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ABSTRACT 

The parametric reception of a low frequency plane wave by the 

use of nonlinear interactions between acoustic waves is examined both 

theoretically and experimentally. The parametric reception of a low 

frequency wave is accomplished by the use of a high frequency acoustic 

pump wave which interacts with the low frequency signal wave to produce 

sound waves at the sum and difference frequencies. These sound waves are 

received by a second transducer placed on the axis of the pump transducer. 

This type of parametric array allows for the possibility of narrowbeam 

detection of a low frequency acoustic signal wave. 

The Interaction of two plane waves is examined theoretically in 

a manner similar to that considered by Westervelt. Of particular interest 

Is the case in which the pump wave is assumed to be a plane wave originating 

at and propagating perpendicular to some^planar boundary. The low frequency 

signal wave is assumed to be present over all space. The interaction of 

two plane waves is of interest for two reasons. 

(l) This interaction produces a truncated end-fire array (i.e., 

the parametric receiving array) with a length equal to the spacing between 

the planar boundary and the observer, and (2) this interaction relates 

directly to the problem of sound scattered by sound as formulated by 

Westervelt. 

Next, the solution for the interaction of a high frequency 

spherical wave from a point source and a low frequency plane wave is 

obtained theoretically using a two-dimensional stationary phase solution 

ili 



of Westervelt's scattering Integral.    The point source solution Is In turn 

used to generate the solution for parametric receiving arrays vlth various 

pump transducers Including a truncated line source transducer, a rectangular 

piston transducer, and a circular piston transducer.    In each case, the 

observer Is assumed to be In the farfleld of the pump transducer.    However, 

the result Includes the effects of Interaction in the nearfleld of the pump 

transducer.    Tixe solution of the parametric receiving array with a point 

source pump and a truncated line receiver is also found.    The theoretical 

solutions also include the effects of misalignment of either the pump or 

receiving transducer.    With either the pump transducer or the receiver 

misaligned, the difference frequency beam pattern is an asymetrlcal beam 

pattern and is the mirror image of the stm frequency beam pattern.    This 

property is examined in detail in terms of the problem of two sound waves 

interacting at nonzero angles. 

A series of experiments were conducted with a W ft parametric 

receiving array with a pump frequency of 90 kHz.    In the experiments, 

an omnidirectional transducer was used with either a rectangular piston 

transducer or a square piston transducer.    Each transducer could be used 

as either the pump transducer or the receiver so that a variety of parametric 

receiving array configurations could be realized.    A small rotator was used 

to allow independent rotation of the piston transducer for measurement of 

the effects of misalignment of the piston transducer.    Theoretical and 

experimental results are compared for the parametric receiving array with 

several transducer arrangements.    The agreement between the theory and the 

experiment was excellent. 
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I.    INTRODUCTION 

It is veil known that a finite amplitude sound wave will distort 
1-8 

as It propagates. "     This nonlinear propagation or self-interaction 

occurs because the phase velocity is a function of the Instantaneous 

amplitude of the particle velocity.    It would also be expected that two 

sound waves of frequencies f   and fp present simultaneously in a medium 

would generate sum and difference frequencies,  f. ± f«.    A spurious 

difference frequency tone was observed by a German organist, Sorge, in l?^, 

and later in ITjk by an Italian violinist, Tartlnl.      These spurious 

frequency components have been known to musicians ever since and are 

referred to as "combination tones."   In l875> Helmholtz     predicted that a 

sum frequency tone should also exist.   With the use of a Belmholtz resonator, 

Helmholtz showed that the difference frequency tone was generated by such 

instruments as the harmonium when two high frequency tones were played 

simultaneously.    Helmholtz suggested that this tone was generated In the 

air within the Instrument.    On the other hand, the presence of two notes 

from a pipe organ had little effect on a resonator.    In this case, Helmholtz 

concluded that the difference frequency was either subjective or generated 

within the ear.    The existence of the sum frequency was a matter of debate 

until 1895 when Rucker and Edser     observed its effect on a tuning fork 

12 of the same frequency.    Rayleigh     discussed the subject In his book 

15 2 The Theory of Sound in 1910.    Iamb v used Airy's   method of successive 

approximations to demonstrate the existence of sum and difference 

frequency components.    The existence of sum and difference frequency 



Ik components in the throat of a horn was consl ered by Rocard     In 1933 and 
it 

by Thuras, Jenkins, and O'Neil   in 1935.    Thuras, Jenkins, and O'Neil 

measured the sum and difference frequency components experimentally using 

a long tube. 

The Interaction of two sound waves in a bounded region was 

considered again in 1956 by Ingard and Pridmore-Brown. ^ In 1957, 

Wastervelt '  generated a solution for the interaction of two infinite 

plane waves with no boundaries present. 

Despite this activity, the interaction of sound waves did not 
18 

receive widespread attention until the early 1960*8 when Westervelt 

proposed the nonlinear or parametric acoustic array for the transmission 

or detection of a low frequency acoustic wave. He showed that a highly 

directional, low frequency sound beam could be generated with a small 

transducer by the use of the interaction of two high frequency carrier 

sound beams. This parametric transmitting array has been demonstrated 

19      20 21 experimentally by Bellin and Beyer , Hobaek,  Zverev and Kalachev, 

22     25 2k 25 Mulr and Blue,  Smith, ^ Merkllnger,  Truchard and Willette, ^ among 

26-28 others. 

The parametric reception of a low frequency wave, also proposed 

18 
by Westervelt,  is accomplished by the use of a high frequency acoustic 

pump wave which Interacts with the low frequency signal wave to produce 

sound waves at the sum and difference frequencies. These sound waves are 

received by a second transducer placed on the axis of the pump transducer. 

29 30 The parametric receiving array was first studied by Berktay    and later 

by TJotta.   An experiment was conducted by Berktay and Al-Temlmi *^^ 

that demonstrated the existence of the parametric receiving array and. 



furthermore, Bhowed that the array had a directivity function which is 

very Bimilar to that of a conventional end-fire; array with a length 

equal to the distance between the two transducers.    Stellar experiments 
xlf 55 

have been conducted by Barnard et al.,      Konrad et alt,     Mulr and 

Berktay,      Zverev and Kalachev,     and Date and Tozuka. 

Most of the experimenters developed a theoretical model 

designed to correspond to the conditions of the particular experiment. 

The experiments conducted by Berktay and Al-Temlml were primarily done in 

the nearfleld of the transducer.    Consequently, the theory was appropri- 

ately designed for consideration of interaction In the nearfleld of the 

pump transducer.    On the other hand, the numerical solution by Barnard 

et al. assumed that the Interaction occurred only in the farfield of the 

pump transducer.    The theory used by Mulr and Berktay for the analysis 

of a single parametric array is described fully In a paper by Berktay and 

59 Shooter.       A closed form solution was found for the sum and difference 

frequency sound field for the parametric receiving array In the farfield 

of the narrowbeam pump transducer.   The theoretical approach of Zverev and 

Kalachev and of Date and Tozuka does not use Westerve It's perturbation 

procedure for finding the value of the sum and difference frequency sound 

pressure.    Instead, the modulation of the high frequency pump wave by the 

low frequency signal wave is considered in terms of the phase modulation 

of the pump wave caused by the time varying change in the sound speed due 
ho 

to the presence of the signal wave.   Recently, Rogers et al.      obtained 

a solution for the parametric receiving array in the nearfleld of a small 

narrowbeam pump transducer. 



In each of the models described above, the effects of shadowing 

of the signal vave by the pump transducer were neglected.    These effects 

hi 
were considered by Al-Temiml     and were found to reduce the directivity 

or the parametric receiving array when the pump transducer was large 

compared to the signal frequency wavelength. 

The possibility for utilizing an arrangement similar to the 

parametric receiving array for the construction of a traveling wave 

k2 43 30 parametric amplifier was proposed by Tucker,      Stepanov, ^ and Berktay. 

However, each researcher concluded that amplification of the signal vave 

is not possible unless the sum frequency wave is suppressed or the medium 

is dispersive.    Such amplification in a dispersive waveguide is predicted 

kk by Ostrovskli and Papllova. 

45 
Berktay and Al-Temiml     have recently related the parametric 

receiving array to the problem of sound scattered by sound.    This 

relationship is an interesting one and deserves attention because it has 

continually been debated since Ingard and Pridmore-Brown first studied 

15 the problem.        Ingard and Pridmore-Brown predicted that a scattered 

sound field would propagate outside the interaction region common to the 

two primary waves.    Ibeir experimental measurement seemed to verify the 

predictions.    However, later attempts at verifying these predictions have 

proved unsuccessful.    '   '*        In 1957, Westervelt    '      considered the 

nonlinear interaction of two infinite plane waves intersecting at nonzero 

angles and found that the scattered pressure was related only to the 

value of the primary sound wave amplitude at the observer point.    This 

solution did not Include the effects of boundaries or absorption.    Conse- 

quently, the solution had a singularity when the primary sound waves were 



propagating In the same direction. This result was consistent with 

12       I? 
previous predictions by Lord Payleigh  and Lamb y which had been verified 

k 
experimentally by Thuras, Jenkins, and C'Neil, provided we assume that 

the interaction occurs over an infinite distance. Furthermore, Westervelt 

predicted that no scattered sound exists outside the region of interaction. 

Various magnitudes of scattered sound pressure outside the region of 

^9 •   50 
Interaction have been predicted by Dean,  Lauvstad and TJotta,  and 

Al-Temini. 

In 1972,     Westervelt recast the 1957 result Into a form which 

permitted the singularity to be removed.    He furthermore related this 

new solution to the truncated end-fire array. I.e., the parametric 

receiving array for the case when the frequency of one wave was considerably 

higher than the other. 

The present study includes theoretical analysis and experimental 

Investigation of the parametric receiving array.    The investigation of the 

parametric receiving array is extended to Include omnidirectional pump 

transducers and pump transducers which have one dimension up to one wave- 

length or more at the signal frequency and two dimensions which are small 

compared to the signal frequency wavelength in order to minimize "'"-he 

effects of acoustic shedowing.    A closed form solution of Westervelt'B 

scattering integral for an omnidirectional pump transducer will be found 

and, in turn, used to obtain the solution for a line pump transducer.    The 

theory is based on Westervelt's quasilinear solution in which only second- 

order interactions are considered.    The effects of absorption are ignored 

in the derivation of the basic second-order wave equation.    However, the 

attenuation of the first- and second-order sound waves due to absorption 



Is Included In the description of these sound waves In a manner similar 

to that used by Westervelt.    Westervelt's solution for the problem 

of sound scattered by sound Is analyzed and related to the parametric 

receiving array for two plane waves.   An end-fire array function is 

generated from this solution.    The parametric receiving array offers an 

excellent opportunity to study the scattering of sound by sound since 

interaction occurs at nonzero angles between the direction of propagation 

of the two waves.    In a manner similar to that used by Westervelt in 1972, 

the singularity is removed from the 1957 result by the addition of a 

solution of the homogeneous wave equation, thereby placing a boundary 

condition on the second-order pressure.   The second-order sound field is 

shown to be nonzero even when the two sound waves are not propagating in 

the same direction.    In Chapter III, the significant features of this 

solution are interpreted in terms of the properties of the parametric 

receiving array. 

Also in Chapter III, the solution for the interaction of a 

spherical wave from a point source and a plane wave is found using 

Westervelt's scattering integral.    The second-order sound pressure is 

found by integrating the freefield Green's function over the volume 

distribution of sources to form the scattering integral.    This scattering 

integral is in turn used to find the second-order sum and difference 

frequency sound pressure.    The integral is evaluated using a two-dimensional 

stationary phase integral solution technique which has been used to solve 

certain optics problems.    This solution is found to have the same end-fire 

array properties as the solution for the interaction of two plane waves. 



In Chapter IV, the point source solution is used as a starting 

point to solve for the second-order sound field generated by a truncated 

line source and a plane wave; the line source was chosen because the 

experimental and theoretical models can be made to coincide most easily. 

The effects of acoustic shadowing of the low frequency plane wave are 

minimized even when the pump has one dimension on the order of a wave- 

length at the signal frequency.    The large dimension for the pump allows 

the study of the effects of pump size on array beamwidth and sensitivity. 

Using the large pump, the scattering of sound by sound can also be investi- 

gated. 

Lastly, Chapter IV considers the interaction of plane sound 

waves and waves produced by a pump transducer that is small in all three 

dimensions compared to a wavelength at the signal frequency.    Again, the 

point source solution is used. 

In Chapter V, the experimental arrangement is described.    The 

experiments were conducted aboard the STEP Barge at ARL's Lake Travis 

Test Station.   The geometry for the theoretical and experimental studies 

was such that the results could be readily compared.    Several types of 

transducers were used to reproduce the geometries prescribed by the 

theoretical models.    The arrangement of electronic equipment is essentially 

the same as that used by the author and described in a paper by 

Barnard et al. 

Chapter VI includes a comparison of experimental and theoretical 

results.    Beam patterns with the pump aligned and misaligned are compared 

in the same coordinate systems.    Sound pressure level predictions sire 

compared with the experimental results.    The agreement between the theory 



8 

and the experiment was excellent.    The results are discussed in light of 

the problem of sound scattered by sound. 

In the final chapter, a summary of the theoretical and 

experimental results of the present study is given. 



II.    THE EQUATIONS OF HYDRODYNAMICS FOR THREE-DIMENSIONAL 
WAVE MDTION IN A LOSSLESS FLUID 

In elementary treatments of acoustic wave propagation It Is 

usually assumed that waves of Infinitesimal amplitude are being modeled 

so that the Intrinsically nonlinear acoustic equations can be linearized. 

Using this assumption, acoustic wave propagation without distortion is 

predicted.    Likewise, If acoustic waves with two or more frequencies are 

present, no intermodulation is predicted for the propagation of these 

waves.    If the nonlinearity of the acoustic equations is taken into 

account, an originally sinusoidal waveform will indeed distort as it 

propagates or, if two waves are present, intermodulation products will be 

predicted.    These intermodulation products will be present whether the 

amplitude of the two waves is large or small.    The ability to detect these 

intermodulation products will depend on whether the amplitude is large 

enough to be detected in the presence of the background noise.    In order 

to account for this intermodulation, the elementary wave equation must be 

modified to take into account higher order terms present in the propagation 

of a wave. 

52 55 5^- A perturbation method used by Eckart,-^   and later by Llghthlll>>,^ 

and Westervelt,    '     can be used to obtain a wave equation which Includes 

second-order components to provide a better model for the propagation of 

a finite amplitude sound wave.    In this theory, sometimes referred to as 

small-signal nonlinear theory or quasilinear theory, only the first 

modulation product terms are considered with a second-order wave equation 

which has source terms proportional to the time derivative of the square 

9 
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of the first-order sound pressure.    If two sound fields with two different 

frequencies are present, a source term is predicted that is proportional 

to the time derivative of the cross product of the two first-order sound 

pressures.    In this manner, either of the two sound fields can be a 

superposition of several waves each having the same frequency.    It must 

be noted that this model is valid only if the two waves have amplitudes 

small enough that the higher order terms can be ignored.    In other words, 

if excess attenuation or amplitude loss is present due to finite amplitude 

effects this model will no longer be valid.    However, a large number of 

problems concerning the parametric receiving array can be solved by using 

the second-order or quasilinear solution. 

The properties of a fluid can be described in either Eulerian 

55 or Lagrangian coordinates.       The relationship of these two coordinate 

56 systems with real sources present has been studied by Kline.        In the 

present study, the Eulerian coordinate system is used throughout. 

Whenever necessary, the boundary conditions will be simplified so that 

the boundary conditions can be expressed in Eulerian coordinates without 

difficulty. 

We shall derive a second-order wave equation in a manner similar 

57 to that used by Westervelt.       The equations for the conservation of mass 

and momentum will be given with real sources and viscosity included. 

However, absorption and real sources will be ignored in the derivation 

of the wave equation.    The effects of absorption will be included in an 

"ad hoc" manner in the solution of the second-order wave equation in 

Chapter III.    If the effects of real sources are to be included, the first- 

order substitution into the second-order wave equation must include these 

sources.    The equation of btate will be that of an isentropic fluid. 
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In Eulerian coordinates, the equations of the conservation of 

58 
mass and momentuin with sources present can be expressed as follows: 

Conservation of Mass 

-gi + ^p^Q (2.1) 

Conservation of Momentum 

^PTu 
-gi- + V.T = F (2.2) 

where p_, is the total density, u is the particle velocity, p is the ambient 

or undisturbed density, Q is the rate of introduction of new fluid mass into 

a milt volume, T is. a tensor such that T is the sum of Tg, the stress 

tensor, and TM, the momentum flux tensor, and F is the external force 

per unit volume. 

The momentum flux tensor can be expressed as 

fb—U u D_U u D„U u , rMT xx TTx y T? x z| 

T„ =   pu u pu u pu u    I (2.3) 

.pu u pu u pu u zx         zy zz 

where u , u , and u   are the three components of u. x'    y' z r 

The stress tensor can be expressed as 

rD      D      D    , xx   xy   xz I 

o| +1 D     D     D (2.4) 
"     8   yx   yy   yzf 

,D     D     D zx   zy   zz 

where p is the total pressure and 
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(2.5) 

D" = "fe + ft) 
1    #   J 

J 

where ji is the coefficient of shear viscosity and TJ is the coefficient of 

bulk viscosity. 

For inviscid fluids, the tensor T« is a simple one with p on the 

main diagonal and zeroes elsewhere.    In this case, V»Tg is simply vp.    To 

obtain the expression for v«TM, we consider the x component such that 

/#_x ^TV ^P-rV d(pTuz) ^x (V.T,,.) » u        K    
x   + u        J tf    + u    —r^-2- + p^u   -s— v      M'x      x      ox x      oy x      dz WT x OTC 

du      du 
+ PTUy ^T + PTUZ ^T = ^c ^ (pT^ + PT(^^ Ux  " 

Then we have       ^^K ~ ^(PT»^ + Prn(u'V)u  . (2.?) 

The momentum equation for an inviscid fluid now can be expressed as 

-^ + ^) + u^(pTI?) + pT(u.^)u = f (2.8) 

The acoustic pressure can be related to the density through the 

equation of state: 

p = F(pT,S)      , (2.9) 

where S is the entropy. 

For an isentropic fluid we have 

P = r(pT)     . (2.io) 

i 

i 
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We shall use a perturbation procedure similar to that used by 

Eckart,52 Lighthill,55 and Westervelt.16'17   The field variables u, pT, and 

p can be expanded in series such that: 

U a \U..   + \ vL  +  .. . , 

ftp = Po + Xp1 + \2p2 + ..., and (2.11) 

2 
P = P0 t Xpj^ + \ p2, 

where \ is a nondimensional mathematical parameter introduced for con- 

venience and p is the ambient pressure. We have assumed that u =0. An 
o o 

approximate equation of state for an isentropic fluid can be obtained by 

expanding p in a Taylor series and keeping only the first two terms such 

that 

v ^s.o        vVS;0 

where S is the entropy. 

The infinitesimal sound speed c is defined by 

2 
= c 

Pm/       O l's,o 
(2.13) 

The pressure can also be expressed as 

c2 /\ 
p = Po + co2(vPo)4r-(! ^TV  > <2-^ 

i 2 

o 

where 

B/A r-. p /c/(^p/dp 2) . (2.15) 
00 i    S,0 

By substituting Equation (2.11) into Equation {2.1k)  and assembling like 



Ik 

powers of \, we get 
o 

pl = co pl (2.16) 

and 2 

p_ = c   p« + y2        o H2 
/B \ C

0       £ 

(2.1?) 

2 

o 

= c"% +(iÄ) 
8 /B A (pir 

P c Ko o 

If we assume that the source terms in Equations (2.1) and (2.8) are first- 

order functions, we can obtain the first-order equations by substituting 

Equations (2.1l) into (2.1) and (2.8), keeping terms with first powers 

of \.    We have the following equations: 

Conservation of Mass 

IST + poH = Q <2'18) 

Conservation of Momentum 

Wave Equation for p.., p1, ar.d u 

^2 
1        "    V   O,   =   P     ^  - ^'f ^2 "  V^Pl = po u. 

or ^pi - -^ i =D2p1 = -P0 -^ + ^f     , (2.20) 

o 

'2=^. A.    ^ whereD    = v - —^r —^-   is the wave operator, 
c 2 dt2 

o 
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andCfu^-  2^t+r       * 
poco 

Likewise, the second-order equations can be obtained by equating 

2 
terms containing \   to obtain the following second order equation. 

Conservation of Mass 

-^ + p^Ug + V-p^ = 0 (2.21) 

Conservation of Momentum 

po -^ + -^ + PA &*!>    + po (V^^l + ^2 = 0 ^•22) 

Wave Equation 

btc 

or H 
+ V2(p2-co

2p2) 

(2.23) 

dt2 

•-•2 
P2 =ü P2 = 

^/     )2 

2p c ^ V1/      btc 
Ko o 

i If we assume u is irrotational, wa can find a scalar 0 such that 

we have u=^.    We shall denote single time derivatives with a dot above 
i 
■ 

■ 

the parameter and double time derivatives with two dots. If we furthermore 

assume that no real sources are present, the second order wave equation 

can be expressed as 



OPP2 = -P0[&%)2 + i\)'^ {%) +±J (^1.%) 

o o 

and 

po 0 

c dt p c o Ho o 

co 

16 

LPo Co 

+ -L2^(%^1)1 (2.25) 
2c 2 dt2       1     1 

o J 

i     /B\£(P/ 
"^T^W at2 K

o o 

We can use the following identities to simplify the wave equation: 

= J^ . V^ . -l_i (2.26) 

(%)• (V2^) = -\ ^ . -^i =  ^ . %1 (2.27) 

□2   (^^  = 2^)  • ^ - -^ ^^ (2.28) 

D2pl2 = -"^2 (Pl)2 + 2^i*^i       • (2-29) 
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Then the wave equation for p   is: 

rfp« = 
Ko o dt2 

-p. 

LPo Co Co   Vo 0  / 

p c 
*o o 

i   /B\^I2' 

2 2     ^(P!2) 

'  +pso^   at2 
K0     0 

f  2   r 

\   o Ho o /. 

or 

P2 = ^^ö¥ 
o o 

(2.30) 

(2.31) 

L o Ko o J 

The second-order wave equation can alternatively be expressed in the 

following form: 

tfP2 p°P^^" -T^^J^r L o J     ^o o 

Lou 

(2.32) 



18 

The first two terms on the right-hand side of Equations (2.31) and (2.32) 

are the source terms for the second-order pressure.    The first term in each 

expression is present whether or not the fluid is nonlinear.    The second 

term is due to the nonlinearity of the fluid.    The termD (•) on the right- 

hand side of Equations (2.51) and (2.32) is also present whether or not the 

fluid is nonlinear.    The termu (•) is ignored by Westerveltr ' in the 

derivation of the second-order wave equation sin^e the term yields a local 

pressure.    Therefore, it is not cumulative and dots not propagate outside 

the interaction region.    For the parametric transmitter, thm lew frequency 

sound wave generated by the interaction of two high fre^nöncy waves will 

propagate outside the region of interaction and the term can usually be 

ignored.    For the parametric receiving array, the observer is in the 

region of interaction; therefore, the term can only be ignored if it is 

small compared to the first two terms.    The physical significance of 

Equation (2.32) can be more readily understood if we obtain an expression 

for the second-order pressure in terms of the second-order scalar poten- 

tial jL.    We can obtain such an expression by integrating the second- 

order momentum equation over space and using the appropriate first-order 

relations to obtain: 

P2 = " po X" 
1 / -»   ^       pl   \ 

' 2 lpoul,ul 2 j 
\ poco/ 

l( ^ ->    Pl2\ 
2 lPoVul " —2 J 
\ poCo/ 

2    ii„--    _:x_„i (2#53) 

where - r- Ip u «u..  - ■ 5-1 is a local pressure due to the presence of the 

\0 PoCo/ 
first-order sound field.    The second wave equation (Equation 2.52) includes 

this pressure in a simple form. 
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In Chapter III ve shall solve the second-order wave equation 

(Equation 2.51 or Equation 2.32) for several configurations of the first- 

order sound field.    The first of these configurations will be «wo Infinite 

plane waves and then two plane waves present over a half space.   Ve shall 

show that Equations (2.31) and (2.32) are equivalent for a first-order 

field consisting of two plane waves.   We shall also use a Green's function 

solution of Equation (2.3l) to solve for the second-order pressure gener- 

ated by the interaction of a spherically spreading wave and a plane wave. 

For this solution we shall only consider the source term, 

1     /      B \ ^1 " r II + 5x1 5— , in a manner similar to that suggested by 
p c      \ /at o o 

Westervelt. 



III. SOLUTION OP THE SECOND-ORDER WAVE EQUATION 

In the last chapter, ve derived the second-order wave equation 

with a source function which Is quadratic In the first-order field 

variahles. For the parametric receiving array, we are interested in the 

sum and difference frequency sound pressures which are generated by the 

cross-product terms in the source function. 

In Section A, we present a simple means to generate the source 

function for the sum and difference sound pressures by the use of complex 

numbers. 

In Section B, we consider the Interaction of two plane waves 

with an angle 0 between their directions of propagation. The interaction 

of two infinite plane waves is of Interest because the problem relates 

directly to the problem of the scattering of sound by sound as first 

formulated by Westervelt. For the lossless case, the source function is 

equal to the D'Alembertian of a function of the first-order sound fields. 

Hence, the value of the second-order sound pressure is dependent only on 

the local sound pressure unless the two first-order sound waves are 

propagating in the same direction. In the case of colllnear waves, 

the predicted value for the sound pressure for the sum and difference 

frequency components is infinite as would be expected if no boundaries, 

absorption, or finite amplitude effects are present. This result led 

Westervelt to predict that no scattering of sound by sound would exist if 

the two sound waves were not propagating in the same direction. In the 

last part of Section B, we shall consider the interaction of one sound 

20 
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field present over all space and a second present over one-half space 

starting at some planai boundary and propagating away from and perpen- 

dicular to this boundary.    To solve this problem, ve add a homogeneous 

solution of the wave equation to the solution obtained in the first part 

of Section B.    In this derivation, we shall neglect the effects of real 

sources that would be necessary to generate the first-order fields.    In 

fact, we shall place the second-order pressure equal to the local pressure 

expressed in Equation (2.33) at the planar boundary.    If we observe the 

second-order pressure at some distance from the boundary, we find that 

this pressure is cumulative and propagates in a direction different from 

the direction of either of the primary waves.    The dependence of the 

pressure amplitude on the angle between the propagation vectors of the 

two primary waves is very similar to the directivity function of the 

parametric receiving array as found by Berktay. 

For two plane waves we have no difficulty in solving the wave 

equation directly.    However, in general, we will find it necessary to 

formulate the solution in terms of an integral of a Green's function.    A 

description of the Green's function solution is given in Section C. 

In order to solve the problem of a parametric receiving array 

with an arbitrarily shaped planar piston pump, we shall find a solution 

which can be used as a starting point for solving more complex problems. 

The most obvious solution is the solution of a high frequency point source 

pump and a plane wave low frequency signal.    If we have the solution for 

an omnidirectional pump transducer, the solution for virtually any other 

type of two- or three-dimensional pump transducer can be obtained by sum- 

ming this solution over the active face or volume of the transducer. 
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It is in this light that we shall generate the solution for the 

Interaction of a spherical wave from a point source and a plane wave.   We 

shall use the Green's function integral solution for the second-order wave 

equation with a first-order sound field consisting of a spherical source 

and a plane wave.    This solution yields a rather unwieldy Integral which 

does not succumb to simple Integration techniques.    This integral can be 

solved using a two-dimensional stationary phase technique similar to one 

used in optics.   We shall ignore the effects of real sources and the local 

pressure.    In reality, the second-order pressure contribution at the 

source and receiver may not be negligible for a particular application of 

the parametric receiving array since we may desire to use the properties 

of the directivity function, particularly in the nearfleld of the parametric 

array, to eliminate an undeslred noise source.    If an additional pressure 

term is present due to the pump source or the local pressure, the perform- 

ance of the parametric receiving array may be degraded for an application 

requiring a very high rejection of a target at an undeslred bearing.    In 

order to analyze the effects of the real sources and the locel pressure 

terms, a thorough analysis of the particular type of transducer is needed. 

Since the transducers are designed to operate at the carrier frequency, 

the transducer's properties at the low frequency may be such that the 

transducer actually moves with the low frequency fluid particle displace- 

ment.    This condition could significantly change the way the parametric 

array would perform as compared to its performance under the assumption 

that the transducer's position remains fixed.    In this study, this particular 

problem will not be considered; however, it does appear to be worthy of 

further investigation. 
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A.      Use of Complex Numbers     [ 

In Equation (2.31), we can see that the sum and difference 

frequency source terms are generated by cross-products of each of the two 

first-order sound fields.    It Is convenient to use complex numbers to 

represent the oscillatory part of the various functions.    The real 

physical variable Is equated to the real part of the complex variable. 

In the case where quadratic terms are encountered, special care must be 

taken In their calculation.    For two complex numbers M and N 

Re[M].Re[K]  = | Re M[N+N*] 

where Re[M] represents the real part of the complex variable and the 

asterisk denotes the complex conjugate.    The transformation 

MN ^ i MN + i MN* 

will be used to generate the quadratic terms when complex variables are 

used. 

For example, consider the case of two plane waves with wave 

vectors Intersecting at angle 0. The first-order pressure Is 

jOc^r-cajt)     j(l^.?-a^t) 
Pl * Plle + P]2e 

pll + p12 

where P-, and P.^ are the peak amplitudes of the two sound waves, i=y£l, 

iü. and E^ are the propagation vectors, 

r Is the vector from the origin, and 

ax.  and OL are the angular frequencies of the two waves. 
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Then we have 

(pl)2 " Pll2 + 2pllP12 + P122 

The desired sum and difference frequency components can be obtained by 

using 

(p1
2)+ + (Pi2). = | PuP^ + | P-uP^* 

jl^+l^).? - (axL«^)t] 

+ p   p   ^K-^-r^^^t] 
= P    P    e 11 12e 

11 12 

where the + and - subscript denotes the sum and difference frequencies. 
o 

In order to simplify the notation, we shall use the subscript (±) on (p. ), 

(X), k, and the absorption coefficient (a) to denote either the sum or 

difference frequency term.    The upper subscript denotes sum frequency and 

the lower subscript denotes the difference frequency. 

B.      Solution of the Second-Order Wave Equation for Two Plane Waves 

We shall now consider the interaction of two plane waves propa- 

gating with an angle 0 between their directions of propagation.    For the 

parametric receiving array, we shall assume that the first plane wave is 

the high frequency pump wave and the second plane wave Is the low 

frequency signal wave.    We shall ignore the effects of absorption.    The 

first-order sound field is then given by 

Pl = Pll + P12 (3.1) 

jOyr-o^t) J(l|.r-ü^t) 
= Plle + P12e 
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The desired sum and difference frequency components of p.    then are 

(pl2)± = PllPl2e 
jfO^).?- (c^i^HJ 

T /T    -try 

Following the procedures of Westerve It,    *     we find: 

to be if (Pi2), 

■£/    2v 
2  /    2v 2/    2v 1        lPl )i 

Cf  (Pi )± =V   (Pi )± - -^ -TJ— 

(VV' 

c ^      dt£ 

o 

-   I^|J 
(pl2)± 

= d2(k1k2-^1.^)(p1
2)± 

(3.2) 

(5.3) 

7e can solve for (p    ) to get 

(pl )± = 
2(^-^.1^) 

for ^ * ^.^ 

o 
The time derivative of (p]'")± is 

^(p1
2)± co±

2 |f (Pl
2)± 

= ? 
dtc 2(^-1^.^) 

(3.^) 

(3.5) 
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and the wave equation (Equation 2.31) Is 

uv2 
SU 

^^ih (1+S 

h PA 1        .    2v        1      .^  - .   1 
-2— -:—2 (pl ^ * 2 p0^1-ul)± 

co 2Poco J 

Since p   can be expressed as 

jU^r-a^t) J(l^.r-ü^t) 
pl=Plle      " +V 

we have the following first-order relationships 

^i = -r/pidt   * 

^i = J 

pu  J(Vr-ai
1
t)    pi2  ^V7-^*) —— e + e 

(5.7) 

(3.8) 

Pj^   J^.r-a^t)      P^l^    J(l|.?-ü^t) 

^1 po^ 

and 

pl = " ^ Plle 

Jd^.r-^t) 
Jo^  E,,,e 

jd^.^t) 
r12^ 

(3.9) 

(3.10) 

Then the appropriate sum and difference frequency terms can be expressed 

as 

72 ^x'*-* l(|^) 
P11P12    J(k±,r"ü)±t^ ^    e 
Ko o 

(3.11) 

1        ,    2,        ^ll^    J(k±—V) 
:—2 (Pi ^= -—2e 

2poco 2poco 

(3.12) 
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- g- P^vVl =        p^o^ e ' ^^^ 

5y substituting Equations (j.llK (3*^); and (3.13) into Equation (3.6), 

we get 

ifp^d2 

or 

±a>±
2(^)(l^) 

.2£Vfe(klVM>) 

2/r» 

*! 

2      2 

o^o^ 
1 /1+^M 
/A'       WJPO°O! (3.1^) 

u Po =cr 
CO. <vv Vd^i^) 

2aiLü^(]£1]s2-k1.k2)     2axLc^(k1lJ2-k1»k2) 
^ (4] 
~1L.1L) W 

'[2-2 k^; 
(P1

2)± 

(3.15) 

P c Ko 0 

Equation (3.13) has the same form as we would have obtained if ve had used 

Equation (2.52) instead of Equation (2.31) as the starting point for the 

derivation.    Hence, for two plane waves Equation (2.31) and Equation (2.32) 

are equivalent.    The second-order pressure is then found to be 

This solution corresponds to the solution for plane waves of infinite 

extent with no absorption or finite amplitude effects present.   As can be 

seen, the second-order sound pressure is proportional to the local value 

of (p    ) except when k-kpsk.«!^.    This result led Westervelt to conclude 

that no scattering of sound by sound existed when two sound waves were not 

propagating in the same direction.    A conclusion based on Equation (3>l6) 

is subject to the conditions that 

l)      no absorption is present, and 
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2)      the plane waves are of Infinite extent. 

Strictly speaking, conclusions about the scattering of sound by sound 

outside the region of Interaction cannot be made since the plane waves 

are assumed to be present over all space. 

If one plane wave is present over all space and the second 

present only in the half space x g 0 and propagates in the +x direction, 

then we have 
J(k x-üx.t) 

p11 = P^     i     J-        ,   x a 0. (5.17) 

We assume that the second wave propagates with an angle 6 with respect to 

the direction of propagation of the first wave such that we have 

.)(£>. r-ox-t) 
Pl2 = P12e * (3*l8) 

If we neglect the effects of the real source at x = 0, the 

pressure at x = 0 must be equal to the local pressure, the second term in 

Equation (j.l6).    Any solution which satisfies the second-order 

homogeneous wave equation 

rf* = 0 (3.19) 

can be added to the solution to satisfy the boundary conditions.    One such 

solution Is a plane wave such that 

»^ = 

2(^1%     B\ P11P12exp J <kiW- J^F ^^7/•?-± 
2(klk2-kl-k2) poCo 

where 1 is unit vector In the x direction, 

j is a unit vector in the y direction, and 

kp is the component of the k_ wave vector in the y direction. 

(5.20) 
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This solution represents a plane vave of frequency 

(kl±1J2)co 
sn 

with a wave vector 

(k^l i\%) 
r± 

2 lxTk fe7) • 

We can express this solution as 

*± = Fp2' 

where 

F = - exp i\*K>) 
—5 T~ kg sin 6 

(k^) 
± It,., sin 0 - T' 2   "2y it^) 

= • exp (k^) 
kg2 sin2 0 

x. H g- - k^x^ cos 0 

and 

P2 = 

(Vkg)' 

i ^ (^l + 2f) ^2 e^ [ J(^)-r-a)±t] 
2(klk2-kl*k2) pocc 

where kg = kg cos 0 1* + kg sin 0 ^f , and 

r = xi + yj . 

If It, » lu, we can approximate F as 

F s - exp 

exp 

2 . 2 .   , kp" sin"" 0 
(kjikg) x (1 - i £•    g J - k^kg c A 

(k1±
k2) 

2 . 2 sin 0 
jj^xd-cose)-!^^ 

(3.21) 

(3.22) 

(3.25) 

(3.2^) 

(3-25) 

(5.26) 
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The second-order pressure at (x,0) can be expressed as 

p2" = (1+P) p2' 

1 - exp 
kp2 sin2 0 

(k1±k2)xA/l-^ .^X^COBg 

i^i^k+g) piiPi2exp I ^l^^^l 
r*   T* SCk^-^kg) poc 

If It, » kp, we have 

P2" =' 1 - exp 

2       2 kp    sin   0 
± kgxd-cos 0) -   2(ki±k2) 

rvV^ll+ ^)PiiPi2exp ^^x 

(5.27) 

cos 0 ± lu    sin 0 -ü).ti (3.28) 

2(k1k2-k1.k2 cos 0) pocc 

J(a)t
2)(co8 0 +p|)xP1.P,        siB 

2A/Ä 11 12 

2 2 k- x sin   0 
k2x(l-cos0)T   g^ 

2klpoco 
k-xCl-cos 0) 

exp 

2 2 kg x sin   0 
j(k1±k2)xq*2x(l-COS 9)   -     Mki±kg)        ±  kgy sin 0 -cD+t 

^K)(cOs0 ^P^PjgX     sin [kg x(1-|ose)] 

2p c " k-xCl-coB 0) 

(3.29) 

• exp i 

2 2 kp x sin   0 
(k1±k2)«:k2x(l.COS 0)   - l-^iy- ±  kgy sin 6 -aj.t 
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The solution in Equation (5'27) gives the second-order pressure for two 

plane waves Interacting over a half space.    The plane wave with frequency 

f1 propagates In the x direction from x = 0. 

The function (l + F) has a zero for 6 = 0 which cancels the 

singularity In p '. 

The pressure In Equation (5 •29) has an amplitude which Is pro- 

portional to x when 0=0.    This result is consistent with the result 

predicted by Iamb, * Berktay,      and Lauvstad and TJotta.        The directivity 

function is the same as found by Berktay for a parametric receiving array 

with a well collimated pump wave.    For a given value of x the pressure 

has a phase dependence on y of ± k-    sin 6. 

The second-order pressure Is seen to be cumulative even when 

0 # 0.    Therefore, we see that cumulative interaction does exist for an 

arbitrary angle of 6. 

C.     Solution of the Second-Order Wave Equation Using the Freefleld 

Green's Functions 

Since all of the problems of interest for parametric arrays do 

not have the simple geometries of plane waves, it is necessary to find a 

more generally applicable solution for the second-order wave equation.    We 

can Integrate the freefleld Green's function over the volume distribution 

of the source.    The freefleld Green's function is a solution for an 

58 unbounded medium of the equation 

Dg(ro|r) =- 5(ro-r) (j.JO) 

where ro = (xo, yo, ZQ) is the observer point, 

r    = (x, y, z)  is the  source point, and 
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6(? -r) = 6(x -x) 5(y -y) 6(z -z) is the delta function for tlvee 

dimensions.    Thus, g(r  |r) is the spatial solution for a simple harmonic 

point source at r and has the form 

ikR 

where R = Ir -rl    . 1 o    ' 

When ahsorptlon is present, the solution for Equation (5'30) can be 

modified by making the wave number complex.    We then have a freefield 

Green's function of the form 

(Jf -a)H 

where a is the absorption coefficient. 

A particular solution for the equation 

^    2 

■f P2 = ^H (^ -ä- ('•») 
p c at Ko o 

can be expressed in terms of the Green's function and has the form 

%(r't)=wT^yIF —vn—av (3-3') 
M
o o c/v o    ' 

where V is the volume of integration, 

r is a vector from the origin to the observation point, and 

? is a vector from the origin to the point of interaction. 

D.  A Solution for An Omnidirectional Pump Transducer 

The geometry used for the solution for an omnidirectional pump 

transducer is shown in Fig. J.l. The signal source is assumed to be far 

from the parametric receiver so that the low frequency wave approximates 
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FIGURE 3.1 
A PARAMETRIC RECEIVING ARRAY 

WITH A POINT SOURCE PUMP 
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a plane wave In the vicinity of the receiver. Then at the point (x, y, z) 

and a time t the sound waves can be represented in complex form as 

piiexpr^V^Vv/*+y^2"" ^] 
p - j yj R A (3.35) 

and 

P2 = P12exp[-(a2-jk2)(cos 0x + sin 0y)-Ju^t] (3.36) 

where a,, a« and k., kp are the absorption coefficients and the wave 

numbers at the frequencies ax. and OCL, 

P.^, is the amplitude of the pump pressure referred to 1 meter, and 

P^p is the amplitude of the plane wave signal. 

The direction of propagation of the signal wave is assumed to be 

parallel to the (x, y) plane. 

We find the sum and difference frequency components of p. to be 

.     F.-P^exp -OL >/x2+y2+za -a-{x cos 0 + y sin 0) 
(P,2). = J    1112      l    1 ,,/M   ^ ^       (3.37) 

Vx +y +z 

• expf^^ Vx+y+z    ± 1^ x cos 0 ± kp    sin 0) - j(ax.:to^)t j 

The source term is then given by 

 r —0- = JK^r r >w ^g   B t 

Poco     dt DOCO y/x +y +z 

•  exp -a2(x cos 0 + y sin 6)1 

. expjCl^/cHy+z    ± kgX cos 0 ± kgy sin 0) 

J- iioi^) tj 

(3.38) 

exp 
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The Integral Green's function solution for the second-order wave equation 

is then 
00 

J ((^±0^ f (l+g|) P-QP^     / / /exp -a^ >/**?+£ -ag(x cos 0 » y sin 0) 
P2 Ä      ^T5       ^     >/xW Ji*0-*)W 

"^ (3.39) 

. exp^-a± y/(xo-xf+y2+z2 + jC^A^+z2 ± kgX cos 0 ± y sin 0) 

. expl+ jCk^) >/(xo-x)Sf+y2+z2 - j(ü)1±^)t    Ixiyäa 

where a.  Is the absorption of the sum or difference frequency wave, and 

x   is the position of the observer. 

This rather complicated integral does not lend Itself to direct 

Integration.   For its evaluation we shall use an alternate method, 

commonly used in optics, which is known as the method of stationary phase. 

Single Integrals are frequently evaluated using this integral technique; 

however, double Integrals can also be evaluated by the method of stationary 

59 phase. 

The solution for the integral in Equation (3.39) is given in 

Appendix I.    To the author's knowledge, this use of a two-dimensional 

stationary phase solution is the first for a nonlinear acoustics problem. 

Thus, the integral over y and. z can be expressed in the following form 

// 
S (y,z) e^ k f^z) dydz        . (3.^) 

This integral can be evaluated by the method of stationary phase provided 

S(y,z) is a slowly varying function of y and z, and k f(y,z) is a rapidly 
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varying function of y and z. The contributions to the asymtotlc expansion 

59 of the Integral come only from certain critical points. ' The critical 

point of Interest for us Is the one within the region of Integration where 

1 = 1-°   ■ ('•"" 
This point represents the point on the wavefront of the second-order 

pressure at the interaction region which will eventually strike the 

receiver.    Fran Appendix A, we find that 

|| = 0 for z = 0 (J.'tö) 

and 

of     ^        Jkg sin e (x)(x0-x) 

where we have assumei that k. » k^.    We see that the coordinate of the 

critical point varies as a function of x. 

The second-order pressure is found to be 

"KV   ^ P11P]2        _ ,    +, p    =  ^ exp(jk±x -Jü)±t) 
Ko o 

exp   -a. x - a    (x cos 0) - a.  (x0-x)j 

x(Vx) [ik^ + Tv^l] 

[l^2 sin2 0    / 2 vl 
yjhgd-cos e)x + J   1        ^       f|-   - ^) Ux     (5.^3) 
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If we assume that a x(cos e) s oux and that the contributions from 

negligible, we have 

-(a±-J k±) xo-J ü)±tj 

x = -a» to x = 0 euad x = x   to oo are negligible, we have 

r,   ?-npio     exP 
P2 =-K) d^)-^f  — 

exp Jj 

(5.^) 
P c Ho o 

1 k^2 sin2 6 / 2       v"| 
dx 

or 

P2 S -(-,) (l+2-f) 
P11P12 exp[-(a±-J k±) xo-J a)±t] 

2p c 'x 
o o    o 

exp jj^kg x(l - cos e)]jdx 

.(co±)  (l+2-f) 
Bx P11P]2 exp[-(a±-J k±) xo-J a)±t] 

[ 
expUkg x (1 - cos 6) 

2p c ' Ko o 

-1 

+1^   X   (1  -   COB 0) 

-(ü)±)  (1+gf) Pj^^ exp 

(3.^5) 

•(a±-j k±) xoTj 
kp x (1 - cos 6) 

J ü>±t 

2p c - Ko o 

sin 
"kg xo(l - cos 0)' 

2 
1^ xo(l - cos 0) 

(3.1*5) 
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In the derivation of Equation (3A5), we have neglected the phase term 

2       2 . kg    sin    0  /. 2 

Tkpi^T K-) ■ 
This term has a maximum magnitude of 

(5.4?) 

2        2 
1^sine 

5  (k^)    xo   at x = 2" 

If we restrict the maximum allowed phase error to jr , we have 

(3.W3) 

2     2 
k^ xo sin^ 0 

< 2n (3.^9) 

This assumption could be removed from the integral answer by completing the 

2 
square in the exponent for x and x and making a change of variables. The 

result would be in the form of a Fresnel integral which is tabulated. This 

solution will not be included in the present analysis since the assumption 

in Equation (5.^9) will usually be valid for the cases of interest to us. 

The second-order pressure in Equation (3-^) has a magnitude of 

P = 

and a directivity function 

.   K) U+g|) Pngig exp [-(a±) xo] 

2p c ' Ko o 

D(0) = 
sin 

"kg xo(l - cos 0)'| 

2                 J 
kg xo(l - cos 0) 

(3.50) 

(3.51) 
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Except for absorption, the amplitude is independent of range. The 

directivity function is the same as that found by Berktay. 



IV.    THE SECOND-ORDER SOUND FIELD FOR SEVERAL CONFIGURATIONS 
OF THE PARAMETRIC RECEIVING ARRAY 

We shall now find the second-order sound preBsure for some 

simple pump configurations using the point-source solution found in 

Chapter III.    Since we are treating "small signal nonlinear" or 

"quasilinear" interactions, we can use the principle of superposition on 

either of the first-order sound fields.    In this case, we consider the 

interactions of a plane wave with an infinite number of spherical waves 

from point sources summed over the surface or volume of the pump source. 

Using this procedure, we have a simple means to solve parametric receiving 

array problems for a wide variety of geometrical configurations.   We shall 

only consider the case when the low frequency wave is a plane wave.    Other 

39 ^0 studies by Berkrtay and Shooter,      and Rogers et al.,     have considered 

cases in which the wavefront of the low frequency wave is spherical, 

because the signal source is placed a finite distance from the parametric 

receiving array.    In this analysis, we shall study only planar signal 

sound waves. 

We shall first consider a finite length line source pump 

transducer.    Two dimensions of the line source are small compared to 

the signal wavelength, and the other dimension Is on the order of a 

signal wavelength.    The theoretical and experimental results can be easily 

compared because the effects of shadowing of the low frequency signal wave 

by the pump transducer are minimized.    A coordinate system which is the 

same as that used in the following chapters for experimental work will be 

used.    We shall also investigate the effects of misalignment of the line 
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source transducer on the parametric receiving beam patterns. This 

analysis will also enable us to Investigate the problem of the scattering 

of sound by sound. We will be able to Investigate the directional 

properties of the second-order sound waves. This geometry will provide 

us with a means to observe the so-called "doppler angles" of the propaga- 

tion of the sum and difference frequency sound waves. 

In Section B, we shall consider the use of a line hydrophone to 

receive the second-order pressure wave generated by a point source and a 

plane wave. The  line hydrophone will have one dimension which is on the 

order of a wavelength at the signal frequency and two dimensions which are 

small compared to the signal frequency wavelength. In fact, for the 

experimental work, the line transducer used for the hydrophone will be the 

same one which is used as a pump in the line source pump experiment. 

Again, this geometry will enable us to study the effects of a misaligned 

receiver, and also to observe the properties of the second-order sound 

field. We can observe the "doppler angles" of the sum and difference 

frequency waves. Again we shall use a geometry which coincides with the 

geometry used for experiments. In each of the solutions in Sections A and 

B, the effects of the interactions at the real source are not Included. 

We simply use the scattering Integral solution over the volume of inter- 

action. We shall likewise Ignore the local pressure at the receiver. 

In Section C, the interaction of a plane wave and a pump wave 

generated by a pump transducer which has all three dimensions, which are 

small compared to the signal wavelength, will be considered. We shall not, 

however, restrict ourselves to the consideration of pump transducers with 

beam patterns small compared to the desired parametric receiving array 
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beamwldth. The small pump transducer Is of Interest to us because such a 

pump transducer would be used in most practical applications. With a small 

pump transducer, the ratio of array length to pump transducer size is 

maximized. The solution obtained will be valid for a range of pump 

transducers, varying from very narrow beam to very broad beam. In each 

case, the observer is assumed to be in the farfleld of the pump trans« 

ducer. However, the second-order pressure generated in the nearfield 

region of the transducer will be included in our solution. Likewise, the 

solution for a finite length line receiver will be valid only when the 

omnidirectional pump transducer is in the farfield of the receiving trans- 

ducer. A solution could be generated for the nearfield of the pump or 

receiving transducer using techniques similar to those used by Stenzel, 

Freedman,  and others. 

A.  Solution for a Line Pump Source 

The solution for a line source is obtained by integration of the 

point source solution over the length of the line. The geometry used for 

this solution is shown in Fig. k.l.    The line of length 2a is assumed to 

lie in the (x,y) plane. The propagation vector for the low frequency wave 

is also in the (x,y) plane. 

.     Then the first-order sound field at ax.  due to an elemental length 

b£ at T=Z of the line source can be expressed as 

Bp1(t) = —i ~ exppo^R-jkjR) + Ja^t] (k.l) 

where P... is the axial farfield pressure referred to 1 meter due to the 

line source. Along the x axis, the signal wave can be expressed as 
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p2 = P^ exppa2-jl52)r cos 0 + Ja^t] (4.2) 

This plane wave must be expressed in terms of the new coordinate system 

(r,0) which Is rotated by 0" and translated by (i,01)«    ^w position 

vector in the new coordinate system is 

?» [cos 0" (x-i sin 0') - sin 0" (y-i cos 0,)]l* 
I (M) 

+[sin 0" (x-i sin 0') + cos 0" {y-i cos 0,)U 

where i^ and J are the basis vectors for the new coordinate system.    The 

plane wave vector in the new coordinate system is 

1^ = kg cos(0"40)l*+ kg 8in(0"+0)J {k.k) 

and then kp'r is given by 

kg . r =1^ • r - kgi sin^+O1)    . (4.5) 

The plane wave pressure expressed in terms of £,9,0', and 0" is 

Pg = P^ expi-teg-jkgUr cos(0-^") + i sin(040,)]|       .      (4.6) 

Then from Equation (5-46) the sum and difference frequency sound pressure 

at L is 

(ü^+oOß?   P . v 
6p(L,0,0,,0") = -      ■      -H^-Bi exp<-0!oi 8±n(e+e') - (a.-Jk.)R> 

2a(2poco5) >   2 *   **    * 

.  explijkgi sin(040') T j -|- (i - cos(0-t0"))J 

fkpR 
sinl— (1 - cos(0+0")) 

• ■■■"*_ ■—■!■      ■!■■■ 1 

^- (1 - cos(0*?")) 

•a 
where ß = 1 + ^r- • 2A 
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Using the farfleld approximation for a line source, we have 

R = ~~7p£ SL- i sine' ik.S) cos e %     ' 

for the phase and amplitude terms of the elemental pressure. Then the 

elemental pressure can be shown to be 

2a(2poco
5) 

exp^^-jk^LJexp^JMfJiU.J^t] Bl^iG) 

(^.9) 

where 

A = ± ^ sinCe-^') ± ^ sin S' - k± sin 6'   , (4.10) 

C = ~ [-sin 01 + sinCe+e')]   , and (4.1l) 

M = ^ [L(l - cos 0)]   . (4.12) 

The total pressure can be obtained by integrating over i such that 

p(L,0,0') = ' "^ ß^lP^ expf-te.-Jk. )L] . ^ /      (4.13) 

exp[TjM + JA/] li|^l di        . 

If we assume that 8ln(MfiC)/M«-iC is a slowly varying function of M, 

/T & fll^      -((üi±ü^)ßpi1
Fig        f ,      41   VTT,M ,    .1 sin aA sin M       /k .kx p(L,0,0,) s ^ exp[-(a±-jk±)LTjM-Jü)±tJ —JJ j—-    .  (4.14) 

poco 
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The maximum amplitude for 0=0 is 

A  -(mL±^)ßP11P]2 
P = 

2p c ' 
o o 

exp[-(a±L)] (^.15) 

The approximation used in Equation (^.1^) can be eliminated by direct 

integration of Equation (^.15). 

The pressure can be expressed as 

p = 2a exp[+Jk±I*JM"«5(ü±tJ *   J    exvtiM]        . (^.16) 

lexpL.KMfCi)] - exp[-.l(MfCi)]| 
2J(W-Ci) 0* ' 

and with a change of variables, we have 

yl y3 

= (2af(2C) exp[+jk±LTjM - ^]   -j[ci(y2) - Ci(y1) - Ci(y4) + Ci^)] 

+ [si(y2) - SlbJ - Si(y^) + Si(y5)| (^.17) 

where Ci(y) is the cosine integral, Si(y) is the sine integral, 

y1 = i&l (M-aC)        , 

y2 = I^i (^aC)        , 

= ik£l (M-aC)        , and 
(^.18) 

yk = ^ (M+aC) 
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In order to evaluate the cosine Integral in the case when a pair 

of the y. 's eure zero, the limit as each y. approaches zero must be taken 

In order to obtain a solution. Likewise, If any y equals 0 over the range 

of Integration, Cauchy's Integral formula must be used to obtain the value 

of the integral. 

Computed results using Equation (^.17) will be presented In 

Chapter VI. The basic properties of a parametric receiving array using 

a line source pump can best be seen by an examination of Equation (^.1^). 

The amplitude is seen to be independent of range except for absorption. 

This result is subject to the condition that ve are in the farfield of the 

pump transducer. However, the interaction from the nearfield region of 

the transducer is included in the result. 

Further examination of the expression for the second-order 

pressure indicates that we have a directivity function which is a product 

of two functions; one function is -S-S— , where M = 5- L(l - cos 6), 

which is the directivity function of an end-fire array of length L. This 

function is the same as the directivity function for two plane waves 

sin AA 
interacting over some distance L. The second function   .  , where 

kp k, 
k = ± ■—■ sinCe-^') ± ^ sin 9' - k±sln 0'   , 

is an interesting one because this function Includes both 0 and d*.    For 

the case when 0=0 the dependence of the directivity function on 0* is 

the same as that of the original pump wave.    This result does not agree 

with the results of a previous investigation by Rogers et al., in which 

the second-order sound field was predicted to have the properties of the 

pump wave as if it were operated at the sum or difference frequency.   We 
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shall examine this result further in Chapter VI when It Is compared to 

experimental data.   With further examination of the expression for A ve 

see that the array directivity function as the angle 0 Is changed will be 

modified for various values of d*.    This result is also in conflict with 

the result predicted by Rogers et al.    This result vill also be compared 

extensively with experimental data since it allows us to examine the 

problem of scattering of sound by sound when the two waves are propagating 

at nonzero angles. 

When 6' is zero, we observe that the low frequency directivity 

of the parametric receiving array will be modified slightly by the 

expression 

sinaA 
aA * 

This modification is less than one might intuitively expect.    The reduction 

in the side lobes is less than that produced by taking the product of the 

directivity function of the end-fire array and directivity function of the 

pump at the signal frequency. 

B.      Solution for a Line Hydrophone and, a Point Source Pump 

As in the previous example, we shall use the point source 

solution as a starting point.    In the solution for the point source pump, 

a small point receiver is assumed.    Using the geometry shown in Fig. 4.2, 

we shall consider response of a line hydrophone of length 2a consisting 

of an infinite number of point receivers lying in the (x,y) plane.    The 

propagation vector for the low frequency wave is also in the (x,y) plane. 

The receiving sensitivity due to an elemental length bl at r is 

2a 

M (a>)Bi 
&M» = -%-  (4.19) 
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vhere M (a)) is the receiving response of the line in volts per micropascal 
c 

to a plane wave of frequency CD propagating in a direction perpendicular to 

the line. 

The high frequency pump vave has the form 

Pil pll = J IT exp[-(a1R-Jk1R)-Ja)1t] (4.20) 

vhere P.^^ is the farfield pressure referred to 1 meter.    The signal wave 

at (r,0") can be expressed as 

p^ = P^ exp[-(a2-j]s2)r cos{e-e")-ia^t]     . (4.21) 

The second-order pressure at (r,0") is 

P2(R,9") - ^Oj pp^^ 
'"o 0 

• exp|-(o±.Jk±) R ± Jk^R (1 - !&&£} . jm±t j (lt.22) 

Again using the farfield approximation, we have 

i " = ^X2|^ . L - i sin .• (4.a5) 

for the phase and amplitude term. The elemental voltage generated by the 

second-order sound pressure is 

M&i    UioüßP   P 
BE - - -|- 1^      g11 ^ (^.24) 

2poCo 

. exp[-(a±-jk±)L-Jcat 

.e*p(TJ^lL(l.cose)l+JB<).£i§iÄi£i 
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where 

B = ± -^ 8in(0-0') ± Jkg £f£- - k± sin 0«        , (4.25) 

D = I-sln 0,+Bin(0-01)]        > and (^.26) 

M = ^ [L(l - cos 0)]        . (4.27) 

The total voltage can be obtained by integrating over i, yielding 

E 
(ü3 ±aOßP   P 

= _      L   *      Li u ^ exp(-(a±-Jk±)L-Jü)±t| 
2p c Ko o 

. fe £ explj^JB/] ^jSl *,        . (,.28) 

If we assume that —n+tr)     i8 a slowly varying function of t, we have 

E s - ~-L~Z i± ^ c exp|-(a±-jk±)LTjM-Ja)±t| 
2p c 

o o 

sin aB sin M 
aB M (^.29) 

The maximum amplitude for 0 = 0 is 

Emax = -      ^      1 eXP {^±L]        ' ^0) 
K
o O 

The approximation used in Equation (4.29) can be eliminated by 

direct integration of Equation (4.28). 
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The received voltage can be expressed as 

E 
E = -gi expj+JkjLTjM-Jajjt ] (lt.3l) 

.    f exp[JBil{^J^)](^t-,1(^)lj6/ 
"ft 

and with a change of variables we have 

E 
E = 2STST exp[+Jk±LTj^j f- - Ja)±t ] (4.32) 

- j[Ci(y2) - Ci(y1) - Ci(y4) + Ci(y5)] 

+  [Si(y2)  - 31(7^  - Si(y]+)  + SiCy^)] 

where Ci(y)  Is the cosine lru.egral,  Si(y) is the sine integral, 

y1 = i^i (M-aD)        , 

(4.33) 

y2 = i^l (M+aD)       , 

y, = -^—^ (M-aD)        , and 

yk = M. (MfaD) . 

The solution for a line receiver is very similar to the solution 

for the line pump.    However, upon examination of Equation (4.29), we note 

that there is an important difference.    The beam pattern obtained by 

varying 0' with 0 = 0 is the same as that obtained by the line receiver at 

the sum or difference frequency.    When 0'  is equal to 0, the parametric 

receiving array beam pattern is the same as that found for a line source 

pump.    These properties will be demonstrated in Chapter VI when we 

compare the experimental and theoretical results. 
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C.      ttolutlons for the Parametric Receiving Array for Pump Source with 
T\TO Finite Dimensions        " ' 

We shall now consider the Interaction of a pump wave produced by 

a rectangular piston with one dimension which is small compared to signal 

frequency wavelength, and a second dimension which can be a wavelength 

or more at the signal frequency.    The planar radiator with dimensions 2a 

and 2b Is assumed to have an angle 0' with respect to the plane x = 0 

as shown In Pig. ^.J.    The observer Is In the plane z = 0.    From 

Equation (4.17), the solution for an elemental area of length 2a and 

height 5z for z = 0 Is 

6p = Wihc H-(vJk±> w* - ^ - J^l I 
•   |-j[Ci(y2) - Ci^) - CKy^) + Cl(y5)] {k.^k) 

+ [Si(y2) - Sl(y1) - Sl(y^) + Sl^)] | 

where y.  Is as defined in Equation (4.l8). 

If 2b is small compared to wavelength, the contributions from 

the various elemental areas 2a 8M will be equal for a given 5M In the 

farfleid of the radiator since R' s L and 0' " s 0 for small values of M. 

The total pressure is the same as that found in Equation (4.17). 

If 2a is small compared to the signal frequency wavelength, 

(CD ±ü^)ßP   P.^                   ..v Wx4M A   ^-1      sin aA sin M /k ,,.x 
P= ^ exp[-(a±-Jk±) LFjM-ja^tj . —^ JJ—     .  (4.35) 

po o 

We shall now consider a circular piston pump transducer with a 

radius which Is small compared to a signal frequency wavelength.    The 

geometry for this solution is shown in Fig.  k.k.    Again we shall use the 
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solution for a line source as a starting point.    In the farfield R1  is 

approximately equal to L, and the pressure contribution from a line source 

n*—sr of length va -z    and width of 5z is given by 

(■^ 
0   O 

[i~    i,   T-L. ^    J.\      sin M      sin va - z^ A exp -(a±-jk±L+jM-Jü3±t) . —-jj— •  —y^j        ^ 
I      ~ va    - z   A 

6z 

f^2)' 
(^.37) 

where I     _ lis the normalization for the area fecund by integrating 
\     nad     / 

the imremental area over 6/ such that we have 

va - z 

We now consider the Integral 

a   2 sin   y/a2 - z2 A 

/' 2 
-a A II a 

With a change of variables, this integral is 

dz 

/'   t sin  (t a A) dt 

aHA s/TTF 

Thic  Integral can be evaluated using Sonine's integral described by 

Watson.  5    This integral is a definition of a Bessel function of order m 

and has the form 

'"■-"ttM-n)   •'o     n J-(x> = F^i / J-(xt) tn+1 (1-t2)n'n'1 at       <*-58) 
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where J (x) is a Bessel function of order M, 

r is the Gamma function, and 

J (xt) is a Bessel function of order n. 

For n - ö and M = 1> this integral has the form 

J.U) = § /   ) SH^ dt       . {k.39) 

Using Equation {^-39), we have 

The second-order pressure for a circular pump source is then found to be 

(cüiüUßP   P , 

M aA 

The amplitude of the pressure expressed in Equation (^.^l) is 

the same as that found for a rectangular piston transducer. The direc- 

tivity function is a product of the end-fire array function and the 
2 J^aA)                                 2 J^aA) 

function  rrr  .    The function   '    pA resembles the directivity 

function for a circular piston found in linear theory.    For the second- 

order sound pressure, A replaces the expression 1c.  sin 0'.    The properties 

of the parametric array receiving with a circular piston pump for various 

0 and 0* are seen to be very similar to these properties of a parametric 

receiving array with a square piston pump if we take into account the 

difference in the shape of each aperture. 



V. EXPERIMENTAL APPARATUS 

The experimental study of the parametric receiving array was 

conducted aboard the STEP Barge at the Applied Research Laboratories Lake 

Travis Test Station. This barge, designed for testing large sonar 

transducers, has heavy handling equipment available for moving and rotating 

large transducer arrays and electronic instrumentation to do acoustical 

and electrical performance testing on these transducers. 

The STEP Barge is moored in 100 ft of water on Lake Travis, a 

fresh water lake about 25 miles vest of Austin, Texas. 

The mechanical and electrical apparatus used for the parametric 

receiving array experiments is described in the following twc sections. 

A.  Mechanical Apparatus 

An overall view of the parametric receiving array is shown in 

Fig. 5«1» The parametric receiving array was suspended below the STEP 

Barge using an aluminum I-beam attached to a column which could be rotated. 

The low frequency source used to generate the signal wave was located on 

a second barge some 325 ft away from the center of the parametric 

receiving array. 

In Fig. 5-2, we see a close-up of the parametric receiving 

array. The beam used for supporting the two transducers was constructed 

so that the two ends could be lifted for removal or replacement of the 

transducers with the column in place in the water. Support brackets were 

mounted on either end of the I-beam for the placement of the two trans- 

ducers. The separation distance between the two transducers was 

58 



59 

z 
t 
tu 
Ui 

< 

Bö 
u 

5 



60 

>- 
< 
tx. 
< 
o z 
> 
LU 
U 
LU 
0C 

y 
CM  H 

ai 
ai < 
3 < 
O OL 
U. til 

X 
I- 

LL 
O 

3: 
LU 

Q 
UJ 

IO 

UJ o 



6l 

adjustable.    For the experiments described in the next chapter, the 

transducers were placed a fixed kQ ft distance apart and equidistant from 

the support column.    The support on one end of the beam had a small 

rotator.   The angle of rotation of the transducer mounted on this end 

corresponded to 0' in the theoretical model.    The I-beam was rotated by 

the column mechanically coupled to a synchro.    The angle measured by this 

synchro corresponded to the angle 0 in the theoretical model.    The two 

transducers for the parametric receiving array were mounted 6 ft below 

the I-beam in order to minimize the effects of acoustical reflections. 

The I-beam was supported 27 ft below the water surface, so that the 

parametric receiving array was 53 ft below the water surface. 

B.    The Measurement System for the Parametric Receiving Array 

An overall block diagram for the system used for the parametric 

receiving array experiments is shown in Fig. 5'3'    The pump transducer 

was driven by a power amplifier with a CW signal generated by a precision 

crystal oscillator.    The pump frequency remained fixed at 90 kHz throughout 

all of the experiments conducted in this study.    Special care was taken 

to ensure that the side band noise level generated by the power amplifier 

was low in order to achieve a good signal-to-noise ratio at the side band 

frequencies.    Figure J.k gives a breakdown of the receiving subsystem for 

the parametric receiving array.    The signal from the hydrophone was fed 

directly into a crystal not?h filter providing an 80 dB rejection of the 

carrier signal.    The signal was then amplified and fed into a second 

crystal filter to further remove the carrier frequency.    Two passive 

bandpass filters were used to select either of the side bands at the sum 

or difference frequency.    A sampling digital voltmeter measured the rms 
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FIGURE 5.3 
PARAMETRIC RECEIVING ARRAY BLOCK DIAGRAM 
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value of the side band signal at a specified time. For the calibration 

of the parametric receiving array, the voltage was read directly from the 

digital readout. Beam patterns were plotted on either a polar or rectan- 

gular plotter using the dc output of the sampling digital voltmeter. The 

dc output was also used with a portable voltohmmeter for the alignment of 

the various transducers during the experiments. 

A block diagram of the low frequency source subsystem is shown 

in Fig.  5«5'    A gated sine wave at the signal frequency was used to drive 

the farfield transducers.    Special low pass filters were used on the 

input and output of the power amplifier, thereby eliminating noise at the 

side band frequencies of the parametric receiving array.    The calibration 

of the parametric receiving array was achieved in several steps.    First, 

the transducers used for absolute sound pressure level measurements were 

calibrated using the 3-transducer reciprocity calibration procedure 

described by Bobber.        A block diagram for the system used for this 
1 

calibration is shown in Fig.  5-6.    The calibration of the transducers 

was made with the transducers in place in order to minimize the errors 

caused by transducer misalignment.    Two additional transducers were used 
i i 

to assist in the calibration: one was mounted on a movable trolley and 

the second was suspended by its cable at the center of the array. Since 

the crystal filter was coupled directly to the hydrophone, a second 

calibration was necessary to correct for the loading by the crystal 

filter. This calibration was accomplished using the comparison method. 

First, the open circuit voltage of the hydrophone was measured for a 

given acoustic pressure; then, the output voltage of the hydrophone, filter, 

and amplifier combination was measured at the various side band frequencies. 
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The low frequency signal pressure amplitude was measured using 

a low frequency standard hydrophone, also calibrated using the reciprocity 

calibration procedure. The low frequency signal had to be measured with 

great care because the signal propagated over a long distance to the para- 

metric receiving array, and had to be measured early In the pulse before 

reflections from the surface arrived. On the other hand, the mechanical 

Q of the source transducer Increased the rise time of the signal to 

several periods. Consequently, the number of cycles available for making 

a measurement was small. To ensure a good measurement of the low 

frequency signal, the sampling digital voltmeter was used In the PER 

INTEGRAL RMS mode. This mode makes the sample time an Integral number of 

periods at the signal frequency. The timing for this measurement is 

derived from a reference signal from the low frequency oscillator. The 

low ffequency standard hydrophone was placed immediately in front of the 

parametric receiving array as is illustrated in the overall system 

diagram (Fig. 5'l). 

While great care was used to make the acoustical measurements, 

it should be mentioned that errors as great as £2 dB could occur on any 

particular measurement because of uncertainties in the conditions in the 

medium. In our experiments, an attempt to improve this accuracy to better 

than i2 dB was made by calibrating the various transducers in situ and 

by measuring the rms value of the signals in integral number of cycles 

using a sampling digital voltmeter with a measurement resolution of 

±0.1 dB. These precautions still do not preclude the possibility of 

irregularities in the propagation medium. 
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Five types of transducers were used for the parametric receiving 

array experiments. They are as follows. 

1. A rectangular transducer l8 in. long and 3 In. high for a 

pump and a receiver transducer. 

2. A small standard transducer with an omnidirectional trans- 

ducer beam pattern for a pump and receiver transducer. 

5. A low frequency standard transducer. 

b.    A 4 in. piston transducer for a pump ana a receiver 

transducer. 

5. A broadband standard hydrophone. 

An additional description of these transducers is given in 

Appendix B. 



VI. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS 
FOR THE PARAMETRIC RECEIVING ARRAY 

We shall now examine the theoretical results of Chapters III and 

IV In light of some experiments on the parametric receiving array. The 

parametric receiving array for these experiments had a fixed length of 

k6 tt,  a limitation which was minimized by using various signal frequencies 

and various transducers for our experiments. 

Unfortunately, one cannot measure the interaction of two 

infinite plane waves experimentally to compare to the theoretical model 

of Chapter III. We can, however, observe experimentally a spherically 

spreading wave generated by a point source interacting with a plane wave. 

Perhaps this case represents the physical situation in which the theory 

might best predict the experimental results. We shall likewise examine 

the performance of the parametric array with a rectangular piston pump 

with one dimension on the order of a wavelength at the signal frequency 

and one dimension that was small compared to a wavelength at the signal 

frequency. This case is interesting because it allows us to look at the 

preferred angle of propagation of the second-order sound field as 

predicted by t  theory. The properties of a parametric receiving array 

using a line receiver were measured. A small piston pump was also examined 

to compare to the theory presented in Chapter IV. In each of these cases, 

the geometries of the theory and experiment were made to coincide, 

thereby facilitating comparison between the theory and experiment. These 

geometries are shown in Fig. 6.1. 

69 
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PUMP w 

SIGNAL WAVE wj 

(a )  A PARAMETRIC RECEIVING ARRAY 
WITH A LINE SOURCE PUMP 

.^ 

RECEIVER 

(b ) A PARAMETRIC RECEIVING ARRAY 
WITH A LINE RECEIVER 

FIGURE 6.1 
GEOMETRIES FOR THE PARAMETRIC 

RECEIVING ARRAY EXPERIMENTS 
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A.     Experiments Using a Point Source Pump 

A small transducer which was omnidirectional In the horizontal 

plane was mounted rigidly 6 ft below one end of the parametric receiving 

array I-beam.    On the opposing end of the I-beam, an assortment of 

transducers were mounted.    These transducers Included an omnidirectional 

transducer, a small piston transducer, and the rectangular transducer. 

Parametric receiving array beam patterns at 5 kHz for the omnidirectional 

pump transducer are shown In Fig. 6.2.    These beam patterns were made 

using the h in.  square piston transducer as the receiver.   Additional 

beam patterns using the line transducer as a receiver, with the omni- 

directional pump transducer, will be shown in Section VI.C. since our 

theoretical result showed that a large receiving transducer would modify 

the beam pattern. 

The result from Equation i^.h6) was used to calculate the 

theoretical beam pattern, and an HP 985O computer program was written to 

plot this result.    This program, listed in Appendix C, was also used to 

plot the theoretical beam patterns for the rectangular pump transducers. 

As can be seen, the theoretical model does predict the correct beam 

pattern for the parametric receiving array.    The major lobe width and 

side lobe height and bearing were very close to that predicted by the 

theoretical model.    This remarkable agreement between the theory sind 

experiment leaves little doubt that this model is accurate for predicting 

the performance with an omnidirectional pump.    However, the expression 

for the phase of the omnidirectional pump would not necessarily be 

verified by the excellent agreement of the amplitude.    Amplitude measure- 

ments were made for the omnidirectional transducer using the procedures 
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330° 

3308 

THEORETICAL 
 EXPERIMENTAL 

(a)   SUM FREQUENCY (b)   DIFFERENCE FREQUENCY 

FIGURE 6.2 
PARAMETRIC RECEIVING ARRAY BEAM PATTERNS 

USING AN OMNIDIRECTIONAL PUMP AT 5 kHz 
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described in Chapter V.    Experimental measurements were also made using 

an omnidirectional receiver.    The 3 dB beamvidth was found to be equal to 

that of the theoretical result.    However, the signal-to-noise ratio was 

too low to measure the side lobe levels. 

The sum frequency sound pressure level as a function of 

frequency is shewn in Fig. 6.3.    The sound pressure level has been 

normalized to the level Tor sound pressure levels of 0 dB re 1 uPa at 

1 m for the pump pressure and 0 dB re 1 ^Pa for the signal pressure at 

the receiver.    The theoretical curve for the sound pressure level was 

plotted using Equation (3.1*€) for 0=0. 

The amplitude of the measured sound pressure was corrected to 

take into account the finite distance to the position of the low frequency 

65 source.    This correction was predicted by Berktay and Shooter. y   Taking 

into account the spherical nature of the low frequency wavefront, the 

second-order sound pressure for 9=0 is 

P = —3 P^ exp[-(a±)x0] —T—      , 

^00 ^R; 

where R is the range of the low frequency source from the receiving trans- 

ducer.    For our experiment, the range correction was O.63 dB.    Berktay and 

Shooter also damonstrated that the discrepancies in beam patterns would 

be negligible it j > h- and the array was rotated about its center.    In our 

case, j was approximately 7»    For the computation of the sound pressure 

level, we used a value of 3.5 for (l + 57) as predicted by Beyer, 

66 
Coppens et al.,      for a water temperature of 70°F.    Unfortunately, as was 

mentioned in Chapter V, the basic experimental error could be as large 
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as 2 dB, were the number of pressure measurements made taken Into 

account.    However, since careful measurements were made at several 

frequencies, the overall accuracy could be Improve! somewhat.    The 

frequency response of the sum pressure Is seen tc have a frequency 

dependence of (uyfu^).    Some deviation In this dependence at the higher 

frequencies occurred due to a lower signal to noise ratio for the 

measurement signal caused by characteristics of the low frequency signal 

source. 

The difference frequency sound pressure level is shown in 

Fig. 6.k.   Again, this normalized sound pressure level has been corrected 

for the finite range of the low frequency sound. 

B.      Experiments on a Parametric Receiving Array with a Line Source Pump 

In the experiment described now, a rectangular source was used 

as an approximation to a line source to study the properties of the second- 

order sound field.    ThiB rectangular transducer was constructed with 

bizonal shading to reduce the side lobes.    The velocity of this type of 

acoustical source is not uniform across the aperture.    The center portion 

of the transducer moves with twice the velocity of the ends of the aperture 

for a given drive voltage.    This discrepancy between the theoretical model 

and experiment configuration will be eliminated by modifying the theory in 

Chapter IV to include the effects of bizonal shading.    The sum of the 

results of two rectangular apertures will be summed:    one is the full 

width of the transducer, generating a given farfield sound pressure level 

referenced to 1 m, and the second transducer aperture is smaller and has 

the appropriate length and amplitude weighting to give the approximate 

side lobe reduction of the active beam pattern.    The amplitude of the sum 
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of the two sound pressures was adjusted to be P, referenced to 1 m, tue 

value used In the theoretical result (Equations k.lk and ^.17).    The 

velocity amplitude of the center portion of the aperture was adjusted so 

that it had twice the velocity of the outer portion of the aperture.    The 

fact that the correction for the shading cap be easily made demonstrates 

the versatility of the theory that has been developed.    The beam pattern 

for the narrowbeam pump transducer at 90 kHz is shown in Fig. 6.5.    The 

results are plotted in rectangular coordinates to enhance the comparison 

between the theory and the experiment.    The beam pattern was obtained by 

varying 0' and observing the pump signal.    The bizonal shading   of the 

transducer causes the usual beam pattern to be somewhat modified with a 

broader beam and lower side lobes for a given aperture.    In this 

particular example, an outer aperture of I.38 ft and an inner aperture of 

O.78 ft was used. 

An oscilloscope waveform of the sum and difference frequency 

side bands observed at the output of the second crystal filter is shown 

in Fig. 6.6(a).    The signal frequency is 5 kHz and the pump frequency is 

90 kHz.    The pulse envelope of the difference frequency side band signal 

is shown in Pig. 6.6(b). 

The sum and difference frequency sound pressure levels as a 

function of frequency are shown in Fig.  6.7 and Fig. 6.8.    Again, the 

sound pressure level has been normalized for the sound pressure level of 

0 dB re 1 |iPa at 1 m for the pump pressure and 0 dB re 1 uPa for the 

signal pressure at the receiver.    The correction for the finite range of 

the low frequency source was again incorporated in the result.    The 

agreement between the theory and experiment was excellent.    A value of 5 
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    THEORETICAL 
 EXPERIMENTAL 

ANGLE e'-deg 

FIGURE 6.5 
LINE SOURCE PUMP BEAM PATTERN 



(b) DIFFERENCE FREQUENCY SIDEBAND 

FIGURE 6.6 
SIDEBAND SIGNALS AT THE OUTPUT OF THE CRYSTAL FILTERS 
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was used for E/A.    Difference frequency beam patterns of the parametric 

receiving array at signal frequencies of 3 and 5 kHz are shown in Fig. 6.9. 

Sum frequency beam patterns were found to be very similar to the difference 

frequency beam patterns and therefore are not shown for signal frequencies 

of 3 and 5 kHz«    A sum frequency beam pattern for a signal frequency of 

9 kHz is shown in Fig.  6.9(c).    The theoretical result from Equation (^.l?) 

was used in an HP 9830 basic computer program; this program is given in 

Appendix C.    Some inconsistency was observed in the experimental beam 

patterns, the side lobes and the symmetry being somewhat irregular in some 

cases.    This irregularity is believed to be due to the presence of the 

support structure and the rotator.    Even with this experimental difficulty, 

the agreement between the theory and the experiment is seen to be good. 

Since the result given in Equation  (^.l^)  is considerably simpler 

them that of Equation (^.17), a comparison between these two theoretical 

results is shown in Fig. 6.10 at three signal frequencies at 0=0.    The 

comparison between the two results indicates that for 6=0 sufficient 

accuracy is achieved by using the simpler equation (Ecjuation ^.l^).    The 

accuracy of Equation (^.1^) will be examined further when the parametric 

array beam patterns with the pump transducer misaligned are considered. 

The second-order sound pressure as a function of ö' for the sum 

and difference frequencies with a > kHz signal frequency is shown in 

Fig. 6.11.    The experimental bean pattern was plotted carefully on 

rectangular chart paper with an angular scale of 3°/in. to ensure adequate 

angular resolution.    The agreement between the theory and experiment was 

excellent.    Equation (^.l1*) was used to generate the theoretical result. 

The experimental difference frequency beam pattern is compared to the 

OJa'tK. .■«^■'W-k •— ■ 
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ANGLE 9' - deg ANGLE 6'- deg 

(a)   SUM FREQUENCY (b)   DIFFERENCE FREQUENCY 

FIGURE 6.11 
BEAM PATTERNS FOR THE SUM AND DIFFERENCE FREQUENCY 

SOUND FIELDS AS PUMP ANGLE (8') IS VARIED 
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experimental pump beam pattern In Fig. 6.12. The difference frequency 

beam pattern has the same beamwldth, within experimental error, as the 

pump beam pattern. 

A series of measurements were taken with the pump misaligned. 

The pump bearing (01) was adjusted to the 3* 6, or 10 dB downpolnt on the 

pump beam pattern. The sum and difference frequency parametric array beam 

patterns for a signal frequency of 5 kHz with the pump misaligned to the 

-3 dB point (e'sl.a) are shown in Fig. 6.15. The sum and difference 

frequency beam patterns are no longer Identical or symmetrical as they 

were for 0'=O, nor is the maximum for the major lobe at 0=0. One side 

lobe on each beam pattern was higher ihan the other side lobe. The 

theoretical beam patterns were computed using Equation {k.l'j).    The sum 

and difference frequency beam patterns for the pump beam at -6 dB 

(0,=-1.6), and -10 dB (0,=-2.O) are shown in Figs. 6.lh and 6.15. Again, 

the two theoretical results (Equations h.lk and ^.1?) are compared for 

0,=-1.6 in Fig. 6.16. In each of these beam patterns we see that the 

angle 0, for which the array response is a maximum, is steered toward the 

direction 0' is rotated for the difference frequency and away from the 

direction 0' is rotated for the sum frequency. This property of the sum 

and difference frequency sound fields is related directly to the idea of 

"doppler" angles. These results Indicate that the sum frequency sound 

field propagates in a slightly different direction than the original pump 

sound field, whereas the difference frequency sound field propagates in 

the same direction as the original pump wave. This result can be 

demonstrated more dramatically with an appropriate coordinate transforma- 

tion. This will be done after discussing 0 beam patterns with 0^0. 
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PUMP (90 kHz) 
 DIFFERENCE FREQUENCY 

ANGLE 9'- deg 

FIGURE 6.12 
COMPARISON OF THE DIFFERENCE FREQUENCY SIDEBAND BEAM PATTERN 

WITH THE PUMP BEAM PATTERN AS THE ANGLE (9') IS VARIED 



88 

THEORETICAL 
EXPERIMENTAL 

(o)   SUM FREQUENCY (b)   DIFFERENCE FREQUENCY 

FIGURE 6.13 
PARAMETRIC RECEIVING ARRAY BEAM PATTERNS 

WITH PUMP MISALIGNED (0'= 1.2°) 



89 

  THEORETICAL 
 EXPERIMENTAL 

(a)   SUM FREQUENCY (b)   DIFFERENCE FREQUENCY 

FIGURE 6.14 
PARAMETRIC RECEIVING ARRAY BEAM PATTERNS 

WITH PUMP MISALIGNED (©'= -1.6°) 
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330» 

(a) SUM FREQUENCY (b) DIFFERENCE FREQUENCY 

FIGURE 6.15 
PARAMETRIC RECEIVING ARRAY BEAM PATTERNS 

WITH PUMP MISALIGNED (0'= -2.0°) 

/ 
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EQUATION 4.17 
EQUATION 4.14 

(a)   SUM FREQUENCY (b)   DIFFERENCE FREQUENCY 

FIGURE 6.16 
COMPARISON OF THE TWO THEORETICAL RESULTS FOR 

PARAMETRIC RECEIVmG ARRAY BEAM PATTERNS FOR ©'=-1.6° 
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Beam patterns with varying 0' for 0=7°,  10°, and 15° for a 5 kHz 

signal frequency are shown in Figs. 6.17, 6.18, and 6.19.    The value for 

the maximum sum and difference frequency sound pressures is seen to he 

slightly different than zero.    For the sum frequency, the maxima were at 

e'=0.250, O.J0, and 0.^° for 0=7°, 10°, and IJ0, respectively.   For the 

difference frequency the maxima were at 0,=-O.25,  -O.J, and -0.^5 for 

0=7°, 10°, and 15°, respectively.    The angle 0=13° corresponded to the 

angle for the first side lohe.    The value for the maximum response for 

0=0 is marked on each plot. 

Doppler angles using the geometry shewn in Fig. 6.20 will now he 

examined.    The second-order sound field will be observed at a point (L,^1)« 

The angle of the low frequency plane vector with respect to the axis of the 

pump beam pattern is 0.    Plots of the theoretical sound field for the sum 

and difference frequency components as a function of 0', with 0=5° and 

0=7°, are shown In Fig.  6.21.    The signal frequency is 5 kHz and the pump 

frequency is 90 kHz.    The sum frequency sound wave is seen to propagate 

with a maximum value at 0,=O, as for 0=5° and 0,=O.i*-0 for 0=7°.    The 

difference frequency sound wave propagates in the same direction as the 

pump wave. 

In light of excellent agreement between the theoretical and 

experimental results, there is little doubt that any significant difference 

would be observed for an experiment done using the coordinate system shown 

in Fig. 6.20.    We see that our theory and experiment is consistent with 

the idea of interaction occurring c'o nonzero angieß between the direction 

of propagation of the two waves.    Furthermore, we see that the "doppler" 

15 ^9 angles predicted by Pridmore-Brown and Ingard,     Dean,      and Lauvstad and 

—       50 
TJotta,  can Indeed be observed. 

^ 
/ 

./ 



93 

ANGLE 9'-deg ANGLES'    d.« 

(a)   SUM FREQUENCY (b)   DIFFERENCE FREQUENCY 

FIGURE 6.17 
BEAM PATTERNS AT THE SIDEBAND FREQUENCIES FOR 9 = 7° WITH VARYING fl' 
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ANGLE 8' - deg 

(a)   SUM FREQUENCY (b)   DIFFERENCE FREQUENCY 

FIGURE 6.18 
BEAM PATTERNS AT THE SIDEBAND FREQUENCIES FOR 9=10'' WITH VARYING G' 
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ANGLE 0' - deg 

(o)   SUM FREQUENCY 

ANGLE 9' - deg 

(b)   DIFFERENCE FREQUENCY 

FIGURE 6.19 
BEAM PATTERNS AT THE SIDEBAND FREQUENCIES FOR 9 • 13' WITH VARYING 6' 
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OBSERVER 

PUMP 
TRANSDUCER 

SIGNAL 
FREQUENCY 
WAVE 

FIGURE 6.20 
GEOMETRY FOR THE EXAMINATION OF THE DOPPLER ANGLES 

A 
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ANGLE 9'-dag 

FIGURE 6.21 
SECOND-ORDER SOUND FIELD FOR A RECTANGULAR PUMP 
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C.      Experiments on the Parametric Receiving Array vlth an Omnldlrectlona'L 
Pump and a Line Receiver 

We shall now reverse the high frequency transducers and examine 

the properties of a parametric receiving array wlih a narrow/beam receiver. 

We first examine sum frequency beam patterns for the parametric receiving 

array at e'sO.    The beam patterns vlth signal frequencies of 5 and 9 && 

are shown in Fig. 6.22.    These beam patterns are very similar to those 

for a narrovbeara pump.    Equation (^.52) was used for calculating the 

theoretical beam patterns.    The agreement vlth the theoretical results vas 

excellent.    The support for the omnidirectional transducer vas a thin rod 

vhlch did little to affect the low frequency sound field. 

Difference frequency beam patterns vlth the receiver misaligned 

to the 5 dB {$'=±1.5°) and 6 dB (0^1.7°) points at a signal frequency of 

5 kHz are shown in Figs. 6.25 and 6.2^, respectively.    These beam patterns 

resemble those found for the narrowbeam pump.    The theoretical beam 

patterns were generated using Equation {k.yz).    The array beam pattern at 

the stun frequency for the narrowbeam receiver at -3 dB (0'«l.l) and at 

-6 dB (©'=1.55) are shown in Fig. 6.25- 

Beam patterns obtained by varying 0' with 0=0 are shown for the 

sum and difference frequencieui in Fig. 6.26.    There is an important 

difference in these beam patterns from the original pump beam patterns. 

The beamwldth of these patterns were found to be that of the receiver at 

the sum and difference frequencies rather than at the pump frequency, as 

was observed with the narrowbeam pump.    The theoretical results were 

plotted using Equation (^.29). 

Receiver beam patterns vith varying 0' vith an array angle of 

0=7° and 13° are shown In Figs. 6.27 and 6.28, respectively.    Again, a 
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330* 30* 330 

THEORETICAL 
 EXPERIMENTAL 

(a)   5 kHz SUM FREQUENCY (b)   9 kHz SUM FREQUENCY 

FIGURE 6.22 
SUM FREQUENCY PARAMETRIC RECEIVING ARRAY BEAM PATTERNS 
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(o)  ö' = 1.3° DIFFERENCE FREQUENCY (b) B'- -1.3° DIFFERENCE FREQUENCY 

FIGURE 6.23 
DIFFERENCE FREQUENCY ARRAY BEAM PATTERNS 

WITH THE RECEIVER MISALIGNED BY 9' 

/ 
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330 

THEORETICAL 
 EXPERIMENTAL 

(a) ö'=   1.7° DIFFERENCE FREQUENCY (b) Ö'= -1.7° DIFFERENCE FREQUENCY 

FIGURE 6.24 
DIFFERENCE FREQUENCY ARRAY BEAM PATTERNS 

WITH THE RECEIVER MISALIGNED BY 0' 



102 

30° 330 

   THEORETICAL 
 EXPERIMENTAL 

(a)   »'= 1.1° SUM FREQUENCY (b) B' = 1.53° SUV FREQUENCY 

FIGURE 6.25 
SUM FREQUENCY ARRAY BEAM PATTERNS 
WITH THE RECEIVER MISALIGNED BY 9' 

) 
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ANGLE S'-deg 

(o)   SUM FREQUENCY 

ANGLE S'-d«g 

(b)   DIFFERENCE FREQUENCY 

FIGURE 6.26 
SIDEBAND RECEIVER BEAM PATTERNS FOR 0=0' 
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I 

ANGLE S'-dtg 

(a)   SUM FREQUENCY 

ANGLE e'-deg 

(b)   DIFFERENCE FREQUENCY 

FIGURE 6.27 
SIDEBAND RECEIVER BEAM PATTERNS FOR B - V 
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ANGLE S'-iUg 

(o)   SUM FREQUENCY 

ANGLES'-d«B 

(b)   DIFFERENCE FREQUENCY 

FIGURE 6.28 
SIDEBAND RECEIVER BEAM PATTERNS FOR 6 - 13° 
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slight change in the angle 0' for the maximum was slightly different 

than zero. 

D,     Experiments on the Parametric Receiving Array vlth a Snail Pump 
Transducer 

A small transducer with a measured beam pattern at 90 kHz as 

shown In Fig. 6.29 was used for the pump transducer.    The beam pattern for 

the transducer was found to be very similar to that of a ^ in. x ^ in. 

square aperture used for the theoretical result in Fig. 6.29.   A beam 

pattern for the parametric array with a signal frequency of 5 kHz ie 

shown in Fig. 6. JO.    As with the narrowbeam pump transducer, some irregu- 

larity in the beam pattern was observed.    This irregularity is attributed 

to the presence of the rotator and mounting structure.    Equation (^.29) 

was used to generate the theoretical beam pattern.    The stun frequency beam 

pattern obtained by varying 0' with the array aligned with the signal wave 

is shown in Fig. 6.31.    Again, Equation (^.29) was used to generate the 

theoretical result.    The beam pattern closely resembles that of the pump 

transducer operated at 90 kHz as is predicted by the theory. 
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—  THEORETICAL 
 EXPERIMENTAL 

FIGURE 6.29 
PUMP BEAM PATTERN 
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330 

  THEORETICAL 
 EXPERIMENTAL 

FIGURE 6.30 
SUM FREQUENCY PARAMETRIC ARRAY BEAM PATTERN 
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   THEORETICAL 
 EXPERIMENTAL 

FIGURE 6.31 
SUM FREQUENCY BEAM PATTERN WITH VARYING 0' 



VII.    SUMMARy AMD CONCLUSIONS 

Two objectives were undertaken In this study of the parametric 

receiving array.    They were (l) to relate the parametric receiving array 

to the problem of interaction of sound by sound at nonzero angles, and 

(2) to find a solution for the second-order sound field for a parametric 

receiving array irlth pump sources which ranged from omnidirectional to 

very narrowbeam acoustic generators.   Each of these objectives was 

accomplished using the perturbation solution developed by Westervelt.    The 

second-order sound pressure was obtained by solving an inhomogeneoue 

wave equation with a source function expressed in terms of a product of 

first-order sound field variables.    In the derivation of the wave equation, 

the effects of viscosity and thermal conductivity were ignored.    The 

effects of absorption were Included In the expression of the first-order 

field variables. 

Thti Interaction of two plane waves over all space in a lossless 

medium was considered In Chapter III.   Westervelt's 1957 result was 

reproduced.    This result predicted an Infinite sound pressure when the 

two plane waves are propagating in the same direction.    When the sound 

waves are not propagating in the same directions, the second-order sound 

field was found to be a function of the local value for the first-order 

sound field.    A more reasonable solution was then obtained by placing a 

boundary condition on one of the sound fields.    For the parametric 

receiving array, the sound wave with the boundary condition was assumed 

to have a frequency f-, such that f   was considerably greater than 

110 
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t , the signal frequency.    This case represented a parametric receiving 

array with an Infinite planar piston source for a pump.    The second-order 

sound pressure was found to be proportional to the distance of the observer 

from the planar boundary and hrl the directivity function of a truncated 

end-fire array.    Berktay observed a similar result for the parametric 

receiving array with the receiving transducer in the nearfleld of the pump 

transducer.    The same end-fire function was predicted for an omnidirec- 

tional pump transducer in our study.    The Interaction of sound with sound 

was also considered in Chapter VI when we observed the properties of the 

second-order sound field at nonzero angles for the array.   A modified form 

for the doppler angles was predicted by the theory and observed by the 

experiment.   The form for the doppler angles was modified because the high 

frequency pump wave propagated as a spherical rather than a planar wave. 

In the present study, the observer was always in the region of Interaction. 

It can be concluded that cumulative interaction of sound by sound at 

nonzero angles does occur within the zone of interaction.    No conclusion 

about the presence of a second-order sound wave outside the region of 

interaction can be drawn since, strictly speaking, the observer was always 

in the zone of interaction. 

An Interesting special problem, the parametric receiving array 

with a point source pump, was solved in Chapter III.    This solution is of 

particular significance for two reasons (l) this case represents a 

situation which can be modeled both theoretically and experimentally, and 

(2) the solution can be used to solve parametric receiving array problems 

with more complex pump source distributions.    In our analysis, it has been 

assumed that the pump wave and signal wave amplitudes are small enough to 
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use a small-signal nonlinear acoustics or quasillnear solution to the 

problem. The point source solution was used as a starting point to 

obtain the solution for a line source pump. This summation was legitimate 

only because the amplitude of the pump wave was assumed to be small enough 

to preclude finite amplitude attenuation of the pump wave. The effects of 

absorption were Included in the description of the flrpc-order sound field. 

The solution for the point source pump wave was obtained using a two- 

dimensional stationary phase integral evaluation technique. This approach 

represents an interesting new means to solve three-dimensional nonlinear 

acoustics problems. TQ the author's knowledge, this application of the 

two-dimensional Integral technique is the first for a nonlinear acoustics 

problem. The parametric receiving array with a point source pump was 

found to have a directivity function equal to that of an equivalent 

end-fire array. When the pump source was misaligned with respect to the 

receiver, the directivity function was dramatically changed. The beam 

patterns found by rotating the pump with the array aligned with the low 

frequency sound field was found to be almost identical to that of the pump 

operating at the pump frequency. These prpperties of the parametric 

receiving array with a line source pump were observed both theoretically 

and experimentally. 

The line transducer was used as a receiver with an omnidirectional 

pump source. Again, the array beam patterns were found to be narrower 

with lower side lobes than the equivalent end-fire array. Beam patterns 

observed by rotating the receiver transducer were found to be the same as 

beam patterns made at the sum or difference frequency. Again, the 

theoretical and experimental results agreed closely. 

1 
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When a transducer with dimensions small compared to a signal 

wavelength was used as a pump transducer, the properties of the parametric 

receiving array were only slightly different from those predicted by 

32 55 59 ko Berktay and Al Temimi,    '" Berktay and Shooter,      and Rogers et al. 

In this study of the parametric receiving array, only the 

cumulative contribution to the second-order pressure was considered.    The 

second-order effects at the pump and at the receiver were ignored.    Since 

the parametric receiver offers potential usefulness as a low frequency 

narrowbeam receiver, additional analysis of these local pressure terms is 

recommended since these terms could reduce the directivity of the parametric 

receiving array.    The effects of noise at the side band frequency has not 

been considered In the present study.    Side band noise will be generated 

by the electronics associated with both the pump and receiver.    Further- 

more,  side band noise will be generated if the direct or reflected acoustic 

path length from the pump to the receiver varies with time.    The amplitude 

of this side band noise needs to be determined under the actual conditions 

in which the parametric receiving array is considered for use. 

The effects of irhomogeneiti^s on the water medium likewise 

needs to bp considered.    Inhomogene it les In the region between the pump 

and receiver could reduce the amplitude of the desired side band pressure 

and also degrade the beam pattern of the parametric receiving array. 

It Is hoped that this study has laid a firm foundation for the 

understanding of the parametric receiving array with various pump and 

receiver transducers.    Likewise,  it is hoped that this work has shed some 

light on the problem of sound scattered by sound. 



APPENDIX A 

TWO-DIMENSIONAL STATIONARY PHASE SOLUTION OP THE SCATTERING INTEGRAL 

In Section D of Chapter III, we had the Green's function Integral 

solution 
v2 

"-■Tr^lr(ltac)I,iiI>
12 

Irflp c o o 

' ISJTTTfTFT^rT^ (A'l> 

• exp ^vx   + y   + z    - a2(xo cos 0 + y sin 0) - a±>/(xo-x)2 + y^ + z    I 

• exp JC^VX   + y   + z    ± 1^ x cos 0 ± 1^ y sin 0) 

.  explj(k1±k2)\/(xo-x)2 + y2 + z2 - jCo^^Hj axdydz 

For a given value of x, the Integrand amplitude term is a slowly varying 

function of y and z.    On the other hand, the phase varies rapidly with y 

and z.    These properties of the integrand suggest the use of the method of 

stationary phase. 

Double integrals of the form59, ^ 

Jfs{v,z)e^>z) dydz (A.2) 

can be evaluated by the method of stationary phase provided S(y,z) is a 

slowly varying function of y and z,  and kfCy^z) is a rapidly varying 

function of y and z. The contributions to the asymtotic expansion of the 

11^ 
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Integral come only from regions In the vicinity of certain critical points. 

There are three types of critical points.    The critical points of interest 

for our problem are those within the domain of integration at which 

35F = "51 = 0 (A-5) 

Then near the critical point (y iO we can expand f(y,z) in a Taylar 

series such that we have 

f(y,2) = f(y0ia0) + \ a(y-y0)
2 + | ß(z-z0)

2 + 7(y-y0) (z-z0) , (A.M 

where 

—o   *       P - —! 
^y2       02' 

0 = -T   '   ß-rl   '   ^^ 

the partial derivatives all being evaluated at (y ,z ). We can now choose 

new variables of integration such that 

f(y»z) = f(y0^0) + | a 2 + | ßn2 + rln (A.5) 

The asymtotic approximation to Equation (A.l) is 

S(VZ0)eikf(y0,Zo)   7       /     eXP[2   ^(oF+ßTJ^Tll)!   d|dT)  = 

(A.6) 
ikf(y ,z ) 

2nj a S(yo,zo)e 

where the positive root is taken and o=+l, -1, or -J according to whether 

aß>}'2,a>o ;     aß>72,a<0 j (A.?) 

or     aß<r    . 
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Then She functions t{y,z) and S{y,z) are given by 

f(y,z) - v   i v    A2 + y2 + z2 ± .   ^ .     sin 9 + >/(x -x)2 + y2 + z2 

^tkg kl±k2 

and 

j(co1±^)2 (1+B/2A) P^ 
S(y,z;   a  p- J^' 

itflp c Ko o 

(A.8) 

expj-a2(x cos 0 + y sin e) - ^v x   + y   + z 

a. >/(xo-x)2 + y2 + z2 ± IjgX cos e I 

It can be seen that f(y,2) Is a rapidly varying function of y and z while 

S(y,z) is a slowly varying function of y and z. 

To find the critical point, we must find the point at which 

Of _ df 
"Sy " 'Sz" = 0 

For the z derivative we have 

k, /-?; n ?r ik^y sin 0 

df 
= _& 

1      7 2.    2  .    g fVsin0     j g       6       g 
^r-  Vx    + y   + z    —r-^r  + v(x -x)    + y    + z k,!!^ 

"S  
(A.9) 

V 
 ; 2       8       A + 0 +   y w    Mg 

(k1±k2)Vx   + y   + z V(xo-x)    + y   + s 

= 0 if z = 0 

and for the y derivative we have 

kjy 
± r-~- sin 0 +   y g       ^ = 0 •  (A« 1°) 

v(x -x)^ + y^ + z '      k-il^ vx    + y   + z 1   ^2 

y 
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Solving for y we have 

T k- sin 6      kg sin 0 (x) (xo-x)    kg Bin 0 (x) (x0-x) 
y s-_      _-= T ^(x^x) + xCk^kg) 

= T k1(xo) ± l^ (xo-x) 

(k^Jx + (x0-x) (A>11) 

We now can obtain the values of the second derivatives of f evaluated at 

the critical point. We have 

af  V*        gyZ 
3y3? = " r +v v  7T~2" 2x5/2 " 77        N27 2^2x5/2 = 0 for z = 0'        . 
' (^±1^) (x ■♦y +z J-"        ^x

0"x^ ^ "^ J (A. 12} 

*/ ' "    (k^)  UW+Z2)"2   " ((x0.x)2^2
+z2)5/2 

kl 

(k^kg)    x2 +/ + z       J{xo.x)* + y^ + z 

^L 1 
(Vkg) x + TT^T at ^o^o)      • 

Also we have 

^ - f 1.1 
dz2 " (k^kg) Vx2 + y2 + z2     ^(x^x)2 + y^ 

■V2  z2 

* (k^kg) {x2+y2+z2)V2 " y/U0'*)d +yL + * 

ki 
^kgx+ TT^T 

at (yo^o)    • 

(A. 13) 

(A. 14) 
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The function f evaluated at the critical point is 

^Vzo) 
k 

hz ^Ty7"±^xy 8ine + **-xof *y -i-1^ 
2 .2 It, , kp" x** sin  0    . k^    x Bin 0 (A. 15) 

.       .   .     X + X     -  X + ^■ 
kl * *>     0      2 

^l±k2)2xo       2    (kl±l52)2 

The second-order inressure is then 

-(o^io^)2  (1+B/2A) P11P12 (2n) 

H0  0 

expy-OLx-CKpCx cos 0) - a+(x-x^) 

expfj l^x + (k^kg) xo - ^x + kgX ± kgX coc ej 

exp dx 

(A. 16) 

(A. 17) 



APPENDIX B 

TRANSDUCERS 

The five transducers used for the parametric receiving array 

experiments are described in the following paragraphs. 

A. Rectangular Transducer 

This transducer was constructed using elements for use as a 

narrowbeam receiver. In our experiments, the transducer was used as both 

a projector and as a hydrophone. The dimensions of the active face were 

17.5 in. by 2.75 in. The end elements are reduced in amplitude to provide 

amplitude shading to reduce the side lobes. Beam patterns for this 

transducer at 90 kHz are shown in Fig. 6.^. 

B. Small Standard Transducer 

This is a U. S. Navy standard TR-I29 transducer designed as a 

small general purpose transducer.    It was constructed of small ceramic 

cylinders designed to radiate omnidirectionally in the plane perpendicular 

to the axis of the cylinders.    The cylinders have a circumferential 

resonance at 90 kHz. 

C. Standard Hydrophone 

This is a U. S. Navy standard TR-225 transducer developed by the 

Naval Research Laboratory, Underwater Sound Reference Division, Orlando, 

Florida.    It is constructed with lead-zirconate/lead-titanate cylinders. 

Like the previous transducer, it is designed to be omnidirectional in the 

plane perpendicular to the axis of the cylinders.    The transducer has a 

nominal freefield open circuit voltage sensitivity of -205 dB re 1 v/l \iPa. 

and has a flat response (±1 dB) over the frequency range from 1 to 20 kHz. 

119 
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D. Tranaducer 

This transducer was used as a pump and as a receiver. This 

tranuducer was constructed at the Applied Research Laboratories and has 

been assigned the number DHL-125. It was constructed as a mosaic of 

Channellte ^400 ceramic cubes. The transducer had a resonant frequency 

of 90 kHz. 

E. Hydrophone 

This Is a U. S. Navy standard H-25 hydrophone developed and 

supplied by the Naval Research Laboratory, Underwater Sound Reference 

Division, Orlando, Florida.    It was constructed using eight lithium 

sulfate crystals.     It has a follower amplifier to drive the cable.    It has 

a nominal sensitivity of -I88 dB re 1 v/l uPa at 90 kHz. 

f 



APPEMDIX C 

COMPUTER PROGRAM 

A computer program was written by J. Kodoeky and W. C. Nowlin 

for use on the Hewlett-Packard 9830 Programmable Calculator In BASIC 

language.    The program was designed to plot 0 or 0' beam patterns using 

Equations (^.1^),  (^.17),  ('..29), o? (4.32).    The choice of equation 

calculated was input selectable.    The program allowed rotation of the zero 

for 0 and 0' for alignment of the theoretical beam patterns with the 

experimental beam pattern.    The amplitude of the theoretical beam pattern 

could also be adjusted to account for amplitude variations in the experi- 

mental results. 
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