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LARGE DEFLECTIONS OF THIN ELASTIC PLATES 

V. V. Nekhotyaev and A. V. Sachenkov 

The wirte application of thln-walled constructions, elements 

of which are plates of different configurations, requires the 

development of theoretical and experimental methods of their 

calculation with deflections, comparable with the thickness. 

In the article is given a summary of the main scarce works, 

dedicated to the study of large deflections of plates, subjected 

to the action of evenly distributed transverse load. In mathemati- 

cal relation these problems are reduced to the solution of Karman 

nonlinear equations, the precise solution of which is known only 

for an evenly loaded circular plate with restrained contour.  This 

solution, given by Way, is given in [5]. 

Other problems about large deflections of plates, which are 

examined by the authors of the works given in the bibliography, 

are solved, as a rule, by known approximation methods. The result?, 

obtained on the basis of these methods almost always give good 

agreement with the available experimental results. This suggests 

the possibility of the effective use of the theoretical-experi- 

mental method for the solution of similar problems.  In accordance 

with this in the last paragraph of the article there are provided 

the results of the experimental study carried out by the authors 
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of the large deflections of free rectangular and parallelogram 

plates under the action of uniform transverse load. The results 

are illustrated by graphs. 

In the conclusion of the article we focus attention on the 

need for the advisable and economically substantiated application 

of different methods of solution of the problems. It is completely 

clear that there is an essential difference in whether that or 

another problem is Implemented during several days, months, etc., 

or an uncontrolled large time interval is expended for its 

solution. 

Therefore the problem of the substantiation of the application 

of one method or the other, the problem of the comparison of the 

possibilities of mathematical and physical experiments are an 

exceptionally urgent problem, since it is connected with the 

question concerning the rise of productivity of labor. 

Designations: 

h - thickness of plate; 

a, b - sides of rectangular plate; 

x, y, z - Cartesian coordinate system; 

q - intensity of transverse load; 

u, v - displacement of points of the middle surface 
of the plate; along axes x, y respectively; 

W - deflection of arbitrary point of the middle 
surface; 

f - deflection; 

o    i  o  - normal stresses in the middle surface of the 
tjn  y   pi.ate or shell along lines x, y; 

T - tangential stresses in the middle surface; 

axM* ayM - normal stresses, which correspond to the 
bending moments; 

TM - tangential stress, which corresponds to 

torque; 
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*Eh3/12(l-u2) - 
A 

Eh 

Wg^f/h 

E - elastic modulus of material; 

p - Polsson ratio; 

cylindrical rigidity; 

relationship of sides of the plate; 

ob' 
Eh 

Vlm^lH 

- dlmenslonles.'^ parameter of load; 

- parameter of deflection In the center; 

- parameter of stress; 

- total stress, where l^x, y. 

§ 1. Rectangular plates 

The state of the question concerning large deflections of 

rectangular plates under the action of uniform transverse load 

is sufficiently fully reflected in [1, 51. Concerning the 

historical side of the question it should be noted that the first 

work, connected with the study of powerful cylindrical bending 

of a long band (plate), belongs to Russian naval engineer 

I. G. Bubnov. The solution of this problem is precise and is 

given in the mentioned works [1, 5]. For plates with finite 

relationship of sides there are no mathematically precise solutions. 

The common methods of solution of these problems are varlational 

methods, finite-difference and the method of collocation, the 

last of which began to be widely applied in connection with the 

implementation of calculation by electronic digital computer into 

practice. 

In [1] the problem of bending of rectangular plate is solved 

by A. Feppl's method of "imposition" of solutions for rigid and 

absolutely flexible plates. Special attention in this case is 

given to the case of hinged supported square plate with fixed 

edges, whereupon it is considered that the edges of the plate 

remain rectilinear in the process of deformation. 

FTD-MT-24-355-7i} 

l..'.*jJtTi3iÜ)jil.it ij-^lini.:.;i.ii^turtj&'iv.jf -.ir^«i^^Ca.Mufiili^MjitJlBJJ^ i^äÜjiB^-t: ■■:.■.■-^-y-x.^-m. ,.  .-^„^.W.. 



The expression for deflection I? selected In the form of 

double trigonometric series: 

or 

W' =  /.,sin —-«in-■- -■--/,;sin — •"in~ 

2rjr ~v 
+ /..1sln ?ln-r,-. 
'a o 

^= S S /'-'•sinT-s,nT 

(1) 

f  - are Independent indeterminate parameters. 

Each of the terms of this series satisfies the boundary 

conditions of hinged support. Naturally, the solution of the 

problem is more precise, the more terms of the series that are 

kept. However the obtaining of refined results in comparison with 

the case where deflection is selected in the first approximation. 

1^=/,,. sin —-sings 
a b 

(2) 

is quite difficult, since instead of one cubic equation it is 

necessary to deal with a system of cubic equations, the number 

of which is equal to the number of approximations. 

The solution of the problem is somewhat facilitated in the 

case of a square plate, since in view of the symmetry of the bent 

surface the number of equations is decreased. 

a) Square plate with freely shifting edges. 

As computations showed, the account of additional terms in 

(1) introduces insignificant correction with respect to the first 

approximation. For example, with q*«500 the additional coefficient 

greatest in value f^fo! Is 7%  of the main f11, and the remaining 

coefficients do not exceed 3%.     The selection of the expression 

for deflection in the form (1) is explained by the fact that the 
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curvature of the bent surface of the plate in the central part 

is less than the curvature calculated according to the first 

approximation (2). With increase of the load the curvature of the 

central part is gradually decreased. Figure 1 gives the graph of 

':he dependence of dimensionless parameters of deflection in the 

center of the plate, where curve 1 represents the first approxi- 

mation, curve 2 - the refined solution, the shaded part - the 

region of experimental values for plates with bending edges. 

The observed disagreements of theory and experiment are 

explained by the fact that in the theoretical solution the edges 

of the plate remain rectilinear in the process of deformation, and 

in the experiment the edges of plates could be bent in the plane 

of the supporting contour. This is confirmed by the theoretical 

solution of R. Kaiser, pertaining to the case of freely bending 

edges [22]. 

In figure 1 with q*=117 and W*=2.5 this solution is marked by 

point 3. 

The graphs of deflection-stress dependences in the middle 

surface (membrane stresses) and deflection-bending stress are 

given in figures 2-3, from which it is evident that in the case 

of the first approximation (curves 1) stresses in the middle 

surface reach maximum in the center of the plate (elongation 

along axes x and y) and at the corner (compression in both 

directions), where the absolute values of stresses at these points 

are identical. From the results of the refined solution (curves 2) 

it Is evident that the stress in the cor-ner increases with increase 

of the deflection somewhat faster than in the center. 

From graphs it follows that the dangerous zone with small 

deflections is located in the center of the plate, and with large - 

in the corner.  Data of experiment confirm this. Further the 

problem is examined for the case where the edges of the plate 
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cannot be brought together. Figure ^4-6 gives the graphs of 

dependence:  defleccion-load, deflection-stress of middle surface 

and deflection-bending stress. 

From these graphs it is evident that in this caae with largo 

deflections (W0>1.7) the stresses in the corner of the plate 

become dangerous.  With certain load, the stresses in the middle 

surface of the plate with restrained edges are considerably more 

than in the case of free edges. 
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b) rectangular plate with restrained edges. 

Here It Is assumed, as In the case of hinged support, that 

the edges of the plate remain rectilinear in the process of 

deformation. 

Deflection in the first approximation is selected in the 

form: 

where 

Uv = /• sisr z-vshr'-' 3y, 

fl '  '   b 

(3) 

This leads to satisfactory results during the determination of 

deflection of the plate.  However, this expression poorly covers 

the true character of the bent surface, particularly for restrained 

edges.  Therefore for the restrained plate it was suggested to 

retain the scheme of solution for hinged support. The expression 

for deflection is presented in form (1). The effect of reaction 

moments is covered by the addition to a prescribed uniform load 

of some fictitious load, distributed at the edges of the plate. 

The additional load is represented by trigonometric series. 



The obtained results are given in figures 7, 8, 9, where dotted 

curves 1 represent the first approximation, and solid 2 - the 

refined solution. Moreover two ca:es of restraint are examined - 

slldlnf, and rigid. 

As we see from the graph, the bending stresses in the center 

are determined already in the first approximation quite well, and 

the stresses in the middle of the side in the direction perpen- 

dicular to the edge turn out to be highly underestimated. This 

Is explained by the fact that with increase of deflection the 

curvature of the section of the plate at the edges increases, and 

in the center soimwhat drops.  It is obvious that for a rectangular 

plate the stresses in the middle of the long side reach the yield 

point the earliest.  In this case there occurs partial break of 

the plate at the edges.  Subsequently the plate should work with 

restraint on the edges close to hinged support. This is confirmed 

by experimental data. Although the expression for deflection (3) 

does not correspond to the true shape of the bent surface, the 

obtained calculated equation leads, as is evident from figure 10, 

to reliable results even with very large deflections.  In this 

figure the small circles note the results of the experiment with 

square duralumin plate, whose deflections reachea I2h. 

Work [5] gives the solution, arrived at by the energy method, 

for restrained plate. 

The numerical values of all parameters were calculated for 

different intensities of load q and different ratios of the sides 

of the plate - namely for b/a=l, 2/3, 1/2 with y=0.3.  These results 

are Illustrated in figure 11 by graphs of dependence load-deflection, 

By the addition of membrane stresses and bending stresses we 

obtain combined (or total) stresses.  The maximum values of these 

stresses appear in the middle of the long sides.  Data on them 

are given in figure 12. 
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In works [2], [3], 1^1  for the solution of problems about 

large deflections of rectangular plates there is applied the 

finite-difference method or the grid method. The solution of 

nonlinear problems by this method leads to systems of nonlinear 

difference equations, of comparatively high order. The solution 

of such systems by manual means is an extremely laborious matter. 

Therefore in the examination of nonlinear problems earlier, before 

the implementation of ETsVM [3UBM - Electronic digital computer], 

preference was given to variational methods, mainly, the methods 

i'kJit-lÜtejSiK^viwi&feiv,^ 



of Ritz, Ritz-Papkovich and Bubnov-Galerkln, since these methods 

with successfully selected approxlrating functions permit belnf. 

11mlced to a smaller quantity of unknown parameters and are reduced 

to systems of nonlinear equations of lower order. 
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However with the development of computer technology the position 

Is changed.  Since during the solution of nonlinear problems by 

the finite-difference method the preparatory time for machine 

calculation is minimal in comparison with other methods, in this 

sense the grid method is the most commonly used at present. 

In work [4] there is applied a modification of the finite- 

difference method, so-called finite-difference method of increased 

accuracy. 

With the aid of this method (calculation was performed on ETsVM 

Strela ) results were obtained for flexible rectangular plates with 

hinged edges, and also for the case of two restrained and two 

others hinged and for rigid restraint of edges.  Here we give 

results only for evenly distributed load q. 

a) Hinged attachment of edges.  Figures 13-14 give the graphs 

of the basic dependences, obtained by the finite-difference method 
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of Increased accuracy. For a square plate the solution by this 

method well agrees with the known solution of S. Levy, provided 

in work [1].  In figure 15 the dotted curve 2 depicts the Levy 

solution, and solid 1 - solution by this method. 

Disagreement in the amount of deflection in the center is 

less than 1$, and in the amount of maximum total stresses approxi- 

mately 3?. This disagreement is explained by some difference in 

boundary conditions. 

b) Rigid restraint of edges.  Figure 16 gives the results 

obtained with the aid of the finite-difference method of increased 

accuracy for different ratios of sides. Results given in figures 

17-19 also well agree with previously known solutions, for example, 

with the solution of S. Levy [1].  In figures the Levy solution 

is represented by dotted line 2, and solid line 1 - the solution 

obtained by this method. With q*=400 the disagreement in the 

amount of deflection in the center is 3 •75?, and in the amount of 

total stresses on the edge, at point B with W0=1.6 - approximately 

35S. 
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c) Case of combined boundary conditions.  1. Long edges 

are restrained," short are hinged.  2.  Long are hinged, short are 

restrained. 

Figures 20-21 give the graphs of dependences load-deflection 

for cases 1 and 2 with different ratios of sides X. 
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The solutions are obtained also with the aid of the finite- 

difference method of increased accuracy. 

In figure 22 for a square plate there is given a graphic 

comparison of results for three types of boundary conditions, 

obtained by the same method.  Curve 1 in this case corresponds 

to hinged attachment, curve 2 - combined and curve 3 - to rigid 

attachment. 
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It is noted that for a certair. initial ran^e of loading the 

difference in the method of attachr.ent of edges is substantially 

reflected on the amount of deflection in the center. 

With further Increase of the Intensity of lead membrane 

stresses begin to play an Increasingly larger role and the differ- 

ence in the metnods of attachment of edges will affect deflection 

less. 

In work [3] there Is examined the problem of large deflections 

of rectangular plates, supported on flexible nonstretunable edges, 

under the action of loads c** different type. The solution is 

conducted by the method described in [4],  Computations are done 

on ETsVM "Strela". Here we record results only for case q=const. 

Table 1 gives the results of computation for different ratios 

of sides of the plate A. 

Figures 23-24 depict the relationships between the parameters 

of maximum deflection and loadj and also the maximum total stress 

in the center of the plate and loau for A=l, 0.5. 
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Curves 1 correspond to data of table 1, curves 2 - to the 

solution obtained by the energy method, curves 3 - to the solution 

by the Bubnov-Galerkin method. There is noted good agreement of 

results.  In work [2], Just as in C^], for the solution of problems 

an EVM [BBM - Electronic computer] is utilized. Fundamental 

equations and boundary conditions are represented in finite 

differences. The solution is done by successive approximations. 

The effect of grid spacing on the results of computations is 

studied. Tables and graphs are given, which contain the amounts 

of deflections, stresses in the middle surface and bending 

stresses at some characteristic points. The obtained data are 

compared with the results of solutions of the same problems by 

other methods. 

§ 2. Circular and semicircular plates 

To the designations, taken in the previous paragraph, let us 

add the following: 

r - radius of plate; a  - radial bending stress, a      - 

radial membrane stresses. 

Let us give some results on the study of large deflections 

of a circular plate, which is under the action of an evenly 

distributed load. 

In work [15] the precise solution is given for evenly loaded 

circular plate with restrained outline. For the solution of this 

problem S. Way used power series. 

In literature the greatest number of solutions is devoted to 

the problem of large deflections of evenly loaded circular plate 

with rigidly restrained edges.  Part of these solutions, done by 

the perturbation method, is given in [6]. 

15 



In [^J] this problem is solved by the finite-difference 

method of Increased accuracy and by the collocntlon method. 

Moreover It Is shown that the solution by the collocation method, 

taking into account "equivalent correction" can virtually be 

considered as precise, and Its agreement with the solution in 

finite differences confirms the reliability of the latter. 

Figures 25-26 give graphic comparison of the solutions 

presented in [4] and [6]. The solid curve on the graphs indicates 

the solution by the finite-difference and collocation method, 

and dotted curves are obtained by the perturbation method. 

The error of solution, obtained in [6], with dimenslonless 

parameter of deflection in the center of the plate W0=1.2 becomes 

especially considerable when determining the stresses, which is 

evident from the graph in figure 26, where stress-deflection 

curves are depicted.  For example, according to [6] the bending 

stress in the center with wj>2.'4 becomes negative. This explicit 

nonconformity with reality was noted by A. S. Vol'mir in [1]. 

Further, according to [6] beginning with wj=2.8 the membrane 

stresses on the edge become greater than in the center, which 

also contradicts other solutions. 

0  10    ZO     30     40    so 
Figure 25 
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Figure 26 
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Satisfactory results during tie solution of these problems 

are given by the energy method, used by S. P. Timoshenko and 

described in 151- 

Some experimental data for circular plates are given in [16]. 

The relationship between the deflection of restrained duralumin 

plates and load is depicted on figure 27. Curve 1 in this figure 

represents the first approximation by the perturbation method, 

2 - refined solution by this same method, 3 - refined solution of 

Nadai, obtained in [19].  The points in figure 27 mark the data 

of experiment for a duralumin plate with thickness h=0.76 mm, the 

blackened point is in the plastic deformation area. 
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Figure 28 

Let us note that the refined solutions will somewhat depart 

from experimental data.  This Is explained by the fact that In 

the experiment there Is observed some slippage of the plate along 

the edge, which appears with considerable loads. 

In [7] there Is solved the problem of large deflections of a 

semicircular plate, restrained along the maximum diameter, under 

uniform load. The approximate equations, which the author uses, 

were derived by Berger in his work [8]. Figure 28 gives the graph 

of relationship load-maximum deflection. 
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S 3. Parallelogram plates 

Let us introduce additional designations:  a, ß - oblique- 

angled coordinates; 6 - bevel angle of plate; C,n - dimenslonless 

oblique-angled coordinates; 2a, 2b - sides of plate along 

axes o, B respectively. 

Unlike the circular and rectangular plates the elastic 

behavior of these plates is completely insufficiently investigated 

as a result of the complexity of the mathematical model. For 

calculation of oblique-angled plates with restrained edges with 

large deflections in [11] there is applied a simple and quite 

precise method, based on the use of a small parameter. The 

presentation of this method can be found in [1] and [13]. 

Calculation was done by ETsVM.  The computations were done 

with accuracy to 16 significant digits.  The obtained results are 

represented in the form of graphs for different ratios of sides 

and bevel angles. Figures 29-31 give the graphs of dependences 

of the dimenslonless parameter of load and dimenslonless parameter 

of deflection for X=0.5, 0.66, 1. 

is?     f'c     tso    etc    vto   30v 
Figure  29 

0.        50      iOO      ISO     SCO    &A    JÜO 

Figure 30 
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The polsson ratio was taken 

as y«0.333. In these figures the 

points designate the results of 

Way [21] and comparison Is given 

with the solution obtained by the 

perturbation method for e»0. 

Good agreement of theoretical 

and experimental results Is re- 

vealed for all the examined ratios 

of the sides of the plate with 

small, and also with large deflec- 

tions. The difference, by 

affirmation of the authors, does not exceed 5%  for X«l and q»=200. 

This, although Insignificant disagreement, the authors explain 

by the fact that the accepted expressions for displacement com- 

ponents u, v, w reflect only the polar symmetry, whereas for a 

rectangular plate there is required satisfaction of the condition 

of square symmetry. The effect of the difference of symmetry on 

the behavior of the plate under load is apparently strengthened 

with increase of the ratio of sides. 

Figure 31 

Further it is noted that the effect of nonlinear terms on 

deflection is decreased with increase of the bevel angle. 

Thus, for any value of the ratio of sides of the plate the 

curves of large deflections develop a tendency toward trans- 

formation into linear functions with large bevel angles. 

Figures 32-37 for different X show a change of the greatest 

principal stresses in the center of the plate (32-34) and at the 

edge - at point A (35-36, 37), where the solid line corresponds 

to bending stress, broken line - membrane and points designate 

the results of Way [21].  In the limiting case with 9-0 and for 

all the examined ratios of sides of the plates the bending 
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Figure 35 

stresses on the edges well agree with the resultr. of Way. Howover, 

Way's values of the corresponding boundary membrane stresses are 

30%  higher.  This nonconformity is explained partially by the 

form of approximation li Way's "energy" solution, which Timoshenko 

also Indicates [53. This is partially explained also by the 
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Figure 37 

difference in the character of symmetry for problems of oblique- 

angled and rectangular plates. 

From the analysis of graphic data it follows that the greatest 

total stress appears at the point of the edge of the larger side 

of the plate, where this noint is shifted toward an obtuse angle. 

Stress in this case incre^>es with increase of the bevel angle. 

The latter is also valid with respect to membrane stresses on the 

edges and in the center of the plate; however, they react quite 

weakly to a change of the ratio of sides. 

For any geometry of the plate the membrane stresses in the 

center invariably prove to be greater than the same stresses which 

act on the edges.  But their value all the same is low in comparison 

with the greatest total stress, which appears at the edge of the 

plate. 
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§ 4. Elliptical plates 

Works [12], [1*1] are dedicated to the study of large 

deflections of restrained elliptical plates of constant thickness. 

In [IM] this problem is solved by Ritz's method, where there 

are examined limiting cases of an elliptical plate - circular 

plate and infinite band, for which precise solutions are known. 

Maximum deflections, as total stresses in the center and on the 

edge, decrease in proportion to transfer from the band through 

the ellipse to the circular plate, considering the width of the 

plates constant (figure 38). In this figure the solid curves are 

obtained by Ritz's method, dot-dash correspond to precise solution. 

It Is established that the relationship between the boundary 

stress on semimlnor axis (maximum stresses in the plate) and the 

central deflection in practice does not depend on the proportions 

of the elliptical plate.  Consequently, the maximum total stress 

can be determined from one curve for this load on an elliptical 

plate of arbitrary dimensions, if deflection in the center is 

known (figure 39). 

Of 
'/5 ifi-tftT? 'MT& 

Figure 39 

In this figure the blackened point marks the result for a circle, 

points - results for Infinite band, triangle - for an ellipse 
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with ratio of semi-axes a/b^l/Z, and for ellipse a/b«2/3 - 

asterisks. Figures UO-^l give the graphs of relationships 

between the dimensionless parameter of load and the total 

dimenslonless stress in the center and on the edge respectively. 

Stress on the edge turns out to be the greatest in this case. 

Figure 40 

10    i* i/i   IG O    t    4     6    *    fO  &   f*   IS 
Figure ^l 

In [12] there was applied the small parameter method or 

Poincare's perturbation method for solution of the problem of 

large deflections of an elliptical plate with ratio of semi-axes 

a/b=l/2. Figure 32 gives the comparison of experimental results 

(they are designated by small circles), with the results of [11] 

(dot-and-dash line) and [12] (solid line). The difference of the 

theoretical results from experimental is explained here by some 

difference in boundary conditions, since in the experiment it 

is not possible to create absolutely rigid restraint. 

Figure 43 gives the same graphic comparison of results for 

boundary stresses on the semiminor axis of ellipse. Here the 

dot-dash curve represents the results of work [14], and solid - 

the results of work [12]. 
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Figure ^»3 

§ 5- Trapezoidal plates 

Designations; 

b - height of trapezoid; a - half the lower base; c - half 

the upper base; 0 - bevel angle of trapezoid; Y=fh X=^ - dimen- 

sionless parameters; W^-Hgai _ dimensionless parameter of 

maximum deflection. 

Prom the studies of the elastic behavior of trapezoidal 

plates under the action of uniform transverse pressure the work 

[9], dedicated to the practical method of calculation of plates 

and mildly sloping shells supported on trapezoidal or triangular 

layout, deserves attention. For the solution of this problem in 

the article there is utilized the method of successive loadings, 

proposed in 1958 by Prof. V. Z. Vlasov.  However, the function 

of deflections taken in this solution, which corresponds to the 

elastic line of a beam with restrained ends, can give satisfactory 

results only for trapezoidal plates, close to rectangular. 

Furthermore the calculation is done only for the case of sliding 

restraint, usuall" difficultly realized in practice. 

Because of this in work [20] for this problem it is proposed 

to use the energy method.  Here there is given a practical example 

of calculation of a plate, for which y=0.3, e»30o, Y»0.25. 
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The results are given In the form of a graph for dlmenslonless 

parameter of load and dlmenslonless parameter of deflection In 

Figure kk. 
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Figure 41 

§ 6.  Experimental study of large 
deflections of freely supported 
rectangular and parallelogram plates 

The short survey of works, done In the previous paragraphs, 

makes it possible to formulate the following conclusions. 

1.  In essence the theoretical studies of large deflections 

of flat plates, made until recently, are scarce and they all, 

even with the active use of contemporary computer technology, 

are connected with the production of very laborious computational 

work. This developed the nature of these problems. Therefore 

the authors for the most part during solution are limited 

predominantly to some one form of restraint of the plate, assuming 

in this case that the deflections do not exceed two-three 

thicknesses. 

25 

'4b-^«t&L&&' £iÖfc> .'J&k 
^t^,»: -■ ■ ■■•'-■-■-•■^■■-^""^-'tir^tiilitffeit 



!:■ 

2. Of all the types of flat plates, which are under the 

action of transverse load, at present the rectangular plate is 

the most examined.  However, even here the question concerning the 

effect of boundary conditions remains not entirely investigated. 

3-  Up to now the problems of large deflections of orthotropic 

(or generally anlsotropic) plates remain not studied. 

4. The experimental works available in literature on flat 

plates are also scarce, whereupon in essence in all works the role 

of experiment is auxiliary, checkout with respect to theory. The 

comparative data of theory and experiment, provided by different 

authors usually, as a rule, will agree with each other. This is 

explained by the fact that in experiment with flat plates it is 

comparatively easy to eliminate the reasons which cause its 

antagonism with theory. These reasons should include two - 

nonconformity of theoretical boundary conditions with the condi- 

tions in the experiment and, finally, initial imperfections. By 

virtue of this the thought about the use of experiment with flat 

plates as an active means of the solution of mathematically 

formulated problems Is natural.  The question concerning the 

application of this, so-called theoretical-experimental method, 

to flat plates was considered in article [23]. 

In this article it was shown that with uniform boundary 

conditions and fixed Po.-'sson ratio in the experiment with plates 

there is required the observence only of conditions of geometric 

similarity of the model and, nature.  The volume of the experiment 

in this case, necessary for solution of the problem, of the 

solution valid in the entire range of change of the basic geometric 

parameters of the plate, turns out to be minimum, and the experi- 

ment Itself easily realizable in practice. 
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This fact makes the physical experiment not only competitive with 

mathematical, but often a more powerful and movo  oconomloal moann 

of solution of the problems. The clarification of this queatlon 

has Important value. 

In accordance with the conclusions of the mentioned article 

[23] we have made an experimental study of the bending of freely 

supported rectangular and parallelogram plates under the action 

of uniform transverse load. In this paragraph a short description 

of It Is given and the results are In the form of graphs. 

In the laboratory of the mechanics of shells of KGÜ [Hfy - 

Kazan1 State University 1m. V. I. Ul'yanov (Lenin)] there were 

tested rectangular plates with ratio of sides X=l, 1.5, 2.5 and 

parallelogram plates with X=l, 1.5, 2 for different bevel angles 

6=30°, 45°, 60°. 

The plates were manufactured from material of brand D16AT 
6     2 

E^O.T'IO kg/cm , y=0.33. The thickness of the plates was measured 

by a vertical optical range finder IZV-2, There were tested 

rectangular plates of thickness h=0.96 mm, and parallelogram 

h=0.493 mm. Deflection In the center was eliminated with the 

aid of a dial indicator with scale graduation 0.01 mm. Pressure 

was measured with the aid of a specimen vacuum gauge with scale 
p 

graduation 0.01 kg/cm . 

For rectangular plates the results are given in the form of 

graphs in figures ^5-^6. The points designate the results of 

experiment. 

Figure ^5 for X=l gives comparison of the results of our 

experiment with the experimental data given in [22], The blackened 

point in this figure corresponds to the Kaiser theoretical solution, 

which was mentioned in § 1. The agreement of theoretical result 

with experimental attests to the satisfactory conformity of the 

experimentally realizable boundary conditions with theoretical. 
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By the way, the establishment of this type of conformity is the 

basic difficulty of the experiment with plates, since in a 

technical respect usually the elimination of the effect of initial 

inaccuracies does not present great difficulties. 

Figures 47-49 give the results of experiment for parallelogram 

plates. The points in these figures mark the results of experi- 

ment.  In this case in the expression for q», as in § 3, b - half 

of the smaller side.  The effect of the edges of the plate, 

protruding above the support, on deflection was investigated. 

The case was examined where X=l, 6=60°.  Relative width of the 

protruding edges was taken equal to X1=l1Ai=»3.04 with Z1=1.5 mm 

and X1=Z1/h=5.06 with 1^2.5  mm. 
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Figure ^9 

In the experiment there was compared the value of maximum 

deflections with identical loads. The results in the second case 

turned out to be 1.5-2%  understated in comparison with the first. 
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