AD-781 991

MEASURING SOIL PROPERTIES IN VEHICLE MOBILITY RESEARCH. REPORT 6. RESIST-ANCE OF COARSE-GRAINED SOILS TO HIGH-SPEED PENETRATION

Gerald W. Turnage

Army Engineer Waterways Experiment Station Vicksburg, Mississippi

July 1974

DISTRIBUTED BY:

NTIS

National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

TECHNICAL REPORT NO. 3-652

MEASURING SOIL PROPERTIES IN VEHICLE MOBILITY RESEARCH

Report 6

RESISTANCE OF COARSE-GRAINED SOILS TO HIGH-SPEED PENETRATION

Ьу

G. W. Turnage

July 1974

Ł

Sponsored by Assistant Secretary of the Army (R&D), Department of the Army Project No. 4A06!i01A91D

Conducted by U. S. Army Engineer Waterways Experiment Station Mobility and Environmental Systems Laboratory Vicksburg, Mississippi

ANNY-MRC VICKSDURG MISS

Best Available Copy

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Security Clas	sification			A.T.	781991
	DOCU	MENT CONT	ROL DATA - R 8	D	
Security class	ilication of title, body of abstra ITY (Corporate author)	er and indexing	ennotation must be er	itered when the	everali report is clearfiled)
J. S. Army Engine Micksburg, Mississ	er Waterways Experiment Sibui	Station		Un CEOUR	classified
REPORT TITLE	OPENTIES IN VEHICLE MOBI	LITY RESEAR	CH: Report 6. 23	SISTANCE OF	COARSE-GRAINED SOLLS TO
HIGH-SPEED PENEIRA	A71C::				• •
DESCRIPTIVE NOTE	S (Type of report and inclusive (lates)	<u> </u>		· · · · · · · · · · · · · · · · · · ·
Report 6 of a ser	ius			·	·
Concilia M. Turns and	w, actory <i>manet,</i> ver a rre j				
issau "+ rounds					
REPORT DATE	······································		74. TOTAL NO. OF	PAGES	76. NO. OF REPS
July 1974	NT NO.		DE ORIGINATORIA	REPORY NUM	15 ME B(8).
	/		Technical	Report No.	3-652
a. PROJECT NO. 440	51101A913	· : ÷	seport 6		
с.			10. OTHER REPOR	T NOISI (Any o	that numbrits that may be seeighed
d.					
0. DISTRIBUTION STA	TEMENT			· · · · ·	· · · · · · · · · · · · · · · · · · ·
Approved for paul	k sedeazer dizeribütita				
1. SUDDI FUENTARY A	10222		[
	10123		Assistant Se	cretary of	tae Army (n.w.)
			Washington,	t the Army L. C.	
curve of probe bas probe base depth (se pressure 'rand penets departs from near-lineas re at snallow depth incr	ration resis rity as velo rease with i	tance force per city V. increa ncreasing veloci	unit probe ses. for t ty, but thi	base area, $F_{\rm C}/\Lambda_{\rm X}$) versus here conditions, values of s pressure approaches a com
probe base pressures of velocity net penetration resists by $\mathbb{G}_{X} = \left\{ \begin{pmatrix} G - 1 \end{pmatrix} \right\}$ a 3.23-sq-cm, 30-of Ag for the problem of a presented for east 2.5- to 12-on depth of same strengther describe the same the vortex for a function of the vorte	Surfal Pepti 2007, 10 C and 2007, 1	<pre>ist for for gradient be expresse } where sof cr/rec. tions were a spth for the so vive very apple arve values cause this study, given cone- ority; depta A chort rev findings ag velated expr sting hort re</pre>	(a) files files if the probe by a for any of a by a for a second	a process red under a describe notion of s e variables a study det in cand uni lysis was to mover nori relative t dings from ploment res cribe the h cand surfac	Socilysed range. The versus depth curve (terms of probe sizes and shapes standard conditions (i.e. by dard cone, and ℓ_x is the F_{\pm} at shallow probe depths and strength and probe the finally, a technique is ange for cones, or the the constant of a wide range dernined expressions that the dry weight γ_d and/or used to develop a descrip- zontally beneath the sand two studies of horizontal ults of the WES study. A- orizontal and vertical ".
probe base pressures for a velocity repenetration resist by $C_x = \left\{ (3 - 1) \right\}$ a 3.23-sq-cm, 30-of Ay for the prob- zero bare depth is sire, chape, and presented for est 2.5- to Ly-en depth of sand strengths of sand strengths the many for est indicate content, the strengths for the function of the function curface; and alr- cone penetration of brief summary of the components of form	Surfal Pepti - 507, 15 C ar 3 cm/sec, the slope, tance gradient 3_X , can $\times \left[0.20 + \left(0.80 \frac{i_S}{L_X} \right) \right]$. Asg-apex-angle cone at ; the of interest. Express for the cones, 2.5-or, the velocity for a wise rang- inating the F_2 versus the range for plates, for and probe siles and sna ed increase in cand G in the third phase of ontal force acting on a n of probe side and velo- try cand G and velo- try con plane that second C and G and G and G and G	<pre>ist for for the expresse ist in concentration ist in the expresse ist in the expresse ist in the express ist in the expresse ist in the express ist in the expression is the ex</pre>	, of the probe b d for any of a b G is G_{χ} measu , ξ is A f leo leveloped to plates as a fu- of each of thes in the O- to 15 s less than about out phase of this ed by increase: dimensional ana- base as the cone of the cone tip- iew of major fin- rec with and com- ensions that down ensions that down antally near the	a procesur road range red under s describe notion of s e variables -an depth r t 100 cm/se s study det in rand uni relative t dings from ploment res cribe the h cand surfac	Somised range. The versus depth curve (terms of probe sizes and shapes standard conditions (i.e. by dard cone, and i_x is the F_{i_1} at shallow probe depths and strength and probe i_2 Finally, a technique is many of a wide range dernined expressions that t dry weight γ_{d_1} and/or used to develop a descrip- zontally beneath the sand two studies of horizontal ults of the WES study. A- orizontal and vertical f_{i_1}
probe base pressure for a velocity ner- penetration resists by $G_{\chi} = \left\{ (3-1) \right\}$ a 3.23-sq-cm, 3C-4 Ax for the pro- zero base depth size, name, and press iste, name, and press iste, name, and press iste, name, and press iste, name, and press of sard strengths describe the mark moleture content. tion of the format F _X , as a function brief summary of the components of form	Surfal Pepti - FRV, 10 C ar 3 cm/sec, the slope, tance gradient G_X , can $X \left[0.20 + \left(0.80 \frac{i_S}{L_X} \right) \right]$. Asgrapex-angle cone at 1 be of interest. Express for the cones, 2.5-or do velocity for a wide rang- imating the F_T versue the range for plates, for and probe siles and ens- ed increase in cand G in the third phase of ontal force acting on a n of probe siles and refec- fry cand G and r_d . Lests showed that these another study presents in ce on plane blades opers 3 REPLACES DD FORM 14	 a) IOF HOR OF gradient b) expressed c) en/rec. e) en/rec. e)	a) allos in c , of the probe b d for any of a b G is G _x measu , i is A f heo leveloped to plates as a fu of each of thes in the 0- to 15 s less than about out phase of thi ed by increase : dirensional ana base as the cone of the cone th iew of major fin rec with and com ensions that des ntally near the b, WHICH 15	a process red under ange red under a describe notion of s e variables s study det in rand uni lysis was u mover norf relative t dings from ploment res cribe the h cand surfac Uncla Secut	Socilysec range. The versus depth curve (terms of probe sizes and shapes standard conditions (i.e. by dard cone, and ℓ_x is the F_{\perp} at shallow probe depths and strength and probe . Finally, a technique is range for cones, or the te and any of a wide range termined expressions that t dry weight γ_d and/or used to develop a descrip- zontally beneath the sand two studies of horizontal ults of the WEB study. A- orizontal and vertical
probe base pressures for a velocity neg- penetration resists by $C_{\chi} = \left\{ (3-1) \right\}$ a 3.23-sq-cm, 3C Ag for the pro- learn base depth is size, hape, and j presented for est 2.5- to 15-cm depth of sard strengths describe the marge moleture content. To of the bories F_{χ} , as a function surface; and alr- cone penetration of brief summary of the components of force	Surfal Pepti 1007, 15 C ar 3 co/sec, the slope, tance gradient G_X , can $\times \left[0.20 + \left(0.80 \frac{i_S}{L_X} \right) \right]$. Asg-apex-angle come at ; the of interest. Express for the cones, 2.5-or, the velocity for a wide rang- insting the F_7 versue the range for plates, for and probe slices and con- and probe slices and con- ontal force acting on a mother rough of and r_{cl} . The shired that bless another rough of and r_{cl} . The on plane blades opers 3 REPLACES DD FORM 14	1) for for a for gradient or gradient be expressed is where soft enfront is gradient for the gradient for the gradient curve of Values Aepta curve of Values Aepta curve of Values Aepta curve of Values this study, given cone beity; depta A short rev findings ag related expr ating horizo	a) Sinds in the second seco	a procesur road range red under a describe notion of s e variables -en depth r t 100 cm/se s study det in rand uni lysis was u moven nori relative t dings from plement res cribe the h cand surfac Uncla Securit	So-crivec range. The versus depth curve (terms of probe sizes and shapes standard conditions (i.e. by dard cone, and k_x is the F_{\pm} at shallow probe depths and strength and probe . Finally, a technique is ange for cones, or the termined expressions that t dry weight γ_d and/or used to develop a descrip- zontally beneath the sand two studies of horizontal ults of the WES study. A- orizontal and vertical

ť د م د م

สะดะประวันเอง

1. 1. 1.

ようちょうちょう ちょうちょう

ŝ

a statistical data م ماليدان تاريخ

31	
·	
1	
1	
i i	

のないので、「「「「」」

	Unclassified Security Classification	• •	•	e e	· ·.	-	
	14	LIN	< A	LIN	K B	LIN	×c
	KEY WONDS	ROLE	₩T	ROLE	WT	ROLE	₩T
		- ,			1.		
	Charse grained soils		-		1		
	Wbi_ity						
	Penetration probes		1.5				
	Soil penetration						
	Soil - Sperties	•			÷		
	Vehicles		•		·		
			••				
				•	• •	••,	÷.,
							;
	말 승규는 것 같은 것 같아요. 것 같아요. 물건들을 것	· ·		- 1			
					•		
		(. I				• • •	2
	a de la compansión de la c	•		~ ~ >			
					•]		
		Í					
	» » «مسجد منظم المستنظم و المدارد التاريخ و المراجع و المراجع و المراجع و المراجع و المراجع و المراجع و المراجع المراجع المراجع المراجع و المراج						
المتركز المتركز المركز		:					-
	<u> </u>			•	-	_	
	· · ·						
	-	-					
				· .			
			1				
新的人中,我的一些 <i>的</i> 。							
		: 1					
		• •	• .				
		- 14 -					
· 31							
		, 		·····			
	-		Unclas	sified	atia-		
			security	~14851110	ation		
· · · · · · · · · · · · · · · · · · ·							

;

N Zue

_

Ś

-

FOREWORD

The study reported herein was funded by Department of the Army Project 4A061101A91D, "In-House Laboratory Independent Research," sponsored by the Assistant Secretary of the Army (R&D). The major portion of the study was conducted during 1972-73, although some results are presented for the first time from tests conducted several years earlier.

The project was conceived by Mr. G. W. Turnage of the Mobility kesearch and Methodology Branch (MRMB), Mobility Systems Division (MSD), Mobility and Environmental Systems Laboratory (MESL), at the U. S. Army Engineer Waterways Experiment Station (WES). The test program was accomplished by personnel of the MRMB and the Mobility Investigations Branch (MIB) under the general supervision of Mr. W. G. Shockley, Chief of MESL, and Mr. A. A. Rula, Chief of MSD, and under the direct supervision of Mr. C. J. Nuttall, Jr., Chief of MRMB, and Mr. E. S. Rush, Chief of MIB. The hitherto unreported data were obtained under the direction of Mr. L. J. Lanz, formerly of WES. All other phases of the study were directed by Mr. Turnage, MRMB, who prepared this report.

BC E. D. Peixotto, CE, and COL G. H. Hilt, CE, were Directors of the WES during conduct of this study and preparation of the report. Mr. F. R. Brown was Technical Director.

iii

CONTENTS

Page

FOREWORD	•	•	•	•	iii
NOTATION	•	•	•	•	vii
CONVERSION FACTORS, METRIC TO BRITISH UNITS OF MEASUREMENT	•	•	•	•	xi
SUMMARY	•	•	•	•	xiii
PART I: INTRODUCTION	•	٠	•	•	1
Background		•	•	•	l
Purpose	•	•	•	•	2
Scope	•	•	•	٠	2
PART IT: HIGH-SPEED VERTICAL PENETRATIONS WITH CONES AND					
PLATES IN AIR-DRY SAND	•	•	•		4
Test Cand and Its Dropanation					1.
Test Equipment	•	•	•	•	4
Test Procedures	•	٠	٠	•	10
Analysis of Data	•	٠	•	•	13
Allarysis of baba	•	•	•	•	CT.
PART III: LOW-SPEED VERTICAL CONE PENETRATIONS IN DRY-					
TO-MOIST SAND	•	•	٠	٠	27
Test Sand and Its Preparation	•	•			27
Test Equipment	•			•	28
Test Procedures	•			•	28
Analysis of Data	•	•	•	•	29
PART IV: HORIZOWIAL PENETRATION TESTS WITH PROBES IN					22
ATE-DET DAMD	٠	•	٠	•	33
Test Sand and Its Preparation	•	6	•	•	33
Test Equipment	•	٠	*	•	33
Test Procedures and Data Reduction	٠	٠	•	•	34
Performance of Cones and Plane Blades in Sand	•	•	•	٠	35
PART V: CONCLUSIONS AND RECOMMENDATIONS	•	•	•	•	48
Conclusions					18
Recommendations	•	•	•	•	40)iQ
	•	•	•	•	
LITERATURE CITED	•	٠	٠	٠	50
TABLES 1-5					

PLATES 1-18

247 -

الملحد المالية والمحالية و

NOTATION *

Acceleration

A,A_s,A_x

а

C_D

 $^{\rm D}{
m c}$

 $\frac{F_{z}/A_{x}}{Gh^{2}/d_{x}}$

 $\left(F_{z}/A^{1\cdot3}\right)_{xs}$

South and the second of the

,A Probe base area; base area of the standard WES 3.23-sq-cm cone; and base area of any given probe, respectively

- c As a subscript, refers to a circular-basearea probe of the same size base area as the probe of interest
- C Cone penetration resistance
 - Drag coefficient
- d,d_s,d_x Probe base diameter; diameter of the base of the standard WES cone (d_s = 2.03 cm), and diameter of the base of any circular-base-area probe, respectively
 - Critical depth

 F, F_i, F_x, F_z Sand penetration resistance force; inertial force; sand resistance force measured in the direction of a horizontal probe penetration; and sand resistance force measured in the direction of a vertical probe penetration, respectively

> F_Z/A Probe base pressure (cone base pressure or plate base pressure, depending on which type probe is being considered)

> > Cone-sand pressure ratio

Cone stress ratio

* Several other symbols that are specifically defined in context and then used no more than a few times immediately afterwards are not listed here.

 $\left(F_{z}/A^{1.2}\right)_{xs} \times \left(R_{h}^{0.4}\right)_{cx}$

Plate-cone stress ratio for circular-basearea plates $\binom{R_h^{0,4}}{h}_{CX} = 1$

Acceleration due to gravity g

- G Sand penetration resistance gradient obtained with a 3.23-sq-cm, 30-deg-apex-angle cone at $V_{z} = 3.05 \text{ cm/sec}$
- Gx Sand penetration resistance gradient obtained with a probe of any given size and shape at any velocity small enough to cause the F_Z/A_x versus probe base depth curve to be nearlinear in the range of depth values sampled in obtaining G_x
- h Depth of cone tip beneath the undisturbed sand surface in horizontal penetration tests
 - Inertia

 l, l_s, l_x

i

 N_{R}

- \sqrt{A} ; square root or the base area of the standard 3.23-cm² cone ($l_s = 1.80$ cm); and square root of the base area of any given probe, respectively
- Reynolds number
- Perimeter of the base of a given probe Ρ

vertical penetration, respectively

- R_h Hydraulic radius (i.e. A/P) of the base of a given probe
- As a subscript, refers to conditions associated s with a standard cone penetration to obtain G

a horizontal penetration; and velocity in a

 v,v_s,v_x,v_z Velocity; velocity in a standard penetration to obtain $G(V_{2} = 3.05 \text{ cm/sec})$; velocity in

 $v_{x} / \sqrt{gd_{x}} v_{z} / \ell$ v_{z} / ℓ $(v_{z} / \ell)_{xs}$ Froude number Velocity gradient

Velocity gradient ratio

- As a subscript immediately after F or V (i.e. F_x or V_x), denotes horizontal. As a subscript in any other case, ir "cates conditions other than those asso ated with a standard cone penetration to obtain G (e.g., G_x , A_x , d_x , ℓ_x , $(F_z)_x$, etc.)
- As a subscript immediately after F or V z (i.e. F_{y} or V_{z}), denotes vertical

- Cone tip apex angle
- $\gamma_{\rm d}$ Sand unit dry weight

Sand dry mass density γ_d/g

 $\rho \left(AV_{z}^{2} \right)_{x} / 2$ ø

α

ρ

ψ

Inertial force

Sand angle of internal friction

Yield value

CONVERSION FACTORS, METRIC TO BRITISH UNITE OF MEASUREMENT

and souther a state with a strategic strategic black want of south second strategic states and share and share

Metric units of measurement used in this report can be converted to British units as follows:

Multiply	By	To Obtain
meters	3.281	feet
centimeters	0.3937	inches
square centimeters	0.1550	square inches
newtons	0.2248	pounds (force)
meters per second	3.281	feet per second
centimeters per second	0.3937	inches per second
kilonewtons per cubic meter	6.366	pounds per cubic foot
kilopascals	J.1450	pounds per square inch
meganewtons per cubic meter	3.684	pounds per cubic inch (i.e. psi per inch)
kilograms	0.0685	ຣໄນອຣ

a start

SUMMARY

For a given probe (cone or flat plate) tested vertically in airdry and of a given strength level, the curve of probe base pressure (sand penetration resistance force per unit probe base area, F_z/A_x) versus probe base depth departs from near-linearity as velocity V_z increases. For these conditions, values of probe base pressure at shallow depth increase with increasing velocity, but this pressure approaches a common value at substantial depth (say, 15 cm) for velocity values in the 3- to 600-cm/sec range.

For a velocity near 3 cm/sec, the slope, or gradient, of the probe base pressure versus depth curve (termed penetration resistance gradient G_x) can be expressed for any of a broad range of probe sizes and shapes by

 $G_{x} = \left\{ (G - 1) \times \left[0.20 + \left(0.80 \frac{l_{s}}{l_{x}} \right) \right] + 1 \right\}$

where G is G_X measured under standard conditions (i.e. by a 3.23-sq-cm, 30-deg-apex-angle cone at 3.05 cm/sec), l_S is \sqrt{A} for the standard cone, and l_X is the $\sqrt{A_X}$ for the probe of interest. Expressions were also developed to describe F_Z at shallow probe base depths (zero base depth for the cones, 2.5-cm depth for the plates) as a function of sand strength and probe size, shape, and velocity for a wide range of values of each of these variables. Finally, a technique is presented for estimating the F_Z versus depth curve in the 0- to 15-cm depth range for cones, or the 2.5- to 15-cm depth range for plates, for V_Z values less than about 100 cm/sec and any of a wide range of sand strengths and probe sizes and shapes.

A second phase of this study determined expressions that describe the marked increase in sand G values caused by increases in sand unit dry weight γ_d and/or moisture content.

In the third phase of this study, dimensional analysis was used to develop a description of the horizontal force acting on a liven cone base as the cone moves horizontally beneath the sand (F_x) as a function of probe size and velocity; depth of the cone tip relative to the undisturbed sand surface; and air-dry sand G and γ_d . A short review of major findings from two studies of horizontal cone penetration tests showed that these findings agree with and complement results of the WES study. A brief summary of another study presents related expressions that describe the horizontal and vertical components of force on plane blades operating horizontally near the sand surface.

- うまいとないたい こうまちんこうかい

MEASURING SOIL PROPERTIES IN VEHICLE MOBILITY RESEARCH

RESISTANCE OF COARSE-GRAINED SOILS TO HIGH-SPEED PENETRATION

PART I: INTRODUCTION

Background

1. A major problem that confronts users of soil in engineering, agricultural, industrial, and military applications is forecasting how the soil will react to the force that man applies to it. Many years of study and experience have produced techniques for predicting soil behavior under static or near-static loading (dams, foundations, etc.) and under transient loading spread over a large surface area (roadbeds for paved highways, airfields, etc.). The study of soil resistance to lccalized, high-speed penetration has a much shorter history, and the development of quantitative descriptions of this phenomenon is relatively new.

2. Man penetrates the soil with a wide variety of implements to accomplish his objectives. The direction of movement of the penetrating element may be predominantly parallel to the soil surface (earthmoving scraper blade, tillage tools, and tires and tracks of off-road vehicles), normal to it (foundation piles, core drills, and mechanical or airdropped penetrometers), or somewhere in between (anchors for field gun emplacements).

3. To date, nearly all studies of soil penetration by man-made probes have dealt with soil reaction to either horizontal or vertical probe movement. With attention limited to these two directions only, soil penetration resistance is still difficult to describe quantitatively because it depends on several probe variables (primarily size, shape, and velocity, along with weight in free-drop vertical tests), as well as on adequate quantitative description of the test soil's quasistatic strength characteristics.

4. The approach at the U. S. Army Engineer Waterweys Experiment Station (WES) has been to concentrate attention on penetrations in classical soils, i.e. essentially purely cohesive clay and purely frictional sand. Studies of the aerial cone penetrometer in fine-grained (cohesive) soils have been documented. 1-4 The resistance of fine-grained soils to both horizontal and vertical penetrations by a variety of probe sizes and shapes was discussed in Reports 3 and 5 of this series. 5,6This report extends the studies of F ports 3 and 5 to the behavior of coarse-grained (frictional) soils.

Purpose

5. The purpose of the study reported herein was to describe quantitatively:

- a. The resistance of air-dry sand to vertical penetration by a variety of sizes and shapes of cones and flat plates over a range of penetration velocities.
 - The influence of moisture content on the resistance of sand to low-speed vertical penetrations by the standard WES cone.

. The resistance imparted to cones and flat blades tested horizontally over a range of speeds in air-dry sand.

Scope

6. Vertical penetrations were made in soil Lins of air-dry desert (1uma) sond at spirus to over 700 cm/sec* with probes of three general shapes: 30-deg-apex-angle, right circular cones; flat, circular plates; and flat, rectangular plates. Sizes of the probe base areas ranged from 1.29 to 58.1 cm². The rectangular plates had width-tolength ratios of 1:1, 1:2, 1:4, and 1:8. In a second group of tests, vertical penetrations were made at speeds from 0.025 to 34.9 cm/sec with the standard WES cone (3.23-cm² base area) in test molds of airdry to moist Yuma sand (moisture contents from 0.4 to 11.5 percent).

* A table of factors for converting metric units of measurements to British units is presented on page xi. Finally, in a third group of tests, horizontal penetrations were made in test bins of air-dry Yuma sand at speeds up to 5.2 m/sec with 30-degapex-angle cones of circular base areas ranging from 3.23 to 23.2 cm².

7. The sand placement techniques used throughout this program produced a high degree of consistency within each soil test section. Within each of the three groups of penetration tests, Yuma sand test sections were used that covered a major portion of the possible range of strength values of this soil. For essentially purely frictional soils, a WES-developed concept was used herein to characterize soil strength by G , the slope of the curve of cone penetration resistance C versus depth of the cone base beneath the sand surface, where C is force per unit base area required to penetrate a soil normal to its surface at 3.05 cm/sec with a 30-deg-apex-angle, right circular cone of 3.23 cm^2 base area. This of is usually averaged over a depth of 15 cm.

an este sin this is the second second should be

8. Complementary to relations developed from the above-mentioned horizontal penetration tests at WES, major results from pertinent studies conducted elsewhere were briefly reviewed. Particular attention was given to relations that describe horizontal and vertical forces on flat blades tested horizontally near the sand surface, and to the horizontal force on cones tested horizontally well below the sand surface.

PART II: HIGH-SPEED VERTICAL PENETRATIONS WITH CONES AND PLATES IN AIR-DRY SAND

Test Sand and Its Preparation

Test sand

9. Sand used in the high-speed vertical penetration tests was taken from active dunes near Yuma, Arizona. This sand, termed herein as Yuma send, has a specific gravity of 2.67 and is a uniformly graded, fine sand classified SP-SM according to the Unified Soil Classification System. Gradation and soil property data are given in fig. 1.

Sand preparation

10. To prepare each test hin, air-dry Yuma sand was deposited in uniform layers through a 6.3-mm U.S. Standard sieve to fill an 0.8- by 1.6by 16.4-m test bin, and the top layer was screeded level to the same height as the bin sidewalls. Next, the sand was thoroughly harrowed to at least a 40-cm depth over the full width and length of the bin. Preparation of a very-low-strength test bed was completed simply by releveling the sand surface with a screed strip. All other test beds were prepared by harrowing, compacting with a given number of passes of a vibratory skid unit (comprised of an electric vibrator mounted on a steel base plate 86 cm wide), and then leveling.

11. The strength of each test bed was characterized primarily in terms of penetration resistance gradient G . Although values of cone

penetration resistance increased in near-linear fashion nearly always to at least the 25-cm depth,* reported values of G reflect measurements only in the top 15 cm to conform to general WES practice. Fig. 2 presents representative curves of cone penetration resistance versus depth

Fig. 2. Representative cone penetration versus depth curves (?.23-cm² cone, 3.05-cm/sec penetration speed, air-dry Yuma Sand)

for several values of G. Test beds for the high-speed vertical penetration tests were prepared to three approximate strength levels--G values of about 1.3, 2.9, and 6.2 MN/m^3 .

Here, "depth" refers to the depth beneath the sand surface of the base of the standard WES 3.23-cm²-base-area, 3.77-cm-height, circular cone.

Test Equipment

Cones and plates

12. The smooth steel cones and plates used in this part of the study are shown in fig. 3, and are characterized by shape and size as fullows:

		Dime	Area		
<u>No.</u>	Probe Shape	Diameter	Width	Length	_ cm ²
_					
1	Right circular cone	1.28			1.29
2	•	2.03		· ••	3.23
3		4.05	~-		12.9
4		5.73			-25.8
5	-	8.60			58.1
6	Flat circular plate	1.28			1.29
7		2 03			3.03
Ŕ		1 05			12 0
a		5 72			25 8
10		2.13			£9.0
10		0.00			90 • ±
11	Flat rectangular plate (1:1, width to length)		1.27	1.27	1.61
12	(,,,,,,, _		2.54	2.54	6.45
13			5.08	5.08	25.8
14		=	7.62	7.62	58.1
15	Flat rectangular plate (1:2, width to length)		1.27	2.54	3.23
16	(1.1.,		3.59	7.18	25.8
17			5.39	10.78	58.1
٩0			1 07	5 09	C 1.5
T 0	(1:4, width to length)		1.27	5.00	6.45
19	· · ·		2.54	10.16	25.8
20			3.81	15.24	58.1
21	Flat rectangular plate		1.27	10.16	12.9
22	(TOD) ATCOUL OD TEHKOIL)		1 80	1) 27	25 A
22 02			1.00 0.70		בע.ט בקים
ز>			C. 1V	27.20	20.T

6

Þ

Fig. 3. Test cones and plates used in vertical pene rations of Yuma sand in test bins

<u>No.</u>	Nominal Velocity
l	3.05
2	30
3	100
4	200
5	300
6	600

The nominal penetration velocities were designated as follows:

13. Each probe was of one-piece steel construction and consisted of a probe head (cone or flat plate) and a shaft. The shafts were strong enough to provide straight alignment (minimal flexure) during sand penetration, and small enough to produce negligible shaft drag compared with the sand resistance force acting on the probe head. Each probe was 41 cm long overall. The upper end of each shaft was connected to a force-measuring load cell (fig. 4).

Fig. 4. General view of high-speed loading device, double-bin sand test bed, and instrumentation building

Low-speed penetrometer

14. For tests in the sand bins, a mechanized, low-speed cone penetrometer was used to obtain measurements of standard penetration resistance gradient G. An electric motor drove the 3.23-cm² cone vertically into the sand at a constant penetration of 3.05 cm/sec. Sand resistance force was measured by a load cell, and depth of penetration by a gear-driven circular potentiometer (fig. 5), so that a continuous record of cone penetration resistance versus depth was obtained

Fig. 5. Mechanized low-speed cone penetrometer

on an x-y recorder for each penetration (fig. 2). The shaft diameter used in measuring G was 0.95 cm for all tests with the standard cone in this report. (Reference 7 states, however, that essentially no influence on G values in Yuma sand is caused by using shaft diameters as different in size as 0.95 and 1.59 cm.)

High-speed loading device

15. The powerful and versatile loading device shown in fig. 4 allows loads, large or small, to be applied to test specimens (tires,

shock absorbers, soils, etc.) at controlled velocities for preset single strokes adjustable from 10 to 30 cm. Design velocities for the loading device range from near zero to about 1300 cm/sec.* During the early part of the stroke, the plunger is accelerated from rest to a preset velocity; over the middle portion of the stroke, velocity remains constant (within ± 10 percent); and near the end of the stroke, the plunger is rapidly decelerated to zero velocity. When operating in air at full 30-cm stroke, the portion of the total stroke that remains within ± 10 percent of constant speed is about 90 percent for speeds of the order of 10 cm/sec, but drops to about 20 percent at maximum speed.

16. For test velocities up to 200 cm/sec, conventional columntype load cells were used to measure the resistance of sand to penetration. The very large forces associated with both the acceleration and the deceleration phases of penetrations at larger velocities required that penetration resistance be measured by special low-mass, web-type load cells with mechanical restraint to prevent destructive overload. Only two of these special cells were available at the time of testing, one of 2224-N and another of 11,120-N capacity. In each test with the high-speed loading device, an accelerometer mounted just above the load cell measured acceleration during penetration.

Test Procedures

Standard measurements of G

17. After a given air-dry Yuma sand test bed was constructed, standard measurements of G were taken at six locations spaced uniformly over the length of the test bed at its transverse center line. A bed was accepted for testing only if all its standard G values were different from their average by no more than ±10 percent. After test penetrations with the various cones and plates in a given sand bed were

^{*} The nominal upper limit of penetration velocity was taken as 600 cm/sec for this study because the available load cells were unable to withstand the acceleration and deceleration forces associated with higher velocities.

completed, standard G values were again obtained at two or three locations over the length of the test bed. The G value reported for each sand bed is the average of all before-test and after-test values measured. Tests of cones and plates

18. At least duplicate (occasionally triplicate) penetrations were made for each combination of probe size, shape, and velocity assigned to a given sand test bed. Testing involved the measurement of sand penetration resistance force (F_z) , as a function of penetration of penetration depth and velocity of penetration. Quite often, situations arose where system inertial forces were large, even during the nearconstant velocity segment of the penetration stroke that was of interest. To preserve resolution in recording $F_{_{\!\!\!\!\!2}}$, a special technique was used to subtract from the overall force signal a signal equivalent to those forces due to acceleration and develeration of the probe, shaft, and load cell that passed through the load cell, thereby allowing F_{μ} per se to be recorded directly. During each stroke, three separate signals were continuously recorded: (a) accelerometer output, (b) load cell output, and (c) force signal corrected for acceleration. Before each test or series of tests with a given probe at a given velocity, the high-speed loading device was exercised by moving the probe downward in air (i.e. with zero penetration resistance) at the test design velocity. In-air runs were repeated until, by adjusting potentiometer settings that controlled the correction signal from signal (a), the contribution of inertia to signal (c) was eliminated, and the value of signal (c) remained constant at zero throughout the in-air run. During the subsequent insand test, signal (c) measured sand resistance force free of the effects of acceleration and deceleration of the probe load cell assembly. Hereafter, the term sand penetration resistance force (F_{j}) is the force measured by signal (c). Records of the relatively low resolution signals (a) and (b) were used only for spot checks and backup.

19. Two other variables were also electrically recorded: probe vertical velocity (V_z) and depth of the probe relative to the sand surface. (Zero depth was the point where the probe base was flush with the original sand surface.) The five electrical test signals were

and the second second

recorded on analog magnetic tape and later machine digitized at 1-cm penetration increments.

20. Tests were conducted by moving a sand bin beneath the highspeed loading device (fig. 4), mounting a given probe, zeroing out the effects of probe acceleration (paragraph 18), and penetrating vertically at the desired velocity. A single longitudinal lane of tests at the bin transverse center line was developed by rolling the bin along steel tracks from one specified test position to the next. Minimum spacing between adjacent penetrations was based on a zone centered on the vertical axis of the probe, the zone being circular in shape and of radius equal to six times the smaller dimension of the probe for rectangular probes and six times the diameter for circular probes.⁸ Fig. 6 illustrates one such spacing. No influence of adjacent penetrations on individual F_{π}

Fig. 6. Example of spacing between adjacent vertical penetrations in a Yuma sand test bin

versus depth curves was noted in analyzing the results of this study. A Stationary Station

21. For each penetration, the length of stroke required to reach near-constant velocity was noted when the effects of probe acceleration were zeroed out in air prior to testing. The pretest height of the probe above the sand was then set to a value slightly greater than this length, so that the probe was operating near the nominal test design velocity when it contacted the sand. In spite of this procedure, values of penetration velocity were found to vary considerably during the first 15 cm of penetration by the probe base for nearly all

sand penetrations at nominal velocities of 300 and 600 cm/sec, as well as for some penetrations at lower velocities.

22. This variability in vertical velocity caused no real problem. A discussion of this consideration and how the level of the velocity affects the shape of the probe base pressure versus depth curves for cones and plates, and thus affects the choice of locations along these curves to be singled out for analysis, is included in paragraphs 25-30.

23. Each of the cones and plates listed in paragraph 12 was tested at at least one penetration velocity in Yuma sand test beds of three strength levels--G values of about 1.3, 2.9, and 6.2 MN/m^3 . Probes smaller than 3.23-cm² base area were tested only at the lowest test velocity (3.05 cm/sec) because the two special load cells designed for high-speed use had capacities too large (2224 and 11,120 N) to allow accurate measurement of the small F_z values developed by these very small probes. Neither were all of the other possible combinations of probe size, shape, and velocity and sand G value tested. Enough were tested, however, to develop a useful description of the influence of each of these variables on sand penetration resistance.

Analysis of Data

24. Results of vertical penetration tests in air-dry Yuma sand at velocities from 3 to over 600 cm/sec are presented in table 1 for five sizes of 30-deg-apex-angle cones, and table 2 for five shapes and a range of sizes of flat plates.

Curves of probe base pressure (F_{z}/A) versus probe depth

25. Effects of velocity on curve shape. Velocity was found to nave pronounced effects on the shape of the curve of probe base pressure (sand penetration resistance force per unit probe base area, F_z/A) versus depth of probe base for each of the cones and flat plates tested. Plate 1 shows the curves obtained for the standard 3.23-cm² cone in the $G = 2.48 \text{ MN/m}^3$ sand test bed for each of the six nominal penetration

velocities--3.05, 30, 100, 200, 300, and 600 cm/sec.* The progression in the shapes of these curves is representative of that obtained for each size of cone tested in a sand bed of given strength for the range of velocities considered.

26. At least three features of the curves in plate 1 are significant. First, the value of probe base pressure at zero cone base depth increases drastically as penetration velocity increases. Second, the shapes of the curves depart from near linearity as velocity increases beyond about 100 cm/sec. Third, the several curves in plate 1 tend to merge at about a cone base penetration of 10 cm. This indicates that disturbance of the sand ahead of the standard cone causes the consistency of the sand penetrated at cone depths greater than about 10 cm to correspond to the sand's critical void ratio.**

27. A family of curves similar to those in plate 1 is presented in plate 2 for the 25.8-cm², 1:4 rectangular plate tested over a range of velocities in Yuma sand test beds of $G \approx 2.9 \text{ MN/m}^3$. The features described in paragraph 26 for plate 1 and the standard cone also apply to plate 2 if (a) the term "cone base depth" in paragraph 26 is replaced by "plate base depth," and (b) the curves in plate 2 are scrutinized only in the 2.5- to 15-cm range of plate base depths. In all considerations that follow, probe base pressure data obtained for the test plates in the 0- to 2.5-cm depth range are ignored because, in each test, penetration to some depth within this range was required before values of probe base pressure stabilized to the pattern that prevailed over the major portion of the 0- to 15-cm depth range.

28. <u>Selection of parts of curves for detailed analysis.</u> In deciding what points from, or portion of, the curves of probe base pressure versus depth to analyze under the influence of probe velocity, it is well to consider the practical implications of testing at nearconstant velocity. For vertical penetrations by probes in sand, interest

^{*} The coordinates of each curve in plates 1 and 2 were obtained by averaging the coordinates of the curves from two or more replicate tests conducted at that particular nominal test velocity.

^{**} At the critical void ratio, the rate of application of the shearing stress has no effects on the shearing resistance of sand.

generally centers on the curve only for the low, near-constant-speed situation. It is very unusual for vertical penetration velocity in sand to be maintained near-constant at a level of, say, 200 cm/sec or above to 15 cm or more depth in real-world applications. Mechanically driven probes nearly always penetrate sand at much lower near-constant velocities, and nondriven, i.e. air-dropped or impact-propelled, probes begin deceleration immediately upon contact with the sand.

29. Accordingly, the equation of the least-squares, best-fit straight line that describes the probe base pressure versus depth curve was obtained for a given (generally low-speed) test* only if at least 90 percent of its digitized velocity readings differed from their average by no more than +10 percent during the first 15 cm of probe base penetration. For the cones, these equations were based on probe base pressure and depth readings in the first 15 cm of base penetration; for the plates, in the first 2.5 to 15 cm of base penetration. For each near-constant-speed test, the probe base pressure versus depth relation was described by an equation of form $F_{z}/A = (F_{z}/A \text{ at zero probe base})$ depth) + G_{v} (depth), ** and the coefficient of correlation for each test was equal to at least 0.9. For each of these tests, tables 1 and 2 report G_{j} and the average value of velocity that prevailed in the depth range described by the equation. Also, values of probe base pressure at 0- and 2.5-cm base depths are reported for the cones and plates, respectively, and at 15-cm depth for both the cones and the plates, on the basis of values indicated for these depths from their least-squares equations relating probe base pressure and depth.

30. For tests whose velocity values did not satisfy the <u>+10</u> percent criterion, table 1 reports values of probe base pressure and

* Here, a "test" is composed of either two or three penetrations made adjacent to one another under one set of preselected values of probe size, shape, and velocity.

** G is the gradient, or slope, of the probe base pressure versus depth curve for any given probe at any given velocity V₂ small enough to allow the curve to be near-linear. G without a subscript denotes the gradient obtained under "standard" conditions, i.e. vertical penetration with a 3.23-cm² cone at 3.05 cm/sec in the O- to 15-cm sand layer. vertical velocity at 0- and 15-cm base depths for the cones, and at 2.5- and 15-cm base depths for the plates that were obtained by averaging the digital printout values from the two or more replicate tests at the particular probe base depth of interest. The 0- and 2.5-cm base depths were considered of interest for the cones and plates, respectively, because probe base pressure and vertical velocity readings at these depths should match fairly closely corresponding readings for airdropped or impact-propelled cones and plates at the same depths. Values of probe base pressure and vertical velocity were sampled at the 15-cm depth to demonstrate that probe base pressure at substantial depth is nearly constant over the full range of velocities tested by a given probe in sand of given G value.

Penetration resistance gradient

31. Because the curve of probe base pressure versus depth generally departs more and more from linearity as velocity increases beyond the standard value of 3.05 cm/sec, a method of estimating G_x for the various test probes was developed only for this one velocity level. For a single type of sand penetrated at one speed by plates and cones of various sizes and shapes, the relation between G_x and G should be influenced only by the dimensions of the probes.

32. Effect of probe shape. Vertical penetrations were made at 3.05 cm/sec with each of the 23 test probes in sand test beds of three strength levels--standard G values of about 1.4, 3.4, and 6.6 MN/m³. Plate 3 shows that a linear (but not 1:1) relation exists between standard G and G_x measured with one size (25.8-cm² base area) of each of the six probe shapes tested. No significant separation in this relation by probe shape is noted, although a very broad range of shapes is represented by the data.

33. Effect of probe size. The relation of standard G to G_x measured by probe sizes ranging from 1.29 to 58.1 cm² is presented in plate 4. This relation can be described by a family of straight lines, separated by probe size, that passes through coordinates (1, 1). The equation for these lines is

$$(G_{x} - 1) = a(G - 1)$$

Slope a is linearly related to the ratio ℓ_s/ℓ_y by the equation

$$\mathbf{a} = 0.20 + \left(0.80 \frac{l_{\rm s}}{l_{\rm x}}\right)$$

(where l_s and l_x are the square roots of the base areas of the standard 3.23-cm² cone and of the probe used to obtain a given G_x value, respectively). Thus, equation 1 becomes

$$G_{x} = (G - 1) \left[0.20 + \left(0.80 \frac{l_{s}}{l_{x}} \right) \right] + 1$$
 (2)

(1)

34. Equation 2 indicates that if values are known for G and ℓ_s from a standard penetration ($\ell_s = \sqrt{3.23} \text{ cm}^2 = 1.80 \text{ cm}$), then G_x can be estimated knowing only the value of ℓ_x for the particular cone or flat plate of interest.*

35. Equation 2 also can be expressed as

$$\frac{G_x - 1}{G_x - 1} = 0.20 + \left(0.80 \frac{l_x}{l_x}\right)$$

a relation of dimensionless ratios that describes G_x and its associated ℓ_x value normalized relative to G and ℓ_s , values descriptive of a standard cone penetration. In the paragraphs that follow, descriptions are developed of sand penetration resistance force (F_z) at 2.5- and 0-cm depths for the flat plates and cones, respectively. The format of these descriptions will be similar to that developed for G_x in that, in each case, F_z will be described relative to the dimensions of its associated probe base in a relation of dimensionless ratios normalized relative to the standard cone penetration.

Penetration resistance force (F_{r})

for flat plates at base depth = 2.5 cm

36. Some rheological considerations. In plate 5, the relation of

* Equation 2 is applicable <u>only</u> if G and G_x are measured in MN/m³.

probe base pressure to vertical velocity is shown for one plate shape (circular base area) and five plate sizes--base areas from 1.29 to 58.1 cm^2 --from tests in sand beds of G values near 6.2 MN/m³. The data separate by plate size, and the curves have the same general shape. Before dealing with the effect of plate size, it is useful to consider some basic information from rheology.

37. In rheology, the flow characteristics of a material usually are described in terms of the relation of shearing stress to rate of shear. For example, the logarithmic portion of the curve in fig. 7 illustrates the flow characteristics of a pseudoplastic, or shear-

Fig. 7. Approximation of the flow curve of a pseudoplastic material with yield value ψ

RATE OF SHEAR

thinning, fluid, i.e. a fluid whose shear stress increases less and less rapidly with increasing rate of shear. There is speculation that this relation does not remain a power function throughout an extended range of shearing stresses or rates of shear. Rather, it is thought that "the logarithmic function appears to fit that part of the curve lying between two limiting straight portions"⁹ (also shown in fig. 7).

The logarithmic part of the pseudoplastic flow curve is well documented; however, the curve shape beyond the logarithmic portion is open to question because of the limited amount of data reported in the literature for shear rates outside the logarithmic zone.

38. The curve shapes in fig. 7 and in plate 5 are similar. Because the resistance of sand to penetration by a probe is a function of sand deformation and flow, it is considered reasonable to begin the description of this resistance in units common to the rheological approach. The y-axis term in fig. 7 has units of pressure, the same as the units of probe base pressure in plate 5. The x-axis term in fig. 7 has units of velocity divided by length, or units of velocity gradient. To cause the x-axis term in plate 5 to have these units, plate velocity must be divided by some characteristic linear term of the probe-sand system. The term $\ell = \sqrt{A}$ was chosen so that the velocity gradient (i.e. V_z/ℓ) for each test plate shape would be described on a common basis.

39. Effects of plate size and velocity ($V_z \leq 3 \text{ m/sec}$). In examining the relation between probe base pressure and velocity gradient, attention is restricted first to data with a velocity $\leq 3 \text{ m/sec}$. An example of the reason for this is shown in plate 5, where relations are shown for the five circular-base-area plates, using data from tests in sand beds of G near 6.2 MN/m³. Each curve is convex upward (and plots straight-line on logarithmic paper) for values of velocity $\leq 3 \text{ m/sec}$. For velocity $\geq 3 \text{ m/sec}$, the curve shape is different, indicating a different type of influence of velocity on probe base pressure. A change from convex upward to another curve shape was also obtained at a velocity of about 3 m/sec for each of the other combinations of probe size and shape and sand G value tested. Thus, a velocity of 3 m/sec appears to be a meaningful upper limit to use in the next stage of analysis.

40. The logarithmic relation of probe base pressure to velocity gradient is shown in plate 6a, using those data from plate 5 with velocity ≤ 3 m/sec. For these circular flat plates, the relation is described γ a family of parallel straight lines separated by plate base area. Plate 6b demonstrates that these data fit closely about one line if

 $A^{1.2}$ is used instead of A in the y-axis variable. The ordinate term $F_z / A^{1.2}$ has units that lie almost midway between force per unit area and force per unit volume. This term is useful in that it describes on a common basis the relation of F_z to plate size under the influence of a range of values of velocity gradient for a variety of sizes of flat, circular plates.

41. Effect of sand strength. All the data in plates 5 and 6 were obtained in sand test beds with G near 6.2 MN/m^3 . To describe the $F_z/A^{1.2}$ versus velocity gradient relation in plate 6b on a common basis for a range of G values, this relation was normalized relative to conditions associated with the standard cone penetration used to obtain G. In the normalized ratios used in subsequent analysis for both plate and cone penetrations, the numerator will have subscript x (to denote the numerator's value not being limited to any particular set of conditions relative to probe size, shape, or speed), and the denominator will have subscript s (to indicate that its value was obtained under conditions associated with the measurement of standard G).

42. Thus, the normalized abscissa term is $(V_z/\ell)_x/(V_z/\ell)_s$, which is further abbreviated to $(V_z/\ell)_{xs}$ and hereafter called the velocity gradient ratio. The term $(V_z/\ell)_s$ has a value of 3.09 cm/sec divided by 1.80 cm or 1.69 sec⁻¹. Similarly, the normalized ordinate term is $(F_z/A^{1.2})_x/(F_z/A^{1.2})_s$, or $(F_z/A^{1.2})_{xs}$, hereafter termed the plate-cone stress ratio. In $(F_z/A^{1.2})_s$, $(A^{1.2})_s = (3.23 \text{ cm}^2)^{1.2}$ = 4.08 cm^{2.4}, and $(F_z)_s$ is the vertical sand resistance force acting on the 3.23-cm² cone at 3.05 cm/sec speed at zero (not 2.5-cm) base depth penetration. Values inside parentheses in the terms $(V_z/\ell)_x$ and $(F_z/A^{1.2})_x$ describe the plate penetration of interest.

43. The relation of plate-cone stress ratio to velocity gradient ratio is shown in plate 7 for tests of flat circular plate: of sizes from 1.29 to 58.1 cm² in sand test beds of G values from 1.08 to 6.91 MN/m^3 , with vertical velocity $\leq 3 \text{ m/sec}$. The closed-symbol data points represent the same data shown in plate 6b. Clearly, the normalization technique described in paragraphs 41 and 42 can be used successfully to account for the effects of sand strength on the $F_{\pi}/A^{1.2}$

versus velocity gradient relation. The equation of the straight line used in plate 7 to describe the test results is

 $\left(\frac{F_{z}}{A^{1.2}}\right)_{xs} = 2.4 \left(\frac{V_{z}}{l}\right)_{xs}^{0.25}$

44. Effect of plate shape. A well-defined, straight-line logarithmic relation between $(F_z/A^{1.2})_{xs}$ and velocity gradient ratio was obtained for each of the other shapes of flat plates tested (rectangular plates of 1:1, 1:2, 1:4, and 1:8 width-to-length ratios). For each plate, the slope of the line was essentially the same, 0.25; however, the value of $(F_z/A^{1.2})_{xs}$ became progressively smaller at a given value of velocity gradient ratio as plate shape changed from circular to 1:1 to 1:2 to 1:4 to 1:8. This separation was accounted for by normalizing the ordinate variable in terms of area-perimeter ratio $(A/P = R_h)^*$ of a given "x" plate raised to the 0.4 power, relative to the corresponding value of a circular-base-area probe of <u>the same base</u> area as the "x" plate. That is, the ordinate term was changed from $(F_z/A^{1.2})_{xs}$ to

$$\begin{pmatrix} \frac{F_z}{A^{1.2}} \\ x_s \end{pmatrix} \times \begin{pmatrix} \frac{R_h^{0.4}c}{R_h^{0.4}x} \\ R_h^{0.4}x \end{pmatrix}$$

or

$$\begin{pmatrix} F_z \\ A^{1.2} \end{pmatrix}_{xs} \times \begin{pmatrix} R_h^{0.4} \\ h \end{pmatrix}_{cx}$$

where $\binom{R_h}{c}$ is A/P for a circular-base-area probe of the same base area as plate "x." The term $\binom{F_z}{A^{1.2}}_{xs} \times \binom{R_h^{0.4}}{cx}_{cx}$ takes the name "plate-cone stress ratio," the same name coined first in paragraph 42

^{*} Recent literature on plate penetration in soils has designated the ratio A/P (the inverse of the perimeter-area ratio more commonly used in soil mechanics) as the "hydraulic radius,"¹⁰ and the notation $A/P = R_{h}$ has been used in this report.

for $(F_z / A^{1.2})_{xs}$ for circular-base-area plates which have a value of $(R_h^{0.4})_{cx}$ of 1.

cx 45. Plates 7 and 8 demonstrate that a single relation

$$\left(\frac{F_z}{A^{1.2}}\right)_{xs} \times \left(R_h^{0.4}\right)_{cx} = 2.4 \left(\frac{V_z}{L}\right)_{xs}^{0.25}$$
(3)

describes quite well the response of F_z to a wide range of sand strengths (G values from 1.08 to 6.91 MN/m³) and plates sizes and shapes.* The upper limit of vertical velocity in plates 7 and 8 is 3 m/sec. For the data shown, values of velocity gradient ratio ranged from 0.236 to 98.0, which corresponds to a range of values of platecone stress ratio from equation 3 of 1.67 to 7.55.

46. Describing F_z for the full velocity range tested. To expand the description of F_z to include values of velocity larger than 3 m/sec, a relation is used similar to one often employed in fluid mechanics and aerodynamics. In this relation, drag coefficient C_D (drag force/inertial force) is plotted on logarithmic paper against Reynolds number N_R (inertial viscous/force), with a characteristic curve shape being produced like that in fig. 8. In the viscous range, the slope of the curve is -45 deg, i.e. negative 1:1, indicating that $C_D \alpha N_R^{-1}$ [drag/inertial force α (inertial force/viscous force)⁻¹] or drag is directly proportional to viscous force. In the dynamic range, the curve is practically flat, so (drag/inertial force only. The shape of the curve in the transition range depends on both the viscous and the inertial properties of the medium penetrated.

47. Certainly, air-dry sand does not develop viscous forces in the conventional sense that these forces arise from fluid layers within a material interacting with one another. However, the increase in shear

* Because plate 7 represents test results for circular plates, $\binom{R_h}{C}_{CX}$ = 1, and the ordinate variable in plate 7 has the same meaning as $\binom{F_2}{A^{1.2}}_{XS} \times \binom{R_h}{C}_{CX}$.

resistance in the logarithmic portion of the curve in fig. 7 does result from viscosity, and equation 3 was developed to describe $(F_z)_x$ in a normalized, logarithmic format starting with variables similar to those in fig. 7 (plates 7 and 8 and paragraphs 39-45). Thus, the increase in $(F_z)_x$ for velocity ≤ 3 m/sec follows a pattern similar to the increase in viscous force of a pseudoplastic fluid. Note, also, that inertial force developed by a probe of base area A and velocity V in a fluid of density ρ^* is described by

$$F_i = \frac{\rho A V^2}{2}$$

48. Taking the considerations above into account, a relation similar to that in fig. 7 was developed for flat plates in air-dry sand by (a) replacing "viscous force" in fig. 8 with

$$(F_z)_x = \left(\frac{F_z}{A^{1.2}}\right)_s \times A_x^{1.2} \times (R_h^{0.4})_{xc} \times 2.4 \left(\frac{V_z}{L}\right)_{xs}^{0.25}$$
 (from equation 3), (4)

* For air-dry sand, ρ is mass density, defined as sand unit dry weight divided by acceleration due to gravity, γ_d/g .

(b) computing "inertial force" for sand as

and (c) using measured $(F_z)_{\chi}$ in place of "drag force." Plate 9 shows this relation, using all of the data from the WES tests of flat plates in air-dry Yuma sand. (Open-symbol data in plate 9 were obtained at vertical velocities $\leq 3 \text{ m/sec}$, closed-symbol data at velocities >3 m/sec.) The curve that describes this relation is linear with a slope of -1 for abscissa values up to about 0.02. Beyond 0.02, the data describe a curve that approaches the horizontal more and more as values of the abscissa term increase. This indicates that inertial forces contributed to $(F_z)_{\chi}$ for vertical velocities >3 m/sec, but no plate test was conducted at velocities large enough to cause $(F_z)_{\chi}$ to be dominated by inertial forces.

49. To estimate $(F_z)_x$ from the relation in plate 9 requires knowledge of the size, shape, and velocity of the flat plate of interest; the mass density of the sand; and information in terms of F_z , A, V_z , and ℓ_s from a cone penetration to obtain standard G. Then, the value of $(F_z)_x$ is estimated by calculating the value of the abscissa term in plate 9; determining the corresponding ordinate value from the curve; and multiplying this ordinate value by the value of $\rho AV_z^2/2$ for the plate of interest.

 $(F_z)_x$ for cones at base depth = 0

50. The same procedure outlined in paragraphs 39-43 for the flat plates was used to obtain a description of $(F_2)_{\chi}$ at zero base depth for 30-deg-apex-angle cones of a range of sizes (base areas from 1.29 to 58.1 cm²) in Yuma sand test beds of G values from 1.08 to 6.91 MN/m³, with velocities <3 m/sec. The logarithmic relation of cone stress ratio $(F_z/A^{1.3})_{\chi S}$ to velocity gradient ratio $(V_\chi/L)_{\chi S}$, shown in plate 10, effectively describes $\langle F_z \rangle_{\chi}$ in a normalized format that includes measurements of all the major variables that influence $(F_z)_{\chi}$.

The relation is different from the corresponding one for flat circular plates (plate 7) in that (a) $A^{1.3}$ instead of $A^{1.2}$ appears in the ordinate term, and (b) the ordinate term in plate 10 increases log-linearly only after velocity gradient ratio values exceed about 2.3.

51. The curve in plate 10 must pass through coordinates (1,1) since the variables in plate 10 are normalized relative to the standard cone penetration. Accordingly, the horizontal part of the curve in plate 10 has ordinate value 1.0. For values of velocity gradient ratio greater than 2.3, the relation is described by

$$\left(\frac{F_z}{A^{1.3}}\right)_{xs} = 0.65 \left(\frac{V_z}{l}\right)_{xs}^{0.50}$$
(5)

Thus, a velocity gradient ratio of 2.3 can be considered a threshold value below which cone stress ratio remains essimilally constant, and above which it increases as $0.65 (V_z/\ell)^{0.50}$

52. In plate 11, all the data from plate 10 (open symbols), together with all data for the cones at velocities >3 m/sec (closed symbols), are plotted logarithmically in the relation of

 $\frac{\text{measured } (F_z)_x}{\rho \left(AV_z^2/2\right)_x} \text{ versus } \frac{\rho \left(AV_z^2/2\right)_x}{\left[\left(F_z\right)_x \text{ computed from relation in plate 10} \right]}$

No significant departure of the data from a line of slope equal to -1 is noted, indicating that the velocities of these cone tests were not large enough to develop inertial forces that were sizable in comparison with the forces expressed by the denominator of the abscissa term. This result was obtained even though values of velocity up to 6.90 m/sec are included in plate 11.

53. A comparison of plate 10 with plate 7 and plate 11 with plate 9 shows that $(F_z)_x$ for cones and flat plates is markedly different even though these probes had circular bases of the same range of sizes and operated over about the same range of velocity values in
sand beds of similar G values for the tests reported herein.

$\left(F_{z}\right)_{x}$ for plates and cones at 15-cm depth

54. Values are listed in tables 1 and 2 for sand penetration resistance force $(F_z)_x$ and velocity $(V_z)_x$ measured at 15-cm probe base depth for each cone and plate penetration. For each combination of probe size and shape and sand G value, $(F_z)_x$ varied only slightly with velocity at the 15-cm depth (reference plates 1 and 2). If a situation arises where $(F_z)_x$ needs to be estimated at some substantial probe base depth (say, ≥10 cm) for a given flat plate or cone with velocity of >3.05 cm/sec, a reasonable approach is to estimate $(F_z)_x$ at that depth for the probe of interest with velocity equal to 3.05 cm/sec. To accomplish this, first estimate $(F_z)_x$ at 2.5-cm base depth for a given plate using equation 4 (plates 7 and 8); or estimate $(F_z)_x$ at zero base depth for a given cone using

$$(\mathbf{F}_{z})_{x} = \mathbf{A}_{x}^{1\cdot3} \times \left(\frac{\mathbf{F}_{z}}{\mathbf{A}^{1\cdot3}}\right)_{s}$$

for $\left(V_z / L \right)_{xs} \le 2.3$ and

 $(\mathbf{F}_{z})_{x} = \mathbf{A}_{x}^{1.3} \times \left(\frac{\mathbf{F}_{z}}{\mathbf{A}^{1.3}}\right)_{s} \times 0.65 \left(\frac{\mathbf{V}_{z}}{\mathbf{A}}\right)_{xs}^{0.50}$

for $(V_z/t)_{xs} > 2.3$ (plate 10). In these estimates of $(F_z)_x$, use $(V_z)_x = 3.05$ cm/sec. Next, estimate G_x for the probe of interest by using equation 2 [again, with $(V_z)_x = 3.05$ cm/sec]. Then, $(F_z)_x$ for $(V_z)_x \ge 3.05$ cm/sec at the depth of interest (>10 cm) can be approximated by $[(F_z)_x$ at 0 or 2.5 cm] + $[G_x \times (depth of interest - 0 or 2.5 cm]$.

PART III: LOW-SPEED VERTICAL CONE PENETRATIONS IN DRY-TO-MOIST SAND

Test Sand and Its Preparation

Test sand

55. The same type of desert (Yuma) sand used in the tests described in Part II of this report (paragraph 9) was also used in the tests described in this part.

Sand preparation

56. Samples of air-dry Yuma sand (moisture content from 0.4 to 0.5 percent) were prepared in 38-cm-inside-diameter, 30-cm-high steel molds by pouring the sand from a height of 45 cm above the mold, taking care to cover the full area of a given mold uniformly as it was filled. Different sand densities (and G values) were produced by varying the rate of sand discharge into the molds. This was accomplished by use of an adjustable nozzle in the flexible hose through which the sand flowed into the molds. 57. Yuma sand test samples at moisture contents from 1.1 to 12.3 percent were produced by carefully blending prescribed amounts of sand and water to produce a homogeneous mixture at the desired moisture content. Three levels of sand unit dry weight were used for nearly all of the moist-sand samples--approximately 15.1, 15.4, and 16.0 kN/m³. For a given sample, the sand was placed in the steel mold in shallow layers (from as little as 3.6 to as much as 5.9 cm thick) and each layer was compacted by blows of a 12.2-kg hammer falling 15 cm. The number of blows and the sand thickness per layer were varied until a combination was obtained that produced a near-linear increase of cone papetration resistance with depth for each combination of moisture content and unit dry weight tested.

58. Sand strength in the test molds was characterized primarily in terms of G, although measurements were also taken of unit dry weight and moisture content for each test sample. The cone penetration resistance versus depth curves obtained in the test molds had essentially the same near-linear shape as those (fig. 2) obtained in the sand test bins, for both the air-dry and moist samples of Yuma sand.

Test Equipment

59. Two penetrometers with the WES standard cone $(3.23-cm^2)$ base area) were used in the vertical penetration tests of dry-to-moist Yuma sand. The first penetrometer forced the cone into the sand at constant velocity from 0.017 to 6 c.m/sec by means of a mechanical rack-and-pinion gear arrangement (fig. 9a). Cone penetration resistance versus depth of penetration was recorded by an x-y plotter (records similar to fig. 2).

60. The second penetrometer was a triaxial machine modified for this study by removing the triaxial chamber, widening the outer arms of the moving element to accept the 39.4-cm-outside-diameter test mold, and mounting a cone-shaft-load cell arrangement in the center of the moving element (fig. 9b). This machine was used for cone penetration tests at speeds from 0.3 to 35.1 cm/sec. (Values of G obtained at overlapping velocity values for the two penetrometers indicated no influence of machine type on the test results.) An oscillograph recorded $F_{\rm Z}$, depth of cone penetration, vertical velocity, acceleration, and $F_{\rm Z}$ free of the effects of acceleration and deceleration of the cone-shaft-load cell assembly.*

Test Procedures

61. For both penetrometers, three cone penetrations were made in each sand mold at a given test velocity. Variables measured for each mold included sand unit dry weight and moisture content, cone vertical

^{*} The influence of acceleration and deceleration of the cone-shaft-load cell assembly on measured sand penetration resistance force F_z was eliminated for tests with the modified triaxial machine by the same technique described for the nigh-speed loading device in paragraph 18. That is, the F_z values reported herein reflect the interaction of the cone and sand only, not the effects of accelerating or decelerating the cone-shaft-load cell assembly.

Fig. 9. Penetrometers used in vertical penetration tests of dry-tomoist Yuma sand contained in steel molds

velocity, and penetration resistance gradient G (from the curves of cone penetration resistance versus depth). Average values of each of these four variables are listed in tables 3 and 4 for each sand mold specimen tested.

Analysis of Data

62. The results of vertical penetration tests with the standard WES 3.23-cm² cone at $(V_z)_x$ values from 0.01, to 35.1 cm/sec in test molds of Yuma sand whose moisture contents ranged from 0.4 to 11.5 percent are presented in table 3. Table 4 presents data from a separate block of 16 tests with the standard cone at standard velocity

(3.05 cm/sec) in Yuma sand molds of 0.5 to 12.3 percent moisture content. Data in table 4 were obtained to complement relations developed from the data in table 3.

Effects of velocity

63. The relation of sand penetration resistance gradient G_x to vertical penetration velocity $(V_z)_x$ is shown in plate 12 for the 3.23-cm² cone tested at four levels of moisture content (approximate values of 0.5, 1.4, 2.1, and 7.0 percent) and at velocities from 0.0295 to 33.4 cm/sec. All data in plate 12 are from molds of Yuma sand tested at one level of sand unit dry weight (γ_d) , approximately 15.4 kN/m³. No significant effect of velocity on G_x is apparent, and the relation for each of the four moisture content levels is described by a horizontal line.* Clearly, G_x is strongly influenced by moisture content; more than a fourfold increase in the value of G_x resulted from increasing moisture content from 0.5 to 7.0 percent.

64. Nearly the full range of $(V_z)_x$ values in table 3 is included in plate 13. The lack of influence of $(V_z)_x$ on G_x in plate 12, together with the fact that standard velocity, 3.05 cm/sec, is included in the range of $(V_z)_x$ values in the abscissa term of this plate, allows G_x values from table 3 to be considered equivalent to standard G values. In all relations examined in the remainder of this part of the report, tables 3 and 4 are considered to contain values of G, not

G_x.

Effects of unit dry weight and moisture content

65. Changes in the value of unit dry weight produce corresponding changes in the value of C, as demonstrated in plate 13 for four levels of moisture content. The semilogarithmic relation between G and unit dry weight in plate 13 is described by a family of parallel straight

^{*} The insensitivity of G_x to increases in velocity up to 33.4 cm/sec (the largest velocity in plate 12) agrees with results obtained with the standard cone in Part II of this report. From page 1 of table 1, G_x values obtained with the 3.23-cm² cone at approximately 30 cm/sec were 1.44, 2.44, and 5.66 MN/m³ in sand test beds of standard G values 1.40, 2.48, and 6.06 MN/m³, respectively.

lines separated by levels of moisture content. This indicates that a given change in the value of unit dry weight produces approximately the same percentage change in the value of G for any moisture content within the range tested. Of course, the numerical change in G caused by a given change in unit dry weight increases as the value of moisture content increases.

66. The straight lines in plate 13 are described by the equation

$$\log G = \log a + \frac{\gamma_d}{3} \tag{6}$$

The algebraic value of log a in equation 6 increases with increasing values of moisture content--see fig. 10. This figure shows that the value of log a increases rapidly as moisture content increases from 0.4 to about 3 percent; beyond 3 percent, the rate of increase of log a

Fig. 10. Relation of log a in equation 6 to moisture content

becomes progressively much smaller. Plate 14 shows that variation in moisture content influences G in a pattern s_milar to its influence on log a in fig. 10. For each of the three unit dry weight levels represented in plate 14, the major portion of the increase in G occurs as moisture content increases from 0.4 to 3 percent.

67. In terms of vehicle mobility, the strong dependence of G on moisture content at small values of the latter variable carries important practical implications. All WES laboratory tests of single model wheels and tracks, as well as of prototype vehicles, have been conducted in air-dry sand. Thus, the descriptions of vehicle running gear performance based on evaluations of these tests should be conservative when a given value of sand unit dry weight is considered.* Analysis of the results of many field tests of prototype wheeled vehicles conducted in dry-to-wet sands indicated that G has the same meaning relative to running gear performance, no matter what the moisture.¹¹ A strong statement to this effect cannot be made at present, however, because a sizable amount of data scatter was present in the relations between running gear performance and a prediction term that included G. Controlled laboratory tests of wheels and tracks should be conducted in moist-to-wet sands to determine with improved accuracy how G at different moisture content levels is related to vehicle running gear performance.

^{*} This results because vehicle running gear performance normally worsens (pull decreases, sinkage increases, motion resistance increases, tractive efficiency decreases, etc.) as the value of G decreases. Over the range of moisture contents studied herein, the smallest value of G was obtained for the air-dry condition.

PART IV: HORIZONTAL PENETRATION TESTS WITH PROBES IN AIR-DRY SAND

Test Sand and Its Preparation

68. The air-dry Yuma sand used for horizontal cone penetration tests at WES was the same type of sand described in paragraph 9. Each test was conducted in a sand bed enclosed by five 0.8- by 1.6- by 8.2-m soil bins joined end to end, with the interior bin gates removed. The sand preparation technique was the same as that described in paragraphs 10 and 11.

Test Equipment

Low-speed penetrometer

69. Measurements of standard penetration resistance gradient G were taken in a given five-bin sand test bed using the same mechanized, low-speed cone penetrometer described in paragraph 14.

Test cones and dynamometer

70. Horizontal penetrations were made with steel, 30-deg-apexangle, right circular cones of four sizes--base areas of 3.23, 6.45, 12.90, and 23.23 cm²--by using a special cone assembly mounted on the forward face of a dynamometer test carriage (fig. 11). In the assembly, a hollow outer shaft protected a specially machined inner shaft, which was threaded to receive the test cones and instrumented with strain gages to record only the force transmitted to its leading face by the cone, i.e. the strain gages were positioned such that forces only on the base of the cone, not on the shaft, were recorded. Calibration tests showed that axial loads over the full range subsequently encountered during testing were recorded to an accuracy of ± 2 percent. Also, it was determined that forces applied perpendicularly to the shaft were not picked up by the strain gages, indicating that any nonaxial loads caused by shaft misalignment were not recorded.

Fig. 11. Cone assembly mounted on forward face of dynamometer test carriage

Test Procedures and Data Reduction

Test procedures

71. After a given five-bin test bed of air-dry Yuma sand was prepared, measurements of G were taken at 1.5-m intervals over the length of the bed (about 18 m long for each test) at its transverse center line. Next, the test cone was screwed into the shaft of the special cone assembly, which itself was rigidly mounted on the front face and at the transverse center line of the dynamometer carriage. The tip of the cone was then set to a predetermined depth beneath the level of the sand surface, and a final check was made to assure that the cone shaft was horizontally aligned. While the cone and shaft were still in air, calibration checks were made of the cone shaft's strain-gage system and of an oscillograph system that recorded the test results.

72. To allow the penetration velocity of a test to begin at zero,

the core assembly was moved forward very slowly until the cone was several meters inside the first sand bin, at which time the carriage was stopped. The actual test was then begun by moving the assembly forward several meters at the dynamometer's lowest creep speed.* After this initial penetration period, the test velocity was programmed to increase linearly to a maximum value (about 3.8 m/sec for most tests, up to 5.2 m/sec for several), and then to decrease linearly to zero. Each horizontal penetration passed through the locations of the vertical cone penetrations that were made prior to the test to obtain standard G values. Values of horizontal force $F_{\rm x}$ acting on the base of the test cone, horizontal test cone velocity $V_{\rm x}$, and acceleration a were recorded by the oscillograph.

Data reduction

73. Values of horizontal force were measured at corresponding values of velocity during the acceleration and deceleration phases of each test, and the average of the two force values are reported herein for each velocity level sampled. Each pair of force readings at a common velocity had nearly equal values, indicating that the increasing-, then decreasing-speed technique affected the force negligibly. Using the average of two force values measured at locations a considerable distance apart also had the advantage of "balancing out" the effects of slight nonuniformities in sand strength over the length of the test bed.

Performance of Cones and Plane Blades in Sand

Some general considerations

74. Soil cutting by tillage tools is a practice many centuries old. Earth moving by machines with scraper blades has become a common practice since the turn of the century. In both cases, the penetrating implement moves generally parallel to the soil surface. Also in both

^{*} Even this procedure failed to produce usable data below about 0.3 m/sac, since F, (horizontal force imparted by the sand to the cone base) stabilized to a given pattern only after a velocity of about 0.3 m/sec was reached.

cases, a quantitative description of the influence on soil penetration resistance of the pertinent soil and implement variables would lead to better, more rational design of the penetrating implement.

75. Two types of horizontal penetrations in sand may be considered: (a) these made well below the sand surface and (b) those made near the surface. Only penetrations of the second type were conducted at WES for this study. Analysis of the results of these cone penetration tests, together with a summary of major findings from two similar non-WES studies, is presented below. This analysis is followed by a discussion of some major points from a comprehensive study ¹² of plane cutting blades tested near the sand surface.

Cones tested beneath the sand surface at WES

76. Data from 22 horizontal penetration tests conducted beneath the surface of air-dry Yuma sand with four sizes of 30-deg-apex-angle, right circular cones are presented in table 5.

77. <u>Dimensionless description of the cone-sand system</u>. To describe the physical characteristics of the system in which the horizontal cone penetration tests were conducted, the sketch in fig. 12 was prepared. The following variables and their associated units of force,

length, and time (FLT units) describe the system:

- a. Dependent variable.
 - $F_{\mathbf{X}}$, sand resistance force measured in the direction of horizontal cone penetration (F)
- b. Independent variables.
 - (1) <u>Cone.</u>
 - **\alpha**, cone tip apex angle (deg)
 - d, , diameter of cone base* (L)
 - h , depth of cone tip in its test position beneath the undisturbed sand surface (L)
 - V_x , horizontal cone velocity (LT⁻¹)
 - (2) <u>Sand</u>.
 - G , sand standard penetration resistance gradient $(\,{\rm FL}^{-3})$
 - $\gamma_{\rm d}$, sand unit dry weight (FL⁻³)
 - ϕ , angle of internal friction of the sand (deg)
 - (3) General.
 - g, acceleration due to gravity (LT^{-2})

78. From dimensional analysis, the Buckingham Pi Theorem states that the number of dimensionless terms needed to express a relation among the variables is equal to the number of pertinent variables minus the number of dimensions (i.e. force, length, and time units) among these variables. Assuming all the variables in paragraph 77 are pertinent, six (9 - 3) dimensionless terms are needed in the general relation that describes force F_x . Formal techniques have been developed for forming the terms, but they can be derived easily by inspection for this analysis. The general form of the relation between F_x and the independent variables in paragraph 77 can be expressed as

$$\frac{F_{x}}{Gd_{x}^{3}} = f\left(\alpha, \frac{h}{d_{x}}, \frac{V_{x}}{\sqrt{gd_{x}}}, \frac{\gamma_{d}}{G}, \phi\right)$$
(7)

79. Only four of the dimensionless terms in equation 7 were needed to describe the WES cone-sand system since (a) cone tip apex

^{*} Because all of the test cones had the same shape, any given linear dimension of the cone can be used to characterize cone size.

angle α was 30 deg for all the test cones, and (b) angle of internal friction \emptyset varied by only about 2 deg for the full range of G values tested and, therefore, could be considered constant. Thus, equation 7 was reduced to

$$\frac{F_{x}}{Gd_{x}^{3}} = f\left(\frac{h}{d_{x}}, \frac{V_{x}}{\sqrt{gd_{x}}}, \frac{\gamma_{d}}{G}\right)$$
(8)

It is emphasized that variables of the same dimensions in equation 8 can be interchanged, the dimensionless terms can be inverted, and different dimensionless terms can be formed by multiplying or dividing dimensionless terms by one another and/or by performing the same mathematical operation on the numerator and denominator of a given dimensionless term.

80. Test results at 30 cm/sec. A logical representation of the term F_x/Gd_x^3 in equation 8 is $(F_x/d_x^2)/Gd_x$, or $(F_x/A_x)/Gd_x$ where A_x is the base area of the cone. The numerator in the latter term describes cone base pressure, and the denominator can be considered an indicator of sand pressure at some unspecified depth. This term can be altered to another dimensionless term by multiplying it by $(d_x/h)^2$, i.e.

$$\frac{F_x /A_x}{Gd_x} \times \frac{d^2_x}{h^2} = \frac{F_x /A_x}{Gh^2/d_x}$$
(9)

This last dimensionless term has been produced by manipulation of the first two terms in equation 8, and is hereafter called the "cone-sand pressure ratio."

81. To determine whether the cone-sand pressure ratio is a meaningful, stable term, its numerator was plotted versus its denominator in plate 15, using data thought to be affected very little by the last two dimensionless terms in equation 8. Relative to the Froude number $(V_{\chi}/\sqrt{\text{gd}_{\chi}})$, velocity V_{χ} was held constant at 30 cm/sec, the lowest velocity in the programmed-velocity tests that was judged adequate to produce reliable measurements of F_{χ} . Concerning the term r_{d}/G , values of G for the horizontal cone penetration tests ranged from

1.05 to 4.33 MN/m³ (table 5). From plate 13, corresponding values of γ_d are 14.4 and 16.3 kN/m³, respectively, which define a very small range. Thus, it was anticipated that the Froude number and γ_d/G would have only slight influence on the relation of F_x/A_x to Gh^2/d_x .

82. The data in plate 15 fit closely about the straight line described by

$$\frac{F_x}{A_x} = 70 + \left(0.050 \frac{Gh^2}{d_x}\right)$$

All but two of the 22 tests represented in plate 15 were conducted at h = 17.8 cm (open-symbol data points). The other two tests (closed symbols) were conducted at h = 10.2 cm and at h = 25.4 cm. The data point for h = 10.2 cm lies very close to the straight line. The one for h = 25.4 cm is within a reasonable distance from the line, but lies noticeably to the right side. This separation is considered to result primarily from the fact that 25 cm is approximately the maximum depth that could be maintained near-linear in the Yuma sand test beds (paragraph 11). For $G = 1.05 \text{ MN/m}^3$ and the standard 3.23-cm^2 cone, this depth also corresponds closely to the "critical depth" D_ described in Report 4 of this series.⁷ Below the critical depth, sand resistance "increases only slightly, and the rate of increase remains constant." Because horizontal performance of a cone at a given depth is influenced by sand strength both above and to some depth below the height of the cone tip, the effective value of G for the test at h = 25.4 cm likely is slightly less than 1.05 MN/m³. A smaller value of G for the data point at h = 25.4 cm would shift its location leftward, and therefore closer to the curve in plate 15.

83. The major point is that cone base pressure F_x/A is closely related to the sand pressure term Gh^2/d_x . However, this relation holds true only for data obtained well within that depth of sand wherein cone penetration resistance increases in near-linear fashion.

84. Relation of the cone-sand pressure ratio to the Froude number. To introduce the effects of velocity of F_{χ} , the cone-sand pressure ratio was plotted against the Froude number for each of the four test cones, as shown in plate 16. The left side of plate 16 shows that, for each penetration test, a log-linear relations exists for values of the Froude number up to about 5. The slope n of these lines can be described by

$$n = \frac{1.037 - \log \left[\frac{\gamma_{d}}{G} \times \left(\frac{d_{x}}{d_{s}}\right)^{0.5}\right]}{3}, \frac{V_{x}}{\sqrt{gd_{x}}} \le 5$$
(10)

where

 $d_v = diameter$ of the cone of interest

 $d_s = 2.03$ cm, the diameter of the standard 3.23-cm² cone.* Note that n may be positive or negative. The tests represented in plate 16 had values of $\left[(\gamma_d/G) (d_x/d_s)^{0.5} \right]$ from 2.66 to 23.2, and corresponding n values from equation 10 of 0.20 to -0.11.

85. To develop a means of estimating the cone-sand pressure ratio from an equation of the form

$$\frac{\frac{F_x/A_x}{Gh^2/d_x}}{\frac{Gh^2/d_x}{d_x}} = k \left(\frac{V_x}{\sqrt{gd_x}}\right)^n$$
(11)

with $V_x/\sqrt{gd_x} \le 5$, it was necessary next to determine a relation for k, the value of $(F_x/A_x)/(Gh^2/d_x)$ at $V_x/\sqrt{gd_x} = 1$. Cone base pressure F_x/A_x was plotted versus the sand pressure ratio Gh^2/d_x for the condition $V_x/gd_x = 1$, and the well-defined linear relation

$$\frac{F_x}{A_x} = 55 + \left(0.060 \frac{Gh^2}{d_x}\right)$$

was produced, so that

$$k = \frac{F_z / A_x}{Gh^2 / d_x} = \frac{55}{Gh^2 / d_x} + 0.060 , \quad \frac{V_x}{\sqrt{gd_x}} = 1$$
(12)

86. The right side of plate 16 shows that, at about $V_x / \sqrt{gd_x} = 5$, the relation of $(F_x/A_x) / (Gh^2/d_x)$ to $V_x / \sqrt{gd_x}$ becomes linear on an arithmetic basis. The slope m of the lines in the right side of plate 16 can be described by

* In equations 10 and 13, the units of γ_d are kN/M³ and those of G are MN/m³. d_x/d_s and $V_x/\sqrt{gd_x}$ are dimensionless ratios.

$$m = \frac{\log\left(\frac{\gamma_{d}}{G} \times \frac{d_{x}}{d_{s}}\right) - 0.57}{115}, \frac{V_{x}}{\sqrt{gd_{x}}} > 5*$$
(13)

87. Overall, then the relation of the cone-sand pressure ratio to the Froude number can be described by equation 11, with k defined by equation 12 and n by equation 10 for $V_x/\sqrt{gd_x} \le 5$. For $V_x/\sqrt{gd_x} \ge 5$,

$$\frac{F_x/A_x}{Gh^2/d_x} = \left(\frac{F_x/A_x}{Gh^2/d_x} \text{ at } \frac{V_x}{\sqrt{gd_x}} = 5\right) + m\left(\frac{V_x}{\sqrt{gd_x}} - 5\right)$$

The curves describing force F_x versus velocity V_x in plate 17 were defined on the basis of the relations just cited in this paragraph, using inputs of known A_x , G, h, and d_x for five horizontal cone penetration tests in table 5. The patterns of F_x versus V_x described by the data points of these tests are traced reasonably well by the curves thus developed.

88. Other cone studies. Results from two other studies 13,14 involving horizontal cone penetration tests well below the sand surface provide information complementary to the WES results described in paragraphs 76-87. In both studies, the test material was an air-dry sand with a specific gravity of 2.67, an angle of internal friction \emptyset by triaxial test of 30.5 deg, and grain-size distribution such that 95 percent, by weight, lies between 0.015 and 0.06 mm. Three levels of unit dry weight were used--14.3, 15.2, and 16.0 kN/m³. Twelve circular-base-area cones were tested whose base areas ranged from 20.3 to 81.1 cm², and whose apex angles ranged from 15 to 90 deg. Some of the steel cones were tested smooth, others with sandpaper glued to the outer surface. Maximum horizontal cone test velocity V_x in the two studies was 2.4 m/sec, and cone tip depths at which penetrations were made ranged from 7.6 to 61.0 cm.

89. The principal aim of the two studies was to investigate the effect on horizontal force F_x caused by variations in depth of penetration, model variation (i.e. cone size, apex angle, and surface roughness), cone speed, and the "state of packing" of the sand. The following are among the most important findings from the two studies:

<u>a</u>. For a given value of sand unit dry weight and a cone of given size tested horizontally at low speed, sand penetration resistance force increases roughly as the square of depth for tests near the sand surface [because the cone "is effectively pushing a block of sand of depth (h) ahead of it and so suffering a passive pressure proportional to depth squared"¹⁴], and roughly linearly with depth for tests substantially below the surface.* This first result agrees with that developed herein from the WES cone tests, in that h² was determined to be the depth term appropriate in a description of F_x .

- <u>b</u>. At a given depth well below the sand surface, and at low penetration velocity, F_X increases linearly with cone base area. For the WES test results, plate 18b demonstrates that curves based on equations 10, 11, and 12 describe the relation of F_X to cone base area slightly better than would straight-line approximations. The data points in plate 18b were obtained from a crossplot of the F_X versus G relation shown in plate 18a, using data at velocity $V_X = 30.5$ cm/sec from the 20 tests in table 5 that had h = 17.8 cm.
- <u>c</u>. Slight reductions in F_X resulted from reducing the cone apex angle (in the 90- to 15-deg range) and from usir; polished steel, rather than sandpaper-covered, cones. However, the magnitudes of these effects on F_X are quite small compared with those of the other variables considered.
- <u>d</u>. Values of F_x change with cone speed in different patterns for loose and dense sand, with larger increase in F_x (both on a percentage and on a numerical basis) being obtained in the dense state (for V_x values up to 2.4 m/sec). In the loose state, a general reduction in F_x with increasing V_x occurred up to 1.2 m/sec, with F_x increasing with V_x beyord 1.2 m/sec. Roughly, this pattern was obtained in the WES tests, except that the transition point for different F_x values was taken as occurring at Froude number $(V_x/\sqrt{gd_x})=5$. (See plates 16 and 17 and paragraphs 84-87.)

^{*} Depths at which the horizontal cone penetrations were conducted in tests in references 13 and 14 ranged from 7.6 to 61 cm.

e. For the range of values used, the "state of packing." i.e. sand unit dry weight, affected F_x more than any other variable studied. In the WES tests, both cone size (area) and state of packing (G) had great influence on F_x for the low-speed condition--see plate 18, for example. For velocity values up to 5.2 m/sec, F_x was strongly influenced by cone size (expressed in terms of A_x and d_x), state of packing (G), and cone depth (h)--see paragraphs 84-87.

Plane cutting blades operating near the surface in sand

90. The primary object of the study described in reference 12* was to develop equations capable of predicting the force response of air-dry sand of three unit weights to plane cutting blades of various sizes, inclination angles, and depths of cut over a range of penetration velocities. Values of sand penetration resistance gradient G and unit dry weight γ_d of the test sand were:

			Low	Medium	High
G	,	MN/m ³	1.44	3.23	5.97
γ _a	,	kN/n. ³	15.7	16.3	16.7

91. A schematic of the cutting blade is shown in fig. 13. The blade variables considered in this study were:

b , blade width, cm

1, blade length, cm

z , blade operating depth,** cm

a, blade angle, radians

V, , operating velocity, cm/sec

Test values of b ranged from 2.54 to 25.4 cm, of ℓ from 11.7 to 39.2 cm, of z from 2 to 34 cm, and of $z/(\ell \sin \alpha)^{\dagger}$ from 0.25 to 2.0. Each of 10 plane blades was tested at $\alpha = 30$, 45, 60, 90 and 105 deg,

^{*} The authors of reference 12 have also conducted a similar study using clay as the test soil (reference 15).

^{**} z is the vertical distance from the bottom of the blade to the original sand surface.

[†] $z/\ell \sin \alpha$ is the proportion of blade height in sand at the start of a given test. For a blade whose top edge is at the height of the original sand surface, $z/\ell \sin \alpha$ = 1.

and values of V_x ranged from 25 to 255 cm/sec. The only sand variable that appeared ultimately in the prediction equations was γ_d , unit dry weight. Test response was measured by f_x , horizontal component of blade reaction force, and f_z , vertical component of blade reaction force.

92. The nondimensional relations developed to predict f_x and f_z for the range of conditions tested were

$$\frac{f_{x}}{\gamma_{d}bz^{0.5}\ell^{1.5}} = \alpha^{1.73} \left(\frac{z}{\ell \sin \alpha}\right)^{0.770} \left[1.05 \left(\frac{z}{b}\right)^{1.10} + 1.26 \left(\frac{y^{2}}{x}\right) + 3.91\right] (14)$$

and

$$\frac{f_{z}}{\gamma_{d} b z^{0.5} \ell^{1.5}} = \left[1.93 - (\alpha - 0.714)^{2}\right] \left(\frac{z}{\ell \sin \alpha}\right)^{0.770} \left[1.31\left(\frac{z}{b}\right)^{0.966} + 1.43\left(\frac{v^{2}_{x}}{g^{\ell}}\right) + 5.60\right]$$
(15)

where \pm is acceleration due to gravity, 9.805 m/sec². Four independent (controlled) dimensionless terms- α , $z/(l \sin \alpha)$, z/b, and

 V_x^2/gl --appear in the right side of equations 14 and 15. Fig. 14 presents some representative relations of these variables, in turn, to $f_x/\gamma_d bz^{0.5} l^{1.5}$ (figs. 14a-14d), and to $f_z/\gamma_d bz^{0.5} l^{1.5}$ (figs. 14e-14h). The relations described by equations 14 and 15 are quite complex, particularly those by equation 15, which shows both positive and negative values of $f_z/\gamma_d bd^{0.5} l^{1.5}$ (each of figs. 14e-14h), as well as a nonmonotonic influence on $f_z/\gamma_d bz^{0.5} l^{1.5}$ of variable α (fig. 14e). In each of figs. 14a-14h, the curves (which represent equations 14 and 15) trace the pattern of behavior of the test data reasonably well.

Fig. 14. Representative relations of $f_x/\gamma_d bz^{0.5} l^{1.5}$ and $f_z/\gamma_d bz^{0.5} l^{1.5}$ to γ , $z/l \sin \alpha$, z/b, and V_x^2/gl (from reference 12) (sheet 1 of 2)

an die eiste sooste oorde het een name ook die die eerste eerste bestele kaarde aande ook aktie aktiek eerste d

undistri

Sec. at a list of the

PART V: CONCLUSIONS AND RECOMMENDATIONS

<u>Conclusions</u>

93. The foregoing analysis is considered adequate basis for the rollowing conclusions:

<u>a</u>. For a given cone or flat plate tested vertically in airdry sand of given strength, the curve of sand penetration resistance force per unit probe base area F/A versus probe base depth departs from near linearity^Zas^Xvelocity V increases. Values of F/A_x at shallow depths increase with increases in V^Z, but F/A_x approaches a common value at substantial depth (Say, 15 cm) for V values in the 3- to 600-cm/sec range (plates 1 and 2^Zand paragraphs 25-27).

- <u>b</u>. Penetration resistance gradient G_X for any of a broad range of cone sizes and plate sizes and shapes can be estimated if values are known for the gradient obtained under "standard" conditions with the 3.23-cm² cone at 3.05 cm/sec (G) and the probe base area A , for $V_z = 3.05$ cm/sec (equation 2 and paragraphs 31-35). Because of the factors cited in <u>a</u> above, G_X should be estimated by equation 2 only for V_z near 3 cm/sec.
- c. Values of F at probe base penetration depths of 2.5 and 0 cm for²flat plates and cones, respectively, can be estimated from relations of dimensionless terms that describe F as a function of sand strength and probe size, shape², and velocity normalized relative to conditions of a standard cone penetration (paragraphs 36-53 and plates 7-9 for plates, 10 and 11 for cones). Data used in the development of these relations included values of G from 1.38 to 6.91 MN/m³; A from 1.29 to 58.1 cm²; one cone shape and five flat plate shapes; and V₂ values from 3 to well over 600 cm/sec.
- d. Values of G increase markedly with increases in sand unit dry weight and/or moisture content (plates 12-14 and paragraphs 63-66).
- e. For a given probe tested horidontally in sand, force F_{X} on the probe base depends on probe size, shape, and velocity; depth of the probe relative to the undisturbed sand surface; and sand strength. A description of such a system, obtained by using dimensional analysis and data from cone penetration tests in air-dry sand, allows F_{Y} for cones to be estimated from relations of dimensionless terms that include descriptions of the variables mentioned above (plates 15-17 and paragraphs 76-87).

- <u>f</u>. A brief review of major findings from two studies 13,14 of horizontal cone penetration tests shows that these findings agree with and complement results of the WES tests (from <u>e</u> above). Some major conclusions from these studies are: Increase in F_{χ} changes from a squared function of depth for small depths to a linear function for large depths; F_{χ} increases with cone base area; cone apex angle and surface roughness influence F_{χ} only slightly; F_{χ} changes with velocity in complex patterns influenced by probe size, probe depth, and the sand's state of packing (paragraphs 88-89).
- g. A brief summary of results from another study ¹² shows that the norizontal and vertical components (f_x and f_z , respectively) of forces on plane blades operating horizontally near the sand surface can be estimated by equations that incorporate functions of the variables mentioned in <u>e</u> above (paragraphs 90-92).

Recommendations

- 94. It is recommended that:
 - <u>a</u>. Model tests of plane blades and bulldozer blades be conducted in another type sand than that used in developing equations 14 and 15 to determine what modifications should be made to these equations to account for the effects on f_X and f_Z of sand type (plane blade performance) and of bulldozer blade curvature.
 - <u>b</u>. A study like that in <u>a</u> above be conducted in clay to verify the relations from reference 15 and to extrapolate them to bulldozer blade performance.
 - c. Free-fall or impact-driven vertical penetration tests be conducted with cones in dry-to-moist sand to complement similar studies conducted by WES in fine-grained soils (references 1-4).
 - d. Laboratory tests of wheels and tracks be conducted in moist-to-wet sands to improve present knowledge of how G at different moisture content levels is related to vehicle running gear performance.
 - <u>e</u>. A study be made to apply the descriptions presented herein of the influence of probe shape and velocity on sand penetration resistance force to the sand-vehicle running gear situation.

LITERATURE CITED

- Knight, S. J., "Studies of Aerial Cone Penetrometer; Laboratory Study of Mechanical Principles," Technical Report No. 3-462, Report 1, Jul 1957, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 2. _____, "Studies of Aerial Cone Penetrometer; Field Tests," Technical Report No. 3-462, Report 2, Apr 1958, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 3. Blackmon, C. A., Knight, S. J., and Rone, C. L., "Studies of Aerial Cone Penetrometer; Field Tests in Fine-Grained Soils, 1960," Technical Report No. 3-462, Report 3, Aug 1963, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- Kennedy, J. G., "Studies of Aerial Cone Penetrometer; Impact Velocity - Impact Force Investigation, 1968," Technical Report No. 3-462, Report 4, Jun 1970, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 5. Turnage, G. W., "Measuring Soil Properties in Vehicle Mobility Research; Effects of Velocity, Size, and Shape of Probes on Penetration Resistance of Fine-Grained Soils," Technical Report No. 3-652, Report 3, Nov 1970, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 6. _____, "Measuring Soil Properties in Vehicle Mobility Research; Resistance of Fine-Grained Soils to High-Speed Penetration," Technical Report No. 3-652, Report 5, Jun 1973, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 7. Melzer, K.-J., "Measuring Soil Properties in Vehicle Mobility Research; Relative Density and Cone Penetration Resistance," Technical Report No. 3-652, Report 4, Jul 1971, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 8. , "Penetrometer Investigations in Sand," Dissertation, 1968 (in German). Technical University of Aachen, Aachen, West Germany.
- 9. Van Wazer, J. R., et al., "<u>Viscosity and Flow Measurement; A Labora-</u> tory Handbook of Rheology, Interscience Publishers, New York, 1963, pp 12-19.
- Sela, A. D. and Ehrlich, I. R., "Load Support Capability of Flat Plates of Various Shapes in Soils," <u>Journal of Terramechanics</u>, Vol 8, No. 3, 1972, pp 39-69.
- Turnage, G. W., "Performance of Soils Under Tire Loads; Application of Test Results to Tire Selection for Off-Road Vehicles," Technical Report No. 3-665, Report 8, Sep 1972, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

- Luth, H. J. and Wismer, R. D., "Performance of Plane Soil Cutting Blades in Sand," <u>Transactions of the ASAE</u>, Vol 14, No. 2, Mar-Apr 1971, pp 255-259 and 262.
- Saperstein, L. W. and Franklin, R. N., "An Investigation into the Forces on Bodies Dragged Through Sand," <u>Journal of</u> <u>Terramechanics</u>, Vol 8, No. 2, 1971, pp 29-37.
- 14. Wilson, J. and Franklin, R. N., "Further Measurements of Drag on Bodies Moving Through Sand," <u>Journal of Terramechanics</u>, Vol 8, No. 2, 1971, pp 39-48.
- 15. Wismer, R. D. and Luth, H. J., "Performance of Plane Soil Cutting Blades in Clay," Paper No. 70-120, 1970, American Society of Agricultural Engineers, St. Joseph, Mich.

ration in the instance of the second of the second of the second second

Tests with Cones in Rins of Yuma Sand Table 1 Vertical Penetration

(19) Penetra-tion Velocity (See note 1) (V) (V) 3.05 3.05 3.05 $\begin{array}{c} (13)\\ \text{Cont}\\ \text{Rase}\\ \text{Rase}\\ \text{Rase}\\ \text{Rase}\\ \text{Rase}\\ \text{res}\\ \text{sure}\\ (\text{See}\\ (\text{See}\\ \text{res}\\ \text{res}\\$ 227 252 402 178 178 395 395 395 443 1170 078 078 078 11125 11125 1760 219 710 211 272 272 0.000240 0.00073 0.00773 0.00773 0.0773 0.0584 0.0584 0.00580 0.00380 0.00380 0.00380 0.00380 0.00380 0.0051 0.0607 0.0000286 0.00253 0.247 1.20000.0 0_0000239 n_nnn421 n_n266 0,0000327 "odified Reynolds Number ľ, s 3 Modi-fied Drag Coeffi-cient C 31,500 280 4,17 23,800 364 40,200 1,200 1,200 13.7 33.7 19.0 10.5 173,000 1,060 286 114 33.7 20.5 (36) 16,000 45,600 43,900 Computed Viscous-Type Force for (V_r/t) ms 2.3⁴ K ŝ 54.4 1 1 1 Computed Viscous-Type Force for (V_L/L) xs 2.348 N 1.58 4.10 80.8 26.6 26.6 5.39 <u>.</u>... (14) Inertial Force $\rho(Av_{R}^{2})_{x}/2$ 2060600.0 0.0000978 0.000238 0.0150 0.282 4.17 12.5 12.5 0.000258 0.0394 0.0394 1.20 1.20 1.20 0.000227 0.0321 0.000103 0.000901 0.154 46.1 65 Come Stream Ratio (* / × / × / ×) × 0.917 0.81 1.09 0.904 1.00 2.17 2.17 1.88 4.26 6.93 13.8 8.69 11.90 11.90 11.9 (12) Standard Cone Base Pressure (F_/A) KPa 11 41.8 R2. 5 16.7 16.7 29.6 29.6 29.6 29.6 29.6 29.6 29.6 82.5 73.5 73.6 73.6 73.6 71.6 16.1 16.1 16.7 13.8 Coue Base Pressure (F_/A) kPa 16.7 36.2 29.6 55.5 55.5 205 205 205 205 205 (10) 11.2 34.6 51.0 82.5 1129 3118 425 435 435 22.0 33.3 0.500 6.53 114 Velocity Cradient Ratio (V_/r) 1.00 11.9 7.93 34.4 90.8 1.58 1.58 1.58 1.00 12.4 37.4 68.5 128 219 ŝ Velocity Gradient (V_Z/I) 0.849 11.1 193 1.70 20.2 1.70 13.5 13.5 154 154 154 1.70 21.0 63.4 116 216 372 2.68 2.68 2.68 (к) Fenetra-tion Velocity (V) x 3.05 36.3 8.05 24.2 24.2 105 277 404 698 Ca/rec 3.05 3.05 3.05 1.05 17.8 209 209 209 209 209 209 209 3.05 39.8 694 6 MSI/m] Cade - Fare 1.16 6.73 \$.3 1.26 1.35 84 84 8 1 1 8 8 6 1 1 1 8 4 8 4 8 8 1 1 1 8 8 6 1 1 1 three you 1.65.1 L.630 1.720 ¢ 1.508 1.284 1.284 1.284 1.284 1.284 1.284 1.284 1.284 1.285 1.284 1.285 585 585 ŝ lie șe 24.74 15.96 16.87 14.73 <u>1</u>3.51 222222 222222 2.3 223 3 Stati-Crati-Crati-Crati-Crati-Crati-(=/)#k ۲. **%**.(1479 33 1211111 999998 222222 282280 293 ~ 8 F **J**]-1.23 3 613 11-114-11 23-191-2-1 8-241-2-1 11-254-2-4 12-261-2-5 17-129-2-1 2-2-4-2-21 1-1-242-41 17-124-1-1 Test to. 3

(Continued)

 $G_{\rm X}$ values are listed in column 6 only for those casts (up had velocity (V_g)_X values in the 0 - to 15 or depth range at least 90 percent of which differed from their average value by an ever than 2 10 percent, and (b) had a coefficient of correlation of at least 0.90 for the least-sonaries innear relation between $(F_z/\Lambda)_X$ and come base depth in the 0- to 15-cm depth range. .

(11[,] Y . . •• (r_(A^{L-1}),

. i.e. column (13) : column (14) or column (13) ? column (15). (**F**_A¹⁻³)_x · A_x¹⁻³ **e** • (Ay²)_x / 2 : { (F₂/A¹⁻³)_x · A_x¹⁻³ - 0.63 (Y₂/L) _{xx} ^{0.50} ··· (F_)_# : +(AF__)_/2 : 2/x(2,2) ;

(Sheet 1 of 2)

 Selectry

 (Construction)

 Modified Reynolds Modified Reynolds (Modified Reynolds (Modified Synolds (Modified S Fied Predict Predict Coeffi-Coeffi Computed (Computed (
 Omputed

 '15.00ub'

 '16.10ub'

 '16.10ub'

 '16.10ub'

 '17.15

 '16.10ub'

 '17.15

 '16.10ub'

 '16.10ub'

 '16.10ub'

 '17.10ub'

 '110ub'

 '110ub'
 Thertial Force (AV 2⁻³)x¹ ((AV 2⁻³)x²) ((AV 2⁻³)x²) ((AV 2⁻³)x²) ((AV 2⁻³)x³) ((AV 2⁻³)x⁴) ((AV 2⁻¹)x⁴) ((AV 2¹)x⁴) ((AV 2⁻¹)x⁴) ((AV 2⁻¹)
 Me
 <thMe</th>
 Me
 Me
 Me</ скана 2. (2) Contension of the second secon
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111</td - 各部环境 化硫酸合合 化硫酸钠合物 计自己目 化乙基乙酸 化硫化化合物

the 1 (Concluse)

.53×

heet 2 of 2)

Vertical Penetration Texts with Plates in Rins of Yuma Sand Table 2

したがたためにいるい

おやまたがく しきそうながらとうたいがた いいている とう

ことが、ことしてもしませんとう。 たいしん はどうかい たいたいがく たいちょう シー・シー・シー・シー たいのない ないないない ないかん ないない たいかい たいないない ないない ないない ないない ない

Transfille Stone of

		(1)	(:)	<u>41)</u>	(7)	157	(4)	<u>(1)</u>	(4)	(6)	(10)	(11)	(12)	(13)	(11)	(15)	(16)	(17)	(18)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Flace base Area Area	Franchard Franchard Franchard Franch Craudi- ern C	stand Fand Profe Sets Sets Sets Sets Sets Sets Sets Set	Sand Pry Rona Period	Period Contraction	Tenetran tfoo Selorfoo (S)	Ve1⇔f£v तिब्द्यीक्तार (२_/२)	l'e foct f v Frad fen f Paf fo	Plate Lase Pros- sure (T_/A)	Scordard Cono Pauc Pressure (r / A)	Plate- Cone Stress	lnert Jal Force ^ (Åy ²), /2	Computed VISCONS- Type Force	Modified Pran Coeffictent	Modified Reynolds Number	Flate Base Fresure (See note 1) (F ₂ /A)	Penefration Velocity (See note 1) (V_X
Image: Second		fest to.	~ t	· #/5+	(w) 55	1 + + + + + + + + + + + +	1	cr/sec	- 1-	(1/ 1)	(, P.a	eas.	"at 1 1. * *		z		. ж	kPa	CD/Sec
1.110+1 1.5 1.5 0.000194 172 2.6 0.000194 172 2.6 0.000194 172 2.6 0.000194 172 2.6 0.000194 172 2.6 0.000194 172 2.6 0.000194 172 2.6 0.000194 172 2.6 0.000194 172 2.6 0.000194 172 2.6 0.000194 172 2.6 0.0000194 172 100 0.0000194 172 100 0.0000194 172 100 0.0000194 172 100 0.0000194 172 100 0.0000194 172 100 0.0000194 172 100 0.0000194 172 100										њ. (Jat Circui	ar Plates							
Heater Lee Lee <thlee< th=""> <thlee< t<="" th=""><th></th><th>1-9-0(1-12</th><th>1.1</th><th>1.15</th><th>14, 74</th><th>£05.1</th><th>1.23</th><th>3.05</th><th>2.68</th><th>1.58</th><th>7. AF</th><th>1.A1</th><th>2.85</th><th>200000110</th><th>4.65</th><th>24,690</th><th>0,0000194</th><th>192</th><th>3.05</th></thlee<></thlee<>		1-9-0(1-12	1.1	1.15	14, 74	£05.1	1.23	3.05	2.68	1.58	7. AF	1.A1	2.85	200000110	4.65	24,690	0,0000194	192	3.05
I-LIM-1 (*1) Left Left <thleft< th=""> Left <thleft< th=""> Left <thleft< th=""></thleft<></thleft<></thleft<>		1-9-148-61		3. L	56'51	1.630	6.9.9	1.05	2.68	92.I	118	41.8	1. 39	0_000078	12.1	156,000	0.00000811	699	3.05
21.1 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0		1-1-11-11		16''	24.67	022.1	14.41	3.05	2.68	1.58	159	R2.5	2.31	€ຍໄນເບ'ນ	23.8	000 861	0.00000432	1660	3.05
1.1.1 1.1.1 <td< th=""><th></th><th></th><td></td><td></td><td></td><td></td><td>:</td><td>20 5</td><td></td><td>00 +</td><td>•</td><td>1 4 1</td><td>2 60</td><td>0.00026</td><td>12.5</td><td>59, 800</td><td>0.000151</td><td>201</td><td>3.05</td></td<>							:	20 5		00 +	•	1 4 1	2 60	0.00026	12.5	59, 800	0.000151	201	3.05
Image: 1 1 1 1 5 6 6 0<			9.2.9	3		5			21.6	12.7	61.7	16.7	4.89	0.0368	24.4	717	0.00151	212	38.8
Line Line <thline< th=""> Line Line</thline<>		1-1-200-34		1.28	14.67	94.7 T	1	114	74.6	6.1.9	4.7.9	15.3	5.58	n.425	30.5	64.R	0.0139	223	111
1.1.1 1.1.1 <td< th=""><th></th><th></th><td></td><td>5</td><td></td><td></td><td>5</td><td>1 15</td><td>1</td><td>00 1</td><td>119</td><td>41.6</td><td>2,45</td><td>n 000245</td><td>12.3</td><td>156,000</td><td>0.00000158</td><td>569</td><td>3.05</td></td<>				5			5	1 15	1	00 1	119	41.6	2,45	n 000245	12.3	156,000	0.00000158	569	3.05
Image: 1 1<					i i		1	2.56	1 7 1	2.8	1.78	39.6	4.66	0.0165	1.96	2.700	0.000422	433	25.4
1.1 1				3				10,	0.01	17.9	202	29.6	60,4	0.287	56.7	233	0.00506	442	1 06
Image: state 13						1.544	:	272	151	80.2	251	79.6	87.8	1.89	70.3	47.F	0.0269	453	216
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	1-1-1-1		1.1	15.53	1.584	ł	623	2.35	130	336	29.6	11.4	4.59	78.9	23.7	0.0582	017	347
1.1.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		10-17-1-6		2.44	15.53	1.584	۱	653	161	214	53%	20.6	18.1	10.9	R7.9	15.9	0.124	445	285
Number Line Line <thline< th=""> Line Line</thline<>		1-1-0-01-11		1	16.47	1.720	7.14	1.05	1.70	1.60	177	87.5	2.15	0.00025F	6.39	22,100	0.00040404	10 70	3.05
11-13-14 1. 78 1. 78 1. 78 1. 78 1. 700 2.31 11-13-15 1. 78 <		D-242-7-1		6.15	12.41	52.1	5 C - 4	111	61.8	36.4	364	73.4	40.4	0.339	140	347	0.00242	1120	
H-Mic-1-5 6.00 16.46 1.70 4.46 7.16 8.45 5.46 193 35.5 0.07283 1390 500 J-175-1-6 5.43 16.55 1.55 9.45 1.56 1.56 1.56 1.50 500 500 J-175-1-6 5.43 16.55 1.56 6.57 1.56 1.56 1.56 0.0709 1030 500 J-175-1-6 1.55 1.66 6.75 6.51 2.23 0.0000163 238 3.05 21-175-1 1.56 1.57 6.57 6.57 4.75 10.56 0.000313 238 3.05 21-175-1 1.56 1.57 6.57 1.57 6.57 1.56 1.76 0.00133 238 3.05 21-211-0 1.46 1.51 1.57 6.57 4.75 1.07 8.57 0.01033 238 1.05 21-211-0 1.46 1.51 1.57 6.57 1.56 1.76		1-262-11		8	16.75	1. 706	ł	5 6 7	166	0'8'U	596	75.2	7.92	2.46	781	78.1	0.0134	1091	162
JP:F3-14 5.43 16.55 1.66 715 79.4 23.4 64.6 13.6 13.9 196 20.6 0.0703 1030 0.03 21-173-11 1.5 1.6 1.77 3.05 0.501 47.5 16.1 2.23 0.000163 238 3.05 21-173-11 1.6 1.77 3.05 0.741 47.5 16.1 2.23 0.000163 238 3.05 21-173-11 1.40 14.78 1.57 10.4 16.7 1.51 0.00143 238 3.05 24-395-11 1.40 14.78 1.53 10.4 0.55 0.00143 238 3.05 25-395-11 1.40 1.45 1.57 0.46 1.37 0.16 2.15 4.46 1.36 1.06 0.00143 238 3.05 25-205-211 1.46 1.51 1.57 0.46 1.37 0.16 0.01043 238 216 0.0100 2.05 0.0100		2-11-1-2		9.9	16.68	1, 702	1	444	248	146	605	73.6	9.45	5.46	193	35.8	0.0283	()65.1	4 G
21-177-10 L.0 L.0 L.00 L.00 <thlow< thr=""> L.10 L.10</thlow<>		*1-61-6		5.43	16.55	1.685	;	512	308	234	R R 6	64.8	13.6	13.9	196	20-6	0.0704	1050	200
IP-18-62 Lot Lot <thlot< th=""> Lot <thlot< th=""> <thlot< <="" th=""><th></th><th>1-11-11</th><td>•</td><td>*</td><td>16.94</td><td>5.</td><td>;</td><td></td><td>010 0</td><td></td><td>ļ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thlot<></thlot<></thlot<>		1-11-11	•	*	16.94	5.	;		010 0		ļ								
24-39-61 1.24 1.46 1.12 1.4 7.1 9.0 1.5 4.76 1.00 86.0 0.0143 2.37 40.0 27-312-64 1.12 1.16 1.12 1.16 1.12 1.16 1.23 4.16 1.30 1.30 1.30 1.30 2.38 1.16 27-312-64 1.46 1.56 1.77 6.30 4.10 1.47 1.24 1.28 1.16 27-312-64 1.46 1.27 1.17 6.30 4.10 1.77 6.30 2.19 2.28 1.16 27-321-64 1.46 1.27 1.17 6.30 4.10 1.45 2.21 2.21 2.21 27-321-64 1.46 1.23 1.27 1.26 1.30 1.26 2.21 2.21 27-321-64 1.46 1.26 1.27 1.27 6.30 4.57 0.0240 2.28 2.21 27-321-64 1.46 1.45 1.45 4.5 1.45 4.5 2.21 2.21 27-321-64 1.46 1.26 1.27 1.27 1.45 4.5 1.26 2.28 2.21 27-321-65 1.46 1.45 4.5 1.45		21165-6-2	1					5.5		105.0	47.5	16.1	2.23	200000.0	55.3	68,000	0.0000163	238	3.05
15-212-04 1.46 1.5.16 1.17 1.5.1 1.7.5 0.0100 228 115 27-221-04 1.46 1.5.6 34.0 1.7.7 6.90 4.10 174 45.2 0.0241 254 221 27-221-04 1.46 1.27 6.90 4.10 174 45.2 0.0241 254 221 27-221-04 1.46 1.27 6.90 4.10 174 45.2 0.0241 254 221 27-221-04 1.46 1.2.8 14.5 45.7 139 7.46 0.328 231 537 7.46 0.328 231 7.46 0.328 231 537 537		24-10-12					ļ :			2.4	104	16.7	4.73	n.156	109	860	0.00143	237	0.04
27-221-94 [.16 [4.54 [.483] 64] 102 113 254 12.1 5.7 139 1.46 0.328 231 537 (221 13) 14.5 45.7 139 7.46 0.328 231 537 (201 14.5 45.7 139 1.46 0.328 231 537 (201 14.5 45.7 139 1.46 0.328 231 537 (201 14.5 45.7 139 1.46 0.328 231 537 (201 14.5 45.7 139 1.46 0.328 231 537 (201 14.5 45.7 139 1.46 0.328 231 537 (201 14.5 45.7 139 1.46 0.328 231 537 (201 14.5 45.7 139 1.46 0.328 231 537 (201 14.5 45.7 139 1.46 0.328 231 537 (201 14.5 45.7 139 1.46 0.328 231 537 (201 14.5 45.7 139 1.46 0.328 231 537 (201 14.5 45.7 138 14.5 45.7 139 1.46 0.328 231 537 (201 14.5 45.7 139 1.46 0.328 14.5 45.7 139 1.46 0.328 14.5 45.7 139 14.5 45.7 139 14.5 45.7 139 14.5 45.7 139 14.5 45.7 139 14.5 45.7 139 14.5 45.7 139 14.5 45.7 139 14.5 45.7 138 14.5 45.7 138 14.5 45.7 138 14.5 45.7 138 14.5 45.7 138 14.5 45.7 138 14.5 45.7 138 14.5 45.7 138 14.5 45.7 138 14.5 45.7 138 14.5 45.7 138 14.5 45.7 138 14.5 45.7 138 14.5 45.7 138 14.5 45.7 138 14.5 45.7 158 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5		14-212-41			N S	1.516					1.5.1	n:	4.36	1.30	S.	87.5	0.0100	228	911
		27-221-44		11	1.2	1.465	1	5	192	113	264	13.8	14.5	45.7	174	45.2	0.0241	231	221 537
											(Carried								

• G_{μ} values are listed in column 6 only for those tests that (a) had velocity (V_{μ})_x values in the 0^- to 15^- cm depth range at least 90 percent of which differed from visit average value by no more them tild percent, and (b) had a coefficient of correlation of a t least 0, or the least value by no more them tild percent, and (b) had a coefficient of correlation of a t least 0, or the least values interval to be the test values into the least value by no more than tild percent, and (b) had a coefficient of correlation of at least 0, or the least values interval to be value by no more that the test of the least value by no more that the test of the least value by no more that the test of the least of the lea

·· (F2)# : #(AV#2)#/2

• $\left[e^{(x_{1}^{w} 2)} x^{2} \right]^{1/2} \left[\left[\left[\left[e^{y} x^{4} + \frac{1}{3} +$ POTES:

1. Vertables is columned 7-10 and 12-16 describe the condition of a given test plate at has depth = 10 cm. 2. Is columns 7 and 18. the values listed for (Y₂) are (a) the average velocity in the 0- to 15-cm rampe of plate base depths for a given test that has a listed value of C_X, or (b) the values of velocity that proveiled at that plate and the 15-cm and the 15-cm experition y for a test vision of C_X, or (b) the values of velocity that proveiled at that has a listed value of C_X, or (b) the values of velocity that proveiled at the 2.5-cm and the 15-cm plate base depths for a listed value of C_X.

(Sheet I of 7)

Table 2 (Continued)

ころに入れたいたから ひんじくたい たいといったい

1

ŝ

TALEN COMP

7) (18)	Base Penetration aure Velocity ote 1) (v) (A) (v) Pa cm/sec		54 3.05 56 26.4 76 104 50 194 16 325 573 573	3.05	50 113 50 582	50 113.46 60 113.46 51 3.05 51 3.05 526 526 526 526	66 66 113.4.6 56 66 513.4.0 57 56 60 53.1.0 57 56 60 53.1.0 56 66 56 56 56 56 56 56 56 56 56 56 56 5	20 20 20 20 20 20 20 20 20 20	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	33 33<
(11) (11)	lified Plate B Noide See nos Mer (F_A R* KPa		00000683 454 00397 356 0438 0438 136 457 136 457 22 457	0000364 7/5 00332 696 0346 850	637 840	637 640 000155 207 0001648 840 00175 001745 176 617 1766 17 1766 9373	637 840 000155 207 0001648 346 00545 341 1476 418 476 313 476 513 0000346 643 00281 643 00281 643 2220 882 2257 690	6 37 840 000155 207 0000648 149 1496 149 1766 199 1766 999 1766 999 1766 999 1766 999 1766 999 1769 1232 1232 882 1232 8	6 37 840 000155 207 9494 9494 9494 1765 100006448 1496 1766 9197 766 999 766 999 766 999 1776 645 9000153 20 2000153 20 2000153 20 2000105 396 40 2000105 40 200000000000000000000000000000000000	6 37 840 000155 207 146 949 1476 1476 1476 1476 1476 1478 1476 1476 1478 1476 1476 1478 1476 1478 1478 1476 1478 1478 1478 1478 1478 1478 1478 1478 1478 1478 1478 1478 1478 1478 1478 1478 1478 1474 1478	6 37 840 000155 207 00545 345 176 745 346 176 745 341 176 745 341 176 741 741 177 88 174 80 174 80 174 89 171 86 171 86 171 86 171 86 171 86 171 86 171 89 171 89 1
(15)	Yodified Moc Drag Rey Coefficient Nu D		174,000 0.0 3,130 0.0 286 0.0 70.9 0.0 25.6 0.0	23,100 0.0 2,550 0.0 321 0.0		69,500 0.0 137,000 0.0 2,040 0.0 273 0.0 25.0 0.0 20.7 0.0	68,500 0.0 133,000 0.0 2,744 0.0 2,779 0.0 2,779 0.0 25,0 0.0 25,0 0.0 3,650 0.0 3,650 0.0 44,0 0.0	68,500 0.0 137,000 0.0 2,040 0.0 2,741 0.0 273 0.0 273 0.0 273 0.0 3,630 0.0 3,630 0.0 3,630 0.0 1,230 0.0 69,900 0.0 85,3 0.0 1,200 0.0 1,20	68.50 0.0 2,045 0.0 2,045 0.0 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 1,63 1,63 1,64 0,0 1,64 0,0 1,64 0,0 1,64 0,0 0,0 1,64 0,0 0,0 0,0 1,64 0,0 0,0 0,0 1,64 0,0 0,0 1,64 0,0 0,0 0,0 1,64 0,0 0,0 1,64 0,0 0,0 0,0 1,64 0,0 0,0 0,0 1,64 0,0 0,0 0,0 0,0 1,64 0,0 0,0 0,0 0,0 1,64 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	68,500 0.0 2,045 0.0 2,73 273 273 273 273 273 273 273 2	68,500 0.0 2,645 0.0 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,73 2,4,0 2,4,0 2,4,0 2,4,0 2,4,0 0,0 2,4,0 0,0 2,4,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
(71) (11	rtial Computed orce Viacous- 2)_x/2 Force- N N		00978 143 1713 180 1 754 1 754 1 754 0 346 0 405	6103 283 55 467 17 570 871		0180 116 0196 102 25 413 26 611 1 710 1 761	0180 116 7196 702 25 413 28 413 710 710 710 765 561 1706 1706 1940	0180 116 25 413 25 413 8 413 8 613 761 761 761 761 761 761 761 761 761 761	0180 116 25 413 25 413 8 413 710 710 711 7206 59 92 11260 721 7260 1260 1260 1260 1260 1260 1270 1260 1270 1270 1270 1270 1270 1270 1270 127	0180 116 25 411 2 710 710 711 711 711 711 711 711 711 711	0180 116 25 413 2 413 8 710 7 10 7 10 7 10 7 10 7 10 7 10 10 10 10 10 10 10 10 10 10 10 10 10 1
(12) (d Plate- Fr Cone o(AV Stream	ont Inued)	2.39 0.0 4.31 0.0 6.13 1.1 5.44 4.7 7.48 17.3 12.3 45.3	1.70 0.0 3.22 0.1 5.06 1.9 12.0 55.5		1.97 0.0 1.64 0.0 3.73 0.2 4.57 2.2 7.45 33.8 10.7 58.3	1.07 0.0 3.75 0.0 3.75 1.5 4.57 2.2 7.45 39.3 1.51 0.0 1.51 0.0 1.51 0.0 1.51 0.2 1.51 0.0 1.51	1.07 0.0 1.64 0.0 1.64 0.0 1.65 7.7 7.25 7.7 7.25 7.7 7.25 7.7 7.25 7.7 7.25 7.7 7.25 7.7 7.25 7.7 7.25 7.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2	1.97 0.0 1.64 0.0 1.54 1.5 1.51 1.51 0.0 1.51 1.51 0.0 1.51 0	1.97 0.0 1.54 0.0 1.51 0.7 1.51 0.7 1.52 0	1.97 0.0 1.64 0.0 1.54 3.14 1.54 3.13 1.54 3.13 1.57 2.2 1.57 2.2 1.51 0.0 1.51 0.0 1.51 0.0 1.51 0.0 1.51 0.0 1.51 0.0 1.45 2.13 2.42 2.33 2.42 2.42 1.74 0.0 1.74 0.1 2.42 2.33 2.42 2.42 2.42 2.42 2.42 1.45 2.42 1.46 2.43 0.0 1.74 0.1 2.42 1.46 2.43 0.1 1.74 0.1 1.75 0.1 2.43 0.1 1.74 0.1 1.75 0.1 2.43 0.1 1.74 0.1 1.75 1.4 2.4 0.1 1.4 0.1 1.4 0.1 2.4 0.1 1.4 0.1
(II) (UI)	Plate Standar Rase Coue Pres- Rawe Bure Presur F//) (F/A) KPa	cular Plates (G	132 41.8 173 30.4 246 30.4 258 34.7 34.7 34.7 34.7 34.7 34.7 34.7	185 87.5 307 72.3 400 73.4 1031 64.8		47.9 16.1 104 41.8 178 31.5 242 34.9 377 28.9 467 23.9	47.0 16.1 104 41.8 104 41.8 11.5 242 34.9 34.7 24.9 1467 23.9 189 77.4 410 77.4 410 77.4 410 77.4 58.6 68.6	47.9 16.1 104 41.8 178 34.9 242 24.9 467 28.9 467 28.9 109 77.6 531 77.6 531 77.6 531 77.6 1036 68.6 1036 68.6 1036 15.2 71.3 15.2 71.3 15.2 71.3 15.2 11.4 11.4 11.2 11.2 11.2 11.2 11.2 11	47.0 16.1 104 1.8 104 1.8 104 1.8 104 1.8 104 1.8 104 1.8 104 1.8 104 1.8 105 68.6 105 68.6 105 68.6 105 68.6 105 68.6 105 28.0 11.2 15.2 16.2 17.4 15.2 17.4 17.4 15.2 17.4 15.2 17.4 15.2 17.4 15.2 17.4 15.2 17.4 15.2 17.4 15.2 17.4 15.2 17.4 1	47.0 16.1 10.4 1.8 10.4 1.8 11.4 1.8 14.7 2.8 14.0 77.4 14.0 77.4 14.0 77.4 10.5 68.6 10.5 68.6 10.5 68.6 10.5 68.6 10.5 15.2 17.4 68.5 10.5 15.2 17.4	47.0 16.1 10.4 1.8 11.4 12.8 12.8 14.5 14.5 14.5 14.5 14.5 14.6 15.2 14.6 15.2 15.
(v)	it Velocity it Gradient x Patio (1 (Y/t) x	Flat Cfr	100 0.101 15 4.53 17.1 17.1 15.0 109 109	220 0.501 6.17 1 22.0		01 0.354 01 0.354 0.354 12.2 12.2 12.2 12.2 12.2	AI 0.354 AI 0.354 2.3.84 1.2.3.84 6.2.1 6.2.1 6.2.1 1.2.2 1.354 1.354 1.354 1.5.7 1.5.4 1.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	n 0.354 n 0.354 n.354 n.354 n.354 n.354 n.254 n.254 n.254 n.254 n.254 n.254 n.254 n.254 n.254 n.354	n 0.354 1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	A 1 0.354 1.2.2.4 1.2.2.4 1.2.2.4 1.2.2.4 1.2.2.4 1.2.2.4 1.2.2.4 1.2.4 1.2.4 1.1.4	A1 0.354 A1 0.354 A2 0.354 A2 0.354 A2 0.354 A2 0.354 A1 0.3547 A1 0.3547 A1 0.3547 A1 0.3547 A1 0.3547 A1 0.3547 A1 0.3547 A1 0.3547
(a) (l)	rhetra-Veloci tion Gradie (1)(1)(1)(1) (2)(2)(2) (2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(3.05 0.8 26.4 7.3 106 29.0 213 59.3 213 59.3 667 196	1.05 0.6 37.6 10.5 116 37.1 714 190		3.05 0.6 1.05 0.6 13.1 6.5 13.1 6.5 105 70.1 235 105	1.05 0.6 1.05 0.6 1.05 0.6 1.05 0.6 1.05 0.6 1.05 0.6 1.05 0.6 1.05 0.6 1.05 0.5 1.05 0.5 0.05 0.05	1.05 0.5 1.05 0.5 1.05 0.5 1.05 0.5 1.05 0.5 1.05 0.5 1.05 0.5 1.05 0.5 1.05 0.5 1.05 0.5 1.12 0.5 1.12 0.5 1.12 0.5 1.12 0.5 1.12 0.5 1.12 0.5 1.12 0.5 1.12 0.5 1.12 0.5 1.13 0	1.05 1.05	A C C C C C C C C C C C C C C C C C C C	1.02 1.03
(+) Fenetra-	tion tracts trac		1.44	* ;; ; ; ; ; ; ; ;		1.17 1.17 1.03	1 51 61 1 97 I I I		1955) 25111 - 5551 3551 1	9 85911 95111 95511 855111 863111	1 5 5 5 1 1 5 5 5 1 1 5 5 5 1 1 5 5 5 1 1 1 5 5 5 1 1 1 5 5 5 1 1 1 5 5 5 1 1 1 5 5 5 1 1 1 5 5 5 1 1 1 5 5 5 1 1 1
(v) (v)	Sami Sani Sari Sari Sand Ta Mass Mass Mass Mass Mass Mass Mass Ma		15.46 1.4X 15.57 1.584 15.57 1.584 15.74 1.584 15.74 1.605 15.46 1.577	16.87 1.726 16.20 1.705 16.72 1.705 16.55 1.488		(4, 7, 1, 5, 1, 1, 5, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,					a Novon agaga agaaa nooqoon gagaga a baxay beeco qaxxir baange xeyxax i linii linii linii linii linii linii g ggggg gyeegg ggggg ggeeggg gyeef
5 (J) Standard			5. 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	а 24, 4 24, 2 24, 2 24, 2 24, 2		# 20, 1 20, 10, 1 20, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	4 		· · · · · · · · · · · · · · · · · · ·	a 	ま 「 」 またたたれ 今日4月5日 「「「「」」」」」」 たんかん かん 1000 (1000) (100
<u>0 0</u>	Leet No.		18-155-4-1 5-121-1 5-121	1			1		 1 1. 86-9-1 2 1. 86-9-1 2 2 2. 3 2 2. 4 2 2. 4 2 2. 4 2 2. 5 2. 5 2	 1.1.188-4-1 2.4.188-4-1 2.4.188-4-1 2.4.24-2 2.4.44-4 3.4.44-4 3.4.44-4 4.4.44-4 4.4.44-4<td></td>	

55~

(Sheet 2 of 7)

the second se

								F	able ? (t	Cont Inued)	_						
	(5)	ŝ	(1)	192	(4)	10	(u)	(4)	(10)	(11)	(12)	(13)	(11)	(12)	(16)	(11)	(18)
	7 Let		Stand Cafe	Sand Dry	Penetra- tion Pests- tance Gradi-	Penet Fa-	Velacity		Plate Rase	St andard Cone		[nert[a]	Computed			Plate Base	Penetration
list Xo.	₹ ~ " [*] 8	Cradi- rat C MI/a ³		Mass Pensicy Creec ² /m ⁴		tion Velocity (',) z'z cm/sec	Gradient (V,/1) Rec ⁻¹	Velocity Gradient Ratio (V _z /s) _{xs}	Pres- sure (F / A) kPa	Base Pressur. (F_/A) PPa	Plate- Cone Stress Patio**	Force ۵ (Av ²) × /2	Viscous- Type Force	Nodified Prag Coefficient CD	Modified Reynolds Number N _R ²	Pressure (See note 1) $(F_z/A)_x$ kPa	Velocity (See note 1) (V_) cu/sec
							E)	at Pectang	ular (1:	1) Flates	(Continue	쉰					
1-1-1-0-1-61	1.41	1.50	15.46	1.630	4.34	3.05	5.40	1.42	70.5	41.8	2.29	0.000122	14.6	105,000	0.00000835	647	3.05
1-17-121-11		14'9	16.87	074 1	4°, X	5°°E	1.40	1.42	173	R2.5	2.52	n_000129	28.9	216,000	0.00000447	1340	3.05
1-21-1/1-12	\$7.4	1.35	14, 71	1.501	1. 32	5u°1	1.20	n.708	\$4.0	14.1	1.12	0,000451	25.1	79,500	0.6-000180	220	3.05
1-17-151-61		53	19.23	1.670	5.5	ςο. Γ	1.20	n.768	511	4°17	2.51	0,0004Pa	65.2 80 6	152,000	0.00000750	484 300	3.05
-1-4-		2.35	12.2	1.548	29-1	105	£.13	24.4	122	, 4 , 5	70.9	795°u	114	264	76700-0	459	105
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		2.91	15.2	1.605	F.1	£ 3,	68.1 179	40.2 100	261 313	34.7	6.86 8.24	1.55 9.68	149 186	109 20.9	0.0104	475 482	365
6-18-12-6		2.35	15.66	1.577	1	676	266	157	50K	29.1	16.5	23.2	168	14.1	0.138	487	534
1-110-12-1		16.4	16.87	1.720	5.54	3.05	1.20	0, 70R	184	82.5	2.04	915000.0	178	2 K) "NON	0.00006402	877	3.05
2-11-12-12		5	21	[Q.1	4° 11	18.7 146	15.2	8,98 18 <	2.18	77.3	, 20 2 2 2 2 2 2	0.0876 1.57	212	1,860 226	0.000.0	784	38.7
1-11-11-1 1-11-11-11		8	14.68	1.702	:	42.7	172	101	785	71.6	7.45	10.5	. 46	35.8	0.0273	1010	365
33-276-12-6		5.43	16.55	1.668	ł	521	285	168	342	64.8	13.5	28.6	395	21.7	0.0724	1020	534
21-181-13-1	25.8	1.12 29-1	21.71	1.503	1.27	3,A5 39,6	0.601 7.80	0.354 4.60	46.9 77.4	16.1 16.7	2.07 3.20	0.704 0.304	110 219	67,100 6.560	0.0000163 0.00139	206 216	3.05 39.6
19-159-11-1		8	15.48	1.630	2.17	3.05	109-0	0.354	130	41.8	2.15	96I00°0	290	172,000	0.00000677	104	3.05
1-3-13-2		2.66	13.61	1.592	1.81	12.5	9 17 9	1.17	1 An 7 4 0	31.5	4.16 6 33	0.217	302	2,250	0.000553	418 406	32.5
		2.4.2	2 9 2 2 2	1.551		424	61.5 F1.5	12.1	308	28.4	7.41	36.6	683	21.7	0.0536	418	323
1-11-12-1		2.42	15.50	185.1	1	546	JAR	63.4	117	28.9	11.3	6°.04	730	20.0	0.0834	392	533
1-11-11-11		16.4	16.87	1.720	3.49	3.05 15.0	0.60] 7.05	0.354 6.16	186	82.5 77 4	1.55	n.00206 0.284	569 990	233,000 3.670	0.00000362 0.000287	622 635	3.05 35.8
11-10-11		10,1	2	1. 103	1	13	26.5	15.7	4UY	72.6	5.79	00.4	1290	390	0.00310	783	108
		6.98 27.25	16.63 16.63	1.696	11	787	36.2 81.8	21.4 47.8	530 726	72.6 68.6	5.06 7.34	37.2	1620 1620	184 50.4	0.0230	834 834	197 263
1-11-11-11		2.3	16.63	1.696	ł	184	7	U° 6∠	1022	68.6	10.3	101	1820	26.D	0.0554	676	522
22-167-14-1	58.1	1.27	14,466	1.445	1.43	3.05	0.400	0.236	49.5	15.2	1.92	n,00404	251	71,200	0.0000161	228	3.05
		80.1	2.2	1.474	9 E. 1	264	34.4	20.4	108	12.9	3.21 4.92	29.9	504 651	21.0	0.0459	258	264
28-227-16-6		1. 38	14.77	1.506	ł	732	R2.9	v.84	232	16.5	8.30	175	1070	1.71	44I • N	167	<b>6</b> 50
20-165-16-1 6-56-16-2		2.35	15. <b>8</b> 15. <b>8</b>	1-621	2.19	3.05	0.400 3.62	0.236 2.14	136 178	3°.1 28.1	2.06 3.73	0.00438 0.349	645 808	180,000 2,960	0.0000679 0.000432	410	3.05 27.6
1-59-16-1		1.26	15.41	1.572	1.76	L UI	13.5	7.47	204	27.0	4.45	4.85	1080	245	ü.uu451 0 0115	424	103
5-91-02-6		8 % i	19.51	691 1	11	297 797	52.1	2. KI	725 961	12.0 12.0	6.07	77.9	1840 2670	25.2	0.0424	608 572	264 270
		<b>e</b>		22.1		244	7.64					13700 0	0107	216 ADD	0.00001771	206	201
		8.8 6.4	4.2	[w]	2.28	9.15	10.4.7	2.93	345	72.3	2.97	0.709	2240	066°Z	0.000316	650	37.9

(Sheet 3 of 7)

(Continued)

· ·

:

Table 2 (Continued)

(13)	Fenetration Velocity (Vsee note 1) (V ₂ ) _X	221 221 533		3.05	24.7	104 269 539	3.05	38.2	2 2 2 2 2 2 2 2 2	1	3.05 39.2 309 530	3.05	99.2 244 528	3.05	101	615 547	3.05 232 536	3.05	107	260 [.] 528	
(11)	rlare Base Fressure (see note 1) (f _z A) kPa	800 897 875		192	5%0 458	526 513 480	1090	0011	1300		196 225 224 219 219	382 111	307 449 386	660 6.80	523 809	н90 722	220 231 275	383	397 502	559 540	
(91)	Modificd Reynnids Numher N _R ³	0.00219 0.00931 0.0486		7610JUJ°C	0.00000812 0.000425	0.00524 0.0521 0.110	0.00000435	0.000408	40E0-0		0.0000166 0.00140 0.0110 0.0577 0.204	0.00000739 0.000533	0.00362 0.0239 0.0950	0.00000370 0.000296	0.00313	0.0590 0.0590	0.0000165 0.0569 0.176	0.00000£98	0.00495	0.0419	
(51)	Modified Trap Coefficient Cp. 1	461 99.2 30.2		52,900	2,670 2,670	248 26.2 13 3	276 000	1,940	32.1	C	50,1CA 7.5 7.7 9.17	158,000 1,735	356 50.4 18.0	213,000 3,640	386 103	25.1 25.1	70,100 )7.4 7.82	162,000 3,050	1-1-1	24.0	
111	Computed Viscous- Type Forc	3000 3,800 0,70		11.6	36.7 36.7	52.9 85.6 76.9		0.8°		ŧ۲.	108 214 345 351	264 378	564 732 722	557 966	1260 1370	1580 1804	245 650 1010	628 340	1040	2030	
137	Inertial Force o(A ^{1, 2} ) x/2	ی ۶۰.57 ۱۹۹		n.000226	n_n156 0_0156	0.277 4.46 10.0	0 000356	10%0 0	5.46	14.1	0.00180 0.299 2.84 20.1 71.7	0.202	2.04 17.5 68.6	0,286	3.95	Ju؛ عر• م	178 178 178	0,00438 0,00438	5.23	75.5	
121	Plate- fone Stress Patio**	(Continues 4.18 6.68 9.36	lates	2.47	3.21 5.46	6.93 P.64	r.c1	3.66	() · · ·	14.5	1.83 3.60 3.95 6.47 1.31	2.16 3.06	5.71 6.96 11.7	1.70	5.77	6.39 10.1	1.92 5.20 8.73	1.89	3. 81	5.03 0.5P	
(11)	Standard Cone Base Pressure (r Z A S KPa	1) Plates 73.4 75.2 64.8	ur (1.2) F	16.1	5°.17	70.4 74.7	1.53		4.17	4.40	16.1 16.7 15.3 15.3	31-5	34. a 34. a	82.5	72.6	6.8.6 6.8.6	15.2 12.9 16.5	0°0£	0.75	32.0	tinned)
Um Um	Flate Base Pres- sure (F_/A) VPa	rular (1:1 521 598 1028	ectangula	17.0	125	196 770 70	11	176	C 4 5		41.1 94.0 85.3 136 255	136	281 343 480	1 70 1 70	591 563	666 984	48.7 111 240	122	171	224	(Con
(0)	Velocity Gradient Patio (V_/f)	at ⁿ ectan 8, on ?n. 7 .0. 1	Flat	1-60	01°5	1.1%	- <b>-</b>	12.5	146.0 146	135	n. 354 4. 55 14.0 37. 5	۰. ۲.		n. 754 4.18	15.6 21.5	47.6 Pn.R	n.236 22.7 19.4	0.236		31.7 4.04	
()	Velocity Tratient (V_/i) sec_1	15.1 15.1 15.0 83.3		1.70	1.7" 13.7	67.9	ы. 17б	5.1	64.4 248	007	0.60] 7.72 23.8 63.6	0.60] 6.18	10.5 57.3	109°0	24.4	Rr.7 137	11.400 3.8.6 8.3.8	U.400	0.41	52.0 52.0	
(.)	rion tion (',') (',')	115 267 815		5u~1	34.75	114 215	627	39.2	116	71F	3.45 121 122 123	3.65	1045 1045	1.05 W	182	909 11	30'E 30'E	50.1	107 107	503 603 653	
- (-)	"enetra- tion tion trance fradi- ent cradi- ent cradi-	<u>5</u> 11		1.24	3.66	14.2	۱ ¦	11 II 11 III	11	-		2,10	51	6 - C	. : 1	11	Î.	60° t	5-11 1-1		
	Sand Prv sees lenstev b <u>s-eec²/n⁶</u>	1. 795 1. 744 1.688		L'-5-1	1.645 1.168	1.695	1, 577		1. 705 1. 702	1.648	1.503 1.568 1.496 1.496	129'1	909'I	022.1	[g. ]	1.696	202-1 272-1 25-21	1.421	1.577	1,5ee	
121	Sand Sand Pry Wet fir f	16. 7 16. 5 16. 5		52-23	15, c.e. 15, 57	15-21	5. 2	14° 81	16.72 14.68	14.55	1979 1979 1979 1979 1979 1979 1979 1979	8. SI	2223 2223	16. N7		19-91 19-91	14.66 14.65 14.37	15.94	2 S S	15.47 15.47 15.67	
163	Standard Fene tra- tion treats- tante Cradt- ent Cradt- ent Cradt- ent	51.15 51.15 51.17		1.15	9.2	33	5E . 7	₩ 7 8 ¢	دان ورزي	5.2.5	29823		1991 111			, î 1	1.27 1.67 1.85	1.27	я <b>л</b> і	5 2 X N	
(2)		10.1		1.2.1							9 						3e.1				
(1)	fes ( 49.	G-45-565-15 9-45-5955-15 11-11-10-10-15		1-51-221-12	ちょうい いんかい ちょうち	144	4-57-57-4	1-51-971-67	10-17-12-12-1 10-17-12-12-1	9-52-32-48	1-91-101-11 1-91-101-11 1-91-101-92 1-91-101-92	20-16-16-1			[1116]	2-91-11-91 2-91-11-19-19-19	22-148-12-1 13-96-17-4 21-228-17-4	1-11-991-01	6-57-17-2 3-64-17-1	6-66-12-5 9-72-12-5 4-72-6	

(Sheet 4 of 7)

(Contfined)	
۰.	
-14 P	

ALC: N

-		-									
(18)	<pre>Penetration Velocity (See not: 1) (V2) Cm/sec</pre>		3.05 38.5 118 200 264 536		3.05 39.9 530	3.05 24.9 164 253 295 529	3.05 111 261 534	3.05 40.0 109 318 547	3.05 3.15 3.1-5 2.23 2.65 2.65 2.65 2.65	36.1 36.1 112 574	3.05 34.1 120
(11)	Flate base Fresture (See note 1) (F_A) kPa		580 678 815 831 833 807		264 247 260	484 406 445 458 425	858 971 1040	175 2.5 262 175 218	8 6 7 7 8 8 8 8 6 7 8 8 8 6 7 8 8 8 6 7 8 8 7 8 7	610 614 796 750	194 200 193
(16)	Modified Peynolds Number N		0_0000380 0_000333 0_00234 0_0627 0_0627 0_0153		0.0000197 0.00171 0.280	6.00000823 0.000435 0.00530 0.0523 0.0572 0.157	0.7000440 0.00264 0.0307 v.0326	0.0000167 0.00156 0.00971 0.0291 0.123 0.243	D.00000790 D.000572 0.00355 0.0273 0.0556 0.0860	₩.00000431 0.00319 3.06324 0.0252 0.0593	0.0000176 0.00120 0.0117
(15)	Modified Drar Coefficient		2.46.000 3.054 3.154 3.1 51.0 51.0		59,500 801 9.15	120,000 2,500 36,3 37,3 22,6 12,8	174,006 374 30.4 22.5	63,100 71! 25,9 25,9 8,52 8,52	120,000 1,970 338 44,1 26.7 22.1	195,000 2,846 296 44.3 44.3 29.0	61,400 893 79.4
(11)	Computed VIscous- Type Force		1210 2200 2950 3610 1840 4110		22.9 45.3 75.7	50.4 72.9 105 120 170	117 256 352 357	200 200 325 325 333	247 357 521 696 622 663	476 906 1260 1480 1670	230 421 532
(11)	Inertfal Force r(Av ² ) _x /?	(1	ο.66461 0.732 6.01 30.6 76.1 186		0.000451 0.0774 21.2	0.000480 0.6717 0.554 3.32 1.32 1.32 24.4	0.000516 0.677 10.8 25.0	n.m179 n.312 2.20 9.47 40.8 80.8	r.00195 0.204 1.85 19.0 34.6 57.0	n.00205 n.289 4.08 37.2 98.8	0.00404 0.505 6.22
(12)	Plate- Conc Stress Patlo##	(Continued	1.56 3.19 3.82 3.95 5.51 9.10	Plater	2.58 5.74 19.0	2.35 4.04 7.35 5.67 9.05	1.68 5.35 7.13 14.0	2.18 3.00 4.81 4.85 7.72 15.1	1.77 3.75 5.24 7.05 9.39	1.56 3.11 4.57 7.03 12.3	1.81 3.20 3.00
(iii)	Et and ard Cone Rase Pressure (F_A)s	?) Plates	75.2 72.3 73.4 73.6 71.6 71.6	lar (1:4)	16.1 16.7 13.8	41.8 30.4 34.7 34.7 34.7	82.5 71.6 71.6	15.7 15.7 15.7 13.8 13.8	70.0 31.5 34.0 28.0 28.0	75.2 77.4 69.6 68.6	15.2 15.2 14.0
(10)	Plate Rune Pure sure (F_/A) x_	sular (1:	105 382 265 265 202 202	Nertanpu	41.4 96.1 274	08.5 123 276 107 362 483	130 102 904	84.0 84.0 77.1 75.0 152 276	50.8 156 242 328 358 488	154 319 667 630 1112	42.7 77.6 85.0 (Con
.e.)	Velocity Gradlent "atlo (V_2 ³ ) <mark>x</mark> S	lat ^c rtan	0.236 2.93 0.01 30.6 30.6	Flat	n.704 1.26 154	708 5.78 24.1 24.1 56.7 101 161	r,708 25.9 101 160	0.356 4.64 12.7 23.5 53.6 75.6	n.354 3.66 11.0 35.2 47.8 61.4	C. 354 4.19 15.8 78.0	n.236 2.64 9.30
	Yelocity Gradien (Y_/1) sec-1		0.400 5.50 32.3 5126 6.2 80.8		1.20 15.7 262	127 9.00 171 171 171 171	1.20 41.7 175 272	0.601 7.88 21.5 43.3 40.6 126	0.601 6.21 18.6 5°.7 81.1 104	n.601 7.11 26.8 71.1 132	n.400 4.47 15.7
177	Fenctra- tion Velocity (Y) z cr/sec		3.75 34.5 36.6 30.3 6.16		3.15 30.4 665	3.05 24.9 104 255 434 434	3.75 111 444 690	3.05 40.6 109 220 220 460 460	3.05 31.5 04.5 303 412 412 529	3.05 36.1 136 417 672	3.05 34.1 120
(ب)	Penetra- tion Resis- tance Gradi- ent, C		3.0x 2.37 2.30 		1.34 1.21	2,08 2,26 1,45 1,45	5.75 4.65 11	1.05 1.73 1.73	1.96 1.62	3.63	1.21 0.48 0.86
(5)	5and Dry Nar - Lenstry <u>kn-sec²/m⁴</u>		1, 708 1, 705 1, 705 1, 709 1, 702 1, 688		1.503 1.508 1.483	1.627 1.588 1.588 1.588 1.605 1.605	1.720 1.705 1.688 1.688	1.445 1.508 1.508 1.446 1.516 1.516	1.621 1.592 1.606 1.646 1.581 1.581	1. 708 1. 712 1. 712 1. 696 1. 696	787 I 762 1.465
(?)  }	Sand Unit Drv Keight Yd KS/m ³		16.75 16.77 16.72 16.75 16.68		14.74 14.79 14.54	15.48 15.57 15.57 15.74 15.74 15.74	16.87 16.72 16.68 16.55	14-56 14-56 14-56 14-56 14-56	15.38 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25 15.25	16.75 16.78 16.78 16.63 16.63	14.66 14.66 14.55
(1)	Fenetra- Fenetra- tion Resis- cadi- ent f MS/m ³		6.3 6.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		1.35 1.40 1.16	3.50 2.55 2.91 2.91 2.91	6.91 6.15 6.00 5.43	1.27 1.40 1.28 1.28 1.28	22.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	6. ¥ 84. 8 84. 8 84. 8 7. 7 7	1.27 1.27 1.17
(2)	Flate Area C#1		58.1		6.45			25.8			58.1
(1)			16-144-17-2 29-237-17-2 xn-250-17-3 31-279-:7-4 12-27-17-5 33-289-:7-4		21-175-18-1 23-194-18-2 27-219-18-6	19-153 · 18-1 4-24-18-2 4-3? · 18-3 5-35-18-4 5-44-18-5 5-44-18-5	17-151-18-1 20-244-18-1 31-266-18-5 31-277-18-6	22-187-19-1 23-198-19-2 24-207-19-3 25-211-19-4 26-216-19-5 27-224-19-6	20-161-19-1 1-5-29-2 2-11-19-3 2-14-19-4 3-17-19-5 3-22-19-5	18-119-9-1 14-105-19-2 14-107-19-3 16-11 ⁻ 1 ⁻⁵ 16-1 ⁻¹⁰⁻⁵	22-1 <b>89</b> -20-1 11-8 <del>8</del> -20-2 12-93-20-3
						. <b>.</b>	. <b>.</b> .				

`.•

(Sheet 5 of 7)

. ີ

	(12)
	(71)
	(13)
	(12)
(Cont Inued)	(11)
Tahle? (	(11)

ł													
(18)	Penetration Velucity (See note 1 $(v_{z})_{x}$ $(w_{z})_{x}$	101	31.0 31.0 201 201	3.05	38. 3 115 202 261 537		3.05 95.1 246 374 525	3.05 26.5 104 199 267	3.05 107 266 524	3.05 40.2 105 341 538	3.05 31.7 3.05	3.05 32.4 123	
(11)	Plate Base Pressurc (See note 1) (F_A) x kPa	171	332 332 331 342	508	6.58 719 690 783		206 222 171 177	375 377 420 412 441	781 874 872 754	202 184 162 184	319 325 646	167 205 161	
(16)	Modiffed Reynolds Number Nn		c*c0.0 0.000010 0.00583 0.00500.0	0.00000407	0.00353 0.00238 0.00920 0.0213 0.0251		0.0000206 0.00887 0.0542 0.145 0.304	0.0000960 0.000507 0.00554 0.0190 0.0552	0.000004FC 0.00247 0.0348 0.0348	0.000206 0.00173 0.0160 0.132 0.263	0.0000870 0.000635 0.0000475	0.0000194 0.00121 0.0134	
(15)	Modified Drag Coefficient		22.2 80,700 1,520 198	198,000	2,720 357 94,8 50.1 25.4		59,700 134 17.8 8.74 8.53	104,000 2,290 197 45.6 20.3	230,000 310 31,6 19,2	63,700 615 82.3 9.28 8.15	9,500 2,050 ?.*.	51,100 809 64.2	
(71)	Viscous- Type Force		202 5.86 755 9.89 9.89	0011	2060 2750 3420 3660 3740		43.8 98.3 150 141	114 142 276 327	224 510 612 770	86.9 182 213 290 302	223 324 412	208 377 486	
(13)	Inertial Force n(Av _z ² ) _x /2	ू द	11.44 0.00709 0.440 12.9	0-00461	n.726 6.55 71.5 77.9 206		n.nnnsn2 n.872 R.11 2n.5 43.9	0.00078 0.0720 1.11 5.24 17.8	0.00103 1.26 21.3 56.5	0.00179 0.315 2.13 30.5 79.5	0.00194 0.206 0.206	n_n464 n_456 6.51	
(12)	Plate- Cone Ctress Ratio#	(Cont Inue	3.62 1.62 4.00 4.02	1.27	3.73 3.53 4.41 4.42 8.95	lates	2.40 5.66 6.07 8.03	1.81 4.03 5.30 5.10	2.14 3.77 7.72 11.1	2.63 3.75 3.70 7.95 [5.2	1.53 4.35 2.0	1.66 2.96 3.64	
(11)	Standard Cone Base Pressure (F _z /A) KPA	) PLAECS	0.95 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.1	75.2	72.3 73.4 75.2 71.6 64.8	IT (1:8) P	16.1 15.3 17.7 14.9	4.14 30.44 4.74 4.74 7.44	77.5 77.4 64.8 77.3	15.2 15.2 15.3 14.9	79.0 31.5 75.5	15.2 15.2 14.0	(թուր
(11)	Plate Base Pres- sure (r/A) x	ular (1:4	74.1 98.4 115 115 122	140	940 403 414 415	ectangulo	41.5 90.5 112 139	78.9 128 160 125 280	184 304 522 841	44.3 75.1 67.0 162 251	71.5 164 187	35.5 63.5 71.0	(Cont
()	Volocity Gradient Pacio (V / i)	At Feelan	16.5 7.236 2.40 8.05 2.40	0.239	2.96 8.90 14.5 30.7 50.1	Flat	0.541 15.6 47.3 75.8 111	0.501 4.35 4.35 17.1 17.1 88.0	0.541 17.6 72.6 113	0, 354 4, 67 12, 2 52, 6 52, 6	0. 354 3.68 0. 156	n.236 2.53 9.57	
(6)	Velocftv (C.adient (V, /f) sov		27.4 0.400 4.07 34.9	<b>UU7</b>	5.07 15.1 33.1 85.0		0.840 26.5 80.2 179 188	115 23. 7.38 7.38 7.50 7.50 7.50	1.940 20.8 323 200	0.661 7.01 20.7 89.2	0.601 6.24 0.601	n. 60n 4.25 16.1	
127	Penetra- tion Velocity (Y,) x cri/sec		31.0 31.0 31.0 245	3"02	32.9 115 372 377 64P		3.n5 95.1 288 462 462	1,05 26.5 104 225 414	3.ns 107 542 717	3.05 105 2.11.2 2.12	50.5 7.15 2.05	J.05 32.4 123	
1.1	Penetra- tíon Resis- tance ent c.* .*		1.87 1.36 1.30	2.97			1.05	1.40	4, 7R 4.5f 	1.26 0.87 0.75 	1.4н 1.74 3.67	1.13	
<. Y	Sand Dry Sand Dry Pensfry Starker ² fr 4	;	1.621 1.621 1.577 1.572	1.708	1, 745 1, 745 1, 705 1, 707 1, 688		1.503 1.503 1.516 1.516 1.483	1.630 1.583 1.584 1.588 1.605	1. 720 1. 717 1.688 1.718	1.495 1.508 1.495 1.493 1.483	1.547 1.547 1.708	1.495 1.445 1.484	
(.)	Sznd Lníc Dry bry Va Ki/r ¹		12.85 15.88 15.88 14.51 12.52	14.75	16. 70 16. 72 16. 75 16. 55 16. 55		14.74 14.67 14.86 14.86 14.54	15.44 15.57 15.57 15.74	16.87 16.78 16.55 16.55	14.75 14.75 14.47 14.47 14.44	15.61 15.61 16.75	14. 1 14.65 11. 5	
(:)	Standard Penetra- tion Prsis- tance Gradi- ent C		1 4111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ų. پر	6, 4, 15 6, 4, 15 6, 2, 2 7, 2, 2		1.1.3 6.1.1 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	6.6.6.6.5 6.6.8.6.5 6.8.8.6.5 6.8.8.6.5 6.8.8.6.5 6.8.8.6.5 6.8.8.6.5 6.8.8.6.5 7 6.8.8.6.5 7 6.8.6.5 7 7 7 8.6.6.5 7 7 8.6.5 7 8.6.5 7 8.6.5 7 8.6.5 7 8.6.5 7 8.6.5 7 8.6.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8	5.43 5.43 6.43 6.43	1.27 1.260 1.28 1.28	2.27 2.64 6.30	1.27	
1.1	Plate Base Area Cn.,						3			25.8		58.1	
	lest 50.		13-49-20-4 20-16-30-1 6-02-20-2 3-02-20-2 3-02-20-2 8-03-01	16-245-20-1	29-23-20-20-2 81-244-20-3 31-256-20-4 31-236-20-4 31-2362-20-5 33-262-20-6		21-178-21-1 24-204-21-4 25-214-21-4 26-214-21-4 26-214-21-4 27-220-51-6	19-156-21-1 4-26-21-2 4-31-21-2 4-31-21-3 5-43-21-3 5-42-21-5	17-134-21-1 14-106-21-3 32-268-21 5 35-279-21-6	22+184-22-1 23-197-22-2 24-206-10-9 26-215-22-4 27-22-62	u-1u2-22-1 1-6-22-2 18-140-22-1	22+190-23+1 11-99-23-2 12-94+23-3	

(Sheet 6 of 7)

Sales and

A VILLA NEWSON ACCOUNTS

59<

	(18)	Penetration Velocity (See note 1) (v 2) x (r/sec		225 538	3.05	107		3-05		115	072	767		
	(11)	Flate Bate Pressure (See note 1) (F _z /A) _x (F ₂ /A)		2.39 229	296	306	-	610		589		201	000	
	(16)	lodified Rumber Number R <mark>#</mark>		0.0571 0.216	0.00000320	102000 0	10000-0	0.00000448	495 1944.0	0.00263	1510.0	45 70°0	4040°0	
	(15)	Modified Drap Grefficient Cy		15.1 8.11	105,000	1,290	170	2.72,000	2,170	344	64.7	42.3	57.9	
	(14)	Computed Viscous- Type Force		543 866	534	6.79	006	()L U I	1870	2500	3210	3320	139A	
	(13)	Inertial Force o(Av ² )x/2 N	() ()	31.0 187	AE400.0	0.396	5.23	L3200.0	0.770	6.57	42.0	79.0	305	
~	(11)	Plate- fone Stress Patlo##	s (Continu	5.31	1.44	2.21	4°05	3°U7	2.64	3.75	4.4]	5.69	10.6	
ر دمیر ] الطوط	0.15	ctandard Cone Ease Pressure (F_A)	1: #) Plate	12.9 16.5	er* 158,	79.1	11.0	2:52	12.7	73.4	2.52	71.1	64.4	
Table 2 (	. (( i)	Plate Base Fres- sure (F_/A) X 1Pa	Anrular (	96.6 761	70.4	R7.8	:53	316	269	ואט	7¢ R	5 J'	e 7n	
	()	Velocity Gradient Patio (V_/Y)	Flat Tect	30.8 50.6	0.236	•	8.2%		ソい・ご	R. e.	22.5	0.15	50.2	
	( * )	Velocity Gradient (V. 1. sec.		а,29 8.28	ນນາ ບ	3" HC	14.0	U, 400	٢٥, ٢	1.5.1	7.dF	52.5	٩, ١	
		Telocity (V) (V) (V) (V)		2410 1154	3.05	2.01	たらい	50°E	19.7	115	Lui	UU7	67.9	
		Lonetra- tion Sest Cance (Tradi- cut x *		; ;	1.73	1.47	1.17	3.15	2.64	1.60	i	i	1	
	í.	Sand Tru Tuss Jenefov Graec Ar		1.574	1.621	1.577	1.572	312-1	1.71.2	5.02 - 1	1.745	1.712	31.4.8	
	•	Sand Inte Bry Lefeht Miles		14.45	15. 49	34.40	15.41	1.1.2	It. 7:'	12.14	10.75	36.40	1 55	
		Standard Pepetra- tion feste- tance fradf- en f		عد. الا 1960 - 1	5.27	12.12	41.1	1.4.4	96° 4	6.15		6.14	5.43	
					-				-,				· , ·	
				1			1-1-1-1-1 1-1-1-1-1	14-246-2	ホシークトレートン	1:	31-15-15	37-24-13	1-1-1-1	

Sheet 7 of 7)

1

 $\sim$ 

Period Pro-

60<

A stars to a

The second second second

A Providence Party of F

est No.	Moisture Content <u>%</u>	Unit Dry Weight ^Y d kN/m ³	Penetration Velocity Vz cm/sec	Penetration Resistance Gradient G_* MM/m ³
1	0.5	15.42	2,50	1.00
2		15.14	2.50	1.92
3		15.58	2,50	2.57
4	•	15.01	2.50	1.77
5	0.4	15.37	8.97	2.25
6		15.37	17.4	2.23
7	<b>₹</b>	15.37	3.26	2.12
8	0.5	15.36	34.5	2.60
9	0.4	15.39	3.34	2.31
10	0,5	15.50	33.5	2.77
11		15.45	3.13	2.42
12		15.39	0.381	2.33
13		15.45	0.381	2.51
14		14.92	3.34	1.43
15		15.34	8.64	?.12
16		15.36	32.9	2.38
17	1	15.40	37.1	2.45
18		15.40	0.381	2.27
19	ļ	15.50	34.1	2.68
20		15.43	12.7	2.57
21		15.50	3.47	2.21
22		15.45	0.423	2.16
23	*	15.48	33.0	2.79
24	0.4	15.51	12.2	2.64
25		15.47	12.5	2.66
26		15.45	3.73	2.53
27	L I	14.98	3.64	1.47
28	Y	14.84	3,56	1.59

with 3.23-cm² Cone in Molda

Table 3

* Values of  $G_{\mathbf{x}}$  listed in this table can be considered equivalent to standard G values because  $G_{\mathbf{x}}$  was found to be influenced mapligibly by the full range of  $V_z$  values in this table (which values bound standard velocity  $V_8 = 3.05$  cm/sec).

(Sheet 1 of 3)

61<
Table 3 (Continued)

	Noisture Content	Unit Dry Weight ^Y d	Penetration Velocity V z	Penetration Fesistance Gradient G _x
lest No.	<u> </u>	Kullin	<u>cm/sec</u>	PGAZIN
29	0.4	15.94	3.60	3.38
30		16.11	3.56	3.38
31		15.78	3.60	2.90
32		15.61	3.56	2.57
33		14.85	3.51	1.68
34	Y	14.81	3.47	1.53
35	1.5	15.32	32.3	5.00
36	1.6	15.33	13.9	5.49
37	1.2	15.28	0.423	5.86
38	1.1	15.41	3.01	5.27
39	1.5	15.36	33.4	5.10
40	1.5	15.47	0.423	5.88
41	1.3	15.38	3.64	5.50
42	1.3	15.36	12.8	4.65
43	2.2	15.44	3.30	7.97
44	2.2	15.35	6.39	7.44
45	2.2	15.32	0.0423	6.93
46	2.1	15.39	0.0295	7.65
47	2.0	15.41	6.35	7.68
48	2.2	15.35	0.127	7.63
49	2.1	15.39	3.05	7.47
50	2.1	15.33	0.381	7.65
51	2.0	15.41	34.6	8.19
52	2.1	15.33	3.30	7.66
53	2.1	15.35	12.8	7.43
54	2.2	15.33	33.5	7.64
55	2.1	15.39	13.5	7.57
56	2.2	15.39	0.423	8.43
57	2.0	15.58	3.51	7.81
58	2.0	15.52	3.05	7.22
50	2.8	15.50	3.05	0.33
60	4.3	15.50	3.05	9.62
61	5.2	15.46	3,05	11.23
62	5.3	15.47	3.05	10.76
63	5.7	15.50	3.05	11.03
64	5,9	15.54	3.05	10.54
65	6,1	15.40	3.05	10.52
		(Continued)		(Sheet 2 of 3)

, 62<

Test No.	Moisture Content %	Unit Dry Veight ^Y d kN/m ³	Penetration Velocity Vz cm/sec	Penetration Resistance Gradient Gx
66	6.8	15.39	0.423	10.42
67	7.9	15 22	33.5	9.50
69	7.0	15 13	0.423	8.14
60	7.5	15 11	35.1	8.53
70	6.0	15 /0	3.08	11.09
70	7 0	15 14	13.0	8.93
71	7.0	15 50	3.26	11.03
72	7.1	15 47	2.96	11.21
75	7.1	15 46	2.4	10.66
74	7.1	15 43	13.5	10.58
75	6.0	15 44	0.381	11.51
70	7.0	15 55	13.0	11.26
79	7.0	15 57	0.466	11.56
70	6.0	15 74	3 51	13.94
73	7 /	15 88	3.81	15.7?
0U 01.	7.5	15 91	3.68	16.45
01 07	7.3	15 90	0 423	15.52
62 83	6.8	15.94	34.9	16.19
84	7.3	15.93	0.0254	14.61
85	7.3	16.04	0,127	15.54
86	7.3	15.87	0.0339	15.41
87	7.3	15,99	0.127	15.24
88	7.2	16.04	0.0169	16.84
89	7.3	15.90	0.127	16.53
90	11.3	15.57	3.05	10,59
91	11.5	15.65	3,05	10.91

Table 3 (Concluded)

(Sheet 3 of 3)

and a substance and all survey a substances

63<

Vertical	Penetration Tesi	ts with 3.23-cr	² Cone in Molds o	of Yuma Sand
	Penetrat	ion Velocity,	3.05 cm/sec	
Test No.	Moisture Content <u>%</u>	Unit Dry Weight ^Y d <u>kN/m³</u>	Penetration Velocity Vz 	Penetration Resistance Gradient C MT/m3
1	2.1	15.32	3,05	7.50
2	2.0	15.93		10,90
3	2.0	15.03		5.60
4	1.6	15.03		4.32
5	1.6	15.99		8.24
6	6.2	14.94		7.31
7	6.1	15.99		14.58
8	0.5	16.35		4.22
9	3.5	15.93		14.37
10	4.8	16.05		15.08
11	12.3	16.23		16.36
12	0.5	16.23		4.10
13	11.9	16.16		16.44
14	3.2	15.08		7.14
15	4.8	15.00		7.98
16	11.8	14.75	•	6.38

Table 4

· **6**4<

		Penetra-						
ľest No.	Cone Base Area A x cm ²	tion Resis- tance Gradi- ent G MN/m ³	Sand Unit Dry Weight ^Y d <u>kN/m³</u>	Depth of Cone Tip h cm	l!ori- zontal Velocity V x m/sec	Hori- zontal Force F _x N	Froude Number $\frac{v_x}{\sqrt{gd_x}}$	Cone-Sand Pressure Ratio $\frac{F_x / A_x}{Ch^2 / d_x}$
1	3.23	1.32	14.71	17.8	~ 0,305	57.5	0.683	0.0864
					0.610	57.8	1.37	0.0869
					0.914	57.5	2.05	0.0864
					1.22	59.4	2.73	0.0893
					1.52	59.4	3.42	0.0893
					1.83	59.4	4.10	0.0803
					2.13	59.8	4.79	0.0899
					2.44	61.0	5.47	0.0917
					2.74	62.0	6.15	0.0932
					3.05	64.6	6.84	0.0971
					3.35	68.2	7.52	0.102
					3.66	70.7	8.20	0.106
2	3.23	1.23	14.67	17.8	0,305	54.6	0.683	0.0846
					0.610	55.6	1.37	0.0862
					0.914	55.9	2.05	0.0866
					1.22	57.2	2.73	0.0887
					1.52	56.2	3.42	0.0871
					1.83	56.8	4.10	0.0880
					2.13	57.2	4.79	0.0887
					2.44	56.8	5.47	0.0880
					2.74	56.8	6.15	0.0380
					3.05	58.5	6,84	0.0907
					3.35	60.4	7.52	0.0936
					3.66	62.7	8,20	0.0972
3	3.23	2.47	15.53	17.8	0,305	83.0	0.683	0.0667
					0.610	88,8	1.37	0.0733
					0.914	90.1	2.05	0.0724
					1,22	91.7	2.73	0.0737
					1.52	94.0	3,42	0.0755
					1.83	15.9	4.10	0.0770
					2.13	96.9	4.79	0.0778

## Horizontal Penetration Tests with 30-Deg-Apex-Angle, Circular Cones in Air-Dry Yuma Sand

Table 5

(Continued)

• : •

(Sheet 1 of 9)

and a subserved she when we shall be a strategic she

ł

65<

		Penetra-	•					
Test No.	Cone Base Area A x cm ²	tion Resis- tance Gradi- ent G MN/m ³	Sand Unit Dry Weight ^Y d <u>kx/m³</u>	Depth of Cone Tip h cm	Hori- zontal Velocity V _x 	Hori- zontal Force Fx N	Froude Number $\frac{v_x}{\sqrt{gd_x}}$	Cone-Sand Pressure Ratio $\frac{F_x/A_x}{Gh^2/d_x}$
3	3.23	2.47	15.53	17.8	2.44	97.9	5.47	0.0786
					2.74	99.2	6.15	0.0797
					3.05	102	6.84	0.0819
					3.35	104	7.52	0.0835
					3.66	103	8.20	0.0827
					3.96	108	8.89	0.0867
4	2 22	1 70	15 04	17 8	0 305	61 7	0 683	0 0720
-	2.23	1.70	10.04	1/.0	0.610	63 3	1 37	0 0739
					0.914	64.0	2 05	0 0747
				•	1,22	65.6	2.73	0.0765
					1.52	67.8	3.42	0.0791
					1.83	67.8	4.10	0.0791
					2.13	68.5	4.70	0.0799
					2,44	70.1	5.47	0.0818
					2.74	72.0	6.15	0.0840
					3.05	73.0	6.84	0.0852
					3.35	73.0	7.52	0.0852
					3.66	74.3	8.20	0.0867
					3.96	75.9	8,89	0.0856
					4.27	79.5	9.57	0.0927
					4.57	81.1	10.3	0.0 16
					4,88	84.0	10.9	0,0980
					5.18	84.6	11.6	0.0988
5	3.23	0.59	13.66	17.8	0.305	38.4	0.683	0.129
					0.610	38.1	1.37	0.128
					0.014	37.5	2.05	0.126
					1.22	35.2	2.73	0.118
					1.52	33.6	3.42	0.113
					1.83	32.3	4.10	0.100
					2.13	32.9	4.70	0.111
					2.44	31.3	5,47	0.105
					2.74	32.0	6.15	0.108
					3.05	33.3	6.84	0.112
					3.35	33.3	7.5?	0,112
					3.66	36.5	8.20	0.123
			()	Continu	ed)		(Sh	set 2 of 9)

Shikawana ana shika ana shika sh

. ₍₁₀ 66<

distanti fina

No Disastanti Change and

Test No5	Cone Base Area A x <u>2</u> cm 3.23	Fenetra- tion Pesis- tance Gradi- ent C MN/m 0.59	Sand Unit Dry Weight Y _d <u>kN/m³</u> 13.66	Depth of Cone Tip h cm 17.8	Hori- zontal Velocity V x <u>m/sec</u> 3.96 4.27 4.57 4.88 5.18	Pori- zontal Force Fx N 35.9 36.5 37.1 38.1 39.4	Froude Number $\frac{V_x}{\sqrt{gd_x}}$ $\frac{\sqrt{gd_x}}{0.57}$ 10.3 10.0 11.6	Cone-Sand Pressure Ratio $\frac{F_x/\Lambda_x}{Gh^2/d_x}$ 0.121 0.123 0.125 0.128 0.132
6	3.23	3.81	16.09	17.8	$\begin{array}{c} 0.305 \\ 0.610 \\ 0.914 \\ 1.22 \\ 1.52 \\ 1.83 \\ 2.13 \\ 2.44 \\ 2.74 \\ 3.95 \\ 3.35 \\ 3.66 \\ 3.96 \end{array}$	117 122 126 133 132 131 132 134 135 134 136 139 141	0.683 1.37 2.05 2.73 3.42 4.10 4.79 5.47 6.15 6.84 7.52 8.20 8.20 8.89	0.0609 0.0635 0.0656 0.0687 0.0687 0.0688 0.0688 0.0708 0.0708 0.0724 0.0734
7	3.23	3.05	15.80	17.8	0.305 0.610 0.914 1.22 1.52 1.52 2.13 2.13 2.44 2.74 3.05 3.35	92.1 95.6 98.2 102 105 106 107 109 110 112 113	0.693 1.37 2.05 2.73 3.42 4.10 4.70 5.47 6.15 6.64 7.52	0.0500 0.0622 0.0638 0.0663 0.0683 0.0689 0.0696 0.0709 0.0715 0.0728 0.0735
8	3.23	4.04	16.17	17.8	0.305 0.610 0.914 1.22 1.52	121 125 128 130 131	0,693 1,37 2,05 2,73 3,42	0,0594 0,0614 0,0628 0,0638 0,0643

... A.

(Continued)

(Sheet 3 of 9)

67<

and the second states of the second states and the second s

Tesz No.	Cone Base Area A _x cm ²	Penetra- tion Resis- tance Cradi- ent G MN/m ³	Sand Unit Dry Weight ^Y d <u>kN/m³</u>	Depth of Cone Tip h <u>Cm</u>	Hori- zontal Velocity Vx m/sec	Nori- zontal Force F _x N	Froude Number $\frac{v_x}{\sqrt{gd_x}}$	Cone-Sand Pressure Patio $\frac{F_x/A_x}{Ch^2/d_x}$
8	3.23	4.04	16.17	17.8	1.83 2.13 2.44 2.74 3.05 3.35 3.66	132 134 135 136 137 139 139	4.10 4.79 5.47 6.15 6.24 7.52 8.20	0.0648 0.0659 0.0663 0.0668 0.0682 0.0682
9	6.45	1.92	15.20	17.8	0.305 0.610 0.914 1.22 1.52 1.83 2.13 2.44 2.74 3.05 3.35 3.66	108 108 110 113 117 119 122 124 124 124 126 130 132	0.575 1.15 1.72 2.30 2.87 3.45 4.02 4.60 5.17 5.75 6.32 6.90	0.0790 0.0790 0.0805 0.0856 0.0871 0.0892 0.0907 0.0907 0.0951 0.0951
10	6 <b>.45</b>	1.25	]4.64	17.8	0.305 0.610 0.914 1.22 1.52 1.83 2.13 2.44 2.74 3.05 3.35 3.66 3.96 4.27 4.57	78.0 77.4 78.7 79.3 78.7 79.3 82.6 81.0 83.9 83.9 83.9 89.7 91.6 95.5 96.8 93.7	0.575 1.15 1.72 2.30 2.97 3.45 4.60 5.17 5.75 6.32 6.30 7.47 8.62	0.0279 0.0273 0.0287 0.0294 0.0294 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0294 0.101 0.101 0.103 0.109 0.111 0.115

(Continued)

22

(Sheet 4 of 9)

68<

Test No.	Cone Base Area A x cm ²	Penetr- tion Resis- tance Gradi- ent G MN/m ³	Sand Unit Dry Weight ^Y d kN/m ³	Depth of Cone Tip h cm	Hori- zontal Velocity V x r./sec	Hori- zontal Force Fx N	Froude Number $\frac{V_x}{\sqrt{gd_x}}$	Cone-Sand Pressure Ratio $\frac{F_x/A_x}{Ch^2/d_x}$
10	6.45	1.25	14.64	17.8	4.88 5.18	111 114	9.20 9.77	0.125 0.129
11	6.45	3.54	16.00	17.8	0.305 0.610 0.914 1.22 1.52 1.83 2.13 2.44 2.74 3.05 3.35 3.66	168 181 188 194 199 202 205 208 210 212 213 215	0.575' 1.15 1.72 2.30 2.87 3.45 4.02 4.60 5.17 5.75 6.32 6.90	0.0670 0.0721 0.0749 0.0773 0.0793 0.0805 0.0817 0.0829 0.0837 0.0845 0.0845 0.0849 0.0857
12	6.45	0.93	14.26	17.8	0.305 0.610 0.914 1.22 1.52 1.83 2.13 2.44 2.74 3.05 3.35 3.66 3.96 4.27 4.57 4.88	73.5 73.5 71.0 69.7 69.0 70.3 71.0 71.0 71.6 73.5 75.5 77.4 80.0 83.2 85.1 90.3	0.575 1.15 1.72 2.30 2.87 3.45 4.02 4.60 5.17 5.75 6.32 6.90 7.47 8.62 9.20	0.111 0.107 0.105 0.104 0.106 0.107 0.107 0.107 0.107 0.111 0.114 0.111 0.121 0.126 0.129 0.136
13	6.45	4.26	16.24	17.8	$0.305 \\ 0.610 \\ 0.914$	215 226 235	0.575 1.15 1.72	0.0708 0.0745 0.0775
			10				1	

(Continued)

(Sheet 5 of 9)

State of the second

**. 6**9<

Test No.	Cone Base Area A x cm ²	Penetra- tion Resis- tance Gradi- ent G MN/m ³	Sand Unit Dry Weight ^Y d kN/m ³	Depth of Cone Tip h cm	Hori- zontal Velocity V x m/sec	Hori- zontal Force Fx N	Froude Number $\frac{V_x}{\sqrt{pd_x}}$	Cone-Sand Pressure Ratio $\frac{F_x/\Lambda}{x}$ Ch ² /d _x
13	6.45	4.26	16.24	17.8	1.22 1.52 1.83 2.13 2.44 2.74 3.05 3.35 3.66 3.96	244 250 253 256 259 261 263 264 265 267	2.30 2.87 3.45 4.02 4.60 5.17 5.75 6.32 6.90 7.47	0.0804 0.0824 0.0834 0.0854 0.0854 0.0860 0.0867 0.0870 0.0873 0.0880
14	12.90	0.85	14.14	17.8	0.305 0.610 0.914 1.22 1.52 1.83 2.13 2.44 2.74 3.05 3.35 3.66	129 129 125 123 123 124 126 128 129 132 133 139	0.483 0.967 1.45 1.93 2.42 2.90 3.38 3.87 4.35 4.83 5.32 5.80	0.150 0.150 0.146 0.143 0.143 0.143 0.145 0.147 0.149 0.150 0.154 0.155 0.162
15	12.90	1.95	15.22	17.8	$\begin{array}{c} 0.305 \\ 0.610 \\ 0.914 \\ 1.22 \\ 1.52 \\ 1.83 \\ 2.13 \\ 2.44 \\ 2.74 \\ 3.05 \\ 3.35 \\ 3.66 \end{array}$	190 199 208 215 224 227 232 236 239 248 253 261	0.483 0.967 1.45 1.93 2.42 2.90 3.38 3.87 4.35 4.83 5.32 5.80	0.0965 0.101 0.106 0.109 0.114 0.115 0.118 0.120 0.121 0.126 0.129 0.133

(Continued)

(Sheet 6 of 9)

3

.70<

Test No.	Cone Base Area A x cm ²	Penetra- tion Resis- tance Gradi- ent G MN/m ³	Sand Unit Dry Weight Y _d kN/m ³	Depth of Cone Tip h cm	i'ori- zontal Velocity ^V x m/sec	llori- zontal Force F _x N	Froude Number $\frac{v_x}{\sqrt{gd_x}}$	Cone-Sand Pressure Ratio $F_x/A_x$ Ch ² /d _x
16	12.90	3.37	15.93	17.8	$\begin{array}{c} 0.305 \\ 0.610 \\ 0.914 \\ 1.22 \\ 1.52 \\ 1.83 \\ 2.13 \\ 2.44 \\ 2.74 \\ 3.05 \\ 3.35 \\ 3.66 \\ 3.96 \end{array}$	271 290 312 333 353 369 382 390 395 400 406 412 415	0.483 0.967 1.45 1.93 2.42 2.90 3.38 3.87 4.35 4.83 5.32 5.80 6.28	0.0797 0.0853 0.0918 0.0979 0.104 0.109 0.112 0.115 0.116 0.118 0.119 0.121 0.122
17	12.90	4.33	16.26	17.8	0.305 0.610 0.914 1.22 1.52 1.83 2.13 2.44 2.74 3.05 3.35 3.66 3.96	316 342 377 399 414 419 432 437 449 454 470 470 470	0.483 0.967 1.45 1.93 2.42 2.90 3.38 3.87 4.35 4.83 5.32 5.80 6.28	0.0725 0.0784 0.0865 0.0915 0.0950 0.0961 0.0991 0.100 0.103 0.108 0.108 0.108
18	23.23	0.62	13.64	17.8	0.305 0.619 0.914 1.22 1.52 1.83 2.13 2.44	181 184 186 186 186 186 188	0.417 0.834 1.25 1.67 2.09 2.50 2.92 3.34	0.231 0.234 0.237 0.237 0.237 0.237 0.237 0.240 0.240

The second

(Continued)

(Sheet 7 of 9)

71<

Test No.	Cone Base Area A x 2 cm	Penetra- tion Resis- tance Gradi- ent G MN/m ³	Sand Unit Dry Weight ^Y d kN/m ³	Depth of Cone Tip h cm	Hori- zontal Velocity V x m/sec	Hori- zontal Force F _x N	Froude Number $\frac{v_x}{\sqrt{gd_x}}$	Cone-Sand Pressure Ratio $\frac{F_x/A_x}{Ch^2/d_x}$
18	23.23	0.62	13.64	17.8	2.74 3.05 3.35 3.66 3.96	188 188 188 188 188	3.75 4.17 4.59 5.01 5.42	0.240 0.240 0.240 0.240 0.240 0.242
19	23.23	3.49	15.93	17.8	$\begin{array}{c} 0.305 \\ 0.610 \\ 0.914 \\ 1.22 \\ 1.52 \\ 1.33 \\ 2.13 \\ 2.44 \\ 2.74 \\ 3.05 \\ 3.35 \\ 3.66 \\ 3.96 \end{array}$	409 441 458 492 518 548 578 585 595 602 609 611 595	$\begin{array}{c} 0.417 \\ 0.834 \\ 1.25 \\ 1.67 \\ 2.09 \\ 2.50 \\ 2.92 \\ 3.34 \\ 3.75 \\ 4.17 \\ 4.59 \\ 5.01 \\ 5.42 \end{array}$	0.0868 0.0936 0.0972 0.104 0.110 0.116 0.123 0.124 0.126 0.128 0.129 0.130 0.126
20	23.23	2.73	15.66	17.8	0.305 0.610 0.914 1.22 1.52 1.83 2.13 2.44 2.74 3.05 3.35 3.66 3.96	358 402 432 455 497 525 541 551 560 571 583 595 602	$\begin{array}{c} 0.417 \\ 0.834 \\ 1.25 \\ 1.67 \\ 2.09 \\ 2.50 \\ 2.92 \\ 3.34 \\ 3.75 \\ 4.17 \\ 4.59 \\ 5.01 \\ 5.42 \end{array}$	0.0969 0.109 0.117 0.123 0.135 0.142 0.146 0.149 0.152 0.155 0.158 0.161 0.163
21	3.23	1.05	<b>14.4</b> i	25.4	0.305 0.610 0.914	63.6 61.7 61.0	0.683 1.37 2.05	0.0589 0.0571 0.0565

(Continued)

(Sheet 8 of 9)

72<

 $\bigcirc$ 

a text the set of the set of the function of

Table	5	(Concluded)
and the second sec		

Test No.	Cone Base Area A x cm	Penetra- tion Resis- tance Gradi- ent G MN/m ³	Sand Unit Dry Weight ^Y d kN/m ³	Depth of Cone Tip h cm	Hori- zontal Velocity V x m/sec	Hori- zontal Force Fx N	Froude Number $\frac{v_x}{\sqrt{gd_x}}$	Cone-Sand Pressure Ratio $\frac{F_x/A_x}{Gh^2/d_x}$
21	3.23	1.05	14.41	25.4	1.22	57.8	2.73	0.0535
					1.52	56.5	3.42	0.0523
					1.83	57.2	4.10	0.0530
					2.13	56.2	4.79	0.0520
					2.44	55.9	5.47	0.0518
					2.74	55.9	6.15	0.0518
					3.05	58.5	6.84	0.0542
					3.35	59.8	7.52	0.0554
					3.66	63.0	8.20	0.0583
22	3.23	3.10	15.82	10.2	0.305	53.6	0.683	0.104
					0.610	62.3	1.37	0.121
					0.914	67.5	2.05	0.132
					1.22	73.3	2.73	0.143
					1.52	79.5	3.42	0.155
					1,83	81.1	4.10	0.158
					2.13	84.3	4.79	0.164
					2.44	86.9	5.47	0.169
					2.74	90.1	6.15	0.176
					3.05	94.0	6.84	0.183
					3.35	96.9	7.52	0.189
					3.66	101	8.20	0.197
					3 96	102	8.89	0.199

(Sheet 9 of 9)

73<



وريت منحفة

NATIONAL A



PLATE 2

..



the second state of the second strategy and strategy and the second strategy and st

PLATE 3

~ ちょうろうちょうない 単語 あいたちないちょうち

UCHEO.

and the second second









en C

法有たが回る





à

-----









A STATE OF THE S

W. G. 11 14



10.0

日本になる時間になるないのであるというです。



1

. -







In accordance with ER 70-2-3, paragraph 6c(1)(b), dated 15 February 1973, a facsimile catalog card in Library of Congress format is reproduced below.

Turnage, Gerald W

÷ć,

Measuring soil properties in vehicle mobility research; Report 6: Resistance of coarse-grained soils to high-speed penetration, by G. W. Turnage. Vicksburg, U. S. Army Engineer Waterways Experiment Station, 1974. 1 v. (various pagings) illus. 27 cm. (U. S. Water-

l v. (various pagings) illus. 27 cm. (U. S. Waterways Experiment Station. Technical report 3-652, Report 6) Sponsored by Assistant Secretary of the Army (R&D), Department of the Army Project 4A061101A91D. Includes bibliography.

 Coarse grained soils. 2. Mobility. 3. Penetration.
Probes. 5. Soil penetration. 6. Soil properties.
Vehicles. I. U. S. Office of the Chief of Research and Development. (Series: U. S. Waterways Experiment Station, Vicksburg, Miss. Technical report 3-652, Report 6) TA7.W34 no.3-652 Report 6