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1.    INTRODUCTION 

In this report, we will derive the equaf ions of motion for a 

single-degrec-of-freedom,   rate-integrating gyro,  taking into account 

asymmetry of design,  manufacturing tolerances,  and assembly tolerances 

which result in non-ideal geometries and dynamics.    We will also review 

the test methods and the data reduction procedures used in determining the 

performance coefficients of a gyro.    Lastly, we will briefly investigate the 

torques due to convection currents. 

There are two complementary procedures commonly used for 

determining the performance coefficients which we will review; they are: 

a) tumble tests (either continuous rotation or discrete positions) and 

b) precision linear vibration tests.    In theory, a precision centrifuge with 

a counter-rotating table (not necessarily a 1:1 counter-rotation) may be 

used.    However,  in practice,  the results are extremely sensitive to align- 

ment of the counter-rotating table axis to the centrifuge axis,  and therefore, 

that procedure will not be pursued further. 

Data from tumble tests and linear vibration tests are commonly 

reduced by using formulae which are partially or fully computer-automated. 

There is seldom any thought given to the formulae used nor their applica- 

bility to a particular gyro design or its application.    The simplifying 

assumptions (there are always such assumptions) used in the data reduction 

procedures may or may not be appropriate for the particular design or the 

application. 

One of the principal purposes of this report is to review the 

assumptions,  explicit or implicit, in the choice of test method and/or data 

reduction procedure.    The test    ngineer must then review the error sources 

and use his judgment as to the appropriateness of the test methods and the 

data reduction.    In some cases,  analyses and/or tests may be required 

prior to making a final judgment. 
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L.    MISALIGNMENTS WITHIN A GYRO 

2. 1 Introduction 

In this section, we will investigate the effects of non-ideal 

geometries arising from design compromises, material variations, manu- 

facturing tolerances,  and assembly tolerances.   It is usually assumed that 

the true spin axis (SA) as determined by the bearing geometry,  is normal 

to the true output axis (OA) as determined by the gimba) pivot or suspension 

geometry.   The input axis (IA) is then taken to be normal to SA and OA. 

Thus, the three axes form an orthogonal coordinate system.   It is also 

generally assumed that IA, OA,  and SA are principal axes of inertia for 

the float.   In reality, none of these assumptions is likely to be exactly true. 

2. 2 Coordinate Systems 

There are several coordinate systems that could be used in this 

study, each having its relative advantages and disadvantages. We will use 

three basic coordinate systems in our development: a) the reference sys- 

tem attached to the gyro case as indicated by reference markings and/or 

reference surfaces, b) one attached to the gyro float, and c) an inertially- 

fixed coordinate system. Other auxiliary coordinate systems will b« used, 

as convenient,  such as an earth-fixed coordinate system. 

In any single-degree-of-freedom gyro, there are two fairly 

well defined axes; they are the spin axis SA and the output (pivot) axis OA. 

Though these axes may be well defined by geometry, they are not necessarily 

orthogonal, nor are they easy to locate in an assembled gyro.    Assuming 

that the  pivot clearances are very small,  as is usual, then any angular 

motion of the gimoal relative to the gyro case must be about OA only, 

whether or not OA is perpendicular to SA. 

The three reference axes, which are indicated by reference 

markings and/or reference (mounting) surfaces on the gyro case, are: 

a) the input reference axis (IRA),  b) the output reference axis (ORA),  and 
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c) the spin reference axis (SRA). These are nominally parallel to IA, OA, 

and SA, respectively, and form an orthogonal coordinate system such that 

the vector cross product 

x  J =   * (2-1) 

where T, j~,  and T( are unit vectors along IRA, ORA,  and SRA,  respectively. 

The origin of this coordinate system is taken to be at the centroid (C) of the 

gimbal (float) when at electrical null and at neutral buoyancy.   For con* 

venience, IRA, ORA, and SRA will be designated I, O,  and S, respectively, 

as shown in Fig. 2-1. 

For the gimbal, we will choose an XYZ coordinate system with 

the origin at C, the Y axis parallel to the true pivot axis (OA) and the YZ 

plane parallel to the true spin axis (SA).    Let C      be the angle between 

SA* and the Z axis, as indicated in Figure 2-1, where SA* is the projection 

of SA on the YZ plane. 

We will define the rotor as being the gyro wheel plus any asso- 

ciated rotating parts such as bearing races and ball retainers.   The gimbal 

or float is defined as the complete assembly, including the rotor, that 

rotates as a unit about OA relative to the gyro case. 

YIOAI 

Fig.  2-1.   Gyro Reference Axes and Gimbal Coordinate System 
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L, 3 Moments of Inertia 

Moments of inertia and products of inertia arise when we apply 

Newton's Second Law of Motion to a rotating rigid body.   It is assumed 

that the reader is familiar with the definitions of moments of inertia and 

products of inertia, and we will review only those additional facts which 

are pertinent to our study of the gyro. 

For any rigid body, with or without axes of symmetry, there 

are always at least three orthogonal axes passing through the centroid for 

which the products of inertia vanish.   These axes are called principal axes 

and the moments of inertia about these axes are known as principal moments 

of inertia.    Any axes of symmetry would be principal axes since the pro- 

ducts of inertia about those axes would vanish. 

The moment of inertia of the gimbal about any line p passing 

through the centroid may be given in terms of the principal moments of 

inertia J     ,  J     ,  and J        about three orthogonal principal axes U,  V UU        W WW © r r 

and W and the direction cosines,   %     ,  i    , and I      of the line p with '      pu'    pv pw r 

respect to the principal axes. 

J    = J     I2    + J      i2   + J       I2 (2-2) p       uu   pu       w   pv       ww    pw 

The principal moments of inertia are stationary values of Eq. (2-2), i. e., 

J is a maximum or a minimum when the line p coincides with a principal 

axis. 

Assume that we have determined, by some means, th^ principal 

moments of inertia of the gimbal,  and that the principal axes U,  V,  and W 

arc ne^rlv parallel to the 1,  C*,  and S axes,  respectivelv,  as it. usually the 

case.    Let Sib.  and 6     be the successive small Euler antic stations u      v v 
about the U,  V,  and W axes,   respectively,  required to rotate the UVW 

coordinate system into the 10S coordinate sy^lem.    It can be shown that 

the direction cosines are? 



i.\i Ov        Sw 

*Ow ""^Sv* eu 
(2-3) 

bu Iw        v 

iv Ou       w 

The three principal moments of inertia of the gimbal usually dif- 

fer from one another by less than an order of magnitude and the principal 

axes,  in general, are nearly coincident with the I, O, and S axes.   If 6 * 

6  ,  and G    are each less than 0.05 rad (< 3 ), the moments of inertia of v w 
the gimbal about the reference axes, as determined from Eqs. (2*2) and 

(2-3),  are approximated, without significant error, by: 

2 +j     e2 
UU W "W WW     V uu 

jj- J ,. f J _ e~ 4 J_.. e" - J 

J^* J    e2+j    +J    e2*! (2-4) O      uu üw       w     ''ww^u       w l      ' 

JC * j    e2 + J    e2 + J    - J 
S UU     V W     U WW WW 

The above results should not be surprising, since the principal 

moments of inertia are stationary values with zero slope. 
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3.   DYNAMICS OF TUE GIMBAL 

3.1 Introduction 

Any system of forces and torques applied to a rigid body may be 

replaced b/ a single resultant force Y   acting through the centroid and a 

single resultant torque T .    For example, consider the single force 7, 

shown in Fig. 3-1(a) which is eccentric to the centroid C. 

(a) r; ic (b) 

Fig.  3-1.    Eccentric Applied Force 

Apply two opposed forces T".    and Y\    at C in a line parallel to 
J w xc 

the line of action of 7} as shown in Fig.  3-1(b) and such that \Y.   |   ■ 
|Tt  I   = [FA,   Since the vector sum off.    and f.   is aero, the net fere« 

acting on the body is unchanged.   However, we can now consider the force 

system to be a force 7".    acting Lhrough the centroid and a torque 7.h due 

to the couple formed by the foi. jes f. and 7\   .   The same procedure may 

be followed for each non-central force.   All the resultant forces acting 

through the centroid may be summed vectorially to obtain but a single 

resultant force ^   and all the torques may be summed vectorially to obtain 

a single resultant torque T . 

The resulting motion of the rigid body may be considered as a 

linear translation of the centroid due to the resultant force T"   and a change in 

angular momentum due to the resultant torque T .   Assuming a constant 

mass, the differential equations of motion are: 

. 



where 

F. - d(m7c)/dt = mäc (J-l) 

Tc « dIT/dt (3-2) 

m = mass 

V   ■ velocity vector of centroid 

7   s acceleration vector of centroid c 
IT = angular momentum vector 

t s time 

Equation (3-1) states that the rate of change of the linear mo- 

mentum (mV ) is equal in magnitude and direction to the resultant applied 
force T   acting through the centroid.    Equation (3-2) states that the rate 
of change of the angular momentum (IT) is equal in magnitude and direction 
to the resultant applied torque T",   Equation (3-2) is easily derived from 
the basic Eq. (3-1). 

Though we are primarily interested in   lie angular motions of 
the gimbal and will stress the use of Eq. (3-2), th. gimbal structure is not 
a perfectly rigid body and compliance torques resulting from linear acceler- 
ation of the centroid will also be considered.    Of course, a gyro designer 
must consider the translational forces acting on the pivots, rotor bearings, 
and other parts for strength as well as for minimizing deflections. 

3.2 Principal Axes of Rotor and Gimbal Structure 

Because of tight manufacturing tolerances, accurate dynamic 
balancing,  and extreme care in assembly, the spin axis (SA) is a principal 
axis of the rotor.    The other principal axes of the rotor must be in a plane 
normal to SA and passing through the centroid of the rotor.   We will as- 
sume that all axes in that plane and passing through the centroid are 
principal axes of inertia and, therefore, the moments of inertia about 

these axes are all equal.   The above assumption is true for the vast 
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majority of gyros.   There are a few gyros,  such as the "Nutatron", which 

are purposely designed to have a rotor with unequal moments of inertia 

about their two radial principal axes of inertia, but such gyros are not 

yet commercially significant. 

Manufacturing and assembly tolerances for the gimbal do not 

permit as accurate a knowledge of the location of the principal axes as we 

had for the rotor alone.   However, gimbals are generally designed so that 

the principal axes are nominally parallel to the X, Y, and Z axes and 

the Y axis passes through or close to the centroid C of the gimbal.   There- 

fore, we may use Eqs.  (2-4) for the gimbal, without appreciable error, for 

the vast majority of gyros and we will so assume. 

3. 3 Angular Momentum of Rotor and Gimbal 

Since the only axes externally available are the reference axes 

(I, O,  and S in Fig. 2-1), we will determine the angular momentum of 

the gyro with respect to these axes.   Consider first the angular momentum 

of the rotor relative to the gimbal. 

The angular momentum components of the rotor relative to the 

gimbal in the XYZ coordinate system are: 

H      =0 rx 

H      - -j     u      .,      = -H    ; (3-3) rv r     r    rx r    rx 

where 

H      - J     u-    = H rz        r     r        r 

H    = J    a»    = angular momentum of the rotor (plus asso- 
r     r     ciated rotating parts) relative to the gimbal 

J    3 moment of inertia of the rotor about its axis of 
rotation 

U) ■ angular velocity of the rotor relative to the gimbal 

t      ■ misahenrnent angle as defined In Fig.   Z-] 



In order to determine the angular momentum components of the 

rotor relative io the gimbal in the IOS system, we will perform the follow- 

ing transformations: 

a) Rotate the XYZ system about the Y axis through the small 
angld -CPQ required to bring the gimbal back to its electrical 
null position, 

b) Rotate the resulting system successively through the small 
Euler angles C   *   Cy,  and C    to bring it into coincidence with 
the ICS system which is fix^d to the gyro case. 

Since the rotation angles are all small (*>-   I rad), we may us«; 

small angle approximations for the sines and cosines and neglect products 

of the sines.      We find the angular momentum of the rotor in the IOS 

system relative to the gimbal is: 

TT, - Hr(<p0- Cy)T ♦ Hr(Cx - trX)T + Hr7 (3-4) 

Assuming the principal axes of inertia of the gimbal are nominal* 

ly parallel to the I, O,  and S axes, then using Eqs.  (2-4), the angular 

momentum of the gimbal with the rotor locked in the IOS system is: 

^     JlmlT*3OimO**d1*JSm8* ^"^ 
where 

■iL,  u.   ,  u)^. ■ angular velocity components of the gyro case 
relative to inertial space about the I,  O,  and S 
axes, respectively (see Fig. 2-1). 

cp0 s angular velocity of the gimbal relative to the gyro case 
about OA and cp    «- 1. 

The total angular momentum of the gimbal is the sum of Eqs. 

(3-4) and (3-5). As a mnemonic device, with no loss in generality, let 

(^    - C    ) s ^T an<* C    = C Q» then the total angular momentum of the gimbal 

is: 

.10. 



V 

♦ [Hr Cj + J0(a.0 + i0)]T + [Hr + Js u^] IT (3-6) 

3,4 Torque Equfction» 

The torque components about the I,  O,  and S axes required to 
obtain changes in angular momentum are determined by applying Eqs.  (3-2) 

and (3-7), below,  to Eq.  (3-6). 

dl/dt = msJ - «)0^ 

dj/dt = (Djlt - u^r (3-7) 

dlc/dt = (o^-JT - ULJ 

T, - Hr(«,0 ^0'Q1 .s) ♦ J, '., ♦ Jr i^Q - Q0) 

* Jo*o "s - (Jo - V "o "s (3-8) 

T
0 - -Hr La,I * (*0 * V "'S3 + JQ^O + ^O» 

♦ Jr C! i, -  (Js - Jj) .s •, (3-9) 

TS '  ""r  L(<pO * C0) "'O " CI "l-1 f JS ;S f Jr % 

+ J0 i0 «! - (^ - J0) «j «»o (J-10) 

It is customary, for purposes of comparison, to normalize the 
torque components by dividing them by the angular momentum II    of the 
rotor relative to the gimbal.   it is also common practice to break out the 
normalized viscous drag torque (-Ccp^/H ) which opposes the angular 
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velocity cp0, the normalized elastic restraint torque (-K    PQ/H  ) which 

opposes the angular displacement cp   ,  and lastly,  the normalized command 

torque (-K/pi) where: 

C = damping coefficient 

K    ■ elastic restraint coe e 

KT= torquer scale factor 

/ 

TI 
TT r 

J 
s Mi ^-"o f ^c" ^"'s) fn 

T                                     T        _   f Jo •            ' o   Js 
■Tr<pou's- "IT— "o** 

i ■ torquing current 
/ 

The sign convention adoptee'for the torquing current is such 

that a positive current will exert a negative torque about OA or,  equivalently, 

will cause a pos^fwe precessiot; rate/about IA when the gimbal is maintained 

at its null position.    The normalizuc' torques about the I, O,  and S axes are: 

• 

r r 

(3-11) 

T K 

Jo   •        .. K     JS " JI 

TS JS    • "'r 
TT = Ms = ^^o - ^ "o - ci mi^W ** + — r r r 

Jo * JI " Jo 
r   1 r 

where M. and Ms are the total applied normalized torque components about 

the I and S axes,  respectively,  and M0 is the total normalized torque about 

12- 



the O axis plus the normalized viscous drag torque, the normalized elastic 

restraint torque, and the normalized command torque, i. e., 

T K 

r        r r 

If the misalignment angles Cr and CQ ere negligible and if the 

gimbal is maintained at its null position («PQ ■ 0), then Eqs. (3-11),  (3-1Z), 

(3-13) becoi.->e the following well-known equations: 

t 
Ji   '    Jo " Js Mi s "o +Tr "i - —T?— «O ^ r r 

MO"KT1 s-^+Tr;o--npi7ittfe,ui (3-15) 

J
S   *        "r    JI " J0 Ms=ir ws*i H— "i-'o r r r 

Note that if WQ - tt»s = i = 0, then from the second of Eqs. (3-15), we see 

that a positive applied normalized moment MQ will result in a negative pre- 

cession rate when the gimbal is maintained at its null position. 
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4.    MODEL EQUATION 

In moat applications and testa, the gimbal is maintained at or 

close to its electrical null position by a platform or table slaved to the gyro 

and/or by a feedback torquing current.    The null error will depend on the 
e 

tightness of the servo loop.   We may rewrite Eq. (3-12) with cpQ ■ cp0 = 0 

and MQ expressed in black box form as a function of acceleration.    Varia- 

bles other than acceleration, such as power supply variations and tempera- 

ture variations, are not usually included in the model equation, but are 

treated as random variables which result in uncertainties in the drift rates. 

Unfortunately, there are several model equations in common use.   Some are 

expressed in terms of drift rates, others are expressed in terms of normal- 

ized torques which have the dimensions of drift rates but are of opposite 

sign.   Some equations are expressed in terms of acceleration inputs, where- 

as others are expressed in terms of specific force inputs which have opposite 

signs.   Therefore, it is hardly surprising that there is some confusion,  and 

that some model equations are incorrect. 

Up to this point, we have not specified any dimensional units in 

the various equations, but merely expected them to be consistent.    For 

example,  Eqa.  (3-11),  (3-12), and (3-13) would be dimensionally consistent 

if the applied torques are in dyne-cm, the angular momentum in gm • cm   / 
2 

a, the moments of inertia in gm • cm  , the angles in radians, the angular 

rates in rad/s,  and the angular accelerations in rad/s  .   In our model 

equation, we will adopt the more common practice of expressing ui.,   a Q, 

and ^ c in deg/hr and U)Q in (deg/hr)/s.    We will leave iv    and w   in rad/ 

s and rad/s  .    We will also adopt the practice of expressing the acceler- 

ation in units of the local g value.   The model equation and the definition of 

symbols follow. 

•"l = DF + Dl*l + DOaO + DSaS + Dll*!  + DOOaO + DSSAS 

+ DIO Vo + DOS aOAS + DIS VS + KTl " co "S 

Jn . (u      (Jo - J.)    WcUr 

t ^ .0 +206. 300 C-^.-Vi ,5^55 (4-1) 
r r r ' 
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Note that the 1 deg/hr • 1 «ec/a and 1 rad/t •" 206,300 sec/s* 

uij,  UIQ,  U»S      ■   angular rate componenti of the gyro case about 
the reference axes with respect to inertial 
•pace - deg/hr 

tti0 ■   angular acceleration of the gyro case about 
u ORA -(deg/hr)/s 

a., a0,  ag ■   components of total applied acceleration, a, 
along the reference axes - £ 

a 3 a— - £ s   applied acceleration vector - g_ 

a_ ■   total acceleration vector with respect to inertial 
space • £ 

£ ■   gravity vector (in direction of maximum gravity 
gradient) - £ 

£ ■   unit of acceleration equal in magnitude to the 
local (or standard) gravity value 

DF =   fixed restraint (bias) drift rate - deg/hr 

D-, Dn, Dc       ■   linear, acceleration-sensitive drift rate coef- 
I w      0 ficients - (deg/hr)/^ 

D   ,  D^u-,  Dcc s   quadratic, acceleration-sensitive drift rate 
II 00      Sb     coefficient - (deg/hr)/&

2 

D „    O^c*  DTC " cross-coupled, acceleration-sensitive drift rate 
lü,     OJ>      K>     coe£flcleilti . (deg/hr)/£^ 

KT =  command rate scale factor (deg/hr)/A 

i ■  command rate current - A 

J., JQ,  Js = moments of inertia of the gimbal about the refer* 
ence axes - gm • cm2 

(v ■ angular rate of the rotor relative to the gimbal - 
rad/s 

e 

m u angular acceleration of the rotor relative to the 
r gimbal - rad/s2 

H s angular momentum of the rotor relative to the 
gimbai - gm • cm2/s 
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Q     Q s misalignment of SA with respect to SRA about IRA 
1     0 and ORA,  respectively - rad 

Not all terms are necessarily required; the ones chosen depend 

on the gyro design and on the application.   For example,  some gyro engi- 

neers drop the OQQ term since no satisfactory physical explanation for it 

has been presented, nor is there incontrovertible evidence that it exists. 

However, the term has been included for completeness. 

In most gyro tests,  and in strapdown applications, the command 

rate-to-balance current is measured and/or recorded.    It is usually assumed 

that tL_ = 0, particularly for those gyros with synchronous motors.   This 

assumption may not always be valid.   A common inperfection occurring in 

gyros is wheel hunting, which results from an interaction of the rotor 

inertia with the magnetic stiffness of the motor.    The combination acts as 

a lightly-damped torsional pendulum, resulting in oscillation of the rotor 

angular rate about the synchxonous value.   The effect is started by wheel 

disturbances and may or may not persist with time.   Solving Eq. (4-1) for 
e 

the command rate-to-balance, with «u    = 0, we have: 

KTl « -(DF ♦ D^ + D0a0 f D^ ♦ D^ ♦ D^a^ 0^ 

J0  • + DioVo + DosÄoAs + DISaIaS) + «I + C0 «s - JT «o 
r 

(Je  * Jj^c  »! 

r 

Eq.  (4-2) will be assumed in all test data reduction for obtain- 

ing the performance coefficients L„, etc. 



5.    TUMBLE TESTÜ 

5. 1 Introduction 

In the usual tumble tests, the gyro is mounted on a turntable 

whose axis of rotation is nominally parallel to the earth's polar axis.   As 

the turntable is rotated about its axis, the earth's gravity field is rotated 

relative to the gyro and many or all of the gyro coefficients are exercised. 

The command rate-to-balance current is measured at a series of table 

angles and recorded.    From the data thus obtained ami auxiliary information, 

the gyro coefficients are determined. 

Tumble runs are performed by either of two basic methods: 

a) Discrete rotation runs in which the table is rotated to a 
series of table angles and the average command rate-to- 
balance current is measured at each table angle after 
equilibrium is attained. 

b) The table is rotated at a slow uniform rate (usually 
^ 20  x   earth's rate) and the command rate-to-balance 
current is recorded continuously.   In either method, the 
average command rate-to-balance current is determined 
at a number of equally-spaced table angles and the gyro 
coefficients are determined by the method of least squares. 

5. Z Error Sources 

There are many error sources in a tumble test,   both .static and 

dynamic.    Among the most important are the following: 

a) misalignment of the table axis with respect to the earth's 
polar axis, 

b) mi salignment of the gyro reference axes with respect to the 
ta'ole axis and its zero reference position, 

c) non-orthogonality of the gyro output axis and the spin axis, 

d) convection torques due to density gradients (may be caused 
by temperature gradients or by non-homogeneous fluid), 

e) table axis of rotation changes with direction of rotation. 
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f) wobble of table axis, 

g) torque signal lags due to uncompensated filters in the 
torque r loop and/or torque recorders 

h)  motion of the gimbal relative to the gyro case due to off- 
neutral buoyancy temperature or unbalances, 

i)  magnetic fields, 

j)  motion about non-principal axes of the gimbal, 

k)   bubbles,  lint, or other contaminants in the fluid, 

1)   power supply variations, 

m) pier motion 

n)   noisy bearings, 

o)   pivot friction torque due to off-neutral buoyancy tempera- 
ture coupled with acceleration. 

We will investigate, in some detail,  error sources a),  b), c) 

and d).    Error sources e) and I) can be measured,  and either corrected or 

the data compensated, though either may be difficult to accomplish.    Sources 

g) and h) are dynamic type errors whose magnitude and phase are functions 

of table rate.   Stray magnetic fields around the table should be eliminated, 

as far as practical, and the gyro protected by a continuous magnetic shield 

in order to control error source i).    Error source j) may be minimized by 

careful gyro design and by reasonable care in alignment, as will be shown. 

The last five error sources k) - o) generally cause discontin- 

uous and/or erratic command rate-to-balance traces.    Usually, they are 

random in nature and result in run-to-run variations which are frequently 

difficult to diagnose.     Bubbles or lint in   the fluid may,   under  some 

circumstances,   appear to  be  a large,   repeatable unbalance, or, under 

some circumstances,   they may act like elastic restraints,   or they 
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may cause dramatic shifts in the command rate-to-balance measurements. 

Pier tilts may be eliminated by automatic or manual leveling or the tilt 

may be monitcred and the data corrected (which may be difficult). 

b. 3 Transformation of Coordinates 

Let us derive the general transformation equations required to 

go from inputs in an earth-fixed coordinate system to a gyro-case-fixed 

coordinate system, including any additional inputs of the table relative to 

the earth.   In Fig.   5-1,  let xyz be the earth-fixed coordinate system and 

let uvw be the coordinate system fixed to the gyro case.    Let TA be the 

table axis, which is nominally coincident with the z axis, with the table 

angle 0 measured from the xz plane. 

(•) (b) 

Fig.  5-1.    Earth and Gyro Coordinate Systems 

The table axis is slightly misaligned with the z axis, as defined 

by the angles 6—    and *.    The w axis of the gyro is slightly misaligned with 

respect to TA,  as defined by the angles 6   _, and p.    Fig.  5-1(a) is 
a view looking In the minus  z direction and Fig.   5-1(b) is a view 
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normal to the plane defined by TA and ■/. axeu wich the w axis rotated about 

TA so that it is in the plane of TA and E.    The angles ÖT    and 6    -, are 

each <^ 1 radian.    The angles a  and ß may have any values from 0 to 2n. 

Physically, the actual table axis may be skewed to the z axis, then TA 

in Fig.  (5-1) is taken to be the projection of the table axis on a plane con- 

taining the v. axis and parallel to the actual table axis.    Similarly,   the w 

axis shown in Fig.  (5-1) is the projection of the actual w axis on a plane 

containing TA and parallel to the actual w axis. 

\JVX x,   y,   /. he the vector components of earth rati: J** of 

iict eleralion ulonj^ the x,  y ami /. axes,   respectively.    Let t  be the verlor 

represi.nting the table rate relative to earth.    Lei u,  v,   ami w be the total 

resultant vector components along the u,   v,  and w axes,   respectively.    The 

vector components in the uvw coordinate system, due to the inputs x,   y,   /. 

and t,  are determined by the following transformations: 

a) Rotate the xyz system about the z axis through the angle 
oi to form the x. y. s. system. 

b) Rotate the x. y. z. system about the y, axis through the 
angle 6j7 to form the x2 y, z, system.    The z2 axis now 
coincides with TA,  and the vector t is now introduced. 

c) Rotate the x. y . /. . system about the z, axis through the 
C. t, L, 4. 

anj;lc (p - u f 9) to fonn the x. y^ /.. system. 

«I)   Rotate the x, y, / , system about the y . axiti through th«; 
an^le 6wi' to form the x4 y. / . system.    The /. axis now 
coincides with the w axis. 

e)  Lastly,  rotate the x. y4 /., system al)Out the /.. axis 
through the angle -pto coincide with the uvw system. 

Since 6—   and 6   T are <» 1 radian, we may use small angle 

approximations for the trigonometric functions, i. ^., 

cos öTz-co» 6wT- 1 

sin öT2r^ 6Tz and sin 6^^ 6aT (5-1) 

6^   »6   „, *■ 0 Tr,        wT 



After performing the above transformations and applying the 
approximations of Eqs. (5-1), we und 

u- xcos 9 + y sin 9 - z" [ÖT   cos(e-«) + 6  T coe p] 1z »w   -' T vwT 
-T öwT co. P 

v - -x sin 9 + y cos 6 + z" [öTz 8in(e - or) - öwT sin ß ] 

-T öwT sinP (5-2) 

w»- x LöT2 cos « + öwT cos(p + e)]+y L6T2 sin flr 

+ öwTsin(3*e)]'»-7+T 

5.4 Continuous Rotation Tumble Test 

We will first consider the tumble test in which the table is 
rotated continuously and uniformly with respect to earth.   The discrete 
position tumble test will be investigated in a later section. 

5.4.1 Position No.   1, ORA -> North 

With the table axis nominally parallel to the earth's polar axis 
EA, mount the gyro on the table so that ORA is nominally parallel to TA 
and points north, and IRA points west when the table angle 6 ■ 0°.    Fig. 
5-2 shows the relative directior s of the various axes.    Fig.  5-2(a) is a 
view looking south along EA and Fig.   5-2(b) is a view normal to the plane 
of EA and TA with ORA rotated about TA into the plane of EA and TA. 

The misalignment angles 6TE and ÖQNT corre8Pond to &r    &n<* ^   x of 

Fig.  5-1 and are greatly exaggerated. 

The table will be rotated at a rate bcuE»  relative to earth, in a 
counterclockwise direction (same direction as earth rate) and then in a 
clockwise direction, i.e.,  -*>•>_ relative to earth. 
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'ONT 

bujg 

(b) 

Fig.  5-2.    Position No.   1 

5.4.1. 1        CounterdockwrUe Rotation of the Table;   The angular velocity 
component« to be substituted in Eqs. (5-2) are x ■ 0( y « 0, 7 ■ «_,  and 

T a b»p.    The angular velocity vectors ■.,   WQ, and «s correspond to the 
vectors u, w, and -v of Eqs. (5-2),  .espectively. 

•j- -«£ [(1+b) ÖONT coe pj + ÖTE cos(e-Qr)] 

•o - •■(l+b) 

•S *" "E t(Ub) 6üNT "^ • 1 " ÖTE •ill(e ' 41 (5"3) 

;0-o 
The acceleration components to be substituted in Eq. (5-2) 

are x «T ■ 0« y - cosX, ? ■ sinX, where X is the astronomic latitude (positive 
in northern hemisphere).   The acceleration components a., »Q,  a- correspond 
to the vectors u( w, and -v, respectively of Eqs. (5-3). 

aj * cosX sine - sinX WQJ^. C09 PJ + ÖTE cos(e-Sf)] 

a0 * sinX + cosX \.6oiri •in(P1 + 6) + ÖTE sin« ] 

ag - -cosX cose + sinX töOHT sin Pj - ÖTE sin(e-Of)] 
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At middle latitudes (25   to 60 ) where practically all gyro 
testing is performed, the effects of small misalignments on the accelera- 
tion components will result in only second-order errors in the drift rates 

and will be neglected. 

a. * cosX sine 

a0*sinX (5-4) 

a  -»-cosX cosG 

Substitute Eqs.  (5-3) and (5-4) in Eq. (4-2).   Let iONk be the 
command rate-to-balance current in Position No.  1 (ORA —> North) with 
counterclockwise rotation at table angle G,   - ke  , where 6    ■ 360  In 

K n n 
and k = 1, 2,  3,...^.   The terms are arranged as in a Fourier series. 

KTiONk = - [DF + D0 sinX + DQQ sin2X+ 1/2(DII + DSS) cos2X 

+ uiE (1 + b) 6ONT (cosßj - C0 sin ßj) 

Miz^oo1»   4(1 + b)2öONT,ln2Pl] 
Jo  - J^ 

T. r 

- [Dj co«X+ 1/2 DIO sin 2X + o)E6TE (sinaf CQCOS Of) 

" lü^TcTHT «E (1 +b) 6ONT ÖTE co.(flr+Pl)]sinken 

+ l/2[Dlsco8^X->-2o|t300h     »E 6TECO820':i8in2ken 
r 

+ [Dsco8X+ l/2Dossin2X- («>E6TE (cosa - C0 sinor) 

" 206^ S00IHr «E <1 + b) öONT ÖTE 8ln(a' f el):ic08 kön 

+ l/2[(DTf - Dcc) co82X- ^A/5 iAA U    4« 62    sin2a cosikr 
C (5-5) 
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5.4.1.2 Clockwise Rotation of the Table;   The setup la the same at in 
Fig. 5-2,  but the table is now rotated in the opposite direction without dis- 
turbing the setup used for the counterclockwise rotation.   The command 
rate-to-balance equation is the same as Eq.  (5-5),  except that {14- b) is 

replaced by (1 - b)( and the command rate-to-balance current is iQNk at 
table angle 6.  ■ K9  .    Though the table is rotating clockwise, the table angle 
u,  is still measured in a counterclockwise direction from the west, as k 
shown in Fig.  5-2(a). 

5.4.1.3 Weighting the Data from Position No.  1;   In order to eliminate 

some of the effects of the gyro misalignment angle ÖQNT and to rninimize 

the remaining effects, we will weight the data as follows: 

woNka -rir t<b-l> W+ <b+1> W" -tDF + Do ^ 

+ DQQ sin2X + 1/2(DII + Dgg) cos2X 

+ JCTTT 4 (b2-l) 6ONT 8ln 2pi> [DI co'x 

+ l/2Dl0sin2X + »E6TE (sinflf + C0 cos«)] sin ken 

+ 1/2 [Djg cos2X ♦ 20^00^ 4 ÖTE C08 20f >ln 2ken 

+ [Dg cosX + 1/2 DQg sin 2X - «>E 6TE (coscr 

- C0 sin«)] cos ken +    /2 [(DJJ - D^) cos2X 

- zgfWn; »E öTE •** ^ C08 2ken        (5-6) 

5.4.2 Position No. 2, ORA -> South 

Position No. 2 is obtained from Position No.   1 by rotating the 
gyro 180° about SRA so that ORA points south along TA and IRA points east 
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when 9 = 0 .    Rotating about SRA minimizes the time required for «ettling. 

In the following analysis,  it is assumed that the position of TA relative to EA 

is unchanged.    If this is not true in any particular test setup, then the analy- 

sis must be appropriately modified and becomes more complicated.    However, 

in general, the angle that ORA makes with TA would not be the same as in 
Position No.   1. 

Fig.   5-3 shows the relative directions of the axes.    Fig.   5-3(a) 

is a view looking south along EA,  and Fig.   5-3(b) is a view normal to the 

plane of EA and TA with ORA rotated about TA into the plane of EA and TA. 

W (West) 

(a) 

E 

Fig.  5-3.    Position No.  2 

5. 4. 2. 1 Counterclockwise Rotation of the Table:   Let the table rotate 

counterclockwise (G > 0) at a constant rate bo)E with respect to earth.    The 

angular velocity vectors to be substituted in Eqs.   (5-2) are x - ~ = 0, 7 - n, 

and t  = bu)E.    The angular velocity components «».,   («p.,  and mc correspond 

to -u,  -w,  and -v,  respectively of Eqs,  (5-2). 

-27- 



»I *" -"»E ^ *1+b^ ftOST CO, P2 " *TE c08^e "•^ 

(5-7) 
•S " mK C(1+b) öOST ^ *Z ' ÖTE •ln W-^l 

;0* o 

The equivalent applied acceleration components along the gyro 
reference axes are also determined from Eq'.. (5-2) and simplified. 

a. ■" -cosX sine 

a0- -slnX (5-Ö) 

as •■ -cosX cose 

Substitute Eqs.  (5-7) and (5-8) in Eq. (4-2).    Let iOSk be the 
command rate-to-balance current in Position No. 2 (ORA —> South) with 
counterclockwise rotation at table angle 6.   = ke , where k ■ lt2(3(....n. •      K        n 

KTiOSk = -[Dp - DQ sinX + DQQ sln2X + 1/2(DII + Dgg) cos2X 

♦ tt.E (1+b) Ö0ST (co. p2 - C0 iln ß2) 

+ m^rT!;4<Ub>2ö^T8in2P2^ 

+ [D. cosX - 1/2D.Q sin 2X + (»E6TE (»in« - CQCOS«) 

+ 206,300»   4 <1+b) öOST ÖTE <=o»C+P2)3 »in ken 1 r 

- 1/2 [DJS cos2X ♦ ZOMOO1»    "»E 6TE c08 Z^ ,4a 2ken 

+  [Dg cosX - 1/2 DQg sin 2X + u)E 6TE(coseir +C0 sinor) 
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Je - J 

^ZOMO&H    4 (1+b) öOST ÖTE •to(«-P2)]cos ken 

♦   1/2[Ü)U-DSS) co.2X ♦ 20fc
S
t goo1»   4 6TE8ln20,:icO8 2ken 

' (5-9) 

5.4.2.2        Clockwise Rotation of the Table;   The setup Is the aam« as in Fig. 

5-3, but the table is row rotated in the clockwise direction without disturbing 

the setup used for the counterclockwise rotation of the table.   The command 

rate-to-balance equation is the same as Eq.  (5-9),  except that (1+b) is re- 

placed by (l-b),  and the command rate-to-balance current is IQCI. at table 

angle 0.   = kb  .    The table angle 6 is still measured in a counterclockwise 
K It 

direction from west as shown in Fig.  5-3(a). 

5. 4. 2. 3        Weighting the Data from Position No.  2:   In order to eliminate 

some of the effects of the gyro misalignment angle 6QQT and to minimize 

other misalignment effects, we will weight the data as follows: 

wo8k-Trt(b-i)iOSk + (b+i)ii)Sk] 

2 2 
= -[Dp - DQ shu + D00 sin \ + I/2(DU+DSS) cos X 

Jc. - J 
+ 412%WIH   4 <b2-1) öOST ** 2^^Di COBX 

- 1/2 Dj0 sin 2X + t»)E ÖTE (sinor- CQ coscr)]8in ken 

- 1/2 [Djg cos2X + ^^j^ u,2 ö2 E cos 2or ] sin 2k6n 

+ [Dg cosX - 1/2 D^g sin 2X 

+ tt!E ÖTE (cosor + C     sinor)] cos ken + 1/2[(DU-DSS) cos X 

(»>r 0^,-. Jin 2a 1 cos 2ke (5-lo) f 2Ö6,S0öHr ^E^TE 
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5,4.3 Control of Ml>ali£nment Errors 

It is somewhat easier to investigate the impact of the misalign- 
ment errors if we look at the sum and difference of Eqs. (5-6) and (5-10). 

WONk + WOSk s -^F* 2DOO 8ln2x + <DU*DSS) ^»^ 

+ 412%001Hr »E {hZ'l) (6ONT Bin 2P1 + 6OSTaln 2h^ 

- [DIO sin 2X + 2 «g 6TE C0 cosor] sin ken 

+ 2[DS cosX + ojg ÖTE C0 sin«] cos ken 

+ (Dn-Dss) cos2Xcos 2ken (5-11) 

woNk * wosk" -C2 Do *** U\l'm\ •li*z-mtz
atn*im*1 

- Ö^ST sin 2p2)] -2CDJ cosX + o^. ÖTE sina ] sin ^+[0^ cos2X 

+ IM, m\ «E ÖTE COB Z*l Bin 2ken + ^OS 8in 2X 

- 2«.EöTEcosar]cos ken - ^ j^ u.2 62 E sin 2«cos 2ken 

(5-12) 

It is easier, in general, to control the misalignment of the table 
axis to the earth axis (angle 6TE) than it is to control the misalignment of the 
gyro output reference axis with respect to the table axis (angles ÖQNT and 
ÖQST).    The latter misalignment angles result from manufacturing and 
assembly tolerances of the gyro, the mounting fixture and the table.   In 
addition, those angles may be a function of the clamping loads, the average 

temperature, and the temperature gradients in the test setup and in the gyro. 
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It is relatively easy to control 0-- to less than 0. 001 rad {=■$ min), and it 

may be controlled as closely as 15 x 10'   rad {^3 sec) on a very stable 

pier. 

The misalignment angle CQ in a well-designed and assembled 

gyro should be less than 0.01 rad (*,34 min); therefore, if we control w^ 6TE 

in Eq. (5-12) to a satisfactory degree, then the error terms containing 

«Dg ÖTE CQ in Eq. (5-11) should be quite negligible and may be deleted. 

At a latitude of 45°, it is seen that oi^ ÖTE must be less than 7% 

of D. and 5% of OQC if these coefficients are to be determined with an error 

of less than 10%.   For example, if OQC = 0. 001 in-, then 2 Wg O-,» must be 

less than 0. 1 x 0. 001 II»» or ÖTE must be less than 1 x 10/2 ■ 5 x 10      rad 

(=*• 10 sec) if DQC is to be determined with an error of less than 10%.   It is 

obviously far more difficult to determine DQ« or D. accurately if they are 

only I x 10~    u)E, though some manufacturers make even more doubtful 

claims. 

Let us now look at the remaining error terms; these involve the 

ratio (Js - Jj/H  .   Since ii. general, the misalignment angles 6QNT and 

ÖQCT would be greater than 6—E and (b -I) »1, then the errors in the con- 

stant terms of the Fourier expansions are more significant than the errors 

in the other Fourier coefficients.   The Central Äncrtial Guidance Test 

Facility at Holloman AFB normally performs its tests with b ■ 20 and,  on 

occasion, as high as b = 100.    Let us look at the order of magnitude of these 

errors by assuming some value» for the various parameters which will give 

errors greater than what would ordinarily be expected.    Let JQ - J. ■ 1000 
2 a 2 9        X 

gm»cm  ,  Hr = 10   gm«cm  /s,  ÖQNT * *OST " 0*05 rad*  *ln 2Pi = 8in 2P2 

= 0.5, b = 100,  and <sE
te 15 deg/hr.   Then, 

41Z%00IH    4 {hZ'l) (öONT 8ln 2P1 + öOST 8ln 2P2) = 

r 

412,fe10O0OxO10,000 x 225 x 10'000 (0-0025 x 0-5 

♦ 0. 0025 x 0. 5) - 0. 0014 .ieg/hr 
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Therefore, even with these rather extreme values, the error would be 
negligible in most applications.   However, it would be well to estimate this 
error for each new design and test setup in order to confirm that it is 
negligible.   If the error is not negligible, there are several steps we may 
take to reduce it; they are:   a) apply closer tolerances on the manufacture 
and assembly of the gyro, b) apply closer tolerances on the manufacture 
and assembly of the mounting fixture, c) correct any non-orthogonality of 
the table face to the table axes, d) use a lower table rate, e) increase the 
angular momentum of the gyro and/or decrease J« - J.. 

5.4.4 Gyro Coefficients from OA ^> North and OA-» South Tests 

If we assume that the misalignmenl terms of Eqs. (5-11) and 
(5-12) are controlled and negligible compared to the gyro coefficients, as 
is necessary, and we now apply the method of least squares to Eqs. (5-11) 
and (5-12), then the following equations are obtained: 

n 

2 DF + 2 D00 »^ + ^II^SS» co*Z*sir ^ONk^OSk» 

Dio ■ irnlnr £ (woNk+ wosk> •*» ^n 

DS =inSiT  £  ^ONk + WOSk) CO- ken 

DII * DSS S T^ZJ  £  ^ONk + WOSk) c08 2ken 

-1 n 

D0 " ZnslnX  ^j  (WONk " ^^OSk* 

i n 

D- = %    T   (W-kXt.   - W^.) sin ke I     n cosX  j^.   *   ONk        OSk' n 
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2 
DIS 3 —ST Ä ^ONk - WOSk> ,to 2ken n co« X   k«l 

D0S'^;  J^ <WONk ■ WOSk> «<>• w» <5-»' 

Since there are only two equation* involving the four unknown 

coefficients Dp, D—, DQQ* and Dec* it is necessary to obtain two more inde- 

pendent equations involving D-, and at least one of the other three coefficients, 

or make some simplifying assumptions. 

Seme organizations assume that D-Q = 0, in which case only one 

more independent equation is required.   An additional tumble test with SRA 

parallel to the earth's polar axis will provide the necessary relationship. 

The equations for such a tumble test are derived in a manner similar to 

that used for Positions Nos.  1 and 2.   Unfortunately,  a new misalignment 

error term appears which involves JQ/H .   These errors are probably 

negligible in most cases, but if not, they are not so readily amenable to 

minimization by design changes. 

Other organizations assume that DQQ and either D» or D» are 

zero.   Equations (5-13) are then sufficient to determine all the remaining 

coefficients.   The assumption that DQQ s 0 is justifiable on the somewhat 

weak grounds that no theoretical analyses have shown a need for such a term. 

However, it is difficult to justify setting either D.. or Dss equal to zero, 

and certainly not one in preference to the other. 

The most accurate method for obtaining the quadratic and cross- 

coupled coefficients,  such as D-, and DQ^, is on a precision linear shaker. 

The common electromagnetic shakers, used either with or without a slip 

table, are not usually satisfactory since they may have substantial cross 

axis and angular motions.   This technique will be analyzed in Section 6. 

We will now turn to the discrete position tumble test. 
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S. 5 Di»crete Po»iii>n Txunble Test 

In the discrete position tumble test, the command rate-to- 

b^.lancö current is measured at a series of table positions after equilibrium 
aas been reached.   Thus,  some of the dynamic error terms are avoided, but 
of course, other errors appear. 

5. 5.1 Position No,   1. ORA -> North 

The mounting position is identical to that described in Section 
5.4. 1 for the continuous rotation tumble test.   The command rate-to-balance 
current is measured at table angles 0.   ■ ke   where 9    ■ 360  In and 

K n n 
k ■ 1, 2, 3,..., n.   The results are the same as given by Eq. (5-5) with b = 0. 
The gyro must be allowed to attain equilibrium at each table angle. 

VoNk = -rDF +DoslnX + Doo8in2x+ 1/2<Dn+Dss) c082x 

+ «E 6ONT <CoMl ' Co,lnpl) 

S *   I 2    2 
+ 41Z,fc00Hr 

MEöONTsin2pi:i 

- [Dj cosX + 1/2 DIO sin 2X + »£ 6TE (siner + C0coser) 

" 206S. mViT 4 öONT ÄTE co»<«+ Pl)3 •« ^ 

+ 1/2CDKcos^+7ü^ü^46TECOs20r^ln2ken 

+ [Dgcosx + 1/2 DQg sin 2X- «EöTE(coser- C0 «inpf) 

" 206, WH    4 6ONT ÖTE 8ln<0,+ Pl):i C01 ken 
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+  1/2 [DJJ - Dss) coi2X 

J«, - J 
" m.m\ 4 ftTE •*» 2«3 co. 2k^ (5-14) 

Unlike the continuous tumble tests, it makes no difference, 
theoretically, whether the table is rotated clockwise or counterclockwise 
from one table angle to the next, providing equilibrium conditions are 
attained at each table angle before readings are taken, and providing there 
is no hysteresis due to pivot friction or other causes.   If hysteresis effects 
are suspected, then readings should be taken in both clockwise and counter- 
clockwise rotation.   The rotation from one position to another should be 
smooth and unidirectional. 

5.5,2 Position No. 2, ORA —> South 

The mounting position is identical to that described in Section 
5.4.2.   The command rate-to-balance current is measured at table angles 
6i= k8 . where 6   ■ 360o/n and k = 1,2, 3,..., n.    The results are the K n n 
same as given by Eq. (5-9) with b = 0.   The same cautions regarding 
equilibrium and hysteresis given in Section 5. 5.1 also apply here. 

KTiOSk » -[Dp - D0 sinX + DQQ sin2X + 1/2(0^ Dgg) COB2X 

+ •Ed06T<ca- P2-Co8ln P2) 

JS " JI        2  .2 
+ 412, WHr «E öOST •ln 2p2:i + [DI C08X 

- 1/2 DJQ sin 2X + »g ^j, (sinor- CQ cosor) 

+ aTC MOH     "E öOST ÖTE CO,(0,+ P2^ 8ln ken 
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2, JS " JI 2   tZ -l/ZLDjgCO. X + Iüj;TOT%-«.EöTEco.2«].ln2ken 

+ CDg co»X - 1/2 Dos sin 2X + »E ÖTE (cosorf C0 «Inar) 

+ IM. SOOH   4 6OST ÖTE •ln(flr* Mcos ken 

2,   .     JS * JI 2  82 + 1/2L(DII- Dss) co. X ♦ Z0^ S0^H   4 6TE»ln 2flr]co. 2ken 

' (5-15) 

5. 5. 3 Gyro Coefficients from OA —> North and OA —> South Tests 

The sum and difference of Eqs. (5-14) and (5-15) are: 

S^ONk + W ss -t2DF + 2D00 '^^ + <DU+DSS) co*Zx 

+ ÄE6ONT(c0,Pl-C0,lnPl) 

+ WE 6OST ^^ P2 * C0 8ln P2) 

JS " JI 2  ,.2 ,.     . ,2 
NliUMH   «E (öONT *in 2P 1 + öOST '^ 2 P2^ r 

- |DiO »^ 2X + 2wE ÖTE C0 COS * 

" mtmUr "E 6TE töONT co,<a+ pi) 

+ 6 OST cos(0f + P2) ] | sin ken 

+ |2DscosX + 2«EöTEC0sinQf 

S "    I 2 
' ZM. 300 H   "E 

ö
TE 

[ö
ONT •^ (0'+ ^ 

- Ö^T sin(Qf-ß2) ]l cos ken + (DJJ- Dgg) cos2X cos 2ken 

(5.16) 
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^ONk " W* s * t2Do •UA + "»E öONT (C0• ^i - CQ ,in •l1 

-^öosT(co,^"co,ln^+TT^nnr4(6oNT,ln2pi 

-ft^iin 2I2)] -   [ZDjCOtX + 2 «E ÖTE «InOf 

Js - J 2 

^OMOOH    "E ÖTE CöONT CO,(0f+ 'l1 
'S--1! 2 

'OST *       p2' 

Je - J, 
+ [DJS co.2X ♦ zof, ^OOH    4 ^E00* 2o':!"ln 2ke 

+ |D0S8ln2X -2 «ß öTEco»or 

JS * JI 2 
' 206,300 Hr "'E 6TE t6ONT ■ln(0,+ P^ 

+ öOST.ln(ar.P2)]|co. ken 

- 206.300 H   »E 4E ,la 2Ä CO- 2ken <5-17) 

The discuasion in Section 5.4. 3 on the error terms containing 
(J- - JT)/H   would also apply here,  except ihat the errors are usually 

O 1 r y 
negligible since they are not multiplied by (b -1).   It is obvious that any 
remaining error terms containing products of misalignment angles are very 
easily controlled and may also be neglected.   Neglecting those terms, 
Eqs. (5-16) and (5-17) reduce to: 

S^ONk + W s - UDF + 2Doo ^ + ^n*D88) co,2x 

+
 '"E <ÄONT co■ Pl + *OST CO• P2^ * DIO Uin 2X 8in ker 
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+ 2DS coiX cot ken + (DJJ - Dgg) cof2X COB 2ke     (5-18) 

S'^-ONk " ^k* ' -C2D0 ,lBX + a,E(öONTCO, *lm 6OSTCO• W 
2 

• 2(0| COBX + »E ÖTE sin«) sin ke^ 4 Djgcos  X tin 2kGn 

+ {Dos sin 2X - 2»E ÖTE cosor) cos ken (5-19) 

Knowing the desired accuracy for the performance coefficients, 
it is relatively easy to control the misalignment angle ÖTE to the required 

magnitude.   Unfortunately, the terms Wg ^QNT CO* ^1 and ^E *OST co* ^2 
are not as amenable to control and cannot be eliminated by weighting clock- 
wise and counterclockwise rota ion as is done in continuous rotation tumble 
tests.   A careful estimate of the maximum error must be made and compared 
to the allowable error.   The misalignment angles include misalignment of the 
gyro to the table axis, non-orthogonality of table face to table axis, mount- 
ing fixture errors, effects of bolting torques,  and dirt on mounting surfaces. 

Assuming the misalignment errors have been properly controlled, 
we may apply the method of least squares to Eqs.  (5-18) and (5-19).   The 
resulting normal equations are: 

-K     n 

2DF + 2Doo •ln2x + <Dn + Dss)co^s TT £ <lONk+iosk> 

-2K_    n 
DIO .i„ 2X S -^J kEl  <ioNk + W •ln ken 

DS co*X * IT jfj (lONk + W COi ken 

<Dn - Dss) co.2X S -^1   f (iONk + i^) cos 2ken 
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-K-   n 
Dj co.X - -j- ^ (iONk - lo^) Min ken 

2 2KT    n 

DIS co- X s -TT £ «^Nk * l08k> 'ln 2ken 

iK-   n 
DOS 8ln 2X s TT Ä (iONk - W COa k9n k«l 

As with the continuous rotation tumble test, there are ten unknown 

coefficients, but only eight equations.    This leads to the need for two more 

independent equations or for some simplifying assumptions.    Refer to Section 

5.4.4 for a discussion of this subject. 
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6.   PRECISION LINEAR VIBRATION TEST 

6.1 Introduction 

At previously mentioned, the most accurate method of obtaining 

the coefficients of the quadratic and cross-coupling terms such as D.. and 

D.g, is on a precision linear vibration table.   The great advantage of the 

vibration test over the tumble test is due to the higher acceleration level 

available which greatly magnifies the response because the drift rate varies 

as the square of the input acceleration.   Since it is the quasi-static value 

of each coefficient that is generally desired,  care must be taken to have the 

input frequency well below any resonant frequency of the gyro or of the 

mounting fixture.    In research and development,  it is probably desirable 

to test at more than one frequency. 

Mounting the gyro and its fixture directly on the ordinary electro- 

magnetic shaker,   or on an ordinary slip table driven by such a shaker,   i" 

often not acceptable because of the large components of cross accelerallo:. 

and angular acceleration which ar* usually prtsent.    A precision linea: 

shaker such as the one in the Charles Stark Diaper Laboratory,  driving r 

good Team table is requirec. 

In order to minimize the effects of earth's rate,  tho vibration 

input should be along a line normal to the polar axis such as a horizontal 

east-west line,   and IA should be normal to the polar axis whenever poscible. 

We will assume that reasonabl    care has been taken in the setup and mount- 

ing of the gyro so that the total misalignments of the gyre axes,  as mounted 

with respect to the vibration axis, earth axis, and the gravity vector are 

less than 0.01 rad O* 34 rmn) and may be neglected. 

The determination of only three coefficients will be illustrated 

in the following sections; all others may be determined in a similar 

method. 
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6. 2 Determination of D^ - Position No.   1 

Mount the gyro on the precision linear shaker with ORA pointing 
north along the earth's axis EA, and IRA pointing east as shown in Fig. 6-1. 
The line H-H represents the horizon, X is the astronomic latitude, and a is 
the vibration input in j^ units with amplitude A..   (0 to peak). 

SRA 

i^t o « Ig 
SRA 

ORA&EA I.. 
IRA (East)   ■       M) 

Oy s A sinwt 

(a) VIEW LOOKING WEST (b) VIEW LOOKING SOUTH ALONG EA 

Fig. 6-1.   Gyro Axes in Vibration Position No.  1 

The gyro is vibrated at (n+1) different acceleration amplitudes 
A..,  k=0, 1,1,,,,,*,  and A., s 0.   The components of acceleration and cart 

rate along the gyro axes in Position No.  1 are: 

•ilk s Alk •** •* 

*01k s minX 

»Slk s co,X 

•lE *" •SE "* 0 

•OE ' mE ihml) 

.42. 



Substitute Eqa. (6-1) and (6-2) in Eq.  (4-2) and let ilk be the 
command rate-to-balance current in Position No.   1 at vibration amplitude 

WIlk s ^ llk ' '^DF + DIAlk •in tt)t + D0 BlnX + DS co,X 

2 2 2 2 + D-j A.,  »in   «t + D00 sin X + Dgg cos X 

+ DI0
Aiit •i»A«4n»t + ÜQg ainX coaX+ 0^coaX Alksin wt] 

The average command rate-to-balance over a time interval NT, 
where N is an integer and T s 2n/« la the period of the vibration« is: 

K        NT 

WIlka W  /    llkdt 3 -^F + Do »^ + DS co^ + 1/2DnAlk 

+ D00 8ln2X + Dgg cos2X + DQg slnX cosX] (6-3) 

Perform the above test for k = 1, 2, 3 n.   In testing a new 
model of a gyro or a gyro mounted on a new fixture, it is good practice to 
test at several frequencies in order to ascertain that the Anal teat runs are 

not performed near or beyond any resonant frequency of gyro or mount. 

Without disturbing the setup in any manner, determine the aver- 
age command rate-to-balance current with A..   ■ A.0 = 0.   The average com- 
mand rate-to-balance is: 

K       NT 

wiio aRT f lio dt ' '^F + Do •^ + DsCOiX + Doo •in2x 

+ DgS cos X + DQg sinX cosX ] (6-4) 

Subtract Eq.  (6-4) from Eq. (6-3) for each input acceleration level, 
sum the results, and solve for D... 
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It is often useful to plot the change In indicated command rate 0*ti|p"Wfio^ 
versus input acceleration level squared.    This relationship should be 
linear, and the slope is proportional to O... 

6. 3 Determination of Dss - Position No. 2 

Rotate the gyro 90   about ORA to Position No. 2, as shown in 
Fig. 6-2. 

a = la 
a   = A slnut 

EA (North) Ji ^ 
ORA&EA 

SRA (Eai 

- H 
IRA 

(a) VIEW LOOKING WEST (b)  VIEW LOOKING SOUTH ALONG EA 

Fig.  6-2.    Gyro Axes in Vibration Position No. 2 

Perform the vibration tests at n amplitude levels A,,  (not nec- 
essarily the same levels used in Position No.  1, except that A20 ■ A.0 ■ 0). 
The components of acceleration and earth rate along the gyro axes are: 

•uk3 -cosX 

a02k = i sinX 

•S2ka A,,  sin tut 

•lE^ •SE* 0 

•OE* "E 

(6-6) 

(6-7) 
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Substitute Cqa.  (6-6) and (6-7) In Eq. (4-2) and reduco the 
data iu a manner •imilar to the method» used in Section 6. 2. 

n 
}SS  ki;A2k-2nWI20-2   £Wuk (6-8) 

6.4 Determination of D.g - Position No. 3 

Rotate the gyro about ORA to the position shown in Fig. 6-3. 

O = lg 
SRA 

EAST 

IRA 

ev ■ A tin wi 

la)  VIEW LOOKING WEST (b)  VIEW LOOKING SOUTH ALONG EA 

Fig.  6-3.   Gyro Axes in Vibration Position No. 3 

The components of acceleration and of earth rate along the gyro 
axes are: 

*I3k " ' ^j  cosX +-^  A3k sin at 

*03k a ^ 

*S3k * ^T CO,X +'^ A3k ,to •* (6-9) 

»IE " »SE " 0 

•OE a •E (6-10) 
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Again, take data at each amplitude level A.., including A.Q ■ 0. 
Applying the same data reduction procedure as before, we find: 

<DU ♦ "SS ♦ DJS» Jfäk ' 4n «130 * 4   £, "l3k ^'^ 

One could substitute the values of D.. and Dgg obtained from Eqs. 
(6-5) and (6-8) in Eq. (6-11) and solve for D^.    Because of the standard 
errors of the mean values of O— and Oss, it is a somewhat better procedure 

to rotate the gyro 90   about ORA from position 3 and perform another series 
of vibration runs with the vibration inputs along IRA and SRA being 180° out 
of phase.   The reduced equation for this fourth position is: 

<DU * DSS - «V Ji AJk ■ ♦» "140 - * £*Mk <*-U' 

The value of D» is obtained from Eqs. (6-11) and (6-12).   The 

coefficients D.Q and DQC may be determined in a similar manner. 
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7.    TORQUES DUE TO DENSITY GRADIENTS 

If the gyro fluid has & density gradient along an axis normal to 
the output axis, and if there is an applied acceleration component normal 
to both the gradient axis and the output axis, then convection currents will be 
generated which will exert a torque about the output axis with resulting drift 
rate about the input axis.   The density gradient may result from a temperature 
gradient and/or stratification of a non-homogeneous fluid.   Most gyro fluids 
are polymers containing a range of molecular weights and are nearly, but 
not quite, homogeneous. 

The fluid flow must be determined from the partial differential 
equations of potential flow theory.   Except for the very simplest cases, these 
equations must be solved by numerical integration methods.   There are many 
possible density gradients occurring in gyros; we will consider one simple 
example. 

Let us assume that the gimbal is a right circular cylinder, and 
that the fluid density varies linearly along the spin axis as expressed b) Eq. 
(7-1) and indicated in Fig. 7-1(a). 

Pe^o^^*33Po^^-ine] (7-1) 

where 
3 

p.  a fluid density at angle 6 - g/cm 

P0 = fluid density at 6 3 0° - g /cm 

Lp ' p90 " p270 " g/cm3 

x    s distance along SA from origin - cm 

R   a radius of gimbal - cm 
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I 

'9 spo (u^,,n« 

GYRO CASE 

x.SA 

(a) (b) 

Fig. 7-1.    Density Distribution and Fluid Flow 

Assume that the fluid gap h is very much smaller than the radius 
R, which is true in all such gyros, and that the density of the fluid is 
essentially uniform in the cross-hatched volume enclosed by the small angle 
AQ»  gaP h, and gimbal length i.    Let the gyro be fixed to the earth with IA 
up,  i. e.,  gravity vector £ is acting downward as shown in Fig.  7-1(a). 

Rather than solve the potential flow equations which would require 
tedious numerical methods, we will determine only the initial torque exerted 
on the gimbal.   This is not really such a great shortcoming,  since it is 
known from other considerations that the time constant for the convection 
flow in a one-g field is many hours or even several days. 

With the above conditions, in particular the narrow fluid gap, the 
initial velocity distribution will be nearly parabolic (approaches parallel 

plate conditions), as indicated in Fig.  7-l(b).   In addition, continuity re- 
quires that the initial velocity distribution across the gap be the same all 
around the circumference. 

The moment of the fluid weight about OA is 
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or 

w ■ -Ghi R2 ^y (1 +^-«lne) «In 6de 

Mw ■•?Ghje R2 Ap (7'2) 

where 

Mw = moment of fluid weight - dyn* cm 
2 C      » local value of gravity - cm/a 

1      = length of gimbal - cm 

With a parabolic velocity diitribution across the gap, the vis- 
cous drag per unit area on either the gimbal or the gyro case is 

4nv 6|iv 
FD a -IT51 3 T1 <7-3) 

where 
2 

F- a drag per unit area at interface - dyn/cm 
2 

li     = viscosity - poise a dyn. s/cm 

m maximum fluid velocity • cm/s 

v     a average fluid velocity - 2v   /3 - cm/s 

Formula (7-3) may be found in any fluid mechanics textbook for forced flow 
between parallel plates. 

The total viscous drag moment exerted by the gimbal and the 
gyro case on the fluid is 

2 
M^ » 2(2TT IU) FD • R « 24tt

h
TTR  i   va (7-4) 

Because of the extremely low fluid velocity, we may neglect 
the inertia of the fluid.   Then, for equilibrium of the fluid, we have: 
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Iw^+M   «Oa-J Ghi R2 to + 24^R  i  vii 

0r 2 
Gh   Ap v.s-Tffr (7-5) 

The viscous drag moment acting on the gimbal about OA is: 

M^oa-V2 (7-6) 

Substitute Eqs.  (7-4) and (7-5) in (7-6). 

M   0=^Ghi R2 Ap dyn. cm (7-7) 

Notice that the moment exerted on the gimbal is independent of the viscosity 

of the fluid.   However, the time constant is dependent on the viticosity. 

The resulting drift rate about the input axis is: 

M 0 M   0 
U.J ■ --fp^- rad/sec ■ -206, 300—^pL deg/hr 

or 

where 

»j = 206, 300 ^j}- Ghi R2 A p = 162, 000 Ghi R2 ^ ^L 
r r 

H   ■ rotor angular momentum - gm*cm  /s 

(7-8) 

2 

Example 

Determine the maximum drift rate of a gyro fixed to earth with 

OA horizontal and IA vertical if the fluid density varies linearly along the 

spin axis.    The gyro has the following parameters: 

2 3 H    = 34, 000 gm.cm   /s p. s 2. 36 gm/cm 

h    s 0. 020 cm Ap = 0. 001 p0 

R   s 1.5 cm li   s 7. 92 poises 

i    s 2.5 cm G « 981 cm/s2 
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a»! a 162, OOO x 981 x 0. 02 x 2. 5 x 1. 52 x y^TOp 

tu. s 1. 24 deg/hr 

Even if the gyro fluid was monomolecular, which is not gener- 

ally true, it would require a temperature gradient of only slightly more than 

one degree to obtain this rather large drift rate in a one-g field. 

The average velocity of the fluid in the gap may be determined 

from Eq.  (7-5) 

„   - 981 xO.022 x 0.00236 . 7 AA v in-6 „,. va3  48 x 7. 92  -2.44x10      cm/s 

With such an extremely low velocity, the assumption that the 

fluid inertia may be neglected is certainly justified for this case.   It would 

also be true for any practical case. 

It is evident that convection torques could account for the ob- 

served fact that a gyro which has been in a fixed position for several days 

(or even overnight) may take several hours of exercising before performance 

coefficients are repeatable in a tumble test.   It would be interesting to 

investigate the effects of such density gradients under the following conditions. 

a) A gyro is stored at operating temperature for 30 days with 
IA up (as in a missile) and then calibrated.    Compare the 
value of Ds obtained in the calibration with the Dg obtained 
when the gyro is continuously exercised. 

b) Repeat the above test with SA up and compare the value of 
D. obtained in the calibration with the O. obtained when the 
gyro is continuously exercised. 

c) Compare the change in D„ obtained in (a) with the change in 
O. obtained in (b). 

If it is determined that convection current effects are significant, 

then it would be interesting to determine the effects on guidance accuracy in 

a high £ environment of time-varying attitude. 
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APPENDIX 

GLOSSARY OF SYMBOLS 

In the general development of the gyro equations in Sections 1, 
2, and 3, no dimensional units have been specified and any consistent set 
may be used.   In Sections 4 through 7, commonly used dimensional units 
have been adopted and it is those dimensional units which are given below. 
In particular, since angular rat«» of the gyro case are given in deg/hr rather 
than in rad/s, it has been necessary to use conversion constants,  such as in 
Eqs. (4-1) and (4-2), which are not required in the earlier equations. 

A a   SI symbol for ampere 
A.^ =    kth vibratory acceleration amplitude (0 to peak) with 

gyro in Position No, j - £ jk 

a   ■ a— - £ s applied acceleration vector - £ 

a., a0, as = components of applied acceleration along I, O, and S 
axes, respectively - £ 

aTir' Vuk*  a«;-ir " components of applied acceleration along I, O, and S 
ijK     WJJC     aja ^^ respectively, in gyro Position No. j and kth 

vibration amplitude - £ 

a. s total acceleration vector with respect to inertial space - £ 

a s instantaneous acceleration due to vibration - s v Ä 

b s ratio of table rate (relative to earth) to earth rate 

c s damping coefficient 

D_ s fixed restraint (acceleration-insensitive) dx5ft rate - 
* deg/hr 

D., D^., Dc s linear, acceleration-sensitive drift rate coefficients - 
I 0      b (deg/hr)/£ 

DTI, O,-,^,  De(; = quadratic, acceleration-sensitive drift rate coefficients • 
II OO      SS (deg/hr)/£2 

Dfo* D«"VQ»  DTC = cross-coupled, acceleration-sensitive drift rate coef- 
IO      OS      15 £iclent, . (deg/hr)/£2 

EA a earth axis (polar axis) 
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FD ■    viscous drag at fluid-gimbal and fluid-gyro case inter- 
faces - dyn/cm2 

G ■    acceleration due to gravity - cm/s 

g s    SI symbol for gram 

£ ■    unit of acceleration equal in magnitude to the local (or 
standard) gravity value 

£ s    gravity vector (in direction of maximum gravity 
gradient) - £ 

— 2 
If s    angular momentum vector - g« cm  Is 

TT =    angular momentum vector of the gimbal with rotor 
8 locked - g • cm2/s 

H . TT =    angular momentum and angular momentum vector» 
respectively, of the gyro rotor (plus associated rotating 
parts) with respect to the gimbal • g • cm2/s 

H    , H    , H =    components of 17   in the XYZ coordinate system - 
rx      **      rz g.cm2/, r 

h s    fluid gap • cm 

I, O, S ■    orthogonal coordinate axes along IRA, ORA, and SRA, 
respectively 

IA, OA, SA ■    true input, output, and spin axes of gimbal, respectively. 
Not necessarily mutually orthogonal. 

IRA, ORA, SRA    a    orthogonal input, output, and spin reference axes, 
respectively, as indicated by markings or mounting 
surfaces on the gyro case. 

T, 7, lc ■   unit vectors along I, O,  and S axes,  respectively 

i s   torquing or command-rate current - A 

*ONk* ^ONk "   COrnmand rate-to-balance current in tumble test 
Position No.  1, at table angle 9., for counterclockwise 
and clockwise table rates,  respectively - A 

^OSk' ^OSk ~    *ame ** *bovc except gyro is in Position No. 2 - A 
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i.. = command rate-to-balance current in vibration test 
J Position No. j at the kth vibration amplitude - A 

Jp JQ* JS              3 m0ment8 oi inertia of the gimbal about the I, O,  and S 
axes, respectively - g • cm2 

J s moment of inertia of a rigid body about a line p passing 
p through the centroid 

J = moment of inertia of the gyro rotor (plup associated r rotating parts adjusted for speed ratio) about its axis of 
rotation - s . cm^ 

J    , J    , J ■    principal moments of inertia of a rigid body uu'    w*    ww r r • ' 
K ■ elastic restraint coefficient 

K^ « command rate scale factor (deg/hr)/A 

k » 1, 2,  3,.., ,n or 0,   1,  2,.. ..n 

i » length of gimbal - cm 

i a    direction cosines of I, O, and S axes with respect to 
mn the principal axes 

M., Mr ■    components of applied normalized torque (applied torque/ 
HJ about the gimbal I and S axes, respectively 

M-. -     component of applied normalized torque about the gimbal 
O axis plus the normalized viscous drag torque,  the 
normalized elastic restraint torque, and the normalized 
command torque 

M.,r =    moment o   fluid weight about OA - dyn • cm 

M ■    total viscous drag moment exerted on the fluid by the 
" gimbal and the gvro case - dyn «cm 

M p ■    viscous drag moment about OA exerted on the gimbal 
^ due to fluid flow - dyn • cm 

N a    integer 

R =    radius - cm 

s s    SI symbol for second 

-55- 



* period of vibration - ■ 

■ table axis 

=   components of applied torque about I, O, and S axes, 
respectively 

* time - s 

s   table rate vector relative to earth - deg/hr 

■ principal axes of inertia 

=   orthogonal coordinate system fixed to the gyo case 

=   vector components of a variable along the u, v» and w 
axes, respectively 

■ average fluid velocity in gap - cm/s 

=   maximum fluid velocity in gap • cm/s 

=   instantaneous and average values, respectively, of the 
command rate-to-balance in vibration test Position No. 
j and at the kth vibration amplitude - deg/hr 

■ weighted drift rates in tumble test at table angle 6. 
in Positions No.  1 and No. 2, respectively • deg/fiir 

■ orthogonal coordinate system fixed to gimbal 

s   earth-fixed orthogonal coordinate system 

■ vector components of a variable along the x, y, and z 
axes, respectively 

o -   angle that an east-west line makes with a plane paral- 
lel to TA and EA - rad 

P.,   ß, s    angle that an east-west line makes with a plane paral- 
lel to TA and ORA at table angle 6.   = 0 deg in tumble 
test Positions No.  1 and No. 2,  respectively - rad 

6niMT'  bnfiT "    *n8le that OKA makes with TA in tumble test Positions 
UN1      uai No.  I and No. 2, respectively - rad 

6TE a   angle that TA m*hes with EA - rad 

I x       rx 
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TA 

Tp T O» TS 

t 

T 

u. V, W 

u,   V, w 

Ü,   V, w 

va 

Vm 

WIjk' w wIjk 

WONk* WOSk 

X, Y. Z 

x, y. z 

x, y. z 



*o v 

i -     angle that SA' makes with the Z axis, where SA' is 
the projection of 6A on the YZ plane - rad 

Cx.  C »  C ■     email Euler angles required to rotate the XYZ coor- 
y dinate system into coincidence with the XOS coordinate 

system when <p0 = 0 - rad 

6 -     table angle measured from east-west line in direction 
of earth's rotation - deg 

6 =     angle about OA from LA to any point in fluid gap - rad 

G. =     kB . where k = 1, 2,   3(..., n - deg 

6 ■     360 /n, where n is an integer - deg 

6      6      6 u*    v*    w =     small Euler angles required to rotate the UVW 
coordinate system into coincidence with the IOS 
coordinate system - rad 

X =    astronomic latitude (positive in northern hemisphere) • 
deg 

v- ■    viscosity • poise = dyn.s/cm 

p =    fluid density at 6 s 0 deg - g/cm3 

p( ■    fluid density at angle 6 - g/cm 

^P =    P90 - P270 ' 8/cm3 

-^Q =    angular displacement of the gimbal from its electrical 
null position - rad 

ID ■    circular frequency - rad/s 

w- -   earth rate - deg/hr 

dip  uu   ,  w- =    angular velocity components of the gyro case relative 
to inertial space about ihe I,  O,  and S axes, 
respectively - deg/hr 

(*)._.,   (»op»  tt)cir =   components of earth rate about the I, O,  and S axes, 
IE.      OE      bt respectively - deg/hr 

Ul r rad/s 
angular velocity of the rotor relative to the gimbal - 
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