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1. INTRODUCTION

1.1 BACKGROUND

The development of 2 missile guidance system generally requires
several phases, including inception, preliminary design and feasibility
studies, decisions concerning implementation of various system functions,
and compensation or design modification to obtain the best possible system
performance under realistic constraints. In the later stages of development,
the mathematical system model used as a basis for generating system per-
formance projections almost inevitably contains nonlinear effects and random
disturbances. Nonlinearity is generally associated with nonlinear relations
inherent to the laws of physics, unavoidable hardware nonlinearities, and
essential design nonlinearities; while random disturbances may include noise
(e.g., thermal effects), sensor measurement errors, random target maneu-
vers, and random initial conditions. When random effects are significant,
some statistical measure of system performance is required; often the root-
mean-square (rms) miss distance achieved at the time of target interception
is used-ior assessing the capability of a tactical missile.

The traditional approach used to cbtain rms miss distance for guid-
ance systems with significant nonlinearities has been the utilization of the
monte carlo method. In this technique, a large number of computer simula-
tions (trials) are made using the required nonlinear model with different
initial conditions and random forcing functions generated according to the given
statistics. The resulting ensembie of simulations provides the basis for mak-
ing estimates of the true rms miss distance. Associated with the monte carlo
method is the problem that a large number of trials is required to provide

1-1
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confidence in the accuracy of the results; an ensemble as large as 1000 may
be needed to obtain an accurate statistical analysis for a nonlinear .system.
Thus, while the monte carlo method may be useful for performing a few
evaluations of a system's performance, it is not a very satisfactory tool for
conducting extensive sensitivity and tradeoff studies for different values of
the important guidance system parameters, or for conducting detailed studies
of nonlinear effects on-system performance, due to the large expenditure in
computer time required. The purpose of this research is to extend an ana-

lytical technique for the direct statistical analysis of nonlinear systems which

imposes a considerably smaller computational burden. This method, con-

ceived and currently'being developed by TASC, appears exceptionally promis-
ing as a means for directly treating-nonlinear guidance system statistical
behavior. In the sequel it is referred to as the Covariance Analysis DEscrib-
ing function Technique (CADET™).

CADET is based on the application of quasi-linearization to permit
the application of covariance analysis to generate guidance system perform-
ance statistics. Thus, in treatingnonlinear systems, describing function theory
is used to obtain a quasi-linear approximation for each nonlinearity. The most
important factor in the use of quasi-linearization is that one essential property
of nonlinear elements is retained: the amplitude sensitivity of the input-output
relation. Figure 1.1-1 illustrates the fundamental properties of the randoim
input describing function for an ideal saturation or limiter.

Previous work (Refs. 1 to 3) has demonstrated the capability of
CADET to perform rapid statistical analysis of complex nonlinear guidance
systems, including the effects of measurement noise, parasitic coupling due
to nonlinear boresight error aberration, acceleration command limiting,
and highly nonlinear missile airframe dynamics. The research being under-
taken in the present program entails the generalization of the basic CADET

1-2
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Figure1.1-1 Illustration of Describing Function Theory: the
Random Input Describing Function for a Limiter

concept to render it applicable to a very broad class of missile-target inter-

cept problems. This will establish an essential prerequisite for the sys-

tematic investigation of guidance systéem performance and design -- the
ability to efficiently perform detailed studies of the effects of all significant

sources of system degradation and to evaluate guidance system modifications

that may correct or ameliorate these deficiencies. This type of analysis

would be prohibitively expensive in terms of computer time without the com-
putational efficacy inherent to CADET.

While the primary thrust of the development is the extension and
refinement of an efficient tool for the statistical evaluation of the perform-
ance of missile guidance systems, the overall scope of CADET is evidently
much more general. The system model based on a nonlinear state vector
differential equation with random inputs is of broad generality, being de-
scriptive of many continuous systems with nondeterministic disturbances.
The specific nonlinear effects studied herein are by no means restricted
in occurrence to the missile-target intercept problem. It is hoped that
the success of the present effort will encourage other applications of the
CADET concept.
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1.2 OVERVIEW

In order to develop CADET to meet the-need for an efficient means
for generating performance projections, thereby permitting the effective
diagnosis and correction of potential guidance system deficiencies, the
following:ob\'jeétives, have teen chosen for the present study:

¢ Development of a realistic missile-target intercept
model with significant random effects and a number
of quite diverse nonlinearities

¢ Development of:a monte carlo simulation capability
to provide performance statistics for comparison
with CADET results:

¢ Development of CADET methodology to permit the
efficient generation of performance statistics for the
given systein model, based on the computation of
describing function approximations fer each non-
linearity and the application of covariance analysis
to the quasi-linear system

e Verification of the ability of CADET to provide accu-
rate performance projections by comparing the sta-
tistical analysis given by CADET with the results of
corresponding monte carlo analysis

¢  Study of the sensitivity of CADET analysis to the
assumptions and approximations made, including
comparisons of describing functions for different
assumed probability density functions and compari-
sons of histograms generated from monte carlo
simulations with the density functions assumed in
developing CADET

The first procedure used in developing confidence in the capability
of CADET to provide accurate performance statistics is a step-by-step
study of nonlinear effects. In every pliase of the investigation, the CADET
and monte carlo programs for statistical analysis are extended to include
identical system dynamic equations, so that performance projections are

1-4
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exactly comparable. The comparison of CADET and monte carlo perform-
ance projections included treating the following effects:

¢ The basic missile-target intercept model, with nonlinear
missile=target kinematic relationships, range depeadent
error sources in the seeker noise model, acceleration
command limiting, and nonlinear guidance law

¢ Seeker mass imbalance
¢ Nonlinear friction in the seeker gimbal
¢ Nonlinear restoring torques acting on the seeker head

¢ Nonlinear attenuation of boresight-error dueto the
receiver/signal processing nonlingarity

Following the application of CADET to the analysis of guidance
system performance, several aspects of the sensitivity. problem were con-

sidered:

¢  Sensitivity of random input describing function
calculations to changes in the:nonlinearity input
probability density function

e Methods for calculating approximate quasi-linear gains

¢  Generation of approximate histograms from data pro-
vided by'a large number of monte carlo simulations to
assess the impact of deviation from the gaussian as-
sumption on CADET analysis

For reasconable initial condition statistics, the CADET-monte carlo
comparison proved that CADET results were reliable -- in fact, it appears
that the statistics given by monte carlo analysis are not superior to.the
CADET results until the number of monte carlo trials is in excess of several
hundred. While the sensitivity of CADET to underlying assumptions is
appreciable in some circumstances, it is gratifying to be able to demonstrate

1-5
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that this effect is quite small in the present context except in somewhat un-
realistic -circumstances when nonlinearity inputs are highly nongaussian.

1.3 REPORT OUTLINE

This report is-organized according to the following outline: Chapter 2
deals with the significant features of the CADET and monte carlo methods for
generating performance statistics in nonlinear systems with random inputs;
Chapter 3 treats a general discussion of the guidance system model; details
of the initial verification procedure and case studies of the subsidiary non-
linear effects are given in'Chapter 4; and the analysis of the sensitivity of
CADET calculations to incorrect assumptions concerning nonlinearity input
probability deﬁsity functions is treated in Chapter 5. A summary of the study
and general conclusions are provided in Chapter 6. Appendices are included
to treat the technical aspects of the system model (Appendix A), random in-
put describing function calculation (Appendix B), and CADET theory and
methodology (Appendix C).

1-6
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) 2. STATISTICAL ANALYSIS VI4 MONTE CARLO AND CADET

2.1 THE MONTE CAKLO TECNIQUE

The monte carlo method for the statistical analysis of the performance
of a nonlinear systém with random inputs is based on direct simulation to deter-

mine the system response to "typical" initial conditions and noise input sample
; functions generated according to their specified statistics. Thus, the informa-
tion required for this analysis is the systém model, initial condition statistics,

i and random input statistics, The system mode) can be given in the form of a
state vector differential equation,

o % = £(x) + Gw(t) (2.1-1)

P! } ‘where f(x) represents the linear and nonlinear dynamic relationships' in the sys-
‘ tem, w is an input vectcr, and the matrix G'specifies the input allocation, i.e.,.
( each element* 8ij of G describes the effect.of the input element w,(t) on the state

\ variable derivative J'ci. The state vector differential equation, Eq. (2.1-1), is
‘ portrayed in block diagram notation in Fig. 2.1-1. The initial condition of the
; { state vector is vpecified by assuming that the state variables are jointly normal
| with a given mean vector and covariance matrixt,
| E{x(0)] = m
* [x(0)] = m, (2.1-2)

E[x(0) x (0)] = P,

*For any matrix G,l the quantity 8ij denotes the element in the ith row and jth
c%lumn; similarly, for any column vector w, w. denotes the element in the
it row. -

tE[ ] denotes the expected value of the bracketed variable.

2-1
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Figure 2.1-1 Nonlinear System Model

The input vector w is often assunied to be composed of elements that are inde-
pendent gaussian white noises, plus an additive mean; thus

E[w(t)] = b(t)
(2.1-3)
B[(w(® - b®) (w(n) -b(1)] =Q() 8(t-7)

where Q(t) is the input spectral density matrix (which is diagonal, due to inde-

pendence) and the impulse function 8(t -+) indicates that the input vector random
components have zero autécorrelation for t £7; i.e., the quantity u(t) =_v_r_(t) -b(t)

is white noise.

Given the above information, monte carlo analysis requires a large

number, say q, of representative simulations of the system response, viz.,

the q-fold repetition of the following procedure: First, an initial condition vec-
tor is chosen according to the statistics indicated above; i.e., 2 random number
generator calculates a random vector x(0) based on Eq. (2. 1-2). Then a random

2-2
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initial noise vector is generated, using the statistics given in Eq. (2. 1-3)*.
These vectors provide the data for evaluation of x(0) in Eq. (2. 1-1) which in
turn is used to propagate the solution from t =0 to t=h according to any stan-
dard technique for the digital integration of a state vector differential equation.
Then, given x (h); simulation continues-by the generation of a new value of the
input noise vector w(h), evaluation of x(h), numerical integration to obtain x(2h)
and so on, to the specified terminal time tf. |

Performing q independent simulations yields an ensemble of state tra-
jectories, each denoted gg(i)(t; E(i)(O), W (i)(t)) to stress the dependence of the
trajectory on the random initial condition and noise input sample function:

A i £, s Vi)

5(2) (t; ,_{(2)(0)’ ...l(z)(t)) s 0 st st (2. 1-4)

,_‘(q) (t; J_{((l)(())’ \\_I(Q)(t» ]

*Neglectmg the bias component, we generate a broad-band gaussian noise
uj(t) with spectral density q; by using a random number generator to obtain
an independent sequence of gaussian random.numbers ui K’ k=0,1,2,...
satisfying

E[u

g6l =0

E[ui’kz] = q;/h

Then we define ui(t) by

I u (t) = U g Kh<t<(k+1)h

i where h is a smalltimeincrement. For h small (1/h much larger than the
bandwidth of the system in question), u;(t) is essentially a gaussian white
noise process,

ke )
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Each satisfies the state vector differential equation (Eq.(2.1-1}) to within the
accuracy -of the numerical integration method used. The mean m(t):and co-
variance P(t) of the state vector are estimated by averaging over the ensemble
of trajectories using the relations

Aoval d (i) s
m(t) o 12:‘1 x'(t) x nif(t)

(2.1-5)

Br)® i‘l(;“)«) - i) Vo - Aw)T = ey
i=

where»ﬁ_(t) and B(t) denote the estimated values. The essence of the monte
carlo technique is illustrated in Fig. 2.1-2,

R-11707
N IMULATION STATE 1: TRIAL
r...___._......MQI‘E_SA_@Q..S_._______,._____' praitd Ml
| ourpuT
] | 0 W . b
]
l . ' °
[ I T ¢
' , 6 l \ 1 TRIAL
Qlt) w () o) 'NO.q
NOISE NOISE | 5 ] ~_ .,
l STATISTICS GENERATORS | : ~—>
| bit)  — SYSTEM La ﬁ ¢
~ MOUEL : 1 : =
COMPUYE
INITIAL =p{0) RANDOM TISTICS
| CONDITION | :> IC. | ,M
STATISTICS  F'm(0) ”| GENeRATORS [ (i) | !
l T T—— 10 l *
| TRUE VALVE OF ./py,.
| | ﬁ; MONTE CARIO
[ | sy STATISTICS
0 TIME 1

Figure 2, 1-2 Schematic Characterization of the
Monte Carlo Technique
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In order to assess the accuracy of the approximate statistics given
in Eq. (2.1-5), it is necessary to consider the statistical properties of the
estimates @_(t) and lg(t). To simplify the notation, consider a scalar random
variable y (e. g., the value of some system state variable at some time of
interest), and let m and p represent the true values of the mean and variance
of y,

m = E[y]
(2. 1-6)
p = E[(y - m)%]

By performing one set of q monte carlo trials, we obtain a single estimate of

m and p, which we denote A and 6 These estimates are also random variables;
that is, if another set of q monte carlo trials were performed independently of
the first set, but with the same statistics for the initial conditions and noise
inputs, then a different ensemble of simulations results, and different esti-
mates for the mean and variance would be obtained. If q is sufficiently large,
then we can invoke the central limit theorem to justify the assumption that the
random variables 1?1 and 1/)\ are gaussian*, and thus that their distributions are
completely specified by the following statistics, asymptotically true for large

q and given in Ref. 4:

E[m] = m
E[p] =p
%ﬁg B[ - m)?] =% (2.1-7)
2
of & EB-pf - A

A
*For q < 20, it is necessary to assume that p has the chi square distribution
if y is a gaussian variable (Ref. 5).
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where u 4 is the fourth central moment,

1y = E[(y -m)*] (2.1-8)

For many common probability density functions (pdf's), the fourth central
moment is of the form

“Ap (2.1-9)

Table 2, 1-1 gives a summary of X for the pdf's used in this report. In terms
of the parameter X\, we can express the standard deviations given in Eq.
(2.1-7) in the form

: i (2.1-10)

The above discussion of the statistics of the gaussian random variable
f)\ provides the basis for determining a range in the vicinity ofﬁ such that the
true value of p is guaranteed to lie within that range with a specified probability,
Y. This is done by determining the number, Do of standard deviations, Gp, such
that

Prob[0 < |p-p| <n9 ] =¥ (2. 1-11)
Since 'ﬁ is a gaussian random variable, n, is the solution to

1

"o 1,2
—V.é-._;:f exp(-gl: yd¢ = ¥ (2.1-12)

n
o
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TABLE 2.1-1
SOME COMMON PROBABILITY DENSITY F*™{TIONS

R31798

FUNCTIONAL GRAPHICAL t
CESIGNATION REPRESNTATION® | REPRESENTATION A
. pix)
1 2
EXPONENTIAL | /7o "‘"( T l"""l)' 7 6
-0 <x< + D - *
P
- “p(_l‘m)z\, . - ¥
NORMAL Toro zV T ) ViZ! 3
3 —X
-0 <x<+ @0 U m
(- lx-ml) 1 ol
TRIANGULAR | V6o \' Veo /¢ T5e 24
m-féo<x<meflc  Nmyfiz || m  mefes

) ) ‘}f"

UNIFORM /e, /‘_ZT—_““] 18

m-/3c<x<me /3o m/3c m o mefi

N g (x)
BIPOLAR 78 (x-m-0o}) ‘ﬁw t 0
(Discrate) el 3(x-m+0o) 1 e x '
2 mo| m meo

*formulated to have mean m ond stondard deviotion o
4 )\ is referred to as the “kurtosis " or ** excess” of a pdf, (Ref.6)

For example, if the desired probability is 0. 95, Eq. (2.1-12) yields n = 1. 96,
Other values of n, corresponding to different values of ¥ can be obtained from
probability integral tables (Ref. 6); several representative values are given in

Table 2.1-2,
TABLE 2.1-2

CUMULATIVE PROBABILITY WITHIN n STANDARD DEVIATIONS
OF THE MEAN FOR A GAUSSIAN RANDOM VARIABLE

n, Ul
1.0 0.6827
1.960 0. 9500
2,576 0.9900




THE ANALYTIC SCIENCES CORPORATION

To reformulate Eq. (2.1-1/%) into an inequality for p, we make the sub-
stitution for ’c}p indicated in Eg. (2. 1-10) into Eq. (2.1-11) to obtain the equiva-
lent statement that

A A
A P P —
Prob [B T T, (oL TP T Ton A1 p] =¥ (2.1-13)
o V- q o \—

q

e

that is, the true value of p lies between the values p and p indicated in Eq.
(2.1-13) with probability §. Alternatively, in terms of the estimated rms value
of the variable, 9, we have the comparable result

Prob [osos0] = §

for o and ¢ given by

1] 73
np
a>

g
(k=]
1}
fod
.*.
=
Q
>
Ne XN
fu—y
1

(2.1-14)

up

Ql
H]
£
1!
H
=
Q
“=
A
—t
I
Q>

The quantities ¢ and o are referred to as lower and uppver confidence limits;

the value of ¥ expressed as a percent (100y) is the degree of confidence.
Equation (2. 1-14) demonstrates that the standard deviation con’lidence limits
can be obtained from G simply by using the multipliers p and p. The latter
are functions only of the parameter )\, the number of monte carlo trials q,

ard the number of standard deviations n - determined by the desired degree of
confidence.
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The problem of making a reasonable choice of A, which depends upon
the statistics of the random variable y, must be ccnsidered before the confi-
dence limit multipliers can be calculated. One option is to determine an
approximate value of A by estimating the fourth central moment using the g

sample values of the variable y, and calculating

A/ A
A= p, /D = A

The value of X need not be known exactly, since the confidence limits ¢ and o
are not very sensitive to errors in this parameter. In the absence of reliable
information about the higher central moments, it is frequently assumed that y is
gaussian; i.e,, that x=3. However, if there is reason to believe that the pdf
for y has abnormally heavily weighted tails ~- as in the case of the exponential
distribution in Table 2.1-1 -- then a larger value of A'may be required.

Typical viiues of p and P ior A = 3 are indicated as functions of the
number of monte carlo trials in Fig. 2.1-3, for two values of confidence. As
an example of the significance of the confidence interval, if we desire to have
99% certainty that o is within 10% of the estimated value, 0; i.e.,

A A
Prob[0.900 s ¢ s1.10] = 0.99 (2.1-15)

then Fig. 2.1-3 demonstrates that it is necessary to perform 440 trials;
256 trials suffice for 95% confidence. *

Figure 2. 1-4 shows the deterioration that occurs in the accuracy of
the monte carlo estimated standard deviation for a given level of confidence if
A is greater than three due to y being nongaussian, We discuss an instance
where A=19, 5 in Section 5. 3; in this case, even for more than 200 trials, the
upper 95% confidence limit is nearly 50% greater than the estimated value of o.

*Note that the bounds, p and g, are not symmetric with respect to one;
thus the point at which g crosses 1.1determines the value of q for which
Eq. (2.1-15) is satisfied.
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R-11860

20

Useer Limit, 3/8 ¢
99% Confidence
95% Confidence

ESTIMATED STANDARD DEVIATION CONFIDENCE INTERVAL MULTIPLIERS

———————— T s = i S TS St S S e — . G v ]
Lower Limit, g/3 ¢
95% Conlidence

"~ 99% Confidence

1 1 1 1
100 300 500

NUMBER OF MONTE CARLO TRIALS, g

Qa7

Figure 2.1-3 Typical Confidence Interval Multipliers
for the Estimated Standard Deviation of a
Gaussian Random Variable (X = 3)

The confidence interval calculation for the estimated mean is quite
direct, since oA (Eq. (2. 1—9)) is not a function of the mean. The same value
of n, is obtained for the desired degree of confidence (e.g., n, = 1.96 for 95%
confidence), and value of p given in Eq. (2.1-13) is used in deriving the result
that

Prob[msmsm]=9p
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R-11799
q =256 Monte Carlo triols performed;

!:' Degree of confidence =95%
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Figure 2, 1-4 Effect of A on Confidence Interval Limits

for m and m given by

m

f

=]
Q'.:S
=

(2.1-16)

:
8
+
=
l

m =

Here, we seethat m and m cannot be readily expressed interms of a multiple of .
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'The confidence limit concept developed above provides a statistical
measure of the accuracy of the estimated mean and standard deviation of a
random variable obtained by using the monte carlo method. It is only possible
to assess the accuracy of such estimates in a probabilistic sense; e.g., for
256 trials, we can assert that an estimated standard deviation (rms value) is
within 10% of the true value, with probability 0.95 (with 95% confidence).

2.2 THE COVARIANCE ANALYSIS DESCRIBING FUNCTION TECHNIQUE
(CADET)

Covariance analysis, where it is applicable, provides a direct, exact
technique for the statistical evaluation of the performance of dynamic systems
with random inputs, permitting the propagation of the mean component and co-
variance matrix of the system state vector as functions. of time. This technique
does not require the generation of a large ensemble of representative state tra-
jectories and the computation of the ensemble statistics. The latter approach
--the monte carlo method -- is both time consuming (in terms of computer
time) ard approximate; we have seen in Section 2, 1 that several hundred sample
state trajectories may be required in order to cbtain reasonably accurate sta-
tistics for systems in which the state variables are nearly gaussian; for non-
linear systems in whichvariables may be highly nongaussian, one thousand or

more simulations could be required to achieve an acceptable level of confidence
in the accuracy of the results. The direct approach is thus distinctly preferable
to the monte carlo technique.

The fundamental bases of covariance analysis are the differential equa-
tions governing the evolution of the mean vector and covariance matrix with
time. Corresponding to the state vector differential equation given by Eq. (2.1-1)
with the input vector specified by Eq. (2.1-3), we have the differential equations
(Ref. )
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H th = E[f(x)] + GbH)

ip (2.2-1)
il P=E[tr'] +E[rf]+ GG

1

I where

ig E[x(®)] = m®)

ik rt) = x(t) - m(t) (2. 2-2)
1 l _ T

AR P(t) = E[r(t) " (t)]

8 The first and second moments of the system response are completely deter-

, 1"; mined by the integration of Zhe indicated vector and matrix differential equations
1 (Eq. (2.2-1)) when the initial conditions, m(0) and P(0), are specified.

; E The form of the differential equations for the statistics of x(t) is par-
n ticularly convenient in the case of linear systems; given

1B

i i(x) = Fx

L

"? Eq. (2.2-1) reduces to

1. m=Fm + Gb

1N (2.2-8)
2k P = FP + PFL + GQGT
2.

E & . These linear differential equations can be solved using standard numerical inte-
2 gration techniques.

- 2-13
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The nonlinear covariance equations can be represented in the same for-
mat as Eq. (2.2-3) by definition of two auxiliary matrices, Nm and Nr, given by

N m = E[f(x)]

(2. 2-4)
NP = E[f®r]
so Eq. (2.2-1) may be written
m =N m+Gh
(2. 2-5)

T

. T
P=NP+PN' +GQG

np

2 sym [N P] + Q

where sym [ ] indicates the symmetric part of the indicated matrix, and Q' is

the spectral density matrix of G(g - ll). The dependence of Nm and Nr on the
statistics of the state vector, which is implicit in the expectation operations in
Eq. (2.2-4), is due to the existence of nonlinearities in the system. Without non-
linear effects, the propagation of the mean and covariance is "uncoupled,' as
shown in Eq. (2.2-3).

The matrices Nm and Nr given in Eq. (2.2-4) must be determined be-

fore we can proceed to solve Eq. (2.2-5). A direct approximate method of
accomplishing this is to use describing function theory to linearize the system

nonlinearities; the resulting generalization of linear covariance analysis is then
called CADET -- Covariance Analysis DEscribing function Technique. This pro-
cedure, presented in detail in Appendix C, entails assuming the form of the non-
linearity input and calculating describing functions which provide a quasi-linear
approximate input-output relation for each nonlinearity. For the problem at hand,
the system input vector w(t) is taken to be a gaussian random process plus a

2-14




THE ANALYTIC SCIENCES CORMPOFRATION

bias, and it is useful to assume that the state variables also have mean com-
ponents and random parts that are jointly normal, While this assumption is
strictly true only for linear systems, it is often approximately valid in non-
linear systems. Although the output of a nonlinearity with a gaussian input is
generally nongaussian, it is known from the central limit theorem that random
processes tend to be made gaussian when passed through low-pass linear sys-
tems ("filtered'). Herce if there are a few stages of linear dynamics between

nonlinearities, the input to each nonlinearity should be nearly gaussian. The
essential requirement of CADET is that the state variables must be nearly

jointly normal. From a practical viewpoint, the gaussian hypothesis serves to

simplify the CADET methodology by permitting each nonlinearity to be treated
in isolation, with Nm and Nr formed from the individual random input describ-
ing functions (ridf’s) for each nonlinearity, as discussed in Appendix C. Since
ridf's have been extensively catalogued in Ref, 8, the implementation of CADET
is a straightforward procedure for a broad class of nonlinear systems. We also
note that under the gaussian assumption, the random input describing functions
can be calculated directly from the mean vector, m, and the covariance matrix,
P, of the system state vector. Thus, we write Nm and Nr in the form

N
m

N _(m, P)

NI‘

N (m, P)

Relations of this form permit the direct evaluation of the ridf's at each integra-
tion step in the propagation of m and P by numerical techniques according to
Eq. (2.2-5), as illustrated in Fig. 2.2-1,

To demonstrate the ease with which CADET can be mechanized under
the gaussian assumption, we consider a single nonlinearity and illustrate the
steps involved in performing statistical analysis via CADET, Assume that only
the nonlinearity f]. (xk) occurs in the differential equation for xj,
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Figure 2.2-1 Nonlinear Covariance Analysis -- CADET

x1 0

x = Fx + fj(xk) + Gw(t) (2.2-6)

where we have explicitly separated the linear portion of the dynamics from the
nonlinearity. The random input describing function approximation to fj(xk) is
shown schematically in Fig. 2.2-2, The input X, is first separated into its mean
and random components, m, and Tl which are then multiplied by the scalar
quasi-linear gains, L and LI the latter are selected to minimize the mean
square error between the linear approximation n oKk + g™y 2nd fj(xk)° The

gain L is added to the element fjk of the matrix F in determining Nr; similarly

The indicated symmetry operator yields 2 sym[N P] = N P+PNT where the
symmetry of P is taken into account.
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R-11384
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Figure 2.2-2 Random Input Describing Function
Approximation of f; (xy)

n ., is added to the same element of F to give Nm. Thus, tne jth rows of Nr

mk
and Nm are given by

[Nr]j = [fjl’ fj2"“’(fjk + nrk)"" ’fjn]
[Nm]j = [fjl’ sz,.. .,(f].k + nmk)"" ’fjn]

A comparison of quasi-linearization with the classical Taylor series or
small-signal linearization technique provides a great deal of insight into the
success of the ridf in capturing the essence of nonlinear effects. Small-signal
linearization for a scalar nonlinear element f(x) is based on the identification of
a nominal operating point X, and the evaluation of the slope of the nonlinearity
at that value; then the approximation is made that

f(x) & f(xo) + f’(xo) (x-xo) (2.2-7)
which represents the first two terms of a Taylor series expansion about the
given operating point, as illustrated in Fig. 2.2-3 for the example, y =x3. While
this is a useful approach if excursions from the nominal are small, the validity

of the Taylor series approximation .s questionable when x is a random variable
which can exhibit large variations about its mean value,
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R-11801
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Figure 2.2-3 Taylor Series Linearization of y=x3 about x0=1

By contrast, the quasi-linear representation of a nonlinearity is sensi-
tive to the input amplitude in some sense; in the case of random inputs, the
statistics m_ = Ef{x] and P, = E[(x - mx)z] provide the measure of input ampli-
tude. For the example y=x3, where x is a gaussian random process, we calcu-
late the describing functions according to Eqs. (C.2-4) and (C. 2-5),

_ 2
n, = 3(px+mx )

n_ =3p +m2
n X X

and the nonlinearity is approximated by

3 2 2
x"% (3p, +m Ym_+3p, +m ) (x-m) (2.2-8)

Comparing Egs. (2.2-7) and (2. 2. 8), we see that the describing function gains
depend on both the mean and variance of x, as indicated in Fig. 2.2-4, while the
coefficients in the Taylor series approximation do not.

Finally, some comments about the generality of CADET are in order,
Many approximate techniques for treating nonlinear systems are applicable only
to low order systems (with two or three state variables at most) with one
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R-11804

Quasi- Linearization for my=1
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Figure 2.2-4 Quasi-Linearization of y =x3 for Unity Input Mean

nonlinearity. By contrast, describing function techniques can be used for sys-
tems with any number of nonlinearities, leading to a quasi-linear system model
that can then be handled using the CADET methodology. There is no limit on
the number of state variables in the system model; in fact, CADET tends to be
more accurate as the ratio of the number of states to nonlinear elements in-

creases, thus improving the validity of the gaussian assumption.

2.3 COMPARISONS AND PHILOSOPHY OF APPLICATION

In comparing CADET and monte carlo metaods for use in obtaining
performance projections for nonlinear systems with random inputs, there are
several significant similarities. Both techniques are applicable to nonlinear
system models with an arbitrary number of states and nonlinearities, and we
often rely on the gaussian agsumption in assessing the accuracy of the perfor-
mance statistics obtained. In both cases, any departure from normality can be
compensated for to a certain extent; in CADET, nongaussian pdf's can be used
in calculating describing functions, while in monte carlo simulation the fact
that the confidence limits increase for nongaussian random variables (Fig.

2. 1-4) can be counteracted by increasing the number of trials performed. The
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principal trade-off between the two methods is in efficiency veirsus generality
(versatility). The monte carlo simulation ensemble of q representative state
trajectories (Eq. (2. 1-2)) can be used not only as a data base for calculating
estimated performance statistics ﬁ_(t) and f’(t) at instants of time of interest,
but also ior estimating higher order moments, and for generating histograms
which are approximate paf's for the variables under consideration (of course,
at an additicnal cost in terms of data processing). CADET, on the other hand,
provides approximate values for m(t) and P(t) in a single numerical integration
of the quasi-linear covariance equations (Eq. (2. 2-5)), usually in a small frac-
tion of the computer processing time required for accurate monte carlo analysis.
Depending on the number of state viiriables and nonlinearities, and on the de-
sired accuracy (which determines the number of monte carlo trials required),
it inay be possible to perform from ten to thirty distinct CADET studies at the
same computational expense required for one monte carlo analysis.

One of the primary purposes of the statistical analysis of tactical
missile system performance is the evaluation of guidance effectiveness with
variations in random input levels, initial conditions statistics, system parame-
ter values and secondary nonlinear effects such as seeker mass imbalance, ) ‘
acceleration command limiting, etc. Due {o the multiplicity of these factors, it
is evident that the analysis will generally be done repeatedly. As a consequence,
efficiency is an important consideration; this point is a strong argument in fa-
vor of CADET. On the other hand, the versatility of monte carlo simulation -
provides a self-check capability; i.e., the q representative state trajectories
can be used to estimate hig..er moments and the pdf's of the state variables, i
which in turn leads to an assessment of the accuracy of the monte carlo analysis.
This is a feature lacking in CADET which makes it advisable to rely upon monte
carlo simulation in a monitoring capacity, since it is always possible to obtain
accurate performance projections by increasing q sufficiently.
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The effective use of CADET and monte carlo analysis in concert can
be demonstrated in a hypothetical trade-off study where two parameters, say
a, and 0,, are to be varied over certain ranges to obtain optimal performance
in some sense (perhaps.to obtain minimum rms terminal miss distance). As
shown in Fig. 2. 3-1, a few points in the parameter plane are chosen for careful
CADET -monte carlo comparison (verification of CADET); then extensive per-
formance curves are generated using CADET, from which the optimal values of
Gy and a2 are chosen. If desired, the vicinity of the point of optimally can be
studied using a few selected values of o, and ¢, and performing the required

2
monte carlo simulations, Similar approaches can be used in studying sensi-

tivity to nonlinear and random effects.

R-
| RMS TERMINAL MISS DISTANCE 11803

PARAMETER ] W

SENSITVTY ] ~

CURVES /

GENERATED / Z

BY CADET

( Z
/ — a,
// //
Al —
/ 4
// / // /
/ /
* / 7
@ A Ko & ! /
! 7 ; / o CHDET DATA POINT
/ / $ MONTE CARLO VERIFICATION
/L/ /
a POINT OF
! OPTIMAL
PERFORMANCE

Figure 2.3-1 Tllustration of CADET and Monte Carlo
Analyeis in a Parameter Trade-Off Study
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The overall philosophy of CADET usage, based on the strong points of
both CADET and monte carlo simulation, is illustrated in Fig. 2.3-2. The
initial verification procedure is generally undertaken for the "nominal system,"
i.e., for the system with nominal parameters values, and is of necessity more
meticulous. Thus several hundred monte carlo trials may be performed, and
if there is reason to believe that the system is highly nonlinear -- so that the
system variables may be quite nongaussian -- it may be necessary to investi-
gate higher order moments or histograms to decide whether more trials are
needed in order to obtain a reliable statistical analysis. Once this phase has
been completed satisfactorily, the CADET parameter sensitivity studies can
then be performed. Observe that the preliminary careful but time-consuming
monte carlo study (perhaps with the indicated self-check procedure and increase
in the number of trials) is always required if accurate performance statistics
are to be obtained from monte carlc simulation with high confidence. The sub-
sequent use of the monte carlo statistics to verify CADET requires minimal
computer time (if any), and that comparison paves the way for the ensuing
efficient study of various effects via CADET. In the latter studies, itis rarely
necessary to perform as detailed a monte carlo analysis as is required in the
initial verification procedure, so as few as 20 to 50 monte carlo trials may
suffice to demonstrate that CADET has accurately captured the effect in ques-
tion. This approach mirrors the development of CADET that has been carried
out in the present study.
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3.° MISSILE-TARGET INTERCEPT MODEL DEVELOPMENT

3.1 INTRODUCTION

Previous development of CADET as an efficient tool for undertaking
the statistical analysis of tactical missile guidance system performance has
focused on the planar missile-target intercept problem. At each stage, the
model has been made more general by the inclusion of more of the system
dynamics (addition of more system states) and the consideration of more non-
linear effects and random disturbances. The initial work (Ref. 1) treated only
one important nonlinearity -- acceleration command limiting -- and one noise
input -- a random target maneuver. A second, more extensive application of
CADET (Ref. 2) included three nonlinear effects and four random inputs, two
of which had a deterministically time-varying rms value. A third investiga-
tion (Ref. 3), which complements and in some respects parallels the present
effort, involves a very detailed application of CADET to a specific tactical
missile -- the SAM~D. A brief synopsis of the system models considered in

the various research programs is provided in Table 3. 1-1,

The purpose of the present study is to significantly extend the verified
capability of CADET to provide rapid, accurate assessments of tactical missile
performance, We have generalized the previous missile-target intercept models
by adding a variety of nonlinear effects and random inputs which have heretofore
not been treated and which can have a significant impact on the effectiveness of
the tactical missile -~ as quantified by the rms miss distance between the mis-
sile and target at terminal time, The specific equations that represent the
dynamics of the missile and target are developed in Appendix A; in this chapter,
we provide a brief summary of the effects studied. The verificaiion that CADET

3-1
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can indeed provide accurate performance projections with these effects taken
into account is presented in Chapters 4 and 5.

—
[

3.2 MISSILE-TARGET KINEMATICS

[

In Fig. 3.2-1 we portray the graphical definition of the coordinate

W o

frame and variables involved in describing the motion ot the missile and target.
In deriving the equations of motion, it is assumed that the missile and target
velocity vector magnitudes are constant, or, equivalently, that the missile and
target acceleration vectors are normal to the velocity vectors. These condi-

L tions, neglecting the effects of drag and assuming that the angle of attack is
small, are representative of many missile-target engagement situations during

rmnn e

the critical last few seconds.* Thus, the lateral acceleration of either vehicle
simply produces a rotation of the corresponding velocity vector, given by

‘ f y-AXIS R-11592
{t=ty)
y-AXIS
B (x=0) VELOCITY
i A
£
velogiTY ACCELERATION
ACCELERATION =m -t
[-]
- 2N e x - AXIS
. .~
{ / TAMN {tzty)
// [ Y J 60“‘) -\
l , xlty) WJARGET TRAJECTORY
‘ 7/ MISSILE TRAJECTORY .
: . // N\
e I x- AXIS
ORIGINAL ORIGINAL LO$ ORIGINAL {t=0)
POSITION POSITION

Figure 3.2~1 Missile~Target Planar Intercept Geometry

x
The application of CADET to cases where angle of attack and drag variations
are important is currently being considered in a continuation of the study
described in Ref. 3.
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. 1
8 = ;m im
(3.2-1)
S |
Ga-;t at

The equations describing the motion of the target with respect to the missile
center of gravity (governing the cross- and down-range missile-target separa-
tion, x and y respectively) are found by projecting the velocity vectors onto
the axes shown in Fig. 3. 2-1; in terms of the velocity magnitudes Voo and v,

X=-v cos-(ez) - v, cos (ea)
(3.2-2)

y=-v, sin (9!’) +V, sin (Ga)

Equation (3. 2-2) represents the essential nonlinearities inherent to the missile-

target kinematic relationship.

3.3 TARGET LATERAL ACCELERATION MODEL

An important source of missile guidance system error is target maneu-
verability., We assume that the target lateral acceleration magnitude, s isa
first-order Markov process, modelled as a zero-mean gaussian white noise*
passed through a single stage of low-pass filtering, as depicted in Fig. 3.3-1,t

*
The five white noise inputs to the system are simply denoted w., j=1,2,...,5,
for convenient reference. ]

tAlthough the transfer function representation is formally restricted to use in
completely linear systems, we use it as a compact notation for depicting linear
subsystems in our model. While general practice is to replace the variabiles
W5 and a; with the formal Laplace transforms, say W5(s) and Ai(s), we con-
tinue to indicate linear subsystems inputs and outputs by their time domain
representaiion to avoid a cumbersome dual notation for all variables.
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\, R-11887

(a) DIFFERENTIAL EQUATION

REPRESENTATION
1
we = o, P~ 0t
(b) TRANSFER FUNCTION
FORMULATION

Figure 3.3-1 Band-Limited Gaussian Noise
Model for Target Lateral
Acceleration

By adjusting the values of target maneuver bandwidth, Wy, and rms
level, a wide range of target maneuver characteristics can be represented. A
‘ constant rms level of lateral acceleration over the entire terminal homing
phase is assumed,

E[at2 t)y] = ctz (3.3-1)

Thus we choose the initial condition and gaussian white noise statistics to
satisfy

E[a’(0)] = o]
(3. 3-2)

E[wy(t)we(r)] = 20, otz 8t-7) 2 g 6(t-T)

where 45 is the spectral density of this white noise input,
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3.4 AUTOPILOT - AIRFRAME MODEL

We use a linear time-invariant autopilot-airframe model, under the
assumptions that:*

e Missile velocity is constant (drag effects are
negligible over the period of time considered).

e Altitude remains nearly constant.

e The center of pressure, mass and inertia of
the missile are constant.

e Lift force is linearly related to changes in angle of
attack about some trim condition arnd to control
fin deflection.

o Control fin actuator dynamics are linear.

o Fin effectiveness is independent of angle of
attack.

The airframe equations of motion are then based on a set of missile aerody-
namic coefficients identified with the vehicle short-period dynamics with
values typical of a tactical missile in the terminal homing phase. We choose
the autopilot feedback compensation gains to achieve a suitable compensated
airframe response (Appendix A, Section A. 4). The outputs of the airframe
model are missile lateral acceleration, a s and missile body angular rate,
Om; in transfer function form, they are related to the acceleration command,
) provided by the guidance law, by

_720-0.865s-1.87s
M 90492758 +18.83 8% +5°  ©

0.24 + 0.642 s
a

ém= 2 3 c
720 +275s +18,3s8” +s

*Application of CADET to a complex, nonlinear airframe model is being con-

sidered in a continuation of the work described in Ref. 3.
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which corresponds to a dcminant pole at s = - 3. 16 and secondary poles at
s =-17.56 £13.0j.

3.5 GUIDANCE LAW MODEL

The present study utilizes a nonlinear model of the classical propor-
tional guidance law, described in Section A.5. In principle, it is desired to
develop a missile lateral acceleration that has a component normal to the
line-of -sight (LOS) which is proportional to the product of closing velocity and
LOS angular rate. In practice, it is not possible to obtain either the closing
velocity or the LOS angular rate exactly for generating an acceleration com-

mand. A noisy measurement of LOS angular rate, denoted by n in Fig. 3.5-1,
is provided by the missile seeker, which is treated in Section 3.6. In the gui-
dance law model, a single stage low-pass filter is included to reduce the effect
of measurement noise in 7; the filter output is denoted by 3. ‘Measurements

of closing velocity (range rate) will also contain errors, which are repre-
sented by the uncertainty variable e, The latter is a first-order markov
process, * modelled in the same form shown in Fig. 3.3-1. The resulting
model for the acceleration command is given by

, cos (6a +6)

=n’ -
a.c—n 6[vm+ev+vtm9£—-97] (3.5 1)

where the constant n’ is designated the navigation ratio. The guidance law is
completed by noting that this unconstrained acceleration command must gen-
erally be limited in magnitude in order to prevent exceeding the structural

capacity of the airframe and to avoid the possibility that the missile might go

X
A constant or bias error, ey}, is obtained by suitably choosing the initial
condition, e,(0) = eyp,, and mean value of the input, by = E[wyl = wgey,.
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into a stall. Thus the actual acceleration command, 2, is represented as
the output of a limiter whose input is a’c.

CLOSING VELOCITY R-11599a
ERROR MODEC
r A —_
/! ey
> ;',L' et v cos{0,+8)
'l—“L vt as6,-0)

UNCONSTRAINED ACTUAL

NOISYE " T 1% c
LOS RATE gl 1 _1 8 o1 . _7}4: ,
ESTIMATE 147y | Omox

L

e e — ) [N J

Y ¥
NOISE FLTER CLOSING VELOCITY WITH SECANT ACCELERATION
COMPENSATION AND UNCERTAINTY COMMANDS

Figure 3.5-1 Guidance Law Model

3.6 THE SEEKER SUBSYSTEM

The basic function of the seeker is to track the target and provide the
guidance package with an estimate of the LOS angular rate. There are a sig=
nificant number of important error sources which can lead to a marked dete-

rioration in the seeker performance. We can categorize them as noise sources,
, boresight error distortion effects, and seeker head disturbance torques; there
: are several specific mechanisms that give rise to errors of each type.

° Noise sources:

Target amplitude and angular scintillation noise
Receiver noise

Seeker servo noise

External jamming
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e Boresight error distortion sources:

Aberration
Receiver/signal processing characteristics

o Disturbance torque sources:

Seeker mass imbalance
Seeker gimkal friction
Seeker head restoring torques

P The seeker noise model includes three fundamental types of additive
random inputs: those that have an effective rms level that varies directly with

the missile~target range, or range proportional noise, including such effects

as receiver noise and distant external stand-off jamming; those exhibiting a

constant effective rms level, or range independent noise, such as target am-

plitude scintillation and seeker servo noise; and those with an effective rms
level that varies inversely with the range, or inverse range proportional noise,

such as target angular scintillation. These sources are modelled as wide-band
independent gaussian noises (filtered gaussian white noise) with appropriate
nonlinear gains to give the desired range dependence, as portrayed in Fig. 3.6-1,
The present study provides the first CADET application in which the range de-
pendent components of the seeker noise have been modelled as nonlinear func-

tions of state variables. In previous models, the missile-target separation was

taken to be linearly decreasing to zero at the nominal terminal time, tf.

The boresight error distortion model includes both aberration caused
by the passage of incident radiation through a protective cover prior to detec-
tion, and boresight error limiting due to a signal processing nonlinear charac-

teristic which may be introduced to circumvent the null and spurious sidelobe

} response inherent to the restricted beamwidth of the antenna or detector. The
1 aberration is generally a complicated effect, expressed as an angular error,

eab’ added to the seeker look angle, 800k’ the latter being the angle between

A
' 3-9
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R-11602

w > ]
WHITE ‘

NOISEq W2 =3 ] >
INPUTS stu2

+
sw3

) r(t)=./x§¢y2

Figure 3.6-1 Nonlinear Seeker Noise Model

the line-of-sight to the target and the missile body axis defined in Fig. 3.6-2.
The aberration effect is treated extensively in Ref. 3 (refer also to Fig.

A.6-2), and thus is not considered in detail here. A description of the model
employed for the nonlinear receiver characteristic is given in Section A.6. A

functional diagram of the boresight error model is portrayed in Fig. 3.6-3.

R-11600
y-AXIS
A ANTENNA
CENTER UINE
105 10 TARGET
SEEKER HEAD
CENTER OF GRAVITY ’9|o -
N
0~
Jomn
4 4
% /<<
GIMBAL PIVOT
MISSILE
g "‘(‘cmrﬂuma
Om
[ P x~AXIS

MISSILE
CENTER OF Gf* Y

“oure 3.6-2 Seeker Head Configuration
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R41601

SEEKER
NOISE

MEASURED
BORESIGHT
ERROR

RECEIVER
CHARACTERISTIC

ABERRATION
CHARACTERISTIC

Figure 3.6-3 Boresight Error Distortion Model

The seeker track loop, shown in Fig. 3.6-4, is designed to main-
tain the measured boresight error near zero. A control torque, T,, is
generated which has a component proportional to the boresight error, and
suitable dampling is assured by means of rate feedback provided by a rate
gyro mounted on the seeker head. A compensator of the proportional plus
integral form is included in the track loop to remove the effect of steedy
state disturbance torques. The characteristics of the control loop dynamics
are discussed in detail in Sections A.6 and A.7.

R-11883

SEEXER
NOISE

105 8\ TR of KR NOISY ESTIMATE OF
ANGLE e | T} 105 ANGULAR RATE
81082 ¢
'y %
$ » i
SEEKER - MOUNTED
f RATE GYRO GAIN
SERVO
$ 4 ks | Gan
A
15&%R5<x
COMPENSATOR:
DISTURBANCE d v
TORQUES : i helsderele
|
d

Figure 3.6-4 Seeker Track Loop Model
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The seeker head disturbance torque model, depicted in Fig. 3.6-5,

shows the three effects under consideration. The most complex nonlinear

three components; one proportional to missile body angular acceleration,
another to the square of the missile body angular rate, and the third to the

ity represents an applied torque T,., due to restoring torques acting on the
seeker head (caused either by wiring harnesses or by restraining springs

provided to prevent large seeker head angular excursions). Generally, this
is a "hard spring" effect, i.e., the restoring torque will be negligible for

will increase more rapidly, in a nonlinear manner, as depicted in Fig.
3.6-5. This effect is represented here by a power law nonlinearity, viz.

R-11003

SEEKER
CG OFFSEY
ANGL

8 A

SEEKER HEAD
ANGLE

8

Ly

A

-8
x
\ 4

Te

CONTROL
TORQUE

saeker head mens
sacker head cg offiat

distence from misile o to
sasker gimbal

sesker hesd momaent of
inertia about saeker gimbal

angular cootdinate of
seeker head o9

DISTURBANCE
TORQUE

A

Figure 3.6~5
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Disturbance Torque Model
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phenomenon is an effective torque due to seeker mass imbalance, Tm’ with

missile lateral acceleration, as derived in Secition A.6. Another nonlinear-

small values of seeker head angle, but as 6} increases, the restoring torque

FROM
AUTOHOT
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K

%
T =1£,(6) =k I

T 1''h 1 enm

sign(8,) (3.6-1)

where k is an integer. A final nonlinearity is introduced to describe the fric-
tion torque, Tf; in particular, we consider the "dry' or coulomb type of fric-
tion which produces a counter torque that is constant in value, having the sign
of the =eeker angular rate,

Tf = f2(6h) = k2 sign (‘eh) (3.6-2)

Coulomb friction can cause limit cycles to appear in the seeker track loop,
producing a deterioration in the missile guidance system performance.

3.7 SUMMARY

In Fig. 3.7-1 the coniplete missile-target intercept model is portrayed
with all of the subsystems described in the previous sections appropriately in-
terconnected. All of the system variables are depicted except angle of attack,
control fin deflectior and the secker compensation state, which are encompassed
in the linear dynamics represented by the transfer functions gl(s), gz(s), and
(1 +ko/ s). The functions fl(xl)’ fz(xz) and f3(t) represent effects due to non-
linear restoring torques acting on the seeker head, nonlinear friction in the
seeker gimbal, and the receiver characteristic, respectively. The first two
are described in Egs. (3.6-1) and (3.6-2). The last function is the standard
limiter operating on measured boresight error, as illustrated in Fig. 3.6-4.

All other effects are describe¢ hy the specific functional relations shown.
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g 4. CADET AND MONTE CARLO STUDIES
OF NONLINEAR EFFECTS

4.1 CADET-MONTE CARLO COMPARISONS FOR THE BASIC SYSTEM

In extending the validity of CADET as a missile system analysis
tool, we first consider the basic system model, which includes the follow-

ing nonlinear effects:

e Range-dependent seeker noise sources (Fig. 3.6-1)

¢ Proportional navigation law with secant compensation
(Fig. 3.5-1)

®  Acceleration command limiting (Fig. 3.5-1)
e Missile-target kinematics (Section 3.1)

e Inverse tangent calculation of LOS angle

The basic system model incorporates nine distinct nonlinearities, listed in
Section A.8, as compared with previous investigations (Refs. 1 to 3) where
the same effects were approximated by only three nonlinearities and several

linear time-varying gains.

In al] studies, the three components of the wide-band seeker noise
(100 rad/sec bandwidths) are always specified such that they have an equal
effective rms level at about the midpoint of the terminal homing phas2. To
be more precise, the spectral densities of the three white noise inputs Wy to
Wo in Fig. 3.6-1 are chosen to achieve rms values of the noise states X g

X5 and X6 that satisiy

4-1
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_ a2 4 _
qq =0, X 10 e Oi4= 0.7071 %, rad-ft

5 . 12 i
4y = 0% x 10 —— 0, = 0.7071x10"%_ rad/st
G=02x10"%  —— 3 bu_.=0.7011x10"%c rad  (4.1-1)
3 o 16 ) o ’

where we have used the relation indicated in Eg. (3.3-2). The dimension-

less parameter % is designated the seeker noise factor. The three com-

ponents of the range dependent seeker noise,

n & = x14/r(t)+x15r(t)+x16

thus have rms levels given approximately by 014 /r(t), 015 r(t) and 067
respectively, which are equal for r(t) = 10,000 ft. With the nominal param-
eter values indicated in Table 4.1-1, r(t) achieves this value at about

t = 2.5 sec in a terminal homing phase of about six seconds duration.

For all of the studies that follow, the fundamental measure of sys-

tem performance is rms miss distance; this is defined to be the rms cross-

range missile-target separation at the mean terminal time, tf. The mean

terminal time, defined as the instant when the mean down-range separation,
m ., goes through zero, is a variable in this study; its value without random

disturbances or initial conditions is 6 sec, while the presence of noise sources
or a nonzero rms target maneuver level typically increases t; by a few hun-
dredths of a second. This effect is a direct result of relaxing the assumption
of constant closing velocity that was made in earlier work (Refs. 1 and 2).

In every case considered in this chapter, one or several of the
system parameters are allowed to vary from the nominal, and the effects

of this change on the missile guidance system performance are analyzed via
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TABLE 4.1-1

NOMINAL SYSTEM PARAMETERS

(Refer to Fig. 3.7-1)

Seeker head mass, m 0.15 oz-sec?‘/in
Sceker head moment of inertia about cg, Iy 0.1 in-oz-sec?/rad
Seeker head cg offset, rg 0in
Angle of secker head cg offset, 6, 0 rad
SEEKER Distance, missile cg to seeker gimbal, ry 40 in
PARAMETERS | Servo gain, ks 6 In-oz-sec/rad
Rate gyro gain, kg 1
Integral compensator gain, k0 0
Track loop time consiant, ] 0.12 sec
Restoring torque, f;(x4) 0 in-oz
Gimbal friction, fa(xg) 0 in-oz
GUIDANCE Notse filter time constant, 1, 0.3 sec
LAW Navigation ratio, n’ 4
PARAMETERS Acceleration command litnit, ap,.» 250 ft/sec?
5 ¢y 720 sec-3
€S 4e,54ey ¢y 275 sec?
AUTOPILOT/ | 8 68) = —y——5———; c 18.3sec"!
AIRFRAME § 1Cqa8 4Co84Cy 3 )
TRANSFER dy 0.24 rad/ft-sec?
FUNCTIONS o d,5+d dy 0.642 rad/ft-sec
£, (8) = —p———p———————. ¢ _a
2 ssdcssz-iczswl ! ey 720 sec™r
e -0.865 sec™2
eq -1.87 sec-1
VEHICLE Missile velocity magnitude, v, 3000 ft/sec
VELOCITIES Target velocity magnitude, v¢ 1000 ft/sec
Secker noise source bandwidths, w w 100 rad/sec
RANDOM O G g ) /
INPUT Target mancuver bandwidth, w 0.2 rad/sec
BANDWIDTHS | Range rate uncertainty bandwidih, wg 100 rad/sec
NOISE STATE Range rate uncertainty level, %19 0 ft/sec
RMS LEVELS | Target acceleration level, %13 50 fl/sec?
Seceker noise factor (Eq.(4.1-1),0, 1
STATE Mean heading error, mg 0 deg
YN‘}?}QELE RMS heading error, og 1 deg
CONDITION Mean down-range separation, myy 24,000 ft
STATISTICS RMS down-range separation, oy 0 ft
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CADET. A few of the resulting performance projections are compared with
monte carlo studies to provide a basis for assessing the accuracy of CADET
in capturing the effect under consideration. Since the nominal case is to be
used as the starting point for all subsequent studies of nonlinear effects and
parameter variations, it takes on a significance that makes it advisable to

perform a monte carlo verification using a large number of trials.

One comparison of the results of CADET and monte carlo analysis
for the nominal case is shown in Fig. 4.1-1. A second case with a reduced

acceleration command limit, a = 150 ft/ secz, is also portrayed; the
X

latter curve demonstrates the sﬁ?xﬁficant deterioration in the missile guid-
ance system performance that results from reducing the missile maneuver-
ability. This nonlinear effect has been treated in previous studies;
Fig. 4.1-2, taken from Ref. 2, indicates the typical variation in rms miss

distance with changing missile acceleration limit.

R-12848
200
= CADET
- t7,m,‘tl.':0ﬁ/m2
b‘ N3 A3
Z Amax £250ft/sec?
o
<
<
& 100 M3
"2}
-t
<
[+ 4
s
S 61 ft
2 A3
2 DENOTES MONTE CARLO
RESULTS, SO0 TRIALS, 780
WITH 95%, CONFIDENCE s\
BAND BASED ON MEASUREDA
Na2sie
0 1 [} ] ] ] 1
[+] H 2 3 4 5 [
TIME ,t (sec)

Figure 4.1-1 Effect of Acceleration Command Limiting
on Basic System Performance
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Figure 4.1-2 Acceleration Command Limit Study (Ref. 2)
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Returning to the nominal case (amax = 250 ft/sec2 in Fig. 4.1-1),

b |

we note that the CADET result (the smooth curve, exhibiting an rms miss
distance of 22.9 feet at 6 sec) lies within, or close to, the 95% confidence

7

Wi
€.

band of the corresponding monte carlo data throughout the engagement. The

1

width of the confidence band provides a measure of the theoretical relia-

- RTINS A T

[eEg

bility of the monte carlo data, based on the number of trials performed and

an estimate of A (kurtosis; refer to Section 2.1).

The fact that the monte carlo estimate of the rms lateral separa-
tion, Gy, is a random variable that converges to the true value slowly as
the number of trials increases is depicted in Fig. 4.1-3, where we show
the value of Gy versus the number of trials performed, . The case shown
in Fig. 4.1-3a corresponds to the estimation of rms lateral separation two
seconds before intercept, when the probability density function is nearly
gaussian (A 22 3). The accuracy of the result obtained by performing 500
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Figure 4.1-3 Comparison of CADET and Monte Carlo rms
Lateral Separation for the Nominal Case

monte carlo trials is quantified by
»
Pr [137.7 ft = cry(4) < 156.0 ftJ = 0.95

Near the terminal time, however, the density of y is found to be significantly
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nongaussian; on the basis of the monte carlo study, it is estimated that the

kurtosis is approximately 15. Thus the estimate of the rms miss distance,
gy(G), necessarily is less certain than when y is gaussian. The large value
of X is due to nonlinearity in the system which gives rise to a small but

e nificant probability that the miss distance may be very large {see also
Section 5. 3); whenever 4 trial is performed which resulis in such a patho-
logical miss there is a large "transient" in the estimated rms miss dis-
tance. This phenomenon is observed between trials 140 and 180 and between
triais 420 and 460 in Fig. 4.1-3b.

The agreement of CADET and the monte carlo analysis is excellent

as long as y is reasonably gaussian; at the end of the engagement, CADET
appears to have underestimated the rms miss distance by ten to fifteen

percent. This study provides a graphic demonstration of the fact that sev-
eral hundred or even a few thousand monte carlo trials are required to ob~
tain an estimate of rms miss distance that is more accurate than the result
given by CADET. Taking the five sets of 100 frials separately*, the value
of oy(ﬁ) varies from 19.72 to 35.88 ft; thus the use of cnly 100 trials is in-
adequate for determining the absolute accuracy of CADET. On the basis of
this quite typical behavior, wz generally consider that the CADET result is

well verified whenever it lies ciose to or xx;ithin the 95% confidence band.

The present study of the nominal case also shows that CADET canyield

a very accurate analysis of the mean value of the down-range separation,

*The first 100 trials shown in Fig. 4.1-3b yielded oy(6) =01 =19.72 ft, the
second set (trials 101 to 200) resulted in oy(6) =09 = 32.08ft, and subse-
quent sets yielded og = 22.25 ft, 04 = 25.67 ft, and o5 = 35.88 ft. To
aggregate the statistics for various sets of trials, it is necessary to aver-
age the variances:

2

2 2 2 )
1 3

+0,) Opnn =V =l(02+
27 500 500 5“1 °°°

%900 ~ V200 " 2
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m,, when the terminal time is not deterministic. In Fig. 4.1-4, it is
demonstrated that the CADET anzlysis is well verified by the monte carlo

results, The mean terminal time given by CADET, 6.026 sec, is in almost
exact agreement with the monte carlo figure.

R-§
150 : 2000

MONTE CARLO
500 TRIALS

{95% Conlidence Bonds)

100t~

MEAN DOWN = RANGE SEPARATION, m, (ft)
o

=100~

- ] ] 1 1 1 1
150 200 205

TIME, t {sec)

Figure 4.1-4 Mean Down-Range Missile-Target Separation
Near the Mean Terminal Time

The remaining two components of the missile-target separation are
of secondary importance. The mean lateral separation, my, computed by
CADET and the monte carlo method, is shown in Fig. 4.1-5a. We note that

CADET gives the exact result for the mean of y, viz. m_ = 0 throughout the

y
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Figure 4.1-5 Mean Lateral Separation and rms Down-
Range Separation in the Nominal Case
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engagement, * while the monte carlo results converge to a zero mean quite slowly.
However, CADET incorrectly indicates that xhas no random component (crx =0) as
shown in Fig. 4.1-5b, which isnot true; it isobserved, however, that o is negli-
gible except in the iast few hundredths,of a second of the terminal homing
phase. The lack of 2 random component of x in the CADET analysis is due

to the even symmetry of the noxzlinearities-cos (64) and cos (8,) that consti-
tute the two contributions to X; any even function with a zero mean input has

& random input describing function gain that is 1dentically equal to zero.

Figure 4.1-6 indicates the sensitivity of the miss distance to changes
in the noise level for the basic system configuration. The more stringent

300 R=10299

& 200 .
3 conmoEnce
5 e 80
2 1730
£
3
3 . 0:-9
W
g
-d
2 100} .
1
- ol g ot
olh
.,,,nson/m’
o 1 L [} 1 1 ol
0 1 2 3 4 5 [ 7

TIME, t {sec)

Figure 4.1-6 Effect (f Seeker Noise Level on
the Basic System Performance

*This can be demonstrated by noting that there are no mean components in
the initial conditions except for x(0) = 24,000 £t, and no bias components in
the random disturbances, so the basic guidance loop nonlinearities have

odd symmetry and all variables except range have zero means for all time.
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acceleration command limit, A ax " 150 ft/ secz, was retained in this inves-

tigation. For a seeker noise factor of o, = 90, a significant deterioration
in the rms miss distance is observed, and the CADET aralysis is well veri-
fied by the monte cario results.

The above investigation of the capability of CADET to provide an
accurate measure of tactical missile performance verifies the applicability
of CADET to the basic system model, thus paving the way for studies of
other effects.

4.2 SEEKER MASS IMBALANCE

In this study, it is assumed that the seeker head center of gravity

(cg) is offset from the gimbal pivot point by a distance r,, and located at an

)
angle 6y with respect to the antenna centerline (refer to 0Fig. 3.6-2). This
cg offset results in an efiective disturbance torque of significant complexity.
Two types of nonlirearities that have not previously been studied are re-
quired to model the effect of mass imbalance. These are the product of one
variable with a trigonometric function of another variable (v{ cos vy), and
the square of a variable times a trigonometric function of a second variable

2 .
(v1 sin v2).

The sensitivity shown in Fig. 4.2-1 corresponds to the situation

where the seeke> head cg is directly in front of the gimbal point -~ 6, = 0 deg.

Without seeker dynamic compensation, described in Section 3.6, a pgo-
nounced deterioration in the missile guidance system performance is noted
with very small values of cg offset. Even for an offset of one thousandth

of an inch, ¥ig. 4.2-1 indicates that the rms miss distance is nearly twice the
nominal value. The introduction of proportional plus integral compensation

to remove the effect of steady state disturbance torques (Section A.7)
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Figure 4.2-1 Effect of eeker Mass Imbalance
on Guidance Accuracy

markedly improves the guidance system performance. In both the uncom-
pensated and compensated cases, the monte carlo results* are in good
agreement with the CADET analysis, even when extremely large miss dis-
tances are incurred. Thus CADET gives an accurate assessment of the
effect of seeker mass imbalance.

*The confidence bands piotted in Fig. 4.2-1 and subsequent figures are
based on the gaussian assumption (A =3). Inthe previous section it is
demonstrated that the actual confidence bands are probably larger; it

is not possible to obtain a useful estimate of the kurtosis with fewer than
one hundred monte carlo trials, however, so no attempt is made to
consider this factor.

4-12




. THE ANALYTIC SCIENCES CORPORATION

The effect of the angular coordinate of the cg location, 90, was
studied for a single value of cg offset (0.03 in) and with the seeker assumed
to be compensated. The CADET analysis indicates only a slight difference
in rms miss distance for 90 = 180 deg compared with the case 60 = 0 deg,
as shown in Fig. 4.2-2. With the cg offset normal to the antenna centerline
(90 = 90 deg), the guidance system terminal performance deterioration was
lessened to a great extent. We observe that the most significant difference
between these three cases jccurs in mid-flight; the fact that the maximum
rms lateral separation is much smaller for 6y = 0 deg than for 90 =180 deg
can be attributed to an effective change in the seeker dynamics.

200 R.11970

6, = 180°

]
150 }- O = 50

,\ CADET

R

RMS LATERAL SEPARATICY, 0, (f)
3
]

to ™ 003 in.

DENOTL. MONTYE CARLO
RESULTS FOR 50 TRIALS WiTH
05% CONFIDENCE BAND

0 L 1 ) 1 1 1
] 1 2 3 4 1 6 1

TIME, t (1<)

Figure 4.2-2 Effect of Seeker cg Offset Angle
with Compensated Seeker
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4.3 SEEKER GIMBAL DRY FRICTION

The occurrence of dry or Coulomb friction in the seeker gimbal

introduces a disturbance torque of the form

T. = k, sign 6y)

e

where éh is the seeker angular rate measured relative to the missile air-

frame. Results from a study of this effect are presented in Fig. 4.3-1.

R.11969»

500 |-
400 |- 50
_ DENOTES MONTE CARLO
z No  RESULTS, N TRIALS,
5 95% CONFIDENCE BAND
g
2 300}
@
o
174}
@
Z
2
Z 200

w} .

0 ! ! L 1
0 0.4 0.8 1.2 1.6 2.0

SEEKER DRY FRICTION COEFFICIENT, k3 (in:02)

Figure 4. 3-1 Effect of Seeker Gimbal Dry
Friction on Guidance Accuracy

First, several values of the dry friction coefficient, k2’ were
selected and CADET analysis was performed to obtain a prediction of the
rms miss distance that would result without seeker dynamic compensation.

When proportional plus integral compensation was incorporated in the
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4

“ seeker track loop, a significant improvement was observed in the

*'{ performance projections provided by CADET. It can be seen in Fig. 4.3-1

> that for a dry friction coefficient of 0.8, the miss distance is reduced by a
4 wi factor of 6 when compensation is implemented.

Three monte carlo studies were undertaken to check the accuracy
of CADET; two for the compensated case and one to verify the large rms
i miss distance given by CADET for the uncompensated seeker. In every case,
the CADET result was near or within the 95% confidence band of the monte
carlo estimate, which verifies the ability of CADET to capture the effect of
dry friction quite adequately even when the guidance system performance
(as measured by rms miss distance) was degraded by an order of magni-

tude from the nominal case.

It is well known that the dry friction relay-type characteristic can
lead to limit cycling in dynamic systems. This phenomenon can be explained,
using the standard sinusoidal input describing function theory, by the fact that
the effective gain of this discontinuous nonlinearity is extremely large for
small signals (Ref. 8). Thus a point of considerable interest is whether or
not the missile performance degradation observed in Fig. 4.3-1 is due to
limit cycles in the seeker track loop. A single monte carlo simulation was
performed for both the compensated and uncompensated seeker, with dry fric-
tion coefficients of 1.6 d 0.8 respectively, and limit cycles were clearly
observed, as shown for the compensated case in Fig., 4.3-2. It is evident that
CADET can provide a reasonably accurate assessment of the missile guid-

ance system performance under such circumstances.
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Figure 4.3-2 Existence of Limit Cycles due to Seeker Gimbal
Dry Triction with Compensated Seeker

4.4 NONLINEAR SEEKER HEAD RESTORING TORQUES

The classical "hard spring'" type of nonlinearity -- usually modeled
as a power law characteristic,

K

T =k

6
6lim

where k is an mtegér greater than one -- provides an example of another
class of nonlinear effects, where the output is small for small seeker angle
deflections (6} << 6 lim ) but increases more rapidly than a linear charac-
teristic when Gh exceeds enm. Such a restoring torque might occur as the
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result of a seeker head spring restraint system designed to prevent large
values of seeker head angle to preclude the seeker head reaching its stops,
or might occur naturally due to wiring harnesses or other flexible linkage
to the missile body. The case investigated, ¥ =11, corresponds to a negli-
gible spring eifect for small &, and a very rapid increase in restoring tor-
que as 6y approaches ehm. In this study, we confined our attention to the

compensated seeker case, and chose § m to be 10 deg.

i

The variation of rms miss distance as a function of the nonlinear
spring coefficient, Ky is shown in Fig. 4.4-1. The CADET analysis indi-
cates that the miss distance increases very abruptly with k1 for k1 <0.2;
the monte carlo simulations carried out for two cases well verified the

performance projections given by CADET.

LRl
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é
2t
"
S )
z ¢
i
S

1o J

i DENOTES MONTE CARIO
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0 08 16 U
NONLUNEAR SPRING COEFFICIENT, Y (in=02)

Figure 4.4-1 Effect of Nonlinear Restoring Torques
on Guidance System Performance
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An interesting aspect of the above comparison is that the monte
carlo analysis required a smaller integration step size in simulating the
system response than was required in the CADET propagation of the sta-
tistics.* The CADET program ran correctly with an integration step size
of 0.01 sec, while the monte carlo program required 0.005 sec to avoid
overflow due to numerical instability. It is reasonable to conjecture that
CADET may be more immune to numerical errors inherent to the inte-
gration techniques for solving differential equations on a digital computer,
since quasi-linearization tends to ""smooth" nonlinearities -- e.g., refer
to Fig. 5.1-2; thus in cases where the nonlinearity exhibits large vari-
ations in slope, CADET will tend to have an increased computational ad-
vantage with respect to the monte carlo method.

4.5 RECEIVER CHARACTERISTIC AND RANGE RATE UNCERTAINTY

The effect of the receiver/signal processing nonlinearity for the
case where the boresight error limiter (Fig. 3.6-3) saturates at
€im - 0.25 deg (representative of narrow-beamwidth monopulse radar
systems (Ref. 12) or infrared seekers) was considered. The effectiveness
of the seeker was reduced by increasing the track loop time constant from
0.12 to 0. 32 sec (which increases the boresight error rms level by the
same factor, 2.6, and thus increases the effect of limiting). For the
above parameter values, Fig. 4.5-1 shows that CADET predicted a deteri-
oration in rms miss distance from 22.9 ft (in the nominal case) to 28.8 ft.
The monte carlo method provided a good verification of this result; for
60 trials, the nominal rms miss distance was predicted to be 20.9 ft and

the effect of choosing ¢ = (.25 deg and Ty = 0. 32 sec was to increase

LHim

X
Both programs used the same integration technique -- the fourth-order
Runge-Kutta method.
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Figure 4.5-1  Effect of Boresight Error Saturation on Guidance Accuracy

this miss to 27.2 ft, where the same sets of initial ccnditions and noise
inputs were used for the two cases.

The effect of range rate uncertainty in the guidance law (refer to

3 Fig. 3.5-1) was assessed for the case of a fixed (bias) uncertainty. It was
assumed that the guidance package range rate information was in error by
a fixed value of 500 ft/sec. The monte carlo result, shown in Fig. 4. 5-2,

is that the rms miss distance is decreased slightly by this error; CADET
analysis predicts that the sffect is virtually insignificant (Fig. 4.5-3). Both
methods agree that the rms lateral separation is reduced from the nominal

case in mid-flight for e_, = +500 ft/sec; this is to be expected, since the

vb
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Figure 4.5-2 Effect of Bias Range Rate Uncertainty
on Guidance System Performance,
20 Trial Monte Carlo Analysis
error modeled above is equivalent to assuming that the guidance package
range rate value is approximately 4500 ft/sec rather than about 4000 ft/sec

in the nominal case.* This corresponds to a range rate error of +12. 5%,
which is equivalent in effect to the same percentage increase in the navi-
gation ratio, n’. Previous studies (Ref. 2) have shown that the guidance
system performance is quite insensitive to moderate changes in n’; how-
ever, a higher value of n ’ results in 2 somewhat faster guidance loop which
should lead to the reduction in rms 'ateral separation in mid-flight.

%
Closing velocity is actually a random variabie, as indicated in Fig. 3.5-1.
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Figure 4.5-3 Effect of Bias Range Rate Uncertainty on
Guidance System Performance via CADET

4.6 CADET-MONTE CARLO COMPARISON WITH ALL
NONLINEAR EFFECTS

As a final study of the efficacy of CADET in providing an accurate

statistical analysis of the performance of a complex, highly nonlinear tac-
tical missile guidance system model, we consider the effect of exercising
all of the nonlinearities in combination. Values of the parameters are
shown in Table 4.6-1. They were chosen such that each nonlinearity alone
had led to a significant deterioration of system performance from norainal
in the studies treated in Sections 4.2 to 4.5.

The results of the CADET and monte carlo statistical analysis are
shown in Fig. 4.6-1. The CADET value of rms lateral separation is well
verified by the 30-trial monte carlo study.
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TABLE 4.6-1
PARAMETER VALUES THAT EXERCISE ALL NONLINEARITIES*
Effect Parameters Values
Seeker Mass Imbalance g 60 0.03 in, 0 deg
Nonlinear Restoring Torque | ki, X; elim 0.05 in-o0z, 11, 10 deg
Nonlinear Gimbal Fricticn kg 0.8 in-oz
Boresight Error Limiter €lim 0.25 deg
Seeker Compensation Gain ko 20.0
R-12015
300
-
= 200+
&
z
0
! CADET
&
Z‘: 95% CONFDENCE .
w BAND—
i
2
& 10oF MONIE
CARLO
{30 Trials)
i (] 1 1 1 1
°o 1 2 3 4 5 6 7
TIME, ! (sec)
Figure 4.6-1 Guidance System Performance with

All Nonlinearities Exercised

*Only deviations from the nominal case, Table 4.1-1, are noted.

4-22

i ot e e e am e e Syt S g ponct B




THE ANALYTIC SCIENCES CORPORATION

4.7 COMPARISON OF CADET AND MONTE CARLO EFFICIENCY

One of the main arguments advanced for the use of CADET in ob-
taining projections of tactical missile guidance system performance is the
significant reduction in computer central processing unit (CPU) time achieved
by CADET when compared with the monte carlo method of statistical analysis.
In making this evaluation, two issues must be addressed: the number of monte
carlo trials that must be performed in order to obtain comparably accurate
results, and the practical limitation imposed by computer costs. From the
standpoint of accuracy, any such number is somewhat arbitrary, because the
error mechanisms of CADET and the monte carle methad are essentially dis-
similar, and of necessity the judgement is based on a limited body of experi-
ence. Referring to Fig. 4.1-3b, we note that in a situation where the statistics
are quite nongaussian the CADET computation of rms lateral separation appears
to be at least as accurate as the value estimated with 400 monte carlo trials, in
the sense that the 95% confidence band for 400 trials brackets the CADET result.
Where the statistics are more nearly gaussian, e.g. as in Fig, 4.1-3a, it
would appear that one thousand or more trials may be required in order to
achieve comparable accuracy. On the other hand, a pragmatic evaluation of
the efficiency of CADET should take into account the fact that most monte carlo
studies must be limited in scope by computer budget constraints. A reasonable
upper bound is 256 trials since, in the gaussian case, this results in 95% con-
fidence that an accuracy of 10% can be achieved (Section 2.1); for high order
systems, even this number of trials may require too much computer time.

For the present, we will thus compare the relative efficiency of the monte
carlo and CADET approaches on the basis of 256 trials, recognizing that the
estimated rms values of the system variables obtained for this number of
monte carlo experiments may be less accurate than the CADET results.

In the present study, the savings in computer CPU time is quite sig-
nificant, even though the system is of considerably higher order (n = 17) and
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has more nonlinearitizs than in previous investigations that compared CADET
and the monte carlo technique. Both of these factors tend to reduce the relative
efficiency of CADET. Monte carlo simulation requires only the integration of

an n-vector differential equation (q times), while CADET involves the propagation
of an n-vector and an nx n symmetric matrix -- a total of n (n+3)/2 elements.
Thus the computational burden for CADET can increase as fast as n2/ 2 while

the CPU time for monte carlo analysis only varies as n, demonstrating that an in-
crease in the number of states may reduce the advantage of CADET in efficiency.
This factor can be mitigated where there is little cross-coupling in the system;
in the quasi-linear system mocdel, this corresponds to Nr having few non-zero
elements (Nr being sparse). In many practical problems, Nr is sparse and a
considerable increase in the computational efficiency of CADET can be realized
by the application of techniques which circumvent multiplications involving zero
elements, thus streamlining the evaluation of P (Eq. (2.2-5)).

The number of nonlinearities may also increase the computation time
required by CADET, since the calculation of a random input describing
function in CADET generally requires more logical and numerical opera-
tions than evaluating the corresponding nonlinear function in the monte
carlo program (refer to Appendix B). The present study was exceptional
in having nearly as many nonlinearities as states; more typical applica-
tions of CADET would focus on a few principal nonlinear effects, leading
to a greater reduction in computational burden per performance evalua-
tion in comparison to a monte carlo analysis.

Using the same integration method in performing the monte carlo
ensemble of simulations as was used in propagating the system mean vector
and covariance matrix via CADET, and assuming that the same integration
step size can be used in e° ¢n procedure, it has been possible to perform
10 CADET sensitivity studies at the same computational expense needed
for one accurate monte carlo study. Since we have seen that it is possible
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that the monte carlo approach may require a reduced integration step size
to avoid failure of the numerical integration technique (Section 4.4), the
ratio may be even higher. For the case studied in Section 4.4, the CADET
analysis required only 4.4 minutes of CPU time, in contrast to about 92
minutes for a comparable 256 trial monte carlo study with one-half thc step
size. A more typical application of CADET can exhibit even greater ad-
vantages; a simpler but still realistic missile-target intercept problem has
been treated in which a ratio of 30 CADET analyses to one monte carlo
study was achieved (Ref. 2).

The studies discussed in this chapter have treated the missile-
target intercept problem, represented by a nonlinear model of considerable
complexity -- with between 9 and 16 nonlinearities. The results presented

demonstrate that CADET has been quite successful in capturing the significant

sensitivities of rms miss distance to the nonlinear phenomena in question.
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5. SENSITIVITY STUDIES AND COMPUTATIONAL ISSUES

5.1 EFFECTS OF PROBABILITY DENSITY FUNCTIONS ON
RANDOM INPUT DESCRIBING FUNCTIONS

An important issue that must be investigated in order to assess the
potential success of CADET in providing accurate performance projections for
tactical missile guidance systems is the effect of the assumption that the
state variabies are jointly normal on the calculation cf random input describ-
ing functions (ridf's). The gaussian hypothesis is the only basic approxima-
tion made in the application of CADET, so any inaccuracy in the statistical
analysis obtained via CADET is due to deviation of the actual joint probability
density function (pdf) from normality.

In this section, the sensitivity of CADET to changes in the pdf of the
nonlinearity input is investigated by comparing the ridf's corresponding to
selected nonlinearities often found in missile guidance system models, com-
puted for a variety of density functions. Three nonlinearities are chosen;
these are the limiter, the sinusoidal operator, and a power law nonlinearity.
Seven probability density functions with quite different functional forms are
considered. Four of these are taken from Table 2,1-1, viz,, the exponential,
gaussian, triangular, and uniform disiributions. Three additional densities
are special cases of the sum of two symmetrical triangular functions, gen-
erally defined by

. lel-xol>
e (1 —— 2 x|-x15a
p(X)e 2A< A b 1' I o

0 ||x|-x0|>A

(5.1-1)
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wh: ch has a zero mean, a variance given by

2 .2 1,2 _
0" = X +§A (5.1-2)

and a ratio of fourth moment {o variance squared of

\9”4 ) X, +A X, +-i-5-A 5.1-3)
,—:I_x‘l 1A2x2+-1—A4 .
o '3 36

The three cases of Eq. (5.1-1) chosen for the present study correspond to

A = % X %, and 2x0; the associated ndf's are portrayed in Fig. 5.1-1. Note

that two of these densities are bimodal; i.e., they have vo peaks.

R-11952
‘p(x)
1
%o
] 1 -
“3%5 “Xo -1, o Xo A%, x 2%y x
(°)A=';x° (b) A= xq
R
/4%
/v\-\-\- -7
N
1 v// - 3 -
~3xq “Xo %o 3xg X
{c) A=z2x4

Figure 5.1-1 Three Density Functions Comprised of
Two Triangles
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wh ch has a zero mean, a variance given by

o- =X +%A (5.1-2)

1 .4
\éu4 ) X, + A X, +T5A 5.1-3)
’ "07" 4 1,2 .2 1 .4 *
X +50X +5=xA
o '3 o} 6

“ The three cases of Eq. (5.1-1) chosen for the present study correspond to

A = %-xo, X and 2x0; the associated ndf's are portrayed in Fig. 5.1-1. Note

that two of these densities are bimodal; i.e., they have .o peaks,

R-11952
; A p(x)
3 1
# T %
-
, 1 1 : > -
. -3Xo "Xo -3%o 3% Xo %xo x x5 x
\, (o) A s %xo
L
/4%
/\T ad
SR
1 v// ~y A
-3x, “Xo %o 3xg X
3 (c) A=z2x4
Figure 5.1-1 Three Density Functions Comprised of
" Two Triangles
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in Eq. (5.1-4) have even symmetry, we note that skew densities can be dis-
regarded with no .oss in generality. For a skew density ps(x) we can define
its even part by

Po,(®) = 3 (Ps® + pg(-x))

Since the three nonlinearities considered are symmetric (odd) and the
mean values of their inputs are zero, only the even part of the pdf contributes
to the describing function calculation.

Limiter - The ideal limiter,

X , |x|= 8
f(x) = (5.1-5)
6 sign(x) , Ixl>6

is probably the most common piece-wise linear function used to model non-
linear phenomena; here it represents several saturation effects in the

missile guidance system. In Fig. 5.1-2, we portray the various describing
function gains for this nonlinearity, corresponding to the pdf's defined in

Eq. (5.1-4), as functions of the ratio of the input rms level, o, to the satura-
vion point, 6.* As would be expected, all seven quasi-linear gains capture the
fact that the effective gain starts to decrease from unity whenever a significant
portion of the assumed input pdf lies beyond the saturation point, i.e., when-
ever there is a significant probability that |x| is greater than 6. As has been
pointed out previously, this effect is the key to the success of quasi-lineariza-
tion techniques in reflecting nonlinear system behavior that is beyond the scope
of small-signal {(Taylor series) linearization,

*The derivations of these and all subsequent ridf's are given in Appendix B.
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1.2 it

SMALL SIGNAL LINEARIZATION
. LIMITER

UNIFORM ta A

08 |- Py s

X —-
ol Q’\

EXPONENTIAL

GAUSSIAN

RANDOM INPUT DESCRIBING FUNCTION FOR THE LINITER, n,

o4 - TRIANGULAR
P =
02} ]
0 L S i q 1 1 L d
0 05 10 1.5 2.0 25 30 15 40

RATIO OF INPUT STANDARD DEVIATION TO BREAK POINT, 0/8

Figure 5.1-2 Random Input Describing Function Sensitivity for
the Limiter

It is interesting to observe that the relative position of the curves
in Fig. 5.1-2 exhibits a monctonic relation to the value of X. The greater
the difference between X for a particular pdf and the value for the gaussian
case (\ = 3), the greater the difference between that density function's ridf
curve and the curve for a gaussian distribution. This behavior holds in all
the cases considered here, and is indicative of the fact that the value of A is
one quantitative measure of how "close" the density function is to being

gaussian.

The variation of the ridf's with X is about at its maximum (on a per-
centage basis) for the case ¢ = 26. This is shown in Fig. 5.1-3; we note
that the ridf decreases 13% as ) increases frow: 3 to 6, and it increases 28%
as \ decreases from 3 to 1,16,
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Figure 5.1-3 Random Input Describing Function Sensitivity to
A for the Limiter, o= 26

Power Law - A similar study was performed for a power-law
characteristic,

f(x) = x2 sign (x) (5.1-6)

This type of nonlinearity is often used to model effects such as the "hard
spring' characteristic, as treated in the study of nonlinear restoring torques
acting _n the seeker head. For the power Jaw, the ridi's calculated for the
same density functions considered previously are shown to be of the form

n, = Ko (5.1-7)
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in Appendix B, where ¢ is the input rms level and u, are coefficients deter-
mined by the input pdf's, pi(x). Thus the describing function gain for {(x)
increases linearly with the input rms level, in direct contrast to the small-
signal linear gain which is identically equal to zero, as shown in Fig. 5.1-4,
Itis again observed that there is a monotonic relation between ki and the ridf
curves, depicted by plotting u, versus ).i in Fig, 5.1-5. In this case, an in-
crease in ) leads to an increase in the describing function gain, which is con-
trary to the behavior shown for the limiter. This is a result of the fact that
the power law output increases more rapidly with increasing input than a
linear characteristic, whereas the opposite is true for the limiter. For the
power law nonlinearity, the ridf sensitivity is independent of ¢, i.e., the
ratio of ridf's calculated for pi(x) and p]. (x) is simply ui/u].. For £(x) in

Eq. (5.1-6), the gain n, varies from +33% for the exponentially distributed
case, to -34% for the pdf p7(x), compared to the gaussian input ridf, which
shows tha! this noulinearity is somewhat more sensitive to variations in A
than the limiter.

Sinusoidal Operator - The third nonlinearity considered in these

sensitivity studies is the sinusoidal operator,

f(x) = sinx

which represents the resolution of the missile and target velocity vectors

into orthogonal components in the missile-target intercept modc). A potential
source of difficulty with this function is that the nonlinearity output periodically
changes sign with increasing or decreasing values of its input.* This leads

to quasi-linear gains that, for large values of rms input, 6, may even differ

in sign for different input pdf's. This problem is not unique to CADET; in
many mocdeling and simulation studies, care must be exercised ~'  'he input
to a sinusoidal operator can exceed + 90 deg (+ er‘ rad), si~ _a sense

*This is not a problem in the present study.
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the "'gain" can become negative in this situation. Bearing this in mind, we
have calculated the random input describing functions for values of o as large
\ j as 3 rad to indicate where such effects become important, as shown in

Fig. 5.1-6.

R 11962

SMALL SIGNAL LINEARIZATION SINUSQIDAL OPERATCR
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o

RANDOM INPUT DESCRIBING FUNCTION FOR THE SINUSOIDOAL OPERATOR, n,

1 ! 5 1
0 0.5 1.0 15 20 25 3.0

! INPUT STANDAKD DEVIATION, o (red)

)
o
»

Figure 5.1-6 Random Input Describing Function Sensitivity for
the Sinuscidal Operator

The quasi-linear gains for o < %rad show some similarity to those

obtained for the limiter; this is a reasonable mode of behavior, since the sine
function shows a definite saturation effect over the range |x| < % rad, As
expected, the ridf's are inversely related to A for o<% rad, i.e., as A in-
creases, np decreases, as shown in Fig. 5.1-7Tfor o = 1.0 rad. However,

as the input rms level approaches 3 rad, the describing functions for all of
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the pdf's except p; (x) and py(x) become negative. and the monotonic relation-

ship between A and n, appears to be lost.

The preceding studies show that in all three cases the sensitivity of
random input describing function calculations to variations in input proba-
bility density function is slight for small values of input rms level; as o
approaches zero, the quasi-linear gains approach unity for the limiter and

sinusoidal operator, and zero for the power law nonlinearity. These limit-

ing cases are the same values of gain that would be obtained by the tradi-

; tional small-signal linearization approach -- viz., by replacing f(x) with a
linear gain equal to the slope of the function at the origin (Section 2.2). As
a general result, it has been shown (Ref. 8) that quasi-linearization sub-
Sumes small-signal linearization, i.e., for small signals the two are
equivalent. This, in turn, proves that CADET provides nearly exact sta-
tistical analyses when the random variables have a small rms value in
relation to the system nonlinearities, i.e., when most of each nonlinearity
input probability density function lies in the linear region of its nonlinearity.
As the rms levels of system variables increase so that the nonlinearities
are being exercised significantly, the describing function sensitivity to the
input pdf can be appreciable; then it must be ascertained how sensitive the
system performance is to variations in gain at each point in the system
mode! where a nonlinearity occurs. No general answer can be given to
this question; the verification of CADET for particular applications must
be accomplished by direct comparison with monte carlo results, as has
been done in Chapter 4 for the missile homing guidance system.
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5.2 RANDOM INPUT DESCRIBING FUNCTIONS NOT EXISTING
IN CLOSED FORM UNDEE THE GAUSSIAN ASSUMPTION

For certain nonlinearities, the question of sensitivity has a strong
bearing on computational issues. These are cases for which the random in-
put describing functions cannot be obtained in closed form under the assump-
tion that the states are jointly normal. An example of interest in the missile-
target intercept problem is the nonlinearity

r =\’x2 +y2

which defines the missile~to-target range in terms of the down-range and
cross~range components, x and y, respectively. In order to simplify the dis-
cussion, we assume that y does not have a mean component, and x has a
negligible random component except at the very end of the engagement (refer
to Section 4.1). This approximation is valid in the missile-target intercept
situations investigated here.

In this case, there are only two ridf's, Nm, and nry, needed for a
quasi-linear rcpresentation of the range. Thus we must evaluate

= 1@ E[\/;xz ] mx/ p(y) +y dy

(5.2-1)

_ 1 e . 2. 2
n, =-—3 / yp(y) m, +y~ dy
y Uy -0

Under the assumption that v is a gaussian random variable, the second of these
integrals can be evaluated analytically; however, the first, which is of the form
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X

2
. 1 ® , 2, 2 y
nm = -n—l——;-(-r—f mx +Yy exp (- -—2) dy (5 .2-2)
X YJ o 2oy

cannot generally be solved in closed form unless m = 0, viz.,

E[\/;_i] = E [|y]] =\/,—%— oy (5.2-3)

For the more general case given by Eq. (5.2-2) with m_ # 0 it is desirable
to use some approximate technique to obtain a closed form expression for
Ny, that is convenient for use in a CADET analysis.* The two principal
approaches that we consider are approximation of the nonlinearity (e.g.,

by series expansion), and substitution of approximate 's.
b

A Taylor series expansion of a function of a random variable, f(y),
about the mean of that variable, here taken to be zero, results in

2
fly) = £(0) + (gi) y+% -C-i—g-) y2 o a e (5.2-4)
Y/ y=0 dy”Jy=0 |

We desire to determine the expected value of the function, which is given by

2 3
1 [a% o 1[d 3
E[f(y)] = £(0) +—(—> o +5l =3 E[y ]+ ... (5.2-5)
2\ay®/y=0 ¥ ®\ay®/y=0

" While r . inEq. (5.2~2) can be calculated by numerical integration, a less
X
time consuming approach is desired focr repeated evaluation in a CADET

analysis.
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where use is made of tbe fact that E[y] is zero to eliminate the second term in
Eq. (5.2-4); all other odd-moment terms (E [y3] etc.) are also zero for
symmetric pdf's. Truncating the series given in Eq. (5.2-5) at the second
term, we obtain

2f 2

o & o
dyz y=0 y (5.2-6)

Do) =

Eft(y)] = £(0) +

which is an approximation suggested in Ref. 9. We note that this result is |
| independent of the particular density function of y. If more terms are de-
sired, the higher-order moments ran be evaluated using a specified pdf. If ;

y is gaussian, all odd moments are zero and even moments are given by (Ref.9)
[ k 2k
; u2k=E[y2]=(1)(3)(5)...(2k-1)o ,k=1,2, ...

which leads ¢o the full expansion

' 2 4

: 1/(d7f 2 @)fdat 4

¥ E f( ) = f(o) LR D) . . . (5.2-7)
, [£(y)] +3 (dy2> y=0 0" g (jdy )y=0 g+

’ The use of the first term alone in Eq. (5.2-7) corresponds to small
signal linearization; taking two terms as indicated in Eq. (5.2-6) results ina
quasi-linear gain that is often useful. In the present case, however, this
approach is effective only in situccions where m " is consicerably larger in
magnitude than Uy’ due to the singularities of the derivatives of ,fmxﬁ + y2
at the origin (mx = 0). Tc demonstrate this difficulty, we write the series

expansion for the nonlinearity under consideration (Ref. 10),
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from which we cbtain
+. . ] sign (mx) (5.2-9)

as an approximate describing function to represent the mean component of the
range. For m, considerably larger than cy, the first few terms of this ex-
pansion yield acceptable accuracy.* Since m approaches zero in the missile-

target intercept problem, however, this result is generally nat suitable.

Another approximation to the nonlinearity leads to a series that is
useful for small values of m

‘lm}f +y: = |yl + !mxie-l"'/mx| , |mx| <ly| (5.2-10)

The right- and left-hand-sides of Eq. (5.2-10) have the same first three terms
when their power series expansions are compared. Substituting this approxima-
tion into Eq. (5.2-2) leads to an integral that can be evaluated in terms of the
complementary error function, denoted as erfc (Ref. 11),

*We note that the expansion indicated in Eq. (5.2-9) never converges formally,
i.e., for any value of ay/mx, no matter how small, the series will eventually
diverge as more termsare evaluated. This is a standard property of asymp-
totic expansions which are useful only when truncated after a finite number
of terms.
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2

- 1 7 v\
nmx = r—n;J% ["y*‘{% |mx| exp -Z—IE erfc<-J_2—§x2->J

which in turn can be represeiited as an asymptotic expansion (Ref. 6) valid
for oy >> Imxlz

- 2 4 ”~
n_ = ‘E i [1 +(;3) - (?-) +3G§‘-\0 - } (5.2-11)

X X y y Oy /

=2

For m = 0, the expansion correctly yields the result given in Eq. (5.2-3),
and for |mx| < :12- oy, the resull is quite accurate.* However, the series is
divergent for larger values of Imxl . This series is of questionable utility
in the missile-target intercept problem, since |mx|>> Gy at the beginning of
the terminal homing phase.

The second method for approximately evaluating the first integral
in Eq. (5.2-1) is the substitution of a nongaussian pdf for which the integral
can be obtained in closed form. As in previous sensitivity studies (Section 5.1),
the hest result has been obtained using the triangular pdi. Substituting this
distribution into Eq. (5.2-1) leads to an integral that is evaluated in closed
form to be

sign (m,) 1 +‘}1 +v:§ 3/2
n. ';.__.3‘_[ 1+y2+u210g ——— +4 v3-(1+v2>
— |9 y P

X

(5.2-12)

*Eq. (5.2-11) is also not formally convergent.
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f .
O

where the auxiliary variable v is given by

[ p——

a 17x|

4 /G_Uy

14

(6.2-13)

The accuracy of Eq. (5.2-12) is quite good, especially when compared with
the poor approximations given by the series expansion in Eqs. (5.2-9) and
(5.2-11) when |my| is nearly equal to oy. The error between Eq. (5.2-12)

} and the exact result specified in Eq. (5.2-2) is less than 3%, which is ade-
quate for most applications.

In passing, we note a third alternative that might-be considered in
applications where less accuracy is required; viz.

| 1 5 3
n =— E|Jm "~ +y
‘ m, m, [ X }

)
= |1+ Yz sign (m,) (5.2-14)

The simplicity of this result -~ and the fact that the approximation is better
than either series expansion (Eqs. (5.2-9) and (5.2-11)) for Imxl Foy --
makes it attractive, despite the error of 25% at m = 0.

All of the approximate solutions for Ny in Eq. (5.2-2) discussed
above are compared in Fig., 5.2-1. Generally, we note that se es
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approximations for this nonlinearity are accurate only in applications where
im |0, or || << oy for the entire/CADET simulation; such conditions

y

are never satisfied in studying the expected value of the range in the missile~
target intercept problem. The use of an approximate (nongaussian) pdf --
in particular, the triangular density -- yields the best overall accuracy.

NORMALIZED RANDOM INPUT DESCRIBING FUNCTION FOR THE RANGE,

fm, Mx /OY

R-11973

DENSITY

"~ TRIANGULAR

/

€q. (5.2-11)
2 TERMS

4. {5.2-9)
Eq. {5.2-9) 4 TERMS
2 TERMS

Eq. (5.2-14)

X\ EXACT SOLUTION,
GAUSSIAN DENSITY

Eq. (6.2-11)
5 TERMS

1 l )

0.5 1.0 1.5 20
NORMALIZED MEAN VALUE OF DOWNRANGE SEPARATION, m, /0,

Figure 5.2-1 Comparison of Approximations for the Expected

Value of the Range

It should be mentioned that the conclusion that the series expansion

techniques are not very accurate for computing the ridf in the case treated

above should not be taken as universally true., When series approximations

for an ridf can be obtained which are accurate over the entire range of the

input statistics, they will generally yield good results,
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Ultimately, the issue of sensitivity depends upon how much the
CADET analysis results -- e.g., the computed rms miss distance -- are
affected by errors or variations in the describing function gains, It is con-
ceivable that the miss distance will not be significantly affected by large
changes in 2 particular ridf, depending upon how the ridf enters into the

system model. In the missile guidance system model developed in Appendix A,

the only incidence ¢f range dependence is in the seeker noise module. It is
intuitively clear that the effect of seeker noise on the statistical performance
of the guidance system will not be particularly sensitive to mederate inaccur-
acies in the quasi-linear representation of range, particularly if these in-

accuracies occur only during the last few hundredths of a second of the engage-

ment, This is verified by comparing CADET results obtained for the nominal
case (Section 4.1) using the two range ridf approximations labeled "triangular
density" and "Eq. (5.2-9), 2 Terms" in Fig. 5.2-1. The difference in the
CADET computed rms miss statistics for these cases was negligible; in fact,
all state variables had means and standard deviations that differed by less
than one percent at terminal time.

On the basis of the insensitivity of the seeker noise module to varia-
tions in the ridf representation of range dependent noise sources, we recom-
mend the use of a simpler ridf than that obtained from the triangular density
approximation (Eq. (5.2-12)). Rather than using the two-term series expan-
sion considered in the above comparison, however, the application of Eq.
(5.2-14) should be an even more attractive alternative, due to the fact that
the latter result is more accurate for small values of m_. In particular,

Eq. (5.2-14) does not become infinite as m, goes to zero.

5.3 HISTOGRAM STUDIES OF NONGAUSSIAN SYSTEM VARIABLES

In considering the impact of the assumption that the state variables
are jointly normal on the accuracy of performance projections provided by
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CADET, we have performed 2 histogram study of a czse in which there is a
significant difference between CADET and monte carlo results. Such a study
provides some insight into how nongaussian the state variable pdfs musf. be
in order for CADET results to be inaccurate.

The system under consideration corresponds to the nominal case
given in Table 4.1-1, except for a single large initial condition statistic --
an rms initial heading error of 10 deg -~ chosen to obtain a significant dis-
crepancy between CADET and monte carlo results; this somewhat unrealistic
condition leads to a very large rms miss distance.

The time history of the rms lateral separation, Oy over the duration
of the engagement is presented in Fig. 5.3-1. The monte carlo confidence
limits shown are calculated on the preliminary assumption that y is nearly
gaussian, i.e., that A & 3 (Section 2.1). The CADET and monte carlo results
agree well over the first half of the homing phase. However, there is a
marked divergence after t = 3 sec, which is evidently due to some inadequacy

in the assumption that the states are jointly normal.

To understand the reason for this problem, and to assess how much
deviation from normality is required for a discrepancy of this sort to occur,
we portray typical monte carlo generated histograms for a number of the sys-
tem states, obtained from a 100-trial ensemble of simulated missile~-target
intercept engagements. First, we consider the target aspect angle, Ga, which
is theoretically gaussian over the entire flight., The histograms shown in
Fig. 5.3-2 correspond to the midpoeint and end of the engagement. We note
that they appear to be quite irregular; this is due to the fact that 100 trials
are insufficient for obtaining an accurate representation of the probability
density function. Thus, for example, the fact that there appears to be a small

"'valley' slightly to the left of zero at t = 6 sec should not be interpreted to
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mean that 6, has a bimodal distribution. These histograms provide the basis
for a realistic assessment of the departure of other histograms in this study

from the normal case.

Next, we consider a system state variable that is distinctly non-
gaussian for this trajectory, the missile fin deflection, §. Because of the
large initial rms heading error, there is a high probability that the missile
initially attempts to achieve maximum lateral acceleration. Thus the output
¢ in Fig. 3.5-1, will tend to be bimodal,
as will the fin deflection, which is linearly related to a,. At t =1 sec a highly

of the acceleration command limiter, a

bimodal distribution is noted in Fig. 5.3-3. As the terminal homing phase
proceeds, 6 becomes somewhat less bimodal, but at no time does it appear
to be gaussian.

Other variables that exhibit bimodal behavior throughout this engage-
ment are the seeker angle and angle rate, eh and éh; missile body angle and
angle rate, 9m and ém; and angle of attack, o. We observe in Fig. 5.3-4
that the missile lead angle, 8, which is separated from 6 by a significant
amount of linear dynamics (refer to Fig. 3.7-1) remains nearly gaussian
throughout the engagement -- thus providing an example of the "'filter hypothesis"
that the presence of several stages of low-pass filtering tends to make a

signal more nearly gaussian, which forms the basis for the gaussian assump-
tion in CADET.

The cross-range missile-target separation, y, exhibits a behavior
that more directly provides an explanation of the failure of CADET to provide
accurate lateral separation statistics over the secound half of the terminal
homing phase. For the first half of the engagement, Fig. 5.3-5 indicates
that the pdf's for y are quite nearly gaussian. However, at 4 sec we note
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in Fig. 5.3-6a that significant ""tails'' have developed in the histogram; at

6 sec this effeat is more pronounced (Fig. 5.3-6b). A quantitative com-
parison of the latter histogram with the gaussian density is obtained by com-
puting the ratio of the fourth central moment to the variance squared; this is
an estimaie of the parameter )\ defined in Eq. (5.1-3). The resulting value
of 19.5, which is more than six times larger than the value for a gaussian
density, indicates a highly nongaussian distribution. Two conclusions can be
drawn:

¢ The monte carlo estimated rms miss distance,
oy(tf) = 1018 ft, is statistically considerably less

accurate than implied by the confidence band shown
in Fig. 5.3-1, under an assumed gaussian distri-
bution for y. For A=19.5, the 95% confidence inter-
val limits on oy are

o
hat -1V
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o = 750 ft, G = 2570 ft
=y y

as given by Eq. (2.1-14).

e The CADET result may also be inaccurate, since the
sensitivity studies in Section 5.1 indicate that ridf
calculations based on the gaussian assumption (A= 3)
can be quite different from those based on a pdf with
X =19.5.

The latter point indicates the reason why CADET seems to provide an in-

accurate guidance system performance projection over the last 3 seconds
of flight.

To explain some of the above observed behavior, an analysis of the
physical significance of large initial heading error is useful. We consider
a simplified example, with the aid of Fig. 5.3-7, wherein a target is pro-
ceeding precisely along the original LOS with constant velocity, v, and
not maneuvering. The missile has been launched with an initial heading
error of 6 20 degrees, with constant velocity vector magnitude, Vi An
important limitation is imposed on the missile by assuming that lateral

acceleration is constrained by laml sa as a result of acceleration

max’
command limiting; this condition makes it impossible for intercept to
occur in this simple scenario if |6 £O| exceeds a certain value. To demon-

strate this point, we assume that a, = & ax OVer the entire flight. Then

ax
the missile will follow a circular trajectory with a radius and angular rate

given by (Ref. 13)

(5.3-1)

De

i
o)
~
<
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as shown in Fig. 5. 3-7.

If an intercept is achieved by applying the maximum

acceleration cver the entire interval 0 st < tf, the equations of motion are

xm(

Y

According to Eq. (5.3-1

xt(t) = Xy - vtt
(5.3-2)
y(t) =0
t) = r, _sin 6,0 - sin (620 - ec)]
(5.3-3)
-
t) = r, -cos (E)z0 - ec) - cos 620]
)s
2 ax t
6 = (5.3-4)
c v
m

— e e
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In general, in order for intercept to be possible,the point at which the
circular arc followed by the missile intersects the x-axis must be in front of
the target; i.e., if the earliest time the missile trajectory can intersect the x-
axis is tf, it must be true that

xm(tf) < xt(tf) (5.3-5)

to permit an intercept. The values.of 6 0 and & ax determine whether or not
Eq. (5.3-5) can be satisfied. From. the conditions depicted'in Fig. 5.3-7, itis
clear that intercept is possible only for 16 £0 | <6 400 Where 6 o and the
corresponding terminal time tf, satisfy

t
I . [= max f
X0 " vttf =V [sm 8,0 - sin 620 - v / a v
(5.3-6)
~ = 2 max tf\
cosA n=cos |6, , -
20 %0 Vi /
These transcendental equations have the solution
= 0
6 40 = 14,4
(5.3"7)
te = 6.048 sec

ra

for the parameters used in generating the CADET results given in Fig, § 3-1,
For 8,, greater than the limit 8¢0 given in Eq. (5.3-7), the deterministic
miss distance (defined in this context to be the absolute value of y, (tg))
increases very rapidly, as shown in Fig. 5. 3-8.
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Figure 5.3-8 The Variation of Miss Distance with Initial
Heading Error Magnitude
From the above analysis, we can appreciate why the rms heading
error chosen for the analysis in Fig. 5.3-1 leads to a large miss distance.

Since 6 . is a gaussian random variable with a standard deviation of 100,

0
there is a significant probability that |86 zol exceeds the maximum value

6 iz ¢
g0 Viz:

Prob [lemh 14.4 deg] = 0.15

and the impact of initial heading errors greater than 14.4 deg in magnitude is
dramatic (Fig. 5.3-8). In fact, we can apply the statistical properties

of O.w to the characteristic shown in Fig. 5.3-8 to derive the idealized

rms miss distance (valid only for the above simplified model of the missile-
target intercept problem), defined by

©

52 8BIP6,)) = [ 56,9 000,9) 00, (5.3-9)

- 0
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The resulting value of B‘y is 736 feet. W. canalso perform a random input
describing function analysis of the same effect using Fig. 5.3-8 to demon-
state why CADET has given an estimated rms miss distance that is consider-
ably less than the monte carlo result. The characteristic shown in Fig. 5.3-8
is in effect a linear gain with a dead zone, whose random input describing
function given by Ref. 8 ¢an be expressed in terms of the complementary error
function, erfc,

14.4
1042

n_ = 309 erfc( >=48.6ft/deg (5.3-10)

Thus the rms miss distance calculated using describing function theory is

o

2 - -
o'y’ ridf = By [ew ] = 4386 feet (5.3-11)

In the idealized case treated above, quasi-linearization significantly under-
estimates the rms miss distance. This is reflective of the fact that the ridf ,
calculated in Eq. (5.3-10) is based on the minimization of mean square ‘
approximation error, not on variance matching.

This section has analyzed a missile-target engagement situation
where CADET and monte carlo results are significantly different, in order to }
provide insight as to potential sources of error in the CADET results. How-
ever, it is typically found that parameter values must be chosen which generate '
large rms miss distance (more than 100 ft) in order to obtain noticeable deter-
ioration in CADET accuracy. Inthose cases the missile dynamics are highly
nonlinear throughout the trajectory, and generally do not correspond to condi-
tions under which tactical missiles are designed to operate, Furthermore,
if the rms miss distance is large, say 500 ft or more, it is not too important
that CADET makes a 100 foot error if the missile lethal radius is 50 feet, since
a miss distance of 490 ft is still intolerable. For more realistic trajectories
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that yield tolerable rms miss distances, CADET results appear to be accu-
rate within + 10%, based upon the monte carlo simulations performed in this

and other studies.

Finally, we cbserve that the marked deviation of the density of the
terminal cross-range missile-target separation, y, from the gaussian case
is a potential source of misinterpretation of the value of oy. The cumulative
distribution of |y| at the terminal time for 50 monte carlo trials is portrayed
in Fig. 5.3-9; the actual rms value of y for this data is cry =1018 ft. On the
same plot we show cumulative distributions corresponding to |y| for a
gaussian random variable y having oy = 1018 ft (corresponding to the monte
carlo result) and cy = 513 ft (CADET). Interms of guidance system per-
formance, if we assume that it is desired to have |y| less than 50 feet at
the terminal time, we see in Fig. 5. 3-9 that the actual distribution indi-
cates an effectiveness of 60%, i.e., 60% of the engagements satisfy the con-
dition |y| < 50 feet, while the corresponding values of effectiveness for the
two gaussian distributions are 8% for CADET and 4% for monte carlo results,
based on the miss distance statistics alone. Thus we observe that the rms
miss distance is itself of questionable value as a measure of guidance sys-

tem performance when the nongaussian nature of y leads us to question the

accuracy of the CADET and monte carlo results. In one sense, then, the

"failure" of CADET in this situation may be linked to the "failure' of rms
miss~-distance as a single-parameter measure of system performance.
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6. SUMMARY AND CONCLUSIONS

6.1 SUMMARY

The principal goal of this study is to extend the proven capability
of the Covariance Analysis DEscribing Function Technique -- CADET -- to
provide accurate performance projections for tactical missile guidance sys-
tem models that are quite realistic --1i.e., that incorporate a number of sig-
nificant nonlinear and random effects. The approach vsed to achieve this
objective has entailed

e Verification of CADET performance projections by
the use of selected monte carlo performance studies

¢ Investigation of the sensitivity of CADET analysis to
deviation from the assumption that the state variables
are jointly normal.

In this investigation, the following quite diverse effects were treated:

Sources of Nonlinearity

¢ Guidance law

e  Acceleration command limiting

¢ Missile-target intercept geometry (4 nonlinearities)

e Coordinate transformation (2 nonlinearities)

s  Range-dependent seeker noise sources (2 nonlinearities)
¢ Receiver/signal processing characteristic

e Seeker mass imbalance (3 nonlinearities)
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¢ Seeker gimbal Coulomb friction

e Seeker head restoring torques (nonlinear spring effects)

Random Effects

e Tracking sensor noise and measurement errors
¢ Range rate measurement error

e Target maneuvers

e Deviation of initial conditions from nominal values

The generation of missile performance statistics via CADET, and
the subsequent verification of selected points on the parameter sensitivity
curves by monte carlo simulation techniques is treated in Chapter 4. The
basic system model -- incorporating the first five nonlinear effects listed
above, which are fundamental to the missile-target intercept problem --
was studied first, then each of the remaining nonlinearities were investi-
gated singly, and a final CADET -monte carlo comparison was made with all
nonlinear phenomena present. Three aspects of the sansitivity problem are
considered in Chapter 5: the sensitivity of random input describing function
calculations to the probability density function of the nonlinearity input, calcu-
lation of approximate random input describing functions when it is inconvenient
to use the result for the gaussian case, and a histogram study of a situation
where system variables are quite highly nongaussian,

6.2 CONCLUSIONS

The investigation described in this report has indeed shown that

CADET is an accurate and efficient tool for conducting statistical analyses

of the performance nf a tactical missile system, including the effects of a

number of significant nonlinear and random phenomena. The conclusions

drawn from the study can be summarized as follows:
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e CADET has the demonstrated ability to capture the effect of
each of the 16 nonlinearities treated in Chapter 4 on guidance
system performance. Inall cases studied, CADET results
are close to or within the 95% confidence limits of the monte
carlo analysis. This degree of agreement was generally main-
tained even in the numerous instances where the nonlinearities
were shown to have a marked deleterious effect on rms miss
distance.

*  Despite the high order of the system (17 state variables) and
large number of nonlinearities (16), CADET shows a signifi-
cant computational advantage over the monte carlo method:
Between 10 and 20 CADET performance projections can be
obtained for the same amount of computer time required by
one accurate monte carlo study.

e It is sometimes necessary to use approximate random input
describing functions due to difficulty in deriving closed form
solutions. Two approaches are available, based on series
expansion techniques and on the substitution of alternative
density functions in lieu of the gaussian density. A discus-
sion of some benefits and disadvantages is given in Chapter 5.

e  Highly nongaussian system variables not only lead to inaccu-
racy in the CADET analysis, but also make the monte carlo
method less reliable and reduce the meaningfulness of the
basic measure of system performance, rms miss distance.

®  The value of the parameter X (the fourth central moment of a
density function divided by the variance squared) is a useful
measure of the departure of the density of a random variable
from the gaussian case. It would thus be valuable to estimate
this parameter for each nonlinearity input in the monte carlo
analysis to help in appraising the accuracy of the monte carle
method and CADET,

In light of these and related findings, it is felt that confidence in the applica-

bility of CADET to perform statistical analyses of complex nonlinear missile

guidance systems with a number of random disturbances has been significantly

g_rlhanced.
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APPENDIX A

MISSILE-TARGET INTERCEPT MODEL

A.1 INTRODUCTION

This appendix presents the derivation of the mathematical model of

the general missile-target intercept problem used for verifying the capability

e{)

of CADET to provide an efficient, accurate statistical analysis of guidance sys-
tem performance. The e. sential guidelines used in deriving the model are

realism, completeness, and the desire to include enough significant nonlinear
g and random effects to establish confidence in the capability of CADET to treat

l complex nonlinear missile systems with random inputs.

The overall interconnection of the subsystems which comprise the
missile-target intercept model is indicated in Tig. A.1-1. The principal

‘ variables are shown as outputs of the appropriate blocks, and random distur-

* | bances are denoted Wie Detailed models underlying each input-output relation~
b ship are given in subsequent sections of the appendix. While the basic structure
! of the guidance system remains essevtially unchanged from an earlier study
described in Ref. 2, there are numerous extensions and refinements incorpora-

ted in the present investigation.

The final model is a state vector differential equation having the for-

mulation

% = £(x) + Gw(t) (A. 1-1)

where w(t) is a vector of gaussian white noise inputs which represents various
random effects, the matrix G determines which state or states are driven by
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Figure A.1-1 Basic System Block Diagram

each noise input, and (%) embodies the linear and nonlinear dynamic relations
within the system.

A.2 THE MISSILE-TARGET KINEMATICS MODEL

The missile target engagement treated in this study is restricted to the
terminal homing phase in a planar intercept configuration. Both the target and
the missile are assumed to have a constant magnitude velocity vector which may
be rotated by the application of a lateral (normal) acceleration.
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An initial coordinate system is defined by the positions of the missile
and target at the initiation of the terminal homing phase (taken to occur at
t=0); the missile is at the origin and the line-of-sight (LOS) to the target de-
fines the x-axis at t=0 (Fig. A.2-1). The origin moves with the missile,
without rotation, so that x and y, respectively, provide the instantaneous down
range and cross range missile-target separation. Expressing the separation
in polar coordinates, the relations

r=Vx2+y2

1 (A.2-1)
8 = tan  (y/x)

define the instantaneous range and LOS angle of the target. The angles ez
missile lead angle) and Ga (target aspect angle) specify the orientation of the
missile and target velocity vectors; by convention, 62 and ea are positive in
the directions defined in Figure A.2-1,

y-AXIS R-11592
(l':t])
y -AXIS
(=0 VELOCHY
vi
VELOCITY ACCELERATION
v o
ACCELERATION =m t
Q
- Y(tl){ ~\¢‘\\
N - X - AXIS
/ A VN (t=ty)
7 - Y 4 60“\) .\ 1
// x(t,) -\TARGET TRAJECTORY
//MISS|LE TRAJECTORY "
s .
= g x= AXIS

ORIGINAL ORIGINAL 1O ORIGINAL (tz0)
MISSILE TARGET
POSITION POSITION

Figure A,2-1 Target-Missile Planar Intercept Geometry
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In terms of the variables defined in Fig. A.2-1, the differential
equations

(A.2-2)

cd% = -
X SX;4= -V, cos (xg) V., COS (x8)

express the dynamics of the missile-target separation under the above assump-
tions, and identify the state variables (elements of x in Eq. (A.1-1)) Xg to X1
The LOS angle 6 and range r are obtained by nonlinear operations on x and y,
given in Eq. (A.2-1) and shown in Fig. A.2-2.
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A.3 'THE TARGET MODEL

The model representing the target behavior remains unchanged from
prior studies (Ref. 2). As mentioned previously, the target velocity vector is
assumed to have a constant magnitude, and a direction described by Ga in
Fig. A.2-1, The target maneuver model used in this study represents target
lateral acceleration as a band-limited gaussian process derived from a gaussian
white noise input by one stage of low-pass filtering, In differential equation
formulation, we have

i13 = - W Xyg + W (A.3-1)

where the state variable is the target lateral acceleration, 2y the equiva-
lent low-pass filter representation is depicted in Fig. A.3-1.

R-1193%
Ws i 1 ay
s+wt
“asrmnng

Figure A.3-1 Target Maneuver Model

The target maneuver rms level 043 is determined by the spectral den-
sity of W and the initial condition on o435

Efwg(t) wg(r)] = qg 8(t - 7)
q (A. 3-2)
E[x13(0)2] = —ZZ—t

gives us an rms level that is constant throughout the engagement,

0y = \[&'57th (A. 3-3)
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It is interesting to note that the autocorrelation function and the cor-
responding power spectral density for a poisson square wave -- i.e. 2 square
wave that switches between olsft/secz with random poisson distributed switch-
ing times having an average of wt/ 2 zero-crossings per second -- are identical
to those of the above gaussian process, although the associated probability den-
sity functions are quite different. The poisson model is often used to represent
target evasive or "jinking" maneuvers. The poisson square wave can only take
on values of = 0y SO at any given time its probability density function consists
of impulses with a weighting of 0.5 at plus and minus Tqg0 whereas the above
markov process is assumed to have a gaussian amplitude distribution. There-
fore, thie response of an amplitude dependent nonlinear operator could be quite
different when driven by each of these two signal forms. However, if the ran-
dom square wave is passed through a narrow band filter or integrator, it would
experience broadening due to the filter's finite bandwidth. In the case of an
integrator, the resulting wave shape would be a series of linear segments of
cor.ztan’ slope. By application of the central limit theorem, as discussed in
Ref. 9, the output distribution approaches the gaussian density function as the
number of stages of filtering increases. Thus, although the poisson square wave
may in some respects be a more realistic target maneuver model, we take
advantage of the statistical similarity of these processcs to justify repre-
senting this random effect by a band-limited gaussian process to facilitate the
subsequent CADET analysis.

A.4 THE AUTOPILOT-AIRFRAME MODEL

In accordance with the assumption that the nissile and target trajec-
tories are confined to a plane, we describe the missile airframe orientation by
the variables depicted in Figure A.4-1, This figure establishes the sign con-
vention of each quantity; each variable is positive as shown. Note that we are
particularizing the airframe model at this point by discussing the tail-controlled

tactical mnissile. This is done to provide a concrete model for study, and not
necesgsarily to exclude other configurations.
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A.4-1 Geometric Definition of Intercept
Plane System Variables

The airframe variables under consideration are

Xy = ém = body angular rate

Xg = @ = angle of attack

Xp = 6 = control surface deflection

a__ = missile lateral acceleration (normal to

the missile velocity vector)

We neglect gravity effects, tacitly assuming that the intercept plane

is horizontal or that the missile has perfect gravity compensation. In a gen-
eral situation, the differential equations expressing the airframe dynamics
are nonlinear and time-varying due to the dependence of the airframe para-
meters on altitude, angle of attack, and mach number. However, in this

A-T
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study we express the state variable differential equations in linear form¥*,

X, = Mx

4 q4~|~M0tx + M,x

5 5§76

- L. x

X5 = Xy - L Xs - Ligxg

x.
1}

- uXg + puft)

where u(t) represents a commanded fin deflection, 1/u is the control fin actua-
tor time-constant, and the constants Mq, Ma, M6’ La and L 5 represent the
airframe stability derivatives. The latter are obtained from the nonlinear air-

frame parameters by making the following assumptions:

e Missile velocity is constant (drag =ffects are
negligible over the period of time considered).

¢  Altitude remains nearly constant.

e The center of pressure, mass and inertia of the
missile are constant.

e Lift force is linearly related to changes in angle
of attack about some trim condition and to con-
trol fin deflection.

e Control fin actuator dynamics are linear.
e Fin effectiveness is independent of angle of attack.

Practical experience has shown that the resulting autopilot response character-
istics closely approximate those of the nonlinear airframe near the given
nominal conditions. The output of the airframe model is the missile lateral

acceleration, which is given by

E'3
A highly nonlinear airframe including drag effects has been studied via
CADET in Ref. 3.
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a = vm[x4 - x5] = vm[me5 + L6x6] (A. 4-2)

where Vi is the magnitude of the missile velocity vector.

For typical values of the stability derivatives in Eq. (A, 4-1), the
missile airframe will exhibit an underdamped or even an unstable respense to
a commanded fin deflection. Acceptable control is achieved by introducing
feedback compensation in the fin deflection command,

uft) = - [kcac - ka (am/Vm) -k ém]
(A.4-3)
= - [ka, - K, (Loxg + Lyxg) -k x,]

where a, is the commanded acceleration provided by the guidance law model
(Section A.5). The parameter kc is chosen to give unity steady state gain

from a, to a.s and kb and ka are chosen to give the desired transient response.
A complete block diagram of the compensated missile dynamic equations is
shown in Fig. A.4-2,

R-11597
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Figure A.4-2 Compensated Missile Airframe Dynamics
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For ready assessment of the compensated missile airframe dynamics,
it is convenient to use a transfer function formulation of the model. Given two
outputs, a_ and ém, we desire to obtain gl(s) and gz(s) to provide the input-
output relations indicated in Fig. A.4-3. Utilization of standard block diagram

R-11598
Q¢
ACCELERATION |
COMMAND R
g,(s) - Om
“————

Figure A.4-3 Transfer Function Formulation of the
Compensated Missile Airframe Dynamics

reduction techniques shows that the dynamics indicated in Fig. A. 4-2 are equiv-
alent to the transfer function formulation depicted in Fig. A.4-3, where

2
€45 +eyS + ey

g)s) = = 3 (A. 4-5)

S +c3S +(22S+C1
d s +d

8o(8) = — 2z 1 (A. 4-6)

S +038 +C‘.2$+01
with

¢y =Hy + &, +k) 8§

cz=y+u[C+L6qua-M5kb]

c3 =¢ + u(l - L6 ka) (JA. 4"7)

A-10
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d1 - uﬂkc
dg= -uMgk,
e = KV Bkc

§qc

€3 = umech

™
I
=
=2
=
=

(A. 4-8)

(A. 4-9)

(A. 4-10)

The aerocdynamic coefficients used in this study are chosen to corres-
pond to an intercept at 35,000 ft., with a missile velocity magnitude Vi 3000
ft/sec, the data being taken from Ref. 14, Vol, II, Appendix H. The compensa-
ting gains ka’ kb and kc Eq. (A.4-3) are set to achieve a dynamic performance
that is typical of a missile in the terminal homing phase. These parameters and
the corresponding transfer function coefficients are given in Table A.4-1.

The dominant time constant of the compensated airframe is r q° 1/31=
0. 316 sec. The fact that €y € and ey do not all have the same algebraic sign
demonstrates that gj(s)has a right half plane zero, which is characteristic of
the tail-controlled missile configuration depicted in Fig. A.4-1.

A-11
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TABLE A.4-1

COMPENSATED MISSILE AIRFRAME DATA IN
THE TERMINAL HOMING PHASE

Parameter Symbol Value
Actuator Lag
Time Constant 1/u 0.0533 sec
My -0.462 sec~1
My -5.81 sec~2
Aerodynamic _9
Coefficients Mg -72.0 sec .
Lg 0.379 cec”
Lg 0.070 sec™!
ky 1.02 sec
Compensating
Gains ky, 0.188 sec
k. 0.476 x10-3 sec2/ft
cy 720.0 sec™3
) 275. 3 sec~2
cq 18.3 sec-1
Transfer 9 -l
Function dy 0.240 sec™2 ft
Coefficients dy 0.642 sec-1ft-1
ey 720.0 sec~3
€9 -0.865 sec™2
€g -1.87 sec™l
S1 -3.16 sec ™}
Transfer ; . 1
Function 59 -7.56 +13.0j sec
Poles Sq .56 -13.0j sec~1

A-12
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A.5 THE GUIDANCE SUBSYSTEM MODEL

The guidance signal from the seeker (discussed in the following section)
is passed through a single-stage low-pass noise filter, the output of which is
thus a filtered estimate of LOS angle rate, Xy = 6. The classical proportional
guidance law is then implemented, which calls for a commanded acceleration
whose component normal to the line-of-sight (LOS) is proportional to the clos-
ing velocity times the estimated LOS angle rate, Xg = '3; that is, we desire to

cause a__ to satisfy
m ~

, A
a_ cos (GL -8)=n v,8 (A.5-1)

where the parameter n’ is designated the ravigation ratio. The closing velocity
is obtained by projecting the missile and target velocity vectors onto the instan-
taneous line of sight; as shown in Fig. A.2-1,

Ve =V, COS (ez -8) + v, cos (6a + 0) (A.5-2)

In order to achieve a response that obeys Eq. (A.5-1), the ideal acceleration
command aé should be chosen to satisfy

v
nv
r _ ]

a.c —W; (A. 5"‘3)

where the incorporation of the factor 1/cos (8- 8)is known as secant com-

pensation.

In mechanizing the guidance law, the value of the closing velocity is
never known exactly., If a radar homing seeker is used, then a reasonable
estimate of v, can be obtained by doppler measurements or by differencing
range measurements. An infrared seeker system generally does not yield a
good estimate of range, in which case v, may be taken to be a prespecified

A-13
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constant. Any uncertainty in the closing velocity is modelled by introducing
a variable e, into Eq. (A.5-3) whicli represents either a band limited
noise, obtained by a single-stage low-pass filter with white noise input, or

a bias, denoted simply evb‘ Thus

. A cos(x, + 6)
ac =n’6 [Vm +Vt m + ev] (A. 5-4)

provides the final ideal acceleration command used in this study, where
Xy9 2 e, is modelled by one of the differential equations

Random Uncertainty: %y, = - w X, + Wy, E[x,5(0)] = 0

(A.5-5)

. N . B vreed
Bias Uncertainty: Xyg = 0, x12(0) = e
and Wy is a white noise. Thus we can study either the effect of ;che noisy esti-

mation of vc or of a constant error in the assumed value of vc. }

Finally, the guidance law must account for an important ponlinear con-
straint on missile operation -- namely, acceleration command limiting, The
actual accelerauon command a, that determines the input to the fin deflection
actuator in Fxg. A. 4-2 must not exceed the structural capacity of the airframe
and must not be-so large as to cause the missile to stall. Thus the ideal accel-
eration command ac' must be limited in order to prevent excessive laterzl
acceleration command levels; the limiting procedure is represented by the sat-
uration nonlinearity

Iagl éa’max

a = (A.5-6)

max sign (a ) |a l

max
The guidance law features described above are all incorporated in the system

model, as illustrated by the block diagram in Fig. A.5-1.
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ERROR MODEL
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NOISY A
n 1 8 Gc
LOS RATE 1 18,1 : . ‘
ESTIMATE 1,8 " Vm ol B
e
\___v___J [ v J \ Y J
NOISE FILTER CLOSING VELOCITY WITH SECANT ~ ACCELERATION
COMPENSATION AND UNCERTAINTY ~ COMMANDS
Figure A.5-1 Guidance Law Model

A.6 THE SEEKER SUBSYSTEM MODEL

There are several effects inherent to the seeker which can have a

marked influence on overall missile performance. These include

e DBoresight error distortion

Noise

Aberration
Receiver and signal processing characteristics

¢ Disturbance torque inputs

Seeker mass imbalance
Seeker gimbal friction
Spring restoring forces on the seeker head

Boresight Error Distortion - A fundamental variable in the seeker sub-
system is the true boresight error, € rue defined by the angle between the anten-
nal centerline and the instantaneous line-of-sight (LOS); referring to Fig. A.6-1,

=9-6 -0_=6-¢ (A.6-1)

€
true h m
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R-11600
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Figure A.6-1 Seeker System Configuration

The estimated or measured value of the boresight error will differ from € rue
due to several factors; among the more important of these are aberration, noise,

and nonlinear receiver characteristics.

The effect of aberration is very highly dependent upon the geometry of
the seeker-detector cover, the frequency and polarization of the incident energy
and other factors; furthermore, it is variable due to manufacturing tolerances,
possible erosion during flight and changes in environmental parameters. This
phenomenon can be represented by a nonlinear and possibly time-varying opera-
tion on the look angle, elook =0 - em, so that an effective boresight error, €otf
is obtained in the form

’

=0 + 6

€oft = ®look * %ap " %

where
eab = fab (elook)

as depicted in Fig, A.6-2,
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R-11601
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Figure A.6-2 Boresight Aberration Model

The effect of a linear aberration characteristic (eab = kr 910 ok) was studied in
Ref. 2, The case in which a radar homing system with nonlirear aberration is
considered (where the aberration of incident energy is caused by the protective
radome) was successfully analyzed via CADET in Ref. 3. Inthe latter study,the
radome aberration characteristic was modelled as a piece-wise linear relation
with odd symmetry and five distinct linear segments, as depicted in Fig. A.6-3.

To avoid duplication, this effect is not considered further in this study.

R-9121
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— EMPIRICAL DATA
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& 0001}~ //,f
< \ 7
0 1 ! ] [ | !
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Figure A.6-3 Nonlinear Angular Aberration Characteristic
Investigated in Ref, 3
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In considering the degrading effects of noise, we include three funda-
mental categories of effects. Inverse range proportional noise, which has an

effective rins level of the form

g

oY=
is representative of a noise source that increases in effect as range approaches
zero. Such a phenomenon is target angular scintillation (caused by the apparent
motion of the target due to the change in position of the target centroid of radia-
tion). This can be modelled as a wide-band noise state, Xy 40 with constant rms

level, LEPD multiplied by a gain 1/r. Range proportional noise includes any

noise source that reniains constant in rms level in such a way that the effective
signal-to-noise ratio decreases as the missile approaches the target, i.e., as
range approaches zero. This type of random disturbance is represented by an
equivalent noise with an rms level of the form

% = %15
which in turn can be modelled by a wide-band noise state X5 with a constant
rms level of 015 passing through a gain, r. Noise sources that exhibit this pro-

perty are the distant stand-off jammer and receiver noise (generally due to
thermal effects). Range independent noise represents noise sources that have

a constant effect on the signal-to-noise ratio; target amplitude scintillation (due
to time-varying effective target cross section, for example) and seeker servo
noise are typical examples of such noise sources that can be modelled by a
noise state X160 of constant variance ch.
in Fig. A.6-4 where Wys W, and Wg are gaussian white noise processes.

The complete noise model is shown

All three types of noise considered above have been treated in previous
studies (Refs. 2, 3). It should be noted, however, that the earlier implementa-
tions of this model were linear time-varying; i.e., r(t) was assumed to be known

A-i8
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Figure A.6-4 General Seeker Noise Model

exactly in the noise model. Here we rigorously implement the nonlinear rela-
tion indicated in Fig. A.6-4,

s = X16 + ¥y V 2 4 x +x /V + Xy (A.6-2)

The receiver characteristic is a potentially complicated effect, highly

dependent upon the specific antenna design, type of detector, and signal pro-
cessing scheme. In order to avoid a very specialized model based on a partic-
ular tactical missile, we confine our attention to one phenomenon:; the attenuation
of the received signal which occurs *hen boresight error ¢ becomes large, i.e.,

when € approaches € nax in Fig. A.6-5a. The detector alone will have an output
which is very nearly proportional to its input for small values of €; however, as
the boresight error approaches € nax’ Ve note in Fig., A, 6-5b that the signal
strength decreases to a null, If the antenna pattern has appreciable sidelobe sen-
sitivity, there may also be some response for values of € greater than ¢

max’
The upper limit on the boresight error, €, such that the detector characteristic
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Figure A.6-5 Receiver Boresight Er>ar Distortion Effects

is nearly linear for |e| less than ¢ is quite variable, depending on the type of
target tracking system under consideration. For monopulse radar or infrared
detectors, € could be as small as a fraction of a degree.

The undesirable detector null and possikle sidelobe responsa can be
circurnvented in the signal processing scheme., In the cas: considered here,

elim<? is chosen; a nonlinearity is then introduced such that whenever

the boresight error magnitude exceeds im’ the output of the signal processor
is held at Hlim' This provides a simple model, depicted in Fig. A.6-5c, which
will capture the effect of a narrow antenna beamwidth and a reasonable signal

processing nonlinearity.

A-20




THE ANALYTIC SCIENCES CORPORATION

The combined effects of noise and receiver/signal processing charac-
teristics are illustrated in the general boresight error moriel (without aberration)
shown in Fig. A.6-6. We mention in passing that a more exact noise model
might divide noise sources into external and internal effects, i.e., noise sources
entering the boresight error model just before, as well as after, the receiver
characteristic. However, this categorization is somewhat artifically detailed
when compared with a realistic situation where noise levels are only approxi-
mately known. While the aberration and signal processing nonlinearities may
have a significant impact on the closed loop dynamics of the overall missile-
target irntercept model, the actual noise input point is not particularly eritical.

In fact, injecting all noise sources after the receiver in Fig. A.6-6 results in

a worst-case model of the effect of the signal processing nonlinearity, since it

neglects the attenuation of external noise sources.

R-1605
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Figure A.6-6  Final Boresight Error Measurement Model
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Disturbance and Control Torques - The seeker model is completed by

developing a suitable tracking and stabilization control system including several
important sources of disturbance torque inputs. In terms of the inertially-
referenced angles ¢ and § shown in Fig, A.6-1, we will derive a relation of the
form

1pb‘=1 y=T -T (A.6-3)

where Ip is the moment of inertia of the seeker head about the gimbal pivot, Tc

is the external control torque (derived from an electric serve motor, for exam-

ple), and Td is the total disturbance torque. The latter has three components,

Td =Tm +'I'f +Tr (A.6-4)
where Tm is an effective torque due to mass imbalance, and we consider two
external torque components, T p due to nonlinear friction in the gimbal and Tr
due to nonlinear restoring torques. Since the seeker head center of gravity
(vg) is generally displaced from the pivot point, as shown in Fig. A.6-1 and
specified by the parameters Ty and 90, the momznt of inertia Ip is related to
the corresponding moment inertia referred to the cg by

Ip = I0 + mrg (A.6-5)

where m is the mass of the seeker head.

The external torques due to spring and friction effects are modelled by
the relations

Restoring Torque: T, = fl(eh)

(A.6-6)
Friction Torque: T ¢ = fz(eh)
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Wiptnim

where Gh is the angle between the seeker and missile center lines. Often
{ restoring torques are linear for small angle deflections, becoming nonlinear

{

only as eh increases in magnitude, as illustrated in Fig. A.6-7a. This be-

=

havior correspends to the symmetvic "hard spring' case (Ref. 15) where the

e

elastic limit of a spring is exceeded and Hooke's law for linear spring behavior

becomes invalid; often the nonlinear term is taken to be a power law relation,

———
L L s

K
sign (6, )

%

£.(6, )=k |-—-
150 T e

S ]

where k is an integer grécter than one, so that Tr exhibits a distinct departure

MM AR B ORI e Ko RS | Y
e R e

from linearity as Ieh| exceeds elim which is typical of a symmetric nonlinear
spring characteristic. A common type of nonlineasr friction is the dry or Cou-

ﬂ iomb effect (Ref. 15), where
§ 2y . .
H f5(6;) =k, sign (6,)
i. e., the friction term of the disturbance torque has constant magnitude with the
3
h { j algebraic sign of the gimbal angle rate. Illustrations of these disturbance torque

terms are depicted in Fig., A.6-7,

H R-1604

1 ,\ 4\ Tr 4‘ Tf
% ‘e l,x? | k, sign x,
v
¥ I P
%268y, xg* 6,
{a) Nonlinear Restoring Yorque [b) Nonlinoar Friction Effoct

Figure A,6-7 External Disturbance Torque Models
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The effective disturbance torque component due to seeker mass im-
balance can readily be determined by application of the basic principles of
mechanics (Ref. 13). The equations of motion of the seeker head can be de-
rived directly by applying the Euler equation

d@ﬁ)- S =T -T -T

f

where U is the seeKer head kinetic energy, and the right side represents a:l
external torque sources. The kinetic energy of the seeker head has two terms:
1 2 1. .2

U—-2—mv +-2-IO(¢b) (A.6-8)
where v is the magnitude of the velocity of the seeker head center of gravity
and § is the angular velocity of the seeker head rotation about the cg. The
velocity magnitude is obtained by resolving the missile velocity vector v m
(describing the motion of the missile cg) into x and y components, then adding
to this the relative motion of the seeker cg with respect to the missile cg.
Referring to Fig. A.6-1, the seeker head cg has the relative coordinates

X =T, 08 (em + ep) + 1, co8 )
y=r4 sin (Gm + Gp) + rosin )

Generally ep (the fixed angle between the missile centerline and the seeker
gimbal pivot) is quite small, so it will be neglected here. The total velocity
components of the seeker head cg are then

=v —_— = -1 8 in -1 b si
V=V, COS 6“3+dt Vo, €08 8, 116ms 9m rozbsmap

= i (_iX= 3 0 i
vy vmsm e£+dt vm sin 6z+r16mcos 9m+r0¢cosw
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Using standard trigonometric identities, the squared velocity magaitude is
then determined to be

2 2 . 2 2 2 S
vi=v +(r19m) +(roab) +2r0r18m¢bcos(w-6m)

+ 2r0vmzbsin(6z -¥) + 2r1 Vo Gm sm(ez -Bm) (A.6-9)
The equation of motion can then be derived directly from Egs. (A.6-7) to
(A.6-9); combining these relations, we obtain the final differential equation

of motion,

T, -T;-T,.- Ip =m roT [b'mcos (¥-8_) + (ém)2 sin ( - em)]

+mryv 6!z cos (9}z - ) (A.6-10)

Comparing Eq. (A.6-10) with Egs. (A.6-3) and (A. 6-4), we identify the seeker
mass imbalance disturbance torque, T in Eq. (A.6-4), to be given by the
terms on the right side of Eq. (A.6-10). Combining the latter with the friction
and spring disturbance torque components, we obtain

Ty = fl (Gh) + f2 (éh) +mr, [r1 6m cos (Y - Gm)
1 (6 Psin@-0_)+ v_8, cos (¥-6,)] (A. 6-11)

The control torque Tc in Eq. (A, 6-3) is chosen to make the seeker
track the target, i. e., to maintain the measured boresight error at a small
value. The nominal seeker is designed under the assumption that there is no
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friction and that spring effects are negligible; thus, it is necessary to include
rate feedback in the torgque command (a feedbhack term proportional to ¢ which
is measured by a rate gyro; to provide suitable damping. Thus we write the
nominal contrai-torque as
- i - * .
Ten= ks [1'1 kg(em * 6h)]
where T4 is the track loop time constant, kg is the rate gyro gain, and ks is

the torque servo gain. The implementation of this control law is depicted in
Figo Ao 6-80

R-11606
ém 1 ém )] Bm
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l i(9
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Py - p$ 2] h + tRROR
. ]
T3 8
DISTURBANCE ({0}
TORQUE 1 ANGLE
+ |€
l— 1

Figure A.6-8 Nominal Seeker Track Loop
(Neglecting All Nonlinear Effects)

While the implementation of the seeker control function depicted in Fig.
A. 6-8 will provide an adequate response under ideal conditions, it can be shown
(see Section A.7) that the dynamic response of the seeker is quite sensitive to
steady state disturbance torque inputs. Since we have already indicated that dis-
turbance torques are to be considered in our study, compensation of the seeker
must be included to achieve satisfactory performance. A simple and effective
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compensation procedure is to insert proportional plus integral cascade compen-~
sation before the torque summing junctior in Fig. A.6-8. That is, we specifythe

; ( compensated control torque by
S + ko

y Tee=5 Ten (A. 6-13)

This relation corresponds to the differential equation

15 J ch = kOTcn + Tcn (A.6-14)

The complete seeker simulation model, representing the synthesis of
the dynamic equations derived in this section, is shown in Fig. A.6-2. We
demonstrate in Section A.7 that the indicated output, n, is a noisy estimate of
LOS rate (8).

A.7 TRANSFER FUNCTICN REPRESENTATION OF THE EQUIVALENT
LINEAR SEEKER

For a subsystem of the complexity of the seeker as modeiled in Fig.
I A.6-9, it is often helpful to derive the transfer function formulation of the
linear system obtained by neglecting all nonlinearities. Several assertions

i made in simplifying the seeker model are based on this representation, and
the procedure used for the purpose of designing the compensation network

; (choice of ko) can best be treated in this way.

We define four inputs (refer to Fig. A.7-1),

; u, = V)
| Y2 % ¥m
ug = ns(t)
uy = 'I‘m (A.7-1)
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Figure A.7-1 Linear Seeker Model
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The transfer functions dl(s) tod 4(ss) can be found for the equivalent block dia-
gram representation depicted in Fig. A.7-2 using standard state vecior formu-

lation techniques,
x=Fx +Gu
D(s) =E + H(sI- F)'IG (A.7-2)
n=Hx+Eu
where
|
)
u= ag| D(s) = [dy(s), dy(s), dgls), d,(s)]  (A.7-3)
u
L 4_

and di(s), the elements of D, correspond to the scalar transfer function indica-
ted in Fig. A.7-2, The final results of this analysis are summarized in Egs.
(A.7-4) and (A.7-5).

R-11610

Y4 —> dals)
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Figure A.7-2 Linear Seeker Model in
Transfer Function Form
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2
kg s{s” + qqS + pl]

d,(s) = —
1 T, 3 2
1 S'+ QS +q,S +4qy

as) - --k3 kzs +k1
2 I 7

3 2
pl ss +4yS +qzs+q1]

1
d3(S) =§; d1(s)

k3
d4(s) =7 3

1 0
Py = T
p
. ks Ky g
1 Ip'r1
= +ksk3
2 1 Ip*r1
ko +k k
ag = 2 Is g
p

(A.7-4)

(Ae 7 "5)

The nominal seeker is defined by a choice of parameters that leads to

acceptable dynamic behavior in the absence of disturbance torques; the data and
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transfer functions are given in Table A.7-1. A second case is the nominal
compensated seeker, which has been designed to exhibit a significantly

better performance in the presence of disturbance torques; the design by
root locus techniques is indicated subsequently and the transfer functions are

summarized in Table A.7-2.

In both the nominal and the nominal compensated seeker, we note
that dz(s) =0, This demonstrates that with no linear friction or spring re-
storing torques, the seeker has perfect stabilization, i.e., the measured

boresight error is unaffected by rotation of the missile body.

For frequencies considerably less than 10 rad/sec, we have dnl = dclgs,
which is the transfer function of a differentiator. Hence, the assertion that n
is an estimate of the LOS angular rate () holds at low frequencies.

The seeker compensation removes steady state disturbance torque sen-

sitivity, as is shown by the zero of dc 4(s) at s = 0. To demonstrate this point in

more detail, we assume a step disturbance torque input,
u4(t) = TO’ t20, (A.7-6)

yielding a response which is represented in Laplace transform notation by

T
n(s) = d,(s) —})—

or, by substitution,

n(s) = 1000 T
n 12 s(s + 10)(s + 50)
(A.7-7)
100 T

n.(8) = -
c & 43,608 + 1700 s + 10,000
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TABLE A.7-1
THE NOMINAL SEEKER

P
< '
Aprvassrgy,

Parameters Transfer Functions

- ¥ =k, =k, =0

;j 0 1 2
L . d_.(8) = 100 s (s + 60)
] k3 =1 nl 12 (s + 10)(s + 50)
)
]
L) K 1
3 & d 2(5) =0
U y = g in-oz-sec n
S rad

dn3(s) N dnl(s)

2

!

'f I =0.1inozsec
_ 1000 1

r =012 sec 448) =7 FT 106 7 50)

i | TABLE A.7-2
THE NOMINAL COMPENSATED SEEKER

Parameters Transfer Functions

. Sk =
' 1=Ky =0 100 s [s? +60s + 1200]

d_.(s) =
¥ e1™ 120 3, 60s + 1700s + 10, 000

3 k3 = kg =1
“ k. =20 sec} d (s)=0
| 0 “Y: c2 s) =
kK =8 in-oz-sec
[] rad =
dc3(s) dcl(s)
Ip =0.1 in-oz-sec?
i (s) - 1000 s
T, =0.12 sec c4 12 3, 60s? + 1700 s + 10, 000

POLES: s = -7.71, s = -26.1 £ 24, 8j
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To obtain the effect of the disturbance torque after transients disappear, we
evaluate the steady state value of n by the final value theorem of Laplace trans-
form theory: if (s) is the Laplace transform of f(t) and if a finite steady state
value of f(t) exists, then

£ 21m £(t) = lim [s (s)]
SS
t+o 540

The application of this result to Eq. (A.7-7) yields

Do
nnss 6

(Ao 7 "8)
ncss =0
which establishes that the proportional plus integral compensation technique
(insertion of the transfer function ‘

_S5+k
hc(s)_ S 0

in Eq. (A. 6-13)) is effective in eliminating the response to constant disturbance

torque inputs,

To complete the seeker compensation design, we note that for the nom-

inal values of the seeker variables given in Table A.7-1 (except ko #0), the
denominator of the transfer functions di(s) is given by

83 + q3»‘i‘2 + QoS + q = 33 + 6032 + (500 + 60 ko)s + 500 ko

= (53 + 6052 + 5008) + 60 kq (s + 8.333)
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In choosing kO’ it is desired to achieve a dominant pole at s = - 10 and to have
the remaining subsidiary poles as far from the origin of the s-plane as possible
subject to the condition that they must be suitably damped. A root locus analy-
sis is effective in finding a suitable value of k0 satisfying these conditions. In
Fig. A.7-3, we see that as k0 + >, the dominant pole approaches -8. 33; how-
ever, for kO > 20, we have subsidiary poles with unsatisfactory damping, i.e.,
£ <0.707. The condition { = 0.707 is specified in order to ensure a transient

step response with no overshoot; thus our final compensated seeker design is
achieved by choosing kO = 20, as indicated in Table A.'7-2.
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Figure A.7-3 Root Locus Compeasator Design
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A.3 SYSTEM MODEL SUMMARY

In Fig. A.8-1the complete missile-target intercept model is portrayed
with all of the subsystems described in the previous sections appropriately inter-
connected. All of the state variables are depicted except x., Xg and Xqin (angle
of attack, control fin deflection and the seeker compensation state, respectively)
which are encompassed in the linear dynamics represented by the transfer func-
tions gl(s), gz(s), and (1 +ko/s). For convenient reference, we list the non-
linearities incorporated in the system model and indicate their form:

e Seeker head restoring torque

Xy K
T
lim’

£,(xy) = ¥y

e Seeker gimbal friction

fz(xz) = k2 sign (x2)
e Receiver/signal proceésing characteristic

‘ el % e
f3(e) =

€im S1ER (), €] >

o Range dependent noises (2 nonlinearities)

_ 32 2. o2
1 Ny = Xy6 * X5 x+y+x14/ X+y
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e Seeker mass-imbalance-torque-f3-nonlinearities) -~ —

_ 20 2 2 .
Tm = mr, [r1 8, cos (eh + 60) +ry (Gm) sin (6h + 60)

+v,8,c05(8 -8 - 6, - 90)]
e LOS angle calculation

8 = tan"! (y/x)

e Range calculation

r = Vs y2

o Velocity resolution (4 nonlinearities)

X =-v_cos (BL) - Vv, cos (Ga)

y =-v_sin (e‘)—f v, sin (ea)

¢ Acceleration command limiting

‘
<
l ac I amax

Y ? f 4 >
a oy Sign (a)), |ac| -

e Proportional guidance law with secant compensation

, 4 cos (ea +0)
R | [Vm "%t cos(8, - 0) x12]

In addition, the state variables are defined 4s indicated in Table A. 8-1.
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, W,-_ S _ S
- TABLE A. 8-1
U SYSTEM STATE VARIABLES
U State Physical Description
Variable Nctation
. Xy eh Seeker head angle with respect to missile
| centerline
) X 8 Seeker head angular rate
| 2 h
‘ X 6 Missile body angle with respect to original
3 m
» LOS
L ]
Xy Gm Missile body angular rate
}
! Xg o Angle of attack (incremental)
| z Xg 6 Missile control fin deflection
' A
X 8 Estimated LOS angular rate (output of gui-
{ i dance law filter
|
Xg 91, Missile lead angle (angle of missile velocity
; § vector with respect to original LOS)
Xq ' ea Target aspect angle (angle of target velocity
: £ vector with respect to original LOS)
‘ X10 y Cross-range separation (component of range
o normal to original LOS)
Xy X Down-range separation (component of range
along original LOS)
|
Z X9 e, Closing velocity error state
Xy ay Target lateral acceleration
%14 to X16 None Seeker noise states
X1n None Seeker compensation state
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APPENDIX B

RANDOM INPUT DESCRIBING FUNCTIONS FOR
THE MISSILE-TARGET INTERCEPT PROBLEM

B.1 RANDOM INPUT LESCRIBING FUNCTIONS USED IN THE
CADET ANALYSIS

The random input describing functions (ridf's) derived in this sec-
tion are based on the assumption that all system variables are jointly normal.
To summarize the quasi-linearization procedure, treated more fully in
Section 2.2 and Appendix C, we consider a general function of two variables*,

tp(vl, v2), which is to be represented approximateiy by
o (vy,vy) = E[o] +nr1 (v -my) +nr2 (Vg -my) (B.1-1)
Thus is it necessary to evaluate

1 @ ®
Elo] = S S olvy, vg)exp| - —2 >
2 foyypy 0 o 21-p%)

=n_ m, +n
mll

]‘dv. dv2

2
(Vx“"l\ " 1'“’1\("2'"‘2) +<"z'mz>2
o/ 9\ % %

n = 2Ele] (B.1-2)

Ty bml

m
m22

n o 2El]

Ty 6m2

The nonlinearities considered are generally ordered according to Appendix A.

%
In this appendix, variables are generally designated v, or vy, vg etc. as re-
quired, to avoid the need to refer to the system model. The statistics are

m=E[v], p=E[(v-m)2], o= for one variable; m; =E[v;], pij=E[(vi—mi)(vj—mj)],

o3 =+p;i for two or more variables. With two variables, thé correlation
coefficient is useful; o = pyg/v/P11D33.
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Missile-Target Kinematics — The nonlinearities used to project

the missile and target velocity vectors into down- and cross-range com-
ponents are of the form sin (v) and cos (v), where v is a gaussian random
variable. The ridf's required for these functions have been derived pre-
viously to be (Refs. 3,8)

1
1 ‘?p
_ . P
n =—sin(m)e
m m
sin(v) - 1
__2..p
n_=cos (m)e
r
(B.I“S)
Y
n =lcos(m)e 2P
m m
cos (v) — 1
-Ep
n_=-sin (m)e

Guidance Law — Referring to Eq. (A.5-4), the unconstrained ac-

celeration command is a highly nonlinear function of six system variables
of the form

4

@ = a0y tagPy tagvy (B.1-4)
One component of 0’ is a product of states,

wl(vi) = V1Y (B.1-5)
and a second cons.ituent is given by

ccs (vo+8)
‘pz(Vi) = Vl W (B.1-6)
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when 8 is given by

v
6 = tan ! (-‘-1-> (B.1-7)

Substituting Eq. (B.1-7) into Eq. (B.1-6) yields

Vg COS (v9) - v4 sin (v2)
(p2(vi) =Y vg cos (V3)+V, sin (v3)

(B.1-8)

For the product of variables, ¢;, we have the followin, results (Ref. 3):

E [(pl (v1,v6)] = nmlm1 +n  mg

6
= My Mg TPg
(B.1-9)
“ill) - e
nil) = m,

We point out that in treating nonlinear functions of more than one variable,
it is generally impossible to identify the individual elements of the descrih-
ing function for the mean part, e.g., in this case we do not obtain Nmy and
Nmy explicitly; however, the quantity E[tol] is all that is required for propa-
gation of the mean via CADET (refer to Eq. (C.2-5)). It should also be ob-
served that the representation in Eq. (B.1-7) is not useful if both of the
means, m, and m6, and the covariance are zero -- i.e., the describing
function approximation to the nonlinearity is zero for this case. Since this
point is considered in detail in Ref. 3, we do not treat the subject here.
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The second term, ¢,(vj) in Eq. (B.1-4), is impossible to quasi-
linearize exactly in closed form under the gaussian assumption; thus we use

a generalization of the series approach discussed in Section 5.2 (Ref. 9).

5
efosed] - By
i=1 71
2
5 b 3%
1 2
= ¢ (my, m,, ,m5)+'2-2_: 2 Smom. Py  (B.1-10)
i=1j=1 i
3¢, (m,,m,,...,my)
(@), %' MyMy - ]
nri - ami ’ 1 1’2:’°'15 (B.l 10)

Listing the partial derivatives called for in Eq. (B.1-10) requires the in-
troduction of some auxiliary notation:

wl = m5 cos m2-m4 sinm2
Yo = m_. COS m, +m, Sin m
2 5 3 4 3
(B.1-11)
4»3 = -mssinmz-m4cos m,
¢b4 = -mg sin m3+m4 cos mg

In terms of these expressions, the quantities required to evaluate Eq. (B.1-10)
can be shown to be

) !
<p2(m1,m2,...,m5, = ml-{l«Tz-

"
11
=

(B.1-12)
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—_ = —
2
370, _ w3w4 "
amzam3 lb? 1
aza; m. m
2 175 (
SeSe - ~ 3 cos (mg +m3)
2 74 abz
a?‘(pz m1m4
T 53— COS (m2 +m3)
2 5 tbz
32(0 p.m 9 9 .
g . 31 (4;2 + 24,4) (B. 1-12)(cont. )
om )
3 2
32<p2 mlm5 )
Bm33m4 = ;p3 <zb4 sin (mg +mg) - ¥y
2
2
%70, mymy o
mgmg T3 <<b4 sin (my + mg) - wl)
2
o%o, mymg
- 5 = 2 ;b3 sin (m3) sin (mz +mg)
My 2
3, my .
am4am5 = - w3 <:p2 --“?.m5 cos (m3)> sin (mg +mg)
2
B-6
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3 82¢p2 2m1m4
] 5= - 7 COS (mg) sin (my +m3) (B.1-12)(cont. )
am5 4’2

- Returning to Eq. (B.1-4), we have

N E[o’] mq’) = a E[o4] +a2E[<p2]+a3m1 (B.1-13)

where E[o; ] and E[oy] are given in Egs. (B.1-9) and (B.1-10); the random
component of ¢ can be expressed in terms of the quasi-linear gains in the

same equations to be

a

1) (2)
ry * 3

r
- al ﬂrl + a2n

(1)

alnr + 0 +0

5 2,7y (B.1-14)

Since r(; is a quasi-linear combkination of the random components of the six

variables Vo the variance is approximately

X ) B-1
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i 7
Pig Pip - - - Prg
Pig Pag - - - DPgg
ool 2]l T T ]= T b
P16 P26 - - - Pes
(B.1-15)

Thus we can obtain the approximate mean and variance of the unconstrained
acceleration command in terms of the quasi-linear gains summarized above.
With these statistics, we treat the acceleration command limiter in the
regular manner; i.e., we assume its input ¢’ is a gaussian random variable
with statistics mq') and p(;. The ridf's for the limiter are given by (Refs. 2

and 8) -

©,. +m’ {fo.. -m’
- - lim o im "o '
Elol =n_m_ = /[p’ G( — )—Gk > |l-m
m(p (0} (0} fPZ “/;Z [0}

(B. 1-16)
4 1
n = H<M)+P1<w£ -1
® «/pq'J /p,

where the auxiliary functions G and PI are defined in terms of the normal
density function, PF, as follows:

2
- N
PF(¥) T exp < 7
"
PI(y) = S PF(Z) d¢ (B. 1-17)
-0
GW) = ¥ PI(¥) + PF(¥)

B-8
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1
L Ll

The describing functions outlined above complete the quasi-linear
representation of the guidance law; in summary, E[¢] is used directly in

-

,...
[ —

propagating the mean vector of the system, and the random component of

the actual acceleration command is

§ -
[Py

r, = n r’" =n b'r (B.1-18)

( and ro t_)‘o is the overall describing function matrix {in this case, a row
T vector) specified in Eqs. (B.1-9), (B.1-10) and (B.1-14).

i The approach outlined above in Eqs. (B.1-4) to (B.1-.") considers
a nonlinearity of the form

o = w(cp’(vl,vz, e ,v6))

i.e., a nonlinear function of a nonlinearity. Because it is essentially im-

possible to quasi-linearize this relation as a whole, we have first quasi-

linearized ¢’ to obtain the statistics mq’) and pg; necessary to calculate the

} ridf for o (¢’), Eq. (B.1-16), then "cascaded the ridfs" for the random part
in arriving at Eq. (B.1-18). While this is not a completely rigorous pro-

; cedure, we rely on our 2 priori knowledge that in the guidance law, o’ is
approximately vy times the closing velocity which, while not a constant, is
nearly so (i.e., the closing velocity has a mean that is much larger than its
random part until the last few hundredths of a second of an engagement in
realistic situations), and Vi is generally nearly gaussian. Thus it is rea-
sonable to assume that ¢’ is nearly gaussian. In this situation, the above
technique adequately represents the guidance law nonlinear effects, as
shown in Chapter 4.

Range Dependent Noise Sources — Since the range, r = J x2 +y2,
enters into the seeker noise model, we find that the ridf's cannot be
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calculated under the gaussian assumption, due to the inability to evaluate
certain integrals in closed form (cf. Section 5.2). The first nonlinearity

we treat is the range proportional seeker noise term,

_ / 2 24 /[ 2 2
03 = v fm_+y = vy m_ +v, (B.1-19)

where we assume that x has no random component, as before (Section 5.2).
The expected value of ©Og; given by

2
©0 .o v, -m.\2 v,-m Vo-m Vo-m
Efo o1 v, JmZev? exp |1 Wil AP e Wi T M AT B M dv.dv.
3 1 x 2 P c [*; [ o 172
2n0,0, 1-p2 dop -0 2(1-p%) 1 1 2 2

can be integrated with respect to vy to yield

elo,] = 1 Sm (my +po u)/(o' u+m )2+m2 ;%uz du (B.1-21)
o] = — (B.1-21
3 7 9o 1 17./V2 2 X

with the substitution u = (v2-m2 )/02. To determine the ridf's for the ran-
dom components, we take th2 indicated partial derivatives with respect to
m;; these are simplified significantly by the further assumption that the

i
cross-range separation, y = vo, has a zero mean:
m 00 -‘—1:2-
1 2 2 2
ElQqi. _o= — S [(ogu)” +m_ e “ du
37my=0 Jer - x
u2
3E [¢5] o -~
no=|—3 3 =-—1-—S (ozu)+m e 2du
| my m2=0 J2r Y-
(B.1-22)
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poworen |

where we have eliminated terms of the form

e

- 1

© [ -=u

S uA/(Uzu)2+mi e 2 @u=0
-0

We note that none of the above integrais can be evaluated in closed form.
The study of approximate methods presented in Section 5.2 demonstrates
that accurate results are obtained by replacing the gaussian pdf's in

Eq. (B.1-22) with a triangular density with the same mean and standard

1
[ ]

deviation,
R )
b ¢ f‘
u 6 - |ul

\ RS  lul=/s (B.1-2:
x ‘ - LY
. e 0, lI>JE
i
‘.;} Furthermore, we recognize that Npy is the expected value of the range, as
i.} treated in Section 5.2, so we immediately have (from Eq. (5.2-12))

1
L

m h 2 "

- o] =_1 sign (m,) J1 12+ V2 log 1+/1+v WA v°-(1 +v2)3/2
y c VA
"y (B. 1-24)
b nr1 = E[(p3] I/ml
. where

. m
% v 8 —I-’i (B.1-25)

J6a,

Evaluating the last integral in Eq. (B.1-22) in the same manner, we obtain

N 9 9 2 3 2 /1+A/1+ 2
nrz > /-§ Pyg [(1+4v) 1+v7 - 4 -3 log\——;j——l-)] (B.1-26)

B-11
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The inverse range proportional noise,

\E

v
= 3 =
4 2.2 /.3
mx-!-y mx+V2

can be treated in the same manner as ®q ahove, yielding

m / 2
Elog] = /2_‘6'2% [1°g<l-f—71ﬂ~>+v- 1+sz

J3

v
nr3 EE[<p4]/m3 (B.1-27)
P 2
L = ﬁ.&a og (L 102 ) Lo o A an?
r 3 3 v
2 crz

Rec. ‘ver/Signal Processing Characteristic — The boresight error

limiter has the same form as the acceleration command limiter; conse-
quently the evaluation of quasi-linear gains is accomplished with Eq. (B.1-16)
substituting the boresight error statistics, m¢ and p, for mq’) and pq’). The
boresight error is a linear combination of the LOS angle, missile body angle
and seeker angle, and the LOS angle is related to the system variables x and y
by the inverse tangent relation, Eq. (A.2-1). Thus to determine m. and Pes

consider

A
= o5 (01,v9) - Va=Vy (B.1-28)

B-12
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The nonlinearity 05 is quasi-linearized below so that the mean and random
components of the boresight error are

m
€

= n(5)r +

= Efeg] - m, - m,

G). _. _ )
) 1 nrzr2 =T, (B.1-29)

The boresight error variance is thus approximately

o 3

P11 Ppo P14
Pjs Pog Py

b (2.1-30)
P14 Pog Pag

Using m and P, from Eqs. {B.1-27) and (B.1-28), the boresight error
limiter ridf's can be evaluated directly, from Eq. (B.1-16).

Inverse Tangent LOS Angle Calculation — The nonlinearity

P = tan'1 (Vl/vz) cannot be quasi-linearized in closed form under the

gaussian assumption; thus we again make use of the series expansion ap-

proach given in ky. (B.1-10).

The required partial derivatives are

8<p5 i m,, . n(5)
am1 m2 + m2 B |
1 2 "
(B.1-31)
aw5 _ --m1 _ n(s)
8m? m2 + m2 - Ty
) 1 2
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2
3 s _ -2m1m2

m mz + m2

: 1 1 2

] o —————zmi "= (B.1-31) (cont.)
-j: _— = B.1-3 cont.

:. amlam2 2 +m2

\ my 2

E 2

2 g _ 2m1m2

< 2 - 2 _9\2

3m, <m1 +m2>

. The expected value of 0 is obtained approximately by substituting Eq. (B.1-31)
-3

into the series expansion,

1 1™ 1 2 2

l Elgg] = tan <m2> * < 3 2)2 [ mymy (PygPyy) *(m1 My /P12

; m; +m,

(B.1-32)
The quantities E[qos] and n(s) constitute the quasi-linear approximation

p to the inverse tangent functmn.

Seeker Head Restoring Torque — The nonlinear representation of
the "hard spring’ effect <tudied in Section 4.4 is of the form

g = |v|k sign(v) (B.1-33)

where k is an integer. The ridf is directly available (Ref. 8), in general
form for k odd, and also for k = 2, as follows:

k=1 n =1
I r (B.1-34)
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_ _ m \
k=2 n_ = 40 PF() +2m (2?1(-&-) -y
2
_ L (m (1] m

n, = 20 P¥ (—-) +m<1 +(\E) )(?..PI (Tr-) - )

k=3 nr=30’?’+3m2
2

n_ = 3¢ +m

m
k=5 n, = 1504 + 3002m2 + 5m4

nm = 1504 + 1()02m2 + m4

The general form for k odd, say k = 2g+1, is

b= T el MOIE)- - @e-2i) 6 2

r 420 (2§)! (2g - 2j + 1)!
(B.1-35)
- 2g (2g+1)1 (1)(3)(5)- - - (2g-2j-1) g-i 2j
" © L (2§+1)1 (2g - 2))! prom

we note above that for k odd, the nonlinearity in Eq. (B.1-33) is simply
Vg = v2g+1 which leads to quite straightforward polynomial ridf's, while for
k even the factor sign (v) leads to terms involving the probability function,

PF, and probahility integral, PI, given in Eq. (B.1-17).

Seeker Gimbal Dry Friction -- The dry or coulomb friction effect is

modeled by a nonlinearity of the form

on(v) = sign (v) (B.1-36)

B-15
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which is often used to represent the ideal relay. The ridf's for this effect
are available in Ref. 8,

(=]
)

Lo

= (E(E) -

Seeker Mass Imbalance — The effective disturbance torque due to

(B01-37)

an offset of the seeker center of gravity from the gimbal has three terms,

with two distinct forms:

Pg = Vq COS (v9)
O, = v2 sin (v,) (B.1-38)
9 1 2 ’

In the nonlinearities ®g and Pg» the variables vy and v, are generally not
state variables, but linear combinations thereof, viz.,

| =

|
|4
o

v = = + (B.1-39)

(=2
o
194
I
@

where we have indicated that the angle Vo generally contains a constant param-
eter, 90, which is the angular coordinate of the seeker center of gravity with
respect to the antenna centerline (Fig. A.6-1). Then the statistics of vy and
vy can be obtained from the state variable statistics, m = E[x] and
P=E[(x-m)x-m)T], as

m 0
m,= { 1] = Hmi[ ] (B.1-40)
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where
T
h
A -1
L (B.1-41)
hy
and
P11 Pio T
Pv = = HPH (B.1-42)
P1g Py

The first nonlinearity (and its companion form, P10 = vlsin v2)
have been treated in Ref. 3 by considering the real and imaginary part of
the function vy €xp (jvg), as follows: define

jv2

* 4

g

vy (cos vo + j sin vy) 4 Og + j¢10 (B.1-43)

The expected value of this complex func:ion can be evaluated to be (Ref. 11)

p
22
* T . -
E vg| = e (m1+]pl2) (cos mg +j sin my) (B.1-44)

From this expression, the required ridis are available by inspection:

P2
E[‘98] = Re <E[(p; ]): e 2 (1nq cos mg - pyg Sin mz) (B.1-45)

B-17
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P2
_ 2
n, =e cos mo
1
P (B.1-45)(cont.)
.22
nr2 = -e 2 (m]L sin m, + Pyg COS my)
Po2
* T .
E[(P]_O] = Im (E [‘108 ]) = e (ml sin m2 +p12 CoSs mz)
)
_ 2 .
nrl = e sin m, (B.1-46)
P22
nrz = e 2 (my cos my - pyq sin my)

The same approach is utilized in evaluating ridf's for ©Og5 defining its com-

panion form to be 011 = vf cos v, yields

IR AN o
Qg = Vy @ = v (cos vg +j sin vg)
= <911+]‘909 (B.1-47)
yields
Po2
2

E lws D = e- T [(mf +Pyq 'p12> + 21m1912] (cosmp +jsinmy) (B,1-48)

/
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Thus the quasi-~linear representation of ®g and ®11 require

]
_ 2 2 _ .
). = e [(ml + p].l plz)cos m2 -2m1p12 sin m2]

*
| RS |

E[p(1]=Re (E [(.0\

_Pa2
nrl = e 2 (2m1 cos my - 2p; 9 sin m2) (B.1-49)
Po2
_ 2 [r.2 .
nr2 = -e [(ml +Pyq -plz) sin m, +2m1p12 cos mz]
Po2

E[og] = Im(E <p* = e-T 2m.p,, COS m +{m? +p, . - )sinm
9 9 iP12 9 My TPy Py 9

P2
e 2 [Zpl2 cos m, + 2m1 sin mz] (B.1-50)

=
i

Pog

_ . 2 , (2
nr“ e [ 2m1p12 sin m, .<m1 +Pqy -p12) cos mz]

This completes the exposition of the ridf's necessary for the statistical
analysis of the missile~target intercept model treated in the present study.

B-19
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B.2 RANDOM INPUT DESCRIBING FUNCTIONS USED IN
SENSITIVITY ANALYSIS

In Section 5.2 we consider three nonlinearities, the limiter, power
law nonlinearity, and sinusoidal operator, and portray the variation caused
in ridf calculation by varying the probability density function (pdf) of the
input. Seven quite different pdfs were studied, denoted pi(x), i=1,2,...,1,
as given in Eq. (5.1-4); each pdf leads to a describing function given by

1 ©

n, = —2_“ X £(x) p;(x) dx (B.2-1)
1 (o3 -0

where x is a zero-mean random variable with standard deviation o.

Limiter ~ For this nonlinearity, all ridfs are a function of the
ratio of the input standard deviation to the break point (Fig. 5.1-2), here
denoted by

p = ofd

In terms of this parameter, we have

(exponential)

=

1]

(Y
—

4

| o]
NS——

® 1

=[5

(gaussian)

=
1l
[ V)
3
}
N’
1
-t

(triangular)

=]
]
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L 5
1, ps =
: 3.3
§.d N - 5 _ ﬁ + 9'[-3— _ l ___»/_5___- <ps E (p4)
{ Ty Viaaa? 8/3.° 8fsp 80 33 J3
v 13"/3- ﬁ3, E<u<a)
H 12/5 1243 ST
% 1 [TRES i
n, = 5 (uniform)
64/3 1 J3
1 < ﬁ
) g =
2./6
| n = 74__A/‘i§3+ 4»/5_%’ _Ji<“sﬁ (pg)
g Yo )maut 18p° Jf2lp 2./6 J6
, _“/_6— _L‘f, E <pu< o
! Jtu 124 J6
, 5
1, ps—
3.6
2 __5 96 8 5,5
72“4 2/6—113 10p 50 3/5 2J§
n = (pp)
I‘,-l - 25 + 5 + 11 +..l. __5_ < 1} s i
4 3 50
120> 6/6p” 5/6n 2./6 J6
26 D cp<w
5u’ J6
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Random input describing functions are quite complicated when both the pdf
and nonlinearity are comprised of several linear segments, as is the case
for Py Pg and Py

Power Law Nonlinearity — The nonlinearity

fx) = x2 sign (x)

leads to particularly convenient ridf's for the pdf's chosen in this study.

=
]
W

— o0 = 2.12¢ (exponential)

e}
[
)

n = o =1.60¢ (gaussian)

3
oo
|w
o)}
M

n = g = 1470 (triangular)
3
n, = —g-ﬁo = 1.39¢ (pg)

4 55
n = §l—3—0 = 1.30 0 (uniform)
Iy 4
n, = Q_[Q—o = 1.19¢ (pg)

6 ST

_ 5446

nr7 = —-1—25—0' = 1.06¢ (p'?)

Sinusoidal Operator — For the nonlinearity

f(x) = sinx

the following ridf's are obtained:

B-22
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2
-9
n. =e 2
2
1 .
n, =—3% {2(1 -COSX3)-X3 sin xs]; Xg= B
3 3o
5 . . (ein s - . -
B, =3 [2(cos:c4-cos (3x4)) + 34(51nx4-3szn(3x4))], Xy = /0.6 ¢
4 12 4
1 [ . 2 ] e
n =-—ix.sinx_-x.cosx_|; X =430
re a4 L5 7575 5 5
n_ = X [x (sin x; -sin(2xg))-(1-2cosxp+cas 2x:)) |3 x =/§c
re 304 176 6 %6 g Tt \etgll ], 2 ]
_ 25 [ o 3. 3.
n, =g [}‘7 (2 sin (2xq) - 7 Sinxg -7 sin(3 7))
T 3
+2(cos (2xq) - cos xq -cos (3x7))] : Xq = _5‘@—0

(exponential)

(gaussian)

(triangular)

(py)

(uniform)

(ps'}

(p17)

The ridf's for the three nonlinearities considered here are plotted in

Figs. 5.1-2 (limiter), 5.1-4 (power law), and 5.1-6 (sinusoidal operator).
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APPENDIX C

THE COVARIANCE ANALYSIS DESCRIBING
FUNCTION TECHNIQUE (CADET)

't'he Covariance Analysis DEscribing function Technique (CADET) is a
method for the direct determiration of the statistical properties of a nonlinear
system with random inputs, recently conceived and developed at The Analytic
Sciences Corporation (Refs. 1, 2, and 3). The principal advantage of this tech-
nique is that it obviates monte carlo simulations, thereby achievin~ substantial
savings in computer processing time. We first motivate the discussion by re-
viewing the covariance analysis method for linear svstems; then we develop an
analogous procedure (CADET) for the nonlinear case.

C.1 COVARIANCE ANALYSIS FOR LINEAR SYSTEMS

The dynamics of a linear continuous-time stochastic system can be re-
presented by a first-order vector differential equation in which _(t) is the system
state vector and w(t) is a random forcing function vector,

x(t) = Fit) x(t) + G(t) w(t) (C.1-1)

Figure C. 1-1 illustrates the equation. The state vector is composed of any set
of variables sufficient to completely describe the behavior of the system. The
forcing 1uuaction vector E(t) repr.sents disturbances as well as contro!l inputs that
may act upon the system. In what follows the forcing function w(t) is as.umed to

be composed of a mean value b and random component u, .he latter being com-

rised of elc.nents which are uncorrelated in time; that is, u(t) is whit2" noise
’ ——

C-1
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R-Nn882

-

Glt)

|

F(t)

Figure C.1-1 Continuous Representation of the Linear
Dynamic System Equations

having the spectral density matrix Q(t); thus w(t) is specified by*

E[w(t)] = b(t)
(C.1-2)
E[uft) u (r)] = Q(t) 6 (t-7)

Similarly, the state vector has a mean component m(t), and a random part
r=x - m; X, then, may be described statistically by its mean and covariance
matrix,

m(t) & E[x(t)]
(C. 1-3)

up

P(t) £ E[x(t) r*(t)]

The equation for the propagation of the mean vector and covariance
matrix for the system described by Eq. (C. 1-1) can be written as (Ref. 7).

¥
E denotes ensemble expectation, or average value; T de:otes the matrix
transpose.

L
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3

Pap—
Bassvwnn,

¢ e s
LU

m = Ft) m + Gt)b
| (C.1-4)
N . T T

P(t) = F(t) P(t) + P(t) F(t)" + G(t)QG" (t)

The elements of m(t) represent the effects of deterministic initial conditions
and biases due to the system inputs (b#0). The diagonal elements of P(t) are
the mean square values of the random components of the state variables; the
off-diagonal elements represent the degree of correlation between the random
components of the various state variables.

Equation (C. 1-4) provides a direct method for analyzing the statistical
properties of x(t). This is to be contrasted with the monte carlo method, where
mainy sample trajectcries of x(t) are calculated from computer-generated ran-

dom noise, or random numbers in the case of a digital computer, using Eq.

(C.1-1). If q such trajectories are generatzd -- denoted by §k(t), k=1,...,q
f -- then m(t) and P(t) are given approximately by

) =80 = k=1 %
(C. 1-5)
~ N A d A
P(t) = P(t) £ q T 2 Ty )2, )

k=1

A — NPT
where %\-k =Xy - 1/1\1 In the limit as q approaches infinity, we are assured that

lim fi(t) = m(t)

Q> =
(C. 1-6)
lim B@t) = P(t)

>

C-3
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Note that Eq. (C.1-4) provides exact solutions for m(t) and P(t), to
within computer integration accuracy, whereas the monte carlo method yields
approximate solutions for a finite value of q. Furthermore, Eq. (C.1-4) need
be solved only o::ce over the time interval of interest, whereas Eq. (C. 1-1)

must be solved repeatedly using the monte carlo technique; consequently the

direct analytical method is not only exact, but is also generally the most effi-

cient technique for analyzing linear systems. Our purpose here is to describe

a procedure whereby the statistics of a nonlinear system can be computed ap-
proximately using a recursion relationship similar in form to Eq. (C. 1-4).

C.2 COVARIANCE ANALYSIS FOR NONLINEAR SYSTEMS

The nonlinear counterpart of Eq. (C. 1-1) is

x(t) = £(x(t)) + Gw(t) (C.2-1)

as depicted in Fig. C.2-1. In order to develop a covariance analysis method
similar to that used for linear systems, it is desirable to approximate f(x) in
Eq. (C.2~1) as a linear operation on x(t). The success of CADET in achieving
its goals -~ providing an efficient and accurate means for the direct statistical

analysis of system performance -- depends on how well f(x) can be approximated.

Thus, consider approximating the nonlinear function E(E‘_) in Fig. C.2-1by a
linear funstion, in the sense suggested by Fig. C.2-2. The approximating out-
put, _f_a(g), is comprised of the sum of two terms, one linearly related to m and
the other linearly related to r. The gain matrices, Nm and Nr’ are chosen to
minimize the generalized mean-square error between the actueland approxi-
mate outputs defined by E[_(_e_TSg] when S is any symmetric positive definite ma-
trix, This is often referred to as a quasi-linear approximation technigque and
Nm and Nr are called generalized describing function matrices.

fmd et
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R-11802

{"

| NONLINEAR

FUNCTION

Figure C.2-1 Nonlinear System Block Diagram

R-11949

NONLINEAR

>

77

FUNCTION

APPROXIMATION
ERROR

Figure C.2-2 Quasi-Linear Approximation
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Calculation of Nm and Nr is readily accomplished. Note first from
Fig. C.2-2 that

e =fx) - £ (x)

(C.2-2)
=fx) -Nym - Nr

Formally, it can be shown that E[gTSg] is minimized if N_ and N satisfy
(Ref. 1)

(C.2-3)
N _E[rr'] = B[t ]
The secona relation directly defines Nr’
N_ = E[f(xr'] P (C. 2-4)

since a unique P"1 ayways exists. Rather than attempting to solve for Nm --

which requires a pseudo inverse since (m Q_T) is always singular -- simply note
that

£ = E[1(x)] (C. 2-5)

This result is all that is required to solve the problem at hand, as shown below.

Evaluating the expectations in Eqs. (C.2-4) and (C. 2-5) requires an assump-

tion about the probability density function of x(t). Most often a gaussian densit
is assumed, although this need not be the case from a theoretical point »  _¢
However, the gaussian assumption leads to the significant computatio.... ....pli-
fication discussed in Section C. 4., In addition, it is often physically reasonable

C-6
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to assume that x is gaussian, because the superposition effect created by the
linear part of the system d, namics tends to transform the nongaussian outputs

of the nonlinearities into approximately gaussian state variables, by the central
limit theorem (Ref. 9).

C.3 DEVELOPMENT OF THE MEAN AND COVARIANCE EQUATIONS

Replacing the nonlinear function of Fig. C. 2-1 by the describing func-

one part to propagate the mean or deterministic portion of the signal, and the
other to propagate the random portion, Due to the nonlinearity of the system,
the two loops are coupled through the describing function matrices; under the
gaussian assumption, both matrices are functions only of the mean and covar-

iance. The differential equation for the propagation of the mean vector for the
quasi-linear system of Fig. C.3-1is

th=N (m P)m+Gb=F+Gb (C.3-1)

R-N951

3. M
-

DETERMINISTIC
PORTION

RANDOM
PORTION

—y

Figure C.3-1 Quasi-Linear System Model
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i tion apwroximation given in Fig. C.2-2 results in the quasi-linear system model

llustrated in Fig. C.3-1, The quasi-linear system model consists of two parts;
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The system covariance propagation equation is obtained by computing the covar-
iance of the random signal component, r, using linear system covariance analy-
sis as discussed in Section C.1. The resulting matrix covariance equation is

P =N (m,P) P + PN (m, P) + GQG" (C. 3-2)

These equations are nonlinear and coupled through the mean and random com-
ponent describing function matrices, Nm and Nr’ respectively, Initialization
requires only the initial condition statistics,

m(0) = E[x(0)]

- (C.3-3)
P(0) = E[r(0)r"(0)]

Equations (C. 3-1) and (C. 3-2) together with Eqs. (C.2-4) and (C. 2-5) are the
key equations of CADET, ’

C.4 SPECIAL RELATIONSHIPS

A few special relationships are worth noting. First, we observe that
when the system is linear [f(x) = Fx], Eqgs. (C.2-4) and (C. 2-5) immediately
lead to the result N, =N, =F. Hence, Egs. (C. 3-1) and (C. 3-2) reduce to the
familiar equations for the propagation of the mean and covariance in linear sys-
tems, indicated in Eq. (C.1-4). For a nonlinear system, computation of the
describing function matrices in Eqs. (C.2-4) and (C. 2-5) requires an assump-
tion about the form of the probability density of the input signal to the nonlinear-
ity. This, it should be noted, is the only assumption required in the CADET

formulation, The assumption of a jointly gaussian probability density functio
for the elements of x is most attractive from two viewpoints, Firat, the cal-
culation of Nm and Nr tends to be simplest under this assumption. In addition,

C-8
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many dynamic system models tend to contain more linear than nonlinear ele-
ments. This is advantageous, since low-pass linear filtering is necessary to

insure that nongaussian nonlinearity outputs result in nearly gaussian nonlinear-

ity inputs as signals propagate through the system. This so-called "filter
hypothesis" is common to all describing functions analyses (Ref. 8).

One result of the gaussian assumption is that Nr can be directly com-

puted (Ref. 16) from the relationship

N (m, P) = g B[1()] = 75 [N, m] (C.4-3)

—

This is indeed a useful relationship, since calculating Nmm is required in any
case for the propagation of the mean (Eq. (C. 3-1)). It is, in practice, much
easier to employ Eq. (C. 4-3) than to solve Eq. (C.2-4) for Nr(_nl, P). A direct

result of Eq. (C. 4-3) is the fact that N;y; and Ny can be formed by first replacing

the individual nonlinear elements of f(x) by the appropriate scalar describing

function gains. This is an extremely powerful property since a large number of

describing functions have been catalogued in Ref. 8; consequently Nm and Nr
can be formed directls from inspection of the system equations or block diagram,

in many cases.
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