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I. INTRODUCTION AND SUMMARY 

Tho analytic investigation reported here deals primarily with the 

problem of obtaining first-order quantitative estimates of acoustic 

power coupled into regions near the ocean floor from sources located 

above the air-water interface. Of particular interest are ocean depths 

on the order of several kilometers, source-to-observation-point separa¬ 

tions on the order of hundreds of kilometers, and acoustic source fre¬ 

quencies below 100 Hz. Even though a wealth of experimental and analy¬ 

tic data are available in the technical literature pertaining to acoustic 

wave propagation below the sea surface, they appear to be either not 

directly applicable to the pararreter range of interest herein, or are 

not in a suitable form for extracting numerical information. In par¬ 

ticular, a preponderant number of analyses deals with wave propagation 

excited by submerged sources. 

The problem of acoustic energy coupling from sources above the 

ocean surface to a distant receiver located near the ocean bottom is, 

admittedly, too complex to be amenable to a reasonably bounded mathe¬ 

matical treatment. Usual analytical approaches in theoretical under¬ 

water acoustics focus on analyses of grossly simplified models which, 

hopefully, include the dominant features affecting one or more parame¬ 

ters of interest. Classically, to the first order of approximation, 

the ocean has been modeled as an infinite, perfectly smooth planar 

layer with an appropriate acoustic velocity profile. In addition, the 

ocean bottom is usually assumed perfectly smooth and characterized by 

a constant surface impedance, thus neglecting the boundary irregulari¬ 

ties at the ocean bottom contours. The latter approximation has proven 

quite acceptable for certain shallow water channels and short prepaga- 

tion paths. For long propagation paths the assumption of a perfectly 

flat ocean floor appears much less realistic, since rather wide variations 
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in the ocean bottom contours may be encountered, .’ast analytical 

studies of long-range acoustic propagation phenomena in deep oceans 

have tended to neglect the effects of the sea bottom. This is permis- 

s e in a sufficiently deep ocean if the receiver and transmitter 

are located well above the ocean floor and the dominant propagation 

mechanism is either that of "ducting" of acoustic energy by virtue of 

the velocity profile associated with thermoclines near the ocean sur¬ 

face, or of multiple reflections of rays from the equivalent ocean 

surface and main thermccline discontinuity. The latter propagation 

mechanism is that traditionally associated with SOFAR (Ref. l, p. 132) 

In the problem of interest here, the receiver is located in the deep 

isothermal layer close to the ocean floor wnlie che transmitter is 

above the ocean surface. Consequently, the effects of sea bottom may 

play a significant role in determining the acoustic pressure at the re¬ 

ceiver. A sufficiently realistic model, taking account of the irregu¬ 

larities of the ocean bottom would be analytically intractable. On 

the other hand, a combination of analytical and numerical techniques 

would make the results too dependent on the choice of specific ocean 

contours. In light of these difficulties, the approach adopted here 

is to consider propagation in the isothermal ocean layer with the lower 

boundary conforming to one of the two limiting conditions: a perfectly 

smooth, acoustically hard boundary, or a perfect absorber. The former 

model can be considered to correspond to an optimum set of propagation 

conditions for enhancing acoustic signals by systematic reflections 

from the ocean floor. The second model yields acoustic signals ar¬ 

riving at the distant receiver site only by virtue of ray caustics 

and multiple reflections at the ocean surface, since the rays impinging 

on the perfect absorber are not reflected. The perfect absorber 

model, then, yields a lower bound on the attainable signal strengths 

at the receiver site. The results derived on the basis of these two 

models can provide quantitative estimates of bounds on attainable 

signal strengths over long propagation paths as well as some estimates 

of the role played by systematic reflections from the ocean floor in 

signal enhancement. Also, the results should prove of value in ef¬ 

fecting comparisons between acoustic signal strengths in the ocean 
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arising from submerged sources and those attributable to sources above 

the air-water interface. While data dealing with the former case are 

abundant, the latter does not appear to have received a comparable 

amount of attention. Consequently, quantitative comparisons of propa¬ 

gation characteristics of acoustic wave types in the ocean launched 

by a source above the ocean surface with those due to an "equivalent” 

submerged source merit attention even for rather idealized propagation 

conditions. 

A portion of this paper (Sections A through C of Chapter II) is 

devoted to a detailed and somewhat tutorial exposition of acoustic 

wave propagation in a planar layer which, as mentioned in the preced¬ 

ing, constitutes the model adopted for the ocean. While much of this 

material could have been extracted from several well-known texts on 

wave propagation (notably Refs. 2 and 3), the treatments there are 

rather general, with the final results frequently not in the form most 

suitable for the parameter range of present interest. It was, there¬ 

fore, felt desirable to develop various alternative representations 

for the acoustic wave function, with the immediate application firmly 

in mind. Such a self-contained treatment also provides for a degree 

of uniformity in notation and nomenclature. 

Sections A through C of Chapter II contain a discussion of asymp¬ 

totic representations of the acoustic potential deriving from a point 

source above a planar layer. Relative merits of the ray and leaky- 

wave (mode) series are discussed from a numerical computational stand¬ 

point. Of the two, the leaky-wave series has been found more suitable 

for application to long propagation paths. The final forms of these 

series, including the simplifications applicable to the specific pa¬ 

rameter range of interest, are given in Eq. 65 for the constant re¬ 

fractive index profile and in Eq. 78 for the linearly varying profile. 

In both cases, tne ocean bottom is modeled as an acoustically hard, 

flat surface. The layer with a perfectly absorbent lower boundary is 

discussed in Section D of Chapter II, where the leaky wave series, Eq. 

96, is found to converge very rapidly for observation points neai the 

lower layer boundary. Since one of the objects of this study is co 
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make quantitative comparisons of acoustic pressure produced by sources 

above the ocean surface with those located in the water, Section E of 

Chapter II is devoted to a parallel development of residue series rep¬ 

resentations for the potential due to a submerged point source. 

Chapter III contains the application of the preceding results to 

underwater acoustic propagation. With regard to the relative acoustic 

pressure produced by submerged and above-surface sources, it was found 

that a point source above the ocean surface will give rise to a pres¬ 

sure about 800 times as large as that due to a submerged point source 

of equal strength close to the air-water interface. This result holds 

only for observation points sufficiently far removed from the source, 

but is only very weakly dependent on the height of the source above 

the ocean. As the submerged source is moved further below the air- 

water interface, this ’’equivalent” source principle no longer applies. 

Instead, direct calculations reveal that the pressures produced by a 

submerged and above-surface source are of the same order of magnitude, 

provided the two sources are of equal strength and the ocean bottom is 

assumed perfectly reflecting. This result is also practically inde¬ 

pendent of the height of the source above the water surface. For the 

case of an acoustically hard bottom, numerical results are presented 

for the acoustic pressure at various propagation ranges for sources 

above and below the surface (Figs. 2 through 6). When che ocean bottom 

is assumed perfectly absorbing, the pressure produced by a submerged 

source is considerably higher (by 24 db) than that produced by a source 

above the water, showing, by comparison with the results for a per¬ 

fectly reflecting bottom, that systematic reflections at the ocean 

floor can result in a substantial enhancement of acoustic signals gen¬ 

erated by above-surface sources for the propagation paths in question. 

The relationship between average acoustic pressures for submerged and 

above-surface sources is particularly simple if the ocean bottom is 

assumed perfectly absorbing. This relationship is given by Eq. 123. 

Also, for a perfectly absorbent bottom, the average pressure is shown 

to obey tne cylindrical spreading law with cange (lA/p) and the ex¬ 

pressions for the average pressure at great distances from the source 

reduce to the rather simple algebraic forms given in Eqs. 120 and 121. 
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II. ANALYSIS OF ACOUSTIC WAVE PROPAGATION IN A PLANAR LAYER 

A. GENERAL INTEGRAL REPRESiNTATIONS OF THE ACOUSTIC POTENTIAL DUE TO 
A POINT SOURCE NEAR A PLANAR LAYER 

Consider an acoustic point source above a planar layer of height 

h bounded at z = 0 by a perfectly rigid infinite plane, as shown in the 

sketch above. The speed of sound and density pertaining to the 

upper medium are assumed constant. In the lower medium, the density 

P2 is also constant, but the speed of sound c2 may vary with z. De¬ 

noting the acoustic potential by Y, and assuming a time harmonic source 

e”^*t of unit strength, the wave equation satisfied by Y is 



» O ; 0 s z * h . (lb) 
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The potential function Y is related to the acoustic pressure p by 

Plf2 s ^1|2 ^1,2 * (2) 

and satisfies the following boundary conditions 

0Y1 dY2 

P1T1 = p21,2 » dz* = òT 2 = h » (3a) 

av 2 
— = 0 at z = 0 . (3b) 

In addition, Y must satisfy the outgoing wave (radiation) condition 

for z - •. 

The solution of Eq. 1 can be represented in a variety of forms. 

For computing Y in the lower medium at large radial distances o from 

the source point (Fig. 1), a suitable representation involves the 

Hankel transform in the p coordinate. Thus, one can write 

Y (p,z,z') = KJo(Kp) g(z,z'; ^) , (4) 

where g is an appropriate one'dimensional Green's function in the z 
domain. The variable of integration X is the transverse wave number 

corresponding to the angle of incidence w in medium 1 for a typical 

plane wave entering into the superposition integral (Eq. 4). When w is 

defined with respect to the normal of the planar Interface, one has 

K = k.sinw » k. = ~ 
1 ic. 

(5) 

-i-.. ...i.,.. 
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Tti« quantity in Eq. 4 is the plane wave propagation constant relative 

to the z direction in medium 1, and is related to K by 

(6) 

For observation points in medium 2, the one-dimensional Green's func¬ 

tion g (z,i/; Rj^) is 

g(z,z'; r1) 

ír1(z/- h) 

(0)f1(h)-f1(0)f2(h) i 

liiere f^(z), f^Cz) are any two linearly independent solutions of 

-] fl,2(2) = 0 
(8) 

(9) 

and 

Eq. 4, in conjunction with Eqs. 7 and 8, constitutes a complete 

fozmal solution for the acoustic potential in medium 2. However, 

numerical computation of T for a given set of medium and geometrical 

parameters entails a number of difficulties. One of these is the 

solution of Eq. 8, the other is the evaluation of the integral in Eq. 

4. The differential equation for f^ z) can be solved in texms of 

known functions in only a limited number of cases, viz., refractive 
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index profiles n(z) = k^zî/k^ for which Eq. 8 reduces to a special 

form of the hypergeometric equation. Only when the refractive index 

varies slowly relative to the local wavenumber, that is, when 

k2(z)/k2(z)«k1, can Eq. 8 be solved for arbitrary functional forms of 

k2<z). This can be done by employing the WKB approximation, valid for 

z sufficiently far removed from the turning points of th.. differential 

equation, viz., the zeros of h2(z). With the aid of these approximate 

forms, the integral (Eq. 4) can be evaluated asymptotically for large 

ki* yielding the geometrical acoustics ray solution as well as dif¬ 

fraction effects associated with caustics and focal points. 

For present purposes, the refractive index profiles of interest 
are k2(z) = k2 = constant and 

k^z) = kj [N - a(h - z)} , (10) 

that ia, a linear function of z. In the first instance, the solutions 

of Eq. 8 are exponentials, while in the second instance they are Airy 

functions. Thus, for a constant refractive index 

fl,2(z) = e 

±ix2(z-h) 

(11) 

which, substituted in Eq. 7, yields 

L.U'-hl U2<htz> i»2<h-2) 1 'e _+ e g(z,z'; x1) = im e 
* (12) 

(x^-mx2) e + (Xj+mx^) 

where 

For the linearly varying refractive index profile, a set of linearly 

independent functions of Eq. 8 is 



C 13b ) 

(13a) 

where Ai, M are Airy functions (Ref. 3), and 

(14) 

Substitution of Eq. 13 into Eq. 7 yields, together with Eq. 4, 

an integral representation for the acoustic potential in a medium with 

a linearly varying refractive index profile. 

Once the integrani in Eq. 4 has been expressed in closed form, 

there remains the problem of evaluating the integral, which evidently 

cannot be expressed in terms of tabulated functions. One can, of course, 

always resort to numerical integration. However, such a piocedure is 

not always practical. For example, if, as in the present case, the 

potential is to be computed at large distances from the source point, 

the rapidly oscillating term JJKo) in the integrand would require an 

extremely large number of grid points for even a modest accuracy. The 

problem is further complijated if the layer thickness h is large in 

terms of wavelengths, since the one-dimensional Green’s function, Eq. 

7, will, in this case, also involve rapidly oscillating functions. 

The usual approach in such cases is to effect an asymptotic evaluation 

of the integral for large p and (or) h. In the following discussion, 

the asymptotic evaluation is carried out in detail for the case of 

constant k2(z), and the results are subsequently extended to a lin¬ 

early varying refractive index profile. 

B. ASYMPTOTIC EVALUATION OF THE INTEGRAL FOR THE ACOUSTIC POTENTIAL 
FOR A LAYER WITH A CONSTANT REFRACTIVE INDEX 

As the first step toward an asymptotic evaluation of the integral 

in Eq. 4, one must examine all singularities of the integrand in the 
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Plex X pi«™, for this puxpos., it is conv.nl.nt to tension, th. 
Bessel function J (Kp) Into Henkel functions H(1' (Kol h<2> . 
the .Id of 2J (Kp) = H«” (Xo) + h<2> p , \ ’ 0 (lt,>) ^ 

o "o ' + Ho Employing the "circuit” 
relation 

H ' (Kp) = -H<1) (Kpeln) . 

*nd Eq. 12, the int.gr. 1, Eq. 4, c.n be written In tees of Hfl> fx»l 
alone: o 

, , r rn 1 1(Z -h) iK2(h+z) iH?(h-z)l 
YÍP.z.z ) = J- IdK KH( 1 )fKo^ e Le + e 2 J 

4n ¿in 0 T50— -— CIS) 
(K]-mR2) e + mR2) 

The Integrand In Eq. 15 contains bench point singularities at X = 0 
coresponding to H^’iXp), .s well «s bench points of , 

at X - ±kr Hie propagation constant =Jk‘ - x2 in the loier 

medium does not contribute any branch points, since the integend is 

an even function of V In addition, the integend may contain pole 

singularities In the complex X plane coresponding to the zeros of 

í2r2H 

(R], " e +(^ + mR2) = 0 . (16) 

These zeros can be subsumed under two categories: those lying in the 
region Im ^ > 0, corresponding to the region of exponential decay of 

the integrand for large |x|, and those for which Im r < 0. The fonner 

are referred to as "proper," or surface wave poles, the latter "improper," 
leaky^wave poles of the integrand. Choosing the branch cuts of 

^(k1 - K such that Im rl > 0 on the entire top Riemann sheet, the 

disposition of the path of integration in Eq. 15 relative to all of 
the above singularities is shown in Fig. 1. 
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U 
U 

FIGURE 1. Disposition of th« Roth of Intogrotion Ralotiv« to Singularities of the 
Integrand (Eq. IS) 

^lm^k| - 2 0 on the entire top Rientann sheet^ 

V2 2 
kx - K , only surface wave poles 

appear on the top Riemann sheet, the leaky wave poles being confined 

to the lower sheet. The surface wave poles correspond to character¬ 

istic modes guided by the discontinuity between the two media. For 

dissipationless media, such poles are confined to the real K axis 

( |Re k| > kj^), contributing to guided waves propagating without 

attenuation along the radial direction. The contribution of these 

l] 

n 

surface waves to the total acoustic potential can be exhibited explic¬ 

itly by recasting Eq. 15 into a representation involving characteristic 

modes propagating along the p direction. Such a representation can 

be obtained by deforming the path of integration in Fig. 1 around the 

branch and pole singularities in the upper half of the complex K plane. 

This path deformation is permissible, since the contribution to the 

integral from the infinite semicircle (|k| - ®) vanishes by virtue 



of th« condition Im k1 > 0. The deformed path is shown in the illus¬ 

tration below. 
lm K 

Integrating around the branch cut and the (simple) pole singularities, 

and noting that Re ^ 0 on the left and right of the cut, respectively, 

one obtains 

Ç cos(k25) 

Ç cos H2h-imR2sin 
,d ifT7-) (17) 

Uu(r'-h)f i«2t(h«) 

- !E ^ -^ 17,-h --—T-1 H<0 <V> • 
l S- Ir», -mi. ) « a r«^+m»i2)| K=K^ j( H^-mK^ ) e +(^ 

where the K¿ are roots of Eq. 16. The integral in Eq. 17 corresponds 

to modes of the continuous spectrum, while the series correspoads to 

modes of the discrete spectrum, i.e., surface waves. In the case of 

the continuous spectrum. the modes travel in the radial direction as 

cylindrical waves H^l)Wk^ - T rt. and for each Ç there corresponds a 

12 
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mode . Modes with ? are propAgat 

evanescent, since in the latter case 

Hanke1 function decays exponentially. Thus, tho dominant contribution 

to the integral will arise from modes naving indices |ç| < k . The 

series of surface waves will generally contain a finite number of 

terms. These wavet, .ilso possess ï cylindrical character in the radial 

direction, i.e., Hq (K^p), but due to real K^, propagate without 

attenuation,* The representation in Eq. 17 offers an advantage over 

Eq. 15 only if the surface wave contribution is dominant, since the 

direct numerical evaluation of the integrals in both cases is subject 

to the same difficulties. 

To effect an asymptotic evaluation of Eq. 15 for large p, it 

convenient to change the '-ariable of integration in Eq. 15 from K to w 

with the aid of the transformation in Eq. (5), thus eliminating the 

branch point singularities at K = The integral can then te written 

as 

ik ( Z /-h Vnsw 

sin w cos w e 1 T(w) H^fk jsinw) dw, (18) V 1 / 
where 

ix2(h+z) ÍK?(h-z) 
e_+ e 

T(w) (19) -- 
(Xj-nu^) e ¿ + (Kj^+mKj) 

2 
sin w, x1 = k^cosw, *2 = 

The path of integration in the w plane is shown in the sketch on page 

14, where in the shaded regions Im k^cosw > 0. 

Excluding the "cylindrical spreading" of (X.p) as l//p for 
large p. u * 

13 
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In the unshaded regions (0 < Re w < n, Im w > 0) and (rr < Re w < 0, 

Im w < 0), one has Im k1 cos w < 0, which, eviuently, corresponds t 

the bottom Rieraann sheet in the complex K plane oi Fig. 1. The pat 

of integration can always be deformed away rrom w = 0, so that for 

Urge kjP the Kankel function in Eq. 18 may be written in terms of 

its asymptotic form: 

H(0l>(klPsin.> 5inw e -in/4 e 
ik.psinw 

(20) 
kj^psinw — • 

Thus, for large k^p, one can write 

(21) 

cosw T(w) e 
ik.(2/-h)cosw + ik.psinw 

1 dw 

14 
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Eq. 21 is the required forr. for asymptotic evaluation. 

The first asymptotic result to be derived is the ray series of 

geometrical acoustics. To this end one expands T(w) in Eq. 19 in a 
geomatric series 

, f i*5(h+z) 

L« 2 * e 
ix2(h-z) 

("l - m2\l 
\1 4 ' 

(22) 

i2-tnx. 

which converges, provided Im *2 > 0. Substituting this in Eq. 21, one 

can write the result in the following form: 

„ im* 
4tt 

iJZE /nss co»« ÿ t /«i - »»A4 
J >1 4 mK2 ' V>1 4 **2/ ( 3) 

dw , 

q*(w) = sinw + ~p~- cosw + - sin^w * zj ^24j 

= 0, 1, 2, .... 

The preceding can be expressed in a more compact form: 

1=0 
(25) 

(26) 

(27) 

Eq. 25 gives Y as an infinite series of integrals, each containing 

the large parameter in the exponent. Before evaluating these 

integrals by the nu'thod of steepest descents, one must examine the 



singularities of F^(w) in the complex w plane. First, unlike the 

original integrand. Eq. 18, F^w) possesses branch points at *2 = 

k. - sin w = 0, or, 

sinw. ¿n (28) 

It will be assumed that the speed of sound in the lower medium is 

greater than in the upper medium. Hence, n < 1 and the branch points 

are situated on the real w axis in the interval CXlw |< n/2. The 
P 

positive w is identical with the angle of total reflection for a 
lr 

plane wave incident from medium 1 (compare Eq. 5). The only possible 

pole singularities are solutions of + rnitj = 0. Denoting the zeros 

by Wp, one has 

With medium 2 denser than medium 1, m < 1. The case of special inter¬ 

est is m < < 1, which yields Wp ± n/2. 

When the path of integration P in Eq. 26 is deformed into the 

path of steepest descents P* (for each O, its disposition relative to 

the singularities is as shown in the illustration on page 1?. The 

deformation of P into P^ is permissible, as long as no singularities 

are intercepted in the process. 

16 
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n - sin w ha' e been chosen such that 
Im^n* - sin^w > 0 in the second and fourth quadrants, ensuring the 

convergence of the geometric series (Eq. 22) on the entire integration 
path. Moreover, the paths terminate in the shaded quadrants in 

the w plane, where Im cosw > 0, as required for convergence of the 

original integral, Eq. 21. The saddle points w* are solutions of 
d ± - ac 

= 0* Employing Eq. 24, this is equivalent to 

dq*(w) 
— 5 qt(w) = cosw - z'-h sinw (30) 

r(2<,+ l)h ± z] cosw sinw _ n 

p -I [n2 - sin2w]% ’ 

Thus w*t are determined from 

eVn2 - sin2wst cos = Vn¿ “ sin^w^ (z'-h) sin w*¿ (31) 

+ [(2t+l)h ± z] cos w^.sin v* . 
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The prectding can be given a simple geometrical interpretation, 

Referring to the following sketch, 

one notes from the geometry that 

(z'-h) tan w + (h-z) tan w~ = p , 
so so ’ 

which may also be written in the following form: 

(z'-h) sin w" cos w + (h-z) cos w’ sin w 
50 SO SO SO 

= p COS w^ cos w 
so so 

(32) 

Eq. 32 is equivalent to Eq. 31 for w , provided w~ is chosen in 
. 50 SO 

accordance with sin wsq = n sin wso, i.e., Snell’s law of refraction. 

TMs leads to 

w” = t/n2 - 
so f 

n cos 
sln wso • 
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showing that for wSQ Eq. 31 yields the equation of the direct refracted 

ray path between the source and observatior points, depicted in the 

sketch on page 18. Similarly, one can show that for w^ , E^q. 31 rep- 

resents the path of a ray reaching the observation point after a 

single reflection at the ground plane z = 0. The saddle points 

for ¿ > 0 correspond to rays which undergo multiple reflections at 

the ground plane and medium interface z = h. Ray paths for ws0, w^, 

w¡1, and are shown in the illustration below. 

) 
.1 

I 
) 

I 
) 

I 

From the geometry one readily deduces the equivalence of Eq. 31 with 

the appropriate ■"ay path. Note that for ¿ ^ 0 the saddle points 

w" and w+ pertain to rays which undergo their last reflection at 
si si 

the upper or lower boundary of medium 2, respectively. In view of 
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th® geometrical interpretation of Eg. 31» it is evident that for a 

given p, z, there exists an infinite set of real solution ws¿, or, 

equivalently, that any fixed observation point in medium 2 is accessible 

by means of an infinite number of ray paths. The saddle points 

are identical with the angles of incidence of rays in medium 1, and 

can be ordered in the decreasing sequence 

w >w >w,>w.> 
so so si si 

> W . > w _ > W . . si st st+1 
(33) 

If the angle of incidence w'Q of the direct refracted ray is not too 

close to the angle of total reflection, sin-1n (which coincides with 

the branch point singularity in the illustration on page 1/), the 

integrals, Eq. 26, can be approximated by their first-order saddle 

point contributions, namely, 

V <w^i 
(34) 

where ^(w* ) is the second derivative of Eq. 24, evaluated at the 

appropriate^saddle point. When the observation point is sufficiently 

close to the interface, or if c » h, w¡o will approach the angle 

of total reflection. In this case, one or more saddle points will 

lie near the branch point, necessitating a more elaborate asymptotic 

evaluation of 1^. The result is that the geometrical acoustics ray 

description must be supplemented to include diffraction effects in 

the form of lateral waves (Ref. 2). 

Eq. 34 can be written explicitly in terns of ray path lengths 

and ray tube cross sections. Denote by R* the path traversed by an 

incident ray in medium 1 and by S* the total path length of a multiply 

reflected ray in medium 2. Referring to the geometry of the illus¬ 

tration on page 21* one has for the total phase in medium 1, 
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klR* = ki^/sin ws¿ + Vz'-M cos w^, (35) 

while for the total phase in medium 2, one obtains 

k2S¿ = k2 sin k2 [(24+1) h ± zj cos w*¿ . (36) 

Adding Eqs. 55 and 36, and taking account of Snell's law, i.e., 

sin = k2 sin w^, yields 

klRt + k2S¿ = kiD sin ws¿ + k1(z/_h) cos ws¿ (37^ 

+ k1C(2¿ + l)h ± z] ^jn2 - sin^ w* . 
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Comparing this with Eq. 24, one identifies the exponential term in 

Eq. 34 with the total phase change along the ray paths, namely, 

klc \ (wsl> = kl * S S* . (38) 

ray ampUtude factor in Eq. 34 can also ba expressed in teres 
of and S¿. Differentiating Eq. 30 yields 

w) = -sin w - cosw - ^ z 

+ sin2w cos2w 

(n^- sin2w)3« 

2 2 
cos w - sin w 

(39) 
'n - sin w 

After evaluating the preceding expression at w = and employing 

Sr all's law, the result can be written in the following form; 

2 ± 

^4) = ^ 4- (t*)«5 4 ♦ |(¿i^ 
' n cos w . ( c 

± z 

cos2w“ 
-|i- ((^ * l)h » z) 

n cos w*. ' P > 
(40) 

si 

From the illustration on page 21, one obtains 

(2t + l)h ± z = sf cos wd 
si * (41) 

and 

j 2 ± s in w 
-s* = n S* sin2 w^t = sin sin ^ (42) 

= (p - p') sin w*¿ . 

After substituting £q. 41 and Eq. 42 into Eq. 40, and taking account 

of Eq. 35, the final version of Eq. 40 reads: 

ÉÉMWI 
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With the aid of Eqs. 38 and 43, the amplitude and phase of a typical 

ray in Eq. 34 are given by 

2e 
-in/4 F 

kp/cT cos w 
St 

k^p - 
2 ± 

klcos “st 
, 2-± 
k2COS Wst 

TT" » 
(44) 

and the complete geometrical acoustics ray series 1 lows from Eqs. 

25 and 26: 

mk. 

Y(P,z) 

k^p ~ ® 

Z4 sin w 
t=o 

2n/'k1p 

^cos w*¿- m k2cos 

(45) 

1 [kifl * k2s;] 

T± + 
k.cos w , 
. 1 si 

l :—Tz 
k^cos w St 

½• 

As mentioned in the preceding, the ray series is valid for 

k^ » 1, k^z'-h) » 1 and p comparable in magnitude to h-z, i.e., 

not near the angle of total reflection. From Eq. 45 one notes 
st « 

that as the ang1“ of total reflection is approached, cos wst ~ and 

the ray amplitudes tend to zero. This result is, of course, factitious 

and a more accurate asymptotic evaluation would exhibit nonzero values 

in terms of lateral waves. It is true, however, that near ws4 « n/2 

the ray tube cross sections in medium 2 increase, thus'implying a 

reduction in power density. Moreover, the lateral wave contribution 

23 
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decays more rapidly v h k^p than the terns in the geometrical acous¬ 

tics series. To obtain a representation of the acoustic potential 

valid for large p with p » (h-z), one could employ an asymptotic 

evaluation which includes lateral waves. However, the resulting 

series, just as the ray series in Eq. 45, converges very slowly, 

particularly for small m. 

A more rapidly convergent representation for the acoustic poten¬ 

tial at great distances from the source is afforded by a residue 

series of leaky waves. Such a series can be obtained directly from 

the ray series with the aid of the Poisson transformation (see Ref. 3). 

It is more instructive, however, to proceed directly from the integral 

representation, Eq. 21. Rather than expand T(w) in the geometric 

series in Eq. 22, an asymptotic evaluation involving the closed form 

of the integrand wii.1 be effected. As a preliminary step, it is 

desirable to express the relative location of the source and observa¬ 

tion points in terms of new variables shown in the following sketch. 

With reference to the sketch above, one has 

p = r sin 9 , z ' - h = r cos 9 , 

and Eq. 21 is written 
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(46) e 
ik-r cos(w-A) 

cosw T(w) e 1 dw . 

The integral is taken over the path P in the sketch on page 14. it 

can be evaluated for large k^ by deforming P into the steepest-des- 

cents path (SDP) passing through the saddle point w = a, as shown in 

the following illustration. 

LEAKY WAVE POLES INTERCEPTED 

IN PATH DEFORMATION 

Re w 

4-11-7«.X 

In deforming P into SDP, a number of poles will be intercepted. 

Consequently, ¥ will be represented as a series, corresponding to the 

residues at these poles, plus an integral to be evaluated asymptot¬ 

ically at the saddle point w = A. As stated in the preceding, the 
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location of these poles is determined from the solution of the secular 

equation (Eq. 16). Taking account of the transformation K = x^sin w, 

Eq. 16 is equivalent to two simultaneous equations: 

Hjh cot H2h = imH2h , 

2 2 l2/ 2 IN 
K2 ~ K1 Mn " » 

(47a) 

(47b) 

, and denotes a typical 

pole location in the w-plane. As in the case of the geometrical 

acoustics ray series, it will be assumed tlv.t n < 1 and m « 1. 

From Eq. 47, one can readily establish thee the first of these con¬ 

straints pr'eludes the existence of solutions for which is purely 

imaginary. Such solutions would correspond to surface waves, having 

pole locations as indicated in the illustration on page 14. Thus, in 

the deformation of the integration path into the path of steepest de¬ 

scents in the sketch on page 25, only leaky wave poles will be inter¬ 

cepted. The pertinent leaky wave poles are located in the region of 

the w-plane defined by 0 < Re w < n/2, Im w > 0. For the case m « x, 

the leaky wave pole locations can be solved for from Eq. 47 b> a per¬ 

turbation technique. The aeroth order pole locations are determined 

by setting m = 0. This corresponds to a perfectly reflecting boundary 

at z = h, leading to an infinite set of characteristic wavenumbers for 

a lossless parallel nlate wave guide of height h. With m = 0, the 

zeroth order solutions of Eq. 47a are 

where = k^cos w^, *2 = k 
2 

sin w. 

1, 2, » (48) 

or, expressed in terms of w^, one has 

, sin «<°> = K1V7Tp^: (49) 
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The preceding can be interpreted as the propagation constant in the 

p direction of a typical wave guide node. For 

n * ^ ~¿k*h,u (50) 

sin is purely real, the wave guide modes propagate without 

attenuation, and the poles are located on the segment of the real w 

axis defined by 0 < Re w# < sin ^n. When 

n < v 2k h*" * 

sin is purely imaginary, the wave guide modes attenuate in the 

p direction, and the corresponding poles lie on the positive branch 

of the imaginary w axis. To obtain approximate solutions for the 

pole locations when m ¿ 0, one first eliminates x1 in Eq. 47, with 

the result 

cot Hjh = im 

^(x2h)2 +(1- n2) O^hV 

which may also be expressed in the alternate form 

2ix. 

2ix,h 
¿ = 1 + m 

(k 

/ 2ix2h\ 

>h) \1 
^(* h)2 . (1-n2) (kjh)* 

(52) 

The solution for x2h is now written as the sum of its zeroth order 

value, Eq. 48, and a small increment (which depends on m): 

*2lh = 'T'1^ ♦ . t = », 1, 2, (S3) 

■klMÜHl 
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2 
che angle of total reflection, and for n « 1, the asymptotic evalua¬ 

tion of the integral along the steepest descents path will be unaf¬ 

fected by pole singularities. Decomposing Y in Eq. 46 into a sum com 

prising the SDP contribution and a leaky wave residue series, one can 

write 

* = ^SDP + '''RES * (57) 

Focussing first on the SDP contribution, and assuming initially that 

9 < n/2, the first-order saddle point contribution in Eq. 40 is 

(58) 

kjCos 9 cos 

Since sin 4 > n, the square roots yield purely imaginary numbers. 

Consequently, at observation points sufficiently far below the medium 

interface, fgDp decays exponentially with (v.-z). Indeed, if (h-z)k1 » 1, 

Eq. 58 can be approximated by 

e 
(59) -1 Ü * 

cos 9 + m \sin 9 - u cos 9 + m 

Evidently, when k^h » 1, the saddle point contribution does not 

constitute the dominant portion of the acoustic potential in Eq. 57, 

except for observation points at or near the medium interface. When 

9 - n/2, as will necessarily be the case for sufficiently large o, 

the first-order asymptotic term, Eq. 58, tends to zero. In this 

case, the second term in the asymptotic series for large k^ dominates. 

One can show that at 9 = n/2 this dominant term is 



H'l'l-flW» '1 "T H’.'"H’- .. .. ... mmmm 

sdp~ hr coth 
cosh 

sinh k^hVl-n 

At the interface z=h, assuming k-hVl-n2 » 1, 

> 

(60) 

(61) 

whereas below the interface, one again obtains an exponentially decay¬ 
ing result, na.i.ely, 

‘SDP 
3_ 
2tt 

h 
m 

elkl° -kVT7(h-Z) 

Tmne VlV £! 
(62) 

In view of the foregoing comments, the potential function for 

9 > sin n, (h-z) ^ » 1 and k^ » l is determined entirely by a 

residue series of leaky waves. Upon equating Eq. 46 to 2ni times the 

sum of residues enclosed between P and SDP, one obtains, with the 
aid of Eq. 19, 

(2TTi)imkf T-.0. 

Ÿ(P’Z’Z)~ 4n ^^7 (63) 

En- ik.r cos(w -9 ) 
\sin cos e A 1 

d_ 
dw K 

c°s ^¿2 

COSWCOSH^h imx.sinK^ 
W~W. 

Each individual leaky wave mode decays with o in accordance with the 

"cylindrical spreading" factor l^p and, in addition, possesses an 

exponential dependence on p contained in k^ cos(w - 9), which may 
be written 
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(64) 

— 

k.r cos(w -0) = k.(2'- h) cos w, + k,p sin w 
1 V 1 %> 1 4 

In the zeroth order approximation m = 0, Eq. 49, the last term in 

Eq. 64 is purely real in the propagation region (Eq. 50), and purely 

(positive) imaginary in the evanescent region (Eq. 51). Because of 

the exponential attenuation of the evanescent modes with p, the sum 

in Eq. 63 can be truncated to include only the finite number of pro¬ 

pagating modes, equal approximately to nk^h/n. For m ¿ 0, the boundary 

between propagating and evanescent modes is no longer sharply defined, 

a phenomenon similar to that which obtains generally in dissipative 

media. Even though the media under present consideration are dissi¬ 

pationless, the power carried by a typical mode propagating in the 

lower medium is attenuated by virtue of its continuous "leakage" 

across the interface z = h. As a result, sin w. always has a nonzero 

imaginary part, resulting in an exponential attenuation of each leaky 

wave with p. However, for small m this exponential decay for modes 

with 0 & I < nk.h/TT can be quite small, the attenuation of each 

individual mode with p being governed primarily by the cylindrical 

spreading factor l//p . On the other hand, the variation of the totai 

acoustic potential with p may exhibit rather complicated oscillatory 

behavior due to phase interference effects, especially if the number 

of propagating modes is large. 

For m « 1, *2^h in Eq. 63 can be replaced by its zeroth-order 

approximation, that is, + and the term containing m in the 

denominator may be neglected. With these modifications, Ea. 63 

reduces to 

ik.iz'-h^osw. 
1 ik.p sin w 
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The number of teims in the series required for convergence is approxi¬ 

mately kjhn/n, equal to the number of propagating waves. The roots 

w^ may be computed by means of the previously described perturbation 

technique. In the range of satisfying 

the first-order perturbation parameter 5¿ in Eq. 55 may be written 

(67) 

and, employing Eq. 56, 

(68a) 

COS W^ ss\l (68b) 

If the relative refractive index is small, that is, 2n2 « 1, the range 

of l where Eq. 66 fails to hold corresponds to evanescent waves. 

Consequently, Eq. 68 may be employed in Eq. 65 for all l. In view of 

Eq. 68b, one notes from Eq. 65 that the magnitude of the acoustic 

potential is only weakly dependent on the height of the source above 

the interface . 

C. ASYMPTOTIC EVALUATION OF ACOUSTIC POTENTIAL FOR A LAYER WITH A 
LINEARLY VARYING REFRACTIVE INDEX PROFILE 

The preceding asymptotic evaluation can also be carried out for 

a layer with a linearly varying refractive index profile, defined by 

*-5-5- 
Actually, n (z) = N - a(h-z), that is, the square of the index is 
linear. However, for a(h-z)/N2 « 1, n(z) 1 - a/2N (h-z). 
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Eq. 10. For a > 0, the refractivo index decreases from N (N < 1) just 

belo» the interface to nJi - ^ at the perfectly impenetrable bottce, 

boundary z = 0, as shown below. 

An integral representation for Y at observation points within 

the layer follows from Eq. 4 in conjunction with Eqs. 7, 13, and 14. 

Following the same procedure as in the case of a constant refractive 

index, the acoustic potential can be represented as in Eq. 46, the 

only modification being that T(w, z) must now be replaced by T(w, z), 

T(w, z) = k^cos W A V w ♦* 

where 

(69) 

(70) 



ve*)=fî^/3j»i|k^i/3 (zp. ,¡4ir -p] (71) 

and 

_ . h /n2 - sin2w\ 
ZP " h • V-ã-) • (72) 

Tlie monotonie variation of n(z) within the layer precludes local¬ 

ized internal ducting of acoustic energy and, since the refractive 

index of the layer is less than unity, no surface waves can be sup¬ 

ported by the interface. Consequently, the nature of the singularities 

of the integrand and their disposition relative to the path of inte¬ 

gration P in the illustration on page 25 will not differ substantially 

from the situation which obtains in a homogeneous medium, especially 

if the slope parameter a is small. From considerations quite analogous 

to those employed in conjunction with the spatially invariant refrac¬ 

tive index profile, one finds that the acoustic potential at large 

radial distances from the source is more readily amenable to numerical 

computation when expressed as a leaky wave residue series rather than 

as a ray acoustics series . Wien the path of integration is deformed 

from P to SDP, one can again express Y for large (9 - n/2) as 

a sum of a saddle point contribution and a leaky wave residue series. 

For a certain range of parameters the saddle point contribution will 

be shown to account for a significant portion of the acoustic potential 

only at observation points very near the interface, being subject to 

an exponential decay with (h-z) similar to that given by Eqs. 59 and 

60. In view of the previous discussion concerning the saddle point 

contribution in Eq. 58, if is sufficient to show that the integrand, 

Eq. 46 or, more precisely, T(w,z) in Eq. 69, decays exponentially 

with (h-z) for 9 = n/2. For this purpose, one can employ the asymptotic 
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(k^)173 + h-zj >> 1 » (75) 

or, since h-z 20, it is sufficient to require 

1-N » k 1/3 t (76) 

which can be satisfied for sufficiently large k, or sufficiently small 
2 1 

a. The maximum permissible value of a is N /h, since it reduces the 

refractive index at z = 0 to zero. Consequently, a sufficient condi¬ 

tion ensuring Eq. 76 is 

? (k.N) 
1-N » N — 

1/3 

(k^) 77T 
(77) 

and can be satisfied if the layer depth h is large in terms of wave¬ 

lengths . Assuming this to be the case, one can readily establish with 

the aid of Eq. 74 that T(n/2,z) decays exponentially below the inter¬ 

face and, consequently, that the saddle point contribution to the total 

acoustic potential for k^h-z) > 0 is negligibly small. The dominant 

contribution arises from the leaky wave series, which may be written 

(for k^P ~ • and k^(h-z) » 1) 

4- 

where the leaky wave poles, w^, are determined from the solution of 

kjcosw^ X(w^, h) + im Y (w^) = 0 . (79) 
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foe general form of the result (Eq. 78) is very similar to the leaky 

wave series for the constant refractive index profile, Eq. 63, and 

the qualitative canments regarding the physical interpretation of 

leaky waves,and convergence properties of the series made in conjunc¬ 

tion with Eq. 63 are also applicable to Eq. 78. As in the constant 

refractive index case, the solution of the secular equation for small 

m can be effected with the zid of a perturbation technique for vh ich 

the zeroth-order solutions correspond to the roots of 

X(w^, h) = 0 . 

Evidently, as the slope parameter (a) tends to zero, Eq. 78 must 

approach Eq. 63. It is of interest to inquire how small (a) must be ir 

order that Eq. 63 constitute an acceptable approximation in a layer 

with a linearly varying refractive index profile. The transition from 

Eq. 78 to Eq. 63 follows upon recognizing that for sin w ¿ N and 

sufficiently small a, the resulting large arguments of the Airy func¬ 

tions penult their replacement by first-order asymptotic forms. 

Substitution of these asymptotic forms in Eq. 78 yields Eq. 63. In 

examining Eq. 78 for small a, only those values of w lying near the 

leaky wave poles need be considered. In particular, if m « l, only 

the region 0 s sinw < N on the real w axis is of interest. In this 

range of w and for sufficiently small a, the arguments of the Airy 

function will be negative. Thus if 

(81) 

the oscillatory asymptotic representations (Eq. 73) are appropriate. 

Taking account of Eq. 72, Eq . 81 may be written in the following form: 

2 2 
N - sin w^ » (h-z) a + (82) 
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Sine» this inequality must hold for 0 s z s h, increasing h constrains 

the slope parameters to take on progressively smaller values. If h 

is sufficiently large, even a very gradual decrease in the refractive 

index with depth can result in significant deviations of the character 

istics of leaky wave mode functions from those computed on the basis 

of a constant refractive index model. Also, the effect of the approxi 

mation is not uniform in w., becoming progressively poorer as w 

approaches the angle of total reflection, i.e., sinw# - N. Conse¬ 

quently, leaky wave poles lying close to sin'Hj will be more sensitive 

to changes in the slope parameter than those further removed. When 

a = 0 and m « 1, sinw^ may be approximated by Eq. 49, which, together 

with Eq. 81, yields 

2k.h 
(21.+ 1) » —=- 

TT (83) 

If Eq. 83 is satisfied for all 4, the effect of the variation in 

refractive index can be neglected, and Eq. 78 may be replaced by Eq. 

63. Clearly, as (a) is increased from zero, Eq. 83 will first be 

violated for the lowest order modes, which are precisely the ones 

whose poles lie close to the angle of total reflection. These modes 

correspond to rays with turning points at or above the bottom boundary 

(z = 0). Thus, given an arbitrarily small slope parameter, one can 

always increase h sufficiently so that one or more rays turn around 

before reaching the bottom boundary. This interpretation is consis¬ 

tent with Eq. 83, which can be violated for arbitrarily small (a) by 

increasing h, 

In assessing the importance of the magnitude of the slope param¬ 

eter on the leaky wave series, one should bear in mind that Eq. 83 

may fail to hold for only a small number of lowest order modes. As 

long as these constitute only a small fraction of the total number of 

propagating modes, the effects of the refractive index inhomogereity 

may still be negligible on the overall modal sum. 



D. ACOUSTIC POTENTIAL IN A LAYER WITH A HIGHLY ABSORBENT LOWER 
BOUNDARY 

The planar layer with a perfectly rigid boundary at z = 0 consti¬ 

tutes a suitable model for physical situations in which the lower 

boundary is strongly reflecting, i.e., its reflection coefficient is 

close to unity. In many physical problems, the layer is bounded by a 

highly absorbent rather than a highly reflecting surface. This 

absorption may arise from a dissipation mechanism directly associated 

with the surface constitutive parameters, or it may be the result of 

random scattering by a hiçfrly irregular surface contour. In the 

latter instance, the scattered acoustic radiation would be largely 

diffuse and, consequently, could not contribute to constructive rein¬ 

forcement with a coherent acoustic wave complex. 'Itius, as concerns 

the coherent part of the acoustic potential, the energy scattered by 

the lower boundary may be treated as having been effectively dissipated. 

A variety of simplified models can be employed to characterize 

an acoustically absorbent surface. One analytically tractable model 

employs a homogeneous (Leontovich type) boundary condition to yield 

a constant resistive surface impedence. The result of interaction 

of an incident plane wave with such a constant resistance surface 

yields a scattered plane wave whose amplitude vines with the angle 

ol incidence. Consequently, perfect absorption is possible for only 

one direction of incidence. The model postulated herein is that of 

a "¡-¿rfectly" absorbent surface, that is, a surface which completely 

absorbs all incident plane waves irrespective of their angles of 

incidence. Aside from affording a somewhat greater degree of simpli¬ 

fication from the analytical standpoint, a perfect absorber of this 

type appears to conform more closely to the situation which obtains 

in the case of an irregularly contoured dissipative surface than does 

a constant resistance model. 

In a layer having a constant refractive index, an ideal planar 

absorber at z = 0 permits only the direct refracted ray to reach the 

observation point, precisely as is the case for a layer occupying the 
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entire half space z < h. At observation points far removed from the 

source point and p » h, but well below the upper medium interface, 

the acoustic potential is governed primarily by the second-order 

geometrical acoustics result obeying the spreading law l/02 (Ref. 2), 

as contrasted with the cylindrical spreading i/./p, governing the leaky 

wave representation in the presence of a perfectly reflecting boundary. 

Ttius, for a constant refractive index profile and large p, the presence 

of a perfectly reflecting surface at z = 0 leads to a mhstantial 

reinforcement of acoustic potential over that obtained with a 

perfectly absorbent lower boundary. In this regard, the situation 

differs drastically from that which obtains in a layer with a linearly 

decreasing refractive index profile. For, in this case, the rays fol¬ 

low curved trajectories [for sufficiently small (a), these may be ap¬ 

proximated by semicircular arcs (Ref. 2)], and consequently, acoustic 

energy can be "guided" along the interface by virtue of ray reflec¬ 

tions taking place at ray caustics rather than at the lower layer 

boundary. As will be shown in Chapter III, the overall effect of 

these reflections leads to an average decay given by 1/Jl. Various 

possible ray trajectories are depicted below. 
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The ra/s are seen to be of three types: those with turning points 

above the lower layer boundary (A), those reflected from the lower 

boundary (C), and the transitional glancing ray (B), whose turning 

point lies just at the lower boundary. A perfect absorber, as postu¬ 

lated in the preceding, completely suppresses reflections of rays (B) 

and (C), leaving type (A) rays unaffected. By virtue of multiple re¬ 

flections at the upper layer boundary, these rays facilitate guiding 

of acoustic energy with low attenuation, a propagation phenomenon ex¬ 

ploited in connection with long-range acoustic detection systems known 

as SOFAR (Ref. 2). A geometrical acoustics ray description can be em¬ 

ployed to show that such multiply reflected rays produce high energy 

concentrations near the upper layer interface, a wave phenomenon with 

a direct counterpart in the Whispering Gallery Effect (Refs. 2 and Î) 

associated with concentration of acoustic ene'gy near concave surfaces 

with large radii of curvature. In the present application the obser¬ 

vation points of interest are far from the upper layer boundary and 

very near the lower boundary. Since this region corresponds to turn¬ 

ing points of one or more rays, the ray description has here only 

qualitative validity. Moreover, the transition between the critical 

ray (B) interacting wich the ideal absorbing surface and a ray with a 

turning point just above the lower boundary cannot be examined quanti¬ 

tatively on the basis of geomecrical acoustics. Although the ray de¬ 

scription can be supplemented by the inclusion of appropriate transi¬ 

tion functions yielding correct diffraction effects in regions close 

to ray turning points, an alternate, and substantially equivalent, 

representation may be obtained with the aid of the residue series, Eq. 

78. This residue series is valid for a perfectly reflecting boundary 

and, consequently, contains mode functions corresponding to the ray 

classification in the preceding sketch. Characteristic wave numbers 

of modes descriptive of propagation properties of type (A) rays will 

be weakly dependent on h. In particular, if h is chosen sufficiently 

large, these mode wave numbers should tend to exhibit progressively 

weaker dependence on h. Therefore, to obtain a mode series appropri¬ 

ate to a layer with a linearly varying profile and a perfectly 
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absorbent lower boundary, the expressions for the mode functions and 

characteristic wave numbers in Eq. 78 should be examined for large h, 

thereby affording their separation fron those terms in the series with 

a strong dependence on the reflecting properties of the lower boundary. 

The lacter part of the series must, perforce, correspond to rays un¬ 
dergoing reflection at z = 0. 

As mentioned in conjunction with Eq. 79, for small m, the leaky 

wave poles corresponding to propagating modes fall approximately on 

the segnent 0^< sin w < N of the real w axis. Hence, in the region 

of interest N - sin'w is nonnegative. Consider h sufficiently 

large, such that for all pertinent w 

fsf -, ■ Hf [" ■ » ■ 
The Airy functions in Eqs . 70 and 71 with arguments fk^aj^p 

may now be replaced by appropriate asymptotic forms. Since Zp is 

positive, these are given by Eq. 74. In particular, one notes that 

^ L\l/ ZPj ^eca^s* zp| increases exponentially. 

Consequently, for large zp the terms in Eqs. 70 and 71 containing 

as a factor will be exponentially small and may there¬ 

fore be deleted. Of course, this deletion is permissible only if 

the functions containing Zp - z and Zp - h are not themselves of 

exponential growth, a condition ensured by restricting z to values 

satisfying Zp - z < 0, since for real negative arguments all Airy 

functions exhibit bounded oscillatory behavior. After eliding the 

exponentially small terms in Eqs. 70 and 71, T(w,z) in Eq. 69 may be 
written 

T(w,z) 
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Equation 85 can be used to generate a residue series analogous to 

Eq. 78, with the secular equation for w now given by 
V 

= (NJ-sln2wt)] -l»(k^/5 (N2. Sln2wj] • (86) 

The roots w^ are independent of h and infinite in number. Indeed, 

Eq. 85 is precisely the result that would have been obtained from a 

direct solution of the problem for a layer with no lower boundary, 

that is, a refractive index profile having the functional form of 

Eq. 10 for - • < z < h. A residue series for a layer with a perfectly 

absorbent lower boundary^may be constructed by retaining only those 

terms for idiich Ai^kJaJ (zp - z)j decreases monotonically in the 

region z < 0, and possesses oscillatory behavior when z > 0. For 

sufficiently small m, only the zeroth-order approximation 

T(w1z) = _Afe)l/3( *P - 2)1 1 
cos w Ai 1 M' (n2 - sin2w)] 

(87) 

and the associated secular equation is 

Ai['Crf (NÎ - 5in2wt)j =0 (88) 

Note that the cosw factor present in Eq. 86 has been omitted in 

Eq. 88, since it cancels against cosw present in the numerator of the 

final integral representation, Eq. 46. The zeros of Ai(-a) have 

been tabulated (Ref. 4). With the notation 

Ai N = 0 (89) 
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the are all real, nonnegative, and can be arranged in a sequence 

0 < °1 < °2 < °3 • * * * (90) 

Writing sin in Eq. 88 explicitly in terns of a^, ore has 
.1/2 

sin wt = p - /3j t = 1, 2, 3, • (91) 

where, in consonance with previous results, the positive imaginary part 
of sinw is to be chosen if the radicand should become negative. 
Although Eq. 89 holds for an infinite number of o|, only a finite num¬ 
ber of these need be retained for a perfectly absorbent lower layer, 
namely, those which locate the point of transition (that is, the ray 
turning points) of the Airy function in the numerator of Eq. 87 above 
the plane z = 0. Expressing the numerator of T(w,z) explicitly in 
terms of 0., one obtains 

Let z., 0 < z. < h, be the transition point between the ranges of z 
L L 

corresponding to monotonically decaying and oscillating behaviors of 
Eq. 92 for t = L. Then, 

and transition points z^ for 1 s 4 < L all lie above viz., zL 
< z.. By virtue of the ordering of roots, Eq. 90, in the range 
0 < z < z. Eq. 92 represents a monotonically decreasing function for 
all l s L. This range of z is the shadow side of ray caustics asso¬ 
ciated with mode indexes I £ L. On the other hand, when l > L, the 
transition points z^ move below the plane z = z^, and oscillatory 
behavior now penetrates to z^ < z < h. Hence, if the postulated ideal 
absorber is placed at z = 0 "just below” zL> modes with indexes 4 > L 
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can be assumed suppressed and, consequently, discarded in the final 

residue series summation. The proximity of such an absorber to 

entails considerable arbitrariness, connected primarily with the fact 

that the width of the transition region between the lit and shadow 

zones is finite, but the ideal absorber was postulated in accordance 

with phenomenological considerations of geometrical acoustics where 

all transition regions are, indeed, of zero '»idth. One could choose 

z such that at z = 0 Eq. 91 has decayed to a specified level below 

Ai(0), thereby placing the plane z = 0 "deep" in the shadow zone for 

£ « L. For example, for a dec^y to about 5 percent of Ai(0), the 

width of the transition region is 

z 
(94) 

As the wavelength tends to zero, kj - and zL approaches zero, in 

consonance with geometrical acoustics. Alternatively, one can take 

the transition point z. coincident with z = 0. In this case, the wave 

/ 2 \”n 
function actually penetrates a distance Slk^aJ into a region z < 0, 

which, in view of the fact that z = 0 should coincide with the planar 

absorber, appears to carry with it a greater degree of artificiality 

than that resulting from the placement of the caustic surface above 

z = 0. However, such a picture maintains a closer correspondence with 

the ray interpretation shown in the illustration on page 40, in that 

all rays with turning points z * 0 are included. For this reason the 

latter point of view will be adhered to herein. Thus, the number of 

contributing modes L is given Implicitly by 

The residue series now follows from Eqs . and 87, by an argument 

analogous to that employed in obtaining Iq. 78. Hence, there results 
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(96) 

E 
A1 [Ö 

1/3 

Ai(- o.) cosw Jsinw 
i=L ^ ^ t 

(h-z) - o,] ikj^Cz'- h)cosw^ + ik^ sinw^ , 

where sinw is given by Eq. 91 and 

t = [l - "2 + (tfl] cosw 

1/2 

(97) 

As is evident fron the steps leading to the construction of Eq. 96, 

the number of terms in the series can be substantially smaller than for 

a layer of equal height bounded by a perfectly reflecting surface. An 

estimate of L is readily obtained if the layer height is assumed to be 

large. Specifically, if 

1/3 

= (kî*) h » 1 , (98) 

the zero location o, can related to L with the aid of the asymptotic 
li 

from Eq. 73a. This yields 

2 3/2 ti 2 3/2 _ 2 .3/2 , 1/2 
Ltt ^ 3 °L + 4 ** 3 aL “ 3 h *1 ’ 3 L 

or 

L.^ki aV2 h3/2 . (99) 

On the other hand, for a perfectly reflecting layer, the number of 

terms required in the residue series was shown to be approximately 

Lrefl *,kihN/n* 'Ihus* the ^10 of the number of tems for 
a perfectly absorbent lower boundary to number of terms required to 
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represent the solution when the layer is bounded by a perfectly 

reflecting surface is 

(100) 

To illustrate the magnitude of this ratio by means of a concrete example, 

consider a = 1.25 x 10~6 (which corresponds to an average isothennal 
velocity gradient in a deep ocean), N = 0.228, and h = 3000 meters. Onr 

finds that Eq. 100 yields L/Lrefl * 0.11, that is, 11 percent of the 

modes are unaffected by the perfectly reflecting boundary and correspond 

to a ray system with turning points with z 2 0. These are the only 

permissible modes in the layer once the perfectly reflecting surface 

is replaced by the perfect absorber. 

For an evaluation of Y by means of Eq. 96 near the lower layer 

boundary, the number of significantly contributing ternis in the series 

will be considerably smaller than L. This is because most of the Airy 

functions in the numerator will be evaluated below their transition 

points and, consequently, will be strongly attenuated. As the obser¬ 

vation point is moved away from the bottom boundary, transition points 

of modes with progressively lower indexes will be intercepted, thus 

necessitating the inclusion of an increasingly larger number of terns 

in the summation. Only close to the upper layer boundary will the 

required number of terms approach L. It should, however, be borne in 

mind that Eq. 96 does not hold a; observation points close to the 

upper medium interface: first, because the excluded saddle point 

contribution may become significant and, second, because the zeroth- 

order solution for the roots in Eq. 88 is inadequate for points suffi¬ 

ciently close to z = h. Indeed, by virtue of Eq. 88, the numerators 

in Eq. 96 vanish at z = h, yielding Y(h,z',p) » 0, which is evidently 

incorrect. 

To obtain an estimate of the number of significant mode functions 

in Eq. 96 for observation points close to z = 0, one has to solve for 
th. modal index of the highest order contributing mode at z = 0. 
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Denoting the width of the transition region by z^t the zero corresponding 

to the mode with the transition point at z = z. is 

It will be assumed that z /h is small. Consequently, <3 
L 

» 1 
¿max 

whenever <5. » 1, and one can solve for l with the aid of the 
b max 

asymptotic form (Eq. 73a). This yields 

2 3/2_ j 1/2 

^max * 3n |a¿maxJ ~ 3n ^la 

3/2 , 1/2 3/2 
= 4- k.a h 

3tt 1 
(101) 

vdiere the last result follows from the use of the binomial expansion 

and retention of only the linear term zL/h. Combining Eq. 101 with 

Eq. 99, one can write for the ratio of the number of contributing terms 

to the total, 

(102) 

Returning to the preceding numerical example, one obtains from Eq. 94 

z. % 246, which yields iL - ¿ v)/L « 0.123, an approximately tenfolc Li max 
reduction from the number of terms required for observation points 

near the upper boundary. 

E. ACOUSTIC POINT SOURCE WITHIN THE PLANAR LAYER 

In the following discussion, soma of the preceding results will 

be compared with those for the acoustic potential due to a point 

source within the planar layer. With reference to the sketch on page 5, 

let the source be located at z', Oí z' s h and 0 = 0. The integral 

representation, Eq. 4, for the acoustic potential still applies, except 

that the one-dimensional Green's function must be replaced by 
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|f2(z<)é1(o) - f2(o)f1(z<)} 

[fjíoíf^o) - é2(o)f1(o)] 
(103) 

{ÍK1[f1(z>)f2(h) - f2(z>)f1(h)] 4 m[f2(z>)f1(h) - f1(z>)¿2(h)]J 

* {iH^fjCcOf^h) - ^(o)f2(h)] + n(í1(o)f2(h) - 

where are, as before, any two linearly independent solutions 

of Eq. 8. The symbols z< and z> have the following meanings: if 

z < z', then z< = z and z> - z'; if z' < z, then z< = z' and z> = z. 

Before discussing the various special cases of constant and variable 

reflective index profiles, it is of interest to consider Eq. 103 for 

a point source on the boundary z = h within the layer, for arbitrary 

functional forms ^ 2(z). Setting = z and z> = z' = h, and noting 

that the Wronskian f2(z)f^(z) - f2(z)f^(z) is independent of z, yields 

f„(z)f (o) - f (o)f (z) 
g( Z.hjH.) = m -:-;-i----i-;-;- 

ÍH1Cf2(o)f^^(h) - f1(o)f2(h)1 4 mfé^(o)f2(h) - ^(ojf^h)] 

(104) 
Comparing Eq. 104 with the Green’s function for a point source above 

the layer, Eq. 7, one notes that the latter differs from Eq. 104 only 

by the factor expCiHjU' - h)]. The quantity »^(z' - h) = k^z'- h)cosw 

represents the phase shift along the z direction between the source 

location and the upper medium interface for a plane wave incident at 

<rn angle w relative to the z axis. Representations for the acoustic 

potential such as Eqs. 4 or 46 can be interpreted as superposition 

integrals of plane waves launched by the point source into the layer 

at all possible directions of incidence. Not all directions of inci¬ 

dence are equally effective in contributing significantly to the acous¬ 

tic potential at a given observation point within the layer. For 
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example, when the observation point is at a large radial distance from 

the source point, only plane waves whose angles of incidence fall 

within a narrow range may contribute significantly. In such cases, 

cosw may be treated as a constant, and exp iCk^z'- h)cosw] factored 

out of the superposition integral. Under these circumstances, substi¬ 

tution of Eqs. 7 or 104 into Eq. 4 leads to the same magnitude of 

acoustic potential. Thus, one obtains the following source equivalent 

principle: if cosw « constant for all significantly contributing 

wave types, a point source of unit strength above the layer produces 

the same magnitude of acoustic potential within the layer as that 

produced by a point source of unit strength at the upper interface 

within the layer. Evidently, if the preceding condition holds, the 

magnitude of the acoustic potential in the layer is not dependent on 

the source height above the medium interface. A particular case in 

which this source equivalence principle applies is a layer of constant 
2 

refractive index with 2n « 1 and m « 1, as discussed in conjunction 

with Eq. 68. This is readily generalized to a layer with a linearly 

decreasing refractive index profile and a perfectly reflecting lower 

boundary by replacing n with N, the relative refractive index at the 

upper medium interface. When the lower layer boundary is replaced by 

a perfect absorber, the condition for source equivalence follows by 

requiring that cosw^ in Eq. 97 be independent oí l. This will be the 

case if 

(IQS) 

For large h, one can employ Eq. 98 to obtain 

1 - N2 » ha. (106) 

Note that for a perfectly absorbent boundary, unlike for a perfectly 
2 

reflecting boundary, the constraint 2N « 1 is superfluous. 



mmm 

To obtain a residue series for the acoustic potential produced 

by a point source within the layer, one starts with the integral repre¬ 

sentation analogous to Eq. 46, namely, 

ik.pcosw 
g(z,z';w) e 1 dw , (107) 

P 

where g(z,z';w) is given by Eq. 103 with the transformation *l = k^osw. 

For a constant refractive index profile, Eq. 103 reduces to 

cos(x2z<) {-KjSinrxjiz^ h)] + im h2 cosO^z^ h)]} 
g(z,z';w) = 

Kjfx^cos Hjh - im x2 sin x2h] 

H1 = ^icosw* h2 s (108) 

The asymptotic evaluatic:. of Eq. 107 for large o proceeds exactly as 

in Eq. 46, with the steepest descents path following the curve shown 

in the illustration on page 25 with 8 = tt/2. At observation points not 

too close to z = h, the contribution from the saddle point at 8 = n/2 

is again found to be exponentially small by comparison with the residue 

series, which in the present case may be written 

(109) 

cosw ik^psinw^ 

X 
21 U 1 2V > n 21 

__ f V» a« W _ ** c 4 «i {kj^cosw cos Xjh - im x2 sin x2h} 
w = w l 
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Employing the zeroth order approximation for the roots when m « 1, 
Eq. 109 simplifies to 

r(P,z,z') cos (*2¿z)cos i^10sinw¿ 

/sin w 

+ imV' H24COS(K2t z<)siníR2¿z>) 

k^cosw^ /sinw^ (110) 

where 

The first sum in Eq. 110 is the modal expansion for an impenetrable 

upper boundary, that is, m = 0, equivalent to the boundary condition 

Y(p,h,z ) = 0. Hence, this sum vanishes when the source is placed at 

the upper layer boundary, in which case the second sum constitutes the 

dominant contribution. Indeed, for z' = z> = h, the second sum reduces 

to Eq. 65, except for the factor exptik^z'- h) cosw¿] multiplying 

each mode function. If cos w^ % constant for all pertinent modal 

indexes, the exponential factor may be brought outside the summation, 

thus yielding the source equivalence discussed in the preceding. As 

the source location is moved away from the medium interface, the first 

sum in Eq. 65 begins to dominate. A residue series analogous to Eqs. 

109 or 110 can be obtained for the linearly decreasing refractive in¬ 

dex profile by employing the Airy functions Eqs. 13a and 13b in 103. 

When the lower boundary is perfectly absorbent and m « 1, the ap¬ 

proximate form of the residue series is 
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(Ill) Y(p»ZtZ') - -• 
-in/4 V5 

. ik.psinw, _ , i r. V,/, 1 

S 1 (h'2 <h'z,)'0J 

4/3 

. ik.psinw. r/iK*-/* i,. i-rt L, ^(“'-»fe-rvswj 
t=L r 2 1/3 i\ 

-Bi(-a¿)Ail(k^a) (h-z>)-olJy| 

The two sums in Eq. 11 admit the same interpretation as in Eq. 

110: the first sum U c:.¿ guided mode series for an impenetrable 

upper boundary. This sum represents the dominant contribution if the 

source point z' is not too close to h, and vanishes identically for 

z' s h. In this case, the second sum dominates. Upon setting = 

z' = h and employing the identity Âi(-o^) Bi(-o^) - Ai(-o^) èi(-Cj) 

-1/n, one obtains Eq. 96 (apart from the exponential factor exp 

ik.U'-hîcosw.), in consonance with the source-equivalence principle. 
X V 

The computational aspects associated with Eq. Ill are identical 

to those considered in Section D of Chapter II in conjunction with the 

point source within the layer. 



III. PROPAGATION OF ACOUSTIC SIGNALS OVER LONG PATHS 
BELOW THE OCEAN SURFACE 

The previously derived residue-series representations will be 

applied to estimating the acoustic pressure produced in an isothermal 

ocean, at large distances from a single frequency source above the 

ocean surface. Even though the two simplified planar models discussed, 

viz., the one bounded by a perfectly rigid reflecting flat surface and 

the other bounded by a perfectly absorbent surface, pertain to grossly 

idealized situations having no counterpart in the case of a real ocean 

floor, they correspond to limiting cases and, as such, can be of value 

in providing bounds on possible acoustic signal enhancement arising 

from systematic ocean floor reflections. Also, such models can yield 

quantitative estimates of relative signal strength produced by sources 

above and below the ocean interface. In all cases, the observation 

point (receiver) will be located deep below the ocean surface in the 

isothermal layer, well below the seasonal and main thermoclines . The 

linearly increasing velocity profile of the isothermal sea will be 

assumed to extend up to the ocean surface. The variation of the acous¬ 

tic velocity with depth is expressed by 

c2(z) = c2(h) [1 + a(h-z)] , (112) 

where c2(h) is the speed of sound at the ocean surface. Since the 

slope parameter a(a > 0) is small, the linear increase of velocity with 

depth corresponds, within a good approximation, to a linearly decreas¬ 

ing refractive index profile. Thus, the previously employed slope pa¬ 

rameter (a) is related to a by 

(117) 
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(compare Eq. 10) where N Is the ratio of the speed of sound in air to 
that in the water immediately below the interface, that is, 

1 _ 2 v 
= ^77FT = -T7 

c -, k- (h) 

In the following discussion the sound speed in air will be taken as 
340 m/sec, %#tile c-ih) = 1490 m/sec, yielding N a 0.228. A suitable 

* -6 
average value of the slope parameter is a = 1.25 x 10 /m (Ref. 2). 
The source frequency of interest is below 100 Hz. In particular, for 
all subsequent numerical results a frequency of 65 Hz will be assumed, 
yielding the wavenumber k. * * r” = 1*2. 

i kl c1 

The analysis in Chapter II dealt exclusively with the potential 
function Y, produced by a unit point source. In discussing acoustic 
signal strength, it is customary to employ the acoustic pressure which 
is proportional to the product of the medium density and the potential 
function (Eq. 2). Compariscn of acoustic pressure produced by sources 
within and outside the water will be facilitated by introducing the 
following notation. Let p21 denote the pressure at an observation 
poinv in medium 2 (water) due to a point source in medium 1 (air). 
The strength of the source is such that at an observation point 1 
meter from the (isolated) source in air the pressure is P^. Similarly, 
let p22 be tbe pressure in medium 2 due to a point source in medium 2, 
with an isolated source strength yielding a pressure P2 at a 1-meter 
distance. With Y21 and Y22 the potential in medium 2 produced by 
unit point sources located in mediums 1 and 2, respectively, one can 
write by virtue of Eq. 2, 

(114a) 

P22 = 4n P2 ^22 » 
(114b) 
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where m » 1/800 is the water to air density ratio. In applying Eq. 114 

to the same observation point in the water, it is instructive to consider 

the ratio 

(115) 

One notes that if Y21 = Y22» the Pressure produced in the water by a 

source in air is 800 times that which arises from a source of equal 

strength located in the water. As was shown in Chapter II, Section E, 

a unit strength source within the layer at the medium interface gives 

rise to a potential at large radial distances from the source approxi¬ 

mately equal that due to a unit source above the layer. TYiis equiva¬ 

lence principle holds if m « 1 and N2 « 1, conditions well satisfied 

by the physical constants given above. Thus, a point source above 

the ocean surface appears to couple acoustic pressure to distant 

observation points more efficiently than a source in the ocean close 

to the surface*. Ihis result obtains only for locations of the submerg¬ 

ed source close to the interface (a fraction of a wavelength), and is 

due to the almost perfect reflecting properties of the assumed smooth 

air-water interface, giving rise to a partial cancellation of the 

source with its image. As the source is moved away from the inter¬ 

face, the acoustic potential increases. However, by virtue of Eq. 

115, Y22 must increase by a factor j| (that is, 800) for the pressure 

at a distant observation point of two equal strength sources (one 

above, the other below the interface) to be just equal. 

Results of calculation of the acoustic potential for a perfectly 

reflecting rigid lower boundary are shown in Figs. 2 through 5. The 

computations were perfoimed by summing the leaky wave series for a 

constant refractive index profile [n(z) = N as 0.228] as given by Eq. 63. 

The iteration scheme for the detennination of the leaky wave poles 

This relation does not apply to acoustic power densities (intensities) 

in the two media. 
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outlined in Eqs. 55 and 56 was found to converge extremely rapidly, 

and to the precision attainable within the scale range of the plots 

in Figs. 2 through 5, the results are not distinguishable from those 

obtained by means of the somewhat simpler series, Eq. 65, based on the 

zeroth-order approximation to the roots. The number of terms required 

in the series was only slightly larger than the estimate » 

Nk^h/tr m 260, which follows by requiring the radicand in Eq. 56a to 

vanish. Figs. 2 through 4 show plots of acoustic potenti.il along the 

ground plane ("ocean floor") vs. the radial distance from the source 

(compare the illustration on page 5) located 3000 meters a: ove the 

air-water interface. Due to the fine-grained fluctuations with c 

(periods of approximately 10 meters), the potential was plotted only 

at three selected range "windows" of 300 meters, starting at 100, 500, 

and 1000 km. The complicated interference patterns are due to multiple- 

phase cancellations and reinforcements of about 260 modes. Modes with 

highest indexes contribute to oscillaticns with highest spatial fre¬ 

quencies, and correspond to rays with nearly normal incidence under¬ 

going multiple reflections between the lower and upper boundary. Even 

though each individual mode amplitude decays as l/õ, the decay of the 

composite wave function does not appear characterisable by a simple 

decay law. Figure 6 shows the variation of the potential function, 

with height measured from the bottom boundary at a range of 500 km + 

80 m, deliberately chosen to correspond to one of the minima in Fig. 

3. At this range, the variation of acoustic potential with distance 

above the bottom boundary for a source in the water (z' = 1500) is 

shown in Fig. 6. Comparing the value of |y| with that in Fig. 5, 

one notes that on the "average" the potential due to the submerged 

source of unit strength is greater by about a factor of 1000 than that 

due to a unit source above the interface. This result differs sub¬ 

stantially from that which obtains for a subme’-'ed source near fhe 

interface, where the acoustic potentials of the above-surface and 

submerged equal-strength sources were shown to be nearly equal. Thus, 

in view of Eq. 115, the "average" pressure due to a submerged source 

is of the same order of magnitude as that arising from an above-surface 
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source of equal strength. Although this "average" source equivalence 

is inferred from an examination of results of a detailed calculation 

for a,layer with a constant refractive index profile, it is expected 

to hold for a layer with a linearly decreasing refractive index pro¬ 

file when the slope parameter (a) is small. For a = 1.25 x 10 /m, 

only a relatively small fraction of the total number of rays will fail 

to be reflected by the lower boundary (about 11 percent according to 

Eq. 110). Rays reflected from the lower boundary will give rise to a 

phase interference pattern differing from that in Figs. 2 through 6 

only in respect to detail in the fine structure of the spatial oscil¬ 

lations but not in the "average" behavior. 

The computational aspects of the summation of a residue series, 

whether for a constant or variable refractive index profile, are quite 

similar, and results of such calculations provide in detail the fine 

structure fluctuations of the acoustic pressure at large distances 

from the source. However, due to inevitable spatial and temporal in¬ 

homogeneities of the constitutive parameters of the ocean, the compli¬ 

cated interference patterns of Figs. 2 through 6 would generally not 

be experimentally observable, but only their averages. Thus, it is 

desirable to establish an average measure of acoustic pressure. In 

particular, such an average measure should facilitate the description 

of decay (spreading) of the acoustic pr-.ssure with o. As is evident 

from Figs. 2 through 4, a simple decay law with range cannot be di¬ 

rectly inferred from the data. The acoustic pressure in a layer with 

a constant refractive index and a reflecting lower boundary, averaged 

over all modes with respec’ to all observation points z and source 

locations z' within the layer, decays at l/p5/4, a decay law falling 

in between pure cylindrical (1/./^) and pure spherical (1/p) spreading 

(Ref. 2, p. 415). The averaging procedure employed in Ref. 2 does 

not appear to apply to a source above the layer nor to a variable re¬ 

fractive index profile with a strongly reflecting lower boundary. 

However, if the lower layer boundary is assumed perfectly absorbent, 

the average pressure will be shown to obey the cylindrical spreading 

law (i/./p) for a source within or outside the layer. Moreover, 
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expressed In terms of these average quantities, an equivalence principle 
for sources within and outside the layer can be phrased in a particularly 
simple form. 

Assuming a perfectly absorbent "ocean floor" and a depth h, an 
ave.age acoustic potential due to a unit source above the ocean sur¬ 
face may be defined by 

(116) 

where Yjj^P»****) is given by the residue series (Eq. 96). The average 
in Eq. 116 is taken o\*r all observation points at a fixed radial 
distance from the source. Strictly speaking, the integration should 
extend only over the finite interval Os; z s h. However, since the 
Airy functions in Eq. 97 decay exponentially for z < 0, the integra¬ 
tion can be extended to -• < z < h with only a negligible error. 
This extension will permit use of an orthogonality relation for Airy 
functions, thereby leading to a considerable simplification in the final 
results. In parallel with Eq. 116, one can also define an average 
acoustic potential due to a unit source in the ocean. Ihus, 

2 
(P,z,z')| dz, dz (117) 

where Y22(p,z,z') is given by the first series* in Eq. Ill and the 
average is taken over all observation points z and source points z' 

within the layer. The extension of the integration interval to 
-• < z' < h can again be justified on the basis of exponential decay 
of the Airy functions for z' < C. It may be shown that the Airy r 2 1/3 i functions AiKk^a) (h-z) - oJ* t = 1, 2 ... form a complete 

The second series of Eq. Ill contributes significantly only at 
source points very close to the interface and can be neglected in 
Eq. 117. 



orthonoma 1 set over the interval* — < z s h . Ttie orthogonality mav 

ce expressed as 

(h-z) dz (118) 

Ai(-o.) 

/ j\l/! - stk • 
n\ 1V 

whose is the Kronecker symbol. With the aid of Eq. 118, the aver¬ 

ages of Eqs. 116 and 117 are readily evaluated. Inserting Eq. 96 into 

Eq. 116 and noting that for the small slope parameter of interest 

sinw^ and cosw^ (appearing in Eq. 96 as mode-amplitude factors) may 

be replaced by N and (1 - N^)^, respectively, yields 

aL .... 

enk^Nd-N2) 
(119) 

where L is the number of modes entering in the summation, Eq . 96. 

When L is approximated by Eq. 99, Eq. 119 may be written 

*21( c) 
m 

TT\i2N(i-rr) 
(120) 

Similarly, substituting the appropriate series for 'f2?(z,z',c) in 

Eq. 117 results in 

h2<¿) = R (tt)’ 

This may readily be proven by first finding the Green’s function 
satisfying 

2 + X - ak2(h-z)jg( z,z';X ) = -ó(z-z'), -* < z,z' < h 

with g(h,z';X) = 0 and g(z,z';X) - 0 |z-z'| - a», and recovering the 
completeness relationship from an integration of g(z,z';\) in the 
complex X plane. 
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and again using Eq. 99, one obtains 

Yî2<<>) ' rvTTÏÏ (h) (tï) • (1J2) 
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Equations 120 and 122 constitute the desired formulas for average 
acoustic potentials. Note that these are independent of and 
hence of the frequency of the source. To compare the relative average 
magnitudes of acoustic pressure produced by a source within the layer 
with that produced by a iource above the layer, one can employ Eq. 115 
together with Eqs. 121 and 122 to obtain 

For a layer height of 3 km [(as in Figs. 2 through 6) a = 1.25 * 10'6/m 
and N - 0.228] Eq. 123 shows that for equal source strengths the aver¬ 
age pressure due to the source above the ocean surface is only about 
6 percent of that produced by the source below the ocean surface. 
This is to be contrasted with the result for a perfectly reflecting 
ocean bottom, where the pressures due to the two sources were found to 
be about equal. Evidently, the reflecting properties of the bottom 
contribute to a substantial reinforcement of the acoustic signal when 
the source is located above the layer. 

(A 



REFERENCES 

1. R. J. Urick, Principles of Underwater Sound for Engineers, 
McGraw-Hill, T9577*- - -- 

2. L. M. Brekhovskikh, Waves in Layered Media, Academic Press, 
New York, 1960. 

3. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, 
Prentice Hall, 1973. 

4. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, 
NBS Applied Math. Series 55, 1964. 

65 




