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11. INTRODUCTION

1.1 BACKGROUND

The development of a missile guidance system generally requires

several phases, including inception, preliminary design and feasibility

studies,- decisions conceining implementation of various system functions,

and compensation or design modification to obtain the best possible system

performance under realistfi constraints. In the later stages of development,

the mathematical system model used as a basis for generating system per-

formance projections almost inevitably contains nonlinear effects and random

disturbances. Nonlinearity is generally associated with nonlinear relations

inherent to the laws of physics, unavoidable hardware nonlinearities, and

essential design nonlinearities; while random disturbances may include noise

(e. g., thermal effects), sensor measurement errors, random target maneu-

vers, and random initial conditions. When random effects are significant,

some statistical measure of system performance is required; often the root-

mean-square (rms) miss distance achieved at- the time of target interception

is used -or assessing the capability of a tactical missile.

The traditional approach used to obtain rms miss distance for guid-

ance systems with significant nonlinearities has been the utilization of the

monte carlo method. In this technique, a large number of computer simula-

tions (trials) are made using the required nonlinear model with different

initial conditions and random forcing functions generated according to the given

statistics. The resulting ensemble of simulations provides the basis for mak-

ing estimates of the true rms miss distance. Associated with the monte carlo

method is the problem that a large number of trials is required to provide

1-1
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confidence in the accuracy of the results; an ensemble as largeas 1000 may

be needed to obtain an accurate statistical analysis for a nonlinear system.

Thus, while the monte carlo method may be useful for performing a Iep

evaluations of a system's performance, it is not a very satisfactory 'tol for
conducting extensive sensitivity and tradeoff studies for different values of

the important guidance system parameters, or for conducting detailed studies
of nonlinear effects on system performance, due Co the large expenditure in

computer time required. The purpose of this research is to extend an ana-

lytical technique for the direct statistical analysis of nonlinear systems which

imposes a considerably smaller computational burden. This method, con-
ceived and currently/being developed by TASC, appears exceptionally promis-

ing as, a means for directly treating nonlinearguidance" system statistical

behavior; In the sequel it is referred to as the Covariance Analysis DEscrib-

ing function Technique -(CADET T1).

CADET is based on the application of quasi-linearization to permit
the application of covariance analysis to generate guidance system perform-

ance statistics. Thus, in treating nonlinear systems, describing function theory

is used to obtain a quasi-linear approximation for each nonlinearity. The most
important factor in the use of quasi-linearization is that one essential property

of nonlinear elements is retained: the amplitude sensitivity of the input-output

relation. Figure 1.1-1 illustrates the fundamental properties of the random

input describing function for an ideal saturation or limiter.

Previous work (Refs. 1 to 3) has demonstrated the capability of

CADET to perform rapid statistical analysis of complex nonlinear guidance.
systems, including the effects of measurement noise, parasitic coupling due
to nonlinear boresight error aberration, acceleration command limiting,

and highly nonlinear missile airframe dynamics. The research being under-
taken in the present program entails the generalization of the basic CADET

1-2
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Figure 1.1-1 Illustration of Describing Function Theory: the
Random Input Describing Function for a Limiter

concept to render it applicable to a very broad class of missile-target inter-

cept problems. This will establish an essential prerequisite for the sys-

tematic investigation of guidance system performance and design;-- the

ability to efficiently perform detailed studies of the effects of all significant

sources of system degradation and to evaluate guidance system modifications

that may correct or ameliorate these, deficiencies. This type of analysis

would be prohibitively, expensive in terms of computer time without the com-

putational efficacy inherent to CADET.

While the primary thrust of the development is the extension and

refinement of an efficient tool for the statistical evaluation of the perform-

ance of missile guidance systems, the overall scope of CADET is evidently

much more general. The system model based on a nonlinear state vector

differential equation with random inputs is of broad generality, being de-

scriptive of many continuous systems with nondeterministic disturbances.

The specific nonlinear effects studied herein are by no means restricted

in occurrence to the missile-target intercept problem. It is hoped that

the success of the present effort will encourage other applications of the

CADET concept.

1-3
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1.2 OVERVIEW

In order to develop CADET to meet the-need for an efficient means

for generating performance projections, thereby permitting the effective

diagnosis and correction of potential guidance system deficiencies, the

followingobjectives, have teep chosen for the present study:

* Development of a realistic missile-target intercept
model "with significant random effects and a number
of quite diverse tnonlinearities

• Development of a monte carlo simulation capability
to provide performance statistics for comparison
with CADET results

* Development of CADET methodology to permit the
efficient generation of performance statistics, for the
given system model, based on the computation of
describing function approximations for each non-
linearity and the application of covariance analysis
to the quasi-linear system

a Verification of the ability of CADET to provide accu-
rate performance projections by comparing the sta-
tistical analysis given by CADET with the results of
corresponding monte carlo analysis

• Study of the sensitivity of CADET analysis to the
assumptions and approximations made, including
comparisons of describing functions for different
assumed probability density functions and compari-
sons of histograms generated from monte carlo
simulations with the density functions assumed in
developing CADET

The first procedure used in developing confidence in the capability

of CADET to provide accurate performance statistics is a step-by-step

study of nonlinear effects. In every phase of the investigation, the CADET

and monte carlo programs for statistical analysis are extended to include

identical system dynamic equations, so that performance projections are

1-4
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exactly comparable. The, comparison of CADET and -monte carlo perform-

ance projections included treating the following effects:

* The basic.missile-target intercept model, with nonlinear
missile-target kinematic relationships, range depeident
error sources in the seeker noise model, acceleration
command limiting, and nonlinear guidance law

* Seeker mass imbalance
vp 0 Nonlinear friction in the seeker gimbal

• Nonlinear restoring torques acting on the seeker head

0 Nonlinear attenuation of boresight ,rror due'to the
receiver/signal processing nonlinearity

Following the application of CADET to the analysis of guidance

[system performance, several aspects of the sensitivity problem were con-

sidered:

* +Sensitivity of random input describing function
calculations to changes in the' nonlinearity input
probability density function

0 Methods for calculating approximate quasi-linear gains

* Generation of approximate histograms from data pro-
vided by a large number of monte carlo simulations to
assess the impact of deviation from the gaussian as-
sumption on CADET analysis

For reasonable initial condition statistics, the CADET-monte carlo

comparison proved that CADET results were reliable -- in fact, it appears
that the statistics given by monte carlo analysis are not superior tothe

CADET results until the number of monte carlo trials is in excess of several

hundred. While the sensitivity of CADET to underlying assumptions is

appreciable in some circumstances, it is gratifying to be able to demonstrate

1-5
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that this effect is quite small in the present context except in somewhat un-

realistic -circumstaice i when nonlinearity inputs are highlynongaussian.

1. 3 REPORT OUTLINE

This report is-organized according to the following outline: Chapter 2

deals with the significant features of the CADET and monte carlo methods for

generating performance statistics in nonlinear systems with random inputs;

Chapter 3 treats a general discussion of the guidance system model; details

of the initial verification procedure and case studies of the subsidiary non-

linear effects are given inChapter 4; and the analysis of the sensitivity of

CADET calculations to incorrect assumptions concerning nonlinearity input

probability density functions is treated in Chapter 5. A summary of the study

and general conclusions are provided in Chapter 6. Appendices are included

to treat the technical aspects of the, system model (Appendix A), random in-

put describing function calculation (Appendix B), and CADET theory and

methodology (Appendix C).

1-6
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2. STATISTICAL ANALYSIS VIA MONTE CARLO AND CADET

2.1 THE' MONTE CARLO TECUNIQUE

The monte carlo method for the statistical analysis of the performance

of a nonlinear system with random inputs is based? on direct simulation to, deter-
mine the system response to "typical" initial conditions and noise input sample

functions generated according to their specified -tattstics. Thus, the informa-

tion required for this analysis is the system model, 'initial condition statistics,

and random input statistics. The system mode! can be given in the form of a
state vector differential equation,

*_ = f(x) + Gw(t) (2.1-1)

'where f,(x) represents the linear and nonlinear dynamic relationships in the sys-
tem, w is an input vector, and'the matrix Gispecifies the input allocation, i. e.,

each- element* gi of G describes the effect.,of the input element wj(t) on the state

variable derivative i. The state vector differential equation, Eq. (2. 1-1), is
portrayed in block diagram notation in Fig. 2. 1-1. The initial condition of the

state vector is z.ecifted by assuming that the state variables are jointly normal

with a given mean vector and covariance matrixt,

E[x(O)] - m (2.1-2)

E [x(0) 2,7T(0)] P0

For any matrix G, the quantity gij denotes the element in the ith row and jth
column; similarly, for any column vector w, w. denotes the element in the
j row.

tE [ denotes the expected value of the bracketed variable.

2-1
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2-11802

NONLINEAR
FUNCTION

Figure 2. 1-1 Nonlinear System Model

The input vector w is often assumed to be composed of elements that are inde-

pendent gaussian white noises, plus an additive mean; thus

E[w(t)] = b(t)
I(2.1-3)

E[(w(t) - b(t)) (w(,r) - b(r))T] = Q(t) 8(t-r)

where Q(t) is the input spectral density matrix (which is diagonal, due to inde-

pendence) and the impulse function 8(t -,r) indicates that the input vector random

components have zero autocorrelation for t r; i.e., the quantity u(t) = w(t) -b(t)

is white noise.

Given the above information, monte carlo analysis requires a large

number, say q, of representative simulations of the system response, viz.,

the q-fold repetition of the following procedure: First, an initial condition vec-

tor is chosen according to the statistics indicated above; i.e., a random number

generator calculates a random vector x(O) based on Eq. (2. 1-2). Then a random

2-2
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A initial noise vector is generated, using the statistics given in Eq. (2. 1-3)*.

These vectors provide the data for evaluation of i_(0) in Eq. (2. 1-1) which in

turn is used to propagate the solution from t = 0 to t =h according to any stan-

dard technique for the digital integration of a state vector differential equation.

Then, given x(h); simulation continues-by the generation of a new value of the

input noise vector w(h), evaluation of i(h), numerical integration to obtain x(2h)

and so on, to the 3pecified terminal time tr

Performing q independent simulations yields an ensemble of state tra-

jectories, each denoted xi)(t; wxi)(o) _w(t) ) to stress the dependence of the

trajectory on the random initial condition and noise input sample function:

S(t; x(q)(o), (t))

Neglecting the bias component, we generate a broad-band gaussian noise
ui(t) with spectral density qi by using a random number generator to obtain
an independent sequence of gaussian random numbers ui k' k = 0, 1, 2,...
satisfying

uik] - o

E[ui,k2] -

Then we define ui(t) by

u i(t) = U, k' kh s-t <(k+l) h

where h is a smalltime increment. For h small (1/h much larger than the
bandwidth of the system in question), i(t) is essentially a gaussian white
noise process.

2-3
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Each satisfies the state vector diffeirilal equation (Eq. (2.1-1) to *,ithin the
accuracy of the numerical integration method used. The mean m(t) and co-
variance P(t) of the state vector are estimated by averaging over the ensemble
of trajectories using the relations

A At' q W

(2.1-5)

21 _Awhere mn(t) and P(t) denote the estimated values. The essence of the monte
caklo technique is illustrated in Fig. 2. 1-2.

R -11797

MONTE CARLO SIMULATION STATE 1: TRIALr-- --- --- ---- , ACTUA4L NO. I
OUTPUT

0 t0

TRIAL

IIt SYSTEM ()

I INITIAL -,P(O) RADO UST E

*STATiSTICS M(O1 GENERATORS (i

ITRUE VAUE OP/1,
V/p-, IMONTE CARLO

.1 _____________ STATISTICS0- TIM tf

Figure 2. 1-2 Schematic Characterization of the
Monte Carlo Technique
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I In order to assess the accuracy of the approximate statistics given

in Eq. (2. 1-5), it is necessary to consider the statistical properties of the

estimates m(t) and P(t). To simplify the notation, consider a scalar random

variable y (e. g., the value of some system state variable at some time of

Iinterest), and let m and p represent the true values of the mean and variance

of y,

m = E[y]{ (2. 1-6)

p =E[(y.- m) 2]

By performing one set of q monte carlo trials, we obtain a single estimate of
-A A

m and p, which we denote m and p. These estimates are also random variables;

that is, if another set of q monte carlo trials were performed independently of

the first set, but with the same statistics for the initial conditions and noise

inputs, then a different ensemble of simulations results, and different esti-

mates for the mean and variance would be obtained. If q is sufficiently large,

then we can invoke the central limit theorem to justify the assumption that the
A A

random variables m and p are gaussian*, and thus that their distributions are

completely specified by the following statistics, asymptotically true for large

q and given in Ref. 4:
WV

E =[A p
I [A2  _ M)2] p (2.1-7)

m" q

2
2 a p) 2  94 -P

P q

• A
For q < 20, it is necessary to assume that p has the chi square distribution
if y is a gaussian variable (Ref. 5).
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where u4 is the fourth central moment,

4= E[(y -rm)4 ] (2 1-8)

For many common probability density functions (pdf's),. the fourth central

moment is of the form

4= A p2 (2.1-9)

Table 2. 1-1 gives a summary of Xfor the pdf's used in this report. In terms

of the parameter X, we can express the standard deviations given in Eq.

(2. 1-7) in the form

m = q

(2.1-10)

p pq

The above discussion of the statistics of the gaussian random variable
A Ap provides the basis for determining a range in the vicinity of p such that the

true value of p is guaranteed to lie within that range with a specified probability,
A

$. This is done by determining the number, n., of standard deviations, a , such

that

Prob[O Ip- p = (2.1-11)

Since p is a gaussian random variable, na is the solution to

1 n1 2

j-n exp(- 2 ) dC = 0 (2.1-12)
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TABLE 2. 1-1

SOME COMMON PROBABILITY DENSITY FTT?.TIONS

" I __ R-11798

_+CSIGNATION FUNCTIONAL GRAPHICAL
" -REPRESENTATION* REPRESENTATION

I,-.p(x)

EXPONENTIAL o "'" 6
-OD <x< + CD M

P= ( x )
NORMAL 2.±o Or1 3 m' 2- . 1

air1 -00 <x< + cO m

TRIANGULAR 14\v'"/" 24

-,4'a._<,,_5 m +/r-nA.., n- 60 x

1 _____ P(x)

UNIFORM / -', [, 1.8

m- :5 xm+o 5./i Immr a______3,r

(P (xj
BIPOLAR 2 1/2m 1.0/

2 Mn-0 rn m~cr

WIN *Forrmulaod to have mtean m ocd standard deviation cr

SM t X~ is referr'ed to as the " kurtosis "or " excess" oF a pdf. (ReL-6)

For example, if the desired probability is 0. 95, Eq. (2. 1-12) yields nc = 1. 96.
Other values of n a corresponding to different values of 0b can be obtained from
probability integr'al tables (Ref. 6); several representative values are given in

Table 2. 1-2.

TABLE 2.1-2

CUMULATIVE PROBABILITY WITHIN n a STANDARD DEVIATIONS

OF THE MEAN FOR A GAUSSIAN RANDOM VARIABLE

1.0 0.6827

1 .'960 0. 9500

2.576 0.9900
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To reformulate Eq. (2. 1-1)) into an inequality for p, we make the sub-

stitution for a indicated in Eq. (2. -10) into Eq. (2. 1-11) to obtain the equiva-

lent statement that

A A
P A P p n. 1

Prob L +na !9 1 -n , 1  (2.1-13)

that is, the true value of p lies between the values p and p indicated in Eq.

(2. 1-13) with probability . Alternatively, in terms of the estimated rms value

of the variable, , we have the comparable result

Prob[ a -- =

for a and a given by

A
.1a A A

~=1 +n --

(2.1-14)

A

1 - A

The quantities a and a are referred to as lower and upper confidence limits;

the value of 0 expressed as a percent (100 4) is the degree of confidence.

Equation (2. 1-14) demonstrates that the standard deviation confidence limits
A

can be obtained from a simply by using the multipliers p and p. The latter

are functions only of the parameter X, the number of monte carlo trials q,

and the number of standard deviations n determined by the desired degree of

confidence.

2-8
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The problem of making a reasonable choice of X, which depends upon

the statistics of the random variable y, must be ccnsidered before the confi-

dence limit multipliers can be calculated. One option is to determine an

approximate value of X by estimating the fourth central moment using the q

sample values of the variable y, and calculating

The value of X need not be known exactly, since the confidence limits a and a

are not very sensitive to errors in this parameter. In the absence of reliable

information about the higher central moments, it is frequently assumed that y is

- gaussian; i.e., that >, = 3. However, if there is reason to believe that the pdf

for y has abnormally heavily weighted tails -- as in the case of the exponential

distribution in Table 2.1-1 -- then a larger value of X may be required.

Typical v'ues of p and p ior X = 3 are indicated as functions of the

number of monte carlo trials in Fig. 2.1-3, for two values of confidence. As

an example of the significance of the confidence interval, if we desire to have
A.99% certainty that a is within 10% of the estimated value, c; i.e.,

P [.0A A
Prob[.90 a -a : 1.1 a = 0.99 (2.1-15)

then Fig. 2.1-3 demonstrates that it is necessary to perform 440 trials;

256 trials suffice for 95% confidence.*

Figure 2. 1-4 shows the deterioration that occurs in the accuracy of

the monte carlo estimated standard deviation for a given level of confidence if

X is greater than three due to y being nongaussian. We discuss an instance

where X0'19.5 in Section 5. 3; in this case, even for more than 200 trials, the

upper 95% confidence limit is nearly 50% greater than the estimated value of a.

Note that the bounds, p and , are not symmetric with respect to one;
thus the point at which" crosses 1. 1 determines the value of q for which
Eq. (2.1-15) is satisfied.

2-9
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0
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'U
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Uj 99% Conf d ece

00 300 500

NUMBER OF MONTE CARLO TRIALS,q

Figure 2. 1-3 Typical Confidence Interval Multipliers
for the Estimated Standard Deviation of a
Gaussian Random Variable (X = 3)

The confidence interval calculation for the estimated mean is quite

direct, since am (Eq. (2. 1-9)) is not a function of the mean. The same value

of n is obtained for the desired degree of confidence (e.g., na = 1.96 for 95%

confidence), and value of p given in Eq. (2. 1-13) is used in deriving the result

that

Prob [m _ m -g

2-10



- -~ THE ANALYTIC SCIENCES CORPORATION

q =256 Monte Carlo trials Performed;

Degree of confidence :95%
C1.40

C~1.2

0P

z
0

0

o1.0-

adq
(2z-6

HereFweuse tha -4 m Ean fcnt be readCoieprese In terlLmsfamlieofm

for mand g2en11



THE ANALYTIC SCIENCES CORPORATION

The confidence limit concept developed above provides a statistical

measure of the accuracy of the estimated mean and standard de,:iation of a

random variable obtained by using the monte carlo method. It is only possible

to assess the accuracy of such estimates in a probabilistic sense; e. g., for

256 trials, we can assert that an estimated standard deviation (rms value) is

within 10% of the true value, with probability 0.95 (with 95% confidence).

2.2 THE COVARIANCE ANALYSIS DESCRIBING FUNCTION TECHNIQUE

(CADET)

Covariance analysis, where it is applicable, provides a direct, exact

technique for the statistical evaluation of the performance of dynamic systems

with random inputs, permitting the propagation of the mean component and co-

variance matrix of the system state vector as functions, of time. This technique

does not require the generation of a large ensemble of representative state tra-

jectories and the computation of the ensemble statistics. The latter approach

-- the monte carlo method -- is both time consuming (in terms of computer

time) and approximate; we have seen in Section 2. 1 that several hundred sample

state trajectories may be required in order to obtain reasonably accurate sta-

tistics for systems in which the state variabies are nearly gaussian; for non-

linear systems in which variables may be highly nongaussian, one thousand or

more simulations could be required to achieve an acceptable level of confidence

in the accuracy of the results. The direct approach is thus distinctly preferable

to the monte carlo technique.

The fundamental bases of covariance analysis are the differential equa-

tions governing the evolution of the mean vector and covariance matrix with

time. Corresponding to the state vector differential equation given by Eq. (2. 1-1)

with the input vector specified by Eq. (2. 1-3), we have the differential equations

(Ref. 7)
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vi rh = E[(x)] + Gb(t)

STTT(2.2-1)

P E[f rT] + E[r fT] + GQ(t)GT

A, where

E[x(t)] = __

r(t) = x(t) - m(t) (2.2-2)

P(t) = E[r(t) r (t)]

The first and second moments of the system response are completely deter-

mined by the integration of the indicated vector and matrix differential equations

(Eq. (2.2-1)) when the initial conditions, m(O) and P(O), are specified.

1i The form of the differential equations for the statistics of x (t) is par-

q ticularly convenient in the case of linear systems; given

f(x) = Fx

Eq. (2.2-1) reduces to

r= Fm + Gb

T tT (2.2-3)

P=FP+PF +GQG

These linear differential equations can be solved using standard numerical inte-

gration techniques.
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The nonlinear covariance equations can be represented in the same for-

mat as Eq. (2.2-3) by definition of two auxiliary matrices, N and N r, given by

Inn r!x
N m -E[t(x)]

(2.2-4)

NrP = E[f(x) rT

so Eq. (2.2-1) may be written

ih=N m+Gb

(2.2-5)

=N P + PNT + GQGT
r r

A
2 sym [NrP] + Q

where sym [] indicates the symmetric part of the indicated matrix, and Q is

the spectral density matrix of G(w - b). The dependence of N and Nr on the

statistics of the state vector, which is implicit in the expectation operations in

Eq. (2. 2-4), is due to the existence of nonlinearities in the system. Without non-

linear effects, the propagati.on of the mean and covarlance is "uncoupled,"? as

shown in Eq. (2.2-.3).

The matrices N and N given in Eq. (2.2-4) must be determined be-

fore we can proceed to solve Eq. (2. 2-5). A direct approximate method of

accomplishing this is to use describing function theory to linearize the system

nonlinearities; the resulting generalization of linear covariance analysis is then

called CADET -- Covariance Analysis DEscribing function Technique. This pro-

cedure, presented in detail in Appendix C, entails assuming the form of the non-

linearity input and calculating describing functions which provide a quasi-linear

approximate input-output relation for each nonlinearity. For the problem at hand,

the system input vector w(t) is taken to be a gaussian random process plus a

2-14
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j bias, and it is useful to assime that the state variables also have mean com-

ponents and random parts that are jointly normal. While this assumption is

strictly true only for linec" systems, it is often approximately valid in non-

linear systems. Although the output of a nonlinearity with a gaussian input is

generally nongaussian, it is known from the central limit theorem that random

processes tend to be made gaussian when passed through low-pass linear sys-

tems ("filtered"). Hen~ce if there are a few stages of linear dynamics between

nonlinearities, the input to each nonlinearity should be nearly gaussian. The

essential requirement of CADET is that the state variables must be nearly

jointly normal. From a practical viewpoint, the gaussian hypothesis serves to

simplify the CADET methodology by permitting each nonlinearity to be treated

in isolation, with Nm and Nr formed from the individual random input describ-

ing functions (ridf Is) for each nonlinearity, as discussed in Appendix C. Since

ridf's have been extensively catalogued in Ref. 8, the implementation of CADET

is a straightforward procedure for a broad class of nonlinear systems. We also

note that under the gaussian assumption, the random input describing functions

can be calculated directly from the mean vector, m, and the covariance matrix,

P, of the system state vector. Thus, we write N and N in the form
m r

N = N m(m , P)

N Nr(m, P)

Relations of this form permit the direct evaluation of the ridf's at each integra-

tion step In the propagation of m and P by numerical techniques according to

Eq. (2.2-5), as illustrated in Fig. 2.2-1.

To demonstrate the ease with which CADET can be mechanized under

the gaussian assumption, we consider a single nonlinearity and illustrate the

steps involved in performing statistical analysis via CADET. Assume that only

the nonlinearity fj (xk) occurs in the differential equation for x

2-15
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R- 11805

BIAS VECTOR

N PN)U
SPECTRAL f COVARIANCE

DENSITY 5a
Q =GQG

Figure 2.2-1 Nonlinear Covariance Analysis -- CADET

xI  0

x = Fx + f.(x,.) + Gw(t) (2.2-6)
- :i

* 0
n

where we have explicitly separated the linear portion of the dynamics from the

nonlinearity. The random input describing function approximation to fj(xk) is

shown schematically in Fig. 2. 2-2. The input xk is first separated into its mean

and random components, mk and rk, which are then multiplied by the scalar

quasi-linear gains, nrk and nmk; the latter are selected to minimize the mean

square error between the linear approximation nrkrk + nmkmk and f (xk). The

gain nrk is added to the element f of the matrix F in determining Nr; similarly
rk ~jkr

The indicated symmetry operator yields 2 sym[N P] = N P+PNT where the
symmetry of P is taken into account. r r
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LI R-11a84
Lnrm

Figure 2.2-2 Random Input Describing Function
Approximation of fj(xk)

l~i th

nmk is added to the same element of F to give N m . Thus, tne j rows of Nr
and Nm are given by

[NrIj= [f. V fJ22"'"(fJk + nrk)""..ofjn]

I~N ]. [fj, f.,2.(f.k +m) fm 

n

A comparison of quasi-linearization with the classical Taylor series or

small-signal linearization technique provides a great deal of insight into the

success of the ridf in capturing the essence of nonlinear effects. Small-signal

linearization for a scalar nonlinear element f(x) is based on the identification of

a nominal operating point x0 and the evaluation of the slope of the nonlinearity

at that value; then the approximation is made that

f(x) ' f(x ) + f'(xo ) (x-x o) (2.2-7)
00 0

which represents the first two terms of a Taylor series expansion about the
3

given operating point, as illustrated in Fig. 2. 2-3 for the example, y =x . While

this is a useful approach if excursions from the nominal are small, the validity

of the Taylor series approximation ,s questionable when x is a random variable

which can exhibit large variations about its mean value.
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R-11801

y fS(x) //Sope
fiV=3

f (Xo] -

/X 0 =

Figure 2.2-3 Taylor Series Linearization of y = x3 about xo = 1

By contrast, the quasi-linear representation of a nonlinearity is sensi-

tive to the input amplitude in some sense; in the case of random inputs, the

statistics m = E [x] and Px = E[(x - mn) 2 ] provide the measure of input ampli-_ X

tude. For the example y =x3 , where x is a gaussian random process, we calcu-

late the describing functions according to Eqs. (C. 2-4) and (C. 2-5),

nr =3(px + mx 2

2
nm 3 x + mx

and the nonlinearity is approximated by

: 3 2) 2) x
x =(3p +m )m + 3(p +m (x-m (2.2-8)x x xX x

Comparing Eqs. (2. 2-7) and (2. 2. 8), we see that the describing function gains

depend on both the mean and variance of x, as indicated in Fig. 2. 2-4, while the

coefficients in the Taylor series approximation do lot.

Finally, some comments about the generality of CADET are in order.

Many approximate techniques for treating nonlinear systems are applicable only

to low order systems (with two or three state variables at most) with one
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3
Figure 2.2-4 Quasi-Linearization of y =x for Unity Input Mean

nonlinearity. By contrast, describing function techniques can be used for sys-

tems with any number of nonlinearities, leading to a quasi-linear system model

that can then be handled using the CADET methodology. There is no limit on

the number of state variables in the system model; in fact, CADET tends to be

more accurate as the ratio of the number of states to nonlinear elements in-

creases, thus improving the validity of the gaussian assumption.

2.3 COMPARISONS AND PHILOSOPHY OF APPLICATION

In comparing CADET and monte carlo methods for use in obtaining

performance projections for nonlinear systems with random inputs, there are

several significant similarities. Both techniques are applicable to nonlinear

system models with an arbitrary number of states and nonlinearities, and we

often rely on the gaussian assumption in assessing the accuracy of the perfor-

mance statistics obtained. In both cases, any departure from normality can be

compensated for to a certain extent; in CADET, nongaussian pdf's can be used

in calculating describing functions, while in monte carlo simulation the fact

that the confidence limits increase for nongaussian random variables (Fig.

2. 1-4) can be counteracted by Increasing the number of trials performed. The
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principal trade-off between the two methods is in efficiency versus generality

(versatility). The monte carlo simulation ensemble of q representative state

trajectories (Eq. (2. 1-2)) can be used not only as a data base for calculating

estimated performance statistics mA(t) and P(t) at instants of time of interest,

but also ior estimating higher order moments, and for generating histograms

which are approximate pdfIs for the variables under consideration (of course,

at an additional cost in terms of data processing). CADET, on the other hand,

provides approximate values for m(t) and P(t) in a single numerical integration

of the quasi-linear covariance equations (Eq. (2. 2-5)), usually in a small frac-

tion of the computer processing time required for accurate monte carlo analysis.

Depending on the number of state viariables and nonlinearities, and on the de-

sired accuracy (which determines the number of monte carlo trials required),
it may be possible to perform from ten to thirty distinct CADET studies at the

same computational expense required for one monte carlo analysis.

One of the primary purposes of the statistical analysis of tactical

missile system performance is the evaluation of guidance effectiveness with

variations in random input levels, initial conditions statistics, system parame-

ter values and secondary nonlinear effects such as seeker mass imbalance,

acceleration command limiting, etc. Due to the multiplicity of these factors, it

is evident that the analysis will generally be done repeatedly. As a consequence,

efficiency is an important consideration; this point is a strong argument in fa-

vor of CADET. On the other hand, the versatility of monte carlo simulation

provides a self-check capability; i. e., the q representative state trajectories

can be used to estimate hig,.er moments and the pdf's of the state variables,

which in turn leads to an assessment of the accuracy of the monte carlo analysis.

This is a feature lacking in CADET which makes it advisable to rely upon monte

carlo simulation in a monitoring capacity, since it is always possible to obtain

accurate performance projections by increasing q sufficiently.
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The effective use of CADET and monte carlo analysis in concert can

be demonstrated in a hypothetical trade-off study where two parameters, say

a I and 2 1 are to be varied over certain ranges to obtain optimal performance

in some sense (perhaps-to obtain minimum rms terminal miss distance). As

shown in Fig. 2. 3-1, a few points in the parameter plane are chosen for careful

CADET-monte carlo comparison (verification of CADET); then extensive per-

formance curves are generated using CADET, from which the optimal values of

a and C2 are chosen. If desired, the vicinity of thepoint of optimally can be

1 22• studied using a few selected values of a I and a. and performing the required

monte carlo simulations. Similar approaches can be used in studying sensi-

tivity to nonlinear and random effects.

R-I 1803

RMS TERMINAL MISS DISTANCE

Ja 2

PARAMETER
OSENSITIVITYCURVES /

-' GENERATED/

BY CADET a
ao

S / 2 a,2

a, OPI A

, PERFORMANCE

Figure 2.3-1 Illustration of CADET and Monte Carlo

Analysis in a Parameter Trade-Off Study
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The overall philosophy of CADET usage, based on the strong points of

both CADET and monte carlo simulation, is illustrated in Fig. 2.3-2. The

initial verification procedure is generally undertaken for the "nominal system,"

i. e., for the system with nominal parameters values, and is of necessity more

meticulous. Thus several hundred monte carlo trials may be performed, and

if there is reason to believe that the system is highly nonlinear -- so that the

system variables may be quite nongaussian -- it may be necessary to investi-

gate higher order moments or histograms to decide whether more trials are

needed in order to obtain a reliable statistical analysis. Once this phase has

been completed satisfactorily, the CADET parameter sensitivity studies can

then be performed. Observe that the preliminary careful but time-consuming

monte carlo study (perhaps with the indicated self-check procedure and increase

in the number of trials) is always required if accurate performance statistics

are to be obtained from monte carlo simulation with high confidence. The sub-

sequent use of the monte carlo statistics to verify CADET requires minimal

computer time (if any), and that comparison paves the way for the ensuing

efficient study of various effects via CADET. In the latter studies, itis rarely

necessary to perform as detailed a monte carlo analysis as is required in the

initial verification procedure, so as few as 20 to 50 monte carlo trials may

suffice to demonstrate that CADET has accurately captured the effect in ques-

tion. This approach mirrors the development of CADET that has been carried

out in the present study.
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Figure 2.3-2 Philosophy of CADET Application
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3. MISSILE-TARGET INTERCEPT MODEL DEVELOPMENT

3. 1 INTRODUCTION

Previous development of CADET as an efficient tool for undertaking

the statistical analysis of tactical missile guidance system performance has

focused on the planar missile-target intercept problem. At each stage, the

¥! model has been made more general by the inclusion of more of the system

dynamics (addition of more system states) and the consideration of more non-

linear effects and random disturbances. The initial work (Ref. 1) treated only
I ~ one important nonlinearity -- acceleration command limiting -- and one noise

S- input -- a random target maneuver. A second, more extensive application of

CADET (Ref. 2) included three nonlinear effects and four random inputs, two

of which had a deterministically time-varying rms value. A third investiga-
tion (Ref. 3), which complements and in some respects parallels the present

I effort, involves a very detailed application of CADET to a specific tactical
missile -- the SAM-D. A brief synopsis of the system models considered in

the various research programs is provided in Table 3. 1-1.

-. The purpose of the present study is to significantly extend the verified

capability of CADET to provide rapid, accurate assessments of tactical missile

performance. We have generalized the previous missile-target intercept models

by adding a variety of nonlinear effects and random inputs which have heretofore

not been treated and which can have a significant impact on the effectiveness of

the tactical missile -- as quantified by the rms miss distance between the mis-

sile and target at terminal time. The specific equations that represent the

dynamics of the missile and target are developed in Appendix A; in this chapter,

we provide a brief summary of the effects studied. The verification that CADET
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j can indeed provide accurate performance projections with these effects taken

into account is presented in Chapters 4 and 5.

3.2 MISSILE-TARGET KINEMATICS

In Fig. 3. 2-1 we portray the graphical definition of the coord.nate

frame and variables involved in describing the motion ot the missile and target.

In deriving the equations of motion, it is assumed that the missile and target

velocity vector magnitudes are constant, or, equivalently, that the missile and

target acceleration vectors are normal to the velocity vectors. These condi-

tions, neglecting the effects of drag and assuming that the angle of attack is

small, are representative of many missile-target engagement situations during

the critical last few seconds.* Thus, the lateral acceleration of either vehicle

simply produces a rotation of the corresponding velocity vector, given by

y-AXIS R-11592
• (t: t1 )

y-AXIS 
I

(t :0) VELOCITY

VELOCITY ACCELERATION

ACCELERATION LOS 0

•~I -- 0- x - AXIS

/(t) .l TARGET TRAJECTORY
/ MISSILE TRAJECTORY . IN -A

f , _ N x-AXIS

ORIGINAL ORIGINAL LOS ORIGINAL ItsOIMISSILE TARGET
POSITION POSITION

Figure 3. 2-1 Missile-Target Planar Intercept Geometry

The application of CADET to cases where angle of attack and drag variations
are important is currently being considered in a continuation of the study
described in Ref. 3.
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6 a1m m

(3.2-1)

a-,t at

The equations describing the motion of the target with respect to the missile
center of gravity (governing the cross- and down-range missile -target separa-

tion, x and y respectively) are found by projecting the velocity vectors onto

the axes shown in Fig. 3.2-1; in terms of the velocity magnitudes v and v

v Cos '(e) vcos(ea)m m

(3.2-2)

k=-v sin () +v sin (ea)

Equation (3. 2-2) represents the essential nonlinearities inherent to the missile-

target kinematic relationship.

3.3 TARGET LATERAL ACCELERATION MODEL

An important source of missile guidance system error is target maneu-

verability. We assume that the target lateral acceleration magnitude, at, is a

first-order Markov process, modelled as a zero-mean gaussian white noise*

passed through a single stage of low-pass filtering, as depicted in Fig. 3. 3-1. t

The five white noise inputs to the system are simply denoted w., j = 1, 2 ,...,5,
for convenient reference.

tAlthough the transfer function representation is formally restricted to use in
completely linear systems, we use it as a compact notation for depicting linear
subsystems in our model. While general practice is to replace the variables
w5 and at with the formal Laplace transforms, say W5(s) and At(s), we con-
tinue to indicate linear subsystems inputs and outputs by their time domain
representa.Lion to avoid a cumbersome dual notation for all variables.
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R-11887

(a) DIFFERENTIAL EQUATION
REPRESENTATION

w~~at

(b) TRANSFER FUNCTION

FORMULATION

Figure 3.3-1 Band-Limited Gaussian Noise
Model for Target Lateral
Acceleration

By adjusting the values of target maneuver bandwidth, wt, and rms

level, a wide range of target maneuver characteristics can be represented. A

constant rms level of lateral acceleration over the entire terminal homing

phase is assumed,

2 2 (3. 3-1)
E [at 0.)]1 = Ot

Thus we choose the initial condition and gaussian white noise statistics to

satisfy

2 2?
[at (0)] 2

(3.3-2)

E[w (t)w 5(T)] - 2 t (t-T) q5 6(t-T)

where q5 is the spectral density of this white noise input.

3-5



THE ANALYTIC SCIENCES CORPORATION

3.4 AUTOPILOT - AIRFRAME MODEL

We use a linear time-invariant autopilot-airframe model, under the

assumptions that:*

* Missile velocity is constant (drag effects are
negligible over the period of time considered).

* Altitude remains nearly constant.

* The center of pressure, mass and inertia of
the missile are constant.

* Lift force is linearly related to changes in angle of
attack about some trim condition and to control
fin deflection.

* Control fin actuator dynamics are linear.

* Fin effectiveness is independent of angle of
attack.

The airframe equations of motion are then based on a set of missile aerody-

namic coefficients identified with the vehicle short-period dynamics with

values typical of a tactical missile in the terminal homing phase. We choose

the autopilot feedback compensation gains to achieve a suitable compensated

airframe response (Appendix A, Section A. 4). The outputs of the airframe

model are missile lateral acceleration, am, and missile body angular rate,

em; in transfer function form, they are related to the acceleration command,

ac, provided by the guidance law, by

2
720-0.865s-l. 87s

m 720+275s+18.3s 2 +s ac

- 0.24 + 0.642 s
m 720 + 275 s + 18.3 s 2  +s c

Application of CADET to a complex, nonlinear airframe model is being con-
sidered in a continuation of the work described in Ref. 3.
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which corresponds to a dominant pole at s = - 3. 16 and secondary poles at

s = -7.56 ± 13.0j.

3.5 GUIDANCE LAW MODEL

The present study utilizes a nonlinear model of the classical propor-

tional guidance law, described in Section A. 5. In principle, it is desired to

develop a missile lateral acceleration that has a component normal to the

line-of-sight (LOS) which is proportional to the product of closing velocity and

LOS angular rate. In practice, it is not possible to obtain either the closing

velocity or the LOS angular rate exactly for generating an acceleration com-

mand. A noisy measurement of LOS angular rate, denoted by n in Fig. 3.5-1,
is provided by the missile seeker, which is treated in Section 3.6. In the gui-

dance law model, a single stage low-pass filter is included tO reduce the effect

of measurement noise in 7; the filter output is denoted by 0. Measurements

of closing velocity (range rate) will also contain errors, which are repre-

sented by the uncertainty variable e v. The latter is a first-order markov

process, * modelled in the same form shown in Fig. 3.3-1. The resulting

model for the acceleration command is given by

cos (a + 6)]
a, c n n+ev +tCos el- 0)(.51

where the constant n 1 is designated the navigation ratio. The guidance law is

completed by noting that this unconstrained acceleration command must gen-

erally be limited in magnitude in order to prevent exceeding the structural

capacity of the airframe and to avoid the possibility that the missile might go

A constant or bias error, evb, is obtained by suitably choosing the initial
condition, %(0) = evb, and mean value of the input, b4 = E [w41 = w 4 evb.
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into a stall. Thus the actual acceleration command, a,, is represented as

the output of a limiter whose input is a'.

CLOSING VELOCITY -11599a.
ERROR MODE

ev + Vt _ _

IUNCONSTRANED ACTUAL

NOISY 17 1 8+ a'C
LOS RATE V C

NOISE fILTER CLOSING VELOCITY WITH SECANT ACCELERATION
COMPENSATION AND UNCERTAINTY COMMANDS

Figure 3.5-1 Guidance Law Model

3.6 THE SEEKER SUBSYSTEM

The basic function of the seeker is to track the target and provide the

guidance package with an estimate of the LOS angular rate. There are a sig-

nificant number of important error sources which can lead to a marked dete-

rioration in the seeker performance. We can categorize them as noise sources,

boresight error distortion effects, and seeker head disturbance torques; there

are several specific mechanisms that give rise to errors of each type.

0 Noise sources:

Target amplitude and angular scintillation noise
Receiver noise
Seeker servo noise
External jamming

3-8
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, Boresight error distortion sources:

Aberration
Receiver/signal processing characteristics

0 Disturbance torque sources:

Seeker mass imbalance
Seeker gimbal friction
Seeker head restoring torques

The seeker noise model includes three fundamental types of additive

random inputs: those that have an effective rms level that varies directly with

the missile-target range, or range proportional noise, including such effects

as receiver noise and distant external stand-off jamming; those exhibiting a

constant effective rms level, or range independent noise, such as target am-

plitude scintillation and seeker servo noise; and those with an effective rms

level that varies inversely with the range, or inverse range proportional noise,

such as target angular scintillation. These sources are modelled as wide-band

independent gaussian noises (filtered gaussian white noise) with appropriate

nonlinear gains to give the desired range dependence, as portrayed in Fig. 3.6-1.

The present study provides the first CADET application in which the range de-

pendent components of the seeker noise have been modelled as nonlinear func-

tions of state variables. In previous models, the missile-target separation was

taken to be linearly decreasing to zero at the nominal terminal time, tf*

The boresight error distortion model includes both aberration caused

by the passage of incident radiation through a protective cover prior to detec-

tion, and boresight error limiting due to a signal processing nonlinear charac -

teristic which may be introduced to circumvent the null and spurious sidelobe

response inherent to the restricted beamwidth of the antenna or detector. The

aberration is generally a complicated effect, expressed as an angular error,

_ ab, added to the seeker look angle, elook' the latter being the angle between

3-9
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R-11602

s+ 
2

r~(I

INPUTS I,

Figure 3. 6-1 Nonlinear Seeker Noise Model

the line-of-sight to the target and the missile body axis defined in Fig. 3.6-2.

The aberration effect is treated extensively in Ref. 3 (refer also to Fig.

A. 6-2), and thus is not considered in detail here. A description of the model

employed for the nonlinear receiver characteristic is given in Section A. 6. A

functional diagram of the boresight error model is portrayed in Fig. 3.6-3.

R-11600

y-AXIS
ANTENNA

CENTER LINE

SEEKE HEA LOS TO TARGET

SEEKER READ
CENTER OF GRAVITY 01oa

ep1 1  "

GIMBAL PIVOT
-MISSILE
CENTERUNE

1 w x-AXIS
MISSILE

CENTER OF Gs 0l

Igure 3. 6-2 Seeker Head Configuration
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R-11601

SEEKER
NOISE

luklok Pab + EEIE MEASURED

- 89ok ABERRATION RECEIVERICh,.+ BORESIGHT

CHARACTERISTIC CHARACTERISTIC ERROR

Figure 3. 6-3 Boresight Error Distortion Model

The seeker track loop, shown in Fig. 3.6-4, is designed to main-

tain the measured boresight error near zero. A control torque, Tc, is

"1 generated which has a component proportional to the boresight error, and

suitable dampling is assured by means of rate feedback provided by a rate

gyro mounted on the seeker head. A compensator of the proportional plus

integral form is included in the track loop to remove the effect of stea-y

state disturbance torques. The characteristics of the control loop dynamics

are discussed in detail in Sections A. 6 and A. 7.

SEEKER
STUBA E T RE NNOISE

TR EBORESGHTLos ERRO NOISY ESTIMATE O
ANGE LtOS ANGULAR RATE

RATE GYRO GAIN

SERVO
GAIN

SSEEKER
DISTURBANCE Td - Tc 

C M E S T R

TOMQES -- 0i. , Ih() 1

Figure 3.6-4 Seeker Track Loop Model

3-11



THE ANALYTIC SCIENCES CORPORATION

The seeker head disturbance torque model, depicted in Fig. 3.6-5,

shows the three effects under consideration. The most complex nonlinear

phenomenon is an effective torque due to seeker mass imbalance, Tm, with

three components; one proportional to missile body angular acceleration,

another to the square of the missile body angular rate, and the third to the

missile lateral acceleration, as derived in Section A. 6. Another nonlinear-

ity represents an applied torque Tr, due to restoring torques acting on the

seeker head (caused either by wiring harnesses or by restraining springs

provided to prevent large seeker head angular excursions). Generally, this

is a "hard spring" effect, i.e., the restoring torque will be negligible for

small values of seeker head angle, but as Oh increases, the restoring torque

will increase more rapidly, in a nonlinear manner, as depicted in Fig.

3.6-5. This effect is represented here by a power law nonlinearity, viz.

SEEKER ._o k 0
CG OFFSETANGLE

SEEKERAN HEAD 
h d  

T

ANGLEBNC

POhN T, nw IjS8

M IN RORQUE

FROM

S"a h~id rme MISEILE r •AUTOMfLOTrn sco d gofttBODY 0,1m Vmn
rn • . k~f ~d € o..,ANGLE °( 'rS'0

t- dtnce from miuWl toall
Wekff girnal

Ip - .eket head mooment of
Ineltia about sttker gimbai

-0 ang~ular coofdlinate of 8 V

Figure 3. 6-5 Disturbance Torque Model
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6 hK
Tr f (eh)= kI sign() (3.6-1)

where K is an integer. A final nonlinearity is introduced to describe the fric-
tion torque, Tf; in particular, we consider the "dry" or coulomb type of fric-

tion which produces a counter torque that is constant in value, having the sign

of the seeker angular rate,

Tf = f2(eh) =k 2 sign (h( . (3.6-2)

Coulomb friction can cause limit cycles to appear in the seeker track loop,

producing a deterioration in the missile guidance system performance.

3.7 SUMMARY

In Fig. 3.7-1 the complete missile-target intercept model is portrayed

with all of the subsystems described in the previous sections appropriately in-

terconnected. All of the system variables are depicted except angle of attack,

control fin deflection and the seeker compensation state, which are encompassed

in the linear dynamics represented by the transfer functions gl(s), g2 (s), and
(1 +k 0 /s). The functions f1 (xl), f2 (x2 ) and f3 (c) represent effects due to non-

linear restoring torques acting on the seeker head, nonlinear friction in the

seeker gimbal, and the receiver characteristic, respectively. The first two

are described in Eqs. (3.6-1) and (3.6-2). The last function is the standard

limiter operating on measured boresight error, as illustrated in Fig. 3.6-4.

All other effects are describec by the specific functional relations shown.
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4. CADET AND MONTE CARLO STUDIES

OF NONLINEAR EFFECTS

4.1 CADET-MONTE CARLO COMPARISONS FOR THE BASIC SYSTEM

In extending the validity of CADET as a missile system analysis

tool, we first consider the basic system model, which includes the follow-

ing nonlinear effects:

* Range-dependent seeker noise sources (Fig. 3.6-1)

0 Proportional navigation law with secant compensation

(Fig. 3.5-1)

Acceleration command limiting (Fig. 3.5-1)

0 Missile-target kinematics (Section 3.1)

0 Inverse tangent calculation of LOS angle

The basic system model incorporates nine distinct nonlinearities, listed in

Section A. 8, as compared with previous investigations (Refs. 1 to 3) where

the same effects were approximated by only three nonlinearities and several

linear time-varying gains.

In all studies, the three components of the wide-band seeker noise

(100 rad/sec bandwidths) are always specified such that they have an equal

effective rms level at about the midpoint of the terminal homing phase. To

be more precise, the spectral densities of the three white noise inputs w 1 to

w 3 in Fig. 3.6-1 are chosen to achieve rms values of the noise states x14 ,

x and x1 6 that satisfy

L= 4-1
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21= x104  V* a14 =0.7071% rad-ft
y2 12ql= 1 10 a = 0.o7071 a radft

21 -4-

q a2x10-12 1 5= 0.7071X1_ rad/ft
q2 0 ox 15x 0o

q3  xo 2 0-4 16 0. 7071x10-4 ao rad (4.1-1)

where we have used the relation indicated in Eq. (3.3-2). The dimension-

less parameter ao is designated the seeker noise factor. The three com-
0

ponents of the range dependent seeker noise,

ns = x1 4 /r(t) + x1 5 r(t)+x 1 6

thus have rms levels given approximately by a1 4 /r(t), a1 5 r(t) and

respectively, which are equal for r(t) = 10, 000 ft. With the nominal param-

eter values indicated in Table 4.1-1, r(t) achieves this value' at about

t = 2.5 sec in a terminal homing phase of about six seconds duration.

For all of the studies that follow, the fundamental measure of sys-

tem performance is rms miss distance; this is defined to be the rms cross-

range missile-target separation at the mean terminal time, tf. The mean

terminal time, defined as the instant when the mean down-range separation,

ex, goes through zero, is a variable in this study; its value without random

disturbances or initial conditions is 6 sec, while the presence of noise sources

or a nonzero rms target maneuver level iypically increases tf by a few hun-

dredths of a second. This effect is a direct result of relaxing the assumption

of constant closing velocity that was made in earlier work (Refs. 1 and 2).

In every case considered in this chapter, one or several of the

system parameters are allowed to vary from the nominal, and the effects

of this change on the missile guidance system performance are analyzed via

4-2
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TABLE 4. 1-1

77 NOMINAL SYSTEM PARAMETERS
11 1 (Refer to Fig. 3.7-1)

-- Seeker head mass, mo 0.15 oz-sec2/in
Seeker head moment of inertia about cg, 1() 0. 1 in-oz-sec 2/rad

Seeker head cg offset, r0  iln
Angle of seeker head cg offset, 80 0 rad

ASEEKER Distance, missile cg to seeker gimbal, rl 40 in
PARAMETERS Servo gain, ks 6 In-oz-sec,'rad

Rate gyro gain, kg 1

Integral compensator gain, k0  0

Track loop time conslant, T, 0. 12 sec

Restoring torque, fl(xl) 0 In-oz

Gimbal frict-Dn, f2(x2) 0 In-oz

GUIDANCE No!se filter time constant, r2 0. 3 sec
LAW Navigation ratio, n' 4

PARAMTEI~S Acceleration command Unilt, amax25ftsc

if2 c1  720 sec-3

*AUTOPILOT/ g, (s) = 103S42C2ScIc 7 e-

AIRFRIAME s -fC3 s 4 C 2s+c c 1.3se-
TRA1SFRd 1  0.24 rad/ft-sec2

FUNCTIONS g2()= d 2s+d1  d 2  0.642 rad/ft-sec

63(s C icS 2 4c s+c1  el 720 sec-3

e2 -0.865 sec-i
_______ ______________ e 3  -1.87 sec-1

VEHICLE Missile velocity magnitude, vM 3000 ft/sec
VELCITES Target velocity magnitude, vt 1000 ft/sec

RANDOM Seeker noise source bandwidths, wi, &3, 'A,'3 100 rad/sec
INPUT Target maneuver bandwvidth, q 0.2 rad/sec
I3ANDWIi)TIIS Range rate uncertainty bandwidih, w4  100 rad/sec

NOISE STATE Range rate uncertainty level, a12 0 ft/sec
EMS LEVELS Target acceleration level, 013 50 it/sec2

Seeker noise factor (Eq. (4. 1-1), a 1

STATE Mean heading error, m8  0 deg
VARIABLE M hedgeroe1dg
INITIAL Mhedneroa1dg
CONDITION Mean down-range separation, in1 1  24,000 ft
STATISTICS RMS down-range separation, al1 0 ft
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CADET. A few of the resulting performance projections are compared with

monte carlo studies to provide a basis for assessing the accuracy of CADET

in capturing the effect under consideration. Since the nominal case is to be

used as the starting point for all subsequent studies of nonlinear effects and

parameter variations, it takes on a significance that makes it advisable to

perform a monte carlo verification using a large number of trials.

One comparison of the results of CADET and monte carlo analysis

for the nominal case is shown in Fig. 4.1-1. A second case with a reduced

Sacceleration command limit, a = 150 ft/sec2 , is also portrayed; themax
latter curve demonstrates the significant deterioration in the missile guid-

ance system performance that results from reducing the missile maneuver-

ability. This nonlinear effect has been treated in previous studies;

Fig. 4.1-2, taken from Ref. 2, indicates the typical variation in rms miss

distance with changing missile acceleration limit.

R-12848
200

. CADET

b z
: > 0m z 250f I/sec2

0

I-

Wi 100-
U,
_J

ti 61 it

/ =3 DENOTES MONTE CARLO
RESUVtS, 500 TRIALS, -1

'\22,9ht{ I I TH . I/. CN I . . I

0 2 3 4 5 6

TIMEt (sec)
Figure 4.1-1 Effect of Acceleration Command Limiting

on Basic System Performance

4-4



I
THE ANALYTIC SCIENCES CORPORATION

200 
R-12012

UiU CADET~Z

,n 10 0 -
O,, / MONTU CARLO
US 200 TRIALS

-- /.C,
I2dMS

p 
0 100 200 300 400

MISSILE ACCELERATION LIMIT, omaox(ft/sec 2)

Figure 4.1-2 Acceleration Command Limit Study (Ref. 2)

Returning to the nominal case (amax = 250 ft/sec2 in Fig. 4.1-1),

we note that the CADET result (the smooth curve, exhibiting an rms miss

i distance of 22.9 feet at 6 sec) lies within, or close to, the 95% confidence
band of the corresponding monte carlo data throughout the engagement. The

width of the confidence band provides a measure of the theoretical relia-

bility of the monte carlo data, based on the number of trials performed and
-- : an estimate of X (kurtosis; refer to Section 2.1).

- The fact that the monte carlo estimate of the rms lateral separa-

tion, a, is a random variable that converges to the true value slowly as

the number of trials increases is depicted in Fig. 4. 1-3, where we show

the value of a versus the number of trials performed, q. The case showny

in Fig. 4.1-3a corresponds to the estimation of rms lateral separation two

seconds before intercept, when the probability density function is nearly

- ,gaussian (X 2! 3). The accuracy of the result obtained by performing 500
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0 100 200 300 400 500
NUMBER OF MONTE CARLO TRIALS, q

(b) t = 6 sec
Figure 4. 1-3 Comparison of CADET and Monte Carlo rms

Lateral Separation for the Nominal Case

monte carlo trials is quantified by

Pr [137.7 ft -agory(4) !5156. Oftj 0.95

Near the terminal time, however, the density of y is found to be significantly
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} nongaussian; on the basis of the monte carlo study, it is estimated that the

kurtosis is approximately 15. Thus the estimate of the rms miss distance,
A
a (6), necessarily is less certain than when y is gaussian. The large value
y

of X is due to nonlinearity in the system which gives rise to a small but

',nificant probability that the miss distance may be very large (see also

Section 5.3); whenever a trial is performed which results in such a patho-

logical miss there is a large "transient" in the estimated rms miss dis-

tance. This phenomenon is observed between trials 140 and 180 and between

trials 420 and 460 in Fig. 4.1-3b.

The agreement of CADET and the monte carlo analysis is excellent

as long as y is reasonably gaussian; at the end of the engagement, CADET

appears to have underestimated the rms miss distance by ten to fifteen

percent. This study provides a graphic demonstration of the fact that sev-

eral hundred or even a few thousand monte carlo trials are required to ob-

tain an estimate of rms miss distance that is more accurate than the result

given by CADET. Taking the five sets of 100 trials separately*, the value

of a (6) varies from 19.72 to 35.88 ft; thus the use of only 100 trials is in-
y

adequate for determining the absolute accuracy of CADET. On the basis of

this quite typical behavior, w'e generally consider that the CADET result is

well verified whenever it lies close to or within the 95% confidence band.

The present study of the nominal case also shows that CADET can yield

a very accurate analysis of the mean value of the down-range separation,

The first 100 trials shown in Fig. 4.1-3b yielded ay(6) a-a = 19.72 ft, the
second set (trials 101 to 200) resulted in ay(6) - a2 - 32.08 ft, and subse-
quent sets yielded a3 = 22.25 ft, a4 = 25.67 ft, and a5 = 35.88 ft. To
aggregate the statistics for various sets of trials, it is necessary to aver-
age the variances:

2 1 2 2 2 1 2 2
a 2 0 0 

= v 2 0 0 =2 1 
+ a 2)' ' 5 0 0 v500 =5(' 1 + 5)
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mx, when the terminal time is no deterministic. In Fig. 4.1-4, it is

demonstrated that the CADET analysis is well verified by the monte carlo

results. The mean terminal time given by CADET, 6.026 sec, is in almost

exact agreement with the monte carlo figure.

ISO-a~ '

MONTE CARLO

500 iI ALS

Toot- ~ Sols~~eSn

0

6.026 sec

CAUT

-50

-100

*'50
600 605

TIME, t (s"c)

Figure 4.1-4 Mean Down-Range Missile-Target Separation
Near the Mean Terminal Time

The remaining two components of the missile-target separation are

of secondary importance. The mean lateral separation, my, computed by

CADET and the monte carlo method, is shown in Fig. 4.1-5a. We note that

CADET gives the exact result for the mean of y, viz. my 0 throughout the
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1110c- 2-12010
0 DENOTES MONTE CARLO

RESULTS FOR SPECIFIED
NUMBER OF TR IAl S

CADET 500 TRIALS

-0--0-

... 10-200 TRIALS
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(a) CADET AND MONTE CARLO STUDY OF MEAN4 LATERAL SEPARATION

200 R-12041

i
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II, 100-
0
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(b) CADET AND MONTE CARLO STUDY OF RMS DOWN - RANGE SEPARATIONI' Figure 4.3.-5 Mean Lateral Separation and rms Down-
Range Separation in the Nominal Case
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engagement, * while the monte carlo results converge to a zero mean quite slowly.
However, CADET incorrectly indicates that x has no random component (a x-- 0) as

shown in Fig. 4.1-5b, which is not true; it is observed, however, thata x is negli-

gible except in the last few hundredths/of a second of the terminal homing

phase. The lack of a random component of x in the CADET analysis is due

to the even symmetry of the nonlinearities cos (ea) and cos (es) that consti-

tute the two contributions to i; any even function with a zero mean input has

a random input describing function gain that is Wcr3tically equal to zero.

Figure 4.1-6 indicates the sensitivity of the miss distance to changes

in the noise level for the basic system configuration. The more stringent

300 R10299

T

b'200 ' AtO L / 1
MO tE

CONFIOENCE /|0TolIANO 71

100

' IE5 FACTOR 80lf

C61 I

0! 2 3 4 5 6

TIME, t (sc)

Figure 4.1-6 Effect uf Seeker Noise Level on
the Basic System Performance

This can be demonstrated by noting that there are no mean components in
the initial conditions except for x(0) = 24,000 ft, and no bias components in
the random disturbances, so the basic guidance loop nonlinearities have
odd symmetry and all variables except range have zero means for all time.
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acceleration command limit, a = 150 t/see, was retained in this inves-
tigation. For a seeker noise factor of 2 = 90, a significant deterioration

~0
in the rms miss distance is observed, and the CADET analysis is well veri-

fied by the monte carlo results.

The above investigation of the capability of CADET to provide an

accurate measure of tactical missile performance verifies the applicability
of CADET to the basic system model, thus paving the way for studies of

other effects.

4.2 SEEKER MASS IMBALANCE

In this study, it is assumed that the seeker head center of gravity
(cg) is offset from the gimbal pivot point by a distance r0 , and located at an

angle 60 wi1. respect to the antenna centerline (refer to Fig. 3.6-2). This

cg offset results in an effective disturbance torque of significant complexity.

Two types of nonlinearitie.: that have not previously been studied are re-

quired to model the effect of mass imbalance. These are the product of one

variable with a trigonometric function of another variable (vI cos v2 ), and

the square of a variable times a trigonometric function of a second variable

(v2 sin v2).

The sensitivity shown in Fig. 4. 2-1 corresponds to the situation

where the seeker head cg is directly in front of the gimbal point -- 00 = 0 deg.

Without seeker dynamic compensation, described in Section 3.6, a pro-

nounced deterioration in the missile guidance system performance is noted

with very small values of cg offset. Even for an offset of one thousandth

of an inch, Fig. 4.2-1 indicates that the rms miss distance is nearly twice the

nominal value. The introduction of proportional plus integral compensation

to remove the effect of steady state disturbance torques (Section A. 7)
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Figure 4.2-1 Effect of C eeker Mass Imbalance
on Guidance Accuracy

markedly improves the guidance system performance. In both the uncom-

pensated and compensated cases, the monte carlo results* are in good

agreement with the CADET analysis, evPn when extremely large miss dis-

tances are incurred. Thus CADET gives an accurate assessment of the

effect of seeker mass imbalance.

The confidence bands plotted in Fig. 4.2-1 and subsequent figures are
based on the gaussian assumption (X - 3). In the previous section it is
demonstrated that the actual confidence bands are probably larger; it
is not possible to obtain a useful estimate of the kurtosis with fewer than
one hundred monte carlo trials, however, so no attempt is made to
consider this factor.
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The effect of the angular coordinate of the cg location, e0, was
studied for a single value of cg offset (0.03 in) and with the seeker assumed

to be compensated. The CADET analysis indicates only a slight difference

in rms miss distance for O0 = 180 deg compared with the case 0 = 0 deg,

as shown in Fig. 4.2-2. With the cg offset normal to the antenna centerline

(0 = 90 deg), the guidance system terminal performance deterioration was

lessened to a great extent. We observe that the most significant difference

between these three cases )ccurs in mid-flight; the fact that the maximum

rms lateral separation is much smaller for 60 = 0 deg than for 60 = 180 deg

can be attributed to an effective change in the seeker dynamics.

20 e0  180

F CADET

too 0o -0

so

to - 003 in.

DENOTE. MONTE CARLO
RESULTS FOR 50 TRIALS WITH
9S% CONFIDENCE BAND

02 3 4 b 6 7

TIME, I (W*)

Figure 4.2-2 Effect of Seeker cg Offset Angle
with Compensated Seeker
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4.3 SEEKER GIMBAL DRY FRICTION

The occurrence of dry or Coulomb friction in the seeker gimbal

introduces a disturbance torque of the form

T. = k2 sign (6 h)

where 6 h is the seeker angular rate measured relative to the missile air-

frame. Results from a study of this effect are presented in Fig. 4.3-1.

R.1 1968

500

50
400

DENOTES MONTE CARLO
N RESULTS, N TRIALS,

95% CONFIDENCE BAND

z

2 00

10-20

50

0I I I , , II ,

0 0.4 0.8 1.2 1.6 2.0

SEEKER DRY FRICTION COEFFICIENT. k (in:oz)

Figure 4.3-1 Effect of Seeker Gimbal Dry
Friction on Guidance Accuracy

First, several values of the dry friction coefficient, k 2 , were

selected and CADET analysis was performed to obtain a prediction of the

rms miss distance that would result without seeker dynamic compensation.

When proportional plus integral compensation was incorporated in the
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J.

seeker track loop, a significant improvement was observed in the

I performance projections provided by CADET. It can be seen in Fig. 4.3-1
air

that for a dry friction coefficient of 0.8, the miss distance is reduced by a

factor of 6 when compensation is implemented.

Three monte carlo studies were undertaken to check the accuracy

of CADET; two for the compensated case and one to verify the large rms

miss distance given by CADET for the uncompensated seeker. In every case,

the CADET result was near or within the 95% confidence band of the monte

carlo estimate, which verifies the ability of CADET to capture the effect of

dry friction quite adequately even when the guidance system performance

(as measured by rms miss distance) was degraded by an order of magni-

tude from the nominal case.
I

It is well known that the dry friction relay-type characteristic can

lead to limit cycling in dynamic systems. This phenomenon can be explained,

using the standard sinusoidal input describing function theory, by the fact that

. ;the effective gain of this discontinuous nonlinearity is extremely large for

small signals (Ref. 8). Thus a point of considerable interest is whether or

not the missile performance degradation observed in Fig. 4. 3-1 is due to

limit cycles in the seeker track loop. A single monte carlo simulation was

performed for both the compensated and uncompensated seeker, with dry fric -

tion coefficients of 1. 6 d 0. 8 respectively, and limit cycles were clearly

observed, as shown for the compensated case in Fig. 4. 3-2. It is evident that

CADET can provide a reasonably accurate assessment of the missile guid-

ance system performance under such circumstances.
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Figure 4.3-2 Existence of Limit Cycles due to Seeker Girbal
Dry Friction with Compensated Seeker

4.4 NONLINEAR SEEKER HEAD RESTORING TORQUES

The classical "hard spring" type of nonlinearity -- usually modeled

as a power law characteristic,

T k Ih sign (8h)J1im

where K is an integer greater than one -- provides an example of another

class of nonlinear effects, where the output is small for small seeker angle

deflections (e h < <  l im ) but increases more rapidly than a linear charac-

teristic when e h exceeds 0 lira Such a restoring torque might occur as the
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tJ result of a seeker head spring restraint system designed to prevent large

values of seeker head angle to preclude the seeker head reaching its stops,

J or might occur naturally due to wiring harnesses or other flexible linkage

to the missile body. The case investigated, K = 11, corresponds to a negli-

J gible spring effect for small % and a very rapid increase in restoring tor-

que as 9h approaches Olim* In this study, we confined our attention to the

compensated seeker case, and chose 8lim to be 10 deg.

The variation of rms miss distance as a function of the nonlinear

spring coefficient, kl, is shown in Fig. 4.4-1. The CADET analysis indi-

cates that the miss distance increases very abruptly with k1 for k1 < 0.2;

the monte carlo simulations carried out for two cases well verified the

performance projections given by CADET.

200

*uJ

a

S120€

SDENOTES MONTE CA9LO
I$AhS FCI 3 TRIAIS WITH
95% CON1t1IJCE $AND

008 16 24

NONONEAR SPR;NG COEFFICIENrIJI(IM- )

Figure 4.4-1 Effect of Nonlinear Restoring Torques
on Guidance System Performance
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An interesting aspect of the above comparison is that the monte

carlo analysis required a smaller integration step size in simulating the

system response than was required in the CADET propagation of the sta-

tistics. * The CADET program ran correctly with an integration step size

of 0.01 sec, while the monte carlo program required 0. 005 sec to avoid

overflow due to numerical instability. It is reasonable to conjecture that

CADET may be more immune to numerical e:rors inherent to the inte-

gration techniques for solving differential equations on a digital computer,

since quasi-linearization tends to "smooth" nonlinearities -- e.g., refer

to Fig. 5.1-2; thus in cases where the nonlinearity exhibits large vari-

ations in slope, CADET will tend to have an increased computational ad-

vantage with respect to the monte carlo method.

4.5 RECEIVER CHARACTERISTIC AND RANGE RATE UNCERTAINTY

The effect of the receiver/signal processing nonlinearity for the

case where the boresight error limiter (Fig. 3.6-3) saturates at

C lim = 0.25 deg (representative of narrow-beamwidth monopulse radar

systems (Ref. 12) or infrared seekers) was considered. The effectiveness

of the seeker was reduced by increasing the track loop time constant from

0.12 to 0.32 sec (which increases the boresight error rms level by the

same factor, 2.6, and thus increases the effect of limiting). For the

above parameter values, Fig. 4.5-1 shows that CADET predicted a deteri-

oration in rms miss distance from 22.9 ft (in the nominal case) to 28. 8 ft.

The monte carlo method provided a good verification of this result; for

60 trials, the nominal rms miss distance was predicted to be 20.9 ft and

the effect of choosing clim = 0.25 deg and r 1 = 0.32 sec was to increase

*
Both programs used the same integration technique -- the fourth-order

Runge-Kutta method.
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Figure 4.5-1 Effect of Boresight Error Saturation on Guidance Accuracy

this miss to 27. 2 ft, where the same sets of initial conditions and noise

inputs were used for the two cases.

The effect of range rate uncertainty in the guidance law (refer to

Fig. 3.5-1) was assessed for the case of a fixed (bias) uncertainty. It was

assumed that the guidance package range rate information was in error by

a fixed value of 500 ft/sec. The monte carlo result, shown in Fig. 4.5-2,

is that the rms miss distance is decreased slightly by this error; CADET

analysis predicts that the effect is virtually insignificant (Fig. 4.5-3). Both

methods agree that the rms lateral separation is reduced from the nominal

case in mid-flight for evb = +500 ft/sec; this is to be expected, since the

4-19



THE ANALYTIC SCIENCES CORPORATION

R.12013

P--

/ 4NOMINAL CASE

150/
/ e 500 ft/sec

2:

P tO0 /1

3

cc 50

0 1 2 3 4 5 6 7
TIME, t (sec)

Figure 4. 5-2 Effect of Bias Range Rate Uncertainty
on Guidance System Performance,
20 Trial Monte Carlo Analysis

error modeled above is equivalent to assuming that the guidance package

range rate value is approximately 4500 ft/sec rather than about 4000 ft/sec

in the nominal case. * This corresponds to a range rate error of + 12.5%,

which is equivalent in effect to the same percentage increase in the navi-

gation ratio, n'. Previous studies (Ref. 2) have shown that the guidance

system performance is quite insensitive to moderate changes in n'; how-

ever, a higher value of n' results in a somewhat faster guidance loop which

should lead to the reduction in rms 'ateral separation in mid-flight.

Closing velocity is actually a random variabie, as indicated in Fig. 3.5-1.
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Figure 4.5-3 Effect of Bias Range Rate Uncertainty on
Guidance System Performance via CADET

4.6 CADET-MONTE CARLO COMPARISON WITH ALL
: NONLINEAR EFFECTS

As a final study of the efficacy of CADET in providing an accurate

statistical analysis of the performance of a complex, highly nonlinear tac-

tical missile guidance system model, we consider the effect of exercising

all of the nonlinearities in combination. Values of the parameters are

shown in TFable 4.6-1. They were chosen such that each nonlinearity alone

had led to a significant deterioration of system performance from nonminal

in the studies treated in Sections 4. 2 to 4. 5.

The results of the CADET and monte car lo statistical analysis are

shown in Fig. 4.6-1. The CADET value of rms lateral separat4 'rn is well

verified by the 30-trial monte carlo study.
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TABLE 4.6-1

PARAMETER VALUES THAT EXERCISE ALL NONLJNEARITIES*

Effect JParameters Values

Seeker Mass Imbalance r0 , e0  0.031ni, 0 deg

Nonlinear Restoring Torque kj, K; e lim 0.05 ifl-oz, 11, 10 deg

Nonlinear Gimbal Friction k2  0.8 in-oz

Boresight Error Limiter CEim 0.25 deg

Seeker Compensation Gain ko 20.0

300

-200

z

IO-

23 4 5 6 7
TIME.t (sec)

Figure 4.6 -1 Guidance System Performance with
All Nonlinearities Exercised

Only deviations from the nominal case, Table 4. 1-1, are noted.
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4.7 COMPARISON OF CADET AND MONTE CARLO EFFICIENCY
a,

One of the main arguments advanced for the use of CADET in ob-
taining projections of tactical missile guidance system performance is the

significant reduction in computer central processing unit (CPU) time achieved

by CADET when compared with the monte carlo method of statistical analysis.

-- In making this evaluation, two issues must be addressed: the number of monte

carlo trials that must be performed in order to obtain comparably accurate

results, and the practical limitation imposed by computer costs. From the
standpoint of accuracy, any such number is somewhat arbitrary, because the

error mechanisms of CADET and the monte carlo method are essentially dis-

similar, and of necessity the judgement is based on a limited body of experi-

ence. Referring to Fig. 4.1-3b, we note that in a situation where the statistics

are quite nongaussian the CADET computation of rms lateral separation appears

to be at least as accurate as the value estimated with 400 monte carlo trials, in
the sense that the 95% confidence band for 400 trials brackets the CADET result.

Where the statistics are more nearly gaussian, e.g. as in Fig. 4.1-3a, it

would appear that one thousand or more trials may be required in order to

achieve comparable accuracy. On the other hand, a pragmatic evaluation of

the efficiency of CADET should take into account the fact that most monte carlo

studies must be limited in scope by computer budget constraints. A reasonable

upper bound is 256 trials since, in the gaussian case, thij results in 95% con-

fidence that an accuracy of 10% can be achieved (Section 2.1); for high order

systems, even this number of trials may require too much computer time.

For the present, we will thus compare the relative efficiency of the monte

carlo and CADET approaches on the basis of 256 trials, recognizing that the

estimated rms values of the system variables obtained for this number of

monte carlo experiments may be less accurate than the CADET results.

In the present study, the savings in computer CPU time is quite sig-

nificant, even though the system is of considerably higher order (n = 17) and
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has more nonlinearities than in previous investigations that compared CADET

and the monte carlo technique. Both of these factors tend to reduce the relative

efficiency of CADET. Monte carlo simulation requires only the integration of

an n-vector differential equation (q times), while CADET involves the propagation

of an n-vector and an nx n symmetric matrix -- a total of n (n + 3)/2 elements.

Thus the computational burden for CADET can increase as fast as n2 /2 while

the CPU time for monte carlo analysis only varies as n, demonstrating that an in-

crease in the number of states may reduce the advantage of CADET in efficiency.

This factor can be mitigated where there is little cross-coupling in the system;

in the quasi-linear system model, this corresponds to Nr having few non-zero

elements (Nr being sparse). In many practical problems, Nr is sparse and a

considerable increase in the computational efficiency of CADET can be realized

by the application of techniques which circumvent multiplications involving zero

elements, thus streamlining the evaluation of P (Eq. (2.2-5)).

The number of nonlinearities may also increase the computation time

required by CADET, since the calculation of a random input describing

function in CADET generally requires more logical and numerical opera-

tions than evaluating the corresponding nonlinear function in the monte

carlo program (refer to Appendix B). The present study was exceptional

in having nearly as many nonlinearities as states; more typical applica-

tions of CADET would focus on a few principal nonlinear effects, leading

to a greater reduction in computational burden per performance evalua-

tion in comparison to a monte carlo analysis.

Using the same integration method in performing the monte carlo

ensemble of simulations as was used in propagating the system mean vector

and covariance matrix via CADET, and assuming that the same integration

step size can be used in e zi procedure, it has been possible to perform

10 CADET sensitivity studies at the same computational expense needed

for one accurate monte carlo study. Since we have seen that it i6 possible
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that the monte carlo approach may require a reduced integration step size

to avoid failure of the numerical integration technique (Section 4.4), the

ratio may be even higher. For the case studied in Section 4.4, the CADET

analysis required only 4.4 minutes of CPU time, in contrast to about 92

minutes for a comparable 256 trial monte carlo study with one-half the step

size. A more typical application of CADET can exhibit even greater ad-

vantages; a simpler but still realistic missile-target intercept problem has

been treated in which a ratio of 30 CADET analyses to one monte carlo

study was achieved (Ref. 2).

The studies discussed in this chapter have treated the missile-

target intercept problem, represented by a nonlinear model of considerable

complexity -- with between 9 and 16 nonlinearities. The results presented

demonstrate that CADET has been quite successful in capturing the significant

sensitivities of rms miss distance to the nonlinear phenomena in question.

.
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5. SENSITIVITY STUDIES AND COMPUTATIONAL ISSUES

5.1 EFFECTS OF PROBABILITY DENSITY FUNCTIONS ON
RANDOM INPUT DESCRIBING FUNCTIONS

*. An important issue that must be investigated in order to assess the

potential success of CADET in providing accurate performance projections for

tactical missile guidance systems is the effect of the assumption that the

state variables are jointly normal on the calculation of random input describ-

ing functions (ridf's). The gaussian hypothesis is the only basic approxima-

tion made in the application of CADET, so any inaccuracy in the statistical

analysis obtained via CADET is due to deviation of the actual joint probability

density function (pdf) from normality.

In this section, the sensitivity of CADET to changes in the pdf of the

nonlinearity input is investigated by comparing the ridfIs corresponding to

selected nonlinearities often found in missile guidance system models, com-

puted for a variety of density functions. Three nonlinearities are chosen;

these are the limiter, the sinusoidal operator, and a power law nonlinearity.

Seven probability density functions with quite different functional forms are

considered. Four of these are taken from Table 2.1-1, viz,, the exponential,

gaussian, triangular, and uniform distributions. Three additional densities

are special cases of the sum of two symmetrical triangular functions, gen-

erally defined by

p.x )a ) I- I X l X-o A
POX) ! xI(5.1-1)

0 Ix I-xo >A
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wh: --h has a zero mean, a variance given by

2 2 1 2(51)a =x 0+-6A(512

and a ratio of fourth moment to variance squared of

4~ + 2 x 2  1-!- 4

o 4 x0+ 15 (5.1-3)
x + -. x +0 3 o 36~

The three cases of Eq. (5. 1-1) chosen for the present study correspond to
I .x , x and 2x ; the associated ndf Is are portrayed in Fig. 5. 1-1. Note

2 00 0
that two of these densities are bimodal; i.e., they have ,io peaks.

R- 11952

p(X) p Wx

2x0

2 0 O x 0  x x 0 .x x -2x 0  -x x0 2x0

(0) A= x0  (b) A: x

-3xo 0 X0 3x0 x

Wc A: 2x 0

Figure 5. 1-1 Three Density Functions Comprised of
Two Triangles
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wh .h has a zero mean, a variance given by

a2 = x + (5.1-2)

and a ratio of fourth moment to variance squared of

4 2  2  1 4
P4 xo0 + A 2x + 1-A (5.1-3)

4 1 2 2 1 4
a x0 + -x 0 x

, ~ ~ 3 x+ x o + T6

The three cases of Eq. (5.1-1) chosen for the present study correspond to

A I -Xo, x ° and 2xo; the associated rdf's are portrayed in Fig. 5.1-1. Note

that two of these densities are bimodal; i.e., they have ,io peaks.

R- 11952

p(x) plx)

1 1x 3

2x0

"3Xo " o ' x x o x -2x o  -x o  xo 2x x

() A:-xo (b) A : x.

/4 x0

'- -
-3x o  -x xo  3x 0 x

(W) A: 2 x0

Figure 5.1-1 Three Density Functions Comprised of
Two Triangles
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in Eq. (5.1-4) hav even symmetry, we note that skew densities can be dis-

regarded with no 'oss in generality. For a skew density ps(x) we can define

its even part by

1

Pev(x) = (ps(x) + ps(-x))

Since the three nonlinearities considered are symmetric (odd) and the

mean values of their inputs are zero, only the even part of the pdf contributes

to the describing function calculation.

Limiter - The ideal limiter,

x ,Ixl 6
f (x) = (5.1-5)

8 sign(x) , Ix->6

is probably the most common piece-wise linear function used to model non-

linear phenomena; here it represents several saturation effects in the

missile guidance system. In Fig. 5.1-2, we portray the various describing

function gains for this nonlinearity, corresponding to the pdfIs defined in

Eq. (5.1-4), as functions of the ratio of the input rms level, a, to the satura-

ion point, 8.* As would be expected, all seven quasi-linear gains capture the

fact that the effective gain starts to decrease from unity whenever a significant

portion of the assumed input pdf lies beyond the saturation point, i.e., when-

ever there is a significant probability that Ixi is greater than 6. As has been

pointed out previously, this effect is the key to the success of quasi-lineariza-

tion techniques in reflecting nonlinear system behavior that is beyond the scope

of small-signal (Taylor series) linearization.

The derivations of these and all subsequent ridf's are given in Appendix D.
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Figure 5.1-2 Random Input Describing Function Sensitivity for
the Limiter

It is interesting to observe that the relative position of the curves

in Fig. 5.1-2 exhibits a monotonic relation to the value of X. The greater

the difference between X for a particular pdf and the value for the gaussian

case (X = 3), the greater the difference between that density function's ridf

curve and the curve for a gaussian distribution. This behavior holds in all

the cases considered here, and is indicative of the fact that the value of X is

one quantitative measure of how "close" the density function is to being

gaussian.

The variation of the ridf's with X is about at its maximum (on a per-

centage basis) for the case a = 26. This is shown in Fig. 5.1-3; we note

that the ridf decreases 13% as X increases fror" 3 to 6, and it increases 28%O

as X decreases from 3 to 1, 16.
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Figure 5.1 -3 Random Input Describing Function Sensitivity toX for the Limiter, a= 2 6

Power Law - A similar study was performed for a power -law

characteristic,

f0 x sign (x) (5.1-6)

This type of nonlinearity is often used to model effects such as the "hard

spring" characteristic, as treated in the study of nonlinear restoring t~orques

acting _n the seeker head. For the power law, the ridf Is calculated for the
same density functions considered previously are shown to be of the form

f = sin (5.1-7)
nr. 5

1
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in Appendix B, where a is the input rms level and i are coefficients deter-

mined by the input pdfIs, pi(x). Thus the describing function gain for f(x)

increases linearly with the input rms level, in direct contrast to the small-

signal linear gain which is identically equal to zero, as shown in Fig. 5.1-4.

Itis again observed that there is a monotonic relation between X i and the ridf

curves, depicted by plotting ui versus Xi in Fig. 5.1-5. In this case, an in-

crease in X leads to an increase in the describing function gain, which is con-

trary to the behavior shown for the limiter. This is a result of the fact that

the power law output increases more rapidly with increasing input than a

linear characteristic, whereas the opposite is true for the limiter. For the

power law nonlinearity, the ridf sensitivity is independent of a, i.e., the

ratio of ridfIs calculated for pi(x) and pj(x) is simply ui/ j . For f(x) in

Eq. (5.1-6), the gain nr varies from +33% for the exponentially distributed

case, to -34% for the pdf P7 (x), compared to the gaussian input ridf, which

shows that this nonlinearity is somewhat more sensitive to variations in X

than the limiter.

Sinusoidal Operator - The third nonlinearity considered in these

sensitivity studies is the sinusoidal operator,

f(x) = sin x

which represents the resolution of the imissile and target velocity vectors

into orthogonal components in the missile-target intercept modc. A potential

source of difficulty with this function is that the nonlinearity output periodically

changes sign with increasing or decreasing values of its input.* This leads

to quasi-linear gains that, for large values of rms input, a, may even differ

in sign for different input pdcf's. This problem is not unique to CADET; in

many modeling and simulation studies, care must be exerciser, '.he input

to a sinusoidal operator can exceed + 90 deg (+ E rad), si- . sense

* This is not a problem in the present study.
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the "gain" can become negative in this situation. Bearing this in mind, we

have calculated the random input describing functions for values of or as large

as 3 rad to indicate where such effects become important, as shown in

Fig. 5.1-6.

R 1143

1. SMALL SIGNAL LINEARIZATION SINUSOIDAL OPERATOR

0 
14
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o

0 UNIFORM

p,06 P 7

06

z
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- 0.4 EXPONENTIAL

z
GAUSSIAN

TRIANGULAR

cc 02 P4
C

S 0 1
0

c

-0.2
0 0.5 1.0 1.5 2.0 2.5 3.0

INPUT STANDARD DEVIATION. a lead)

Figure 5.1-6 Random, Input Describing Function Sensitivity for
the Sinusoidal Operator

The quasi -linear gains f or a < I~ rad show some similarity to those
2

obtained for the limiter; this is a reasonable mode of behavior, since the sine

function shows a definite saturation effect over the range jxi :5 E rad. As2
expected, the ridf Is are inversely related to X for a< Irad, i.e., as X in-

creases, nr decreases, as shown in Fig. 5.1-7 for ar = 1.0 Ilad. However,

as the input rms level approaches 3 rad, the describing fvnctions for all of
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the pdf's except pl(x) and P2 (x) become negative, and the monotonic relation-

ship between X and nr appears to be lost.

The preceding studies show that in all three cases the sensitivity of

random input describing function calculations to variations in input proba-

bility density function is slight for small values of input rms level; as a

approaches zero, the quasi-linear gains approach unity for the limiter and

sinusoidal operator, and zero for the power law nonlinearity. These limit-

ing cases are the same values of gain that would be obtained by the tradi-

tional small-signal linearization approach - - viz., by replacing f(x) with a

linear gain equal to the slope of the function at the origin (Section 2.2). As

a general result, it has been shown (Ref. 8) that quasi-linearization sub-

sumes small-signal linearization, i.e., for small signals the two are

equivalent. This, in turn, proves that CADET provides nearly exact sta-

tistical analyses when the random variables have a small rms value in

relation to the system nonlinearities, i.e., when most of each nonlinearity

input probability density function lies in the linear region of its nonlinearity.

As the rms levels of system variables increase so that the nonlinearities

are being exercised significantly, the describing function sensitivity to the

input pdf can be appreciable; then it must be ascertained how sensitive the

system performance is to variations in gain at each point in the system

model where a nonlinearity occurs. No general answer can be given to

this question; the verification of CADET for particular applications must

be accomplished by direct comparison with monte carlo results, as has

been done in Chapter 4 for the missile homing guilance system.
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5.2 RANDOM INPUT DESCRIBING FUNCTIONS NOT EXISTING
IN CLOSED FORM UNDER THE GAUSSIAN ASSUMPTION

For certain nonlinearities, the question of sensitivity has a strong

bearing on computational issues. These are cases for which the random in-

put describing functions cannot be obtained in closed form under the assump-
tion that the states are jointly normal. An example of interest in the missile-

target intercept problem is the nonlinearity

x2  2
r= + y

which defines the missile-to-target range in terms of the down-range and

cross-range components, x and y, respectively. In order to simplify the dis-

cussion, we assume that y does not have a mean component, and x has a

negligible random component except at the very end of the engagement (refer

to Section 4.1). This approximation is valid in the missile-target intercept

situations investigated here.

In this case, there are only two ridf's, nmx and nry, needed for a

quasi-linear representation of the range. Thus we must evaluate

_1 [ f 2y2] co 22mx -- E + y : _ p(y) e x +y dy

(5.2-1)

-1 vn() 2-2nr 2 yp(y) mx + y dy

y 0

Under the assumption that y is a gaussian random variable, the second of these

integrals can be evaluated analytically; however, the first, which is of the form
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,!2

n m + 2+y2 exp () dy (5.2-2)nx  mxflf ffy y2

cannot generally be solved in closed form unless mx = 0, viz.,

E[y2 EO= E[Iyi]=V1 y (5.2-3)

For the more general case given by Eq. (5.2-2) with mx 4 0 it is desirable

to use some approximate technique to obtain a closed form expression for

nmx that is convenient for use in a CADET analysis.* The two principal

approaches that we consider are approximation of the nonlinearity (e.g.,

by series expansion), and substitution of approximate pdf's.

A Taylor series expansion of a function of a random variable, f(y),

about the mean of that variable, here taken to be zero, results in

dl + .:d fi 12 +.(5.2-4)
f(y) = f (0) + (fy y 2dy-y= y(5

We desire to determine the expected value of the function, which is given by

2123I /d f 2 1 + E y
E[f(y)] = f(0) +) a +-1-6 ELY + (5.2-5)

While nm in Eq. (5. 2-2) can be calculated by numerical integration, a less
x

time consuming approach is desired for repeated evaluation in a CADET
analysis.
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where use is made of the fact that E[y] is zero to eliminate the second term in

Eq. (5.2-4); all other odd-moment terms (E [y3 ] etc.) are also zero for

symmetric pdfIs. Truncating the series given in Eq. (5.2-5) at the second

term, we obtain

E~f~)] I dfI 2
fd)/ +Y (5.2-6)

E ~dy) y )()+ y=0

which is an approximation suggested in Ref. 9. We note that this result is

independent of the particular density function of y. If more terms are de-

sired, the higher-order moments ran be evaluated using a specified pdf. If

y is gaussian, all odd moments are zero and even moments are given by (Ref.9)

Ey2k _(1) (3) (5). . . (2k-) k 1, 2,

~2k =,k ,2

which leads (to the full expansion

I (12f 2 + (1) (3 (d4f 4
E [f (y) f f(0) +r 1(3d (5.2-7)dydy y.

The use of the first term alone in Eq. (5.2-7) corresponds to small

signal linearization; taking two terms as indicated in Eq. (5.2-6) results in a

quasi-linear gain that is often useful. In the present case, however, this

approach is effective only in situations where mx is considerably larger in

magnitude than a y, due to the singularities of the derivatives of 4]mx2 + y2

at the origin (m = 0). To dpmonstrate this difficulty, we write the series

expansion for the nonlinearity under consideration (Ref. 10),
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";~~ 4xy x
f(y) = 2 y- I+y- .

(5.2-8)

from which we obtain

+mx =12 - " .]sign(mx) (5.2-9)

as an approximate describing function to represent the mean component of the

range. For mx considerably larger than a y, the first few terms of this ex-

pansion yield acceptable accuracy.* Since mx approaches zero in the missile-

target intercept problem, however, this result is generally not suitable.

Another approximation to the nonlinearity leads to a series that is

useful for small values of mX

M4-7+ y - y + -mjey/ I , IXI < lyl (5.2-10)

The right- and left-hand-sides of Eq. (5.2-10) have the same first three terms

when their power series expansions are compared. Substituting this approxima-

tion into Eq. (5. 2-2) leads to an integral that can be evaluated in terms of the

complementary error function, denoted as erfc (Ref. 11),

We note that the expansion indicated in Eq. (5.2-9) never converges formally,
i.e., for any value of ay/mx, no matter how small, the series will eventually
diverge as more terms are evaluated. This is a standard property of asymp-
totic expansions which are useful only when truncated after a finite number
of terms.
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nmr + m.1 exp " erfe _2t.'

X L)

which in turn can be represented as an asymptotic expansion (Ref. 6) valid

for >> Mx :

n = "L i+ + 3 -.. .-I

For mx = 0, the expansion correctly yields the result given in Eq. (5.2-3),

and for Im x < crY , the result is quite accurate.* However, the series is

divergent for larger values of I m x. This series is of questionable utility

in the missile-target intercept problem, since I m, >> Cr at the beginning ofx
the terminal homing phase.

The second method for approximately evaluating the first integral

in Eq. (5.2-1) is the substitution of a nongaussian pdf for which the integral

can be obtained in closed form. As in previous sensitivity studies (Section 5.1),

the best result has been obtained using the triangular pdf. Substituting this

distribution into Eq. (5.2-1) leads to an integral that is evaluated in closed

form to be

n+ v + V log - •+ + v2
nm sign (mx) 4T_2 2 o (+ 4  + (v 3 1)3/2)]x  v

(5.2-12)

*Eq. (5.2-11) is also not formally convergent.
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where the auxiliary variable v is given by

1'XI (5.2-13)

The accuracy of Eq. (5.2-12) is quite good, especially when compared with

the poor approximations given by the series expansion in Eqs. (5.2-9) and

(5.2-11) when Imxl is nearly equal to a y. The error between Eq. (5.2-12)

and the exact result specified in Eq. (5.2-2) is less than 3%, which is ade-

quate for most applications.

In passing, we note a third alternative that might -be considered in

applications where less accuracy is required; viz.

1. 2+ 21n m = ml +

-I1 + y sign (mx) (5.2-14)

The simplicity of this result -- and the fact that the approximation is better
than either series expansion (Eqs. (5.2-9) and (5.2-11)) for I mx y --
makes it attractive, despite the error of 25% at mx = 0.

All of the approximate solutions for nmx in Eq. (5.2-2) discussed

above are compared in Fig. 5.2-1. Generally, we note that se es
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.1

approximations for this nonlinearity are accurate only in applications where

j mxj >> y or I mxj << ay for the entire,'CADET simulation; such conditions

are never satisfied in studying the expected value of the range in the missile-

target intercept problem. The use of an approximate (nongaussian) pdf --

in particular, the triangular density -- yields the best overall accuracy.

R-1 1973

,, E.2 TERMS

0

z Eq1. (5.2-9)

o zXC OUIN

ca

VE" TRIANGULAR
,, o DENSITY

0 EXACT SOLUTION,
a GAUSSIAN DENSITY
z

0

N
-1 Eq. (5.2-11)

5 TERMS

0Oz 0 I...

0 0.5 1.0 1.5 2.0

NORMALIZED MEAN VALUE OF DOWNRANGE SEPARATION, mx/oy

Figure 5.2-1 Comparison of Approximations for the Expected
Value of the Range

It should be mentioned that the conclusion that the series expansion

techniques are not very accurate for computing the ridf in the case treated

above should not be taken as universally true. When series approximations

for an ridf can be obtained which are accurate over the entire range of the

input statistics, they will generally yield good results.
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I TTHEUltimately, the issue of sensitivity depends upon how much the
CADET analysis results -- e.g., the computed rms miss distance -- are

affected by errors or variations in the describing function gains. It is con-

j ceivable that the miss distance will not be significantly affected by large

i changes in a particular ridf, depending upon how the ridf enters into the

system model. In the missile guidance system model developed in Appendix A,
the only incidence of range dependence is in the seeker noise module. It is

intuitively clear that the effect of seeker noise on the statistical performance

i -of the guidance system will not be particularly sensitive to moderate inaccur-

acies in the quasi-linear representation of range, particularly if these in-

I "-accuracies occur only during the last few hundredths of a second of the engage-

ment. This is verffied by comparing CADET results obtained for the nominal
-1j case (Section 4.1) using the two range ridf approximations labeled "triangular

density" and "Eq. (5.2-9), 2Terms" in Fig. 5.2-1. The difference in the

CADET computed rms miss statistics for these cases was negligible; in fact,

all state variables had means and standard deviations that differed by less

than one percent at terminal time.

StionsiOn the basis of the insensitivity of the seeker noise module to varia-

Itions in the ridf representation of range dependent noise sources, we recom-

mend the use of a simpler ridf than that obtained from the triangular density

I' .approximation (Eq. (5.2-12)). Rather than using the two-term series expan-

sion considered in the above comparison, however, the application of Eq.

(5.2-14) should be an even more attractive alternative, due to the fact that

-. the latter result is more accurate for small values of mx. In particular,

Eq. (5.2-14) does not become infinite as mx goes to zero.

5.3 HISTOGRAM STUDIES OF NONGAUSSIAN SYSTEM VARIABLES

In considering the impact of the assumption that the state variables

are jointly normal on the accuracy of performance projections provided by
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CADET, we have performed a. histogram study of a c2se in which there is a

significant difference between CADET and monte carlo results. Such a study

provides some insight into how norigaussian the state variable pdfs must be

in order for CADET results to be inaccurate.

The system under consideration corresponds to the nominal case
given in Table- 4.1-1, except for a single large initial condition statistic --

an rms initial heading error of 10 deg -- chosen to obtain a significant dis-

crepancy between CADET and monte carlo results; this somewhat unrealistic

condition leads to a very large rms miss distance.

The time history of the rms lateral separation, ay, over the duration

of the engagement is presented in Fig. 5.3-1. The monte carlo confidence

limits shown are calculated on the preliminary assumption that y is nearly

gaussian, i.e., that X 5 3 (Section 2.1). The CADET and monte carlo results

agree well over the first half of the homing phase. However, there is a

imarked divergence after t = 3 sec, which is evidently due to some inadequacy

in the assumption that the states are jointly normal.

To understand the reason for this problem, and to assess how much

deviation from normality is required for a discrepancy of this sort to occur,

we portray typical monte carlo generated histograms for a number of the sys-

tem states, obtained from a 100-trial ensemble of simulated missile-target

intercept engagements. First, we consider the target aspect angle, 0a' which

is theoretically gaussian over the entire flight. The histograms shown in

Fig. 5.3-2 correspond to the midpoint and end of the engagement. We note

that they appear to be quite irregular; this is due to the fact that 100 trials

are insufficient for obtaining an accurate representation of the probability

density function. Thus, for example, the fact that there appears to be a small
"valley" slightly to the left of zero at t = 6 sec should not be interpreted to
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mean that 8a has a bimodal distribution. These histograms provide the basis

for a realistic assessment of the departure of other histograms in this study

from the normal case.

Next, we consider a system state variable that is distinctly non-

gaussian for this trajectory, the missile fin deflection, 6. Because of the

large initial rms heading error, there is a high probability that the missile

initially attempts to achieve maximum lateral acceleration. Thus the output

of the acceleration command limiter, ac in Fig. 3.5-1, wi.ll tend to be bimodal,

as will the fin deflection, which is linearly related to a c . At t = 1 sec a highly

bimodal distribution is noted in Fig. 5.3-3. As the terminal homing phase

proceeds, 6 becomes somewhat less bimodal, but at no time does it appear

to be gaussian.

Other variables that exhibit bimodal behavior throughout this engage-

ment are the seeker angle and angle rate, eh and 4h; missile body angle and

angle rate, 0m and 6 m; and angle of attack, a. We observe in Fig. 5.3-4

that the missile lead angle, % , which is separated from 6 by a significant

amount of linear dynamics (refer to Fig. 3.7-1) remains nearly gaussian

throughout the engagement - - thus providing an example of the "filter hypothesis"

that the presence of several stages of low-pass filtering tends to make a

signal more nearly gaussian, which forms the basis for the gaussian assump-

tion in CADET.

The cross-range missile-target separation, y, exhibits a behavior

that more directly provides an explanation of the failure of CADET to provide

accurate lateral separation statistics over the secoud half of the terminal

homing phase. For the first half of the engagement, Fig. 5.3-5 indicates

that the pdf's for y are quite nearly gaussian. However, at 4 sec we note
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in Fig. 5.3-6a that significant "tails" have developed in the histogram; at
6 sec this effect is more pronounced (Fig. 5.3-6b). A quantitative com-

parison of the latter histogram with the gaussian density is obtained by com-

puting the ratio of the fourth central moment to the variance squared; this is

an estimate of the parameter X defined in Eq. (5.1-3). The resulting value

of 19.5, which is more than six times larger than the value for a gaussian

density, indicates a highly nongaussian distribution. Two conclusions can be

drawn:

The monte carlo estimated rms miss distance,
'y(tf) = 1018 ft, is statistically considerably less

accurate than implied by the confidence band shown
in Fig. 5.3-1; under an assumed gaussian distri-
bution for y. For X= 19.5, the 95% confidence inter-
val limits on a are

y
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a = 750ft, a = 2570ft-y y

as given by Eq. (2.1-14).

6 The CADET result may also be inaccurate, since the
sensitivity studies in Section 5.1 indicate that ridf
calculations based on the gaussian assumption (X = 3)
can be quite different from those based on a pdf with
X= 19.5.

The latter point indicates the reason why CADET seems to provide an in-

accurate guidance system performance projection over the last 3 seconds

of flight.

To explain some of the above observed behavior, an analysis of the

physical significance of large initial heading error is useful. We consider

a simplified example, with the aid of Fig. 5.3-7, wherein a target is pro-

ceeding precisely along the original LOS with constant velocity, vt, and

not maneuvering. The missile has been launched with an initial heading

error of 08 degrees, with constant velocity vector magnitude, vm . An

important limitation is imposed on the missile by assuming that lateral

acceleration is constrained by lam amax, as a result of acceleration

command limiting; this condition makes it impossible for intercept to

occur in this simple scenario if 16 I0 exceeds a certain value. To demon-

strate this point, we assume that am = arax over the entire flight. Then

the missile will follow a circular trajectory with a radius and angular rate

given by (Ref. 13)

rc m /amax

(5.3-1)

c a max/Vm

5-26



THE ANALYTIC SCIENCES CORPORATION
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a hFig5.- Intercept with a Circular Missile Trajectory

as how inFig 5.3-7 Ifanintercept is achieved by applying the maximum
acceleration over the entire interval 0 :9 t tthe equations of motion are

xt(t) = xt0 - vtt

(5.3-2)yt(t) 0

x (t) r rc n -sin (0 e

(5.3-3)

Ym~t r. [Cos (80 - e - Cos 0 a

According to Eq. (5.3 -1),

ax t
0 c = I (5.3-4)
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In general, in order for intercept to be possible, the point at which the

circular arc followed by the missile intersects the x-axis must be in front of

the target; i.e., if the-earliest time the missile trajectory can intersect the x-

axis is tf3 it muSt be true that

X m(tf <5 xt(tf)  (5.3-5)

to permit an intercept. The valuesof 8 to and area x determine whether or not

Eq. (5.3-5) can be satisfied. From the conditions depicted-in Fig. 5.3-7, it is

clear that intercept is possible only for 1010 < J010 where j,,o and the

corresponding terminal time tf. satisfy

xt Vttf = Vm 2 [sin - sin max tf max

-(~ 0  amiax tf'\ Vm(5.3-6)

Cos 91£0 = Cos 6

These transcendental equations have the solution

0tO = 14.4°

(5.3-7)
tf = 6.048 sec

for the parameters used in generating the CADET results given in Fig. 5 3-1.

For 0l0 greater than the limit er given in Eq. (5.377), the deterministic

m.ss distance (defined in this context to be the absolute value of ym(tf))

increases very rapidly, as shown in Fig. 5. 3-8.
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Figure 5.3-8 The Variation of Miss Distance with Initial
Heading Error Magnitude

From the above analysis, we can appreciate why the rms heading

error chosen for the analysis in Fig. 5.3-1 leads to a large miss distance.

Since B0 is a gaussian random variable with a standard deviation of 100

there is a significant probability that I O0 I exceeds the maximum value

ot viz:

Prob 110 14.4deg] =0.15

and the impact of initial heading errors greater than 14.4 deg in magnitude is

dramatic (Fig. 5.3-8). In fact, we can apply the statistical properties

of 0 to the characteristic shown in Fig. 5.3-8 to derive the idealized

rms miss distance (valid only for the above simplified model of the missile-

target intercept problem), defined by

2 2r
y E[y(8, 0 )] = y2 (0,1 0 ) P(e 0 ) de, 0  (5.3-9)
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The resulting value of a is 736 feet. VV can also perform a random inputy
describing function analysis of the same effect using Fig. 5.3-8 to demon-

state why CADET has given an estimated rms miss distance that is consider-

ably less than the monte carlo result. The characteristic shown in Fig. 5.3-8

is in effect a linear gain with a dead zone, whose random input describing

function given by Ref. 8 ran be expressed in terms of the complementary error

function, erfc,

nr = 309 erfc 114 4 "48. 6ft/deg (5.3-10)

Thus the rms miss distance calculated using describing function theory is

ay, ridf=nr [i0] = 496 feet (5.3-11)

In the idealized case treated above, quasi-linearization significantly under-

estimates the rms miss distance. This is reflective of the fact that the ridf

calculated in Eq. (5.3-10) is based on the minimization of mean square

approximation error, not on variance matching.

This section has analyzed a missile-target engagement situation

where CADET and monte carlo results are significantly different, in order to

provide insight as to potential sources of error in the CADET results. How-

ever, it is typically found that parameter values must be chosen which generate

large rms miss distance (more than 100 ft) in order to obtain noticeable deter-

ioration in CADET accuracy. In those cases the missile dynamics are highly

nonlinear throughout the trajectory, and generally do not correspond to condi-

tions under which tactical missiles are designed to operate. Furthermore,

if the rms miss distance is large, say 500 ft or more, it is not too important

that CADET makes a 100 foot error if the missile lethal radius is 50 feet, since

a miss distance of 400 ft is still intolerable. For more realistic trajectories

5-30



f i

THE ANALYTIC SCIENCES CORPORATION

that yield tolerable rms miss distances, CADET results appear to be accu-

rate within + 10b, based upon the monte carlo simulations performed in this

and other studies.

Finally, we observe that the marked deviation of the density of the

terminal cross-range missile-target separation, y, from the gaussian case

is a potential source of misinterpretation of the value of ay. The cumulative

distribution of IY I at the terminal time for 50 monte carlo trials is portrayed

in Fig. 5.3-9; the actual rms value ofy for this data is a = 1018 ft. On theY
same plot we show cumulative distributions corresponding to Iy I for a

gaussian random variable y having cy = 1018 ft (corresponding to the monte

carlo result) and a = 513 ft (CADET). In terms of guidance system per-
y

formance, if we assume that it is desired to have Iy I less than 50 feet at

the terminal time, we see in Fig. 5.3-9 that the actual distribution indi-

cates an effectiveness of 60%, i.e., 60% of the engagements satisfy the con-

dition I y I < 50 feet, while the corresponding values of effectiveness for the

two gaussian distributions are 8% for CADET and 4% for monte carlo results,

based on the miss distance statistics alone. Thus we observe that the rms

miss distance is itself of questionable value as a measure of guidance sys-

tem performance when the nongaussian nature of y leads us to question the

accuracy of the CADET and monte carlo results. In one sense, then, the
"failure" of CADET in this situation may be linked to the "failure" of rms

miss-distance as a single-parameter measure of system performance.
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Figure 5.3-9 Empirical Distribution of ly I Compared with
Two Gaussian Distributions
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6. SUMMARY AND CONCLUSIONS

6.1 SUMMARY

The principal goal of this study is to extend the proven capability

of the Covariance Analysis DEscribing Function Technique -- CADET -- to

provide accurate performance projections for tactical missile guidance sys-

tem models that are quite realistic -- i. e., that incorporate a number of sig-

nificant nonlinear and random effects. The approach used to achieve this

objective has entailed

* Verification of CADET performance projections by
the use of selected monte carlo performance studies

* Investigation of the sensitivity of CADET analysis to
, deviation from the assumption that the state variables

are jointly normal.

In this investigation, the following quite diverse effects were treated:

Sources of Nonlinearity

Guidance law

Acceleration command limiting

Missile-target intercept geometry (4 nonlinearities)

* Coordinate transformation (2 nonlinearities)

* Range-dependent seeker noise sources (2 nonlinearities)

0 Receiver/signal processing characteristic

Seeker mass imbalance (3 nonlinearities)
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* Seeker gimbal Coulomb friction

* Seeker head restoring torques (nonlinear spring effects)

Random Effects

0 Tracking sensor noise and measurement errors

0 Range rate measurement error

* Target maneuvers

* Deviation of initial conditions from nominal values

The generation of missile performance statistics via CADET, and
the subsequent verification of selected points on the parameter sensitivity

curves by monte carlo simulation techniques is treated in Chapter 4. The

basic system model -- incorporating the first five nonlinear effects listed
above, which are fundamental to the missile-target intercept problem --
was studied first, then each of the remaining nonlinearities were investi-

gated singly, and a final CADET-monte carlo comparison was made with all
nonlinear phenomena present. Three aspects of the sensitivity problem are
considered in Chapter 5: the sensitivity of random input describing function
calculations to the probability density function of the nonlinearity input, calcu-
lation of approximate random input describing functions when it is inconvenient
to use the result for the gaussian case, and a histogram study of a situation

where system variables are quite highly nongaussian.

6.2 CONCLUSIONS

The investition described in this report has indeed shown that
CADET is an accurate and efficient tool for zonducting statistical analyses

of the performance of a tactical missile system, including the effects of a
number of significant nonlinear and random phenomena. The conclusions

drawn from the study can be summarized as follows:

16
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CADET has the demonstrated ability to capture the effect of
each of the 16 nonlinearities treated in Chapter 4 on guidance
system performance. In all cases studied, CADET results
are close to or within the 95% confidence limits of the monte
carlo analysis. This degree of agreement was generally main-
tained even in the numerous instances where the nonlinearities
were shown to have a marked deleterious effect on rms miss
distance.

Despite the high order of the system (17 state variables) and
large number of nonlinearities (16), CADET shows a signifi-
cant computational advantage over the monte carlo method:
Between 10 and 20 CADET performance projections can be
obtained for the same amount of computer time required by
one accurate monte carlo study.

It is sometimes necessary to use approximate random input
describing functions due to difficulty in deriving closed form
solutions. Two approaches are available, based on series
expansion techniques and on the substitution of alternative
density functions in lieu of the gaussian density. A discus.-
sion of some benefits and disadvantages is given in Chapter 5.

* Highly nongaussian system variables not only lead to inaccu-
racy in the CADET analysis, but also make the monte carlo
method less reliable and reduce the meaningfulness of the
basic measure of system performance, rms miss distance.

* The value of the parameter X (the fourth central moment of a
density function divided by the variance squared) is a useful
measure of the departure of the density of a random variable
from the gaussian case. it would thus be valuable to estimate
this parameter for each nonlinearity input in the monte carlo
analysis to help in appraising the accuracy of the monte carlo
method and CADET.

In light of these and related findings, it is felt that confidence in the applica-

bility of CADET to perform statistical analyses of complex nonlinear missile

guidance systems with a number of random disturbances has been significantly

enhanced.
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APPENDIX A

MISSILE-TARGET INTERCEPT MODEL

A. 1 INTRODUCTION

This appendix presents the derivation of the mathematical model of

the general missile-target intercept problem used for verifying the capability

of CADET to provide an efficient, accurate statistical analysis of guidance sys-

tem performance. The e. sential guidelines used in deriving the model are

realism, completeness, and the desire to include enough significant nonlinear

and random effects to establish confidence in the capability of CADET to treat

complex nonlinear missile systems with random inputs.

The overall interconnection of the subsystems which comprise the

missile-target intercept model is indicated in Fig. A. 1-1. The principal

variables are shown as outputs of the appropriate blocks, and random distur-
bances are denoted w.. Detailed models underlying each input-output relation-

1

ship are given in subsequent sections of the appendix. While the basic structure

of the guidance system remains esseu'ially unchanged from an earlier study

described in Ref. 2, there are numerous extensions and refinements incorpora-

ted in the present investigation.

The final model is a state vector differential equation having the for-

mulation

= f(x) + Gw(t) (A. 1-1)

where w (t) is a vector of gaussian white noise inputs which represents various

random effects, the matrix G determines which state or states are driven by
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MISSILE I3-1195
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Figure A. 1-1 Basic System Block Diagram

each noise input, and f (x) embodies the linear and nonlinear dynamic relations

within the system.

A. 2 THE MISSILE-TARGET KINEMATICS MODEL

The missile target engagement treated in this study is restricted to the

terminal homing phase in a planar intercept configuration. Both the target and

the missile are assumed to have a constant magnitude velocity vector which may

be rotated by the application of a lateral (normal) acceleration.
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An initial coordinate system is defined by the positions of the missile

and target at the initiation of the terminal homing phase (taken to occur at

t = 0); the missile is at the origin and the line-of-sight (LOS) to the target de-

fines the x-axis at t = 0 (Fig. A. 2-1). The origin moves with the missile,

without rotation, so that x and y, respectively, provide the instantaneous down

range and cross range missile-target separation. Expressing the separation

in polar coordinates, the relations

r= x +y

-(A. 2-1)
e = tan (y/x)

define the instantaneous range and LOS angle of the target. The angles 'A

missile lead angle) and 0 (target aspect angle) specify the orientation of the
-~ a

missile and target velocity vectors; by convention, 0. and e are positive ina
the directions defined in Figure A. 2-1.

y-AXIS R-11592

, •y -AXIS

(t :0) VELOCITY

VELOCITY ACCELERATION
X St

ACCELERATION -m t -t
am 9(

/~a~-,() y oit'\ x-AXI

/ (t) 0 41 TARGET TRAJECTORY

//MISSILE TRAJECTORY

- , x-AXIS

ORIGINAL ORIGINAL LOS ORIGINAL (t 0)
MISSILE TARGET

POSITION POSITION

Figure A. 2-1 Target-Missile Planar Intercept Geometry
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In terms of the variables defined in Fig. A. 2-1, the differential

equations

=8  am

ea = x9 =- a
a t

(A. 2-2)

S= X Vt sin (x9) V sin (x8 )y X0 = vt  9 In v m

c " 1 -v -cossx)xv
x =mXC = -Vt C os (x 8 )

express the dynamics of the missile-target separation under the above assump-

tions, and identify the state variables (elements of x in Eq. (A. 1-1)) x8 to x 1 1.

The LOS angle e and range r are obtained by nonlinear operations on x and y,

given in Eq. (A. 2-1) and shown in Fig. A. 2-2.

am Vm sin0 t1n51
illyS

Figure A. 2-2 State Vector Formulation of

Missile-Target Kinematics
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A. 3 THE TARGET MODEL

The model representing the target behavior remains unchanged from
prior studies (Ref. 2). As mentioned previously, the target velocity vector is

- assumed to have a constant magnitude, and a direction described by 8 in
a

Fig. A. 24. The target maneuver model used in this study represents target

lateral acceleration as a band-limited gaussian process derived from a gaussian
Ir

white noise input by one stage of low-pass filtering. In differential equation

formulation, we have

13 t x13 + w5 (A. 3-1)

where the state variable is the target lateral acceleration, at; the equiva-

lent low-pass filter representation is depicted in Fig. A. 3-1.

t-1t 939

W' at

S + Wt

7*7

Figure A. 3-1 Target Maneuver Model

The target maneuver rms level a 13 is determined by the spectral den-

sity of w 5 and the initial condition on a 13;

E[w (t) w5(r)] = q5 8(t - )

q (A. 3-2)q5E~x13(05) 2 = -2-w
t

gives us an rms level that is constant throughout the engagement,

a1 3  (A. 3-3)

A-5



THE ANALYTIC SCIENCES CORPORATION

It is interesting to note that the autocorrelation function and the cor-

responding power spectral density for a poisson square wave -- i. e. square
2

wave that switches between ± a 13ft/sec with random poisson distributed switch-

ing times having an average of w t/2 zero-crossings per second -- are identical

to those of the above gaussian process, although the associated probability den-

sity functions are quite different. The poisson model is often used to represent

target evasive or "jinking" maneuvers. The poisson square wave can only take

on values of ± a 1 3 , so at any given time its probability density function consists

of impulses with a weighting of 0. 5 at plus and minus u1 3 , whereas the above

markov process is assumed to have a gaussian amplitude distribution. There-

fore, the response of an amplitude dependent nonlinear operator could be quite

different when driven by each of these two signal forms. However, if the ran-

dom square wave is passed through a narrow band filter or integrator, it would

experience broadening due to the filter's finite bandwidth. 1n the case of an

integrator, the resulting wave shape would be a series of linear segments of

zostan -r-slope. By application of the central limit theorem, as discussed in

Ref. 9, the output distribution approaches the gaussian density function as the

number of stages of filtering increases. Thus, although the poisson square wave

may in some respects be a more realistic target maneuver model, we take

advantage of the statistical similarity of these processos to justify repre-

senting this random effect by a band-limited gaussian process to facilitate the

subsequent CADET analysis.

A.4 THE AUTOPILOT-AIRFRAME MODEL

In accordance with the assumption that the missile and target trajec-

tories are confined to a plane, we describe the missile airframe orientation by

the variables depicted in Figure A. 4-1. This figure establishes the sign con-

vention of each quantity; each variable is positive as shown. Note that we are

particularizing the airframe model at this point by discussing the tail-controlled

tactical missile. This is done to provide a concrete model for study, and not

necessarily to exclude other configurations.
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y AXIS R-11596

2m x4 :mSSILE CENTERLINE

em, 01 x-AXIS

/MISSILE
CENTER OF GRAVITY

/
8,

A. 4-1 Geometric Definition of Intercept
Plane System Variables

The airframe variables under consideration are

= m = body angular rate

x 5 = c = angle of attack

x6 = 6 = control surface deflection

a = missile lateral acceleration (normal to
m the missile velocity vector)

We neglect gravity effects, tacitly assuming that the intercept plane
is horizontal or that the missile has perfect gravity compensation. In a gen-

eral situation, the differential equations expressing the airframe dynamics

are nonlinear and time-varying due to the dependence of the airframe para-
meters on altitude, angle of attack, and mach number. However, in this
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study we express the state variable differential. equations in linear form*,

x4 = MX +Mx +Mx4 q4 a~5 x

*5 =x 4 - L x - L x6

6 = Ux6 + uu(t)

where u(t) represents a commanded fin deflection, 1/ji is the control fin actua-

tor time-constant, and the constants Mq, Ma , M6, La and L8 represent the

airframe stability derivatives. The latter are obtained from the nonlinear air-

frame parameters by making the following assumptions:

* Missile velocity is constant (drag effects are
negligible over the period of time considered).

* Altitude remains nearly constant.

* The center of pressure, mass and inertia of the
missile are constant.

* Lift force is linearly related to changes in angle
of attack about some trim condition and to con-
trol fin deflection.

* Control fin actuator dynamics are linear.

• Fin effectiveness is independent of angle of attack.

Practical experience has shown that the resulting autopilot response character-

istics closely approximate those of the nonlinear airframe near the given

nominal conditions. The output of the airframe model is the missile lateral

acceleration, which is given by

*

A highly nonlinear airframe including drag effects has been studied via
CADET in Ref. 3.
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am = v[X4 - *5] = vm [L x5 + L~x6] (A. 4-2)

{j where v is the magnitude of the missile velocity vector.

UFor typical values of the stability derivatives in Eq. (A. 4-1), the

missile airframe will exhibit an underdamped or even an unstable response to
a commanded fin deflection. Acceptable control is achieved by introducing

feedback compensation in the fin deflection command,

i u(t) =-[kcac -ka (am /v ) -k b 6m]

(A. 4-3)

[ =[kca e ka (Lx 5 + L x6 - kbx4]

where a is the commanded acceleration provided by the guidance law modelc

(Section A. 5). The parameter kc is chosen to give unity steady state gain

from ac to am, and kb and ka are chosen to give the desired transient response,.

A complete block diagram of the compensated missile dynamic equations is

shown in Fig. A. 4-2.
/ 1 

t1|

AcCaLERATCN 8s X
COMMjAND4

Figure A. 4-2 Compensated Missile Airframe Dynamics
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For ready assessment of the compensated missile airframe dynamics,

it is convenient to use a transfer function formulation of the model. Given two

outputs, am and 6m, we desire to obtain gl(s) and g2 (s) to provide the input-

output relations indicated in Fig. A. 4-3. Utilization of standard block diagram

R-11598

g, (S) am10•
aC

ACCELERATIONCOMMAND 
g2 s ) .L

Figure A. 4-3 Transfer Function Formulation of the
Compensated Missile Airframe Dynamics

reduction techniques shows that the dynamics indicated in Fig. A. 4-2 are equiv-

alent to the transfer function formulation depicted in Fig. A. 4-3, where

g1(s) = e3 +e2 1  (A. 4-5)
s 3+ 2+ c2 s + c1

g2(s) + c3s2 1 (A. 4-6)2 s3 +c 3s 2+ c 2s + c1

with

c=: + (ka + kb) e]

c2  y+4[ +L Mq ka - M6 kb]

c 3 = C + g(I - L8 ka )  (A. 4-7)

A -10



THE ANALYTIC SCIENCES CORPORATION

dl = L c

d2= . M8 kc (A. 4-8)

e I = gv m Ok

e3 =-LVmL8 kc  (A. 4-9)

-- L8M - LM

- s -LaM (A. 4-10)

q

ao- q

The aerodynamic coefficients used in this study are chosen to corres-

pond to an intercept at 35, 000 ft., with a missile velocity magnitude Vm= 3 000

ft/sec, the data being taken from Ref. 14, Vol. I, Appendix H. The compensa-

ting gains ka, kb and k. Eq. (A. 4-3) are set to achieve a dynamic performance
that is typical of a missile in the terminal homing phase. These parameters and

the corresponding transfer function coefficients are given in Table A. 4-1.

The dominant time constant of the compensated airframe is d = 'Is,=

0. 316 sec. The fact that el, e2 and e3 do not all have the same algebraic sign

demonstrates that gl(s)has a right half plane zero, which is characteristic of

the tail-controlled missile configuration depicted in Fig. A. 4-1.

A-11



THE ANALYTIC SCIENCES CORPORATION

TABLE A.4-1

COMPENSATED MISSILE AIRFRAME DATA IN

THE TERMINAL HOMING PHASE

Parameter Symbol IValue
Actato ~1/A~ 0. 0533 sec

Time Constant

Mq -0.462 sec1

Ma -5.81 sec- 2

Aerodynamic M6  -72. 0 seec2

La 0. 379 eec1

L6 0. 070sec-1

CopeInstigka 1. 02 sec
Copnsaingkb 0. 188 sec

Gainsb
____________ c 0. 476 x10-3 sec2 /ft

cj ~720. 0 see- 3

C2 ~275. 3 sec-2

Trnserc 3  18. 3sec-1

Function 020sc t
C oefficients d2  0. 642 seec'ftV1

el 720.0 see-3

e2 -0. 865 sec-2

_______________ e 3  -1. 87 seec1

Transfer si-3. 16 sec-
Fucio 2 -7. 56 +13. Oj sec1

Poles s3-7. 56 -13 -Oj sec-
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jA. 5 THE GUIDANCE SUBSYSTEM MODEL

The guidance signal from the seeker (discussed in the following section)

is passed through a single-stage low-pass noise filter, the output of which is

thus a filtered estimate of LOS angle rate, x7 - 8. The classical proportional

guidance law is then implemented, which calls for a commanded acceleration

whose component normal to the line-of-sight (LOS) is proportional to the clos-

ing velocity times the estimated LOS angle rate, x7 = 0; that is, we desire to

cause am to satisfy

am cos 0) = n c (A. 5-1)

where the parameter n' is designated the ravigation ratio. The closing velocity

is obtained by projecting the missile and target velocity vectors onto the instan-

taneous line of sight; as shown in Fig. A. 2-1,

vc = vm cos( -8) + vtcos (ea + e) (A. 5-2)

In order to achieve a response that obeys Eq. (A. 5-1), the ideal acceleration

command a' should be chosen to satisfy

i~ nv 0Sa nyc (A. 5-3)

c cos(e8 -8 )

where the incorporation of the factor 1/cos (8g - 0)is known as secant com-

pensation.

In mechanizing the guidance law, the value of the closing velocity is

never known exactly. If a radar homing seeker is used, then a reasonable

estimate of vc cana be obtained by doppler measurements or by differencing

range measurements. An infrared seeker system generally does not yield a

good estimate of range, in which case v may be taken to be a prespecified

c

A-13



THE ANALYTIC SCIENCES CORPORATION
A

constant. Any uncertainty in the closing velocity is modelled by introducing

a variable ev into Eq. (A. 5-3) which represents either a band limited

noise, obtained by a sh.gle-stage low-pass filter with white noise input, or

a bias, denoted simply evb. Thus

a~=n I vm t cos(x 9 + 8)[v cos(x 8 -+6) + evi (A. 5-4)

provides the final ideal acceleration command used in this study, where

'12 = ev is modelled by one of the differential equations

Random Uncertainty: *12 = - 412 + w49 E x,2(0)] 0

(A. 5-5)

Bias Uncertainty: 
=12 = 0, x1 2 (0) = evb

and w4 is a white noise. Thus we can study either the effect of the noisy esti-

nation of v or of a constant error in the assumed value of vc .

Finally, the guidance law must account for an important ponlinear con-

straint on missile operation -- namely, acceleration command lin~iting. The

actual acceleration command a that determines the input to the fin deflection~c

actuator in Fig. A. 4-2 must not exceed the structural capacity of the airframe

and must not be.so large as to cause the missile to stall. Thus the ideal accel-

eration command a.' must be limited in order to prevent excessive lateral

acceleration command levels; the limiting procedure is represented by the sat-
uration nonlinearity

,a ]a t amaxac I =am

a = (A. 5-6)
c

a sign (a'), Ia I >am
The guidance law features described above are all incorporated in the system

model, as illustrated by the block diagram in Fig. A. 5-1.
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111 CLOSING VELOCITY R-11599a.
ERROR MODEL

51 p

UNCONSTRAINED ACTUAL

} NOISY,
ESTIMATE 1+ 2

NOISE FILTER CLOSING VELOCITY WITH SECANT ACCELERATION
COMPENSATION AND UNCERTAINTY COMMANDS

Figure A. 5-1 Guidance Law Model

A. 6 THE SEEKER SUBSYSTEM MODEL

There are several effects inherent to the seeker which can have a

marked influence on overall missile performance. These include

9 Boresight error distortion

Noiseii Aberration
Receiver and signal processing characteristics

S . Disturbance torque inputs

Seeker mass imbalance
Seeker gimbal friction
Spring restoring forces on the seeker head

Boresight Error Distortion - A fundamental variable in the seeker sub-

system is the true boresight error, ctrue defined by the angle between the anten-
nal centerline and the instantaneous line-of-sight (LOS); referring to Fig. A. 6-1,

true =- 0h - m = - (A. 6-1)
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Figure A. 6-1 Seeker System Configuration

The estimated or measured value of the boresight error will differ from true

due to several factors; among the more important of these are aberration, noise,

and nonlinear receiver characteristics.

The effect of aberration is very highly dependent upon the geometry of

the seeker-detector cover, the frequency and polarization of the incident energy

and other factors; furthermore, it is variable due to manufacturing tolerances,

possible erosion during flight and changes in environmental parameters. This

phenomenon can be represented by a nonlinear and possibly time-varying opera-

tion on the look angle, 8look = a - 0m, so that an effective boresight error, eff,

is obtained in the form

eff look + 0ab a h

where
0ab = ab(01ook)

as depicted in Fig. A. 6-2.
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LI R-11601

LOS 8 + look ABERRATION look*ob EFFECTIVE
BORESIGHTANGLE CHARACTERISTIC ERROR

MISSILE SEEKER

BODYANGLE ,IGLE

Figure A. 6-2 Boresight Aberration Model

fl The effect of a linear aberration characteristic (8ab = kr 9ook was studied in

Ref. 2. The case in which a radar homing system with nonlinear aberration is

considered (where the aberration of incident energy is caused by the protective

radome) was successfully analyzed via CADET in Ref. 3. In the latter study, the

radome aberration characteristic was modelled as a piece-wise linear relation

with odd symmetry and five distinct linear segments, as depicted in Fig. A. 6-3.
1A To avoid duplication, this effect is not considered further in this study.

(.3
R- 9171

Q00
- EMPIRICAL DATA

PIECEWISE LINEARO CHARACTERISTIC

0.003 TREATED BY CADET

< 0.002
z
Q

Cie 0.001
uIJ

0 0 0.16 0.32 0.48 0.64 0.80 0.,96 1.12

LOOK ANGLE MAGNITUDE, 1800 (rod)

Figure A. 6-3 Nonlinear Angular Aberration Characteristic
Investigated in Ref. 3
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In considering the degrading effects of noise, we include three funda-

mental categories of effects. Inverse range proportional noise, which has an

effective rms level of the form

U14

a r

is representative of a noise source that increases in effect as range approaches

zero. Such a phenomenon is target angular scintillation (caused by the apparent

motion of the target due to the change in position of the target centroid of radia-

tion). This can be modelled as a wide-band noise state, x1 4 , with constant rms

level, a 1 4 , multiplied by a gain 1/r. Range proportional noise includes any

noise source that remains constant in rms level in such a way that the effective

oignal-to-noise ratio decreases as the missile approaches the target, i. e., as

range approaches zero. This type of random disturbance is represented by an

equivalent noise with an rms level of the form

b = ra1 5

which in turn can be modelled by a wide-band noise state x1 5 with a constant

rms level of a1 5 passing through a gain, r. Noise sources that exhibit this pro-

perty are the distant stand-off jammer and receiver noise (generally due to

thermal effects). Range independent noise represents noise sources that have

a constant effect on the signal-to-noise ratio; target amplitude scintillation (due

to time-varying effective target cross section, for example) and seeker servo

noise are typical examples of such noise sources that can be modelled by a

noise state x16 of constant variance a 2  The complete noise model is shown116
in Fig. A. 6-4 where wl, w2 , and w3 are gaussian white noise processes.

All three types of noise considered above have been treated in previous

studies (Refs. 2, 3). It should be noted, however, that the earlier implementa-

tions of this model were linear time-varying; i. e., r(t) was assumed to be known
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R-11602
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Figure A. 6-4 General Seeker Noise Model

exactly in the noise model. Here we rigorously implement the nonlinear rela-

tion indicated in Fig. A. 6-4,

n =x +x x 1  + 2 +x x2 +6X-2

16 1 01 4/ 1xI0 11,,

The receiver characteristic is a potentially complicated effect, highly

dependent upon the specific antenna design, type of detector, and signal pro-

cessing scheme. In order to avoid a very specialized model based on a partic-

ular tactical missile, we confine our attention to one phenomenon: the attenuation

of the received signal which occurs lien boresight error c becomes large, i. e.,

when c approaches emax in Fig. A. 6-5a. The detector alone will have an output

which is very nearly proportional to its input for small values of C; however, as

the boresight error approaches max' we note in Fig. A. 6-5b that the signal

strength decreases to a null. If the antenna pattern has appreciable sidelobe sen-

sitivity, there may also be some response for values of c greater than c max'

The upper limit on the boresight error, T, such that the detector characteristic
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Figure A. 6-5 Receiver Boresight Errnr Distortion Effects

is nearly linear for I e I less than c is quite variable, depending on the type of

target tracking system under consideration. For monopulse radar or infrared

detectors, f could be as small as a fraction of a degree.

The undesirable detector null and possible sidelobe responsz can be

circumvented in the signal processing scheme. In the ca.- considered here,

some value lim<c is chosen; a nonlinearity is then introduced such that whenever

the boresight error magnitude exceeds clim' the output of the signal processor

is held at h .lim" This provides a simple model, depicted in Fig. A. 6-5c, which

will capture the effect of a narrow antenna beamwidth and a reasonable signal

processing nonlinearity.
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The combined effects of noise and receiver/signal processing charac-

teristics are illustrated in the general boresight errcer model (without aberration)

shown in Fig. A. 6-6. We mention in passing that a more exact noise model

might divide noise sources into external and internal effects, i. e., noise sources

entering the boresight error model just before, as well as after, the receiver

characteristic. However, this categorization is somewhat artifically detailed

when compared with a realistic situation where noise levels are only approxi-

mately known. While the aberration and signal processing nonlinearities may

hae " a Gig:'.2ficant impact on the closed loop dynamics of the overall missile-

target intercept model, the actual noise input point is not particularly critical.

In fact, injecting all noise sources after the receiver in Fig. A. 6-6 results in

a worst-case model of the effect of the signal processing nonlinearity, since it

neglects the attenuation of external noise sources.

R-11605
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Figure A. 6-6 Final Boresight Error Measurement Model
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Disturbance and Control Torques - The seeker model is completed by

developing a suitable tracking and stabilization control system including several

important sources of disturbance torque inputs. In terms of the inertially-

referenced angles 0 and @ shown in Fig. A. 6-1, we will derive a relation of the

form

I $=I $=T -T (A. 6-3)
p p c d

where I is the moment of inertia of tho seeker head about the gimbal pivot, Tc

is the external control torque (derived from an electric servo motor, for exam-

ple), and Td is the total disturbance torque. The latter has three components,

T =T +T +T(A6-4d m f r (A.6-4)

where Tm is an effective torque due to mass imbalance, and we consider two

external torque components, Tf due to nonlinear friction in the gimbal and Tr

due to nonlinear restoring torques. Since the seeker head center of gravity

(g) is generally displaced from the pivot point, as shown in Fig. A. 6-1 and

specified by the parameters r0 and OW the momcnt of inertia I is related to

the corresponding moment inertia referred to the cg by

p =10 +mr 0  (A. 6-5)

where m is the mass of the seeker head.

The external torques due to spring and friction effects are modelled by

the relations

Restoring Torque: Tr = f1(0h)

(A. 6-6)

Friction Torque: Tf = f2(eh)
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1where h is the angle between the seeker and missile center lines. Often

restoring torques are linear for Small angle deflections, becoming nonlinear
only as Oh increases in magnitude, as illustrated in Fig. A. 6 -7a. This be-
havior corresponds to the symmetic "hard spring" case (Ref. 15) where the

jelastic limit of a spring is exceeded and Hooke's law for linear spring behavior

becomes invalid; often the nonlinear term is taken to be a power law relation,

~0h~~fl(6h)=kl--m sign (8h

I where K is an integer gr-,-r than one, so that T exhib.kts a distinct departure

from linearity as 10 h I exceeds 81im which is typical of a symmetric nonlinear

spring characteristic. A common type of nonlinear friction is the dry or Cou-

iomb effect (Ref. 15), where

f2(h) = k2 sign (6h)

i. e., the friction term of the disturbance torque has constant magnitude with the

algebraic sign of the gimbal angle rate. Illustrations of these disturbance torque

terms are depicted in Fig. A. 6-7.

1-11604

- Tr Tf
t X2 k2 sign x2

2 ,2

(a) Nonlinear Restoring Torque (b) Nonlinoor Friction Effoct

Figure A. 6-7 External Disturbance Torque Models
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The effective disturbance torque component due to seeker mass im-

balance can readily be determined by application of the basic principles of

mechanics (Ref. 13). The equations of motion of the seeker head can be de-

rived directly by applying the Euler equation

d "U 'U T-T r - T f  (A. 6-7)

where U is the seeker head kinetic energy, and the right side represents a'l

external torque sources. The kinetic energy of the seeker head has two terms:

U mv 2 + i ()2 (A. 6-8)
2-0

where v is the magnitude of the velocity of the seeker head center of gravity

and 4 is the angular velocity of the seeker head rotation about the cg. The

velocity magnitude is obtained by resolving the missile velocity vector v-m
(describing the motion of the missile cg) into x and y components, then adding

to this the relative motion of the seeker cg with respect to the missile cg.

Referring to Fig. A. 6-1, the seeker head cg has the relative coordinates

x=rIcos( 6 m +e)+r 0 cos

y=r I sin (8m +8)+ r 0 sin s

Generally p (the fixed angle between the missile centerline and the seeker
p

gimbal pivot) is quite small, so it will be neglected here. The total velocity

components of the seeker head cg are then

vd cos +q=vmcos O. sinem - r sinvx  vm cos  d 0 = m  -I m 0

v Vm sin @,+9-=vm sin eA+ r1 m cos e + ro cos

vy
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I Using standard trigonometric identities, the squared velocity magnitude is

then determined to be

v 2-= v In 2 + (r1 M
)O 2 + (r 0)2 + 2 r0 r 1 6 mcos ( )-

+ 2 r0vm sin (8L*- ) + 2 rlvm m sir - m) (A. 6-9)

The equation of motion can then be derived directly from Eqs. (A. 6-7) to

(A. 6-9); combining these relations, we obtain the final differential equation

of motion,

T -T - T - I =m r r 1  Cos (0-a m ) + (m)2sin 6 A

c f r p 0 mO m mm

+mr 0 Vm 8 Cos (0 -I ) (A. 6-10)

Comparing Eq. (A. 6-1.0) with Eqs. (A. 6-3) and (A. 6-4), we identify the seeker

[1 mass imbalance disturbance torque, T in Eq. (A. 6-4), to be given by the

terms on the right side of Eq. (A. 6-10). Combining the latter with the friction

' U iand spring disturbance torque components, we obtain

Td =fl (8h) + f2 (6h) + mr 0 [ridm°cos( -0m)

2+ r (8m) sin ( m)+ vie, cos(-0)] (A. 6-11)

The control torque T in Eq. (A. 6-3) is chosen to make the seekerc
track the target, i. e., to maintain the measured boresight error at a small

- value. The nominal seeker is designed under the assumption that there is no
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friction and that spring effects are negligible; thus, it is necessary to include

rate feedback in the torque command (a feedback term proportional to 6 which

is measured by a rate gyro) to provide suitable damping. Thus we write the

nominal contrtltorque as

cn s [ 1  g m h

where r 1 is the track loop time constant, kg is the rate gyro gain, and k s isgi
the torque servo gain. The implementation of this control law is depicted in

Fig. A. 6-8.

R-11606

CNOMINALCONTROL TOROUE

S BORESIGHT

Td
DISTURBANCE LOS

TORQUE IANGLE

Figure A. 6-8 Nominal Seeker Track Loop
(Neglecting All Nonlinear Effects)

While the implementation of the seeker control function depicted in Fig.

A. 6-8 will provide an adequate response under ideal conditions, it can be shown

(see Section A. 7) that the dynamic response of the seeker is quite sensitive to

steady state disturbance torque inputs. Since we have already indicated that dis-

turbance torques are to be considered in our study, compensation of the seeker

must be included to achieve satisfactory performance. A simple and effective
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U compensation procedure is to insert proportional plus integral cascade compen-

sation before the torque summing junction in Fig. A. 6-8. That is, we specify the

compensated control torque by
s +k 0

T - T (A. 6-13)cc CC S cn

This relation corresponds to the differential equation

cc cn cn (A.6-14)

The complete seeker simulation model, representing the synthesis of

the dynamic equations derived in this section, is shown in Fig. A. 6-9. We

demonstrate in Section A. 7 that the indicated output, ?7, is a noisy estimate of

LOS rate (a).

A. 7 TRANSFER FUNCTION REPRESENTATION OF THE EQUIVALENT
LINEAR SEEKER

For a subsystem of the complexity of the seeker as modelled in Fig.

A. 6-9, it is often helpful to derive the transfer function formulation of the

linear system obtained by neglecting all nonlinearities. Several assertions

made in simplifying the seeker model are based on this representation, and

the procedure used for the purpose of designing the compensation network

(choice of k0 ) can best be treated in this way.

We define four inputs (refer to Fig. A. 7-1),

u =6

u2 m

u3 =ns(t)

u= r (A. 7-i)4 m
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Figure A. 6 -9 Complete Seeker Model
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The transfer functions d(s) to d4 (s) can be found for the equivalent block dia-

gram representation depicted in Fig. A. 7-2 using standard state vector formu-

lation techniques,

=Fx + Gu

D(s)= E + H (sI-F) G (A. 7-2)
=Hx +Eu'

where

U'

U2
U u , D(s) = [dl(s), d2 (s), d3 (s), d4 (s)] (A. 7-3)

U4

and di(s), the elements of D, correspond to the scalar transfer function indica-

ted in Fig. A. 7-2. The final results of this analysis are summarized in Eqs.

(A. 7-4) and (A. 7-5).

R-11610
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Figure A. 7-2 Linear Seeker Model in

Transfer Function Form
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k3 s[S2 +q3
s +Pl ]

d 1 (s) 3 3 23

s+q3 s +q 2 s +q,

d S+ q3( -
+ q2 s + q]

(A. 7-4)
d (s) d (s)

3 k3 1

d (s) kT 3 2
ps = 3 +q 3 s 2 +q 2 S +q

k1 +k k k0

P

ks k0 k3,!qP

(A. 7-5)

q2 = P1 l I " r1

k 2 +k ksg
P

The nominal seeker is defined by a choice of parameters that leads to

acceptable dynamic behavior in the absence of disturbance torques; the data and
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transfer functions are given in Table A. 7-1. A second case is the nominal

compensated seeker, which has been designed to exhibit a significantly

better performance in the presence of disturbance torques; the design by

root locus techniques is indicated subsequently and the transfer functions are

summarized in Table A. 7-2.

i both the nominal and the nominal compensated seeker, we note

that d2(s) 0. This demonstrates that with no linear friction or spring re-

secring torques, the seeker has perfect stabilization, i. e. , the measured

boresight error is unaffected by rotation of the missile body.

For frequencies considerably less than 10 rad/sec, we have dn d'

which is the transfer function of a differentiator. Hence, the assertion that T?

is an estimate of the LOS angular rate (6) holds at low frequencies.

The seeker compensation removes steady state disturbance torque sen-

sitivity, as is shown by the zero of dc 4 (s) at s = 0. To demonstrate this point in

more detail, we assume a step disturbance torque input,

u 4(t) = To, t k 0, (A. 7-6)

yielding a response which is represented in Laplace transform notation by

T
ti(s) = d4 (s) -i-

or, by substitution,

1000 TO
n = 12 s (s + 10)(s + 50)

(A. 7 -7)

s 0  n ss T 0
s' + 60 s 2 + 1700 s + 10, 000
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jTABLE A. 7-1

THE NOMINAL SEEKER

U Parameters Transfer Functions

0 =k I k 2 - 0

=100 s (s +60)
k = nl'' = -T- (s + 10)(s + 50)

k =1

=6in-oz-sec 
d 2 (s)

rad dn 3(s) = dni(S)

I =0.1 in-oz-sec 2

d (s 1000 1
T =0. 12 sec n4(S) - 12 (s +1O)(s+507

TABLE A. 7-2

THE NOMINAL COMPENSATED SEEKER

Parameters Transfer Functions

k I=k 2 =0 =100 ss2 + 6 0s + 120 01

c 12 3 2s +60s + 1700s + 10,000
3 g 1

-1k0 =20sec dc 2 () - 0

k =6 in-oz-sec
s rad dc3 (s ) = dl(S)

I =0.1 in-oz-sec 2

p
:i =1000 s

T 1 =. 12 sec d c4 (s) 12 3 +60 2 +1700s+10,000

POLES: s = -7.71, s = -26.1 ± 24. 8j
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To obtain the effect of the disturbance torque after transients disappear, we
evaluate the steady state value of 17 by the final value theorem of Laplace trans-

form theory: if f(s) is the Laplace transform of f(t) and if a finite steady state

value of f(t) exists, then

• A
fss lim f(t) = lim [ s f(s)]

t -4 co s-+0

The application of this result to Eq. (A. 7-7) yields

TO
'lnss 6

(A. 7-8)
-"c CS S = 0

which establishes that the proportional plus integral compensation technique

(insertion of the transfer function

h c(s) - k0S +

in Eq. (A. 6-13)) is effective in eliminating the response to constant disturbance

torque inputs.

To complete the seeker compensation design, we note that for the nom-
inal values of the seeker variables given in Table A. 7-1 (except k0 / 0), the
denominator of the transfer functions di(s) is given by

3 2 3 2
+q 3s +q 2s+q 1 =s +60s +(500+60k 0)s +500k 0

=(s 3 +60s 2 + 500s) + 60 k0 (s +8.333)
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In choosing k0, it is desired to achieve a dominant pole at s Z - 10 and to have

the remaining subsidiary poles as far from the origin of the s-plane as possible

subject to the condition that they must be suitably damped. A root locus analy-

sis is effective in finding a suitable value of k0 satisfying these conditions. In

Fig. A. 7-3, we see that as k o, the dominant pole approaches -8. 33; how-

ever, for k0 > 20, we have subsidiary poles with unsatisfactory damping, i. e.,

< 0. 707. The condition C = 0. 707 is specified in order to ensure a transient

step response with no overshoot; thus our final compensated seeker design is
achieved by choosing k0 = 20, as indicated in Table A. 7-2.
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Figure A. 7 -3 Root Locus Compensator Design
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A. 8 SYSTEM MODEL SUMMARY

In Fig. A. 8-1 the complete missile-target intercept model is portrayed

with all of the subsystems described in the previous sections appropriately inter-

connected. All of the state variables are depicted except x5 , x6 , and x1 7 (angle

of attack, control fin deflection and the seeker compensation state, respectively)

which are encompassed in the linear dynamics represented by the transfer func-

tions g,(s), g2(s), and (1 +k0/s). For convenient reference, we list the non-

linearities incorporated in the system model and indicate their form:

* Seeker head restoring torque

f1 (x1) = I 1 j 1 K sign (x1)
1 im !

* Seeker gimbal friction

f2(x2) = k2 sign (x2 )

* Receiver/signal processing characteristic

f3 (c) -
C li m sign (c), I C > i

* Range dependent noises (2 nonlinearities)77 x + x + y + x
ts xj16 + x 15  + 14 /v+
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e - -A-Imbalance-torque-t3-nonlinearities).

T m= mr 0 [rl 8m cos (8h + 0) + r1 (m)2 sin (8h + 0)

m  cos (O -em -h -

* LOS angle calculation

8 = tan 1 (y/x)

* Range calculation

r=Ix +y

- Velocity resolution (4 nonlinearities)

= - vcos (0) - vt cos (8a)

= - V Sin (8A)+ v t sin (6a )

* Acceleration command limiting

a amx
ac 'c max

ac =

amax sign (ac), lacl >amax

* Proportional guidance law with secant compensation

x7 [v + vt cos(a + x12

Cos (8 1 -80) lj

In addition, the state variables are defined as indicated in Table A. 8-1.
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TABLE A. 8-1

{J SYSTEM STATE VARIABLES

State Physical Description
Variable Notation

x l 6 h Seeker head angle with respect to missile
J centerline

6x2 0h Seeker head angular rate

x 3  6m Missile body angle with respect to original
3LOS

x Missile body angular rate

x 5  ! Angle of attack (incremental)

* x6  Missile control fin deflection

A
x7  6 Estimated LOS angular rate (output of gui-

dance law filter

x8  61 Missile lead angle (angle of missile velocity
£ ivector with respect to original LOS)

x9  e Target aspect angle (angle of target velocity
x9  a vector with respect to original LOS)

X10 y Cross-range separation (component of range
- normal to original LOS)

X x Down-range separation (component of range
along original LOS)

x12 ev Closing velocity error state

at Target lateral acceleration

to x1 6  None Seeker noise states

x17 None Seeker compensation state
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APPENDIX B

RANDOM INPUT DESCRIBING FUNCTIONS FOR
THE MISSILE-TARGET INTERCEPT PROBLEM

B. 1 RANDOM INPUT DESCRIBING FUNCTIONS USED IN THE
CADET ANALYSIS

The random input describing functions (ridf's) derived in this sec-

tion are based on the assumption that all system variables are jointly normal.

To summarize the quasi-linearization procedure, treated more fully in

Section 2.2 and Appendix C, we consider a general function of two variables*,

P(vl, v2 ), which is to be represented approximateiy by

(Vl,1 V2) a- E [p] + nr (vl -ml) + nr(v2-m2) (B.I1-1)

Thus is it necessary to evaluate

j= (vv 2 )exP I 2 1 " 2  v2m2 j] dv
p 2 - 0D 2(1 -p2 12 2 5(. 2

Snmi M1 + n m2 m2

n QO (B. 1-2)

r2  aM2

The nonlinearities considered are generally ordered according to Appendix A.

In this appendix, variables are generally designated v, or v1 , v2 etc. as re-
quired, to avoid the need to refer to the system model. The statistics are
m = E[v], p= E[(v-m) 2], a= 4 for one variable; mi= E[vi], pi=E[(vi-mi)(vj-mj)],
c i = 4Pi-i for two or more variables. With two variables, the correlation
coefficient is useful; P = P12/JP11P22"
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Missile-Target Kinematics - The nonlinearities used to project

the missile and target velocity vectors into down- and cross-range com-

ponents are of the form sin (v) and cos (v), where v is a gaussian random

variable. The ridf's required for these functions have been derived pre-

vously to be (Refs. 3,8) 1

Ip n =- sin (m) em m
sin (v) -1 _

n = cos (m) e

(B.1-3)

2
nM =-cos (m) e

Cos (v) " 1
-2 P

n = -sin (m) e :

Guidance Law - Referring to Eq. (A. 5-4), the unconstrained ac-

celeration command is a highly nonlinear function of six system variables

of the form

al , a1 p a2 "p2 + a 3vl (B. 1-4)

One component of o' is a product of states, A
(Pl(Vi) = VlV 6  (B.1-5)

and a second constituent is given by

cos (v2 + e)

(02 (vi) = v1  s (B.1-6)
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when 6 is given by

6 = tan1 (B. 1-7)

Substituting Eq. (B. 1-7) into Eq. (B. 1-6) yields

v5 cos(v2 )- v4 sin (v2)
= 2(vi )  1 v5 cOs (v 3 )+v 4 sin(v 3 ) (B.18)

For the product of variables, p1, we have the followin, results (Ref. 3):

E =V' n m +n m
1 m6 6

M mm+ 1

(B.1-9)
II n(1)

n m

n(1) =m 1

r 6

We point out that in treating nonlinear functions of more than one variable,

it is generally impossible to identify the individual elements of the describ-

ing function for the mean part, e.g., in this case we do not obtain nml and

nm 2 explicitly; however, the quantity E[oI] is all that is required for propa-

gation of the mean via CADET (refer to Eq. (C. 2-5)). It should also be ob-

served that the representation in Eq. (B. 1-7) is not useful if both of the

means, m 1 and m6 , and the covariance are zero -- i.e., the describing

function approximation to the nonlinearity is zero for this case. Since this

point is considered in detail in Ref. 3, we do not treat the subject here.
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The second term, po2 (vi) in Eq. (B. 1-4), is impossible to quasi-

linearize exactly in closed form under the gaussian assumption; thus we use

a generalization of the series approach discussed in Section 5.2 (Ref. 9). 1
5

E ~ Zn m m .
i-1 mi 1

"2 (m='m2''"2 j=1 i j 1

n i=1,2, ...,5 (B. 1-10)ri - m i  '1

Listing the partial derivatives called for in Eq. (B. 1-10) requires the in- -

troduction of some auxiliary notation:

01 = m5 Cos m2 - m 4 sin m 2

2
= m5 cos m3 + n 4 sin m

(B.1-11)
03 = -m5sin m 2 - m 4 cos ta 2

04 = -m 5 sinm 3 +m 4 cosm 3 .

In terms of these expressions, the quantities required to evaluate Eq. (B. 1-10)

can be shown to be

01P°2 (ml' m2, ... m5) 1= ml2

b 2_ _1 n(2 (B. 1-12)
amIl T2 r1
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j2 03 m n(2 )

am2 = 2 r r 2

a02 1 m . n ((2)
3 @2

5.2 n(2)

B2 Mm m4 sin (m + (2)am 2 (m2 +m 3) -r5
@2

a2 02 (B. 1-12)(cont.)

---_ = 0

@m2

62: 2m 2 = -_3

m2 53

m- 16sin (m2 + m3 )
2@

2 0

"2 5m sin (m2 + m3 )
22

a 2 '2 - 4 sn1 M 3

' 2 - 1 1

B-5



THE ANALYTIC SCIENCES CORPORATION

2m m = m1

2 3 mm

m~ 2 15 o2COS (m2 +M3 )

242

20

4,m 1,+20, (B. 1-12)(n t.)

m3m

P2 mm5 =

2M 2m 3 (L04sin (m2)s+nM32 m3 )
3 4 3

am__ 3- ( 04 o sin (M3 +)

7-T~m 2 2 5 (i M3in3 ) 2m 3 3

am B-6



THE ANALYTIC SCIENCES CORrP(-.RATION

2 p22m~m 
4  

( .1 1 ) c n .__T - 3 cos (m 3 )sin(m 2 +m 3 ) (B12)cn.

B Returning to Eq. (B. 1-4), we have

E []m' =a E [ 1 ] +a E [,p 2 ] +a m1  (B. 1-13)

where E[o1j] and E[(o] are given in Eqs. (B. 1-9) and (B. 1-10); the random

component of p can be expressed in terms of the quasi-linear gains in the

same equations to be

Iia P)n, +a n (2 ) + a
1 1 a2nr 1)

an
r

a n (2)

El '4

a n (2)

a n ()+ 0 + 01 r6

Since r' 'is a quasi-linear combination of the random components of the six

variables v, the variance is approximately

[ B-7
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P1 1  P1 2  . P1 6  "1

, 212r T T T . bp =E r -E " Err b - __P

P16 P2 6  P66

(B. 1-15)

Thus we can obtain the approximate mean and variance of the unconstrained

acceleration command in terms of the quasi-linear gains summarized above.

With these statistics, we treat the acceleration command limiter in the

regular manner; i.e., we assume its input p,' is a gaussian random variable

with statistics m' and p'. The ridf's for the limiter are given by (Refs. 2
(0 I

and 8)

E (o n mp h( m (P G !lim - mP\
=nm = P .. .G• P- m

[1m 0 (B. 1-16)

n (_ ..I
nr4, \ A/p / PI /

where the auxiliary functions G and P1 are defined in terms of the normal

density function, PF, as follows:

/2
PF(0) = exp

PI(4) = S PF(C) dC (B. 1-17)
-a)

G(O) = 4 PI(0) + PF(O)

B-8
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71 The describing functions outlined above complete the quasi-linear

representation of the guidance law; in summary, E[p] is used directly in

j propagating the mean vector of the system, and the random component of

the actual acceleration command is

r= n r' = n bTr

rq, r p r -.-

and nrp b is the overall describing function matrix (in this case, a row

vector) specified in Eqs. (B. 1-9), (B. 1-10) and (B. 1-14).

The approach outlined above in Eqs. (B. 1-4) to (B. 1-i) considers

a nonlinearity of the form

cp= (p'V1, v2,.. '16)

i. e., a nonlinear function of a nonlinearity. Because it is essentially im-

possible to quasi-linearize this relation as a whole, we have first quasi-

linearized p' to obtain the statistics m' and p' necessary to calculate the

ridf for P (W), Eq. (B. 1-16), then "cascaded the ridfs" for the random part

in arriving at Eq. (B. 1-18). While this is not a completely rigorous pro-

cedure, we rely on our a priori knowledge that in the guidance law, (D' is

approimately v1 times the closing velocity which, while not a constant, is

nearly so (i.e., the closing velocity has a mean that is much larger than its

random part until the last few hundredths of a second of an engagement in

realistic situations), and v1 is generally nearly gaussian. Thus it is rea-

sonable to assume that o' is nearly gaussian. In this situation, the above

technique adequately represents the guidance law nonlinear effects, as

shown in Chapter 4.

Range Dependent Noise Sources - Since the range, r = x2 +y2 ,

enters into the seeker noise model, we find that the ridf's cannot be

B-9
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calculated under the gaussian assumption, due to the inability to evaluate A
certain integrals in closed form (cf. Section 5.2). The first nonlinearity

we treat is the range proportional seeker noise term, .

P 3 T =V~2 (B. 1-19)3 1 V x 1 x 2

where we assume that x has no random component, as before (Section 5.2).

The expected value of 3, given by

V0 3 1 1 Mo2 + 2 "'P L2p- 2  -) -) (v-1-)(V2- 2 .. 22) 2
2vfa 2 /ii x 2 22---- 0 y'2

(B.1-20)

can be integrated with respect to v1 to yield

12
1= 2 2 !Fu

e p,3 ] _c(ml+PorU) (a2 u+m +m e du (B.1-21)

with the substitution u = (v2 -m 2 )/a 2 . To determine the ridf's for the ran-

dom components, we take ths indicated partial derivatives with respect to j

mi; these are simplified significantly by the further assumption that the

cross-range separation, y = v2 , has a zero mean:

2
u 00m1  J u 2 +m 2 e 2-du

2

bE~ m2 e 2 d
n ($)3] - (a° 2 u)2 +m e dunr 5M1 m2 = 0  J - -OD

2 (B. 1-22)

n _ or2  O u 2e2 du
r=0 IT ~-0 ( 2u)2 +m2

B-10
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where we have eliminated terms of the form

1 2
"0 22 2u +m e du =

E-(

We note that none of the above integrals can be evaluated in closed form.

The study of approximate methods presented in Section 5.2 demonstrates

that accurate results are obtained by replacing the gaussian pdf's in

Eq. (B. 1-22) with a triangular density with the same mean and standard

deviation,

2  '6- lul l
S2- 6 (B. 1-2.

2= :Y 0 Jul > '6"

1 Furthermore, we recognize that nrl is the expected value of the range, as

treated in Section 5.2, so we immediately have (from Eq. (5.2-12))

E o] " ig (mx) v+ V2 log + 4 A (1 +V2)]

n EL(B. 
1-24)

(I] where

A, 1 - (B. 1-25)

Evaluating the last integral in Eq. (B. 1-22) in the same manner, we obtain

nr 2 P12 [(1 +4v2) j v2 - 4v3 3v2 log+ V (B.1-26)

B-11
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The inverse range proportional noise,

v3 v3
3 V3

A/m1 +y1 f

can be treated in the same manner as 3 above, yielding

[q r a- /1°' log (1+I + V +V

n E ]01/m3 (B.1I-27)
-r 3

2 a

Rec,'%er/Signal Processing Characteristic - The boresight error

limiter has the same form as the acceleration command limiter; conse-

quently the evaluation of quasi-linear gains is accomplished with Eq. (B. 1-16)

substituting the boresght error statistics, mE and PE for m and p. The

boresight error is a linear combination of the LOS angle, missile body angle

and seeker angle, and the LOS angle is related to the system variables x and y

by the inverse tangent relation, Eq. (A. 2-1). Thus to determine m. and p,

consider

= tan1 v 3 - v 4

= w5 (l 1 , v2 ) -v 3 -v 4  (B. 1-28)

B-12
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1The nonlinearity (P5 is quasi-linearized below so that the mean and random

rj components of the boresight error are

m = E m3]- r-n 4

(5) (5)r.

r = n(5) r +n r -r -r (B.1-29)C r 1 r 2 2 3 4

b5r

The boresight error variance is thus approximately

P1 1  P 1 2  P14

T b (B. 1-30)
5 -5

I LP14 P24  P44

j Using mC and pE from Eqs. (B. 1-27) and (B. 1-28), the boresight error

limiter ridf's can be evaluated directly, from Eq. (B. 1-16).

Inverse Tangent LOS Angle Calculation - The nonlinearity

P5 = tan -I (v1/v 2 ) cannot be quasi-linearized in closed form under the

gaussian assumption; thus we again make use of the series expansion ap-

proach given in Lq. kB. 1-10). The required partial derivatives are

- m2  n(5)
aml 1 m2+ m2 r

12r

(B.1-31)

- n(5)
m m+ m r2

2 2
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2 05 -.2m 1 m 2

1 i 1 + 2)

2 2 2
- = -i 2  (B.1-31) (cont.)

12m

a =L (2 + m2

The expected value of o5is obtained approximately by substituting Eq. (B. 1-31)
into the series expansion,

E p5 ~tan'Ql + ( 2 - 1 )(m~ _ ~p 2  .1

(B. 1-32)j

The quantities E[(p], n(5 and n(5) constitute the quasi-linear approximation

to the inverse tangent function.

Seeker Head Restoring Torque - The nonlinear representation of

the "?har.d spring" effect atudied in Section 4.4 is of the form

06= lvik sign (v) (B. 1-33)

where k is an integer. The ridf is directly available (Ref. 8), in general

f orm for k odd, and als o for k -2, as f ollows:

k= r =1(B.1-3 4)

m
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mm'
n~ 4 = PF (a) + m

2a 3cr +m

k~ 3= nr = 35cr2 + 30m 2  +

n = 15c2 +lm m
m

The geea for for od,5ay k 30 mg is5

g (2g+1)! (1)(3)(5) ... (2g-2j+1) g-j 2j
nr = 0(2j)! (2g -2j +1)! m

(B.1-35)

n m In (2j +1)! (2g -2j)1

we note above that for k odd, the nonlinearity in Eq. (B. 1-33) is simply

v g+ which leads to quite straightforward polynomial ridf's, while for
k even the factor sign (v) leads to terms involving the probability function,

-- PF, and probability integral, PI, given in Eq. (B. 1-17).

F Seeker Gimbal Dry Friction - The dry or coulomb friction effect is
modeled by a nonlinearity of the form

P7 (v) =sign (v) (B. 1-36)

B-15
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which is often used to represent the ideal relay. The ridf's for this effect

are available in Ref. 8,

2 PFrn
nr a a

(B.1-37)

m ma

Seeker Mass Imbalance - The effective disturbance torque due to

an offset of the seeker center of gravity from the gimbal has three terms,

with two distinct forms:

P8 = Vl cos (v2 )

P9 = vl sin (v2) (B. 1-38)

In the nonlinearities P8 and P9, the variables v1 and v2 are generally not

state variables, but linear combinations thereof, viz.,

ri T 1 [1

V T + (B. 1-39)

where we have indicated that the angle v2 generally contains a constant param-

eter, 60, which is the angular coordinate of the seeker center of gravity with

respect to the antenna centerline (Fig. A.6-1). Then the statistics of v I and

v2 can be obtained from the state variable statistics, m = E[x] and

P = E [(x-m )(x-m )T], as

m = = H m (B. 1-40)

m21 eo

B-16
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fwhere [T
H

T (B. 1-41)

and

P1 P12
P = I 1 = HPHT (B.1-42)

[P12 P'22

The first nonlinearity (and its companion form, 10 = V Isin v2 )

have been treated in Ref. 3 by considering the real and imaginary part of

the function vI exp (v 2 ), as follows: define

Sveiv2

(8= V Ie

= v1 (cosv 2 +jsinv 2 ) = 8 (B.1-43)

The expected value of this complex func;ion can be evaluated to be (Ref. 11)

P22

E [P8  = e (ml+ j p. 2 ) (cos m2 +j sin m 2) (B.1-44)

From this expression, the required ridis are available by inspection:

P22

E[8] = Re(E[ p8  = e (ilncos m 2 -p12 sinm 2) (B.1-45)

B-17
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P22

2nl = e Costa2 
jP22 (B.1-45)(cont.),I

nr2 = -e 2 (m1 sin m 2 + P1 2 cos m2 )

P22

E[10]= Im(EY = e (mI sin m2 +P 1 2 cos m2 )

P22  1
nr = e 2 sin m2  (B.1-46)

P22

nr2 = e 2 (ml cos m2 - P12 sin m2 ) A

.1
The same approach is utilized in evaluating ridf's for p; defining its corn-

paion form to be P1ll = v1 cos v2 yields I

* 2 iv 2 2
p*, = Ve = v (cosv 2 +jsinv 2 ) .

1 V1

I I +  j1P 9 (B .1-47)

yields i
= (e P +2mP (cosm 2+Jsinm 2 ) (B.1-48) i

/
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Thus the quasi-linear representation of (9 and Pi, require

I tP22

I) ~ [(+ mZ m~ 1
E [qll]=Re (E [1]9 e [(m P -P 1 2 ) cos In 2- 2mP2sinm2]

P22

n =e 2 (2mlcos m2 - 2 Pl2 sin m 2) (B.1-49)

P22

n =-e- [(m +Pll-P 2) sin 2 +2mlPI 2 cos

r 2 F il i2 i 2 P2cs 2

P22

E[ 9 ] = Im(E [p91) = cos m 2  + P1 1 P1 2 )sin 2 1

~P22

nr 2P 1 2 cos In 2 + 2m I sin m 2] (B.1-50)

Aw P22p

2 r Pm 2 P1 l
[ -2m =P12 s m2  1 + P11 os2 C 2

This completes the exposition of the ridf's necessary for the statistical

analysis of the missile-target 'ntercept model treated in the present study.

B
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:i
B. 2 RANDOM INPUT DESCRIBING FUNCTIONS USED IN

SENSITIVITY ANALYSIS

In Section 5.2 we consider three nonlinearities, the limiter, power

law nonlinearity, and sinusoidal operator, and portray the variation caused

in ridf calculation by varying the probability density function (pdf) of the

input. Seven quite different pdfs were studied, denoted pi(x), i= 1, 2, ... , 7,

as given in Eq. (5.1-4); each pdf leads to a describing function given by

n - x f( ) p(x) dx (B.2-1)
i U -00

where x is a zero-mean random variable with standard deviation o.

Limiter - For this nonlinearity, all ridfs are a function of the

ratio of the input standard deviation to the break point (Fig. 5.1-2), here

denoted by

In terms of this parameter, we have

nr2 2 PI) - 1 (gaussian)

1 1

nr (triangular)
3 3+

36 4 T6 / <o

B-20
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IF5
1, I. --

5 5 F_ 9J/3 1 _5 E5
n = +--- (P4)n r 144A 4 8./,.,i 8,, A80, 3T3

13-3 5 5 :< , <o

12T5 121 3

n (uniform)

1, 1, -

7 4,2 1 -7 (P6Or = 3 2'724 -18 3 +  2' -u 2F  F6

,F6 7 J7<A<O

1,P,5 3,F
25 5 9,6 31 5 5

72 i4- 2JA 3 lOp 50' 3-6 2< 6
n = (P7)r7  25 5 +1 1 5 5

" 72 4 6,,/"6A 3 + +- -026
2J _ <J.<o/

5A' J6
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Random input describing functions are quite complicated when both the pdf

and nonlinearity are comprised of several linear segments, as is the case

for p 4 , p6 andP 7 "

Power Law Nonlinearity - The nonlinearity

2.
f(x) = x sign (x)

leads to particularly convenient ridf's for the pdf's chosen in this study.

nr-71 = 2.12 a (exponential)

4
n -=1.60 a (gaussian)r 2  -27t

nr 3  5a 1.47 o (triangular)

3T

n a 1.30 a (uniform)
r 4

n = 1.19cr (P6)r6(P

n = 54,F6ar= 1.06 (P7)

Sinusoidal Operator - For the nonlinearity

f(x) = sin x

the following ridf's are obtained:

B-22
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n (- 42 (exponential)

r 

a
2

nr2 =e 2  
(gaussian)

nr = -- [2(1-cosx 3 )-x 3 sinx 3 ] x3 = 4a (triangular)

r 4 ncsx 4 - cos ) N))] 4  (P4 )

n = xsin - x cosx; 3 a (uniform)

nr6 = -_/_3-
4 [x6 (sinx6-sin(2x6 ))-(1-2csx6 +c!;(2x 6 ))]; x 6 = (p6)

r 6 3a 3i x

n = 3 x7 (2 sin (2x7)- 3 sinx7 _sin(3x7 ))r 7  3a 9 4L'4 7
J ~+2(cos (2x7)" cos x7-cos (3x7)) x7 = E/'a (M),

The ridf's for the three nonlinearities considered here are plotted in

Figs. 5.1-2 (limiter), 5.1-4 (power law), and 5.1-6 (sinusoidal operator).
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APPENDIX C

THE COVARIANCE ANALYSIS DESCRIBING

FUNCTION TECHNIQUE (CADET)

The Covariance Analysis DEscribing function Technique (CADET) is a

method for the direct determination of the statistical properties of a nonlinear

system with random inputs, recently conceived and developed at The Analytic

Sciences Corporation (Refs. 1, 2, and 3). The principal advantage of this tech-

nique is that it obviates monte carlo simulations, thereby achievin, substantial

savings in computer processing time. We first motivate the discussion by re-

viewin~g the covariance analyois method for linear systems; then we develop an

analogous procedure (CADET) for the nonlinear case.

C. 1 COVARIANCE ANALYSIS FOR LINEAR SYSTEMS

The dynamics of a linear continuous-time stochastic system can be re-

presented by a first-order vector differential equation in which x(t) is the system

state vector and w(t) is a random forcing function vector,

i}(t) = Fit) x(t) + G(t) w(t) (C. 1-1)

Figure C. 1-1 illustrates the equation. The state vector is composed of any set

of variables sufficient to completely describe the behavior of the system. The

forcing i,.ction vector w(t) represents disturbances as well as control inputs that

may act upon the system. In what follows the forcing function w(t) is as.,umed to

be composed of a mean value b and random component u, Jhe tatter being com-

prised of ek.nent, which are uncorrelated in time; that is, u(t) is white" noise

C-i
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R-11882 *

o.

Figure C. 1-1 Continuous Representation of the Linear

Dynamic System Equations

having the spectral density matrix Q(t); thus w(t) is specified by*

E [w(t)] = b(t)

(C. 1-2)

Ef[u(t)uT(r)] = Q(t) 6 (t-r)

Similarly, the state vector has a mean component m(t), and a random part

r =x - m ; x, then, may be described statistically by its mean and covariance

matrix,

m(t) E [x(t)]

(C. 1-3)
P(t) E[r(t)r (t)]

n'rb equation for the propagation of the mean vector and covariance

matrix for the system described by Eq. (C. 1-1) can be written as (Ref. 7).

E denotes ensemble expectation, or average value; T del-otes the matrix

transpose.
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rh - F(t) m + G(t) b

(C. 1-4)
T T

P(t) = F(t) P(t) + P(t) F(t) + G(t) QG(t)

The elements of m(t) represent the effects of deterministic initial conditions

and biases due to the system inputs (b :0). The diagonal elements of P(t) are

the mean square values of the random components of the state variables; the

off-diagonal elements represent the degree of correlation between the random

components of the various state variables.

Equation (C. 1-4) provides a direct method for analyzing the statistical

properties of x(t). This is to be contrasted with the monte carlo method, where

many sample trajectories, of x(t) are calculated from computer-generated ran-

dom noise, or random numbers in the case of a digital computer, using Eq.

(C. 1-1). If q such trajectories are generated -- denoted by xk(t), k= 1,..., q

-- then m(t) and P(t) are given approximately by

q
m(t) A, (t) 1q k- i k(t)

(C. 1-5)

A (t) q A (t)A T
P(t) P(t) q_ qT r .kt) rk (t)

k=1
AA A

where rk x k - m. In the limit as q approaches infinity, we are assured that

lim A_.(t) = m(t)

q+-o

(C. 1-6)
A

lim P(t) = P(t)
q C-
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K I Note that Eq. (C. 1-4) provides exact solutions for m(t) and P(t), to

within computer integration accuracy, whereas the monte carlo method yields

approximate solutions for a finite value of q. Furthermore, Eq. (C. 1-4) need j
be solved only oi e over the time interval of interest, whereas Eq. (C. 1-1)

must be solved repeatedly using the monte carlo technique; consequently the

direct analytical method is not only exact, but is also generally the most effi-

cient technique for analyzing linear systems. Our purpose here is to describe

a procedure whereby the statistics of a nonlinear system can be computed ap-

proximately using a recursion relationship similar in form to Eq. (C. 1-4). .1

C. 2 COVARIANCE ANALYSIS FOR NONLINEAR SYSTEMS .4

The nonlinear counterpart of Eq. (C. 1-1) is

k(t) = f(x(t)) + Gw(t) (C. 2-1)

as depicted in Fig. C. 2-1. In order to develop a covariance analysis method

similar to that used for linear systems, it is desirable to approximate f(x) in

Eq. (C. 2-1) as a linear operation on x(t). The success of CADET in achieving

its goals -- providing an efficient and accurate means for the direct statistical

analysis of system performance -- depends on how well f(x) can be approximated.

Thus, consider approximating the nonlinear function f(x) in Fig. C. 2-1 by a

linear fun'-tion, in the s-ense suggested by Fig. C. 2-2. The approximating out-

put, fa(x), is comprised of the sum of two terms, one linearly related to m and-u) a -

the other linearly related to r. The gain matrices, N and N , are chosen tom r
minimize the generalized mean-sqaare error between the actual and approxi-

mate outputs defined by E [eT S j when S is any symmetric positive definite ma-

trix. This is often referred to as a quasi-linear appro;imation te.hnique and

N and N are called generalized describing function matrices.m r
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It-11802

NONLINEAR

Figure C. 2 -1 Nonlinear System Block Diagram

R-11 949

APPROXMATIO APPROXIMATION
ERROR

r +

Figure C. 2-2 Quasi-Linear Approximation
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Calculation of N and Nr is readily accomplished. Note first from

Fig. C. 2-2 that

e = f(x) - f a(x)

(C. 2-2) j
= f(x) - Nm - N r

- r-

T!

Formally, it can be shown that E [jS ] is minimized if N and N satisfy(Ref. 1) m r

N mmT E[f(x)]mT

(C. 2-3)
NrE [rrT = EfxrT .

The second relation directly defines Nr$

N E E[f 1r] p 4x (C. 2-4)
r

Ci

since a unique P ak-ways exists. Rather than attempting to solve for N --

Tm
which requires a pseudo inverse since (m m ) is always singular - - simply note

that

N f m E[I(x)] (C.2-5)

This result is all that is required to solve the problem at hand, as shown below.

Evaluatingthe expectations in Eqs. (C. 2-4) and (C. 2-5) requires an assump-
tion about the probability density function of x (t). Most often a gaussian densih'

is assumed, although this need not be the case from a theoretical point

However, the gaussian assumption leads to the significant computatio, ..... pli-

fication discussed in Section C. 4. In addition, it is often physically reasonable
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Hto assume that % is gaussian, because the superposition effect created by the
linear part of the system d, iiamics tends to transform the nongaussian outputs
of the nonlinearities into approximately gaussian state variables, by the central

limit theorem (Ref. 9).

C. 3 DEVELOPMENT OF THE MEAN AND COVARIANCE EQUATIONS

Replacing the nonlinear function of Fig. C. 2-1 by the describing func -

tion approximation given in Fig. C. 2-2 results in the quasi-linear system model
illustrated in Fig. C. 3-1. The quasi-linear system model consists of two parts;

one part to propagate the mean or deterministic portion of the signal, and the
other to propagate the random portion. Due to the nonlinearity of the system,

the two loops are coupled through the describing function matrices; under the

gaussian assumption, both matrices are functions only of the mean and covar-
iance. The differential equation for the propagation of the mean vector for the

quasi-linear system of Fig. C. 3-1 is

A
= N_ (m, P) m + Gb =f+ Gb (C. 3-1)

R-11951

f DETERMINISTIC
PORTION

Figure C. 3-1 Quasi-Linear System Model
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The system covariance propagation ecfaation is obtadned by computing the covar-

iance of the random signal component, r, using linear system covariance analy-

sis as discussed in Section C. 1. The resulting matrix covariance equation is

= Nr(mP) P + PNT(m, P) 4. GQGT (C. 3-2)

These equations are nonlinear and coupled through the mean and random com-
ponent describing function matrices, N and Nr, respectively. Initialization
requires only the initial condition statistics,

m(O) = E[x(O)]

(C. 3-3)
P(O) = E[(O)r (0)]

Equations (C. 3-1) and (C. 3-2) together with Eqs. (C. 2-4) and (C. 2-5) are the

key equations of CADET.

C. 4 SPECIAL RELATIONSHIPS

A few special relationships are worth noting. First, we observe that
when the system is linear [f(x) = Fx], Eqs. (C. 2-4) and (C. 2-5) immediately

lead to the result Nm = Nr = F. Hence, Eqs. (C. 3-1) and (C. 3-2) reduce to the

familiar equations for the propagation of the mean and covariance in linear sys-

tems, indicated in Eq. (C. 1-4). For a nonlinear system, computation of the

describing function matrices in Eqs. (C. 2-4) and (C. 2-5) requires an assump-

tion about the form of the probability density of the input signal to the nonlinear-

ity. This, it should be noted, is the only assumption required in the CADET
formulation. The assumption of a jointly gaussian probability density functioi

for the elements of x is most attractive from two viewpoints. First, the cal-

culation of Nm and Nr tends to be simplest under this assumption. In addition,
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imany dynamic system models tend to contain more linear than nonlinear ele-

ments. This is advantageous, since low-pass linear filtering is necessary to
insure that nongaussian nonlinearity outputs result in nearly gaussian nonlinear-

ity inputs as signals propagate through the system. This so-called "filter

hypothesis" is common to all describing functions analyses (Ref. 8).

One result of the gaussian assumption is that Nr can be directly com-

puted (Ref. 16) from the relationship
lNr(m~p d d

N ( E[f(x)] =d [Nmm] (C. 4-3)

This is indeed a useful relationship, since calculating N m is required in any

case for the propagation of the mean (Eq. (C. 3-1)). It is, in practice, much

easier to employ Eq. (C. 4-3) than to solve Eq. (C. 2-4) for N_(m, P). A direct

result of Eq. (C. 4-3) is the fact that Nm and Nr can be formed by first replacing

the individual nonlinear elements of f3(x) by the appropriate scalar describing

function gains. This is an extremely powerful property since a large number of

describing functions have been catalogued in Ref. 8; consequently N and N

can be formed directl,- from inspection of the system equations or block diagram,

in many cases.
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