
IPPPIPP^fltplIP^

AD-783 076

THE COMPUTER CAN DIFFERENTIATE TOO

Lee Litzler, et al

Texas University

Prepared for:

Office of Naval Research

April 1974

DISTRIBUTED BY:

mi]
NatioMl Tichnical InfonnatkNi Swvict
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

■(■PÄH^I.I ^ .■^^■!iP«.(|(,! ,,- !,■ .^i.ifWAT^•w^^V'.:'y«^';
lwiir"PUit,«wiW'vii.i.iffijM^i.J*WMi^iLi^r■ ■ ■'JPTF7P^y/^lvMwM^1*,TO7^wyMj'wi>^iw^iM,vt'''Wgi^w

üt^V

Unclassli'led
Sfotrity Cla««ific«tlon

DOCUMENT CONTROL DATA -R&D
(Srrurtly tlaitillftion ef Uli; body of •>«»«f (und IndtMlnf annol»llott muni be »nlmrmd whtin m* ontmll ttporl In clnmalll»

I ONI0IN&TIN0 ACTIVITY (Coipotalt mulhot)

Center for Cybernetic Studies
The University of Texas

aa. REPORT lecuRiTv CLASSIFICATION

Unclassified
Zb. GROUP

.1 REPORT TITLB

The Computer Can Differentiate Too

«. OlsCRiPTi ve NOTE* (Typ» of report •nd.incfusiv* dal»»)

• AUTHORttl fnrs« nam, mIMI» Inillal, iaal nmm»)

Lee Litzler
Darwin Klingman

«. REPORT OATS

April 197'i
TO. TOTAL NO. OP PAGES

^/

tb. NO. or REFS

9
ta. CONTRACT OR GRANT NO.

NOOOl^ r-A-0126-0008 ;0009
5. PROJECT NO.

NR OVr-021
e.

•a. ORIGINATOR'* REPORT NUMBER!*)

Center for Cybernetic Studies
Research Report CG 176

96. OTHER REPORT NOtSI (Any other number« that may be aae/Jned
Ihla report)

10. OI*TRiauTION STATEMENT

This document has been approved for public release and sale; its distribution
is unlimited.

II SuPPLCMr.'MTARV NOTE*

I*. AGSTRACT

12. SPON*ORING MILITARY ACTIVITY

Office of Naval Research (Code h^h)
Washington, D. C.

For mathematical problems whose solution requires the evaluation of
first or second partial derivatives of user-defined functions, symbolic differ-
entiation is offered as a viable alternative to numerical differencing
techniques and user-written subprograms. The paper describes an efficient user-
oriented approach, equivalent to symbolic differentiation, for the generation
of code capable of evaluating partial derivatives of user-specified functions.
Computational results of an experimental implementation of the method are
reported. The feasibility of this approach is additionally demonstrated by
interfacint the experimental code with the Sequential Unconstrained Minimization
Technique of Fiacco and McCormick for the solution of nonlinear programming
problems and results are reported.

'NATIONAI TFCHNICAI
INFORMATION SERVICE
II ■'. n.-ii " "' ' nn.tnp.cu

Spnn(','"'l(l VA ,.'r;,l

DD '"" 1473
t NOV •« I "f # «7

S/N OlOt •607-6811

(PAGE 1)
Upclaspified

Security Classification A-moa

MMMMMta i mi -ir i i i!mMü^^aaitiüai ta' -

14

r^Tv^W-lWPIWW^ ""~ ' ■■■»■■«■mil

UnclaBBlfled
• S»cuftty CU»ttflc«tlon

Ktv MONO«
LINK *

NOLC WT

LINK •

NOLK

S.vmbolic differentiation

Analytic differentiation

Numerical differencing

User-oriented

Nonlinear programming

Code optimization

DD .'i?..1473 i"*«"
i/N oioi>ei4«Meo W Unclassified

Security Clattification »-31409

«HiMHiliiMW ■ H t-■■,■ ■■'--■ *~* I 1 •■«■ - Jt^w^J*i.^JHUk»_<tak»-i^..,*.—-*»t^*'jA:^»--^"^i4J«'-'*

■^^WJ»>iB;wij|^ffi^w^
^w^^pj^Ai'mmv^m^'f'VW.W'^wp/'vi

Research Report
CS 176

THE COMPUTER CAN
DIFFERENTIATE TOO

by

Lee Litzler
Darwin Kllngman

April 1974

This research was partly supported by ONR Project NR 047-021, Contracts
N00014-67-A-0126-0008 and N00014-67-A-0126-0009 with the Center for Cybernetic
Studies, The University of Texas. Reproduction in whole or In part is per-
mitted for any purpose of the United States Government.

CENTER FOR CYBERNETIC STUDIES
A. Charnes, Director

Business-Economics Building, 512
The University of Texas

Austin, Texas 78712

if

—"■IHM«! '.. ■ .. ,, _-,_: ^■^|^..J_... ■... ..

yq! tmm ':''}ii'«i*J''m.itm*rwmti!mm>immf* "TP^TTTWH ■Ti'; W»|!IWI,ipi»!W.i?^»ÄuW1?11.''1 ' TTWJT^TW.I.L, in i,l).n|f(|

1.0 Introduction

Kor more than two decades, computers have been used to differentiate

functions by applying the basic rules of calculus to the symbols appearing in

the functions [1]. Symbolic or analytic differentiation is of interest because

it appears to be the most efficient approach to evaluate the derivative of a

function at a series of points. The symbolic expression for the derivative is

found once, and that expression is then evaluated many times with little effort.

Numeric differencing, the contrasting numerical method, requires that at each

point the function be evaluated at least twice, and the derivative is then

approximated by taking the slope of the line joining those points.

In 1962 Hanson, Caviness, and Joseph [2] surveyed the methods that had been

published for symbolic differentiation and proposed a routine for analytic

differentiation which included a wide class of allowable functions. By applying

the transformation algorithm of Erchov [3], their routine eliminated the highly

structured input requirements of earlier methods. The major detractor of Hanson's

routine is that the first and second derivatives that the method produces are

inefficient because derivatives tend to increase in complexity at an exponential

rate.

The method of symbolic differentiation reported here retains the data struc-

ture of the ordered triple proposed by Hanson, et. al. as its skeleton, but

introduces improved algorithms for the production and manipulation of the ele-

ments of that data structure. Implementation of this method has resulted in a

routine which produces "optimized" code for partial derivatives comparable to

special purpose subprograms written by users for evaluation of first and second

partial derivatives. An experimental computer program has been developed on

which computational results are reported. The routine has also been interfaced

iimmm i \ i rmtumtamlmt'lui^tki "■-—--■ -

■MR W!i!iMW>Wl; mawmJ ■«»ww'i[wmimm PfUmpiUMM",1"!'-'.'!-
pWJW" "«»W|llW>Mf>i.,lklll|P.I.||IIJ|IM

-2-

wich a nonlinear programming code and experimental results Indicate that this

method Is a desirable alternative to other methods of evaluating first and second

partial derivatives of user-defined functions.

1.1 Motivation

The authors' philosophy is that computers are Intended to aid people In

the solutions of their problems, not create new ones. An implication of this

philosophy is that computer program execution time alone is Inadequate for

evaluating the cost of problem solutions. Time spent by humans In problem

formulation, data preparation, and so on, frequently provides the major con-

tribution to the costs of problem solution, regardless of whether such costs

are Itemized in dollar terms. Furthermore, the emphasis on and attention paid

to such "human" aspects of scientific computation should and must increase

heavily; the pace of solid-state technology Is accelerating the Increase in

speed and capacity of computer hardware faster than the hardware costs are

increasing. The human aspects, whose cost trend Is just the opposite, will

Inevitably shoulder aside hardware considerations as the prime cost and time

bottle-neck in obtaining problem solutions.

The development of the symbolic differentiation routine reported here was

motivated by the above philosophy and the fact that the authors were experiencing

substantial time delays In using many codes for solving nonlinear programming

(MLP) problems, since most solution methods require that a set of functions and

their first and second partial derivatives be evaluated at arbitrary points.

Such NLP computer programs require that the user provide subprograms which are

able to evaluate the functions (often having many variables) and their partial

derivatives at any point; consequently, a user is compelled to know a programming

language such as FORTRAN, or know someone who does, in order to prepare a problem

j^mmummtim mtmmt miniiii—'"linn T I,-■■—-—■""*—*»*'**i«

^|P)yW^l^»y>^W|J.|^wlL)^■|yl^JI|llJpllW^»)lill»lllll■.Jl^lJ||f'>^^ ' m ' " u.n^'.iimm m■^^Vl'Vr'W:f"'V"r:"• ■w"ii'ii-!i.»i'wi»'www!-v-p'm-.-1w?ry?"-^ ^w.vm'n ,i. i,,,,.«.^,^

-3-

for solution. Substantial time and effort are also required to code the

needed routines and debug them once written. Even If standard numerical dif-

ferencing techniques for first and second partlals are used, considerable

Instability may occur depending on the Interval size used and the function

being evaluated [4, 5]. The purpose of this paper Is to describe procedures

used In developing standard routines which will eliminate these problems.

Collectively these procedures will be referred to as a symbolic differentiation

routine, SYDIF.

The results of the symbolic approach to differentiation and its computer

Implementation are not restricted to nonlinear programming problems. Any com-

puter procedure which requires that users provide subprograms for evaluating

function and their partial derivatives can be simplified by the symbolic dif-

ferentiation approach. Some areas of application Include graphical interactive

routines which could be used to aid courses in calculus by displaying iso-curves

of functions and their partial derivatives. The feasibility of using SYDIF in

conjunction with Introductory calculus courses taught in a Computer-Assisted

Instruction mode, is also under consideration, since students' answers could

be checked exactly by matching their expressions against the symbolic derivative

produced. Other possible applications include areas such as numerical integra-

tion of systems of differential equations, solution of nonlinear equations by

Newton's method, unconstrained optimization, guidance and trajectory systems,

and applications of linear programming that iteratively solve non-linear problems.

2.0 Methodology

The symbolic differentiation algorithm follows the outline of such algorithms

defined by Hanson [2] as "In step one, the mathematical expression is analyzed

! i

|P^PiifPPI|iipp!IU!iilii,i|!pU! ̂ ——^g^,^^^^^

-4-

and the order in which the appropriate rules of elementary differentiation are

to be applied is determined. Step two consists of the actual application of

those rules."

2.1 Data Structures

To accomplish step one, SYDIF transforms the input expression into an

equivalent parenthesis-free expression represented by a tree-structure speci-

fying the order of the operations. This data stiacture was chosen because it

can be produced efficiently, evaluated easily, differentiated in a straight

forward manner using the basic rules of calculus, and the resulting derivative

can be optimized.

Each "branch" of the lata structure represents a subexpression of the user's

function as a binary operator and its two operands. The expression (x, + x~) 5- 3

Is represented by the following tree, where 1 represents exponentiation:

± <£ <£
rN_J

The actual data representation for each branch of the tree is an ordered triple

of a binary operator and its two operands. The table of triples representing

the above tree is:

ne
left

operand operator
right

operand

1 xl
+ X2

2 (1) ♦ X5

3 = R (2) _ 3

-iimiHM-^^^'^ MMMMnrnMBHiw

ppiWtwpp)^

-5-

wherc (1) in line 2 refers to the subexpression in the previous line 1. By

sequentially evaluating the subexpressions beginning with the first one, the

expression can be evaluated. The value at the root, R is the value of the

expression. The above data structure is also equivalent to Polish (parenthesis-

free) notation [7] which can be produced efficiently by parsing the original

infix (normal algebraic) notation expression using the algorithm described below.

2.2 Parsing Algorithm

The parsing algorithm differs from the usual infix-to-postfix transformation

algorithm in its manner of using an intermediate push-down stack. The parsing

algorithm causes the input string to be scanned from left to right. Operands

encountered are placed on an Intermediate push-down stack. This is different

from algorithms which only produce Polish notation since they move operands

directly to the output string, but it is required since only complete subex-

pressions can be removed from the stack. The algorithm of Hanson, et. al.

produces a similar data structure, but achieves it by using Erchov's right-to-

left scan; consequently the entire expression must be input before processing.

Furthermore, more elements must be kept in the stack since operators of equal

precedence must be put onto the stack, hence a larger stack is required and

more time is spent clearing the stack using Hanson's algorithm. The algorithm

presented in this paper improves on the previous algorithm by using a left-to-

right scan which takes advantage of the normal left-to-right execution of opera-

tors of equal precedence to achieve more efficient storage management.

The SYDIF parsing algorithm is quite simple and can be described as follows.

Operands are placed directly in the intermediate stack. Operators are compared

using normal FORTRAN precedence with the operator nearest the top of the inter-

mediate stack. If the operator from the input string has precedence greater

than the precedence of the operator in the stack, the input operator is put

on top of the stack. The "(" always goes to the stack. If the precedence of

imiiip!iiii|iiiiuiij.Lii^Mijiu|i>*iiu,m>ii«pwji> i^.'MippiwVj;! II,| JU.ij.piwuiiimM.), iJ|WIWPiWI.JTiW<iipii.»!W'»fiiiy|»MiWiWJW'|.^i»!-tHii,-.^ .t!iiii|i,iiiii]j.iiiiii!..jfyi,ii!iiiimi|

the input operator is less or equal to that of the stack operator, the top

three entries are moved from the stack to the table of triples, with the top

operand moving to the right operand position. A new operand, representing the

branch of the tree where the triple was placed, is put on the top of the stack.

The input operator which caused the ejection from the stack is then compared

with the top operator remaining on the stack, and the process repeats until

the end of the expression is encountered. The end-of-expression symbol is of

equal precedence to the begin-expression symbol, both the lowest possible, hence

the stack is cleared. Errors in the syntax of the expression are easily recog-

nized by the parsing algorithm.

2.3 Differentiation Algorithm

The expression can be differentiated after being transformed into a tree-

structure because such a data structure specifies the order in which the opera-

tions are to be performed. The expression is differentiated in the same order

that it is evaluated; beginning with the first triple and proceeding sequentially

until the root is reached. The new "branches" of the tree representing the

derivatives of the expression are attached after the root of the tree.

Subexpressions to be differentiated are classified into categories according

to the types of the operands and operator. Each category of subexpression is

treated as if it were an assembly language macro-call, the macro expansion being

the partial derivative for that category of subexpressions. The parameters of

the macro-call are the triple being differentiated, its operands and operator,

the variable of differentiation, and pointers to the derivative of any reference

to preceeding subexpressions. Such pointers are required for derivatives of

some types of subexpressions because the chain rule of calculus requires that

 .-.. ^„- mtmäm ;:2^~i,:^ "^ivvr::~. ':L^ *:...■: L^-LI^J.^ aMgaBMBM—Mttai

-7-

the derivative of any line containing a reference to a preceedlng subexpression,

use the derivative of that subexpression in obtaining its own derivative.

This algorithm improves on the algorithm of Hanson, et. al. by recording

the actual derivative instead of a pointer to the derivative, if thai, derivative

is a single operand. By later referencing the actual derivative, approximately

ten percent of the subexpressions produced for second partial derivatives are

eliminated. Such a recording procedure also is a prerequisite for further

optimization.

2.4 Optimization Algorithm

The underlying purpose of the symbolic differentiation routine is the

production of efficient code for the evaluation of partial derivatives. Optimi-

zation actually starts with treating each line as a macro call, resulting in as

few lines being created as possible. Later specific optimization techniques

are applied, both as triples are being added to the tree, and again after the

entire expression or partial derivative is created as described below.

As each line is added the transitive and commutative properties of the

pairs of operators (+, -) and (*, /) are used to fold subexpressions such as

C *(R/C) into C- *R-, (where C. and C are constants and R is a reference to

a variable or previous triple and C = C./C^ is a new constant). C *R has a

simpler derivative than C *(R/C9) because the latter requires differentiation

of R/C«. Thus folding shortens both the expression being created and later

partial derivatives.

Redundant lines are removed after the entire expression or partial deriva-

tive is created. The SYDIF optimization algorithm compares each triple against

previous triples; if a match is found, the duplicate is removed and all later

nif niriiiiiMtHiiaMr— ■--■■• -^ ..--„J...,..„— ■ , ■■■■■'■miiiiaitiiitttuamiimmmmmt.^u ^^„^^

ii^M.iwi.uji.Mj.i^ia.ij»!!^^^ ,i - K'.mmLi. "'Vi\«i'mm!WH

int* ««M ■■«»»wP'i W)1? ~**m

V
-8-

references to the removed triple are changed to point to the first occurence of

the triple. The comparison process starts with the second triple heing checked

against the first and is completed when the subexpression at the root has been

compared against all the preceedlng ones. Triples which have operators + and *

are commuted for the test; special checks are made for cases such as (R + R) =

2 * R or (0 - R) = -1 * R by also checking for the alternate form.

Dead code elimination, (the final phase of optimization) consists of

purging superfluous subexpressions accumulated in creating expressions and their

partials. The algorithm recursively eliminates all triples not referenced

later, starting at the root of the tree. In the above example, once C *R is

created, there may be no later references to the triple R/C , implying that

the operation need not be present. Dead code elimination would remove the

triple R/C. from the tree.

3.0 Experimental Program Implementation

An experimental implementation of SYDIF has been coded in FORTRAN and is

being tested on the CDC 6600 at The University of Texas at Austin. This Imple-

mentation was written to interface with the Sequential Unconstrained Minimiza-

tion Technique (SUMT) of Flacco and McCormick [6], but is equally applicable

to any problem requiring partial derivatives or user-defined functions. The

user of this routine is ultimately interested in two aspects of the program:

how easy is it to use and how well does It work?

The authors' feel that users want a familiar, simple input form. The SYDIF

implementation allows users to input their functions in FORTRAN notation with

FORTRAN operators. Variables are XI through X100. Real constants In E-notation

are allowed, as are integers. Implied multiplication is allowed by inserting

the multiplication operator (*) for missing operators. Many other options were

■'- ■ ■■■■ -■- -"
-'--- ■- '•■' -' ■ '■ u i^.,.:.. ■■■■ ■ .^ ■.■„... „j..., ;,. ,;-,.■,'.■:.-L.,^f.

!!Wfc.wi!^W!»^.'i*-i«V»^^

-9-

also included In order to provide users with a natural means for expressing

functions.

The experimental program outputs optimized pseudo-machine code subprograms,

equivalent to symbolic partials, for all first and second partial derivatives

for each specified function. These representations can then be evaluated by

interpretation or they can be translated directly into machine code for direct

execution as a subprogram by a particular computer (see [7] pp. 342-3A7). The

accuracy of the partial derivatives produced is limited only by the accuracy

of the computer's floating point hardware and system functions. Computational

experience with the experimental Implementation of this code has exceeded the

original high expectations. The optimization not only produces more efficient

code for evaluation; but surprisingly, it also results in a faster differentia-

tion phase by eliminating many subexpressions of the original expression and

its first partial derivative that otherwise would have required differentiation.

The optimization also reduces data structure storage requirements (by over 80%

in some cases) that hamper Hanson's symbolic approach to differentiation, e.g.,

with no optimization, Hanson's algorithm for the differentiation of the expres-

sion (X1 + X-)**X_ gives 132 subexpressions for all first and second partial

derivatives (see Appendix A for this example). SYDIF with its optimization

left only 24 subexpressions to be evaluated (see Appendix B).

The experimental SYDIF program takes 40,000 words of memory on the CDC 6600.

T^st runs on a problem having thirty functions (of varying complexity) took only

LWO CPU seconds of processing to generate all first and second partial deriva-

tives. Currently a machine-Independent FORTRAN version Is being developed and

should be available soon.

 ■- - i ii imyaitMiiilMi at M,. i. - :_,^_ .^ ^..irH-^i',,-,. ,_ :.: . . :

Tin HI in m iii|i"i ! i-.. imxmvim'^is'^aiM'min. .■»i : ■■i'Ti>'i»!H« N ■■..■»». it i .miJui ■Ji - 'mm i IöI.M'» ■—WWIM '

-10-

4.0 Anolicatlon of SYDIF In Non-Linear Mathematical Progranwilng.

An enormous body of theoretical and computational research has been directed

at achieving efficient solution procedures for nonlinear programming problems of

the form:
Minimlzj F(x)

subject to:

g^x) £ 0, 1 = 1, I.

and h, (x) = 0, k = 1, ..., K.
k

Particularly powerful results have been obtained for the case In which the

problem functions are once-or twice-differentiable and where the function F(x)

and the set of points X satisfying the constraints are convex. This paper Is

not intended to provide a bibliography for nonlinear programming; see [8] for

references. Chapter 8 of [6] discusses the Sequential Unconstrained Minimiza-

tion Technique (SUMT) algorithm of Fiacco and McCormick, which is a procedure

both elegant and known to be effective from a computational viewpoint. A com-

puter program (in FORTRAN) implementing the SUMT algorithm is available from

the SHARE Library under distribution number SDA 3189 (see also [9]).

As can be seen from (1), the statement of a general nonlinear programming

problem requires one to specify the objective and constraint functions; there

are I + K + 1 such functions. In addition, many of the procedures for solving

(1), (e.g., SUMT, Zoutendljk, Newton, Davidon-Fletcher-Powell, etc.) use partial

derivatives of these functions with respect to each of the variables as well as

the Hessian (matrix of all possible mixed second partials) of each function;

even the simplest direct search methods require at leapt the ability to calculate

the values of the objective and constraint functions at arbitrary points.

SYDIF provides a user-oriented input capability and creates the tree struc-

ture for evaluating the original expression and all the partial derivatives.

iMi -i-■...■^■■^—^ ialMBMaaiirilMiriiiiiri
.;-,..■,.■,;.-.■..,.,. ^^j^g^^jgnmif. j^i^J-a^.-,....,.: ' ■--■ — ^.„Al,..^ .,-...t..-.^^

IU I I ■ I^^^^WW «I^P Wl ■ ' I »»■■»■■■L» l»II.HI..i 111 ■■]]■» 111.1 ■■■■■P.IWII.,! . MW.

-11-

The applications program "calls" evaluation programs, giving the routine a

vector of values for the variables and which function or which partials are to

be calculated. The triples for that expression or derivative are evaluated one

by one, starting with the first one. As the value of each triple is calculated,

that value is stored in an auxilary table. The entire process is simple and

fast. Running in such an interpretive mode, the interfaced version of SUMT

took only twice as long as when subroutines for partials derivative evaluation

were coded by hand. The turn around time and the human interaction were shortened

as expected; SYDIF took less than one tenth of the user's time.

Actual machine code for a particular computer could have been created, but

the authors feel that the portability of the machine-independent approach is

more important than complete efficiency, especially in the development stage.

Later versions producing direct machine code will produce code that takes less

execution time than is possible even with user-written routines.

5.0 Summary

It was necessary to look at the area of creating routines for first and

second partial derivatives because of the lack of a user-oriented interface

between mathematical progranuning codes requiring derivatives and Its users.

Symbolic differentiation was chosen because of the instability/computer problems

inherent in numerical differentiation techniques and the inability of numerical

methods to overcome the human problem of providing the user with a desirable

input format for his problem statement.

Having chosen the symbolic approach, parsing, differentiation, and code

optimization procedures were devised in order to improve upon the computer time

and storage requirements of early symbolic approaches [2]. These new procedures

were then computational compared against early approaches and found to be sub-

stantially better in both time and space requirements.

irirmmitimmmimamimi^uiu.M.H,,,,.,.,. ,. ,- .,.:«.--.....—,..■. ...^...^.^^ma^figii^
, ■.^i-vi....,, ^:._,....,:.;.,.,»i.^,.,_....;._;..«

■w JUJ'i'''JT'm',i)^w^y.iiwit»l|ii«'.»i.piiti»jKjMPiiT.l»liijiiii>i;i»|pTi^lgyr; , ^^^^•?^r-!™*^mv.wm*it*mv*m}r*mV,*V''mmt-"'r,rr;n'''rr-

-12-

A user-oriented front-end was added to the experimental symbolic differen-

tiation routine. Next this routine was interfaced with SUMT in an interpretive

mode and compared against SUMT solution tiue with hand-coded evaluation subroutines.

Running in an interpretive mode the SUMT version took only twice the computer

time and reduced the user interaction time 90%. If the user finds the increase

in execution time to be prohibitive, a non-interpretive (or direct executing)

version could easily be written for a particular computer.

MM* » mttttMitiimitimimm ,., ■^-^..J.^.L-:..-.>/.. ..v- ■■,. ..:■■ -

■P ßm* ' -LP" f A.. I HI l||IL, | . WW" ■- P Jl 'Mil tl, V-U.1 > 'PA 11 '1 I, ■fll» V U!R J7M(l"|»,V'l'"ff ^'fff'!W"lH1-l»^wm^"'- " ■n^-^—-'.-;-T"r.^.^,.. r..T^T_,T-:„v.. «WWWlMJl"IIW,l",'",'i»Wl i^i»71.7:rwti^»a'.T^,*i:'T';'''''T"w';^"*v""" ■«"'"-■"TVTn^^-^'p^Twwpii"« 'KiM

-13-

REFERENCES

1. Nolan, J. F., Analytical Differentiation on a Digital Computer Mass.
Inst. Technology (Kay, 1953).

?. Hanson, J. W., J. S. Caviness, and C. Joseph, "Analytic Differentiation
by Computer" Comm. A.C.M. June 19^)2, pp. 3^9-35^.

3. Erchov, G.P. Programming Program for the BESM Computer, Translated
by M. Nadler, Pergamon Press, London, (1959)' ~

h. Watson, Philipson, and Gates, Numerical Analysis, The Mathematics of
Computing vol. 2, Ch. 'j pp. 102-114. Edward Arnold Ltd. London I969.

'j. Butler and Kerr, ^ß Introduction to Numerical Methods. Ch. 5, pp.213-225,
Sir Isaac Pitman and Sons, Ltd. London (1962).

p. Kiacco, A.V., and G. P. McCormick, Nonlinear Programming: Sequential
Unconstrained Minimization Techniques, John Wiley and Sons, Inc.
New York (19^0).

('. Gries, David Compiler Construction for Digital Computers. John Wiley
and Sons, Inc. New York (1971).

8. Himmilblau, David M. Applied Nonlinear Programming McGraw-Hill, Inc.
New York (1972).

9. Mylander, W. C., R.L. Holmes, and G.P. McCormick, "A Guide to SUMT--
Version h" RAC-P-63, Research Analysis Corp. (1971).

,-..■.,.-,...,. ...,,Mi..^.i.-J^^J_kJ.-..i.J.,.....,t,.>....v.....:.......^.i,1.Ai_ „.^.i.....^.,,,.^.^ L.rfiiiwirir.-t.iii»iiaiiiaMiiMiiiiiiitiiaigii.

^■IJPIM^ w 'ff'Whw.ffwpy.wfwvj.u'mwwwmw^w^mv^mi}* - ^'"^^^^^^^m^^^rv!^^^ ■—Tn-VT^i'-JTrprwiw rr-TTt^il

-14-

Appendix A:

Example of code produced by basic diflerentiation algorithm

without optimization

function: (x^ + Xg) **
^

note: 1 refers to the previous line numbered k

T, the Table of Triples

(1) Xl + X
2 '

(2) L. »*xs

(3) I.J + 0.0J ÖL^/öx

W x - 1.0

(5) Ll ** h äL;i/ax1

(6) s*s
(7) h * \ .
(8) 0.0 + 0.0 ÖL3/dx1

: (9) 0.0 + 0.0

(10) L^ - 1.0 "

(n) Li ** Lio
(12) L3'Li.

dLy'ax-L
(13) L12 X Lll w LOG (L1)

(15) vs
(16) Ll5 * Lu
(17) L16 + L13
(18) L8*x5 öL/ax
(19) L18 * h '

D *■

(20) hi * h ÖL /öx1

(*1)
1

dF

L20 + L19

ä2F
Line T

^1
Line 2 L =

öx x^.
l

1 2

D, the derivitive pointers

17
J18

^21

lillfai*J'J^^*'J^M^''"-''~"*"-''-""-" "-'• • MaaBMaMBi -iiTn'ia'i-"

ivmmwm'i"t'!"W>,i ■•>>! • •'^"•'•'•vrr!rr1w*"*Tr~^'-"*Tr'r:~-r jajfflQai |L •nnjj: i «wi 7^»rj"^»»r7niT"''Mr,i»fw.'>rT wwfgQW ,*rw,'*'xr?-~y • ■^i-"

r«»»

-15-

Assuming A. „ has been output, it begins at line 8

(1) Xl+X2

(2) Ll 5

(3) l.C + 0.0

CO X5
- 1.0

(5) h **h

(6) h *X5

(7) h' L5

(8) 0.0 + 1 1 a^/axg

(9) xs - 1.0 'l

(10) L1**L9
(11) Lfl* x5 1

öLg/axg

(12) Lll * L10 .1
(13) 0.0 + 0.0 aL3/^x2

(1^0 0.0 + 0.0 äL2/öx2

(15) h - 1.0 ^

Ll^
(16) l^**

(17) h x L
ll

(18) L1T *L1<. • ÖL10/ö X2
(19) LOG (L,)
(20) Lh *s
(21) LX> *h9
(22) L21 ^IB
(23) Ll^ *»5 äL8/ax2

(24) Loo * L. ^
23 5

(25)
^ *L6 aLT/ax2

(26)
l
25

+ L2i+)

J12

13

u22

J22

J26

ÖL,

3X,
is required hence the original
function must be differentiate i
with respect to Xp

i

The above code is sufficient for this example. The following

siunmarizea the numbers of additional lines generated lor all partial

derivatives;

iliiiiiteliftiMii..iii f'i ii ■■■—--■-'-■■■■ tiniati i inn i i ■ ■■■■■■ ^--.■...—.iw-i i irj liMiilBi'iili.miftifclrtT['iriirriMn'

irnmrmmmmm'mm i*!""'*"*'*" mmm^^inmm.tyimm^mmmm'mMmwmtLmwnwviui.ii. "'.'-, .niun. 11,. n imwimrn

Function

-16-

Number of lines

^ixi

ax1x5

JL.

2

5

lit

18

23

X2X2

äx2x5

li+

23

8

agF

^x5

20

TOTAL 132 line fj required

,,., t..i...^...-^,.^.V—^»^ ■11 1 in-'■•■ ■■"i n-iMiirii t mill i-1 •

^mwmmfwm ww^mmmnm. ipwwwwwpgww mffwwpBiiiiiwif WBWW •■■>.'--vmvw. vnm n«

-17-

Appendix B

derivative code with optimization (All partials shown)

(1) X1+X?

(2) h xx x.)
(3)

(5)

s-1
L

l ^ L3
'

((0 X, + (-2.0) N

(?) L1 ** L6

(B) L7*L3

(9) X^L8
M

(10)

(11)

(12)

(13)

W
(1?)

(16)

(10

(18)

(19)

(20)

(21)

(22)

(23)

(24)

LOG (1^)

Lw*h

S * Lii
h + Li2
Xr - 1,

Ll ** hk
L15 * S

S * L17
L10 * L15

h * L19
L15 + L20

]

Log (Lj

] 22 J L2 * L,

L22 * L23
)

ax.

öxixi

X5(X1 + X2)
X5 " 1

(x1 + x2)
x5'2(x5-i)x^

2

»l^

n value of L
9

Log (X1 + X2) (X1 + X2)
X5'1

+ Log (X^ X2)X5-1

,f- = X^X, + x2)
x
5

2

Xc-1

ax2x2

ax2x5

^T " Lo8 (Xl + X2) ' (Xl + X2)X5

»fip

ax5x5
Log (X! + Xg) Log (X1+ X2) iXi+ X2)X^

