] AD-783 047

LARGE DEFLECTIONS OF THIN ELASTIC 3
PLATES

V. V. Nekhotyaev, et al

Foreign Technology Division
Wright-Patterson Air Force Base, Oh’y

25 June 1974

S Ak s et g e b e

DISTRIBUTED BY:

)
National Technical Information Service

U. S. DEPARTMENT OF COMMERCE
5285 Poit Royal Road, Springfield Va. 72151




i

DOCUMENT CONTROL DATA-R & D

(Secwrity clsssiticetion of tithe, Sody of asbewe-' and ling ennoletian myst bo enieved when the everell is claseld
1. ORIGINATING ACTIVITY (C ) 28. AEPOAY SECURITY CLASIPICAYION

Foreign Technology Division UNCLASSIFIED
Air Force Systems Command
U. S. Air Force

3- AEPOAY TITLE

LARGE DEFLECTIONS OF THIN ELASTIC PLATES

4. CESCRIPTIVE NOTES (Type of repert and inciueive detes)
Translation

o aU oo (Piret name, midlie Iltial. 1oot nams)
V. V. Nekhotyaev and A. V. Sachenkov

8. REPQOS Y DAYTR 78. TOT AL NO. OF PaAgES 8. MNO. OF ARPFS
.. 3¢ 24
0. CONTRACY OR GRANMNT NO. 90, ORIGINATOR'S REPORT NUMOE RIS
: o L7 FTD-MT-24-355-74
o
: c. Wmm'
- 3

3 10. ISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

tt. SUPPLEMENTAAY NOTHES 1Z2. SPONBORING MILITARY ACTIVITY
Foreign Technology Division
; - Wright-Patterson AFB, Ohio

e
19. ABSTRACY

20

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Cornmerce

Springfield VA 22151
S S

T A S
FORM
DD 1t NOV "1 473 UNCLASSIYIED

Secunty Claksification




Sl i
£
]
i

FID'MI- 24-355-74

| EDITED MACHINE TRANSLATION

FTD-MT-24-355-74 25 June 1974
LARGE DEFLECTIGNS OF THIN ELASTIC PLATES

By: V. V. Nekhotyaev and A. V. Sachenkov

English pages: 310

Source: Issledovaniya Po Teorii Plastin i
Obolochek, Vol. 8, 1972, pp. 42-76

' Country of Origin: USSR

] Requester: FTD/PDTI ]
This document is a SYSTRAN machine aided

3 ' translation, post-edited for technical accuracy .
E" by: Robert Allen Potts i
- Approved for public release; ;
_ distribution unlimited. 1

THIS TRANSLATION IS A RENDITION OF THE ORIGI. 4
NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR '.—
EDITORIAL COMMENT. STATEMENTS OR THEORIES PREPARED BY: ;
ADVOCATEDORIMPLIED ARE THOSE OF THE SOURCE 5
ANDDO NOT NECESSARILY REFLECT THE POSITION TRANSLATION DIVISION i
OR OPINION OF THE FOREIGN TECHNOLOGY Dl. FOREIGN TECHNOLOGY DIVISION 4
VIS.. .. WP.AFB, OFIO. g

3

5

”D-MI- 24-355-74 Date 25 Jgun 19 74




- l-_J'};M%

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block ITtalic Transliteration Block Itallic Transliteration

A a A a A, a Pp P p R, r
66 B & B, b Cc € ¢ S, s
B s B o vV, v T T m T, t
£ rr r s G, g Yy Yy U, u
7 Aa n#§ 8 D,d vy @ ¢ F,f
i E e E Ye, ye; E, e¥* X x X «x Kh, kh
E W n x Zh, zh Uu 4 y Ts, ts
[ 3 3 3 Z, z Yy ¥ y Ch, ch
MWun H u I, 1 Ww & w Sh, sh
Mo A a Y,y Wow u Shch, shch
H u K x K, k b b b » "
it n b/ | L, 1 bl b H u Y, ¥
M ™ M u M, m b b b » U
H ow H x N, n 33 5 E, e 3
0o 0 o 0, o 0w O » Yu, yu
nn n n P, p A A A 2 Ya, ya

*ye initially, after vowels, and after », b; € elsewhere.
When written as € in Russian, transliterate as yé or €. i
The use of diacritical marks is preferred, but such marks
may be omitted when expediency dictates.

X R X X R K B K K ¥
GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc.
merged into this translation were extracted
from the best quality copy available.

FTD-MT-24-355-74 i1




-RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS
1 Russian English
( sin sin
cos cos
tg tan
ctg cot
sec sec
cosec csc
: sh sinh
; ch cosh
1 th tanh
é; cth coth
; sch sech
; csch esch
arc sin sin~1
arc cos cos™t
arc tg tan~!
arc ctg cot™t
arc sec sec!
arc cosec csct
arc sh sinh™1 E
arc ch cosh™™
arc th tanh™t ;
arc cth coth™t %
arc sch sech™t j
arc csch cseh™t i
%
rot curl
1g log ’
FTD-MT-24-355-74% 11




. . oo o i - o 90 o porta e e e e T MR Tare B TR R T R T D e s RO oy
!j .

< IO

LARGE DEFLECTIONS OF THIN ELASTIC PLATES

V. V. Nekhotyaev and A. V. Sachenkov

LThe wife application of thin-walled constructions, elements
of which are plates of different configurations, requires the
é development of theoretical and experimental methods of their
3 ' calculation with deflections, comparable with the thickness. i

In the article is glven a summary of the maln scarce works,
dedigated to the study of large deflections of plates, subjected
to the action of evenly distributed transverse load. In mathemati-
cal relatlion these problems are reduced to the solut}on of Karman
nonlinear equations, the precise sclutlon of which 1s known only
for an evenly loaded circular plate with restrained contour. This
solution, given by Way, is given in [5].

Other problems about large deflectlons of plates, which are ?
. examined by the authors of the works given in the bibllography, |
are solved, as a rule, by known approximation methods. The results
obtalned on the basis of these methods almost always glve good
agreement with the avallable e~xperimental results. This suggests :
the possibllity of the effective use of the theoretiical-experi- 3
mental method for the solution of similar problems. In accordance ?
with thls in the last paragraph of the article there are provided
the results of the experimental study carried out by the authors

FTD-MT-24-355-74 1




of the large deflections of free rsctangular and parallelogran

plates under the action of uniform transverse lcad. The results

are 1llustrated by graphs.

In the conclusion of the article we focus attention on the

need for the advisable and economically substantiated application
of different methods of solution of the problems. It 1s completely
clear that there 1s an essential difference in whether that or
another problem is implemented during several days, months, etc.,

or an uncontrolled large time interval 1s expended for its

solutien.

Therefore the problem of the substantiation of the application
of one method or the other, the problem of the comparison of the
possibllities of mathematical and physical experiments are an
exceptionally urgent problem, since it 1s connected with the
question concerning the rise of productivity of labor.

Designations:

a, b

X, ¥, 2

u, v

FTD-MT-24-355-74

thickness of plate;

sides of rectangular plate;
Carteslan coordinate system;
intensity of transverse load;

displacement of points of the middle surface
of the plate; alcng axes x, y respectively;

v

deflection of arbitrary point of the middle
surface;

deflection;

normal stresses in the middle surface of the
plate or shell along lines x, y;

tangential stresses in the middle surface;

normal stresses, which correspond to the
bending moments;

taﬁgehtial stress, which corresponds to
torque;
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5 E - elastic modulus of material;
: p - Polsson ratio;
=Eh3/12(1—u2) - cylindrical rigidity;
; A - relationship of sides of the plate;
] bl
q‘=9—K - dimensionles: parameter of load;

Eh
: w5=f/h - parameter of deflection in the center;
3 2
; c‘=99§ - parameter of stress;

Eh

1=oim+oiH - total stress, where 1=x, y.

§ 1. Rectangular plates

The state of the questlon concerning large deflections of
rectangular plates under the action of uniform transverse load
is sufficiently fully reflected in [1, 5]. Concerning the
historical side of the question it should be noted that the first
work, connected with the study of powerful cylindrical bending
of a long band (plate), belongs to Russian naval engineer
I. G. Bubnov. The solution of this problem 1s precise and is
given in the mentioned works [1, 5]. For plates with finite
relationship of sides there are no mathematically precise solutions.
The common methods of solution of these problems are variational
methods, finite-difference and the method of collocatlion, the
last of which began to be widely applied in connection with the

implementation of calculation by electronic digital computer into
practice.

In [1] the problem of bending of rectangular plate 1is solved
by A. Feppl's method of "imposition" of solutions for rigid and
absolutely flexible plates. Special attention in this case is
given to the case of hinged supported square plate with fixed
edges, whereupon it 1s considered that the edges of the plate
remain rectillinear in the process of deformation.

FTD-MT-24-355-74 3
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The expression for deflecticn is selected In the form of
double trigonometric serles:

-

W= f, stn = sin 25 -y sin Zeesin =L
R » Y a i

2=x =y

+I.-.alSln—a"$m—;,... (1)
or v vcin T o TEY
W= 2 2 S SN 2 sin 5
M), =l
f - are independent indeterminate parameters.

mn

Each of the terms of this serles satisfles the boundary
conditions of hinged support. Naturally, the solution of the
problem is more precise, the more terms of the series that are
kept. However the obtaining of refined results in comparison with
the case where deflection is selected in the first approximation,

W==j,,-sin’%-sln% (2)
is quite difficult, since instead of one cubic equation it is
necessary to deal with a system of cubic equations, the number
of which is equal to the number of approximations.
The solutlon of the problem is somewhat faclilitated in the
case of a square plate, since in view of the symmetry of the bent

surface the number of equations 1s decreased.

a) Square plate with freely shifting edges.

As computations showed, the account of additional terms in
(1) introduces insignificant correction with respect to the first
approximation. For example, with q¥*=500 the additional coefficient
greatest in value fl3=f31 is 7% of the main f11» and the remaining
coefficients do not exceed 3%. The selection of the expression
tor deflection in the form (1) is explained by the fact that the
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curvature of the bent surface of the plate 1n the central part

is less than the curvature calculated according to the first
approximation (2). With increase of the load the curvature of the
central part 1s gradually decreased. Figure 1 glves the graph of
“he dependence of dimensionless parameters of deflection in the
center of the plate, where curve 1 represents the first approxi-

_ mation, curve 2 - the refined solution, the shaded part - the

b . region of experimental values for plates with bending edges.

] The observed disagreements of theory and experliment are

5 explaincd by the fact that 1n the theoretical solution the edges

1 of the plate remaln rectlilinear in the process of deformation, and
' in the experiment the edges of plates could be bent in the plane

of the supporting contour. This 1s confirmed by the theoretical
3 solutlion of R. Kailser, pertaining to the case of freely bending
edges [22].

In figure 1 with q*=117 and W6=2.5 this solution is marked by
point 3. 1

The graphs of deflection-stress dependences in the middle
surface (membrane stresses) and deflection-bending stress are
given 1n figures 2-3, from which it is evident that 1in the case
of the first approximation (curves 1) stresses in the middle
surface reach maximum in the center orf the plate (elongation
along axes x and y) and at the corner (compression in both
directions), where the absolute values of stresses at these points
are 1dentical. From the results of the refined solution (curves 2)
1t is evident that the stress in the courner increases with increase
of the deflectlion somewhat faster than in the center.

From graphs it follows that the dangerous zone with small i
deflections 1is located in the center of the plate, and with large - :
In the corner. Data of experiment confirm this. Further the
problem 1s examined for the case where the edges of the plate

oM e ek B+ i o e A s e . S208 W
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cannot be brought together. Figure 4-6 gives the graphs of

dependence: ceflection-load, deflection-stress of middle surface
and deflection-bending stress.

From these graphs it is evident that in this case with larpge
*
deflections (W0>l.7) the stresses in the corner of the plate
become dangerous. With certain load, the stresses in the middle

surface of the plate with restrained edges are considerably more
than 1In the case of free edges.

i e e e e

B L S, L YU N




At el

g A AT

24 6 l T & 5_'11 | ‘
» ! .
. | . ! i i
y a y ‘a i . :
VN i H A i - K
: b 'J‘ [| ) | ‘ i
16— oAt o el 6 ! ’gL,«fi» i ﬁ —t—
: “T u'- ‘ ’ =~ . I o 7
I&_‘v ;3/ Al ol rl:{-:%)c/ o ‘Fy :/ | ( '@‘-
PP Y i e A AP el 12 i LA
L]
.4 8 i 2&.
o 1/’7
4 L <7 4 o~ 2 [
. « - L JIR
O 04 08 12 16 20 24 . 0 4 98 12 (6 20 24
Figure 5 "Figure 6

b) rectangular plate with restrained edges.

Here it 1s assumed, as in the case of hinged support, that

the edges of the plate remain rectilinear in the process of
deformation.

Deflection in the first approximation is selected in the
form:

N -
W= j.sin 2xesin” 3y,

(3)

where
@ -

[

, 3=—.

b
This leads to satisfactory results during the determination of
deflection of the plate. However, this expressicn pocrly covers
the true character of the bent surface, particularly for restrained
edges. Therefore for the restrained plate it was suggested to
retain the scheme of solution for hinged support. The expression
for deflection is presented in form (1). The effect of reaction
moments is covered by the addition to a prescribed uniform load
of some fictitious load, distributed at the edges of the plate.
The additional load is represented by trigonometric series.
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The obtained results are given in “igures 7, 8, 9, where dotted ‘1
curves 1 represent the first approximation, and solid 2 - the :
refined solution. Moreover two ca:ces of restraint are examined - 1
sliding and rigid.

As we see from the graph, the bending stresses in the center
are determined already in the first approximation quite well, and
the stresses in the middle of the side in the direction perpen-
dicular to the edge turn out to be highly underestimated. This
is explalned by the fact that with increase of deflection the
curvature of the section of the plate at the edges increases, and
in the center som»what drops. It 1is obvious that for a rectangular
plate the stresses in the middle of the long side reach the yieid
point the earliest. 1In this case there occurs partial break of

the plate at the edges. Subsequently the plate should work with

3 restraint on the edges close to hinged support. This is confirmed
' by experimental data. Although the expression for deflection (3)
does not correspond to the true shape of the bent surface, the

: obtained calculated equation leads, as 1is evident from figure 10,
i to rellable results even with very large deflections. In this

' figure the small circles ncte the results of the experiment with
square duralumin plate, whose deflections reached 12h.

1 Work [5] gives the solution, arrived at by the energy method,
for restralned plate.

The numerical values of all parameters were calculated for
different intensities of load g and different ratios of the sides
of the plate - namely for'b/a=1, 2/3, 1/2 with p=0.3. These results
are illustrated in figure 11 by graphs of dependence load-deflection.

By the addition of membrane stresses and bending stresses we
obtain combined (or total) stresses. The maximum values of these
stresses appear in the middle of the long sides. Data on them

are given in flgure 12.
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In works [2], [3], (4] for the solution of problems about
large deflections of rectangular plates there is applied the
finite~difference method or the grid method. The solution of
nonlinear problems by this method leads to systems of nonlinear
difference equations, of comparatively high order. The solution
of such systems by manual means is an extremely laborious matter.
Therefore in the examination of nonlinear problems earlier, before
the implementation of ETsVM'[SuBM - Electronic digital computer],
preference was given to variational methods, mainly, the methods

e R




of Ritz, Ritz-Papxovich and Bubnov-3alerkin, since these methods
with successfully selected approxiriating functlons permit belng
limiced to a smaller quantity of unknown parameters and are reduced

to zystems of nonlinear equations of lower order.
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However with the development of computer technology the position

Is changed. Since during the solution of nonlinear problems by
the finite-difference method the preparatory time for machine
calculation is minimal in comparison with other methods, in this
sense the grid method is the most commonly used at present.

In work [4] there is applied a modification of the finite-
difference method, so-called flnite-difference method of increased
accuracy.

With the aid of this method (calculation was performed on ETsVM
Strela) results were obtained for flexible rectangular plates with
hinged edges, and also for the case of two restrained and two
others hinged and for rigid restraint of edges. Here we g:.ve
results only for evenly distributed load q.

a) Hinged attachment of edges. Flgures 13-14 give the graphs
of the baslic dependences, obtalned by the finlte-difference method

10
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of increased accuracy. For a square plate the solution by this
method well agrees with the known solution of S. Levy, provided
in work [1]. In figure 15 the dotted curve 2 depicts the Levy
solution, and solid 1 - solution by this method.

Disagreement in the amount of deflection in the center is
less than 1%, and in the amount of maximum total stresses approxi-
mately 3%. This disagreement is explained by some difference in
boundary conditions.

b) Rigid restraint of edges. Figure 16 gives the results
obtalned with the aid of the finite-difference method of increased 1
accuracy for different ratios of sides. Results given in figures ]

17-19 also well agree with previously known solutions, for example,
with the solution of S. Levy [1]. In figures the Levy solution

is represented by dotted line 2, and solid line 1 - the solution
obtained by this method. With q*=400 the disagreement in the
amount of deflection in the center is 3.7%, and in the amount of

total stresses on the edge, at point B with W;=1.6 - approximately 1

3%.

b e bl .
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c) Case of combined boundary conditions. 1. Long edges

are restralned, short are hinged. 2. Long are hinged, short are
restrained. '

Figures 20-21 give the graphs of dependences load-deflection
for cases 1 and 2 with different ratios of sides ).
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The solutions are obtajined also with the aid of the finite-~
difference method of increased accuracy.

In figure 22 for a square plate there 1s given a graphic
comparison of results for three types of boundary conditions,
obtained by the same method. Curve 1 in thils case corresponds
to hinged attachment, curve 2 - combined and curve 3 - to rigid %
attachment. |
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it 1s noted that for a certaii. initlal range of loading the
difference in the method of attachrent of edges is substantially
reflected on the amount of deflection in the center.

With further 1increase of the intensity of lcad membrane
stresses begin to play an increasingly larger rcle and the differ-
ence in the metnods of attachment of edges will affect deflectilon

less.

In work [3] there is examined the problem of large deflections
of rectangular plates, supported on flexible nonstretcnable edges,
under the action of loads cf different type. The solution is
ccnducted by the method described in {U4]. Computations are done
on ETsVM "Strela". Here we record results only fcr case y=const.

Table 1 gives the results of computation for different ratics
of sides of the plate A.

Figures 23-24 depict the relationships between the parameters
of maximum deflection and load, and also the maximum total stress
in the center of the plate and loau for A=1, 0.5.
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Curves 1 correspond to data of table 1, curves 2 - to the
solution obtained by the energy method, curves 3 - to the solution
by the Bubnov-Galerkin method.
results.
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There 1s noted good agreement of

In work [2], Just as in [4], for the solution of problems

an EVM [3BM - Electronic computer] is utilized. Fundamental

equations and boundary conditions are represented in finite

differences. The solution 1s done by successive approximations.

The effect of grid spacing on the results of computations i3
studied. Tables and graphs are given which contain the amounts
of deflections, stresses in the middle surface and bending
stresses at some characteristic points. The obtalned data are

compared with the results of sclutions of the same problems by
other methods.

§ 2. Circular and semicircular plates

To the designations, taken in the previous paragraph, let us
add the following:

r - radius of plate; Oy = radial bending stress, Oh T
radial membrane stresses. '

Let us glve some results on the study of large deflections

of a circular plate, which i1s under the action of an evenly
distributed load.

In work [15] the precise solution 1s given for evenly loaded
circular plate with restralned outline. For the solution of this
problem S. Way used power series.

In literature the greatest number of solutions i1s devoted to
the problem of large deflections of evenly loaded circular plate

with rigidly restrained edges. Part of these solutions, done by
the perturbation method, is given in [6].

15
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In [4] this prcblem is solved by the finite-difference
method of increased accuracy and by the collocation method.
Moreover it is shown that the solution by the collocation method,
taking into account "equivalent correction" can virtually be
considered as precise, and its agreement with the solution in
finite differences confirms the reliability of the latter.

Figures 25-26 give graphic comparison of the solutions
presented in [4] and [6]. The solid curve on the graphs indicates
the solution by the finite-difference and collocatlion method,
and dotted curves are obtained by the perturbation method.

The error of solution, obtained in [6], with dimensionless
parameter of deflection in the center of the plate w;=1.2 becomes
especially considerable when determining the stresses, which 1s
evident from the graph in figure 26, where stress-deflecticn
curves are depicted. For example, according to [6] the bending
stress in the center with W8>2.N becomes negative. This expliecit
nonconformity with reality was noted by A. S. Vol'mir in [1].
Further, according to [6] beginning with w3=2.8 the membrane
stresses on the edge become greater than in the center, which

also contradicts other solutions.
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Satisfactory results during tie solutlon of these problems

are given by the ernergy method, used by S. P. Timoshenko and
descrited in [£].

Some experimental data for circular plates are given in [16].
The relationship between the deflectlon of restrained duralumin
plates and load 1s depicted on flgure 27. Curve 1 in this figure
represents the first approximation by the perturbation method,
2 - refined solution by this same method, 3 - refined solution of
Nadai, obtained in [19]. The points in figure 27 mark the data
of experiment for a duralumin plate with thickness h=0.76 mm, the
blackened polnt 1s in the plastic deformation area.
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‘Figure 28

Let us note that the refined solutlons will somewhat depart

from experimental data. This is explained by the fact that in

the experiment there 1s observed some slippage of the plate along
the edge, which appears with considerable loads.

In [7] there 1is solved the problem of large deflections of a

semicircular plate, restrained along the maximum diameter, under

uniform load. The approximate equations, which the author uses,

were derived by Berger in his work [8].

Figure 28 gilves the graph
of relationship load-maximum deflection.
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§ 3. Parallelogram plates

Let us introduce additional designations: a, 8 - oblique-
angled coordinates; 6 - bevel angle of plate; &,n - dimenslonless
oblique-angled coordinates; 2a, Zb - sides of plate along
axes a, B respectively.

Unlike the circular and rectangular plates the elastic
behavior of these plates 1s completely insufficiently investigated
as a result of the cornlexity of the mathematical model. For
calculation of oblique-angled plates with restrained edges with
large deflections in [11] there 1is applied a simple and quite
precise method, based on the use of a small parameter. The
presentation of this method can be found in [1] and [13].

Calculation was done by ETsVM. The computations were done
with accuracy to 16 significant digits. The obtained results are
represented in the form of graphs for different ratios of sides
and bevel angles. Figures 29-31 give the graphs of dependences
of the dimensionless parameter of load and dimensionless parameter
of deflection for A=0.5, 0.66, 1.
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2y—e The polsson ratio was taken
26'“6 =1 as u=0.333. 1In these figures the
] points designate the results of
16 ,éf/; Way [21] and comparison 1is given
‘/(}{:‘4 o with the sclution obtained by the
72 ] ‘%ﬁf_ perturbation method for 06=0.
Wl T
s {/; a—a,*K Good agreement of theoretical
o4 < — : y and experimental results is re-
///)/, ’ %%' vealed for all the examined ratios

© s wo v a9 250 30 o tho sides of the plate with
Figure 31 small, and also with large deflec-

tions. The difference, by

affirmation of the authors, does not exceed 5% for A=l and q%=200.
This, although insignificant disagreement, the authors explatn
by the fact that the accepted expressions for displacement com-
ponents u, v, w reflect only the polar symmetry, whereas for a
rectangular plate there 1s required satisfaction of the condition

of square symmetry. The effect of the difference of sSymmetry on
the behavior of the plate under load is apparently strengthened
with increase of the ratio of sides.

Further 1t 1s noted that the effect of nonlinear terms on
deflection 1s decreased with increase of the bevel angle.
Thus, for any value of the ratio of sides of the plate the
curves of large deflectlions develop a tendency toward trans-
formation into linear functions with large beveli angles.
Flgures 32-37 for different A show a change of the greatest
principal stresses in the center of the plate (32-34) and at the
edge - at point A (35-36, 37), where the solid line corresponds
to bending stress, broken line - membrane and points designate
the results of Way [21]. 1In the limiting case with 0=0 and for
all the examined ratios of sides of the plates the bending

19
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stresses on the edges well agree with the results of Way. However,
Way's values of the corresponding boundary membrane stresses are
30% higher. This nonconformity is explained partlally by the

form of approximation 1r Way's "energy" solution, which Timoshenko
also indicates [5]. This is partially explained also by the
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difference in the character of symmetry for problems of oblique-

angled and rectangular plates.

From the analysis of graphic data it follows that the greatest
total stress appears at the point of the edge of the larger side
of the plate, where this noint is shifted toward an obtuse angle.

Stress in this case incre..es with increase of the bevel angle.

edges and in the center of the plate; however, they react quilte
weakly to a change of the ratio of sides.

The latter is also valid with respect to membrane stresses on the j

For any geometry of the plate the membrane stresses in the
center invariably prove to be greater than the same stresses which
act on the edges. But their value all the same is low 1n comparison
with the greatest total stress, which appears at the edge of the 1
plate. '
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§ 4, Elliptical plates

Works [12], [14] are dedicated to the study of large :
deflections of restrained elliptical plates of constant thickness.

In [14] this problem is solved by Ritz's method, where there
are examined limiting cases of an elliptical plate - circular
plate and infinite band, for which precise solutions are known.
Maximum deflections, as total stresses in the center and on the
edge, decrease in proportion to transfer from the band through
the ellipse to the circular plate, considering the width of the
plates constant (figure 38). In this figure the solid curves are
obtained by Ritz's method, dot-dash correspond to precise solution.

It 1s established that the relationship between the boundary
stress on semiminor axis (maximum stresses in the plate) and the
central deflection in practice does not depend on the proportions
of the elliptical plate. Consequently, the maximum total stress
can be determined from one curve for this load on an elliptical
plate of arbitrary dimensions, 1f deflection in the center is
known (figure 39).
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In this figure the blackened point marks the result for a circle,
polnts - results for infinite band, triangle - for an 211ipse
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with ratio of semi-axes a/b=1/2, and for ellipse a/b=2/3 -
asterisks. Figures 40-41 give the graphs of relaticnships
between the dimensionless parameter of load and the total
dimensionless stress in the center and on the edge respectively.
Stress on the edge turns out to be the greatest in this case.
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: In [12] there was applied the small parameter method or

‘ Poincare's perturbation method for solution of the problem of
3 large deflections of an elliptical plate with ratio of semi-axes
: a/b=1/2. Figure 32 gives the comparison of experimental results
(they are designated by small circles), with the results of [14]
(dot-and-dash line) and [12] (solid 1ine). The difference of the
theoretical results from experimental is explalned here by some
difference in boundary conditions, since in the experiment it
1s not possible to create absolutely rigid restraint.

el

Figure 43 gives the same graphic comparison of results for
boundary séresses on the semiminor axls of ellipse. Here the

dot-dash curve represents the results of work [14], and solid -
the results of work [12].
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§ 5. Trapezoldal plates

Designations:

b - height of trapesoid; a - half the lower base; ¢ - half

3 the upper base; © - bevel angle of trapezoid; y=9

£ a=l - dimen- =
*  _Wmax
sionless parameters; wmax"ﬁ""‘ dimensionless parameter of

mayximum deflection.

From the studies of the elastic behavior of trapezoidal
plates under the action of uniform transverse pressure the work
3 [9], dedicated to the practical method of calculation of plates
and mildly sloping shells supported on trapezoidal or triangular
layout, deserves attention. For the solution of this problem in
the article there i1s utilized the method of successive loadings,
proposed in 1958 by Prof. V. Z. Vlasov. However, the function
of deflectlons taken in this solution, which corresponds to the
elastic line of a beam with restralned ends, can give satisfactory
results only for trap~szoidal plates, close to rectangular.
Furthermore the calculation is done only for the case of sliding
restraint, usuallv difficultly realized in practice.

i

Because of this in work [20] for this problem it is proposed

to use the energy method. Here there 1s given a practical example :3

of calculation of a plate, for which u=0.3, 6=30°, y=0.25.
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The results are given in the form of a graph for dimensionless
parameter of load and dimensionless parameter of deflection in
Figure 4l4,
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. § 6. Experimental study of large
3 deflections of freely supported
3 rectangular and parallelogram plates

The short survey of works, done in the previous paragraphs,
makes it possible to formulate the following conclusions.

1. In essence the theoretical studies of large deflections
of flat plates, made until recently, are scarce and they all,
even with the active use of contemporary computer technology,
are connected with the production of very laborious computational
work. This developed the nature of these problems. Therefore
the authors for the most part during solution are limited
predominantly to some one form of restraint of the plate, assuming
in this case that the deflections do not exceed two-three
thicknesses.
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2. Of all the types of flat plates, which are under the
action of transverse load, at present the rectangular plate 1is
the most examined. However, even nere the question concerning the
effect of boundary conditions remains not entirely investigated.

3. Up to now the problems of large deflections of orthotropic
(or generally anisotropic) plates remain not studied.

4. The experimental works available in literature on flat
plates are also scarce, whereupon in essence in all works the role
of experiment is auxiliary, checkout with respect to theory. The
comparative data of theory and experiment, provided by different
authors usually, as a rule, will agree with each other. This is
explained by the fact that in experiment with flat plates it is
comparatively easy to eliminate the reasons which cause 1its
antagonism with theory. These reasons should include two -
nonconformity of theoretical boundary conditions with the condi-
tions in the experiment and, finally, inltial imperfections. By
virtue of this the thought about the use of experiment with flat
plates as an active means of the solution of mathematically
formulated problems is natural. The question concerning the
application of this, so-called theoretical-experimental method,
to flat plates was considergd in article [23].

In this article it was shown that with uniform boundary
conditions and fixed Polsson ratio in the experiment with plates
there is required the observence only of conditions of geometric
similarity of the model and nature. The volume of the experiment
in this case, necessary for solution of the problem, of the

solution valid in the entire range of change of the basic geometric
parameters of the plate, turns out to be minimum, and the experi-
ment itself easily realizable in practice.
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This fact makes the physical experiment not only competitive with
mathematical, but often a more powcrful and more cconomical meann
of solution of the problems. The clarification o1 this question

has important value.

In accordance with the conclusions of the mentioned article

é o [23] we have made an experimental study of the bending of freely

3 , supported rectangular and parallelogram plates under the action

of uniform transverse load. 1In this paragraph a short description
1 of it 1s given and the results are in the form of graphs.

i In the laboratory of the mechanics of shells of KGU [HrY -
‘ Kazan' State University im. V. I. Ul'yanov (Lenin)] there were
tested rectangular plates with ratio of sides =1, 1.5, 2.5 and
parallelogram plates with A=1, 1.5, 2 for different bevel angles .
8=30°, 45°, 60°. i

The plates were manufactured from material of brand D16AT
E-0.7'106 kg/cmz, #=0.33. The thickness of the plates was measured
: by a vertical optical range finder IZV-2. There were tested
? rectangular plates of thickness h=0.96 mm, and parallelogram
h=0.493 mm. Deflection in the center was eliminated with the
aild of a dial indicator with scale graduation 0.01 mm. Pressure
was measured with the ald of a specimen vacuum gauge with scale
ﬂ graduation 0.01 kg(cm?.

For rectangular plates the results are given in the form of

graphs in figures 45-U6. The points designate the results of
experiment.

Figure U5 for A=l gives comparison of the results of our
experiment with the experimental data given in [22]. The blackened
point in this figure corresponds to the Kaiser theoretical solution,
which was mentioned in § 1. The agreement of theoretical result
with experimental attests to the satisfactory conformity of the
experimentally realizable boundary conditions with theoretical.
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By the way, the establishment of this type of conformity 1s the
basic difficulty of the experiment with plates, since 1n a
technical respect usually the elimination of the effect of initial

inaccuraclies does not present great difficulties.

Figures 47-49 give the results of experiment for parallelogram
plates. The points in these figures mark the results of experi-
ment. In this case in the expression for q*, as in § 3, b - half
of the smaller side. The effect of the edges of the plate,
protruding above the support, on deflection was investigated.

The case was examined where A=1, 6=60°. Relative width of the
protruding edges was taken equal to Al=ll/h=3.0u with Zl=l.5 mm
and Al=ll/h=5.06 with 1,=2.5 mm.
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In the experiment there was compared the
deflections with identical loads.

value of maximum

The results in the second case
turned out to be 1.5-2% understated in comparison with the first.
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