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A numerical method is developed based on potential flow nonlinear lifting sur-
face theory for predicting the surface velocities and pressures on a rotor blade of
an erbitrary helicopter rotor system which is executing a constant rotational and
constant axial translational motion including, specifically, the hover flight mode.

condition is satisfied on the surface of the rotor blade. The problem is governed
by a Fredholm integral equation of the first kind which relates a singular velocity
doublet potential surface distribution applied on the rotor blades and wakes to the
normal relative velocity on the rotor blade surface. The wake model is assumed to
be of a prescribed shape.

the actual rotor blade upper and lower surfaces and wake surfaces by & finite number
of elemental surfaces on which the doublet strength is assumed constant and then
satisfying the resulting set of numericel normal surface boundary conditions at

the centroid of each of the blade elemental surfaces.

a given geometry of the wake. This program lends itself to an iterative procedure
for a future force free wake lifting surface theory analysis. The computer results
for two cace studies is also presented. The program listing is available from
West Virginia University.

The formulation of the problem is exact in the sense that the normal surface boundary

The solution of the integral is obtained in a numerical fashion by approximating

A computer program was developed for the lifting surface theory which depends on
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ABSTRACT

A numerical method is developed based on potential flow non-

linear 1ifting surface theory for predicting the surface velocities

4
1
q

and pressures on a rotor blade of an artitrary helicopter rotor system

which is executing a constant rotational and constant axial translational

motlon including, specifically, the hover flight mode. The formula- i
tion of the problem is exact in the sense that the normel surface

boundary condition is satisfied on the surface of the rotor blade.

|
1

The problem is governed by a Fredholm integral equation of the first
kind which relates a singular velocity doublet potential surface

distribution applied on the rotor blades and wakes to the normal relative

velocity on the rotor blade surface. The wake model is assumea to be of

a prescribed shape.

The solution of the integral is obtained in a numerical fashion

by approximating the actual rotor blade upper and lower surfaces and

wake surfaces by a finite number ¢f elemental surfaces on which the
doublet strength is assumed constant and then satisfying the resulting
gset of numerical normal surface boundary conditions at the centroid of

each of the blade elemental surfaces.

-

: A computer program was developed for the lifting surface theory
which depends on & given geometry of the wake. 'I'Lis program lends

1 itself to an iterative procedure for a future force free wake lifting
surface theory analysis. The computer results for two case studies is

i also presented. i
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SYMBOLS

The following 1s an abridged list of synbols used in the report.
Only those symbols of select importance which are used repeatedly
throughout the report are listed here. All symbols are defined in
the body of the report at the time of their initial use. The same
symbols may refer to dimensional or non-dimensional quantities de-
pending upon the context of the immediate section of the report in
which they are used. The physical units of any parameter may always
be assigned as follows:

a) All lengths are in units of feet.

b) All forces are in units of pounds.

¢) 212 passes are in units of slugs.

d) All times are in units of seccnds.

e) All angles are in units of radians.
The non-dimensionallized param=»ters are obtained by dividing all lengths
by the rotor radius and dividing all velocities by the rotor rotational
tip speed. In those sections where it becomes rnecessary to distinguish
dimensional quantities from the non-dimensional quantities we have
underlined the dimeneional quantity, eg. R implies units of length

and R implies a non-dimensionalized length.

English %
A Area 3
Bl Hub radius teken to be the distance along the span ]
axis from the axis of rotation to th: root sectio..
B2 i.1e span length taken to be the rotor radius less

the h.» radius.
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THETA

Chord stetion along which the blade span axis 1lies.

Chord grid station expressed in terms of percent
chord length.

Pressure Coefficient defined on the basis of the
tip speed squared.

Used in the program and is the same as Cp above.

Used in the program to define a pressure coefficient

T Canidcans i b b o et o skl b o e

xi

based on the local relative free stream velocity squared.

Rotor Torque Coefficlent (refer to equation 3.7.5)
Rotor Thrust Coefficient (refer to equation 3.7.4)

Angular measure that two ad}acent rotor blade span
axes are displaced from sech other.

Force
I-tegral as defined by equation (2.4.7)

Partial derivative with respect to G of the integral I.
5 is a dummy variable.

Pressure

Torque

Rotor radius

Position vector from the origin to some field point.
Absolute length of vector R.

Position vector from the origin to some point on the
body or wake surface.

Position vector from some point on the body or wake
surface to some field point.

Function which defines body surface or span station
depending on context.

Span grid station expressed in terms of percent true
span length.

Geometric pitch at a span section.
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Greek

> ®» R

€N ™

&

Operators

¢
IS5

Geometric pitch at the root section.

Linear twist of the rotor blade. Defined as the
geometric pitch at the tip less that at the root.

Vector velocity with respect to the {(X,Y,Z2,t) reference
frame.

Vector translational velocity of the body with respect
to the (X,Y,2,t) reference frame.

Function which defines wake surface.
Refer to equation (2.6.7)

VYector surface unit normel positive cut from the
surfac- .

Time

Average downwash at the rotor blade trailing edge derived
from momentum considerations.

Refer to equation (2.6.8)
Refer to equation (2.6.9)

itotor free stream inflow ratio and given by the rotor
axial climb velocity divided by the tip speed.

Doublet strength per unit area
Density

Doublet potential function

Rotor rotational rate (w = /&/)

Vector rotation of the body with respect to the
(x,¥,z,t) reference frame

Partial derivative with respect to some dummy variable
S
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bubscripts
o0
avg.

ind

llvE

Superscripts

/

Indices

I

xiii

Substantial derivative

Vector gradient operator

Condition existing in the free stream environment
Average

Potential induced parameter

bcdy

wake

Upper surface

Lower surface

Gpecific point P

Dummy directional axis or parameter

Trailing edge

Parameter referenced to the (x',y',z',t') reference
frame

Vector parameter

Unit vector parameter

Indexed blade elemental surface. The elemental surfaces
are indexed consecutively from the leading edge to the
trailing edge by proceeding from the inboard span segment
to the outboard span segment first on the upper blade
surface then on the lower blade surface
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xiv
Imux Maximum number of indexed blade elemental surfaces
[ per blade,
: J Same as I above and used ‘n terms of a dummy 1
summaticn . (4
Jmax Same as I gy 8bove .
K Indexed wake elemental surface. The wake elemental
; surfaces are indexed consecutively from the trailing
edge segment in a streamlinewise sense, !
Knax Maximum number of indexed wake elemental surfaces
which streamlinewise trail a particular trailing !
edge span segment . |
L Indexed blade nunber. The blades are numbered conse-
cutively in the direction of rotation.
[ Lpex Number of rotor blades.
] B
M Indexed span station or span segment. M=l is at or
near the root section respectively,
] Mrno Maximum number of indexed span stations . !
1
MM Maximum number of indexed span segments. (MM = Mp,. - 1)
; N Indexed chord station or chord segment. N = 1 is at or
3 near the leading edge respectively.
L
F Npax Maximum number of indexed chord stations. ]
NN Maximum number of incexed chord segments. (NN = Npax - 1) ]
i Indexed corner points of the elemental surfaces. The M
corner points are indexed consecutively in a clockwise i
manner when viewing the surface along the negative :
surface unit normal direction. Also used to index the ’
segment of the elemental surface lying between coruner ]
points 1 and i+, 1
J Indexed corner point immediately ad)acent clockwise to
some i indexed elemental surface corner point. Used
in the same sense as i above.
n Maximum number of i indexed corner points which define

an elemental surface (usually n = )




XV

Reference Coordinate System

(x,Y,2)

(x',Y",2')
(4,4 7))

(x1,Y1,21)

(2, & 2)

Inertial fixed coordinate system in general. Used
also as a dummy reference system coincident with the
(7, Y ) systems below

Non~inertial body fixed coordinate system

Element fi{xed coordinate system

Blade one body fixed coordinate system coincident with
(X',Y',2")

Non-inertial body fixed cylindrical coordinate system
defined in the usual sense within (X',Y',Z')




CHAPTER 1. INTRODUCTION §

1.1 Scope and ObJectives

There is a need for a more rigorous approach to the treatment 1
of complex three-dimensional flows for geometries of certain V/STOL
aireraft. In the case of rotors in quasi-hover, the downwash velocity
associated with the generation of 1ift is large when compared to the
axial) flight velocity. In this situation the classical assumptions F
of 1lifiting rotential flow aerodynamic theory such as linearized boundary
conditions, lifting lines and rigid non-force free wakes do not lead
to accurate predictions. Without accurate inviscid flow predictions ;
the even more complicated viscous flow analysis cannot even be begun. 3

The progress in high speed digital computer technology now allows

one to formulate the flow problem more realistically. Although the

formulations necessitate the approximation of the integral and

differential ejurtions they may be considered exact in the sense that

the solution is attained uniformly as the computational network is

refined.

The present work 1s specifically concerne? with developing a

2k

potential flow lifting surface theory applicable to rotors in the

o

axial flight mode specifically including the hover mode. The theory

is an exact numerical analysis and its major objective is to predict

R LA

the local three dimensional blade surface velocities and pressures.
The theory necessarily incorporates a prescribed wake model because

of the complex nature of the problem. The force free wake analysis is




<0 be achleved by successive iterations on the wake geometry by
incorporating a wake prediction method into the analysis. 1In addition
to develcping the actual theory, the feasibility of applying the
theory is also demonstrated since a computer program was also developed
and is presented herein. The theory ard program developed are appli-
cable to any arbitrary shaped rotor blade having a finite non-zerc hub
radius and a pointed treiling edge. It is specifically not necessary
for the rotor blades to be thin as the surface boundary conditions are
satisfied on a surface network described on the wetted blade surface
area. Furthermore, perturbation velocities are not required to be
small. These last two constraints are associated with the so-called
linearized lifting surface theory and small disturbance theory

respectively.

1.2 Literature Review

In the discussion of any lifting surface theory one must first
distinguish between two basic classes of problems. One clcc, of
problems is concerned with the prediction of local surface loadings
by assuming a loading function which is expressed as a series of
assumed modes with unknown coefficients. These unknown coefficients
are then obtained by satisfying the normal velocity condition either
directly or indirectly at a set of puints whose number equals the number
of unknown coefficients. In certain cases “he set of points may exceed
the number of unknown coefficlents in which case the normal velocity
condition is satisfied approximately at the set of points by

appropriately weighting the set of points. Multhopp's collocation

e
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method (reference 1) for calculating the 1ift distribution of wings
in subsonic flows exemplifies this method. A very elegant analysis
by Verbaugh (reference 2) concerning unsteady lifting surface theory
for ship screws employs the acceleration potential in solving this
class of lifting surface theory problem.

The second clasa of lifting surface theory problems is concerned
with the prediction -~f local surface loadings by assuming a distri-
bution of surface elements on which the loadings are unknown but orn
which a set of influence coefficients can be defined. Perhaps the
most complete authoritative discussion of this method is that presented
by Hess and Smith (reference 3). In this method the integral equation
resulting from the application of the normal surface boundary condition
is reduced to a sum of integrations to be performed over a finite set
of surface elements such that the surface boundary condition is satis-
fied locally at one point on each surface element. The loading
function is some velocity potential function of unknown strength which
may, however, be analytically integrated over the surface element
region. A linear set of equations results such that the unknowns are
the potential function strengths on each surface element and the
coefficients represent the elemental integration results. The results
obtained by this method are excellent as documented by Hess and Smith
{reference 3) for nonlifting bodies.

The lifting surface theory method presented in this report relies
heavily on the excellent work of Hess and Smith (reference 3). The

presented problem differs fundamentally in that this theory is concerned

with a rotating lifting btody behind which trails a wake region.

e
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Various authors have noted the complexity of the calculations
required when one attempts to use this lifting surface theory method
for & lifting body. As late as 1971 Johnson (reference L) noted in
subgtance that the extent of the calculations involved in these methods
prohibited the direct application of the conventional lifting surface
theory technique to the calculation of rotary wing air loads. Many
authors have ingeniously attempted to cimplify the exact lifting surface
theory method in order to attain valid results. Erickson (reference 5)
reduced (after Prandtl) the lifting blade surface model to a 1lifting
line model. As such, his 1lifting line theory was based on a bound
vortex line and a continuous wake vortex sheet which he allowed to
distort on successive iterative steps. The contraction pattern was
fixed according to actuator disc theory. Landgrebe (reference /) alsc
showed that the reallstic self-induced distorted wake geometries could
be computed by application of the classical Biot-Savart law applied over
wake vortex filaments.

Erikson and llough (reference 7) showed that the applicability of
the lifting line model for hover prediction was questionable as blade
surface induced velocities vary rapidly along the chord direction
which, of course, would invalidate & lifting line model. The reason for
this rapid variation lies in the fact that the waeke has a pronounced
influence on the rotor blade because of its near proximity in hover.

At Sikorsky Aircraft Rorke and Wells (reference 8) have described
another unique variation on the true rotor lifting surface theory.

They have coupled a prescribed weke-momentum analysis to the conventional




strip-momentum theory in order to predict the rotor hover performance.
The prescribed wake geometry in this method is determined in part

by & theoretical analysies, the detajls of which were pressnted by
Clark and Leiper (re.crsnce 9). This analysis is a true engineering
design analysis and haas been optimized so as to require very little
computer time. This technique does, of course, require airfoil
sectional eerodynamic coefficients.

There are other variations of the rotor 1lifting surface theory
presented in the literature but to this authofs knowledge none of the
80 called rotor lifting surface theories presented are in fact true
applications of the ideal 1ifting surface model. Furthermore, it
appears that no single reported rotor prediction method is capable of
piredicting local surface velocities or pressures on some arbitrary
rotor geometry surface. Thus it appears that design studiecs of new
rotor blade shapes differing significantly from existing blade shapes
cannot be performed at the present time with any level of confidence.
Because of this technological de.irit (see references 10 and 11)
it was decided to attempt to develop a true rotor lifting sur-face
theory and actually apply this theory in terms of an exact numerical
sense. This work is concerned with the initial phase of the development,
that is, for a prescribed wake trailing an arbitrary shaped bhody
develop a lifting surface theory which will predict for the axial flight
mode local surface velocities and loadings. The succeeding phase will
be to use the theory and program of the initiil phase and modify them
so as to include a wake iterative scheme in order to include a force

free wake analysis into the lifting surface theory.
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We have not attempted to review here the subject of 1lifting
surface theory in its entirety but have rather restricted the review
to selected current rotor lifting surface theories indicative of the
general development trends. For an additional literature review
concerned mainly with lifting surface theory applied to planar flows
refer to Djojodihardjo (reference 12). Djojodihardjo and Widnall
(reference 13) in a paper which summarizes the previous reference
presents, in part, a discussion of the doublet velocity potential
which we have used to verify the derived integrated doublet velocity
potential used herein.

In addition to the explicit references above w have included a
list of referenceswhich we have used for obtaining fundamental
information and for obtaining information related to general rotor

performance prediction methcds.

1.3 Report Layout

We have presented in Chapter 2 the formulation of the problem in
terms of the governing equations. Chapter 3 presents a step by step

discussion of the cverall problem solution. Chapter L discusses the

computer program in a general manner. The results of two computer run

cases are presented in Chapter 5. In Cnapter 6 we have discussed
extensions to the present problem. We have relegated all discussion
material not actually essential to the main problem discussion to

Appendices A, B and T so as not to interrupt the overall problem

discussion. Appendix D describes the computer program in detail as to its

options and input/output.
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CHAPTER 2. DISCUSSION OF THE BASIC PROBLEM 4

et

2.1 Pormulation of the Governing Equations
As a lifting rotor moves into the air it disturbs the air in

such a manner as to derive its 1ift. This problem is concerned

Bt g

with the prediction of the local surface pressure acting on the
rotor blades in hover or axial flight t:rough an analysis of the
rotor induced velocities. We shall formuicte in this section the

equations governing the fluid motion.

Let us consider the 1lifting rotor system to consist of:

a) a three dimensional body of arbitrary shape which is
executing a constant rotatory and translatory motion, and

: b) a wake which trails the lifting body. The surface of the

body may be represented by

S(R ¢) = 0O (2.1.1)

and cthe wake following the body may be defined by a surface of velocity

discontinuity given by
3 WeR t) = O (2.1.2)

F In the above equations A is the position vector witlL respect to

gome fixed inertial reference frame. The external flow field is assumed

e

to be an incompressible flow field which is inviscid and initially
irrotational and at rest. The wake is further assumed to be composed

of two surfaces coincident with each other. Each wake surface is

i i o £ Sl




assumed to have its origin at some infinitesimal region located on

the body upper and lower surfaces at the tralling edge. These tralling

edge regions as such represent the lines along which the viscid
boundary layer smocthly leaves the trailing edge. It is assumed in
4 the analysis to follow that there exists no flow separation from the
i body except at the trailing edge, thus the body must have a sharp

trailing edge.

It follows row from the -ondition of irrotationality . .34 the
continuity equation that a velocity potential 527A5t) can

be defined such that it must satisfy Laplace's equation

Vifrke) =0 (2.1.3)

R S e S

The velocity potential at an exterior field point can be given by an

integral equation which incorporates a distribution of singularities over
the 1ifting body and wake surface. In this analysis we will take as

our distributed surface singularities the doublet or dipole which is
itself composed of two more basic singul-rities, namely the source

and sink. In Appendix C is presented a discussion of the doublet
potential and its axis convention. The resulting integral equation

for the doublet velocity potential is given by

~ - ARk L) v R CRR L2
Frh L) - g5 ks 2L e (KA

e | £, 2% s ) |

AS

(2.1.4)




where

R 18 the poaition vector to some field point, P.
AZ is the position vector to some surface point.
E' 77 1s the unit outward surface normal.

é,,- /4_‘- "?5 » which 1s the vector from the surface

point to the field point.

4 is the doublet strength per unit area at some surface

point.

The potential as given satisfies Laplace's equation identically.
The above velocity potential is subject to the following boundary
conditions:

a) In the far region away from the doublet surface distribution

the fluid velocity (V) given by

v = V& (2.1.5)

should approach zero. Thus the far boundary condition becomes

LmidZ = VFcA L) — 0 (2.1.6)

Ksp = o

This boundary condition is inherently satisfied by the doublet
velocity potential.

b) In the reglon of the body surface the normal velocity at the
surface must be zero. This kinematic normal boundary condition

may be expressed as
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S - =
g} = 5—; ¢y VevS FO
o  ScRe) = 0.

(2.1.7)

c¢) In the region of the wake surface. since the wake cannot
maintain a pressure discontinuity, the pressure across

the wake surface must be continuous. Thus

A A (2.1.8)
on WeR ¢) = O
where A~ and /4, are the pressures on the local wake
upper and lower surfaces,
d) In the region of the trailing edge the fluid velocity must
be directed smoothly from the body surface to the wake

surface. This is the Kutta-Joukowski condition.

The pressure /A  anyvhere in the flow field is given by the
equation of motion

oV . _ /4 5
o y v A

¢ (2.1.9)

which is uncoupled from the governing kinematic equation given by

Laplace's equation. It is, however, coupled into the overall n»roblem

through the boundary condition (c) above.

For convenience we will now transform the above equations which

are expressed with respect to a fixed inertial reference frame to a

b s B e s et e ok i)
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non-inertial body reference frame designated by primed coordinates.
Let us assume that the body is translating and rotating about the
translational axis with respect to the inertial reference frame at
a constant translational velocity given by V;— and constant
rotational velocity given by & . In Appendix A is presented a
summary of the transformation relations. The body surface and wsake
surface equations given by equations (2.1.1) and (2.1.2) transtorm
respectively to

SR = o

(2.1.10)

wer) =0
(2.1.11)

The velocity potential in the body fixed reference frame becomes

independent of time and is given by

R Ir, (2.1.12)
Laplace's equation transforms directly to

V' FF) = O (2.1.13)

o Bl b e o i s e R S R R L e e e G R e L
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Whereas before, however, png/VZZt} was the total fluid velocity

Vv , ﬁ%?@/)fj/ , in the body fixed system becomes the

velocity induced about a relative free stream velocity. If we define

Fii

Pl = VFR) (2.1.14)
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and E;' as the relative free stream velocity given by

V, = - / w x w g l/;_/ (2.1.15)

then the inertial and body fixed velocities are releted as follows

Vv o= Vs xR L, (2.1.16)
vhere

. -7 _:/

Vo5 Vit 7 Ve (2.1.17)

The integral equation for the doublet velocity potential bLecomes

_, / s R e s PR .
FIK) = =gz [ gedy L)z Ry LKIR)

wa lﬂ__,p /k~:' ﬁ:JIJ
(2.1.18)

where the symbols are the same as before except the reference coordinate

system is now the primed body fixed reference system,

The boundary
conditions in the new reference plane become:
a) In the far region
bt VFR) — o (2.1.19)
Rp = 2

which remains inherently satisfied.
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b) On the body surface since

0% Z i, (2.1.20)

and since éé;gjz(o we must satisfy the following

relation
- — 4 -/
., VS = —waVJ
on  ScK) O
(2.1.21)
¢) On the wake surface,
L - L =0 (2.1.22)

Y wWeA)=Eo

The Kutta condition (boundary condition d) may be applied as stated

earlier. The pressure anywhere in the flow field may he determined from

the transformed equation of motion which will be discussed later.
Since the velocity potential is a solution to Laplace's equation

and since it also inherently satisfies the far boundary condition wve

no longer need consider these two equations. Let us consider now the

near boundary condition. If we define 7 to be the outward surface

unit normal vector, then we may write

5

<

L

(2.1.23)
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Purthermore, using this result and equation (2.1.14) we may rewrite

the near boundary condition given by equation(2.1.21)as follows:

Vg e 7 = -~ -~ (2.1.2h)
on Sch) =

Written in this form we see now that the solution to the given problen
requires solving in the body fixed reference system an integral

equation given by the near boundary condition expressed by equation
(2.1.24) where 477 is defined by equation (2.1.18) subject to explicit
boundary conditions (c) and (d). Note that the solution does not
neceasarily involve the potential 477 but rather involves the vector
gradient of éf’ , that is i;;fy . In essence then the formulation
of the basic governing equations is complete.

Before proceeding into the detailed formulation we shall first

discuss the doublet potential in order to further clarify its use.

T R T

e A b Lo
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2.2 Doublet Potential Discussion

We have taken as our potential function a potential derived on
the basis of a surface doublet (dipole) distribution. In particular we
note using Figure 1 that the potential induced at a point P by a surface
doublet distribution given by A1f?’la:) whose axis is everywhere normal

to the local surface, that is

GLR)) = g lR) T (2.2.1)

is given by

il
p - - g L s
S
(2.2.2)

In Appendix C we have derived this doublet potential as presented
in terms of its more basic source plus sink potentiels in order to
clarify the axis convention of the doublet.

We have chosen to model the rotor and wake surfaces with a doublet
distribuction rather than a vorticity distribution, which could also
have been used, for a number of reasons. The main reason stems from the
fact that a vorticity model does require the specification of two
functions lying along the surface in two vector directions mutually
perpendicular to each other. This aspect of vorticity in light of the
doublet model would unnecessarily complicate the geometry of the problem.
The two models are of course mathematically related (refer to Appendix
B) and both inherently satisfy Laplace's equation and the boundary

condition at infinity.
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The application of the doublet model involves a doublet distribution
: applied on the wetted areas of all rotor blades. Furthermore, trailing
E continuously from the upper and lower blade surfaces are two sheets
vvon vhich are also applied doublets. These two sheets are taken to
] be coincident with each other thus allowing for vector sums of the
doublet strengths.

It should be noted at this point that the doublets are distributed
E on the blade surfaces. This method is to be distinguished from the

80 called linearized method which through linearization of the surface

boundary condition would allow doublets to be distributed on a mean

camber plane. The blade surface distribution although more complex is

o e b i e

of course exact and does not impose the planform restrictions of the

linearized method.
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2.3 Evaluation of the Doublet Wake Strengih

Let us consider now the doublet velocity potential in more detail.
Suppose we first separate the wake region integration from the blade

region integ-ation such that we may write

_, L R R RS
%//{/ = -4§'é/%//\,j MT;/ 'I; a )({} t;
S

-, =7 Y
" il ) //‘rj,:i Aé’“’/ 2545
(2.3.1)
vhere nov < /4/) and </ /4/) represent the doublet strengths
on the body and wake regions respectively. As was pointed out earlier
the wake 1s actually composed of two coincident sheets on each of which
the doublet strength is given as an upper doublet strength Fs,
and a lover doublet strength AZZCL . If we account for the
opposite direction of the doublet axis and take as a net axis direction
the outward normal of the upper wake surface then in effect the net
doublet strength on the wake surface is given locally by

pr = “VMU - “/“,l . (2.3.2)

In Appendix B it is shown that Helmholtz's theorem on conservation of
vorticity logicaelly extends to the conservation of wake doublet strength.
In this problem the blade loadings are independent of the rotational

azimuth body position and as such the wake doublet strength remains
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constant along a wake streamline. Following along a wake streamline

up to the trailing edge by utilizing the Kutta condition we find that
along any vake streamline that originates at tralling edge span
station 5,,  the doublet wake strength is constant and is given

by the difference in value of the blade doublet upper and lower tralling

edge surface doublet strength, that 1is
Y ) 2 Ay e, -y 5, ) - (2.3.3)

Thus the wake doublet strength varies with span station, is constant
along a streamline and is given in terms of the body trailing edge

doublet strengths. The velocity potential may now be written as

. / _, s o) . R

| A

/ =, -/
-f-%/{['yd/“&fu/ "‘/J/J,{(Z/ 21//?,“// 3/(,1#”[5-

SP

(2.3.4)
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2.4 Numericsl Reduction of the Integral Expression for the Doublet
Potentiel and its Derivative

We may nov reduce this integral expression for the doublet
potontial to a numerical relation. In order to do this we first assume
that these ere Lma.x equally spaced, identical rotor blade bodies whose

surface equations are given by

S R) = 0 L7, Lmas (2.4.1)

Similarly we assume that thene are Lp,, equally spaced, identical wake

surfaces vhose surface equations are given by

W, #)= o L7 Lowue (2.4.2)

Thus equation (2.3.4) may now be written as

TR = 4;72’//4/ /"/’I";i s A5 77

Lanas

/
ﬂl‘é; \/4[%/&/2‘/‘/ '//5/.};12‘]] ® 7

. RLRL ) /*’5,‘/’

el 4

AS

(2.4.3)
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Let us assume now that rotor blade body one and wake surface one can
be subdivided into M = 1, MM span segments. Furthermore we shall
assume that along blade segment M there are N = 1, NNy and NNj,

upper and lower surface planar areas respectively. In the wake one
region we assume that along wake span station M there are X = 1,

Kjpax streamline defined planar wake surface areas. We assume further
that on blade bodies L = 2, Lygyx and wake surfaces L = 2, Lpgy there
are similarly defined elements which are determined from blade body
one and wake surface one by simple element rotation. If in addition
we assume that the doublet strength on any element is a constant we

may rewrite the doublet potential given by equation (2.4.3) as follows

S74) 77 ’//‘9.1 ﬁ// Ny /j{ﬂ’ﬂﬁ K A2ty
A 7y $4

—

-/ -/
S L5 g AR prju ) Rse
/71',1 /:' Z I%/N/Z}‘L‘/-[; N /j /

-/ 9
2 A5l

oL e Rl Rt [ Ksp
ol 2 2 L, -4, / =7
777 e é/"//u % () J 5//(/‘74 I Hsp I3 /7(5

(2.4.k)

Hoting now that the blade lcadings and thus the doublet strengths are

independent of blade azimuth position in this problem we may identify

"7 = A&
4%2’!4, 72/A4/7AV
L Lt

i
A
A

N (p.s)
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Thet is the doublet strength on blade L upper surface element (N,M)

has the same value of doublet strength on blade L+1 upper surface

element (N,M). Applying this condition also to the lower blade surface

elements and to the wake elements we find that the velocity potential

mey now be written as

19,7 Yy, A omarg

FK)= 5 & 2 % S LR,

7708 T Crvit), gz

, e 4 may
*77 /f/';j /‘6_-, é//yng/L L7 /A)'.///)’/’J“
y Yo léd Aoy Z;«y
- 55 7 / - V7Y
P2 Gy &”/fl, Jﬂ//‘_./fj L7 K i),

(2.4.6)

vhere for ease in writing we have defined for a dummy element surface

(L,39,
- )E/XS;/JJ J- AZ:' )
//""j/ ) / ///j
AL ‘%
272 A :
(2.4.7)
In effect 1/?K5Z244‘ is a potential influence coefficient which

represents the geometric influence of some surface element (I,J) of

-/
blade or wake L on the potential at some point 4

v

4
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The induced velocity at some field noint along a direction b

may be written as

(2.L.8)

22

wnere the derivative with respect to 5 of the potential follows directly

from equation (2.L4.6) and is given by

212> N Lmap
7R = Z Y% 7 LR
//( - 7‘7/{.-1 o lemid, £, S < %f”(/{/ 4

/97y Fray Lyay
/ /'(/ - 4 / ‘2/ _1,{ =/
fﬂ/"/* 7 /It/ ﬁﬁ]/L]/;:] L7 4 Gl 4/, /7/1
(2.4.9)
where we have defined
‘7 = *‘2' ]//?—y
L s« 27, DEE A A0 (2.4.10)

A
Here /74 ., 1s a velocity influence coefficient in the 5
f

direction whi. represents the geometric influence of some surface

a4

element(I,J) of blade or waxe L on some point 4
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2.5 fNumerical Reductién of the Integral Surface Boundary Condition

Let us summarize at this point the major results of the previous
discussions. First it has been shown that the equation to be solved
is the near boundary condition given by equation (2.1.24) and repeated

here 1is

‘ / i

GFxk = -k - (2.5.1)
oy SR 2o

This equation states that the normal fluid velocity on the body must
be zero. In addition this equation is subject to the following
additional constraints:

A) The fluid flow must leave the trailing edge smoothly.

B) The pressure must be continuous across the wake. This

ensures the existance of a, so called, force free wake.

In section 2.4 it was shown that the integral expression for 57f
and Jé Cff' could be reduced to a numerical equation involving the
sumation of finite elemental surface contributions. On each of these
elemental surfaces it was assumed that the local doublet strength was
a constant.

Let us now relax the boundary condition expressed by equation
(2.5.1) such that instead of requiring it to hold on the entire body
region (’2}[/75/’ 47J/ we now require it to hold only at a finite
number of body points. We will further take these control points to

be located at say the centroid of the previously defined elemental

bl Gt e g
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body areas. Because of the symmetry involved we need only require

the normal velocity to be zero on one blade's control points in order

to ensure a zero velocity on all other corresponding blade control points. In
previous discussions for preciseness we identified the upper and lover
surface elemental areas on a particular blade as element /cAf/jAzy‘

Let us now identify these same blade elements here using a single

index say I =1, Inax+ Thus the numerical form of the near boundary
condition becomes a set of Ip,, equations such that

cwy = lgo, © #r (2.5.2)

v

&\
{

for all I = 1, Ipay

vhere
ﬁh%? represents the vector gradient of the potential
on the centroid of element I.
é;; represents the free stream velocity on the centroid
of element I
i} represents the outward unit normal of element I
at its centroid.
_ -
Since V% o Xy is Just the induced velocity along the normal

direction of element I evaluated at the centroid of element I we may

write that

/3{2 = 5/4/ e sz . (2.5.3)
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‘s
Now using equation (2.4.9) we may evaluate gf?{,{r such that,

we have
, Dy Lmap

ot - -2 J Z- /

/J”‘ 7 J7 ﬁ] 4’/:] /):C‘/; /
J 7 ’(’W _/)-«v

- 5 Jag -y o s
7}”5:1 0/"/71;, o”/tl]/-’-‘i }%1 ﬂjj/‘;"’J,_
(2.5.L4)

where the first term represents the body surface induced normal velocity
on control point I and the second term represents the wake induced
normal velocity on control point I. Note that the normal influence
coefficients are a function of the geometry of the problem only. Note
further that singularities in the evaluation of particular influence
coefficients will occur when we attempt to evaluate an elemental
influence on itself. The actual evaluation of these influence
coefficients and the resolution of the singularities will be presented
in section 2.6.

If we now substitute this equation into equation (2.5.2) using
equation (2.5.3) we may write the final form of the I = 1, Imax set of

near surface boundary conditions to be satisfied as a numerical set of

equations given by
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/w /M/ ) Vol KM, A oy
- - AL/ AN 2
7 € é ’
4I\;{1 4/4.’/{%//‘& L ;’/’1 //’//’./ h”l]/:l //‘1 e, ’7/4 =
_/ _
= - I‘/)"] L4 /(1 AOA /‘f/ L g :
(2.5.9)

Given now the free stream conditions in terms of the rotor climbing
speed and rotor rotational rate, and given the blade geometry and some
prescribed wake geometry then the above set of equations constitute a
set of Ippx linear independent algebraic equations for the Ipgx

unknown blade element doublet strengths given by A%QJ- above. lote
that the wake doublet strengths are given in terms of the blade upper
and lower surface trailing edge doublet strengths and as such do not

constitute any additional unknowns as they may be expressed in terms of

the blade element doublet strengths <7 _ . Once the solution

values in terms of -{72} are obtained then the velocities at any
L) .

point PR in any specific direction may be obtained using

equation (2.4.9). The potential likewise may be obtained using equation
(2.4,6). Given the velocities at a point then the pressure may be
calculated as is shown in section 2.7. In essence then, this is the
problem which we have solved. Note that we hav: ... incorporated the
tangency flow constraint into this problem directly. Neither have

we enforced the force free wake constraint into the prcciem. These
constraints are to ve satisfied (in subsequent work) by an iterative
technique which iterates on the wake geometry based on a previous
solution whose wake geometry was prescribed. If the prescribed wake

is coincident with the real wake then the tangency flow constraint and

and the zero pressure discontinuity across the wake are inherently satisfied.
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] In the preceding discussion we selected the contrcl points at
vhich the normal surface boundary conditions are to be satisfied as

3 the centroids of the elemental surfaces. We actually chose the cen-
troid location for two reasons. Firstly, the centroid of an elemental
planar area is most logically the point which best represents the

surface area and secondly, this point is the point on an elemental

Ak oaid i o

planar surface where the self induced doublet normal velocity magnitude

is a minimum and, as such, the various elemental centroids represent

consistent, comparable points.




o ehado s e

T e T 2 I d o Sl ket TR T LRl bl PR Sao gl e doul R T Py O P I TE P TR e X i

2.6 Influence Coefficient Evaluation

Let us consider now the evaluation of the influence coefficients.
More specifically we are concerned with analytically determining the
potential 7” and ﬁ;éfy at an arbitrary field point P induced by a
finite planar doublet distribution. The actual evaluation is
presented in Appendix C but we will present here the major results.

If we are given a planar X sided figure whose plane lies
within the /<€73L/ plane of a [/ 4, 7/ orthogonal coordinate system
and whose positive surface unit normal lies along the positive 7
axis and given further this plane to be a surface doublet plane of
constant strength <7 whose axis everywhere is directed along the unit
normal then the potential 517 at an arbitrary field point P whose

coordinates are

X%
4 ’ (2.6.1)
77,

is given simply by

= - Z z :
///j/ 47/// [/,(/j‘, /7}/4/ ;IJ‘% //—{5 .

A(l/’(l'

(2.6.2)

.

28

The actual involved integration of this integral is presented in Appendix

C. The resulting analytic expression for the potential is given as

follows
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Frr = -711” T ) (2.6.3)

vhere

M

/7R {1 2,7 (2.6.4)

Zorr) = /d“/( /"41»’( /"/ /4«_[{ ":J f

(2.6
J =/ 7 S e JExsa TmES KEXO g7

(2.6.6)
w,, =, o))l )
4/ v v (2.6.7)
o = sx-7 ) s 27

(2.6.8)
RS SN A VS

(2.6.9)

. . g
Jon-2)" 0 cvn, ) s 2]
(2.6.10)

i

A;,

//; 3, fj{'—' I n HAE CORINER POrv7T  FOONDIIVA TES
/
DETLERININED LY FLOAWISE

KOTRIION 273 1710/ FL) Birirve

T/ E NEGRTIVE L2/, 7 ARSI LL

AN e~ LR = O, (2.6.11)
(2.6.12)

If the field point P lies on the plane of the surface doublet distri-
bution. that is when Z = 7;, = , then the value of the integral

taken as the limiting process as 2 approaches V4 positively

results in




| F7#) = = F  Tor P within doudlet surface (2.6.13)
SHF =D For P outside doublet surface (2.6.1L)

J7F) ~ ervosrsved For P oon doublet surface edge. (2.6.15)

Given this expression for 7//)] we can now evaluate L;///)/

as

R N TR T S T

Gpr) = - 55 VI, (2.6.16)

This operation is carried out in Appendix C. The results when

referred to cartesian coordinates arc

«

L gon) = ") B GE A e

where § 1is a dummy independent variable standing for x, y or z and

#
Ler) = Z L ) (2.6.18)
g5

——

where

t’/“'[)“t./ X‘) 'p‘;{]"[‘"l\r‘y/ '/fj/‘l"r") f"; !)j

Lt = FRRIEC b Iy, A7 %

F Ry, %, AL wiy Ky B JLRRL P K 2./
CRR) ¢ (wmes <y~ )2
4 (2.6.19)

X - ﬁx, L, = f 4 A v o A (2.6.20)

J =

i Gt A
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The symbols used here are the same as given following equation (2.6.3).

The value for .

4 4

is to be taken as zero in the event ~ -~ /- ?
The relation for }§ 4?54f7 is valid for all field points whether

they lie on or off the plane of the doublet distribution except for ;
the case where P lies on the edge, in which case, the integral is

undefined. Note also that regardless of the size or shape of the planar

doublet distribution equation (2.6.17) shows that 4

JX'//)""”" =y (2.6.21)
M rgy0) - (2.6.22)
2V 4 '

The normal derivative with respect to the dcublet surface is well
behaved everywhere except for the edge where it is undefined. It is
continuous through the doublet surface. If one evaluates the normal
derivative at the centroid of the doublet surface one finds that the
magnitude decreases to zero in the limit as this finite area increases

to include the entire 5’35.7// plane.
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2.7 Pressure Coefficient Evaluatinn

Using the equationsa Just derived for the influence coefficlients
it 1s possible given the geometry to define the necessary influence
coefficients needed for the set of simultaneous equations which con-
sti‘ute the surface boundary conditions. Once the solution in terms of
the doublet strength is known the local velocities may be determined
essentially by back substitution. Given the velocities we may then
determine the local pressures using the equation of motion given by equation

1 (2.1.9), that is

l%

v _
" T T ;,f y A (2.7.1)

>

After expanding this equation using vector identities and interchanging

veccor operations we find that the equation of motion may be written as

\;/%’ ;_/1/ 5‘/ R (2.7.2)

G e s

: Since this relation must hold throughout the flow field it is necessary

¥,

then that

? # 5 = popyssnT 7S . (2.7.3)

NX

If we now transform this equation to the non-inertial primed reference

system we find that
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,%{:///‘_,//QIAA;I/ 1./;_/‘//4'7%/\’-/1 1/7_] = j [/-./V_I .
(2.7.4)
-/
Evaluation of the constant # for V., _s < allows us to write
/ / / /
/ ;’ . = : ” L4 ; . .
For Forer L 2 Loy, v, (2.7.5)
vhere
- iy _
Vo = =[x Ry ], (2.7.6)
If we define a pressure coefficient such that
L= P
B — (2.7.7)
# f s en)”
we find then using equation (2.7.5) that
Vo v v
SRR S/ I
o (er)* Ceprl)c (2.7.8)

33

Thus given the velocities, the pressure coefficients may be determined.
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CHAPTER 3. DISCUSSION OF THE SOLUTION SCHEME

3.1 Method of Presentation

In the discussion to follow in this section we will discuss more
specifically the actual solution scheme employed beginning with the
description of the rotor blades and carrying this through to the
determination of rotor forces. The symbols uced will in most cases
correspond to those employed in the computer program. All lengths and
velocities are taken to be nondimensionalized on the basis of the rotor

radius (R) and tip speed (WR) unless specified otherwise.

3.2 Rotor Planform Description

We have chosen to model the rotor geometry in terms of a blade
fixed orthogonal coordinate system. In particular we have assumed
that there are [/, .., identicel rotor blades whose span axes are
displaced from each other in the .x’ ¥’/  plane of rotation by an

angular measure, UT, given by

27
97 = g . (3.2.1)

We further assume that the blades are numbered consecutively in the
direction of rotation such that blade one has its span axis projection
coincident with the v’ axis. It follows from this that only one
blade need be defined as the other blades may be defined from the
geometry of blade one by a simple axis rotation. Figure 2 visualizes

the coordinate system convention indicating also the relation between the

blade fixed coordinate systems and a fixed inertial reference system

PYATIOVES SV L e i e i

e 0 P g e e
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’x, v, #) . In the description of blade one we have allowed for 1

two approaches. The first approach to describing the rotor blade

1
E
1
l{

. rotor blade is positioned in space at some litting attitude. We

geometry is a completely general method. In essence w2 assume the i

require only that it have some non zero hub radius and that its span

axis projects along the Y ’ reference axis. We assume thrr that the ;

e

blade can be described by a set of grid point coordinates in the

g Zx’ Yy, Z j system. If we let /,“,., represent the numbcr of span

/

s s
ek

stations and NV, and Yamay , represent the number of upper

surface and lower surface chord stations per spen station, then the blade

S s
T

one description involves a table of coordinates such that we specify

N7 AL, Yo, p LU,
NS XL, Sty LAl
for
/7 5L, I ey
and N L, S ey, on the upper surface
N L Nwag on the lower surface
vhere /71 is the root chord section i
/7 - 77 gt is the tip chord section
AN =/ is the leading edge span section a

% /y*""‘u b /\/)wn. is the trailing edge span section
on the upper or lower surface.
We vill use  X/¢  etc. as distinct from X etc. to clearly

distinguish the blade one surface grid points from any other general 3
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point. Note that the xi Y1, /1) system is coincident with the
primed reference /!’ >/ £°) system as shown in Figure 3.

A second method for describing the rotor planform which we have
chosen to include in the programmed scheme involves the description
of the grid points for a linearly twisted, constant chord, constant

airfoil section type rotor blsade.

In this method we assume the airfoil section is a NACA 0OOXX
series airfoil where XX represents the peicent thickness. In des-

cribing the blade we now specify our grid points as follows:

Y 5 p

N CGL, G4,y

for p1= 1, Mmay and N7 L Nwas,. or Awmor where SG
represents a span station expressed in terms of percent true span and
CGU or CGL represents a chord station expressed in terms of percent
chord on the ugner or lower surface respectively. The remaining para-
meters necessary to define the rotor blade surface include the hub
radius (Bl), the chord length /) and the airfoil percent thickness
ratio (TC). In applying the lincar twist to the rotor blade the geometric

pitch (THETA) at any span location is given by

TwErg = T A TN 54) (3.2.2)
where TO - geometric pitch at the root chord
TT - amount of twist

SG - true percent span station.




T
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This twist is applied about the span axis which we assume to be

located behind the leading edge intersecting the chord line at a chord
station given by B3. The true span (B2) is taken to be the actual
blade span length and is given by the difference between the rotor
radlus (R) and the hub radius. Figure 3 attempts to visualize these

geometry parameters.

Given this information we can now calculate the grid point location
in terms of our //, YJ,EUg)reference system and express the results

as
44 7 /(JV/X/'/ XlL{V,/'/ ZJL/N,/'I

7Y /7 AXdbpy,g Y14, Z1Eum

vwhich results in a surface grid point description compatible to the
general description method described earlier. We heve incorporated in

this scheme as an option, & method to fair the tips by simply forcing

the surface coordinate at the tip to lie along the chord line.

T it ke SRR

o it o b i
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3.3 Elemental Planar Surface Description

In the description of the rotor blade surfaces and rotor blade
wake surfaces we are given surface grid point locations. The surface
defined within four control points ia a warped surface ideally des- i
cribing the blade or weke surface. Because of the numerical approxima- i
tions applied to the integral boundary condition it is necessary to
% define a planar surface as our control surface element. In a manner
similar to that found in Reference 1l we can define a planar element given {
k the four grid point locations.

g We assume that the four grid points whose given coordinates are

E (/)9’5,29'_1q9re numbered clockwise when looking down on the i
y (:/ .

control surface from the external flow field. We can now construct

two tangent plane vectors /7 and /,  such that their cross

b

product will define a unit elemental surface normal direction. That

is let

~, 4

—— N\ —
7l- = 7;,)( Ve 7; ,Y 7 /kz,g (3.3.1)

where

/
/J - 71

Y
QX
1
NN
w
e
n

]

LV
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then A - 5 X 7; vhose components are

/\; 2 _;’/71—1/ - 7‘,-‘,7;7,
Ny 7 pgiZpr 7 g dye (3.3.3)
/\/1 i ! 7‘)’, - Z)-’, 6’

The unit normal z  is Just

X 4 ey’ s KB
= , 7 ’ -7
/ x b 4 x

% (3.3.4)

The elemental surface plane can be specified using the known unit

7

normal and a calculated average point zﬁﬁlz zéigy

plane and calculated as the simple average of the corner point

taken to be in the

coordinates. In order now to project the given grid points into this
elemental plane along the unit normal we first find the distance /<ﬁcn/
that the {th grid point is removed from the average point. This is
given by
b 2 g KR r g B e # (Pl e R
(3.3.5)

Then the projection of the grid point into the plane along the unit

norual results in a set of grid projected coordinates /Cg/zlziﬁh
4

given by
/7 7
,’(/o‘. = Xl’ s A t,
S / /
e, E Nt r M Ay (3.3.6)
/7 /

2. = Ep 4 S g

a
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We can now construct an elemental fixed axis system ./ 3, 7:/ such
that the 7 axis is directed along the unit normal /«/) , the
Z/ axis is directed along the line joining projected corner point
1 with projected corner point 4 and the j? axis direction is given
A P
by y x 7 .

Let vector )Zi be given by

= Ay A’ 27
N /T A L 4
“ x 7 (3.3.7)
vhere
- / 4
/,JIX/ - X/’} - /‘//’j
/ /’
7,01/ = By T 2 (3.3.8)
e / 2 4
//_’,}, = Z/‘a’ - /_OL
Then the unit vector )ai is given by
- }—& A A/ N
o= = A X s LS s P P
7 //22 / ~ $4 N
(3.3.9)
Let f?é be a unit vector along the Sy axis, then
— A Ny Y — P
», = //;(2// rd //)/;; Y oy /&52 = K X //2
(3.3.10)
3 vhere
/&2; = 71']’//11’ - }{J/‘/ﬂrl’
3
S P Y A (3.3.11)

4 ‘p - - )
rj ié = }!X’//J/J, }7// 2;‘1/ .
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If we now take the origin of the elemental /{ 3 }/ coordinate
system to be at rrojected corner point (1) then the transformation
equation relating the body fixed coordinate system to the elemental
coordinate system 18 given by
/ ’
g i el tal || X
— / /
J — Y f/")z' //',2’ Y -,
7
4 U N P e an
(3.3.12)
During the influence calculations which will be described later
it will be necessary to designate one point on this elemental control
surface at which the influence is to be calculated. We shall take as
this control point the centroid of the elemental surface. I! can be
shown that the centroid location /7 .72, )’///7 is given by
L, =LA s BTt K S b Al ]S
Doy LT P BT 4 ATt K E SSH
L}
Lo = 7
(3.3.13)
where
— /
, = T4
— _ 8 '7
2y T 3% (3.3.14)
/
/,71 - T 7 4 75‘

Do = p o F Ly -2, T (3.3.15)
/'72 = 2‘//‘;‘;2./[2‘78]




9, = F*23
Ay = 2"2}[%'/3.7
7y = £ 5
7—1 = 72
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(3.3.16)

(3.3.17)

(3.3.18)
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3.4 Blade Influence Calculations

We have to this point in the discussion essentially described
the geometry of blade one as a set of upper and lower surface grid
points. Furthermore, we have presented a method to specify an
elemental planar control surface in terms of its location in space
with respect to a blade fixed reference system and with respect to
its own elemental coordinate system. Therefore, we have the informa-
tion necessary to compute the influence coefficient of one blade element
on another blade element.

In order to make the problem more easily tractable we shall first
define a new indexing system for identifying the particular elemental
surface. Recall that in the description of blade one we have specified

M map span stations, NVaws, and NMwae, upper and lower
chord stations where grid point M=1l, N=1 corresponds to the root chord
at the leading edge of the upper or lower surface, and grid point

VA S N = WNowas corresponds to the tip chord at the
trailing edge on the upper surface. If we index the elemertal control
surface with the indices taken to be the index of the most immediate
inboard span station and forward chord station then essentially we can

describe the particular elemental control surface as (element)M N+ If

we define
/977 = P mnp T4 (3.4.1)
/V/\/‘/ = /y”fbf - 1 (3-1"?)

N, = Wmar, -1 (3.4.3)
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then ve can state that there are A/7x &/, elemental control
surfaces on the upper blade one surface and likewise, there are

/7,7 A, elemental control surfaces on the lower blade one surface.
Because we will be specifying the influence of one element on ancther
element itbehooves us to index the elements with a single index. We
will identify the elements a3 ./ - ., Zueys where the elements are
numbered consecutively beginning on the upper surface at the root
leading edge element and proceeding first chordwise and then spanwise.
If J-./mar, 18 the last element on the upper surface then

7= ]F"’ﬁ/ , 7 is taken to be the root leading edge lower surface
element and the indexing proceeds to ]W in a similar manner to
the upper surface. It follows then that for a particular control

element specified as //Z/V/ then in terms of index I we have,
W //‘/'—///V/Vu I on the upper surface (3.4.4)

J=077-2)vn, # A » Zmas,, on the lower surface (3.4.5)

where

L wat, = ST A Sy . (3.L.6)

The computation of the blade influence coefficients now proceeds
in a straight forward fashion. That is suppose we first define once
and for all the a.ex elemental control surfaces of blade one.
Beginning on the upper surface, say elemental surface (M,li), we can

immediately using equation (3.4.4) index this element as elemental
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surface I. Now proceeding in a clockwise fashion around the elenent

we define the corner point coordinates as

/

Yo = YAV (3.L.7)
. 2, 21UV N, 17

&/ = xluﬂlﬂf.l
’

Yo 7 YUy 14; (3.4.8)
/

g’a 3 ’Z.ll/,v/ Myl

XJ = x-“//yvll rrvs

Y2001, 01 (3.4.9)

X
]

}J - 21‘//4»1/ rvd

Xe = XIWpys p
>/4 - 711//501,/‘7 (3.’-&.10)

}4 = zluﬂwl,/‘? .

Note for the lower surface element we would define the corner point

coordinates in a clockwise fashion as

' )(J = leh‘ Va/i

‘ Y = Yilpn (3.4.11)
2y = P2l4ym

, X 2 XL y,p oy

3 y

oo = YI1ly,s iy (3.4.12)




B e e B ™ e i it Cb s b Gt i it o e i i s i o N i

13
\
3
/
? Xy = XL,z 1741
3 A
i g T Y1l es, prog (3.4.13)
/
Zy = 21Ly,1 41
)(4, E XIZM,y,,j
/
Yo T YLy 44 (3.4.1k)

24 = ‘-JIL/V//"/VJ.

Now using the equations developed in the discussion of the elemental
planar surface (section 3.3) we can define all the geometric relations
needed for later influence calculations. That is, we develop and save
the following parameters for all elements I of blade one:
A) Transformation matrix relating the primed reference system
to the elemental reference system.

B) Origin of the elemental coordinate system with respect to the

primed reference system.

C) Elemental corner point coordinates with respect to the

S n e

elemental reference system.

; D) Elemental centroid coordinates with respect to the elemental
; reference system and with respect to the primed reference
system.

E) Elemental area.

Given now thn element I of blade 1 on which we wish to find the
influence of element J of blade 1 we would proceed as follows:

% A) Recall the location of the centroid of element I with respect

to the £.¥) ¥ 27’/ reference system, ie X!y 7 'j(.;[ .




B) Using the transformation matrix relating the primed reference
system to the Jth elemental /. 4, T /\7 coordinate system,
transform the location of the coordinates /X, Y/ 12,41 t
coordinates [/ ./ y, .

C) Given now the corner point coordinatesof element J with respe
to its coordinate system, ie /);4/ ﬂ/\};‘: g 2 , calculat
using equation (2.6.18)the velocity influence coefficients in

A A A~
the /, 4 and ) direction at point (-7, fjf“[ ,

that is, define ];r

4\7,]&};7 a.nd])—}l

T

D) Since these are the influence coefficients expressed with
respect to the Jth elemental coordinate system, transform the
coefficients to the /x,/ 7’/ system using the inverse
of the transformation matrix of B above such that the final
result is in the form of velocity influence coefficieats
expressed with respect to the primed reference system, that

is,

Since the boundary condition requires us to define the influence co-

4 ) ]7},.7‘ , and ]1/]”7
efficients on all ],u/ blade one elements of all elements of all
blades 1—‘4 Zmway we would simply repeat the procedure outlined
above for all J elements of blade one, and for exactness, we should
replace the Jth subscript above with J
the influence of the Jth element of blade one on the Ith element of
blade one.

In order now to compute the elemental influence coefficients of

blaaes [ ;’ Z on the elements I of blade one we have to alter the

procedure outlined earlier. Note first that we have assumed all rotor

b7

o]

ct

e

1 to indicate that this representic

ey

T




blades are identically described. Thus the J elementel surface of
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blade /x7 are similar to the J elemental surfaces of blade <£~.7,

Thus, since ve are given the geometric parameters defining blade one
elements, all that we need to do in order to define the parameters of
the J elements of blade /> 7 1is to apply a simple transformation
involving & rotation of axis about the ~# " or ZZ axis. The
rotation angle is of course the angle between the blade -7 span
axis and the blade /»7 span axis. Once this transformation is
accomplished the outlined procedure above may be followed. The final
result is then a set of influence coefficients relating the influence
of blade L, elemental surface J on the blade one Ith elemental surface
centroid. The total influence then of all blade J elements on all I

elements can be written with respect to the primed reference system as

Z (3.4.15)

]/'\7 L7

—

])’1’;./ o/ (3.4.16)

L
Z

LT }/ . (3-’4.17)

Thus the blade influence coefficients are determined.
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3.5 Wake Influence Coefficients

The problem concerned with calculating the wake influence co-
efficients once the wake geometry 1s established is essentially the
same problem encountered with calculating the blade influence co-
efficients. For the wake influence, we are concerned with calculating
the influence on blade one element I, of a wake element as it leaves
the trailing edge and spirals down in a streamwise direction. Since
we have shown that the doublet strength remains constant in the wake
along a streamline, then ve may numerically integrate the influence of
streamline segments and sum the results to present the net effect of a
particular wvake streamline on an element I.

In this problem, because of the numerical approach, we are concerned
not with a single wake streamline but rather » : a series of adjacent
streamlines which leave the rotor blade in finite segments on each of
vhich the doublet strength is a constant given by the difference in
upper and lower blade surface trailing edge element doublet strengths.
As such we wish now to calculate the influence of spiraling finite width
vake segments on blade elements I=1, Ipay.

We will choose to represent the wake as MM spiral segments, each
of which trails from one of the J blade trailing edge surface elements
previously discussed. In order to demonstrate the feasibility of a
lifting rotor surface analysis and to begin the free wake analysis we
will choose to model the wake in terms of a prescribed classic wake
model. The description of this wake is relatively simple and is used
here because of that fact. In no way is this theory limited to such a

wvake.
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From the rotor blade one desc.iption we know the Mp,, trailing
edge span station coordinates. These may be expressed in terms of a

primed cylindrical coordinate system (227, & ¥ 4 '/ such that the

dimensional coordinates are given by

cn’ 17 /
=i, ; !f/”) L?,,M/ AOX /7 D, S omanr .
(3.5.1;

It follows then that the streamline leaving the trailing edge at any ;
of these span stations will follow a helical path, the equation of which J
4

/
is expressed in terms of a parameter Z ' as follows,

/ k-

4//{7 s R, = conctant

) =j,;” - lr-2Y (3.5.2) ﬂ

L
2t =2y -yt

P

vhere <Yu/ 18 a constant rotational rate teien as positive in the usual

/
aense sbout the 7 axis, and 24~ 18 a constant velocity taken as

T

positive along the 27 ’ axis. If the distances are nondimensionalized

in the usual sense using the blade radius (R), and the velocities are non-

dimensionalized using the rotor rational tip speed /k)g/\’/ , then

ol

the above set of equations becomes

‘1

» At - A,’—[ﬂ = constant ?
3

g T Fre - IF (3.5.3) a

g

2t - 2)/'[/7 - W IF
wvhere

Do = Hprr-l (3.5.4)
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In this analysis we will take the velocity (25’ / to be the sum of
the rotor climbing speed and a specified constant increment downwash
such that the sum represents an average constant momentum downwash
expressed with respect to the blade fixed reference system.

Having established these equations it is now a simple matter to
describe the wake in terms of elemental surfaces just as was done for
the blade surface. We will define the wake as consisting of MM spiral
sezments such that the Mth spiral wake segment has as its origin the
trailing edge segment lying between trailing edge grid points M and
M+l, Each spiral wake segment's influence then on blade one element I
will be calculated as the sum of a finite number of trailing segments
derived by incrementing the wake's displacement from the blade in terms
of the parameter AOAfﬂ The same procedure as outlined in the blade
influence coefficients section 3.4 is followed with the result being
expressed as a set of influence coefficients expressed in terms of the
primed (/(/’ y/’ z 7 reference system as [x":/v ’ ,fy}/;” 5 /:,}/1
where 42;2/7 is the influence coefficient in the ;?' direction,
derived from the influence on blade one elemeni I of the wake M segments
trailing the £ May number of blades from the Mth trailing edge
elemental surface.

In the actual computation scheme the wake influence calculations
are terminated depending on one of the following constraints:

A) After a finite number of wake turns are completed.

B) After the intluence coefficient on a specific blade element

I has reached a value less than a specified percentage

amount of a close blade wake element.
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C) After a specified absolute number of wake influence
* calculations are performed.

The size of the wake elements are determined by the length of the
trailing edge span station grid points and the angular measure A& :
An option is included in the program to allow A7 to be specified
as a certain value until a given number of wake turns are completed at
vhich time JXA#’ will take on a second specified value. This allows
for finer wvake elemental ccntrol surfaces to be specified in the wake

region near blade one and coarser wake elemental control surfaces to be

specified in the far wake region.




3.6 Generation of the Set of Surface Boundary Conditions and the

Numerical Solution

To this point in the discussion the determination of the geometry
of the dblade and wvake system and the analysis of the entire set of
influence coefficients have been presented. We are concerned now with
the actual formulation of the set of surface boundary conditions. Using
the results of the previous two sections we may write the induced normal

velocity on the centroid of a blade element I ss

= _ 4
- . = S o '3 + -1 7
V"'“(I Ny Jé 4+ Ner M%; 477 4.’[’," (3.6.1)

wvhere, except for the doublet strength, everything else is analytically
determined. The first sumation term represents the blade induced
velocities and the second summation term represents the wake induced
velocities. The element I unit normal ;i[ expressed with

respect t¢ the primed coordinate system has been previously determined.

1y

L
vectorially dotting the respective vector primed influence coefficient

represents the normal influence coefficient obtained by

with the unit normal /7 .
Once the doublet strengths have been calculated, the surface
velocity potential is computed using equation (2.4.6). The induced

surface velocity is then computed by

4 —— .._.—-i o .6.
v. ;| = S , (3 2)
3

vhere -537 represents the tangential surface derivative.
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It was shown earlier that the primed free stream velocity on the

centroid of an element I can be written as

4 _ ratid >y
Voo = LXKy s/ (3.6.3)

- AN ——
vhere 4 1is the rotor rotational rate (aé z ) 5 2/7 is the rotor

-~/
climd velocity i ;’/ ,and Ao 7 18 the primed vector to the

_ —_

centroid of element I. Nov &/ , Vy and A5, are known,
-

thus V" Y e is determined and it follows then that the primed free

stream velocity normal to the surface element I given by

/ - —
is determined.
Substituting these results into equation (3.6.2) it follous then

that the set of ];,/ surface boundary conditions to be satisfied

is given by
Vaaspe /777 ’
- % # - = - I
\]"2:/1 £77 ]ﬁj;.;- /72; v 4/;,7 ’6/"1 (3.6.5)

fon Zd Lawy .

Since -47,, was shovn in section 3.5 to be related to specific 4

values the set of equations above are in fact in the form generally given

by

AT/ = B (3.6.6)

i e

i i e 8 i, s it i 0 Sl
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vhere the matrix A 1is an ... X V... square matrix, X is a
Upap column matrix and B isan 7, .. column matrix. We

have identified
- Y
Xr = 4—7’/[ (3.6.7)

Gy = T ey, (3.6.8)

The solution to the .)fuéqf simultaneous set of linear algebraic
equations is carried out numerically by either of two methods depending
on the program option selected. One method employs the Gaussian eli-
mination scheme with pivoting. This method, which is discussed
completely in Reference 17, 1s an exact solution method whose scheme of
operation is to successively convert the defined matrix into a matrix of
one less row and column until in effect an upper triangular matrix
results. The solution is obtained then by a back substitution scheme.
Interchanging of rows is done in order to make the pivot diasgonal terms
dominate wvhich is a condit'‘on necessary to ensure accuracy.

A second method choser to obtain a solution to the set of equations
is an iterative approximate method known as "The Method of Simultaneous
Displacement for Linear Systems'. A complete discussion of this method
is presented in Reference 18. In essence, however, this scheme involves

expressing the ]W lipear equatiors in the form

Jx/) = JE]/x/ F /<) (3.6.9)
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vhere B is an /7, . square matrix and C is the given column
matrix. An initial approximation vector is taken as

o
X]' = / Fonr LX4 ]:J/ ]w .
(3.6.10)
A
Successive approximations )fr are generated by the iteration
7-4 oy A
Avl Avd
= 4 r 24 4 <
Xz f:] J,J){’ 5z 1,(7’(7 Z
(3.6.11)

This continues until the criterion
Ard A
S X T -/
X
/ X%/

Z &£ Son #ib T Lacag
(3.6.12)

is satisfied.
In actual practice the iterative scheme is the solution of choice

for large sets of simultaneous equations. This point will be discussed

in a later diascussion section.
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3.7 Determination of the Velocities, Pressures, and Forces
Once the solution in terms of the doublet strengths are known
it is a simple matter to determine the induced primed velocity on
all blade ore elements using equation (3.6.2). The preasure coefficient

at the centroid of element I is then given by

. BA

2 4 -/
o = - % y -V ‘v
e # T A Py

(3.7.1)
where /\ is taken here tc be the ratio of the rotor climb speed to
the tip speed CwR) .

The non-dimensional force acting on any element I is given by

Ay
;4 =] /_’II{[ S _ A
L o KGR ST (3.7.2)
Al A7 N

Ay
vhere S5 1is any X,y or 2 direction.
The non-dimensional plane of rotation torque acting on any element

I is given by

s
4 / ’
= = =~ f Ay, A
4] Z o zan)i 77 [’(1 5y );)(/4]],
(3.7.3)
The total rotor axial thrust coefficient is given by
_ Spres SwksT Lyt Lmay
T I aiare | T2z L, 7%
/0 w,{j TR Tz .
(3.7.4)
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Similarly the total rotor torque coefficient is given

. Trres Jongus Lacny “mar
%= = Ly
i P Lt RIE(TAY R 2 :3—:, &y :
(3.7.5)

This concludes the step by step discussion of the solution scheme.
As a way of a short summary at this point we have shown how if we are
given

A) The rotor geometry including specific surface grid points.

B) The rotor non-dimensional climb ratio A = V/wR

C) Some prescribed wake geometry specifically taken in the

previous discussion to be & simple classical helix shape

then ve can calculate the pressure, velocities, and forces acting on

the blade.
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CHAPTER 4., DISCUSSION OF THE COMPUTFR PROGRAM

4,1 General Description

In order to demonstrate the feasibility of this 1lifting surface
theory and its application to the prediction of rotor blade flow field
analysis a computer program was written, The theory as described in
the previous sections is a relatively straighérorward theory, however,
its application becomes rapidly complicated due to the geometry and
large system of elemental control surfaces necessary for accurate results.

As a means of perceiving the extent of the problem we may consider
at this point a reasonable end problem that we might wish the computer
program and computer to handle.

Suppose we are given a two bladed rotor system whose gecmetry is
specified along 16 span stations, 21 upper surtace chord stations and
21 lower surface chord stations. This implies that we will eventually
describe the three component vector velocities on 600 basic elemental
surfaces. We have seen that the description of each elemental surface
alone requires at least 25 parameters which for this posed problem means
a total of 5,000 such parameters. The blade influence calculations alone
total 720,000. If we describe the wake with a total of 1155 basic wake
elements wve require a total of 1,386,000 wake influence calculations to
be performed. The simultaneous set of equations to be solved is & 600 x 600
system,

The computer program was run for this problem and will accommodate
up to 2000 basic blade elements which is the critical size determining

factor. It should be obvious that the constraints to this type of
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computer solution will be the available size of the main core computer
storage and the computational. speed of the computer itself.

The program was designed to be run on West Virginia University's
IBM 360 Model 75 computer. The greatest amount of computer core
storage required at any one time is 240,000 bytes with L Tytes being
required for a vord length. The program requires a minimum of three
accessible external storage devices with at least two of these devices
being a high speed storage device. At WVU this requirement was met by
using the system disc files with two standard length nine track tapes
being used for permanent storage. Seven track tape devices are in-
compatible with the program as written. The program itself is written
in FORTRAN IV language and was campiled on the IBM FORTRAN G version
campiler, The program is a research orientated program and does not
necessarily reflect the most optimum design orientated program, that is,
it contains various checks and options which are not absolutely necessary
to the program solution. We recognize also that there exist areas in
the program in which the exact analytic expressions may be approximated
and advantage of these time saving methods have been used in this
program. However, it is the intent of this program not to incorporate
all these features at this time. The philosophy under which we have
written this program is to make it as exact a numerical scheme as
possible so that if an infinite number of control elements were taken
the solution would be as exact as possible within the confines of any
incompressible potential flow analysis.

The program 1s designed on a modular basis with each module being

designed on the premise that given certain input informtion it is
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the purpose of that module then to specifically calculate a certain
aspect of the overall problem and to supply certain output information.
The advantage here is that it allows for easy internal modification

by simply replacing this module with another. The actual'sharing of
information is done for the most part through the use of common machine
storage centers. In this way the amount of in core storage necessary
i8 minimized as storage locations are used at different times for

different parameters.

4.2 Specific Program Description

The overall progran is subdivided into seven main .i:ograms

identified as follows:

INFLUENCE COEFFICIENTS

1. MAIN
2. MAIN - CREATE SOLUTION FILE
3. MAIN - SOLVE BY ELIMINATION
L. MAIN - SOLVE BY ITERATION

5. MAIN - TRANSFER SOLUTION FILE
6. MAIN - VELOCITY CALCULATIONS

T. MAIN - PRINT

The purpose of each program is generally indicated by the assigned name.
The Print program is actually an auxiliary program whose sole purpose
is to retrieve additional non-essential information stored on the two

permanent files. It was usecd during the program check procedures to

study individual elemental influence coefficients.

S
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The reason a series of main programs are used rather than one
single main program is because the overall program logically divides 3

itself into these areas and secondly we can minimize the amount of

external storage devices and internal core storage required during

any one series of computational steps thereby allowing for the computer
to be run in a time sharing mode as is common procedure at most in-
stallations. A general computer program flow diagram is given in
Figure 4 indicating the major steps in the progiam. The solid lines
indicate continuation to the next step with che broken lines indicating
continuation into another main program.

In Appendix D we have discussed the internal structure of the pro-
gram at the level of the subroutine. Basically we have presented each
subroutine as an entity and described its function and options. Except
for the MAIN-INFLUENCE CALCULATIONS program, the actual program operation
is straightforward. We have presented a detailed flow diagram for the
MAIN-INFLUENCE CALCULATIONS program in order to serve as an aid in
discussing this program operation in terms of its various options.

We have also included in Appendix D a discussion of the input procedures

and output information.
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CHAPTER 5. RESULTS AND CONCLUSIONS

In this section we will present a summary of the results of two
major case studies. These cases were chosen so as to verify the mathe-
matical model and the computer program for the case of a prescribed
wake model. Recall that the present work is not directly concerned
with the force free wake analysis which, in fact, would require subse-
quent wake iterati-e computer runs to be made for each of the cases
presented. The results presented here thus represent the starting or
zeroth order solution to the overall rotor analysis. Subsequent
solutions will, however, make use of the same program with the prescribed
wake geometry having been predicted from the previous program solution.

In Table 1 we have presented a summary of the rotor description,
elemental blade surface description, elemental wake surface description
and free stream conditions as used in the first case study. This sinple
bladed rotor system does not correspond to any real rotor system but
was chosen because its analysis requires a relatively small number (160)
of basic elemental surfaces for each blade description. Figure 5
attempts to visualize the density distribution of the elemental surfaces
which describe the rotor blade surface. This plot is a planform projec-
tion of the symmetrically described 80 upper and 80 lower elemental
surfaces. We have spaced the elemental surfaces more closely in those
reglons vhere we expect the pressure to vary most rapidly. The rotor
hub radius of this two bladed system is taken to be 90% of the rotor
radius, thus, the rotor blade occupies the outboard 10%. In Figures

6 through 9 we have presented a plot of the pressure coefficients vs.

s fam

—

i)

e

S




6k

chord station At each of the four span segments as identified on
Figure 5. The pressure coefficient is defined on the basis of the
rotor rotational tip speed squared and each point plotted represents

an elemental centroid point at which the normal surface boundary condi-

tion wvas satisfied. These plots represent a realistic chordwise variation

in pressure and show the three dimensional character of the flow near
the rotor blcde tips. In Table 2 we have summarized the computer time
required for this case.

In order to more clearly show the three dimensional effects we
studied the same two bladed rotor system as described above except
that the geametric pitch angle at all epan positions was now taken to
be zero degrees. All other conditions remained the same as given in
Table 1. This analysis thus corresponds to a three dimensional non-
lifting potential flow thickness problem and es such no wake analysis
wvas performed. Figure 10 is a plot of the surface velocity vs. chord
station. The surface velocity here plotted is the velocity at each of
the elemental centroid locations of the tip span segment (span segment
L of Figure 5) divided by the local free stream velocity given by

o x K’ where R’ is the position vector to the elemental
centroid from the blade center of rotation. On this plot is also shown
two-dimensional, zero angle of attack, NACA 0012 sectional, potential
flow derived surface velocities non-dimensionalized by the free stream
velocity as given in Reference 19. Only the upper surface velocities
are plotted since the velocities are the same on the lower surface

for this symmetric airfoil. Note that the three dimensional blade

velocities are less in magnitude than the comparable sectional airfoil

SR A e Joh Sl




LTI I, Bre—

i G A e i

velocities and the velocity curve defined by the rotor blade points

has a near zero slope over much of the chord distance. These differ-

ences represent here the change in flow character between a three
dimensional body executing a constant rotating motion compared to a
twvo dimensional body executing a constant translatory motion. The fact
that the rotor velocity ratio does not equal the two dimensional result
is due to the three dimensional divergence effect on the flow over this
small blade segment.

The second major case study is an analysis of an actual rotor system
for which experimental surface pressure data is available (reference 20).
In Table 3 we have presented a summary of the rotor description, elemental
blade surface description, elemental wake surface description and free
stream conditions as used in this second case study. The density
distribution of the planferm projected elemental surfaces is shown in
Figure 11. Note that there are on each of the two blades 600 basic
blade elemental surfaces symmetrically distributed on the upper and
lover blade surfaces along the 15 identified span segments. The surface
elements are more conceatrated near the leading edge where we expect
the surface pressure to vary most rapidly. In Figures 12 through 22 ve
have plotted the difference in the upper and lower surface pressure

coefficient vs. the chord station at 11 selected span stations. Fach

point plotted represents the pressure coefficient difference obtained

at two respective elemental centroid locations where the normal surface
ot

boundary condition was satisfied. The prezsure coefficient is defined

here on the basis of the rotor rotational tip speed squared. In order

to better appreciate the chordwise and spanwise pressure variation
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wve have presented in Figure 23 a composite curve again showing the pressure
difference vs. chord station at the same selected span stations in dimen-
sional units. FPigure 2k presents an experimentally determined plot of
the absolute upper and lower surface pressure difference on the same
rotor as & function of chord station at various span stations. This
figure is a tracing of a figure presented in reference 20, in which the
pressure difference was obtained experimentally at 6 chord stations at
each of 8 span selected stations. Notice that the same scales have been
used for both curves in order to facilitate comparison between the
theoretical and experimental results. The span stations do not correspond
however, so care should be taken when comparing specific values. There
is a very close similarity in the distribution of the chordwise pressure
between the experimentally measured and computed results, Since pressure
taps vere not located near the nose of the experimental rotor the authors
of reference 20 rounded off their curves rather sbruptly in these regions
vhich probably contributed to their not checking as closely the integrated
experimental force measurements with the test stand value. It is
interesting to note that both the experimental and cheoretical results
show qualitatively similar losses in pressure near the tip.

The integrated results of Figures 23 and 24 are shown in Figure 25.
This figure shows a comparison of the spanwise loading distribution between
the experimental results and the theoretical calculations. The agreement
is remarkably close in view cf the fact that the classical prescribed
wake was used for the theoretical 1ifting surface calculations. As shown
in reference 21, the prescribed classic wake tends to predict higher

thrust coefficients than the experiment shows. This reference also
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points out that force free vakes reduce the spanwise loading over the
classic wake prediction. The present results are therefore, in agreement
and it i{s anticipated that the inclusion of a force free wake program
will bring the theory into better agreement. The computed thrust
coefficient for this case wvas (7 = 0.00LY compared to the experimental
value of C;-- 0.0038. Therefore the classic rigid wake theoretical
result wvas approximately 15% high, The corresponding theoretical torque
coefficient was computed to be Cba 0.00011 for this case.

Figures 26 and 27 present plots of the predicted relative surface
velocity direction on the upper and lower rotor surfaces respectively
for case 2. In these plots we have forced the rotor surface to conform
to the plane of the figure. The direction of the local surface velocities
are shown drawn as a constant length vector from a series of surface
control points which approximate selected elemental! ~eatroid locations.
The plots are essentially comparable to what would result from an
experimental flow visualization tuft study. The figures clesrly show
the three dimensional nature of the flow on the rotor bl. te surface.
Note the circular nature of the flow which is evident at all span stations
but which is most prominent at inboard span segments. This result is,
of course, expected since the free stream component is truly circular
( Mo/ = —w X R’) . However, if one studies these results more clearly
it becomes evident that the induced velocity component does alter the
flow direction. If we restrict the following discussion to the in-
duced spanwise surface velocity component the results show that beyond

approximately the 50% span station the .nduced velocity is directed

inboard. Inboard to the 50% span station the induced velocity is
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directed outboard at surface points forward of the quarter chord
approximately and inboard beyond the quarter chord. The flow deviation
between the top and bottom surfaces near the tip trailing edge is of
interest. The flow leaves the top surface trailing edge at approximately
a 20 degree difference from the corresponding flow leaving the bottom
surface. The directions indicate that the shed vortex sheet is already
beginning to roll up. In Table L we have summarized the computer time
required for each of the major steps in the execution of this 600 case
study.

From the summary of results presented we conclude that the lifting
surface theory as developed is applicable to rotor system analyses.
Furthermore the application of this theory is feasible. The results,
hovever, are highly dependent on the prescribed wake model used in
the analysis and use of the classical wake model is insufficient to
yield accurate results. It appears that the prescribed wake geometry
must be similar to the actual free wake geometry in order to obtain
accurate loading results.

There is a lack of experimental data or theoretical analyses which
would help us confirm the theory developed here. To the authors'
knowledge there exist very little available literature giving rotor
blade surface velocities and directions and loading measurements on an

ting rotor system. The conclusions we have drawn above have as a

necessarily assumed the present theory and application to be
The general potential theory certainly has been proven by past
application on planar body motion analyses and we have systematically

checked all application procedures in order to ensure accuracy.
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CHAPTER 6. EXTENSIONS

The theory and formidable program presented in esa>nce completes
the basic approach to theoretically analysing a lifting ro%tor using
potential lifting surface theory. Much work needs to be doae, however,
before the application of this theory can be used routinely for rotor
design analysis. We recognize that extensions to this work should
proceed along two major routes. One major route of study should be
concerned with the wake. At present the program (not the theory)
uses a classical helix wake washed awvay at some constant velocity
from the rotor blades. As is noted by various authors (explicitly
cited earlier in the report) the wake geometry plays a major role in
determining blade surface velocities. Obviously a more accurate pre~
scribed wvake representation needs to be incorporated. At the present
time we are extending this work in order to incorporate a theoretical
force free wake analysis. This extension is to be accomplished by
predicting a new wake geometry configuration based upon the solution
obtained by this present work. In this manner successive solutions
wvill be obtained by iteration on the wake geometry such that the force
free wvake solution will result.

A second major area where further extensions to this work is
needed is in the area of reducing the required computer time. This
may be practically accomplished in basically two ways, that is, first
reduce the total number of influence calculations to be performed
and, second, reduce the time required for each set of influence

calculations. The former may best be accomplished by further studying
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the individual wake elemental influence and optimizing, based on this

study, the actual extent and elemental description of the wake itself.

T T

The latter above may best be accomplished by using approximate relations
to describe the influence coefficients at a far removed surface point

; instead of using the exact relations which require perhaps twice as much
computer time. The numerical results shown here have already incorporated

this simplification in the program.

There are of course other means to reduce the required computer time.

Linearizing the surface boundary condition would reduce the time required.
E Furthermore, incornorating an experimentally determined wake geometry

would result in s sabstantial overall computer time reduction. This

type of extension would make the present work suitable for studies on

existing rotor systems but not necessarily applicable to new configuration

rotor systems,
With the advances being made in computer technology, especially in
the areas of increasing core storage coupled with the extensions above, it
does appear that 1.!c rotor lifting surface theory will allow the aerodynamicist
to perform a completely theoretical design analysis of any given rotor system.
The problem which remains to be analysed 1s the problem posed by
a helicopter which {8 climbing as well as advancing perpendicular to

its axial climb direction. The analysis of this rotor system requires

an unsteady analysis as the blade loadings now become functions of the
blade azimuth position thereby increasing the number of unknowns in the
problem. The theory 1s simply an extension to the present problem,

hovever, the actual solution scheme becomes rather complex.
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ROTOR SYSTEM AXIS CONVENTION
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COMPUTER PROGRAM FLOW DIAGRAM

Rotor Geometry Specification

Specialized Planform

Option General Planform
Constant Chord Option

Constant Airfoil Section Sharp Trailing Edge
Linear Twist

Free Stream Specifica-
tion and

Weke Calculation
Parameters

Blade Llemental
Surface
Calculations

Blade
Influence
Calculations

Wake
Influence
Calculations

T
|

|
(Continued on next page)

FIGURE 4 (a) §




TR -

T T T AT P Y-

Sieanitid Sus th ideatiesanae e gas  aasraan ot ol e L ade

COMPUTER PROGRAM FLOW DIAGRAM

(Continued from previous page)

i
Set up of
Simultaneous Set of
Equations
I
|
f
!
1
Solution of Set of Fquations
Iterative Exact
Solution Gaussian
Method Elimination
Method
]
]
|
|
f
Transfer
Solution
File
-
|
|
!
!
|
Velocity
Pressure and
Force
Calculations

FIGURE 4 (b)




3

k& T T -

131 ‘ON 41 NN

vE Z1I ANIWNNES NudS

1071 ALISN3CQ

Ao-dddris 1O 1AL NOD

FIGURE 5




I "ON Ql NN =
! NOILWLE Nelali In
1.
un_
lu,_
Y«
NOLH1lS J4AaxdOH>D QQI?_
%J?.@W‘ﬂqﬂ.wqmﬂqu@_@.ﬁﬂ_ ﬂ
(o) i Y]
(0]

(o) o .ﬂ.n
IDOHINrG HamMo ' o .%m.

ADWANNE MNBwcn O o
eLm
=
1L
| Y]
NOLHIS <aMOH>D -4

5N I NEFGIDI d4d3 0> 3[MHnNss3asdd
) ) ) ) )

IN3IDIHA4300 NS53Nd

FIGURE 6




,M. 1@l ‘ON <49l NN JW
i = rOILMLE NioS lrl.-
W_ <=
w 3o
m Qlw_ﬁ
i v1* @
. n
W * o NOILBELS <adOHD 44 .._,.M
=) & " = x (2} g = _4 -
£ —®T T qm T % : L ‘ T w 1 @ T Q_ R~ T 1 Im -
4 o l_h___..__._ m
: ° 5 =
o 4z A
: Q , M
BAOuamns waMmo 9 o IEW._
ASHANNE MNadan O J
o Am
© *l..
™
o ]
ﬁq.m
NOILH1lS <dadOHD> F
== 1VAN A N3IIZ>DI d 430> aAdNdNMNs5sEs 334 d
) ) ) ) )




83

i@ ON Al N . JM
[ NOLMLS NS - ﬂ
™
n
4..5
g4=
NOL-Y1lLls 4d-bOdH> QQ -1
uw-l.‘ . °n. “h. = = = = = q =
T T— T 1 — & w T @ T ¢ T Qq = T 1 T _
o Jt
° 1
(o] =
(o] 1
ASWINNE waMa § o = b
AOHRNE NBdan O &
o
o %w
o |L
°l_.c
NOILHI1IS <adOH>D 9
"SA A N3IIDI 430> 3I-™riss=4dedd
) ) ) )

IN3IDI44300> INNS53Md




=3
o 4
1) ‘ON Gl NMa -
h  NOLWMLE NudS h
™
n
Jm B
e| [n
Jdx i
v| 5
NOLHLS asOHD g 4nu™M
=) 4 R = = s = = _M?Q Im =
T ‘ T ’ T T < T J T _4 T ™M %
| & 3 ’ P
g m
e I Z
3
ADWAMPE MIMOTT P © ’m_
JOMAMNME M3 © o _
o -1
1
Olﬂ
-
h
~1
NOI1l-H1lS <d-dOH-+H> *

SN 1ANIJIDIdAd30°> FI-hdss3E3sdd




b A i oo e son b st bl r i etgin, . cii s St L g a i St bl i et A e

>/ X NOILB1lS A0S

CNOILHLES NHGS HLihl ANO3HL NOL0M “WIAN3LO0-L 29— 9
ANORHL DI IINLO0d 2 a—2 ©

1

1 @1

q
-]

QQ
R
q
(0]
q

> 9 o

g W z
ANIA/A  ALIPON3A 3>HANNS

g

ai

v
© © 6 0o 009

NOIl-d 1S <dd0O0H-H>
SA ALI>O13IAN 3o-HddlN T =

Zr

FIGURE 10




86

CE e R e A Lt e

‘aN <1 NN

/
[

Sivigize i

R T W W TOT AmTa b Lamog r

10714

\
A

ANIBNEISE NEHAS

ALISNIA 3IoE4dHns 10 1LNO2

B PPN T PR TR KL AT 3 T RV "L AUTTNIT DY LI

FIGURE 11




<F CLOWERIJ

.
vm—

CLPRPER]

!:I

V

E wZ- FI- Si- ki~ Zi- &l- &~ 8- k-
d3IMO™1 d2 - R3ddi] 4D

FIGURE 12

87
&
Z b
] : |
£ 8 l
il Eg |
& %
z"' -
Il £ i
(14 12Z
O M
18
14 1
[ T
1 ‘ é
\/ 15
1
Ln .
> "
S VN U RS VN W W GUNN UNS SN SO SO NN WS GNNN R G NN l:: L
Z- B T+




NOI1l-H1LS <d-dOH-H>

CHESIMO1d] 425 — [Cedddd

R==A\
M3

= >

k NOILELS 44dMOHD 3

n.r.P (- o (- o L = = (Y [~ = | I

3 ' Ry Y \J 1 4 T 3 T Y T T T

.

i

3 -

.

{ o ) ‘TN a1 Nrd =

4 °

3 22 NOLHLS Neds ~
-
-

g- =

7= -
[N3MOT] d> - [H3ddn] o2

Fi- gl- Hi- o

e~

FIGURE 13




[=4
(=)}

= - - L NOLLELS asoH> _ . -
-4- 9 ON Al N U

»

4

ﬁ/@ ﬁHu _ I mmm Aﬂu m”m HHU TIL HUV . mmm \)/ it
CAd3I3MO01] d20 — [Cd3dddgdrniil] 45 °

Fi- ¥~ K- 2= @~ K- &4 k- - @ £+
CN3IMOT] d5 — [M3ddl &0

PIGURE 15




91

B aeen e

NOLHLS axO-HD>
. = 2

qm O mo m -Nn 1 ¥ “d\- I- L] mo L N—- A :
]
=) ‘ON at N =
L E.—.mzmlm 1
NOLHIS daxMOH> S A

L IAMO1] 2> — [CH3Iddrril 4d2>

+
N

Wi- El- &I1- 8- g- - - @
CM3MOT] J> - [N3ddnI J2

gi-

FIGURE 16

VRO a P PRI T LYOIC T 0 TP U WL, TP g Ty




R L YD Ty T SR I ey IR s i B e i e .

= (=% [ =2’ .
* 3 ! ' ' A ! ' e
!
< b
.~ N
A-nr.D.
=E
—..ll
4 1
I V|
; ™M
T
I
JE
~—
| _ |
‘ON QI NrN = o
e &
a NOlLHLS NHIS ~g O =
—
=
rh_u
v &
= ]
y g
Q‘ﬂ
.
——
1
R.:]
A . o T N B = =
ST RSN (I e Y Sl I s TN S B =1 A\
. = )




2 et sk b oy i Kt e inadde Sl e G e S e e i Lo

a3
.
14 ]“
e .
L l
I (] . oL
Nl "1 ~’
_i} L 2 1m
Ll E |
- ¥ 1
: ﬁ
! i (]
LI £ |
U 1z
A o
| I 1
§ "
i I3
|0
H‘_ 4
=1 A
—J i :
N j&:
L.
il I
y | .1
R W S U N U3 VAN U U U U S U G TN N S N ST W e ;
", rAad gl- 9'|- h'l- zZ'i- " a8- 9'- h'- [ ”] Z+ J
[M3MO] d) — [M3ddNI 4D i
FIGURE 18 i




a0 (=3
T+

|

S L°
r TS YT T TTTTYT T T

Z:3a1 ‘ON GOl N4
11 NOILHLS NS

NOilL-g L=

=]

A D
= -

T Y

T T === T T 1 4 ¥ T T

NOIl-Hl1LS Jdd-d0H2o =

Ced3aA™MDO 13

= >

L Addrd g2

[N U VS WS NS GRY NN N
Zl-

SN U G R |

Zt

1 d
A B

i
9= b=
[M3MO] d> - [N3ddnl 4O

g-

gi-

gil- gi- hKi=-

g

FIGURE 19




\')

21 e’ a
m.

G g I o '’ & = s s L =
PR L Y S P SO PO I TR v A Y VETRL VRS BoCy o,

2

‘ON a1 Nrud

=1 NOMLHLS NEdS

NOLELs <4dd0HD

=] b= I~ & =
. 3 B i ITTTYT O OYTTTIYITTTYTTTYT T YT T T L S S 4

i
=
4

|

.
N
—

:

Lo dd— bbb debd
$i- Wi-  Zi- &~ - 8=  h-
C¥3IMO] 42 — (M3ddnl d2

A

ai-

FIGURFE 20




ad PR

R R R v DT e e i T S

NN
1

SPAN STEATION
RUN 1D NAO.

—1 4 4.1 4 b d 4 b b4 41 b1 1

gz~ &I~ i~  WI- - @I~ B~ g- =
CM3IMO] 45 — C¥3ddrl 42

FIGURE 21

U WSS
i~

e M L
B &
STRHTION

~t
CTHDORZ

e

N W WU S S

]

B S W SH—

B*_——l__..

4

Zt




97

r_] E
i
w: ’f
JEAN [—] "] -1m' ‘
[J — i N -
| Bin ;- i
~f ik i g L
1 - b A *
: L i : &
U | oo :L; j*
2 *NE ]

| I ot
] = |

0

<THORE

H
<_

L
PR
5 SR N

<
= %._——-L == ..L?-- [ SEEEENS W

1 SR T R NI SR MUY A N U SH S NN U S O S S U o ;
’ gz- &i- Si- hi- Zl- &Fl- B~ 8- M- - Z+
; [NM3AMOT] 40 —~ [M3ddN do

FIGURE 22




98

J/X NOILVLS Q¥OHD

E6LT
882"
9ssn”
1€ey°
9061
669"
Lin6*
S686°

g/

NOLLVLS JHOHO "SA IDNAHALATI THNSSIHA

:‘O\FU‘\MH

£T
St

NOILVLS NVds

40 JINSAH INISIHd FHL

o

™
.

=

s
[

*NI BS/€T ‘FONAMAALIA FTYNESTU

FIGURE 23




TR G STy oy Zr i Y

T

Gl s bbbl

(@]

[

Gee”
o9n*
06§
cel:
4
069"
626"
096°0C

¥/a

A e
ot o S " c e ©
i 1 ] | 4 ] c
= II.I-I.I.I.I-IIII'II .\.‘.
=
/
_W -
- i
.!.l.l.\
. [ |
[l
!
IR - o
#
: )
N ]
£ e
Y “ o
S 5
e}
L .w
& .___:T e
frﬁ /t
- LS )
rEITVIS vdS N
oLt
L
= n...

'£66C KL VOVK WOUd KAVHATY)

NCIZVLS QUOHD SA FADNIWILLIC FHNSSIHd
CANTWHALAA KTV LNAWI HIdXS

NI NS/TT CAONAMTLLTA UNSSAMI

FIGURE 2k




100

(¥/3) NOILVIS NVdS
9° S . " € 2 T 0

v
=
20404 TYWHON

§
¥,
L]
FIGURE 25

*HI/91

JINSTY INISIHd FHL
HIIM QIHVINOD

(€662 NI VOVN WOMd KMVHATM)

IO¥O0d TVIWHON NOILOIS

QINIWEALIA XTTVININTHIIXT

e A sl e




Ll o e

Caticar i i

—
(=]
—

o b o

J Y N R ] ] | |
T T ! | |
[ | | | | _ *
NI | _ _
ot b _ ~ _
REREE RN | _ _
1 | | | L
q / ! ﬂ 71
| | | | RN
| | | | ]
| | | N
| | | R
| | | | K

NOILE1S NAHAS

4071d NOILDS3MIA ALIS>ONN3A 3oPHdMns

HO1L0OMN SHN3ddrd

FIGURE 26




_ ] | | ] | |
ILIRE T ! |
IR | | |
NURNREE N . | | |
]| | | |
ey | | |
EEREE N | | |
T.__ mf L l ! ~ l Nﬂ_ _m r \\l w
| ] / / m
N \ w * T
| \ ! ! I
| | | | L]
| | | | |
| | | | ]!
| | | * Lo

NOLHLS NG4S

L0O071d NOILDS3ANIKG ALIDON3A 2IDoHAENS HOLO0ON H43IMOT




103

TABLES
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ROTOR INPUT SUMMARY
- FOR
1 CASIH STUDY 1
ROTOR DLSCHIPLLON
NACA 0017 AIRFOIL SECTION
3 ROTOR RADIUG 1.0
ROTOR HU# RADIUS 0.9
] 'WRUL SPAN LNGTH 0.1
3 CONGTANT CHORD LIEHGI'H SINTs
A SPAN AXIS CHORD SLATLON o 3T
ROOT CHORD GEOMLTRIC PITCH 10.0°
g LINEAR TWIUT ABOUT SPAN AX10 0.0°
] AUABIR OF ROTOX LLADES 1
1 JITHER TIP [0 FAIRED
FREE UIREAM CONDITIONS
HOVER MODE Viokol = 0
SOUMED CONGTANL WARE DOWHWWASIH wiwk = 0.05
ELEMENTAL 8LADE SURFACE DESCRLP'LION
HUMBER OF GPAN SEGMUNTS I
NUMBER OF CHORD SEGMENTS h0
a) UPPER GURFACL ONLY o0
b) LOWUR SURFACEH ONLY 20
ELIMENTAL AREAS ARS SYiTAETRICALLY
DESCRIBED WTWil RLSPECT 10 CHORD PLANE
TOTAL NUMBER OF BAGIC BLADE LEMENTS 160
LLEMENTAL WAKE SURFACE DEGCRIPTION
PRESCRIBED CLASSIC WAKE MODLL
UMBER OF SPAN SEGMENTS 4 ;
NUMBER OF STREAMWIGE GEGMENTS 85 ]
WAKL: ELEMENT ANGULAR INCREMENT ‘
a) NEBAR BLADE RLGION 20° k
b) FOR BLADE REGION (> 80° FROM BLADE) 3090
NUMBER OF WAKE ''URNS COMPLETED 8.1 3
TOTAL NUMBER OF BASIC WAL ELEMENTS 340 '
]

l TABLE 1
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COMPUTER EXECUTION TIME SUMMARY
FOR
CAGH STuby 1

PIML
EXLECUTABLE SECTION (SECONDS)
I.  INFLULHNCi CALCULATION: PROGRAM
A. BLADE INFLUENCE CALCULATIONS a7
(‘*OTAL NUMBER = 25,600)
L. WAKE INFLUENCE CALCULATIONS 228
(TOTAL NUMBER = 5h,400)
C. OTikR ROUTINES 6
II. CREATE SOLUTION FILE PROGRAM 11
III. SOLVE BY ELIMINATION PROGRAM 10L
(EXACT SOLUTION METHOD)
IV. TRANSFER SOLUTION FILF PROGRAM 1
VELOCI'TY CALCULATION PROGRAM 1€
"OTAL ABOVL hST
TABLE 2 b

i e, s Bt S



bR Gost s i e o

ROTOR INPUY SUMMARY
FOR
CASE STUDY 2

ROTOR DESCRIPIION

FREL

WACA 0015 AIRFOIL SECTION
ROTOR RADIUS

ROTOR HUB RADIUS

TRUE SPAN LLNGTH

CONSTANT CHOKRD LENGIH

SPAN AXIU CHORD GSTATION

ROOYL" CHORD GEOMETRIC PITCH
LINEAR 'TWIST ABOUT GPAN AXIG
HUABER OF ROTOR BLADrO
JEITHER TIP IS FAIRED

UIRMAM CONDITIONS

HUVER MODu
RESUMED CONCTALT WAKL DOWNWASH

ELEMENTAL ULADE GURFACH DESCRIPLION

NUMBER OF GPAN OSEGMENTC
NUMBLR OF CHORD SEGMENTS
a) UPPER GURFACE ONLY
b) LOWER SURFACE ONLY
ELEMUENTAL AREAL ARE SYMMETH ATV
DESCRIBED WITH RESPECT TO CHORD PLANE

TOTAL NUMBER OF BAGIC bLADE ELEMENTS

BLEMENTAL WAKLL DURFACE DECCRIPYION

PREZCCRIBED CLASSIC WAKE MODEL
NUMBi:R OF COPAN SLGMENTS
NUMBER OF STREAMWISE SEGMENTS
WArL ELEMENT ANGULAR INCREMENT
a) WEAR BLADE REGION
b) FAR BLADL REGIOJ (> 90° FROM BLADL)
NUMBER OF WAKE TURNS COMPLETED

TOTAL [UMLER OF BASIC WAKE LLEMENTS

TABLE 3

VTK’J)H >

w/wR = 0.0LhL

O O

15
Lo
20
20

600

15
[

20°
35°
7.3

1155

106
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COMPUTER EXECUTION TIME GUMMARY
FOR
CASK STUDY 2

TIME
EXBCUTABLE SECTION (SECONDS)
[. INFLUENCE CALCULATIONS PROGRAM
A. BLADE INFLUENCE CALCULATTONS 2328
(''OTAL NUMBER = 720,000)
8. WAKE INFLUENCE CALCULATIONS SUT5
(TOTAL NUMBER = 1,386,000)
C. OTHER ROUTINES 20
II. CREATE SOLUTION FILE PROGRAM 137
III. SOLVE BY ITERATION PROGRAM 5970
(TOTAL NUMBER OF ITERATIONS = 281)
IV. TRANSFER SOLUTION FILE PROGRAM 4
V.  VELOCI'Y CALCULATION PROGRAM 130
TOIAL ABOVE 14334

TABLE 4
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We are concerned here with presenting in summary form the
transformation equations which relate aninertial reference fruie
( x, v 2 r) to a body fixed reference frame ( <’ »'. 7. 7/ )
in which the body is translating with a constant velocity &;
given by
- A
v, = v, 2 (A.1)
and rotating about the 2 axis at a constant rotational rate
given by
- A
V720 a/li . (A 2)
We assume that at time 2 :=/'-¢& the axis systems were coincident.
It follows then that the coordinates of a point e in the inertial
frame are related to the body fixed frame as follows:
X X st el s S, P (A.3)
Y T X e 2 F Y lox L, (A.h)
‘= - (A.5)
2 2 vy # ﬂ
L,

where the inverse is given by ;
X x' gmep?’ - Yo ,’’ (A.6)
Y r X' gl Y am w7 (A.7)
Z = - l{,i . (A.8)

s it




From these relations it follows then that

b e

2 oy .
;;( - Fc 14‘/// ‘)xl - Lt /(4/ ‘)7,
2 ‘ -
Iy Mﬂ;/}f(' 7 (2/14‘/,/37

£ 7 5h

Furthermore, derivations with respect to Z

are given by

yy: = 'Z/AJ?J,é;’r 45_7' Ve s
where

— . 2 Ay J ‘/‘/ Jl 5

ZR A S PR A 4

&’ xXx' sy y 4 72

It follows from the above that

v = 7’

and similarly

27

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A1)

(A.15)

(A.16)

T T T ANy T
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The substantial derivations are related as follows

i
! /) - ) - = - ) - :-/E Ql
; p¢ FIr 7 VIV S gy s Vo Z
(A.17)
L
3
k
where

4
| A N B 2 (h.18)
: Cle okl e Wy v B2 a9
E The velocities are related as follows

— o (A.20)

1 VA p;_ y L X R A 4

L Furthermore, any scaler function /7 evaluated at some point

P I 72,7 /) must have the same value when evaluated at point
E' VAT IED 7 if point A4 is related to point A using
the set of transformation equations given by equations (A.3), (A.b)

and (A.5). That is

R 2 P ) = Mgy t) Y O] P P

cicals il.‘%‘-’ irip s i




SR R S, Tt e i e s i e T

Using relation (A.12) we may note that for some scalar function

/4 which is independent of 7’ that the above relation reduces

to

Aew, v, s ) Aoy g ). (A.22)
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APPENDIX B

RELATIONS BETWEEN DOUBLETS AND VORTICITY AND EXTENSION
OF HELMHOLTZ CONDITION




o

We will discuss in this section the relations between doublets
and vorticity. Having established the relationships it is then an
eagy matter to extend Helmholtz's theory which concerns vorticity to
a corollary involving doublets in order to determine the strengths
of the wake doublet surface distributions.

Let us assume that we have a surface doublet distribution whose
potential at some point A s given by .f"//’/ and whose strength
is given by /7, oj/ . The doublet axis is assumed to be directed
everywhere along the positive local surface normal direction. We shall
assume further that .~ and 3 are two orthogonal axes lying on the
surface with the > axis directed along the unit normal as shown in
Figure B.1. If doublets and vorticity are related we should be able
to derive an expression relating the local doublet strength .« /// 7/
to the vorticity components J7/ .5/ and JS/45)  whose
assumed directions are as shown in Figure B.1. In order to derive this
relationship we shall assume that U, V and W are the velocities along

the “ and ) axis respectively. It can be shown now that

)'/}1?/ = U///)/)‘t/ - l//)/’él f-/ (B.1)

where )7 and A represent some small distance above and below the
vortex location [/, % /).
The velocity </ , however, is related to the derivatives

of the doublet potential with respect to 7 such that we may write,

115

M i S




CURFACE AXIS CONVENTION

R\s
b
ol
Cr 'l
b /
\ /
III'I. !

FIGURE B.1

116




=)

Caus

a————a———-
PRy A

Yrn) = fzf/,/,f/ ‘aff//})’/

(B.2)

If we now rewrite the derivative in terms of its definition as a limiting

process we have

1//;&1/)!] /// 5,7/
resa) - /“‘,‘":[/ a7 27

- daer LB, T "7’¢/4'7f__/_{_
DS =2 H7

(B.3)

Rearranging the terms above we may further write 4)' as,

B Frrray g, 7] - Freass, Y
i g JRnS g

FL g r) - FLg TS }
A7

It can be shown that the value of the doublet potential at a point
Just above or below the doublet itself approaches one half the negative

or positive value of the locai doublet strength itself. Thus we find

that

st i o SIVIECSEP PRI PSR

dinid

o i et o o i

A e S

S —

e i B it e e

PR T A PR
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: -y F AL 3 P 5],
ST = T T I LA
A~ ‘
(B.5)
But the limit term is just the definition of the derivative of the
doublet strength with respect to . , therefore the relationship

between the ;}' vorticity and doublet strength at a point is given by

)'/{71 = - }%—7/41/ s (B.6G)

In a similar manner or by using the following vortex compatability

relation

2y _ 25

g T I (B.7)
it follows that

Seng) = - 54l (5.0)

Now about a wing surface it can be shown that at a particular span
station 7  the total circulation /1/a,/ is given by the line
integral of the ‘)' vorticity from the point on the trailing edge
lower surface /§72 J to the point on the trailing edge upper

surface /;/
Z/

5 that is referring to Figure B.2,
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t
t e,
F Sra) = ¢ Yeg3) A7 (1.9)
8 /’;/; .
I Using relation B.6 above it follows then that the circulation about a
]
i particular space station i1s given in terms of doublet strength by,
r5) = LTS, 3 g, 5]
(B.10)
{
; In the wake region the application of Helmholtz's theorem on the
! conservation of vorticity shows that
L 2% Qe (B.11)
' I T I7Z .
i vhere nov ./ and 9 are orthogonal axes lying on the wake surface

with the - axis directed along a local streamline and the
?' axis being directed generally from root to tip across the wake. 1In a
'i order for a zero pressure discontinuity to exist across the wake in :
steady flows it can be shown that )"y must be zero. Thus it follows ]

using relation (B.6), where we now define </, as the local wake

surface doi t strength whose axis is along the  axis, that

)

) Yo = (5.12) ;
I i

ko it i T
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] everywher? in the wake surface. Since Kutta's hypothesis requires
the fluid to leave the trailing edge smoothly and because the above

relation implies that .« is a constant along a streamline we

i find following such a streamline that

..:/‘,,///.7j > Y. /);,-)/}} . (B.13)

e e

. Thus we find that along a wake streamline the value of the wake doublet %

strength is a constant and is given by its value at the trailing edge, 3

that is

St .

T 5, 8) = B 8] - 7B, G

along a wake streamline.

(B.14)
Note at this point that by properly integrating about the wake region

one finds (as one should) that the circulation in the wake /0

about some constant ,7 to be

L) = gt 3) ~ 5 5, 4] (515

vhich is just the negative of the bound circulation given by equation

(B.10).
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We will be concerned in this section with deriving an analytic

algebraic expressicn for the doublet potential 477 and its derivative
6547‘ at some field point /4 given some arbitrary # sided

planar doublet distribution of constant strength whose doublet axis is
everyvhere normal to the surface. Before we begin this derivation
let us first define the doublet so as to make clear the axis convention
used.

In a physical sense a doublet is derived as the sum of a source
and a sink. OSuppose we have a point source of strength 52 and
a point sink of strength ~%  located about the origin of an ¥ 7/
rectangular coordinate system as shown in Figure C.1. It follows from

this that the potential at some field point /A 1is given by
» /‘ . __/- i ‘-/ -
R OV R N T Ve

vhere the position vectors A4, and /6? are as shown in the figure.

Let us now define the vector distance from the sink to the source as

,4? where

where J# 1is the unit vector along the line joining the sink to the
source. It follows from this that the doublet potential at the field
point A~ 1is obtained by taking the limit of the source plus sink

potential at the point A as they each approach the origin assuming

the product of the strength and vector distance - remain constant




1.k
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and given by -¢  where
A A g A K, (c.3)
Performing the limiting process we find that the potentinl at a
field point 7/’ resulting from a doublet situated at the origin
in Figure C.1 is given by
TN o
FH) = T gy X5 (c.h)
S/
where X s the direction of the doublet axis directed alony the
positive /4 axis. Extending this result to a surface doublet
distribution whose axis is everywhere directed normal to the local sur-
face we find that the potential at a point A4 becomes
__{ <y X’ . /;J'I-' )
Fr) T gy ——y A5 (c.5)
_Y.u/ul /A})/ /
where A, is the vector distance from a point on the local doublet i
surface to the field point A’ and < is now the doublet strength 3

per unit area, :

Given this expression for the potential what we now wish to do is

to integrate this expression for an arbitrary 4 sided planar doublet 1

surface distribution of constant strength. More specifically we may 3

| state the problem as follows: j
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Given: A planar /#  sided figure as shown in Figure C.2 (for

X = L) whose surface lies within the ./ .53/

plane and whose positive unit normal 7t is along th.

Ciceio o i sy

L positive . axis and, given this plane to be a surface
doublet distribution plane of constant strenpth .«

whose axis 13 everywhere directed along the unit normal

1 then

E Determine: A. The potential / at an arbitrary point A
vhose coordinates are /X, ¥ 2
B. The vector gradient of / at some arbitrary
point A2, 7/ ,that is,determine ¥ F )
where

(C.6)

Note, in the analysis to follow the point ad coordinates are
given in terms of an ﬂ, A Zj reference system which is coincident
with the /7 % )/ system (refer to Figure C.2) in order to distinuish
the coordirates of the fixed point /4’ from the surface integration
variables.

Now from Figure C.2 we may identify the following relationships:
p— -\
»w = X (c.7)
- 2 PR Z:
SR )7 Lex-r)t v ry-g) 2 2] )T (c.B)

AS T AT A (c.9)
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Thus the expression for the doublet potential reduces to

s $ 4

/) = - / > v 7 n 4 l‘"(/‘j

i ‘77/5 Lox7)* //,V-/)/'//-]/ .
(c.10)

Tdentifying the integral above as Z#)  ve may write
{ JEP) T~ TR (c.11)
}
- S A
E: VFF) = g vVZrr (c.12)
: The problem now is the evaluation of the integral ,/~J) . Given

the evaluation of _///~/ then the gradient may be obtained by

straightforward differentiation. Note that the gradient may be taken

—rR—

inside the integral and then the resulting integrand may be inteprated.
We choose not to use this procedure as singularities of higher order

than what already exist will result. Although these singularities may

R T o

be evaluated in terms of the Cauchy principal values it does unnecessarily

complicate the evaluation.

3 Let us consider now the evaluation of the integral given by

|

E . P4

3 Jer) = / e AT

: S Lax-2)is Oypn)te PAVAC 7
{ (c.13)

In Figure C.3a we have sketched the surface 5 for an » = .

sided figure and have indexed the corner points in a manner such that

o U
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when viewing the surface along the negative surface normal direction
the corner points are indexed consecutively -1, N in a
clockwise direction. Figure C.3b shows that the surface .5 may
be subdivided into X regions such that the integral may be evaluated
as the sum of /77 integrals each integrated about a specific region,
./7,,'/ Yy . Ve may define these regions more precisely if we first

let the corner point coordinates he given by /’:/}// and define

1[/ 7t
J  as the indexed corner point located immediately clockwise (with
respect to the negative surface normal direction) to the /" indexed

corner point. Now the equation of the straight line joining corners .’

and v is givenby 7, , = /71.//"} where

B,y T A LS 7 L, (c.1k)
where

7 lies between 5 and

Py T LBy -8, DCH ) (c.15)

b9 T %l )5 ) 88

Note at this point that if the slope »,

' of the straight line

is infinite a potential problem exists. However, in thls case

5= 7 and the surface area of the region _7% , 1is zero. Thus 1

e AT

the integral contribution of this region is also zero.
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It follows nov that the integral ¢~/ may be written as

. ol Y s hs
/'//9:/2///;/”/ SC73) Ay AZ (car)

where
S2) <
S = " 7
/7 [/x_(/-//y_djllzl_/% ‘ (C-18)
The integration with respect to /} may however be rewritten as
follows

. D 4
/ ///7///7 = Z// D://;f///; 4 S 004

%

= |
7 ///47/”/‘7 4 //»‘4/214/

-0
(c.19)

Thus we may write

AP

\.N\N

}(

{/ Pl
/)" ] S 18] Ay A

Idd =

f‘/'~,f ol ,
[/_"47 -{/ j//{ﬁ/%iz//f//
2y

(c.2n)
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The second summation term is zero, however, since after integrating
with respect to 7 the integration with respect to ~ effectively
represents a line integral evaluation about a closed path. Thus the

integration reduces to

"

IR = A (@

where we have defined

/ 73 Ay A7 '

(Cc.22)

The integration with respect to //’ may be carried out using

Reference 15 such that the resulting expression for /,'-//’/ becomes

4,:
//f//)/ = ~// //"}1.///} . 2
5 Lex ) A2 e vz, ) 7Y

(Cc.23)

The evaluation of this remaining integral may be carried out using
Reference 16 after substituting for 4, r using relation (C.14).

The resulting analytical algebraic relation for J//' //y is given by

i g g T g 7 . " B s it o
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W RN A Y /Y,

Lo p) = woi - /
/ ./ @ g [/X-/'/J/[y_’//‘ji,‘zf///,( //
wr ! ey [T )2 T -y -s J K- )
- A = P
L Ox-5)% 10-3 J2rdg =] .
(c.2k)
Summarizing what we have done to this point, we can write the
analytic algebraic expression for the doublet surface potential at
some field point A~ as
=
Frr) o - gy TF (c.n5)
where
.2
VL :f; 5.2/ (C.26)
X, -4
T p) = - 5§ L Pl Xy 1
4 / P }g R f ’)
-/ w4 .y 0{/ - 4_
Han [ 7 2, f) (c.27)
", 2 -0 )/ -5 ) (C.28)
< Gl g)t s 2t (c.29)
L. 2 K- L)y, ) (c.30)
Y VL WA R SVACIIES

LT 5 Twew Lok 2o (c.32)
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T T T TR

The cartesian gradient vector of the potential can now be
determined by simply differentiating equation (C.”5). The result may

é be written as

where for 5 a dummy variable of differentiation we find

2 2
A A (C.3b)
vhere
Lrr) s 25 Z .S (C.39)
/=7 ‘

VA 2 [y D(l_; "é;_,}_/ - [-/n,'v- 0{,,({'_/[/4_.‘ rA, 4 /
s £/ ¢ : _
g E2N)5 b Ly, X - ) /7

‘£

Ao o -4 ] = [, 09 -4 ]2, 12,2 ]
< - £
(2a,)% 0 gy - 4

(C.36)

o, . 24 . A
AR RN AN s
Tr S g Twey L oo (C38)




The remaining parameters are given by equation (C.28) through (C.31).
The expression for V—f//"/ is valid for all /x, v 7.J
locations except for a point Ve lying on the edge of the surface
vhere it is undefined. For a point . 1in the rlane of the surface
wve find that 3—? and 3-{;‘; are 2ero.
The expression for f//"/ is valid for all Prxx 7/
locations away from the doublet plane. For the point A~ 1lying in

the plane of the doublet distribution we find that

A. For . within the doublet surface

gyt = i«:{ﬂz Smxe) 77 (c.39)
B. For /4 outside the doublet surface

Ty o) = O (c.L0)
C. For /A on the edge of the doublet surface

FX L) = UNDEFINED. (C.b1)

We should note at this point that in the computer program all
velocities and lengths are nondimensionalized based on the rotor tip
speed /a//?) and the rotor radius //\’) regspectively. Since

/x5 actually represents the velocity % along the §

direction at point A  the form of the preceding equations as

S ol Akt b 2 ks s
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programnmed is as follows where the tilda ’~) represents the

nondimensional parameter:

D;//)/ = .?v ]5/,0/ (c.42)
where

~ Vs

v DR (C.43)

o= - _L__

7 F7 wR K (C.Lk)

Zy = KL (C.b5)
The actual expression for Z,- is the same as for ./ hut now

all lengths are to be first nondimensionalized by the radius A ,
~r N~ 5
for example instead of #Z read 2 where 27 2/R

This completes the discussion of the analytic expressions for 4%C//i/

and ﬁ;4f.//{/ .

el i i i nbesi b b il
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APPENDIX D

DETAILED DISCUSSION OF THE COMPUTER PROGRAM
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D.1 INTRODUCTION

In the following discussions we will consider the internal
structure of the program at the level of the subroutines in terms of
their function. Following this we will discuss the program operation
and where necessary & specific flow diagram will be presented. The
above discussion and flow diagram will then serve as an aid in describing
the major program options and the input and output procedures.

In Section 4.0 we noted that the program is divided into seven
major programs each of which is concerned with a particular aspect of
the overall problem. 1In the discussions to follow we will consider
these programs one at a time and discuss the programs as though they
were independent of each other. It will be assumed here that the
reader {s familiar with the symbols and coordinate reference ny:tems

described earlier in Sections (2) and (3).

R vl O NS i ) e e s i b it et BN L G R LA
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N.2 MAIN-INFLUENCE CALCULATIONS PROGRAM

In this section we will discuss the program MAIN - TNFLUENCE
CALCULATIONS. It is the function of this program to define the
necessary peometry and to perform the calculations necessary to define
the biade and wake influence coefficients. We shall present first a

summary discussion of each subroutine found in this program.




1L0

D.2.1 Summary Discussion of the Subroutines

‘'ne subroutines used in the MAIN - INFLUENCE CALCULATIOHNS prorram
are summarized here in the pgeneral order in which they are called

upon b, the main program.

Subroutine HEAD(K)
The function of this subroutine is to simply print a heading papge
indicating the main program title. This page is used as a cover page

for the results printed out later.

Subroutine IN1

The function of this subroutine is to accept the card-input
necessary to define the rotor blade for the specialized planform
option described in section 3.7. The routine also checks certain input
before allowing the program to continue to the next step. If an input
error is found the program will abtort after printing out the data as
inputted and additional parameters determined on the basis of input

supplied which would have been passed on to other routines.

Subroutine IN2

The function of this subroutine is to accept the card input
necessary to define the rotor blade for the general planform option
described in section 3.2. It also defines certain parameters based on

the input supplied and passes these on to other routines.

ditalie i < L b




Subroutine IN3

The function of this subroutine is to accept the card input
necessary to define the rotor free stream conditions, the number of
rotor blades and parameters necessary to define the method in which

the wake influence calculations are to be performed.

Cubroutine INk

This is an auxiliary subroutine which is not used in the rotor
problem. It is an input subroutine compatable with IN3 and is used
to input card data comparable to IN3 when the program is selected to
do a lifting surface theory analysis of a planar wing rather than of a

rotor system,

‘ubroutine OUT1
The function of this subroutine is to print the input data of
I[iIl1. This output serves as a permanent record of the specialized

nlanform geometry specified for the rotor system.

Subroutine OUT?
The function of this subroutine is to print the input data of
IN>, This output serves as a permanent record of the general nlanform

geometry specified for the rotor system.

Subroutine 0UT3

The function of this subroutine is to print the input data of IV3.

This output serves as a permanent record of the specified free stream

condition and wake calculation mode selected.

141
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Subroutine OUTA

The function of this subroutine is to print the input data of
INk. The output is comparable to OUT3 except that the output is for

the planar wing rather than the rotor system.

Subroutine 0UTA

The function of this subroutine is to print out a coordinate

description of the airfoil chosen in the specialized planform option.

This may be used to check the accuracy with which the airfoil is
described in the program. This subroutine supports ROTORG and calls

on AFOIL.

Subroutine AFOIL (X,7U,2L,DZUDX,DZLDX,BU,BL)
The function of this subroutine may be stated as follow::
Given: A chord station (X), where X represents the chord non-
dimensionalized distance from the airfoil leading edge along

the chord line,

PTRETT

1Lp

Find: At the station X, the nondimensionalized upper and lower airfoil

thickness (ZU and ZL), the upper and lower airfoil tangent

slopes (D7UDX and DZLDX) and the angle the airfoil tangent lines

make with the chord line in radians (BU and BL).
The subroutine defines the NACA OO0XX family of airfoils as a set of
equations. The thickness ratio (TC),a parameter in this equation,is
transferred to the subroutine implicitly. This subroutine supports

ROTORG.

T T AT
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Gubroutine ARCL (XI,XF,DARCLU,DARCLL)

The function of this s3ubroutine is to calculate the upper and lowver
airfoil arc distances (DARCLU and DARCLL) lying between two lines drawn
perpendicular to the two chord stations (XI,XF). This subroutine calls

on AFOIL and is generally not used in the overall problem. Tt serves a

e 2o

part in checkinp the planform description when this option to bhe

o ——

described later is chosen. This subroutine supports ROTORG.

Subroutine GEOMR1 (XC,YTS,ITIP)

The function of this subroutine may be stated as follows:

Given: A control point location in terms of a chord station (XC)
and a true span station (YTS).

Find: The actual upper and lower surface coordinates and the local
gurface tangent slopes in terms of the blade one coordinate
system.

The information is transferred implicitly. The parameter ITIDP is used

to indicate whether the rotor tip or tips are to be faired. This

subroutine supports ROTORG.

Subroutine ROI'ORG ]
‘"he function of this subroutine is to serve as a control prorran 1

in order to systematically define the actual control point locations in

terms of the blade fixed coordinate system when the specialized planform

description ontion is selected. Its main supporting subroutine is

GEOMRL.

s
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In nddition to this function the subroutine has an option which
serves the purpose of printing the surface grid point coordinates
and/or card punching these coordinates in a form compatable with that
required as input data by subroutine IN2.

Furthermore, this subroutine contains an option which will calcu-
late mean control surface locations and slopes and print these results.
'his option may, however, not be selected during the running of the
overall program. Independently this option serves as a reference check
on the elemental control surface calculations done in a different manner

later in the programn.

Subroutine SURF

The function of this subroutine is to define an elemental planar
four sided control surface in terms of its location, corner point
coordinates and transformation matrix given initially four control
point locations which do not necessarily lie in a plane. This sub-

routine supports CSURF and CWAKE.

Subroutine ca (CX,Y,X3,YB,ASUM, A)

The function of this subroutine is to calculate the centroid
location (X,Y)B, and area (ASUM) of a four sided planar figure whose
corner point coordinates are given by (X’Y)i=l,h where (X,Y)l = 10,0)
and the corners are numbered in a clockwise direction. This subroutine

supports TURF, and APPROX.
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Subroutine ROTZ (TH [TA,X,Y,AJ)
‘The function of this subroutine may be stated as follows:

Given: A coordinate system // 7, 7)  whose origin and transformation
matrix are given with respect to an (&XZ) coordinate system by
X,Y,Z and AJ.

Find:  The origin and transformation matrix of the s ; s ) systenm
if it is simply rotated about the 7 axis through a displacement
THETA. THETA being positive in the usual sense,

The results are transferred explicitly using X,Y and AJ. This subroutine

supports CWAKE and CBLADE.

Subroutine CALLOC
The function of this subroutine is to reallocate the main core

storage registers.

Subroutine RENUM

The function of this subroutine is to renumber the blade elemental
control surfaces in terms of an integer 1. Prior to the use of this
subroutine the upper and lower control surfaces were sequenced in terms

of (N,M).

Subroutine WIl (IT1,IRW)
The function of this subroutine is to write or read off external
file IT1 (depending on whether IRW equals 0 or is not equal to O

respectively) the control parameters and data allocated in designated

deisiaiia
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common storage locations LINDA and BRENDA, {ome parameters uand datn
in these two locations are needed effectively in all of the major
programs. Thus this subroutine and file IT1 serves as a continuity

1link among the programs.

Subroutine CSURF

The function of this subroutine is to serve as a control program
in order to systematically define the geometry of all the blade one
elemental control surfaces. The main supporting subroutine used for
this task is SURF.

In addition this subroutine computes the free stream velocity

conditions on each blade element and writes all the above results on

external file IT1.

Cubroutine INTEG (X,Y,Z2,5,E,XI,XIS)

The function of this subroutine is to calculate the nondimen-
sionalized doublet potential and velocity influence coefficients in
a 2., 7) reference system at a field point (.,Y,%) resulting
from an M sided planar doublet distribution whose direction is along
the 7 axis and whose corner point locations are given clockwise
in the 7 5/ plane as (S,E)y. The potential influence coefficient
is given by XI, and the velocity influence coefficients in the / %
and /7 directions are given by XIS(1), XIS{2) and XIS(3) respectively.
The subroutine tests to ensure that the field point does not lie on

the edge of the planar surface. This subroutine supports CBLADE and

CWAKE subroutines.
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Gubroutine CBLADL ([START,ISTOP)

The function of this subroutine is to serve as a control program
in order to systematically define the total influence coefficients
of all J=1,JMAX blade elements on blade one elements I where I
lies inclusively between control input specified elements I=10TARY
and I=ICTOP.

The blade influence coefficients are calculated with respect to
the (X',Y',Z') blade fixed axis system and are written out on file
172 immediately after all J elements of all blades influence on a
blade one element I are knowi:  They are written out as three sets of

JMAX influences correspornding to the X',Y' and Z' directional influences.

Subroutine PWAKT

‘'he function of this subroutine is to serve as a preliminary
subroutine to the wake subroutine when specific program options are
selected. Basically it is used when the blade influence coefficients
were defined during a previous execution run and entry is now made
into the CWAKL subroutine directly. It serves the function of reading
external file Il and positioning in main core storage the data

necessary to execute the CWAKE routine.

Subroutine CWAKE
The function of this subroutine is to serve as a control program
in order to systematically define the total wake influence coefficients

of all M=1,MM wake span stations on blade one elements I=I, IMAX.
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The procedure is to begin at span station M=1 and to proceed
streamline wise down the wakes calculating wake elements and their
influence coefficients with respect to the (X',Y',”') system on all
I=1, IMAX blade elements. At any single wake span station the
influences are additive thus a single set of IMAX total influence
coefficients is kept. When the final streamwise wake element trailing
M=1 wake span station 1s defined the set of three vectored IMAX total
wake influence coefficients are written out con external file IT3. The
procedure is now repeated for span station M=M+1l through M=MM.

This subroutine also has a planar wake model to be used during

the planar wing option.

Subroutine SETUP1

The function of this subroutine is to interchange the IAAX
column and three sets of MM rows of data written on external file
IT3 during the CWAXE routine and write this information on file IT

behind the information already written on IT1.

Subroutine APPROX (X,Y.Z,G,E,XI,XT3)

The function of this subroutine is to replace INTEG to calculate
the influence coefficients when the field point (X,Y,Z) is farther
than a certain distance from the centroid of the doublet element.

It uses multi-pole expansion, which is an approximation to the

alporithm shown in Appendix C, and will save the time of calculation.

e ek <
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D.2.2 Program Operation in Terms of a Flow Diagram
i
E llaving completed now the discussion of the subroutines we may
- 3
j now describe the "Influence Calculation" program in terms of a flow 1

diagram. In Figure D.1 is shown the detailed flow diagram. We have ;
attempted to present this flow diagram at the level of the sub- 3
routines. We have indicated in the flow diagram the stage- at which
input is required and where output is effected. We have shown on the
side of the flow diagram proper the supporting elements including
external files and supporting subrcutines required by each major sub-
routine called on by the major program.

Note in this diagram that the program has cssentially 5 entry

points and 5 exit points depending on the value of the parameters

MCTRL(1) and MCTRL(2) respectively. Note further that the parameter

MCTRI.(*¢) determines whether IN3 (Kotor Analysis) or Ili {Planar Wing

Analysis) is selected. ‘'he external files are desipnated as 11, i
112 and IT3. 1If the propram is executed from beginning to end in one g
step three files are required. Note, however, that by executing the
program in stages using the program option parameters MCTRL(1l) and 4
MCTRL(?) the maximum number of on line external file: neede! at ‘i

one time is two if the nunber of blade elements is 1070 or less. ‘he

third file in this case must be defined as a dummy file, say equal to

one of the other two. Files IT1 and IT2 on program completion contain 1
all the information needed in later main programs and are to be
considered as permanent storage files. File IT3 on program completion :

conteins wake influence coefficient data which has been rewritten in

Bk 2ol st Hodp
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MAIN- IWFLUENCE CALCULATIORND
DETAILLED FLOW DIAGRAM
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(Continued on next page) ;

FIGURE D.1 (a)
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un altered format on file IT1. As such File IT3 may be discarded on

completion of the MAIN - INFLUEFNCE CALTULATIONI PROGRAM.

D.®.3 Program Input Procedures

The input required and input sequence can be determined from the
flow diagram and this of course is a function of the MCTRL parameters
which are inputted in the NAMELIST/MAIN1/ data group at the start
of the program.

iixcept for the input read in subroutine IN? and the identification
name assigned to the run, the input is entered in a JAMELICT mode.

This allows us to preset the input parameters and only input those
parameters which we want to override in any particular run.

We shall consider now the details of inputting the datu in the
order 1in which they are executed in the overall program, that is

1. Main Frogram Control Parameters

NAMELIST/MAIN1/
2. Message Card
NAME
3.a Opecialized Planform Geometry Description
NAM TLIST/DATA2/
or

3.b Ueneral Planform Geometry Description

L.a [lotor Free Stream and Wake Analysis Parameters
NAMELIST/DATA3/

or

L.b Planar Free Stream and Wake Analysis Parameters
NAMELIST/DATAL/

g

e

.

TR
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1. Main Progranm Control Parameters
The following data is to be inputted in the NAMELIST/MAI.N1/

data statement:

| HCTRL(1) = K (Default value is K = 1) ;
i 1
K=25 if the program is to effect execution at SETUPL. 3
K=14 if the program is to effect execution at CWAKL.
=3 if the program is to effect execution at CBLADL.
! K=2 if the program is to effect execution at the initial
i entry point and use the General Planform Option.
i :
] K=1 if the program is to effect execution at the initial :
; entry point and use the Specialized Planform Option
MC'IRL(2) = K (Default value is K = 0
K=h if the program is to terminate execution after completion
of CWAKL.
K=3 If the prograem is to terminate execution after completion ;
of CBLADE. K
K=2 if the program is to terminate execution after completion
of CSURF.
K=1 if the program is to terminate execution after completion
of RORORG.
K=20 if the program is to terminate execution after completion
of the entire program.
MCTRL(3) = K (Default value is K = 1)
K=2 if the program is to execute the '"Planar Wing Option'".
K=1 if the program is to execute the "Rotor Blade Option’
1
MCTAL(1l) = K (Default value is K = 1)
3
K=1 vhere I is an integer indicating the blade element I on

which the blade influence calculations of CBLADE are to }
begin. (1 4 I < Ipax)
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MCTRL(12) = K (Default value is K = Ipay)

K=1 vhere I is an integer indicating the blade element 1
on which the blade influence calculations of CBLADL
are to end. (1 T € I,..)

ITL = K (Default value is K = 1)

K=1 whare I is an integer indicating the external file
ass.gned number on which the control parameters,
selected geometry, blade element geometry and on
program completion weke influence coefficients are to

be written.
IT2 = K (Default value is K = 2)

K=1 where I is an integer indicating the external file on
which the Blade Influence Coefficients are to be
written.

I3 = K (Default value is K = 3)
K =1 where I is an integer indicating the external file on

which the Wake Influence Coefficients are initially
to be written prior to entering SETUPL.

DUMMY = K
K=1 where I is an integer. If the default values of the
above parameters are to be selected simply input this
parameter.

2. Messuge Card

Any message or title which is to be assigned to the run for

identification is to be inputted here. The message must be on one

card and may fill part or all of the 80 column card.
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3.a OSpecialized Planform Description
The following parameters must be inputted as part of the

NHAMELIST/DATAL/ date statements:

CGU = 0.0, A.a ..... B.b,1.0 (Default values are 0.0)

where 5G is maximally dimensioned for 52 real numbers each
indicating the true span station along which the upper and

lower surface grid control points are to be defined. The first
and last station must be 0.0 and 1.0 respectively, where G =

0.0 is the root span station and SG = 1.0 is the tip span station.
The list must be of increasing magnitude.

CGU = 0.0, 4.8 ..... B.b,1.0 (Default values are 0.0)

where CGU is maximally dimensioned for 52 real numbers each
indicating the chord station along which the upper surface

grid control points are to be defined. The first and last station
must be 0.0 and 1.0 respectively, where CGU = 0.0 is at the
leading edge and CGU = 1.0 is at the trailing edge. The list
must be of increasing magnitude.

CGL = 0.0, A.a ..... B.b, 1.0 (Default values are CGlJ)
where CGi, 1s the same as CGU except CGL refers to lower surface
¢rid control points. If no CGL stations are included in the
/DATALl/ 1list the program assumes the chord station grid points
are to be symmetric with respect to upper and lower surface anc
thus sets CGL = CGU for all CGU input points.

IC = 0.a (Default value is 0.0)
where TC is the maximum airfoil thickness to chord ratio of the
NACA 00XX family of airfoils.

C =A.a (Default value is 0.0)

where C is the chord length to rotor radius (R) ratio.

Bl = 0.a (Default value is 0.0)

where Bl is the distance the root chord is displaced from the

axis of rotation as measured along the span axis and nondimen-
sionalized by the rotor radius. This is the hub radius and must

be greater than zero. The true span is defined from this parameter
as (1.0 - Bl).




; B3 = 0.a (Default value is 0.0)
: where B33 i3 the distance the span axis is displaced from the
E leading edge as measured along the chord line and non-
g dimensionalized by the chord length.
TO = A.a (Default value is 0.t
where TO is the root airfoil section peometric any of attacn
in de;rees. ‘he angle is positive in the usual aer dynamic
sense and is the angle measured from the plane of rotation to
the chord line.
' = A.a (Default value is 0.0)
where TT is the amount of linear twist in degrees which is to
be applied to the rotor blade along the span axis. It is
defined as the tip chord geometric pitch less the root chord
geometric pitch.
IT'IP = K (Default value is K = 0)
where ITIP is an option which allows for fairing of the rotor
blade ends. Uelect K as follows:
K = 2 INBOARD TIP AND OUTBOARD TIP IS FAIRED
K =1 OUTBOARD TIP IS FAIRILD
K =0 NEITIFR TIP IS FAIRED
IPRINT = I (Default value is ¥ = 0)
where IPRINT is an option which allows for printing of the
computed surface grid point coordinates. $elect K as follows:
K =1 Coordinates are printed
K = 0 Coordinates are not printed
IPUNCH = K (Default. value is X = 0)
where IPUNCIHi is an option thich allows for card punching of the
computed surface grid peint coordinates in a form compatable
for input in the "Genzral Planform Option". GSelect XK as follows:

K
K

1 Coordinates are punched
0 Coordinates are not punched

163
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IFOILD = K (Default value is K = 0)

where IFOILD is an option which allows for computing and printing
of the airfoll coordinates at every 1/100th chord station.
Select K as follows:

K
K

1 Coordinates printed
0 Coordinates not printed

I[SURF = K (Default value iz £ = 0)

where [JURF is an option which allows for additional elemental
surface parameters to be computed and printed. For each element
an average locatlion, average slope and calculated surface area
are presented. If this option is selected the program will
automatically terminate execution after completion of this step.
Select K as follows:

K
K

1 Additional surface data presented
0 Yo additional surface data presented

’lease note in addition to the above that the maximum number of
elemental surfaces that may be defined may not exceed ?000. Thus
if NMAXU and NMAXL, are the number of specified chord grid stations
on the upper and lower surface and MMAX is the number of specitied

span grid stations then the following relation must hold

-

J (NWMAXU-1) + (MMAXL-1)/ ~/iax-1 / <7 2noo .

et

-

e S ks A ok
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3.b General Planform Geometry Description

In order to discuss the input procedure we must first define a
reference system. Let us define s cartesian coordinate system

(X1, YL, Z1) such that the rotor blade axis of rotation is the 71

axis. 'The projection of the blade span axis into the (X1, Y1) plane
will lie along the Y1l axis and the X1 axis will penerally be directed
toward the pointed tralling edge. The blade must have a non zero

hub radius. Now with the rotor blade in its 1lifting configuration
within this reference system one must be able to define a system of
surface grid point coordinates as follows:

A. Inscribe a series of non intersecting lines (not necessarily
straight lines) on the rotor blade uppe: s.rface joining a
point on the root section to a point on the tip section.

Two of these lines must lie along the leading edge and trailing
edge. Index these lines congecutively as N = 1, NMAXU where

N =1 is the line along the leading edge and N = NJAXU

is the line along the trailing edge. HMAXU must he no greater
than 51.

5. Repeut (A) above for the lower surface where nyw H = |,
HMAXL = 51.

C. Inscribe a series of non intersecting lines on the rotor bLiade
upper and lower surface starting at a point on the leadinf
edge going to the trailing edge along the upper surface and
returning to the leading edge point along the lower surface.
Identify these lines as M = 1, MMAX < 49 where M = 1 lies
along the root and M = MMAX lies along the tip.

D. The intersection of a line of constant M with a line of
constant N will now define & control grid point indexed as
(N,M). Four lines Joining grid points (H,M), (N,4+1),(.+i, +.,,
(N+1,M) will define a control surface such that the sum of
the control surface areas equals the wetted area of the blade.
The number of control surface areas must not exceed 20N0, that
is [ (NMAXU-1) + (NMAXL-1)/ x (M1AX-1) < 2000.

i, liow for each grid point (ii,) the blade surfuce coordinute: in
terms of (X1,Y1,21) must be defined. These lengths are to
be non dimensionalized on the rotor radius.
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| Having determined this information, the data input is card

ﬁv punched and arranged as follows:

1. Punch on one card the value of NMAXU, NMAXL and MMAX according
to the FORMAT (3I10).

g®)

Punch a sat of card such that the complete set of upper
surface grid coordinates at all (N,M) grid points is given
on these cards as N,M,X1U(N M), YIU(N,M), 2Z1U(N,M)
according to the FORMAT (2I5,3FE20.6).

] 3. Repeat (2) above for the complete set of lower surface pgril
! coordinates.

iRt Lo

i.a Rotor Free Ctream and Wake Analysis Parameters

5 The following data is tu be inputted in the NAMELIUT/DATA3/ data

ey i el s

statement:

LAMHEDA = A.n (Default value is 10.0) ;
where LAMUDA 15 the free stream rotor inflow ratio and is piven %
positively by the rotor climb speed divided by the rotor tip speea. i

WAV = A.a (Default value is 0.7)

where WAV is the average induced downwash at the trailing edye
which may be determined using actuator disk theory assuming «
given thrust. This parameter along with LAMBDA is used to
prescribe the wake geometry.

L et

= A.a (Default value is 2n.n°) p
where DWI'l is the anple increment in degrees which determi:nes the
initial wake elemental areas used for calculating near wale
influences.

= A.a (Default value is DW'1)

where DWi'2 i5 the angle incremert in degrees which determines the
wake elemental areas used for celculating far wake influences. 1

F
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ANGLE = A.a (Default value is 100.0°)

where ANGLE is the angular measure in degrees from tne span
axis beyond which point the wake calculations are to be done
in increments of DWT2.

TURNSG = A.a (Default value is 3.0)

where T'URIC 13 the number of wake revolutions from the span axis
beyond which the wake calculations are to cease.

INFLU = K (Default value is 0)

where INFLU is an option which allows the program to cease wake
calculations at an angle comparable to TURND above if the wake
elemental influence coefficients becomes less than a prescribed

amount described in AINFLU belor. Select K as follows:
K =1 to effect this option
K = 0 to negate this option
AINFLU = A.n (Default value ig 0.01)

L[UART

where ALNFLU is a parameter defined as the absolute value ratio
of the total influence at a point of one wake element to the
total influence of another wake element. 'The point at which
the influences are compared is the centroid of the first span
station upper leading edge element. The program computes the
influence for all elements of wake span station one compariny
this always to the influence of the first wake element. When
this ratio becomes less than AINFLU the parameter TURN{ is
redefined to effect the termination of calculations at this
point for all span stations.

= K (Default value i~ 50007)

where IGCAFL is a parameter which indicates the total number

of wake elemental influence calculations that are to be nerformed.
Internally the program computes from this the maximum number of
wake elements trailing any one blade at one span station that

will approximate this ISAFE number of calculations thus it ensures
all span wake segments have the same number of spiral wake elements.




e

NLIFT = K (befault value is 0)

wh' e NLIFI' is a parameter which indicates whether the program
is  include a wake analysis (Lift Case) or is not to include
a wake analysis (No Lift Case). GSelect K as follows:

1 NO LIFT OPTION
0 LIFT OPTION

K
K

LMAX = K (Default value is ?)

where LMAX is the number of equally spaced, identical rotor
blades.

Note that in the above data there are three input parameters
(TURNS , [NFLU. ISAFE) which may be used to terminate the wake analysis

calculations. They are in fact independent of each other,

4.b Planar Free Stream and Wake Analysis Parameter

The following data is to be inputted in the NAMELISI'/DATAW/ date

statement:

WAV = A.a (Default value is 0.0)
where WAV is the average induced downwash at the trailing edge
nondimensionalized by the free stream velocity. This velocity
is used to wash the wake below the plane of the free stream
velocity.

NLIFT = K

where HLIFT is as defined in the preceeding section.

Please note that the planar wing analysis option of this program
has not at the present time been thoroughly checked. It is included

here only to document the program. The planar wing analysis option

e bt it

B p—
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is obtained by altering the rotor blade analysis routine and we

acknowledge the fact that this approach is very irefficient.

D.2.4 Program Output

The main output from this program is as follows:

A. Printed output which essentially prints out the data that
was read into the progran.

B. Printed output which essentially 1z a program monitor.
This output indicates the cummulative time at which the
major subroutines were eatered and whether they terminated
normally. Additional output indicating specific items are
included in the CBLAI'E and CWAKL related monitor output
statements. This output is self explanatory.

C. Data output stored on external files IT1 and IT2. Unlike
items (A) and (B) above this output is required for the
continuation of the overall program. We will descrihbe the
detailed data on these two files when we discuss the
"MAIN-PRINT" program whose function is to retrieve speciflic
date from these files and print on paper this data.

In addition to the above listed output additional output may be

selected. We have already discussed the nature of this output in tue

section describing the input procedures and program options available.

e output as printed 1is self-explanatory
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D.3 MAIN - CREATE SOLUTION FILE PROGRAM

In this section we will discuss the program MAIN - CREATE
GOLUTION FILE. ‘I'his program is rather straightforward with its
function being to operate on the coefficlent data written on external
files I11 and IT2 by the MAIN - INFLUENCE CALCULATION program, in
order to generate the set of normal influence coefficients and
normal free stream velocities. This set of coefficients and velo-
cities are then stored on external file IT3 or IT3 and ITL in a form
compatable for the solution programs which will be discussed in the

next section.

D.-.1 OSummary Discussion of the Subroutines

‘‘ubroutines CETUP2 (IT1, IT2, IT3)

The function of this subroutine is to generate from the data
given on external tiles ITl1 and IT2 the set of normal influence
coefficients exprersed as an IMAX square matrix [A] and to generate
the set of IMAX normal free stream velocities expressed as the negative
of the IMAX matrix |Blsuch that the linear set of IMAX algebraic

equations to be solved is of the form

[ATIx] = |BI

This data 1s then written on external file IT3 in double precision as

follows where each line represents a geparate write statement:
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IMAX

B(1), B(2), (B3) . « « ¢« « ¢« « v « ¢« .« .« . . B(IMAX)
A(1,1), A(1,2) « « ¢« ¢ v ¢ v v e v e e e . . A(1, IMAX)
.;\(IMAX,l) s e e e e e e e e e e e e e e e e e . A(IMAX,IMAX)

This data file is compatable with the exa:t solution program discussed

later.

Subroutine SETUP3 (IT1,IT2,IT3,ITL)
The function of this subroutine is the same as SETUP2 to the point

vhere the algebraic equations are defined by

[A)IX] =R/

This subroutine further operates on the coefficient such that the set

of equations may be written as

; -
- - o V7 /% .
Xr 2, / 7 X1 7 Ay, Xa 1
7 X (/
4 LA /-/_7 e
77

which in matrix form beccmes

/Ix) = LT (x/l + 1D/




vhere

o Ay Ay .,
2, oy, //”‘
Py, 7
- Z - s
“;, ‘/1:;
LrCJ = - 4'_‘/./ .
2y,
- /(’// V%
£
/-
- Vg
9 = ‘/41[ :

This subroutine then writes on external file IT3 the [C] matri«

as shown below where each line represents a separate write statement:

[// /,") //,J - ) 0 ("[/7”‘

it

S R S

ol =2

1




173

On external file ITL is written the column matrix |DI! .
This data as written on files IT3 and ITL is compatable with the

iteration program discussed later.

Subroutine WT1

See dicussion in section D.2.1.

D.3.2 Program Operation

The program operation requires three or four external files
depending on whether the solution will be obtained using the exact
elimination or the iterative solution method respectively. If three
files are required then the fourth file must be defined as a dummy
file. Since the main program simply calls on either one of two sub-

routines no flow diagrAQ,will be presented.

D.3.3 Program Input
The input required consists of the following parameters given

as part of a NAMELIST/SOLUF/ data statement:

METH = K

where METH is a control parameter which indicates the proper
solution file tc be created. Select K as follows:

K
K

1 Elimination Solution File
2 Iterative Solution file



ITl = K (Default value is 1)

where K is the reference number assigned to the comparable
external file IT1 of the Main - Influence Coefficients program.
No changes will be made to the file contents.

IT2 = K (Default value is )

where K is the reference number assigned to the comparable external
file IT2 of the Main - Influence Coefficient program. ilo changes
will be made to the file contentc.

IT3 = K (Default value is 3)
where 1 is the reference number assigned to the input file
created.

ITh = K (Default value is L)

where K is the reference number assigned to the additional solution
file required if METH = O option is used. If METH = 1 option is
chosen input the same reference number for ITh as inputted for IT3.

D.3.4 Program Output
The output of this program consists of the following:
1) A printed statement indicating whether the elimination or
iterative solution file was created.
2) Data written on external file IT3 if the elimination solution

file was created or data written on external file IT3

and ITh if the iterative solution file was created.

.

T TT I L P

i ibada -

e



D.4 MAIN - SOLVE BY ELIMINATION PROGRAM

In this section we will discuss the program MAIN - SOLVE BY
ELIMINATION. The function of this program is to solve a simultaneous
set of equations using the Gaussian elimination method with pivotal
condensation as described in Section 3.6. This program is not
competitive with routines not requiring peripheral storage and it

is suggested that this method be used only for simultaneous sets of

equations having less than 350 unkrowns because of time considerations.

D.4.1 Summary Discussion of the Subroutines

Subroutine SSIMQ

The function of this subroutine is to accept the coefficients as
written on an external file in the manner described in the discussion
of subroutine SETUP2 (Section D.3.1) and operate on this matrix of
coefficients in order to reduce it to an effective diagonal matrix
vhose lower half ie composed of zero elements. This is the pivot eli-

mination part of the solution routine.

Subroutine BSUB
The function of this subroutine is to operate further on the
diagonal matrix derived from SSIMQ and by th= back substitution methoad

obtain the unknowns to the simultaneous set of equations.

Subroutine HEAD

Refer to Section D.2.1.

A i o -
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D.4.2 Program Operation

The operation of this program is relatively straightforward.

It does require four or three external duta files depending on whether
the initial coefficients are to be saved until the solution is completed
or not saved respectively. The initial data must be givzu on file

ITF and the final results are written on file ITF. Files labeled

ITA, and IVC should be high speed data files as they are actively used
in the elimination phase of the program. If the initial data is n.t
to be kept, file ITF and file ITA may be the same file. File ITB is
used to record the diagonal matrix and subsequently is used along with
file ITF in the back substitution phase of the problem. The speed of
transferring data from files ITB and ITF into and out of main core
storage is not as critical as for ITA and ITC,

The program does contain a series of options which allow the
solution to proceed in a series of executeble runs or in one single
executable run. These options are described in the next section but
briefly we may list the options here as follows:

A. The program may proceed from data entry through the elimination
phase, through the back substitution phase to the recording of
the solution value.

B. The program may proceed from data entry into the elimination
phase and terminate after a given amount of time has elapsed,
or after the elimination phase ‘s completed.

C. The program may be restarted in the elimination phase and terminated
as in (B).

D. The program may initiate execution in the back substitution phase.
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The solution values as written on file ITF are in a form compatable 3
for input into the program MAIN - MOVE GOLUTION FILE which transfers

E
i
the answers to one of the two permanent files. Q
]

D.4.3 Program Input

The following pareameters are to be inputted as part of the

NAMELIUT/SELIM/ data statement:

Ip = K
where IP is an option control parameter such that for:

K =0 The program wi.l solve the system of equations in one
execution step.

K =1 The program will bhegin execution in the back substitution
routine assuming the elimination phase has been completed
and the necessary data is on file ITB described later.

{i = 2 The program will begln execution as for K = 0 above
but will terminate after the elimination phase is
completed.

K = 3 The program will reastart in the elimination routine at
elimination row (M) and pivot row (N) described later
in the TMAX discussion.

TMAX = A.a (Default value is 1200.0)

where TMAX is a parameter which is an input estimate of the time

in seconds required for the elimination phase of the program.

If the el’mination phase has not been totally completed by this
time the program will terminate the elimination phasc after setting
up files ITA and ITB in a menner compatable for the restart option
selected by IP = 3 above. All restart inforriation including the
restart elimination row (M) and pivot row (N) are written for

files ITA and ITB.
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IMAX = © (Default value is 0)

where IMAX {s a parameter indicating the number of unknowns in
the system of equations.

buMMY = K

vhere K must be inputted as 6926 if TMAX above is preater than or
equal to 1200.

ITA = K (Default value is K = 1)

vhere K is the reference number assigned to external file ITA
vhich is a data file active in the eliminatior routine and
contains data necessary for the restart option.

ITB = K (Default value is K = ?)

where K is the reference number assigned to external file ITD
vhich is a data file active in the elimination routine and contains
data necessary for the restart option and the back substitution
routine,.

I[TC = K (Default value is K = 3)

vhere X 1s the reference number assigned to e.ternai file I'C which
is a temporary data file active in the elimination phase. The

data written on it is not necessary for the restart option or back
substitution routine.

ITF = K (Default value is ITA)

where K is the reference number assigned to external file IiF which
is the initial data input file created by program "MAIN-CREALL
SOLUTION FILE".. This is also the file on which the finai solution
values are written replacing the column input data record. File
ITA may be taken to be the same as file ITF but in this case the
date is destroyed before the program has obtained the solution
values.
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D.b.4 Program Output

The main output of this program consists of the following:

A. A printed statement indicating whether a successful solution
or singular solution resulted or a statement indicating where
the solution was terminated.

B. A printed listing of the solution values which are also
written on File ITF in a form compatable for data-input into
the program MAIN - TRAIorER SOLUTION FILE.

If the elimination phase is to be run in stages, files ITA and

ITB should be considered as output both of which are needed as the data
set input for the restart option.

If the program terminates after the elimination phase then file

ITB should be considered as output which becomes the data set input for

the back substitution phase.
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D.5 MAIN - SOLVE BY ITERATION PROGRAM

In this section we will discuss the program MAIN - SOLVE BY
ITERATION. The function of this program is to solve a simultaneous
set of equations using the simultaneous displacement iterative method

described in section 3.6.

D.5.1 Summary Discussion of the Subroutines

Subroutine ITER(FB,FC,IMAX,K,KMAX,DELTA,TMAX,JR)

The function of this subroutine is to perform the actual iterative
procedure. The IMAX set of coefficients are given on external files
labeled FB and FC which are described in section D.3.1 in the dis-
cussion of SETUP3. The parameter K indicates the iteration number.
Delta is a test parameter which dictates the greatest difference that
all present solution values may differ from their previous iterative
values in order for the iteration scheme to be completed. KMAX and
TMAX are parameters which may terminate the iterative scheme after
KMAX iteratiomsor after TMAX elapsed seconds. The parameter IR is a
return code indicating on what basis the subroutine execution was

terminated.

Subroutine DIFF (FB,FC,IMAX,K)
The function of this subroutine is to compute the value of the

solution vector using the coefficients and compare this value to the

Kth iterative solution vector and print out the results.

PR AT LIRS c ey
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Subroutine HEAD(K)

Refer to section D.2.1.

D.5.2 Program Operation

The program operation requires two external data files. These
files are the solution files created in the MAIN - CREATLE SOLUTION
FILE program and are discussed more specifically in the SETUP3
discussion of section D.3.1.

The program contains a number of options which permit the program
to terminate when a certain convergence criteris is established, or
when a given number of iterations have been performed or when a given
amount of time has elapsed. The program prior to termination writes
out on one of the external data files the latest iterative solution
values thus allowing the program to be executed again using these
last values as the initial iterative values for another series of
{terations. The solution values are written on file FC immediately
after the data records written on file FC by SETUP3 and they are
written in a form compatable for input into the program 1AL - TRALDFER
S0LUTINI FILE which transfers the solutions to one of the two permanent

files.

D.5.3 Program Input

The following parameters are to be inputted as part of the

NAMELIST/SITER/ data statement:




FB =

FC =

K= N

KMAX

N (Default value is N = 1)

where N is the reference number indicating the external file
on which the square coefficient matrix is written. This
data file is data file IT3 created in the MAIN - CREATE
SOLUTION FILE program if option METH=0 was executed. (Refer
to section D.3)

N (Default value is N = 2)

vhere N is the reference number indicating the external file
on which the column matrix is written. This data file is

data file ITh created in the MAIN - CREATE SOLUTION FILE
program if option METH=0 was executed. (Refer to section D.3).
During execution the present iteration solution values are
stored on this file immediately after the column matrix record
destroying any other previously written iterative values.

1]
(o]
-~

=N (Default value is N

where N is the number of unknowns.

n
o
~

(Default value is N

where the parameter K dictates whether previous iterative
solution values are stored on file FC and are to be used as
starting iterative values. GJelect N as follows

4 =1 Indicates previous solution values are stored
on file FC and are to be used as starting
iterative solution values.

o

il
(]

Indicates no previous solution values are stored
on file FC and the program will assume the starting
iterative solution values to be all zero.

=N (Default value is N=K+10)

vhere the value of N indicates the number of iterations to be
performed sublect to DELTA and TMAX constraints described
below.
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TMAX = A.a (Default value is 120.0)

where A.a is the cummulative time in seconds after which the
program is to terminate the iteration scheme.

DELTA = A.a (Default value is 0.01)

where DELTA is a convergence criteria such that if all
calculated values of the solution vector less the iterative
solution vector values divided by the calculated solution
vector values are less than DELTA in the absolute sensge,
then the iteration scheme is terminated.

D.5.4 Program Output
The printed output of the program consists of the following:

1. A printed line of output after each iteration which indicates
the iteration number, the number of present solution values
whose change from the previous solution values are less
than the prescribed convergence parameter, the cummulative
time and the actual velue of the first number in the solution
vector and its change from its previous value.

2. A printed line indicating on what basis the program
terminated.

3. After the last iteration the entire solution vector and
the difference vector (present solution less previous
solution) are printed.

In addition to the absve the solution vector is also written

on file FC and this output should be considered as input for successive

iteration program executions or for input to the MAIN - TRANSFER

COLUTION FILE program.
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D.6 MAIN - TRANSFER SOLUTION FILE PROGRAM

The function of the MAIN - TRANSFER SOLUTION FILE program is to
read the solution values written on an external file by either the
elimination or iteration scheme program and to write these same
answvers on one of the two permanent files so that the two permanent
files now have recorded on them ali the information necessary to H
compute the various velocities, pressures and forces.

The progrem requires two files for its operation and is rather
straightforward. The input requirec for this program includes the
specification of the following two parameters as part of the

NAMELIST/MOVEC/ data statemant:

e S

FA = K (Default value is K = 1)

P

where K is the reference number assigned to the permanent file
FA vwhich was initially created in the MAIN - INFLUENCE CALCU-
LATIONS program and was there designated file IT1.

FC

K (Default value is K = L)

where K is the reference number assigned to the file FC which has
wvritten on it the solution vector. If the solution was obtained
using the elimination method then file FC is identical to tne g
elimination file ITF. If the solution was obtained using the i
iterative scheme then file FC is identical to the iterative
file FC. ]

The printed output of this program is simply a statement indi-

cating successful completion of the program.
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D.T7 MAIN - VELOCITY CALCULATIONS PROGRAM

In this section we will discuss the MAIN - VELOCITY CALCULA'T'TOND §

proyram. ‘The function of this program is to compute on each hlade i
elenient I=1, IMAX, the various velocities, pressure coefficients
and forces and to print these results as well as a summary of the
geometry for each of these blade elements. 'The program also computes
and prints the rotor thrust, torque and in plane force coefficients.
The subroutines called are WI1l and HEAD. These have previously been
discussed in section D.2.1 and will not be repeated here.

The program requires for its operation the two external permanent

files initially created in the MAIN - INFLUENCE CALCULATIONS program

and a temporary file to be used during the executior of this proeran.

D.7.1 Program Input
The program receives all of its datafinput from the permanent
file. The card data input includes specl!fication of the following

parameters as part of the NAMELIST/DATAV/ data statement:

IT1 = K (Default value is I = 1)

vhere K is the reference number assigned to the permanent
external file IT1. This file is to be identical to file IT1
created in the MAIN - INFLUENCE CALCULATIONS program.

IT2 = K (Default value is K = 2)

g where K is the reference number assigned to the permanent external
i file IT2. This file is to be identical to file IT2 created
: in the MAIN - INFLUENCE CALCULATIONS program.
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IT3 = K

where K is the reference number assigned to the temporary
external file IT3. This file is used during execution of the
program and upon completion contains no useful information.

D.T7.2 Program Output

Ly

The program prints out the following summary results using the

indicated symbols for each blade surface element T=1, IMAX:

Code S, el M s Coy

; 1. Element index location in terms of I and in termis of indices
1 (N,M) where N is the chord station and M is the span statiou.

3 25 Centroid location in terms of the blade fixed coordinate system.
The symbols used is RCG where RCG = (XCG2 + YCG2)%.

3. The length of the curve connected by the centroids, starting from
the leading edge, following the chordwise direction and ending
at the trailing edge. The symbol used is CHODTL.

b, Nine components of the transformation matrix between the elemental
surface coordinate system and the blade fixed coordinate system.
The symbols used are TP1X, TP1lY, TP1Z, TP2X, TP2Y, NX, NY, NZ.

- 5. The chordwise and spanwise surface velocities ani their resultant
at the centroid of the element with respect to tiie blade fixed
coordinate system. The symbols used are VT1',6 VT2', and VT'.

6. The free stream velocity and its components at the centroid of
the element with respect to the blade fixed coordinate system.
The symbols used are respectively VINF', VINFX' K VINFY', and VINFZ',

7. The components of the free stream velocity in chordwise and
spanwise directions at the centrnid of the element with respect
to the blade fixed coordinate system. The symbols used are
VINFT1' and VINFT2',

8. The derivatives of the velocity potential in both chordwise and
spanwige directions. The symbols used are DPHIDC and DPHIDY.

9. The pressure coefficient, CPl, nondimensionalized on the basis
of the tip speed velocity.

10. The pressure coefficient, CP2, nondimensionalized on the basis
of the local free stream velocity.
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11.

12.
13.
1h.

15.

16.

The ratio of the surface velocity to the free stream velocity
(VT/VINF).

The double?, strengths, MU,
The velocity potentials, PHI.

The angle that the surface velocity makes with the chordwise
direction, THETA.

The elemental force components (FXE, FYE, and F7F) in terms of
the blade fixed coordinate system.

The elemental torque (QZE) about the axis of rotation.

All lengths and velocities above are nondimensionalized on the basis
of the rotor radius and tip speel respectively.

In addition to the above a summary of the rotor aerodynamic

coefficients are printed. This output is self explanatory. pj1so

the differences between the pressure coefficients of upper and

lower surfaces are calculated and printed.
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D.8 MAIN - PRINT PROGRAM

In this section we will discuss the MAIN- PRINT program. 'he
function of this program is to selectively read data stored on the
tvo permanent data set files and print this data. This is an auxiliary
program and is not used in the normal execution of the overall program.
It was designed initiaily to be used in checking out the program
operation. We will describe here how this program may be used for the
purpose of printing out the net blade influence or wake influence
coefficients on some blade control element I, and for printing out a
complete description of the elemental control surfaces. The program
does require for its operation the two permanent external files

created in the MAIN - INFLUENCE CALCULATIONS program.

D.8.1 Program Input
The card input data consists of the following parameters inputted

as part of the NAMELIST/DATAP/ data statement:

ITl = X (Default value is K = 1)
where K is the reference number assigned to file IT1 which is

identical to file IT1l created during the MAIN - INFLUENCE CALCU-
LATIONS program.

IT2 = K (Default value is K = 2)

where K is the reference number assigned to file IT2 which is
identical to file IT2 created during the MAIN - INFLUENCE CALCU-
LATIONS program,

el ke A S o
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ISURF = X (Default value is K = 0)

where K 1s an integer indicating whether the control surfacz
geocmetry data is to be printed. Select K as follows:

K =1 Surface data printed
K =0 ’Burfece data not printed

ML = Ky Koy o 0« Ko o 0 Ky (Default value is K, = 0)
where K 2K, _, and K, is the integer spanwise wake station for
which the wake influence coefficients on all blade eiements
I=1, IMAX are to be printed. ©Select K as follows:

Ky =0 No wake influence coefficient printing.

Ky = 9999 All spanwise wake influence coefficients are printed.
Kn = K The KB spanwise wake influence coefficients are
printed.
Il = K3, Koy K3 o o Kpw o+ 2 Kpp (Default value is K, = 0)

vhere K, > K;_; and K, is the integer blade control surface on
which all blade elemental control surfaces influence coefficients
are to be printed. Select K, as follows:

Ky =0 No blade influence coefficients are printed.

Kl 9969 All blade influence coefficients are printed.

Kn

K All elemental blade influence coefficients on blade
control surface K are printed.

D.8.2 Program Qutput

The program output may consist of tne following depending on the

options selected:

X
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A. CONTROL SURFACE GEOMETRY DATA

This consists of the geometry data which describes each elemental
control surface. It includes the following:

1. The transformation matrix [A] relating the blade fixed

reference gsystem to the elemental coordinate system. The
symbols used are

TP1X  TP1Y  TP1Z
[A] = |wPax  tP2Y  1P2Z
TP3X  TP3Y  TP3Z

2. The location of the origin of the elemental coordinate system
with respect to the blade fixed coordinate system (X0, YO, Z0).
3. ‘‘he centroid location of the elemental surface with respect
to both the blade fixed (XCG, YCG, ZCG) and elementul
(XTCG, YTCG) reference systems.

L. The area of the element (ACS).

w

‘‘he corner point ccordinates of the elemental surface wit!
respect to the elementul reference system, (XTP, Y'."P)i=1 1
0. 'The ne ative of the free stream velocity components (VX,

VY, V2) at the elemental centroid location with respect to
the blade fixed reference system. The negative of the normal
free stream velocity (VN) is also given.

B. WAKE INFLUENCE COEFFICIENTS

For the selected spanwise wake station the influence coefficients
(CXW, CYW, CZW) on all blade control surfaces I=1, IMAX are printed.

These influence coefficients are referenced to the blade fixed coordinate
system.

C. BLADE INFLUENCE COEFFICIENTS

For the selected control surface the influence coefficients
(CXB, CYB, CZB) of all blade elements on this control surface are printed.

These influence coefficients are referenced to the blade fixed coordinate
system.

In addition to the above output those parameters of common statements
LINDA and ERENDA which are essentially internal control parameters are
also printed out. This information was written on file ITl by subroutine

CHPIRPED,

i .




WLl in the MAIN - INFLUENCE CALCULATIONS program. This information

is shared by the various MAIN programs and serves as the continuity
link among them.
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D.9 CONCLUDING REMARKS

We have attempted in the previous sections to describe the series
of computer programs and their operation in a manner more detailed
than a typical "user's manual''. We have chosen to describe it this
way in order to document not only the program but the philosophy under
which the program systematically performs the overall problem. With
this as the basic program we hope to further modify the various

routines in order to optimize the program in terms of reducing the

computer time required.

S . -

i




