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1.0    Introduction 

Kor more  than two decades,  computers have been used to differentiate 

functions by applying the basic rules of calculus  to the symbols appearing in 

the functions   [1].     Symbolic or analytic differentiation is of interest because 

it appears to be the most efficient approach to evaluate the derivative of a 

function at a series of points.    The symbolic expression for the derivative is 

found once,  and that expression is  then evaluated many times with little effort. 

Numeric differencing,   the contrasting numerical method,  requires that at each 

point the function be evaluated at least twice,  and  the derivative  is  then 

approximated by taking the slope of  the line joining those points. 

In 1962 Hanson,  Caviness,  and Joseph   [2]  surveyed the methods  that had been 

published for  symbolic differentiation and proposed a routine for analytic 

differentiation which included a wide class of allowable functions.     By applying 

the transformation algorithm of Erchov  [3],   their routine eliminated the highly 

structured input requirements of earlier methods.     The major detractor of Hanson's 

routine is that the first and second derivatives  that  the method produces are 

inefficient because derivatives tend to increase in complexity at an exponential 

rate. 

The method of symbolic differentiation reported here retains  the data struc- 

ture of  the ordered  triple proposed by Hanson,  et.   al.  as its skeleton,   but 

introduces improved algorithms for the production and manipulation of   the ele- 

ments of  that data structure.    Implementation of   this method has resulted in a 

routine which produces "optimized" code for partial derivatives comparable to 

special purpose subprograms written by users for evaluation of first and second 

partial derivatives.     An experimental  computer  program has been developed on 

which computational results are reported.     The routine has also been interfaced 

iimmm i      \ i   rmtumtamlmt'lui^tki  "■-—--■ - 



■MR W!i!iMW>Wl; mawmJ ■«»ww'i[wmimm PfUmpiUMM",1"!'-'.'!- 
pWJW"   "«»W|llW>Mf>i.,lklll|P.I.||IIJ|IM 

-2- 

wich a nonlinear programming code and experimental results Indicate  that  this 

method Is a desirable alternative to other methods of evaluating first and second 

partial derivatives of user-defined functions. 

1.1   Motivation 

The authors' philosophy is that computers are Intended to aid people In 

the solutions of  their problems, not create new ones.    An implication of  this 

philosophy is  that computer program execution time alone is Inadequate for 

evaluating  the cost of problem solutions.     Time spent by humans In problem 

formulation,  data preparation, and so on,  frequently provides the major con- 

tribution to the costs of problem solution,  regardless of whether such costs 

are Itemized  in dollar  terms.    Furthermore,   the emphasis on and attention paid 

to such "human" aspects of scientific computation should and must increase 

heavily;   the pace of solid-state technology Is accelerating the Increase in 

speed and capacity of computer hardware faster than the hardware costs are 

increasing.    The human aspects, whose cost trend Is just the opposite, will 

Inevitably shoulder aside hardware considerations as the prime cost and time 

bottle-neck in obtaining problem solutions. 

The development of  the symbolic differentiation routine reported here was 

motivated by the above philosophy and the fact that  the authors were experiencing 

substantial time delays In using many codes for solving nonlinear programming 

(MLP) problems,  since most solution methods require that a set of functions and 

their first and second partial derivatives be evaluated at arbitrary points. 

Such NLP computer programs require that the user provide subprograms which are 

able to evaluate the functions (often having many variables) and their partial 

derivatives at any point;  consequently,  a user is compelled to know a programming 

language such as FORTRAN,  or know someone who does,   in order to prepare a problem 

j^mmummtim mtmmt miniiii—'"linn T I,-■■—-—■""*—*»*'**i« 
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for solution.    Substantial time and effort are also required to code the 

needed routines and debug them once written.    Even If standard numerical dif- 

ferencing techniques for first and second partlals are used,  considerable 

Instability may occur depending on the Interval size used and the function 

being evaluated  [4,   5].    The purpose of this paper Is  to describe procedures 

used In developing standard routines which will eliminate these problems. 

Collectively these procedures will be referred to as a symbolic differentiation 

routine,  SYDIF. 

The results of  the symbolic approach to differentiation and its computer 

Implementation are not restricted to nonlinear programming problems.    Any com- 

puter procedure which requires that users provide subprograms for evaluating 

function and  their partial derivatives can be simplified by the symbolic dif- 

ferentiation approach.    Some areas of application Include graphical interactive 

routines which could be used to aid courses in calculus by displaying iso-curves 

of functions and their partial derivatives.    The feasibility of using SYDIF in 

conjunction with Introductory calculus courses  taught in a Computer-Assisted 

Instruction mode,   is also under consideration,   since students' answers could 

be checked exactly by matching their expressions against  the symbolic derivative 

produced.    Other possible applications include areas such as numerical integra- 

tion of systems of differential equations,  solution of nonlinear equations by 

Newton's method,  unconstrained optimization,  guidance and trajectory systems, 

and applications of  linear programming that iteratively solve non-linear problems. 

2.0    Methodology 

The symbolic differentiation algorithm follows  the outline of such algorithms 

defined by Hanson   [2] as  "In step one,   the mathematical expression is analyzed 

! i 
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and the order in which the appropriate rules of elementary differentiation are 

to be applied is determined.     Step two consists of  the actual application of 

those rules." 

2.1    Data Structures 

To accomplish step one,  SYDIF transforms  the input  expression into an 

equivalent parenthesis-free expression represented by a   tree-structure speci- 

fying the order of  the operations.    This data stiacture was chosen because it 

can be produced efficiently,  evaluated easily,  differentiated in a straight 

forward manner using the basic rules of calculus,  and the resulting derivative 

can be optimized. 

Each "branch" of  the  lata structure represents a subexpression of  the user's 

function as a binary operator and its two operands.    The expression (x, + x~)   5- 3 

Is represented by the following tree, where    1     represents exponentiation: 

± <£ <£ 
rN_J 

The actual data representation for each branch of the tree is an ordered triple 

of a binary operator and its two operands.  The table of triples representing 

the above tree is: 

ne 
left 

operand operator 
right 

operand 

1 xl 
+ X2 

2 (1) ♦ X5 

3 = R (2) _ 3 
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wherc  (1)   in line 2 refers  to  the subexpression in the previous line 1.    By 

sequentially evaluating the subexpressions beginning with the first one,  the 

expression can be evaluated.     The value at the root,     R    is  the value of the 

expression.    The above data structure is also equivalent  to Polish  (parenthesis- 

free)  notation  [7]  which can be produced efficiently by parsing the original 

infix (normal algebraic)  notation expression using the algorithm described below. 

2.2    Parsing Algorithm 

The parsing algorithm differs from the usual infix-to-postfix transformation 

algorithm in its manner of using an intermediate push-down stack.    The parsing 

algorithm causes the input string to be scanned from left  to right.    Operands 

encountered are placed on an Intermediate push-down stack.    This is different 

from algorithms which only produce Polish notation since  they move operands 

directly to the output string,  but it is required since only complete subex- 

pressions can be removed from the stack.    The algorithm of Hanson,  et. al. 

produces a similar data structure,  but achieves  it by using Erchov's right-to- 

left scan;  consequently the entire expression must be input before processing. 

Furthermore, more elements must be kept in the stack since operators of equal 

precedence must be put onto the stack, hence a larger stack is required and 

more  time is spent clearing the stack using Hanson's algorithm.    The algorithm 

presented in this paper improves on the previous algorithm by using a left-to- 

right scan which takes advantage of the normal left-to-right execution of opera- 

tors of equal precedence to achieve more efficient storage management. 

The SYDIF parsing algorithm is quite simple and  can be described as follows. 

Operands are placed directly in the intermediate stack.    Operators are compared 

using normal FORTRAN precedence with the operator nearest  the top of the inter- 

mediate stack.     If  the operator from the input string has precedence greater 

than the precedence of  the operator in the stack,   the input operator is put 

on top of the stack.     The "(" always goes to the stack.     If the precedence of 



imiiip!iiii|iiiiuiij.Lii^Mijiu|i>*iiu,m>ii«pwji> i^.'MippiwVj;! II,| JU.ij.piwuiiimM.), iJ|WIWPiWI.JTiW<iipii.»!W'»fiiiy|»MiWiWJW'|.^i»!-tHii,-.^ .t!iiii|i,iiiii]j.iiiiii!..jfyi,ii!iiiimi| 

the input operator  is  less or equal to that of  the stack operator,   the top 

three entries are moved from  the stack to the table of triples, with the top 

operand moving to the right operand position.    A new operand,  representing the 

branch of the tree where the triple was placed,   is put on  the top of the stack. 

The input operator which caused the ejection from the stack is  then compared 

with the top operator remaining on the stack, and the process repeats until 

the end of the expression is encountered.    The end-of-expression symbol is of 

equal precedence to the begin-expression symbol,  both the lowest possible,  hence 

the stack is cleared.     Errors in the syntax of the expression are easily recog- 

nized by  the parsing algorithm. 

2.3    Differentiation Algorithm 

The expression can be differentiated after being transformed into a tree- 

structure because such a data structure specifies the order in which the opera- 

tions are to be performed.     The expression is differentiated in the same order 

that  it is evaluated;  beginning with the first triple and proceeding sequentially 

until  the root is reached.     The new "branches" of  the  tree representing the 

derivatives of  the expression are attached after  the root of the tree. 

Subexpressions  to be differentiated are classified into categories according 

to the types of the operands and operator.    Each category of subexpression is 

treated as if it were an assembly language macro-call,   the macro expansion being 

the partial derivative  for  that category of subexpressions.    The parameters of 

the macro-call are the  triple being differentiated,   its operands and operator, 

the variable of differentiation,  and pointers to the derivative of any reference 

to preceeding subexpressions.    Such pointers are required  for derivatives of 

some  types of subexpressions because the chain rule of calculus requires  that 
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the derivative of any line containing a reference to a preceedlng subexpression, 

use the derivative of that subexpression in obtaining its own derivative. 

This algorithm improves on the algorithm of Hanson, et. al. by recording 

the actual derivative instead of a pointer to the derivative, if thai, derivative 

is a single operand.  By later referencing the actual derivative, approximately 

ten percent of the subexpressions produced for second partial derivatives are 

eliminated. Such a recording procedure also is a prerequisite for further 

optimization. 

2.4 Optimization Algorithm 

The underlying purpose of the symbolic differentiation routine is the 

production of efficient code for the evaluation of partial derivatives. Optimi- 

zation actually starts with treating each line as a macro call, resulting in as 

few lines being created as possible. Later specific optimization techniques 

are applied, both as triples are being added to the tree, and again after the 

entire expression or partial derivative is created as described below. 

As each line is added the transitive and commutative properties of the 

pairs of operators (+, -) and (*, /) are used to fold subexpressions such as 

C *(R/C ) into C- *R-, (where C. and C are constants and R is a reference to 

a variable or previous triple and C = C./C^ is a new constant). C *R has a 

simpler derivative than C *(R/C9) because the latter requires differentiation 

of R/C«.  Thus folding shortens both the expression being created and later 

partial derivatives. 

Redundant lines are removed after the entire expression or partial deriva- 

tive is created. The SYDIF optimization algorithm compares each triple against 

previous triples; if a match is found, the duplicate is removed and all later 

nif niriiiiiMtHiiaMr—      ■--■■• -^ ..--„J...,..„—    ■   ,    ■■■■■'■miiiiaitiiitttuamiimmmmmt.^u     .....  .^^„^^ 
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references to the removed triple are changed to point to the first occurence of 

the triple. The comparison process starts with the second triple heing checked 

against the first and is completed when the subexpression at the root has been 

compared against all the preceedlng ones.  Triples which have operators + and * 

are commuted for the test; special checks are made for cases such as (R + R) = 

2 * R or (0 - R) = -1 * R by also checking for the alternate form. 

Dead code elimination, (the final phase of optimization) consists of 

purging superfluous subexpressions accumulated in creating expressions and their 

partials.  The algorithm recursively eliminates all triples not referenced 

later, starting at the root of the tree.  In the above example, once C *R is 

created, there may be no later references to the triple R/C , implying that 

the operation need not be present.  Dead code elimination would remove the 

triple R/C. from the tree. 

3.0 Experimental Program Implementation 

An experimental implementation of SYDIF has been coded in FORTRAN and is 

being tested on the CDC 6600 at The University of Texas at Austin.  This Imple- 

mentation was written to interface with the Sequential Unconstrained Minimiza- 

tion Technique (SUMT) of Flacco and McCormick [6], but is equally applicable 

to any problem requiring partial derivatives or user-defined functions.  The 

user of this routine is ultimately interested in two aspects of the program: 

how easy is it to use and how well does It work? 

The authors' feel that users want a familiar, simple input form.  The SYDIF 

implementation allows users to input their functions in FORTRAN notation with 

FORTRAN operators.  Variables are XI through X100.  Real constants In E-notation 

are allowed, as are integers.  Implied multiplication is allowed by inserting 

the multiplication operator (*) for missing operators.  Many other options were 

■'- ■ ■■■■ -■- -" 
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also included In order to provide users with a natural means for expressing 

functions. 

The experimental program outputs optimized pseudo-machine code subprograms, 

equivalent to symbolic partials,  for all first and second partial derivatives 

for each specified function.    These representations can then be evaluated by 

interpretation or they can be translated directly into machine code for direct 

execution as a subprogram by a particular computer (see  [7] pp.   342-3A7). The 

accuracy   of the partial derivatives produced is limited only by the accuracy 

of the computer's floating point hardware and system functions.    Computational 

experience with the experimental Implementation of this code has exceeded the 

original high expectations.    The optimization not only produces more efficient 

code for evaluation; but surprisingly,  it also results in a faster differentia- 

tion phase by eliminating many subexpressions of the original expression and 

its first partial derivative that otherwise would have required differentiation. 

The optimization also reduces data structure storage requirements   (by over 80% 

in some cases)   that hamper Hanson's symbolic approach to differentiation,  e.g., 

with no optimization, Hanson's algorithm for the differentiation of  the expres- 

sion  (X1  + X-)**X_ gives 132 subexpressions for all first and second partial 

derivatives (see Appendix A for this example).    SYDIF with its optimization 

left only 24 subexpressions to be evaluated  (see Appendix B). 

The experimental SYDIF program takes 40,000 words of memory on the CDC 6600. 

T^st runs on a problem having thirty functions  (of varying complexity)  took only 

LWO CPU seconds of processing to generate all first and second partial deriva- 

tives.     Currently a machine-Independent FORTRAN version Is being developed and 

should  be available soon. 

  ...................... ■-  - i ii imyaitMiiilMi at M,. i. - :_,^_ .^    ^..irH-^i',,-,.  ,_ :.:   . . :   
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4.0 Anolicatlon of SYDIF In Non-Linear Mathematical Progranwilng. 

An enormous body of theoretical and computational research has been directed 

at achieving efficient solution procedures for nonlinear programming problems of 

the form: 
Minimlzj F(x) 

subject to: 

g^x) £ 0, 1 = 1, .... I. 

and  h, (x) = 0, k = 1, ..., K. 
k 

Particularly powerful results have been obtained for the case In which the 

problem functions are once-or twice-differentiable and where the function F(x) 

and the set of points X satisfying the constraints are convex. This paper Is 

not intended to provide a bibliography for nonlinear programming; see [8] for 

references. Chapter 8 of [6] discusses the Sequential Unconstrained Minimiza- 

tion Technique (SUMT) algorithm of Fiacco and McCormick, which is a procedure 

both elegant and known to be effective from a computational viewpoint.  A com- 

puter program (in FORTRAN) implementing the SUMT algorithm is available from 

the SHARE Library under distribution number SDA 3189 (see also [9]). 

As can be seen from (1), the statement of a general nonlinear programming 

problem requires one to specify the objective and constraint functions; there 

are I + K + 1 such functions.  In addition, many of the procedures for solving 

(1), (e.g., SUMT, Zoutendljk, Newton, Davidon-Fletcher-Powell, etc.) use partial 

derivatives of these functions with respect to each of the variables as well as 

the Hessian (matrix of all possible mixed second partials) of each function; 

even the simplest direct search methods require at leapt the ability to calculate 

the values of the objective and constraint functions at arbitrary points. 

SYDIF provides a user-oriented input capability and creates the tree struc- 

ture for evaluating the original expression and all the  partial derivatives. 

iMi  -i-■...■^■■^—^ ialMBMaaiirilMiriiiiiri 
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The applications program "calls" evaluation programs, giving the routine a 

vector of values for the variables and which function or which partials are to 

be calculated.  The triples for that expression or derivative are evaluated one 

by one, starting with the first one. As the value of each triple is calculated, 

that value is stored in an auxilary table. The entire process is simple and 

fast. Running in such an interpretive mode, the interfaced version of SUMT 

took only twice as long as when subroutines for partials derivative evaluation 

were coded by hand. The turn around time and the human interaction were shortened 

as expected; SYDIF took less than one tenth of the user's time. 

Actual machine code for a particular computer could have been created, but 

the authors feel that the portability of the machine-independent approach is 

more important than complete efficiency, especially in the development stage. 

Later versions producing direct machine code will produce code that takes less 

execution time than is possible even with user-written routines. 

5.0 Summary 

It was necessary to look at the area of creating routines for first and 

second partial derivatives because of the lack of a user-oriented interface 

between mathematical progranuning codes requiring derivatives and Its users. 

Symbolic differentiation was chosen because of the instability/computer problems 

inherent in numerical differentiation techniques and the inability of numerical 

methods to overcome the human problem of providing the user with a desirable 

input format for his problem statement. 

Having chosen the symbolic approach, parsing, differentiation, and code 

optimization procedures were devised in order to improve upon the computer time 

and storage requirements of early symbolic approaches [2]. These new procedures 

were then computational compared against early approaches and found to be sub- 

stantially better in both time and space requirements. 
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A user-oriented front-end was added to the experimental symbolic differen- 

tiation routine. Next this routine was interfaced with SUMT in an interpretive 

mode and compared against SUMT solution tiue with hand-coded evaluation subroutines. 

Running in an interpretive mode the SUMT version took only twice the computer 

time and reduced the user interaction time 90%.  If the user finds the increase 

in execution time to be prohibitive, a non-interpretive (or direct executing) 

version could easily be written for a particular computer. 
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Appendix A: 

Example of code produced by basic diflerentiation algorithm 

without optimization 

function:    (x^ + Xg)   ** 
^ 

note: 1    refers to the previous line numbered k 

T, the Table of Triples 

(1) Xl + X
2   ' 

(2) L. »*xs 

(3) I.J + 0.0J          ÖL^/öx 

W x    - 1.0 

(5) Ll ** h äL;i/ax1 

(6) s*s 
(7) h * \  . 
(8) 0.0 + 0.0 ÖL3/dx1 

:                  (9) 0.0 + 0.0 

(10) L^ -  1.0 " 

(n) Li ** Lio 
(12) L3'Li. 

dLy'ax-L 
(13) L12 X   Lll w LOG (L1) 

(15) vs 
(16) Ll5 * Lu 
(17) L16 + L13 
(18) L8*x5 öL/ax 
(19) L18 * h ' 

D           *■ 

(20) hi * h ÖL /öx1 

(*1) 
1 

dF 

L20 + L19 

ä2F 
Line T 

^1 
Line 2 L = 

öx x^. 
l 

1 2 

D, the derivitive pointers 

17 
J18 

^21 

lillfai*J'J^^*'J^M^''"-''~"*"-''-""-" "-'• • MaaBMaMBi -iiTn'ia'i-" 
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Assuming A. „        has been output, it begins at line 8 

(1) Xl+X2 

(2) Ll 5 

(3) l.C + 0.0 

CO X5 
- 1.0 

(5) h **h 

(6) h *X5 

(7) h' L5 

(8) 0.0 + 1 1 a^/axg 

(9) xs - 1.0    'l 

(10) L1**L9 
(11) Lfl* x5      1 

öLg/axg 

(12) Lll * L10 .1 
(13) 0.0 + 0.0 aL3/^x2 

(1^0 0.0 + 0.0 äL2/öx2 

(15) h - 1.0    ^ 

Ll^ 
(16) l^** 

(17) h x L
ll 

(18) L1T *L1<. •         ÖL10/ö X2 
(19) LOG (L,) 
(20) Lh *s 
(21) LX> *h9 
(22) L21 ^IB 
(23) Ll^ *»5 äL8/ax2 

(24) Loo * L.   ^ 
23 5 

(25) 
^ *L6 aLT/ax2 

(26) 
l
25 

+ L2i+) 

J12 

13 

u22 

J22 

J26 

ÖL, 

3X, 
is required hence the original 
function must be differentiate i 
with respect to Xp 

i 

The above code is sufficient for this example.    The following 

siunmarizea the numbers of additional lines generated lor all partial 

derivatives; 

iliiiiiteliftiMii..iii f'i ii  ■■■—--■-'-■■■■ tiniati  i  inn i i ■  ■■■■■■ ^--.■...—.iw-i  i irj liMiilBi'iili.miftifclrtT['iriirriMn' 
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Number of lines 

^ixi 

ax1x5 

JL. 

2 

5 

lit 

18 

23 

X2X2 

äx2x5 

li+ 

23 

8 

agF 

^x5 

20 

TOTAL 132 line fj required 

,,., t..i...^...-^,.^.V—^»^ ■11 1 in-'■•■ ■■"i n-iMiirii t mill i-1 • 
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Appendix B 

derivative code with optimization (All partials shown) 

(1) X1+X? 

(2) h xx x.) 
(3) 

(5) 

s-1 
L

l ^ L3 
' 

((0 X,   + (-2.0)      N 

(?) L1 ** L6 

(B) L7*L3 

(9) X^L8 
M 

(10) 

(11) 

(12) 

(13) 

W 
(1?) 

(16) 

(10 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

LOG (1^) 

Lw*h 

S * Lii 
h + Li2 
Xr - 1, 

Ll ** hk 
L15 * S 

S * L17 
L10 * L15 

h * L19 
L15 + L20 

] 

Log (Lj 

] 22 J L2 * L, 

L22 * L23 
) 

ax. 

öxixi 

X5(X1 + X2)
X5 " 1 

(x1 + x2)
x5'2(x5-i)x^ 

2 

»l^ 

n value of L 
9 

Log (X1 + X2) (X1 + X2)
X5'1 

+ Log (X^ X2)X5-1 

,f- = X^X, + x2)
x
5 

2 

Xc-1 

ax2x2 

ax2x5 

^T " Lo8 (Xl + X2) ' (Xl + X2)X5 

»fip 

ax5x5 
Log (X! + Xg) Log (X1+ X2) iXi+ X2)X^ 


