t sin(xt
= 7=é_—l a : 4.39
Jl(x) ﬁ[ (1-1: ) t ( )

Using Equation (4.39), we have

i 2 J.(aA)
ﬁm{-‘l—sﬁ‘%“\—)a: L . (4.40)

The second-order pressure for a circular pump source is then found to be

oyt )P Py
)

exp[-(ai-JkiL) FJM - Ja)it] (L.41)

"
1

2p0c0

_sinM 2 J)(ah)

M ah

The amplitude of the pressure expressed in Equation (4.41) is
the same as that found for a rectangular piston transducer. The direc-
tivity function is a product of the end-fire array function and the
2 J,(ah) 2 J,(an)
5 The function T

function for a circular piston found in linear theory. For the second-

function resembles the directivity
order sound pressure, A replaces the expression kl sin 6'. The properties
of the parametric array receiving with a circular piston pump for various
@ and 6' are seen to be very similar to these properties of a parametric
receiving array with a square piston pump if we take into account the

difference in the shape of each aperture.
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V. EXPERIMENTAL APPARATUS

The experimental study of the parsmetric receiving array was
conducted aboard the STEP Barge at the Applied Research Laboratories lLake
Travis Test Station. This barge, designed for testing large sonar
transducers, has heavy handling equipment available for moving and rotating
large transducer arraye and electronic instrumentation to do acoustical
and electrical performance testing on these transducers.

The STEP Barge is moored in 100 ft of water on lake Travis, a
fresh water lake about 25 miles west of Austin, Texas.

The mechanical and electrical apparatus used for the parametric
receiving array experiments is described in the following twc sectionms.

A. Mechanical Apparatus

An overall view of the parametric receiving array is shown in
Fig. 5.1. The parametric receiving array was suspended below the STEP
Barge using an aluminum I-beam attached to & column which could be rotated.
The low frequency source used to generate the signal wave was located on
a second barge some 325 ft away from the center of the parametric
receiving array.

In Fig. 5.2, we see a close-up of the parametric receiving
array. The beam used for supporting the two transducers was constructed
so that the two ends could be lifted for removal or replacement of the
transducers with the column in place in the water. Support brackets were
mounted on either end of the I-beam for the placement of the two trans-

ducers. The separation distance between the two transducers was
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adjustable. For the experiments described in the next chapter, the
transducers were placed a fixed 48 ft distance apart and equidistant from
the support column. The support on one end of the beam had a small
rotator. The angle of rotation of the transducer mounted on this end
corresponded to 6' in the theoretical model. The I-beam was rotated by
the column mechanically coupled to a synchro. The angle measured by this
synchro corresponded to the angle 8 in the theoretical model. The two
transducers for the parametric receiving array were mounted 6 ft below
the I-beam in order to minimize the effects of acoustical reflections.
The I-beam was supported 27 ft below the water surface, so that the
parametric receiving array was 33 ft belcw the water surface.

B. The Measurement System for the Parametric Receiving Array

An oversll block diagram for the system used for the parametric
recelving array experiments 1s shown in Fig. 5.3. The pump transducer
was driven by a power amplifier with a CW signal generated by a precision
crystal oscillator. The pump frequency remained fixed at 90 kHz throughout
all of the experiments conducted in this study. Special care was taken
to ensure that the side band noise level generated by the power amplifier
was low in order to achieve s good signal-to-noise ratio at the side band
frequencies. Figure 5.4 gives a breakdown of the receiving subsystem for
the parametric receiving array. The signal from the hydrophone was fed
directly into a crystal notch filter providing an 80 dB rejection of the
carrier signal. The signal was then amplified and fed into & second
crystal filter to further remove the carrier frequency. Two passive
bandpass filters were used to select either of the side bands at the sum

or difference frequency. A sampling digital voltmeter measured the rms
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