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A numerical method is developed based on potential flow nonMnear lifting sur- 
face theory for predicting the surface velocities and pressures on a rotor blade of 
an arbitrary helicopter rotor system which is executing a constant rotational and 
constant axial translational motion including, specifically, the hover flight mode. 
The formulation of the problem is exact in the sense that the normal surface boundary 
condition is satisfied on the surface of the rotor blade. The problem is governed 
by a Fredholm integral equation of the first kind which relates a singular velocity 
doublet potential surface distribution anplied on the rotor blades and wakes to the 
normal relative velocity on the rotor blade surface. The wake model is assumed to 
be of a prescribed shape. 

The solution of the integral is obtained in a numerical fashion by approximativ 
the actual rotor blade upper and lower surfaces and wake surfaces by a finite number 
of elemental surfaces on which the doublet strength is assumed constant and then 
satisfying the resulting set of numerical normal surface boundary conditions at 
the centroid of each of the blade elemental surfaces. 

A computer program was developed for the lifting surface theory which depends on 
a given geometry of the wake. This program lends itself to an iterative procedure 
for a future force free wake lifting surface theory analysis.  The computer results 
for two case studies is also presented. The program listing is available from 
west Virginia University. 
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ABSTKACT 

A numerical method Is developed based on potential flow non- 

linear lifting surface theory for predicting the surface velocities 

and pressures on a rotor blade of an arbitrary helicopter rotor system 

which is executing a constant rotational and constant axial translational 

motion including, specifically, the hover flight mode. The formula- 

tion of the problem is exact in the sense that the normal surface 

boundary condition is satisfied on the surface of the rotor blade. 

The problem is governed by a Fredholm integral equation of the first 

kind which relates a singular velocity doublet potential surface 

distribution applied on the rotor blades and wakes to the normal relative 

velocity on the rotor blade surface. The wake model is assumea to be of 

a prescribed shape. 

The solution of the integral is obtained in a numerical fashion 

by approximating the actual rotor blade upper and lower surfaces and 

wake surfaces by a finite number of elemental surfaces on which the 

doublet strength is assumed constant and then satisfying the resulting 

set of numerical normal surface boundary conditions at the centroid of 

each of the blade elemental surfaces. 

A computer program was developed for the lifting surface theory 

which depends on a given geometry of the wake.  This program lends 

itself to an iterative procedure for a future force free wake lifting 

surface theory analysis. The computer results for two cape studies is 

also presented. 
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V 

SYMBOLS 

Tha following 1B an abridged list of syrubols used in the report, 

Only thoae symbols of select importance which axe used repeatedly 

throughout the report are listed here.  All symbols are defined in 

the body of the report at the time of their initial use.  The sane 

symbols nuiy refer to dimensional or non-dimensional quantities de- 

pending upon the context of the immediate section of the report in 

which they are used. The physical units of any parameter may always 

be assigned as follows: 

a) All lengths are in units of feet. 

b) All forces are  in units of pounds. 

c) '.\1  i^i-ies are in units of slugs. 

d) All times are in units of seccnds. 

e) All angles are in units of radians. 

The non-dimensionalized parameters are obtained by dividing all lengths 

by the rotor radj as and dividing all velocities by the rotor rotational 

tip speed.  In those sections where it becomes necessary to distinguish 

dimensional quantities from the non-dimensional quantities we have 

underlined the dimensional quantity, eg. R implies units of length 

and R implies a non-dimensionalized length. 

English 

A Area 

Bl Hub radius taken to be the distance along the span 
axis from the axis of rotation to th-; root sectioi.. 

B2 1-*ue span length taken to be the rotor radius less 
the tub radius. 

müfiniiiiMi Mm« 111    um   mmm ••'-" --""-^ ^. ■-*.--***... 
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xi 

B3 

CG 

Pi 

CP2 

CQ 

Cin 

DT 

F 

I 

P 

Q 

R 

R 

R| 

RS 

RSP 

GG 

THETA 

Chord station along which the blade span axis lies. 

Chord grid station expressed in terms of percent 
chord length. 

Pressure Coeffjcient defined on the basis of the 
tip speed squared. 

Used in the program and is the same as Cp above. 

Used in the program to define a pressure coefficient 
based on the local relative free stream velocity squared. 

Rotor Torque Coefficient (refer to equation 3.7.5) 

Rotor Thrust Coefficient (refer to equation 3.7.1*) 

Angular measure that two adjacent rotor blade span 
axes are displaced from each other. 

Force 

Irtegral as defined by equation  {2,k.J) 

Partial derivative with respect to G of the integral  I. 
S is a dummy variable. 

Pressure 

Torque 

Hotor radius 

Position vector from the origin to some field point. 

Absolute length of vector R. 

Position vector  from the  origin to  some point on the 
body or wake surface. 

Position vector  from some point on the body or wake 
surface to some  fi^ld point. 

Function which defines  body surface or span station 
depending on context. 

Span grid station expressed in terms of percent true 
span length. 

Geometric pitch at a span  section. 
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xli 

TO 

11 

vT 

w 

m 

Geometric pitch at the root section. 

Linear twiat of the rotor blade.    Defined as the 
geometric pitch at the tip less that at the root. 

Vector velocity with respect to the  (X,Y,Z,t) reference 
frame. 

Vector translational velocity of the body with respect 
to the  (X,Y,Z,t) reference frame. 

Function which defines wake  surface. 

Refer to equation  (2.6.7) 

uector surface unit normal positive out  from the 
surfac   . 

Time 

av Average downwash at the rotor blade trailing edge derived 
from momentum considerations. 

Greek 

ß 

X 

f 
CO 

ZU 

Refer to equation  (2.6.8) 

Refer to equation  (2.6.9) 

Rotor free stream inflow ratio and given by the rotor 
axial climb velocity divided by the tip speed. 

Doublet strength per unit area 

Density 

Doublet potential function 

Rotor rotational rate   [CP - AW ) 

Vector rotation of the body with respect  to the 
(x,y,z,t)  reference  frame 

Operators 

*5 
Partial derivative with respect to some dummy variable 
S 

MM — ■■-  ■  -   - 



xiii 

dt 

Superscripts 

Indices 

Substantial derivative 

Vector gradient operator 

Liubacrtpta 

oO Condition existing in the  free stream environment 

avg. Average 

ind Potential  induced parameter 

b body 

w wake 

U Upper surface 

L Lower surface 

P Specific  point P 

S Dummy directional  axln or  parameter 

TE Trailing edge 

Parameter  referenced to the   (x1,y' ,z' ,t' ) reference 
frame 

Vector parameter 

Unit vector parameter 

Indexed blade elemental surface.     The elemental  surfaces 
are  indexed consecutively  from the  leading edge  to the 
trailing edge by proceeding from the inboard span segment 
to the outboard span  segment  first  on the upper blade 
surface  then on the  lower blade  surface 
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xiv 

max 

'max 

^uax 

M 

Mmax 

MM 

N 

N 'max 

m 

Maximum number of Indexed blade elemental surfaces 
per blade. 

Same as I above and used •'.n terms of a dummy 
summation. 

Same ae l^^^x  above . 

Indexed wake elemental surface.  The wake elemental 
surfaces are Indexed consecutively from the trailing 
edge segment In a otreamlinewise sense. 

Maximum number of indexed wake elemental surfaces 
which streamlinewise trail a particular trailing 
edge span segment . 

Indexed blade number. The blades are numbered conse- 
cutively in the direction of rotation . 

Number of rotor blades . 

Indexed span station or span segment.  M=l is at or 
near the root section respectively. 

Maximum number of indexed span stations . 

Maximum number of indexed span segments. (MM = M7nax - l) 

Indexed chord station or chord segment. N = 1 is at or 
near the leading edge respectively. 

Maximum number of indexed chord stations. 

Maximum number of indexed chord segments. (NN - »miX N. - 1) 

Indexed corner points of the elemental  surfaces.     The 
corner points are  indexed consecutively in a clockwise 
manner when viewing the surface along the negative 
surface unit normal direction.     Also used to index the 
segment of the elemental surface lying between corner 
points  i and i+: , 

Indexed corner point immediately  adjacent clockwise to 
some  i  indexed elemental surface  corner point.     Used 
in the  same  sense as  i above . 

Maximum number of  i  indexed  corner points which define 
an elemental surface   (usually  n  =  M 
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XV 

Reference Coordinate System 

(X,Y,Z)     Inertial fixed coordinate system in general. Used 
also as a dummy reference system coincident with the 
i  ^ s}"/1     )  systems below 

(X'.Y' ,Z1)   Non-inertial body fixed coordinate system 

( /, -^ / )   Element fixed coordinate system 

(Xi,Yl,Zl)   Blade one body fixed coordinate system coincident with 
(X'.Y- ,'V) 

\A, ^>  i ) Non-inertlal body fixed cylindrical coordinate system 
defined in the usual sense within (X'.Y'.Z1) 
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CHAPTER  1.     INTRODUCTION 

1.1    Scope and Objectives 

There is a need for a more rigorous approach to the treatment 

of complex three-dimensional  flows  for geometries of  certain V/STOL 

aircraft.     In the  case of rotors  In quasi-hover, the  downwaah velocity 

associated with the generation of lift is  larpe when  compared to the 

axial flight velocity.     In this  situation the  classical assumptions 

of lifting potential flow aerodynamic theory such as  linearized boundary 

conditions, lifting lines and rigid non-force  free wakes do not lead 

to accurate predictions.     Without accurate inviscid  flow predictions 

the even more complicated viscous flow analysis  cannot even be begun. 

The progress  in high speed digital  computer technology now allows 

one to formulate the flow problem more realistically.    Although the 

formulations necessitate the approximation of the integral and 

differential equp.tions they may be considered exact in the sense that 

the solution is  attained uniformly as the computational network is 

refined. 

The present work  is  specifically concerned with  developing a 

potential  flow lifting surface theory applicable to rotors  in the 

axial flight mode specifically  including the hover mode.    The theory 

is an exact numerical analysis  and its major objective is to predict 

the local three dimensional blade surface velocities  and pressures. 

The theory necessarily incorporates a prescribed wake model because 

of the complex nature of the problem.    The  force free wake analysis  is 

■ ,'   ■■■   - ■■       ■--   ■--■  - --■■    ■—.'.   ■-■ ■-— 



to be achieved by successive iterations on the wake geometry by 

incorporating a wake prediction method into the analysis.     In addition 

to developing the actual theory, the feasibility of applying the 

theory is also demonstrated since a computer program was also developed 

and is presented herein.    The theory and program developed are appli- 

cable to any arbitrary shaped rotor blade having a finite non-zero hub 

radius and a pointed trailing edge.    It is specifically not necessary 

for the rotor blades to be thin as the surface boundary conditions are 

satisfied on a surface network described on the wetted blade surface 

area.    Furthermore, perturbation velocities are not required to be 

small.    These last two constraints are associated with the so-called 

linearized lifting surface theory and small disturbance theory 

respectively. 

1.2    Literature Review 

In the discussion of any lifting surface theory one must first 

distinguish between two basic classes of problems.     One clc: , of 

problems is concerned with the prediction of local surface loadings 

by assuming a loading function which is expressed as a series of 

assumed modes with unknown coefficients.    These unknown coefficients 

are then obtained by satisfying the noxTnal velocity condition either 

directly or indirectly at a set of points whose number equals the number 

of unknown coefficients.     In certain cases Mie set of points may exceed 

the number of unknown coefficients in which case the normal velocity 

condition is satisfied approximately at the set of points by 

appropriately weighting the set of points.    Multhopp's collocation 

L- m   i J^-^-.-.-.— -^^^i»^^-^....-...^M—i*iiiM>—M,, ,     ...,,-,....       „, —_ 



method  (reference l)  for calculating the lift distribution of wings 

in subsonic flows exemplifies this method.    A very elegant analysis 

by Verbaugh (reference 2) concerning unsteady lifting surface theory 

for ship screws employs the acceleration potential in solving this 

class of lifting surface theory problem. 

The second class of lifting surface theory problems  is concerned 

with the prediction  -»f local surface loadings by assuming a distri- 

bution of surface elements on which the loadings axe unknown but 01 

which a set of influence coefficients can be defined.    Perhaps the 

most complete authoritative discussion of this method is that presented 

by Hess and Smith (reference 3).     In this method the integral equation 

resulting from the application of the normal surface boundary condition 

is reduced to a sum of integrations to be performed over a finite set 

of surface elements  auch that the surface boundary condition is satis- 

fled locally at one point on each surface element.     The loading 

function is some velocity potential function of unknown strength which 

may, however, be analytically integrated over the surface element 

region.    A linear set of equations results such that the unknowns are 

the potential function strengths on each surface element and the 

coefficients represent the elemental integration results.     The results 

obtadned by this method are excellent as documented by Hess and Smith 

preference 3) for nonlifting bodies. 

The lifting surface theory method presented in this report relies 

heavily on the excellent work of Hess and Smith  (reference 3).    The 

presented problem differs fundamentally in that this theory is concerned 

with a rotating lifting body behind which trails a wake region. 

MMMBMIM 
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Veirlous authors hav« noted the complexity of the calculations 

required when one attempts to use this lifting surface theory method 

fo.- a lifting body.    As late as 1971 Johnson  (reference U) noted in 

substance that the extent of the calculations involved in these methods 

prohibited the direct application of the conventional lifting surface 

theory technique to the calculation of rotary wing air loads.    Many 

authors have ingeniously attempted to ütmplify the exact lifting surface 

theory method in order to attain valid results.    Erickson  (reference 5) 

reduced (after Prandtl) the lifting blade surface model to a lifting 

line model.    As auch, his lifting line theory was based on a bound 

vortex line and a continuous wake vortex sheet which he allowed to 

distort on successive iterative steps.    The contraction pattern was 

fixed according to actuator disc theory.    Landgrebe   (reference ,'i) alsc 

showed that the realistic self-induced distorted wake geometries could 

be computed by application of the classical Biot-Gavart law applied over 

wake vortex filaments. 

Erik son and Hough   (reference T) showed that the applicability of 

the lifting line model for hover prediction was questionable as blade 

surface induced velocities vary rapidly along the chord direction 

which, of course, would invalidate a lifting line model.    The reason for 

this rapid variation lies  in the  fact that the wake has a pronounced 

influence on the rotor blade because of its near proximity in hover. 

At Sikorsky Aircraft Rorke and Wells   (r^erence 8) have described 

another unique variation on the true rotor lifting surface theory. 

They have coupled a prescribed wake-momentum analysis to the conventional 

i.«^ 
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strip-moraentum theory in order to predict the rotor hover performance. 

The prescribed wake geometry in this method is determined in part 

by a theoretical analysis, the details of which were presented by 

Clark    and Leiper  (rfic-^nce <?)•    This analysis is a true engineering 

design analysis and has been optimized so as to require very little 

computer time.    This technique does, of course, require airfoil 

sectional aerodynamic coefficients. 

There are other variations of the rotor lifting surface theory 

presented in the literature but to this authors knowledge none of the 

so called rotor lifting surface theories presented tire in fact true 

applications of the ideal lifting surface model.    Furthermore,  it 

appears that no single reported rotor prediction method is capable of 

piedicting local surface velocities or pressures on some arbitrary 

rotor geometry surface.    Thus it appears that design studios of new 

rotor blade shapes differing significantly from existing blade shapes 

cannot be performed at the present time with any level of confidence. 

Because of this technological de^l^it   (see references 10 and 11) 

it was decided to attempt to develop a true rotor lifting surface 

theory and actually apply this theory in terras of an exact numerical 

sense.    This work is concerned with the initial phase of the development, 

that Is,  for a prescribed wake trailing an arbitrary shaped body 

develop a lifting surface theory which will predict for the axial flight 

mode local surface velocities  and loadings.    The succeeding phase will 

be to use the theory and program of the initiil phase and modify them 

so as to include a wake Iterative scheme in order to include a force 

free wake analysis into the lifting surface theory. 

-■-i   i    i  i ' ■■-      - - - im _^^*mmL. 
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We have not attempted to review here the subject of lifting 

surface theory in Its entirety but have rather restricted the review 

to selected current rotor lifting surface theories indicative of the 

general development trends. For em  additional literature review 

concerned mainly with lifting surface theory applied to planar flows 

refer to DJoJodihardJo (reference 12). DJoJodihardJo and Widnall 

(reference 13) in a paper which summarizes the previous reference 

presents, in part, a discussion of the doublet velocity potential 

which we have used to verify the derived integrated doublet velocity 

potential used herein. 

In addition to the explicit references above TC have included a 

list of references which we have used for obtaining fundamental 

information and for obtaining information related to general rotor 

performance prediction methods. 

1.3 Report Layout 

We have presented in Chapter 2 the formulation of the problem in 

terms of the governing equations.  Chapter 3 presents a step by step 

discussion of the overall problem solution. Chapter h  discusses the 

computer program in a general manner.  The results of two computer run 

cases are presented in Chapter 5-  In Cnapter 6 we have discussed 

extensions to the present problem. We have relegated all discussion 

material not actually essential to the main problem discussion to 

Appendices A, B and C so as not to interrupt the overall problem 

discussion.  Appendix D describes the computer program in detail as to its 

options and input/output. 

MMMM^^^^anni 
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CHAPTER 2.  DISCUSSION OF THE BASIC PROBLEM 

2.1 Ponnulatlon of the Governing Equations 

As a lifting rotor moves into the air it disturbs the air in 

such a manner as to derive its lift. This problem is concerned 

with the prediction of the local surface pressure acting on the 

rotor blades in hover or axial flight ti rough an analysis of the 

rotor induced velocities.  We shall formvuzte in this section the 

equations governing the fluid motion. 

Let us consider the lifting rotor system to consist of: 

a) a three dirnnnsional body of arbitrary shape which is 

executing a constant rotatory and translatory motion, and 

b) a wake which trails the lifting body. The surface of the 

body may be represented by 

5(A,*)    - O (2.1.1) 

and the wake following the body may be defined by a surface of velocity 

discontinuity given by 

WtÄ,tJ   =•  O (2.1.2) 

In the above equations R    is the position vector with respect to 

aome fixed inertial reference frame.  The external flow field is assumed 

to be an incompressible flow field which is inviscid and initially 

irrotational and at rest.  The wake is further assumed to be composed 

of two surfaces coincident with each other. Each wake surface is 

IMI 
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assumed to have its origin at some Infinitesimal region located on 

the body upper and lower surfaces at the trailing edge. These trailing 

edge regions as such represent the lines along which the viscid 

boundary layer smoothly leaves the trailing edge. It is assumed in 

the analysis to follow that there exists no flow separation from the 

body except at the trailing edge, thus the body must have a sharp 

trailing edge. 

It follows row from the condition of irrotationality . d the 

continuity equation that a velocity potential   yfX, t) can 

be defined such that it must satisfy Laplace's equation 

The velocity potential at an exterior field point can be given by an 

integral equation which incorporates a distribution of singularities over 

the lifting body and wake surface.  In this analysis we will take as 

our distributed surface singularities the doublet or dipole which is 

itself composed of two more basic singularities, namely the source 

and sink.  In Appendix C is presented a discussion of the doublet 

potential and its axis convention.  The resulting integral equation 

for the doublet velocity potential is given by 

(2.1.1*) 

■»üIIMMI if»l^—TM—in n mini i 



pp 1,1.1-«. ■ I.^ ..1 Illlil-«11^«,II1.I«. '-=-r-^., mumuunmnvJ'-.n. mim ./vnm  u ;-■■ »■»«■»'. .. ,    III inlUMMHHJllii'. n.«"J—"■ 

where 

/? is the position vector to some field point, P. 

Ä is the position vector to some surface point. 

,77 is the unit outward surface normal. 

/?   ■ A1 - Rs      , which is the vector from the surface 

point to the field point. 

^   is the doublet strength per unit area at some surface 

point. 

The potential as glveB satisfies Laplace's equation identically. 

The above velocity potential is subject to the following boundary 

conditions: 

a) In the feu: region away from the doublet surface distribution 

the fluid velocity (7) given by 

V<f (2.1.5) 

should approach zero.    Thus the far boundary condition becomes 

(2.1.6) 

This boundary condition is inherently satisfied by the doublet 

velocity potential, 

b) In the region of the body surface the normal velocity at the 

surface must be zero. This kinematic normal boundary condition 

may be expressed as 

Mi ■ l^ll  II    I ■^■-■—,....■■  -   ■■^-  .--:>-«-.— .■- — ■ . 
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dt       J+ 

(2.1.7) 

c) In the region of the wake surface, since the wake cannot 

maintain a pressure discontinuity, the pressure across 

the wake surface must be continuous. Thus 

^  -    K    =   O (2.!.8) 

on      W/!#,*J   ' <? 

where     /^     and    /^     eure the pressxires on the local wake 

upper and lower surfaces. 

d) In the region of the trailing edge the fluid velocity must 

be directed smoothly from the body surface to the wake 

surface.      This is the Kutta-Joukowski condition. 

The pressure      P     anywhere in the flow field is given by the 

equation of motion 

ö~' ■-■ --ivp 
J)t P (2.1.9) 

which is uncoupled from the governing kinematic equation given by 

Laplace's equation. It is, however, coupled into the overall problem 

through the boundary condition (c) above. 

For convenience we will now transform the above equations which 

are expressed with respect to a fixed inertial reference frame to a 

————>'—-——- 
-- —■ -  —-.^-- - ■- - - ■■ ■-■ ■ --^- 
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non-lnertlal body reference frame designated by primed coordinates. 

Let us assume that the body Is translating and rotating about the 

translatlonal axis vlth respect to the inertia! reference frame at 

a constant translatlonal velocity given by Vy     and constant 

rotational velocity given by  A? . In Appendix A is presented a 

summary of the transformation relations. The body surface and wake 

surface equations given by equations (2.1.1) and (2.1.2) transform 

respectively to 

11 

(2.1.10) 

(2.1.11) 

The velocity potential in the body fixed reference frame becomes 

independent of time and is given by 

S - Ss*'J ■ (2.1.12) 

Laplace's equation transforms directly to 

V'^YS'J  =   &    . (2.1.13) 

Whereas before, however,  y/ffM, t) was the total fluid velocity 

V ,   VtfS/f'J       . in the body fixed system becomes the 

velocity Induced about a relative free stream velocity.  If we define 

f^    " V'^SA'J (2.1.110 

M 
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and  )/   aa the relative free stream velocity given by 

- / Ä? X /V   ^  /x^ V 
(2.1.15) 

then the inertial and body fixed velocities are related as follows 

// = i7  y^y^/V /■    I [^.1.16) 

where 

^ '   K*' 
(2.1.17) 

The integral equation for the doublet velocity potential be comes 

(2.1.18) 

where the symbols are the same as before except the reference coordinate 

system is now the primed body fixed reference system. The boundary 

conditions in the new reference plane become: 

a) In the far region 

^«^_       v'<fs*y — & 
***-"*> 

(2.1.19) 

which remains inherently satisfied. 

■iwmiiiiniiiiiiiiiMiifii 1 im mmmm^^mmmm 
■ ----       —■* 
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b)    On the body surface since 

L    Z   i. 
4*      ~      4'' 

(2.1.20) 

«uid since   vMMJ. ^    we muBt 8atiBfy the following 

relation 

— / 
1/ W V7^ 

^^xr/y -- ^  . 

(2.1.21) 

c) On the wake surface, 

^ - ^  -^ (2.1.22) 

/^/y WS*') - O 

The Kutta condition (boundaxy condition d) may be applied as stated 

earlier. The pressure anywhere in the flow field may be determined from 

the transformed equation of motion which will be discussed later. 

Since the velocity potential is a solution to Laplace's equation 

and since it also inherently satisfies the far boundary condition we 

no longer need consider these two equations.  Let us consider now the 

near boundary condition.  If we define yi     to be the outward surface 

unit normal vector, then we may write 

H    ^     ± 
V 5 
V's (2.1.23) 

■ ■■-■   .■^,..... ....—,— i^i«. 
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Purthemore, using this result and equation (2.1.1U) ve may rewrite 

the near boundary condition given by equation(2.1.21)as follows: 

V^' *      =   -  vj' * (2.1.21*) 

on SSM'J   -- 6>    . 

Written In this form we see now that the solution to the given probiei 

requires solving In the body fixed reference system an integral 

equation given by the near boundary condition expressed by equation 

(2.1.2U) where /f   Is defined by equation (2.1.18) subject to explicit 

boundary conditions (c) and (d). Note that the solution does not 

necessarily Involve the potential /^      but rather involves the vector 

gradient of <#     , that Is V </       . In essence then the formulation 

of the basic governing equations is complete. 

Before proceeding into the detailed formulation we shall first 

discuss the doublet potential in order to further clarify its use. 

   —ti . ^-^ -  - ■  ■  ■■ - ■ 1 ^_ 
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2.2 Doublet Potential Discussion 

We have taken aa our potential function a potential derived on 

the basis of a surface doublet (dipole ) distribution. In particular we 

note using Figure 1 that the potential induced at a point P by a surface 

doublet distribution given by Aj / ~') whose axis is everywhere normal 

to the local surface, that is 

(2.2.1) 

is given by 

_, 
~ · ,A.;~ 

/Ji;,/J 
(2.2.2) 

In Appendix C we have derived this doublet potential as presented 

in terms of its more basic source plus sink potentials in order to 

clarity the axis convention of the doublet. 

We have chosen to model the rotor and wake surfaces with a doublet 

distrib tion rather than a vorticity distribution, which could also 

have been used, for a number of reasons. The main reason stems from the 

fact that a vorticity model does require the specification of two 

functions lying along the surface in two vector directions mutually 

perpendicular to each other. This aspect of vorticity in light of the 

doublet model would unnecessarily complicate the geometry of the problem. 

The two models are of course mathematically related (refer to Appendix 

B) and both inherently satisfy Laplace's equation and the boundary 

condition at infinity. 
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The application of the doublet model involves a doublet distribution 

applied on the wetted areas of all rotor blades. Furthermore, trailing 

continuously from the upper and lower blade surfaces are two sheets 

<pon which are also applied doublets. These two sheets are taken to 

be coincident with each other thus allowing for vector suras of the 

doublet strengths. 

It should be noted at this point that the doublets axe distributed 

on the blade surfaces. This method is to be distinguished from the 

so called linearized method which through linearization of the surface 

boundary condition would allow doublets to be distributed on a mean 

comber plane. The blade surface distribution although more complex is 

of course exact and does not impose the planform restrictions of the 

linearized method. 

--  _^-,     if II. »»JH. ■■      m^—miiiiMi 
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2.3 Evaluation of the Doublet Wake Strength 

Let us consider nov the doublet velocity potential in more detail. 

Suppose ve first separate the wake region integration from the blade 

region integration such that ve may write 

(2.3.1) 

vhere nov ^/^) and -^./^'J represent the doublet strengths 

on the body and vake regions respectively. As vas pointed out earlier 

the vake is actually composed of tvo coincident sheets on each of which 

the doublet strength Is given as an upper doublet strength   ^fdir 

and a lover doublet strength ^^r. -    If ve account for the 

opposite direction of the doublet axis and take as a net axis direction 

the outvard normal of the upper vake surface then in effect the net 

doublet strength on the vake surface is given locally by 

^ = ^/ ' "^  • (2-3.2) 

In Appendix B it is shovn that Helmholtz's theorem on conservation of 

vorticity logically extends to the conservation of wake doublet strength. 

In this problem the blade loadings are Independent of the rotational 

azimuth body position and as such the wake doublet strength remains 

-- - 
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constant along a wake streamline. Following along a wake streamline 

up to the trailing edge by utilizing the Kutta condition we find that 

along any wake streamline that originates at trailing edge span 

station Sjf      the doublet wake strength is constant and is given 

by the difference in value of the blade doublet upper and lower trailing 

edge surface doublet strength, that is 

-^^w  =  -v* ssssj ~ ^ ssZsj i(23 3) 

Thus the wake doublet strength varies with span station, is constant 

along a streamline and is given in terms of the body trailing edge 

doublet strengths. The velocity potential may now be written as 

- / 

>v 

(2.3.U) 

^1 

■""■''-   TluMMMMlMfc.  Ium^m,^^m 
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2.k   Numeric«1 Reduction of the Integral Kxpreetlon for the Doublet 
Potential and its Derivative 

We may aov reduce this integral expression for the doublet 

potontial to a numerical relation. In order to do this ve first assume 

that these ere Lmax equally spaced, identical rotor blade bodies whose 

surface equations are given by 

S^SÄ'J * O l-J,*.***       .     (2.1i.l) 

Similarly ve assume that there are Ln^ equally spaced. Identical wake 

surfaces whose surface equations are given by 

Wttfi')*? t'J,^*,**     . (2.1*.2) 

Thus equation {2.3.k)  may now be written as 

A 

- -/1 .—' 

I—/ \3 

(2.U.3) 

*mämmu*^^. .. - , miiMtii,, 
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Let U3 assume now that rotor blade body one and wake surface one can 

be subdivided into M a 1, MM span segments. Furthermore we shall 

assume that along blade segment M there are N = 1, NNy and NNL 

upper and lower surface planar areas respectively. In the wake one 

region we assume that along wake span station M there are K = 1, 

^max streamline defined planar wake surface areas. We assune further 

that on blade bodies L = 2, Lmax anci wake surfaces L = 2, Lmax there 

are similarly defined elements which are determined from blade body 

one and wake surface one by simple element rotation. If in addition 

we assume that the doublet strength on any element is a constant we 

may rewrite the doublet potential given by equation (2.I4.3) as follows 

'W Sf?  ""i' ~ /üJ. )      ,7 ' 

V 

(2.1».U) 

Noting now that the blade loadings and thus the doublet strengths are 

independent of blade azimuth position in this problem we may identify 

^ - ^,:>^i - ^„jv     (2 M) 

-- 
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That is the doublet strength on blade L upper surface element (N,M) 

has the same value of doublet strength on blade L+l upper surface 

element (N,M). Applying this condition also to the lower blade surface 

elements and to the wake elements we find that the velocity potential 

may now be written as 

(?.)*.6) 

where for ease in writing we have defined for a dummy element surface 

/ 

«; 

(2.U.T) 

In effect f^fa^J. i3 a potential influence coefficient which 

represents the geometric influence of some surface element (l,J) of 
— / 

blade or wake L on the potential at some point /r 

""■  ""■'        —mi (i i         —       „IHM  -Mli 
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The induced velocity at some field point alone a direction 5 

may be written as 

M 
(2.14.8) 

wnere the derivative with respect to C of the potential follows directly 

from equation (2.U.6) and is given by 

h'f/j'J- / 
/•//> /r/y^ 'iMf 

/7- ■>**■:,%,, ''>"','-<ii, f.j ^'"&,vu_  v ^'2, 

A7/'/ A"*. A *■■*? 

1* A;-I   SV-S    ^'Wi    /y     ^   ^^/^       / / 

**<%?   /j^m^ 

i-/'\,r"'^Cl. ^n^ 
(2.I*.9) 

where we have defined 

i 
^^^ - J3 ^^^ (2.U.10) 

Here Jj/X       .j    is a velocity influence coefficient in the S 

direction whi. represents the geometric influence of some surface 

element(I,J) of blade or wake L on some point  /t 

   ... -  i niMMiii in      „ggdggyi^. 
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2.5    Numerical Reduction of the Integral Surface Boundary Condition 

Let us summarize at this point the major results of the previous 

discussions.    First it has been shown that the equation to be solved 

is the near boundary condition given by equation  (2.1.2M and repeated 

here is 

^>y    SS/f'J * & 

This equation states that the normal fluid velocity on the body must 

be zero.     In addition this equation is subject to the following 

additional constraints: 

A)    The fluid flow must leave the trailing edge smoothly. 

ß)    The pressure must be continuous Bcross the wake.    This 

ensures the existance of a,  so called,  force free wake. 

In section 2.U It was shown that the integral expression for   sf 

and    ft /ifi     could be reduced to a numerical equation involving the 

summation of finite elemental surface contributions.    On each of these 

elemental surfaces it was assumed that the local doublet strength was 

a constant. 

Let us now relax the boundary condition expressed by equation 

(2.5.1)  such that instead of requiring it to hold on the entire body 

region    ^Jtß'J - 0J      we now require it to hold only at a finite 

number of body points.    We will further take these control points to 

be located at say the centroid of the previously defined elemental 

-■■   ■       - I     IIIMM—I 
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body areea.  Because of the symmetry involved we need only require 

the normal velocity to be zero on one blade's control points in order 

to ensure a zero velocity on all other corraspondint; blade control points. In 

previous discussions for preciseness we identified the upper and lower 

surface elemental areas on a particular blade as element SSy^Jts/* 

Let us now identify these same blade elements here using a single 

index say 1 = 1, ImaX' Thus the numerical form of the near boundary 

condition becomes a set of t-xs&x.  equations such that 

Vsf7 ' *Z     =    -   ]^>y   '  ** (2.5.2) 

for all I = 1, Imax 

where 

Sftä   represents the vector gradient of the potential 

on the centroid of element I. 

_ / 
1^,  represents the free stream velocity on the centroid 

of element I 

hj     represents the outward unit normal of element I 

at its centroid. 

Since       ¥$■ * H* ^ Just the induced velocity along the normal 

direction of element I evaluated at the centroid of element I we may 

write that 

■■-'     - uiwiuma^ 
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Now using equation  (2.1*.9) we may evaluate    [J^Jr       8uch tha+' 

we have 
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(2.5.U) 

where the first term represents the body surface induced normal velocity 

on control point I sind the second term represents the wake induced 

normal velocity on control point I. Note that the normal influence 

coefficients are a function of the geometry of the problem only. Note 

further that singularities in the evaluation of particular influence 

coefficients will occur when we attempt to evaluate an elemental 

influence on itself. The actual evaluation of these influence 

coefficients and the resolution of the singularities will be presented 

in section 2.6. 

If we now substitute this equation into equation (2.5.2) using 

equation (2.5-3) we may write the final form of the 1 = 1, Imax set of 

near surface boundary conditions to be satisfied as a numerical set of 

equations given by 

  ■— -■ —■ ■        ■MMM—«i 
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(2.5.5) 

Given now the free stream conditions in terms of the rotor climbing 

speed and rotor rotational rate,  and given the blade geometry and some 

prescribed wake geometry then the above set of equations constitute a 

set of Imax linear independent algebraic equations  for the Imax 

unknown blade element doublet strengths given by    ^^j        above.    Note 

that the wake doublet strengths are given in term? of the blade upper 

and lower surface trailing edge doublet strengths and as such do not 

constitute any additional unknowns as they may be expressed in terms of 

the blade element doublet strengths     -^ ,       .     Once the solution 

values in terms of     -*/£ are obtained then the velocities  at any 

point     fSAJ in any specific direction may be obtained using 

equation   (2.^.9).     The potential  likewise may be obtained using equation 

(2.1+.6).    Given the velocities at a point then the pressure may be 

calculated as is  shown in section 2.7.     In essence then, this is the 

problem which we have solved.    Note that we ha'':J  ..>    incorporated the 

tangency flow constraint into this problem directly.    Neither have 

we enforced the force free wake constraint into the prci/em.    These 

constraints are to be satisfied  (in subsequent work) by an iterative 

technique which iterates on the wake geometry based on a previous 

solution whose wake geometry was prescribed.     If the prescribed wake 

is coincident with the real wake then the tangency flow constraint and 

and the  zero pressure discontinuity across the wake are inherently satisfied. 

MM^M.^MMIMi 
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In the preceding discussion we selected the control points at 

which the normal surface boundary conditions are to be satisfied as 

the centroids of the elemental surfaces. We actually chose the cen- 

troid location for two reasons. Firstly, the centroid of an elemental 

planar area is most logically the point which best represents the 

surface area and secondly, this point is the point on an elemental 

planar surface where the self induced doublet normal velocity magnitude 

is a minimum and, as such, the various elemental centroids represent 

consistent, comparable points. 
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2.6 Influence Coefficient Evaluation 

Let us consider now the evaluation of the influence coefficients. 

More specifically we are concerned with analytically determining the 

potential </     and V^f     at em arbitrary field point P induced by a 

finite planar doublet distribution. The actual evaluation is 

presented in Appendix C but we will present here the major results. 

If we are given a planar  A  sided figure whose plane lies 

within the S-?, jj    plane of a /^-f, Yj   orthogonal coordinate system 

and whose positive surface unit normal lies along the positive  ^ 

axis and given further this plane to be a surface doublet plane of 

constant strength ■*/     whose axis everywhere is directed along the unit 

normal then the potential /#     at an arbitrary field point P whose 

coordinates are 

X ^ 

y- ^ 

/ K 
> 

;2.6.i) 

is given simply by 

(2.6.2) 

The actual involved integration of this integral is presented in Appendix 

C. The resulting analytic expression for the potential is given as 

follows 

        - ---  .  -  -       ii i—i^ ■  , ^i.  ■.,  .-.:,.. 
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^^  ^    -^   SSS^ (2-6.3) 

A 

v^y -- J*   ^^J (2.6.M 
'7 

(2.6.5) 

(2.6.6) 

(2.6.8) 

{2.6.9) 

(2.6.10) 

/S    jr.  .   /j S*f       J;-SS>J  = &. (2.6.11) 
(2.6.12) 

If the field point P lies on the plane of the surface doublet distri- 

bution,  that is when        J ' Tf,   = O       , then the value of the integral 

taken as the limiting process as Jr      approaches      {7      positively 

results  in 

—«-—-—"—-'—^--   ■ ..■     - umttm ■  ■  . 
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as 

sf/ZO T * %       ^or P within doublet  surface     (2.6.13) 

/f/'/'J    -   /7        For P outnide doublet aurface  (2.6.lU) 

/ty/vj*■ £s/Y4>t-/;/'V*4Yo's: T on  doublet  surface edge. (2.6.15) 

Given this expression  for    /f//>J     we can  now evaluate      S^/f/^J 

Vf/fJ  ^    - %  VSS'J . (2.6.16) 

This operation is carried out in Appendix C.    The results when 

referred to cartesian coordinates arc- 

i/r^J= -fvj^ssj =   ^ Ss^J, (2.6.1T) 

where     J     is a dummy independent variable standing for x, y or 7, and 

/jS/iJ   -   S,    Ä />V (2.6.18) 

where 

y IM^SMC^ X^ - ^j-r**-^* -^j/^'\, /• ^ JJ 

*'//JJ* 77^ > 7^ - ^7^ ^ 

Jftj/n-tsXji -4rJ~ I Mis *7 ■'0/Jl**r-> '*/*>J 

Sifij)* /  /"^x ^ -^y -e 

(2.6.19) 

^   --   ^  ^ ^j    --     i   ^- /i,        ji" ^'   .       (2.6.20) 

■ .iMlM——to 
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The aymbo]«? used here axe the same as given following equation  (2.6.3). 

The value for    ^     is to be taken as zero in the event       -^    -   ^j- 

The relation for      J^ /fS^J      is valid for all field points whether 

they lie on or off the plane of the doublet distribution except for 

the case where P lies on the edge, in which case,  the integral is 

undefined.    Note also that regardless of the size or shape of the planar 

doublet distribution equation  (2.6.17) shows that 

^'V'*J       =     # (2.6.21) 

M S^fJ      -     S? (2.6.22) 

The normal derivative with respect to the doublet surface is well 

behaved everywhere except for the edge where it is undefined.  It is 

continuous through the doublet surface.  If one evaluates the normal 

derivative at the centroid of the doublet surface one finds that the 

magnitude decreases to zero in the limit as this finite area increases 

to include the entire  S/ -jj       plane. 

MMiiliiiMii i    "'"  .^■—«-. ■■"■-- •■-■   -    ■ ■   ■     mm 
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2.7 Pressure Coefficient Evaluation 

Using the equations Just derived for the influence coefficiento 

it is possible given the geometry to define the necessary influence 

coefficients needed for the set of simultaneous equations which con- 

stl'-ute the surface boundary conditions. Once the solution in terms of 

the doublet strength is known the local velocities may be determined 

essentially by back substitution. Given the velocities we may then 

determine the local pressures using the equation of motion given by equation 

(2.1.9), that is 

^A     /*   y       , 12.7.1; 

After expanding this equation using vector identities and interchanging 

vector operations we find that the equation of motion may be written as 

Vltf''   $' '  £]    -^    . (=.7.5) 

Since this relation must hold throughout the flow field it is necessary 

then that 

If we now transform this equation to the non-inertial primed reference 

system we find that 

mi n nir  ■      ■-    ..^^M——„.^^^ 



33 

/ - / 

(2.1M 

Evaluation of the constant //     for   K*^/ '^  allows us to write 

S '   7t/J i;' r      =    &     / //>  ^ - ^ (?.T.5) 

where 

^ -' ' fiZxA' *   l/.J  . (2.7.6) 

If we define a pressure coefficient such that 

S»   - ~ ^^—7 (2.7.7) 

we find then using equation (2.7.5) that 

o - ^ - -S'   . <-T.e> 

^hus given the velocities, the pressure coefficients may be determined. 

■H II •     '    .11 ■!■ H   .  ■   
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CHAPTER 3.  DISCUSSION OF THE SOLUTION SCHKME 

3.1 Method of Preaentation 

In the diBCussion to follow in this aectlon we will didcuss more 

specifically the actual solution scheme employed beginning with the 

description of the rotor blades and carrying this through to the 

determination of rotor forces. The symbols uced will in most cases 

correspond to those employed in the computer program. All lengths and 

velocities are taken to be nondimensionalized on the basis of the rotor 

radius (R) and tip speed (MO unless specified otherwise. 

3.2 Rotor Planform Description 

We have chosen to model the rotor geometry in terras of a blade 

fixed orthogonal coordinate system.  In particular we have assumed 

that there «ire  /><,»/    identict.1 rotor blades whose span axes are 

displaced from each other in the f *', Y'J       plane of rotation by an 

angular measure, DT, given by 

*'  " Z^ ■ (3.2.1) 

We further assume that the blades are numbered consecutively in the 

direction of rotation such that blade one has its span axis projection 

coincident with the      V       axis.     It follows from this that only one 

blade need be defined as the other blades may be defined from the 

geometry of blade one by a simple axis rotation.    Figure 2 visualizes 

the coordinate system convention indicating also the relation between the 

blade fixed coordinate systems and a fixed inertial reference system 

■ - ■ - 
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/X/ v, £ )    •     ^n the description of blade one we have allowed for 

two approaches. The first approach to describing the rotor blade 

geometry is a completely general method. In essence wc assume the 

rotor blade is positioned in space at some lifting attitude. We 

require only that it have some non zero hub radius and that its span 

axis projects along the  /  reference axis. We assume thrn that the 

blade can be described by a set of grid point coordinates in the 

/> ' y ' l'J   system. If we let /V^,^  represent the number of span 

stations and /V^,^  and /v^.^^  represent the number of upper 

surface and lower surface chord stations per sptn station, then the blade 

one description involves a table of coordinates such that we specify 

for 

W = I , n*^. 
J 

and        /^ 2,   /^j**?-^ on the upper surface 

A' - /, A^^ i_ on the lower surface 

where       /*? - 2 is the root chord section 

/^ - Wj*^- i-8 the tip chord section 

// - Z. i8 the leading edge span section 

is the trailing edge span section 

on the upper or lower surface. 

We will use   XJ C       etc. as distinct from   /   etc. to clearly 

distinguish the blade one surface grid points from any other general 

'"■       'i       nun       n..  ■rrrr              i IIIMII ——. :- - 
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point.  Note that the  /V* yt. 4l) system is coincident with the 

primed reference  /> ; y' /')     ayatem as shown in Pigure 3. 

A second method for deacr^'oing the rotor planfom which we have 

chosen to include in the programmed scheme involves the description 

of the grid points for a linearly twisted, constant chord, constant 

airfoil section type rotor blade. 

In this method we assume the airfoil section is a NACA OOXX 

series airfoil where XX represents the percent thickness.  In des- 

cribing the blade we now specify our grid points as follows: 

A/      ^^ 

for f/ -   lj rff^as    and   &r *, M***6.  or  A^iv ^   where SG 

represents a span station expressed in terms of percent true span and 

CGU or COL represents a chord station expressed in terms of percent 

chord on the upper or lower aurface respectively. The remaining para- 

meters necessary to define the rotor blade surface include the hub 

radius (Bl), the chord length '^)  and the airfoil percent thickness 

ratio (TC). In applying the linear twist to the rotor blade the geometric 

pitch (THETA) at any span location is given by 

7»-^ -- rs   '  Srrjsst) (3.2.2) 

where TO - geometric pitch at the root chord 

TT - amount of twist 

SG - true percent span station. 

t-^-^-^-MaM—•^-'  Mr^MtM|fcMMMy<>iMtaM^^.     _     
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This twist is applied about the span axis which we assume to b« 

located behind the leading edge intersecting the chord line at a chord 

station given by B3. The true span (B2) is taken to be the actual 

blade span length and is given by the difference between the rotor 

radius (R) and the hub radius. Figure 3 attempts to visualize these 

geometry parameters. 

Given this information we can now calculate the grid point location 

in terras of our /V/,, YJ, uj reference system and express the results 

as 

/v  /-/   AJi^,y   r/^ /'/'Vv 

/y    /^     SJS-A,,,?     yil^n    *JJ-"." 

which results in a surface grid point description compatible to the 

general description method described earlier.  We hF,/e incorporated in 

this scheme as an option, a method to fair the tips by simply forcing 

the surface coordinate at the tip to lie along the chord line. 

-mi ii 
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3.3 Elemental Planar Surface Description 

In the description of the rotor blade surfaces and rotor blade 

wake surfaces we are given surface grid point locations. The surface 

defined within four control points is a warped surface ideally des- 

cribing the blade or wake surface, üecause of the numerical approxima- 

tions applied to the integral boundary condition it is necessary to 

define a planar surface as our control surface element. In a manner 

similar to that found in Reference ih we can define a planar element given 

the four crid point locations. 

We assume that the four grid points whose given coordinates are 

SxJ y'l)'      are numbered clockwise when looking down on the 

control surface from the external flow field. We can now construct 

two tangent plane vectors ?}        and  /7J   such that their cross 

product will define a unit elemental surface normal direction. That 

is let 

<r '" ^'^ / ^x^'' ^-^      (3.3.1) 

where 

-v = xj ■   Xl 

rly, - yj - >; 

V ; ij ■K 

7gx* -   Xf - -*£. 

7zy,  -  ^r   '  ^        (3.3.2) 

lil'IM*-—M,Matl*M—*-^—■■■-■      ■ - '■ ■      ■     ■ ■ 1 n ■■■atlM^M.aM» i^a^M—^ 
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then       /V  r   -5 x   ^     whose components are 

/^ r 
^'^       ■ 

■   ^' ^' 

AV    " ^V'^c' -   5'^' 
^ ' i'7^ ■ Z,'?^' 

(3.3.3) 

The unit normal     •*       is Just 

A' ^/ ^/ <N ' 

^ //// (3.3.1*) 

The elemental surface plane can be specified using the known unit 

s      ' ' -,'1 
normal and a calculated average point Sy, >', -«?>'^taken to be in the 

plane and calculated as the simple average of the corner point 

coordinates. In order now to project the given grid points into this 

elemental plane along the unit normal we first find the distance A^/ ' 

that the i  grid point is removed from the average point. This is 

given by 

(3.3.5) 

Then the projection of the grid point into the plane along the unit 

nonoal results in a set of grid projected coordinates ^Z, Y, SJp. 

given by 

^/V    =     X/   '    "*' **' 

VM,     -     yJ   '     "<  "r' (3.3.6) 

    ■ —    ^atmtllim^mmt^— 
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We can now construct an elemental fixed axis system  // * Xj      such 

that the  X  «ucis is directed along the unit normal /sfj     , the 

/  axis is directed along the line Joining projected corner point 

1 with projected corner point h  and the  ^   axis direction is given 

by   X *   / . 

Let vector 7^>        be given by 

*• / 

(3.3.7) 

where 

^'  =  ^ ' /fii (3.3.8) 

Then the unit vector   /^>       is given by 

/>>    -    ——     = r/t .*   / /s, y '  's. f 

(3.3.9) 

Let  //",   be a unit vector along the  ^   axis, then 

(3.3.10) 

where 

(3.3.11) 

^k - 71/^      ' //^y^ 

''4   • -    »y/^     - '    *V ^^ 

'% -- v ^V   ■ "     ^r' ^; 

HMM^MMMMMMMMeMMMMHtoMMMMMMM^^  -    - - -^ 
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If we now take the origin of the elemental S', ■% //     coordinate 

system to be at ri-ojected corner point (1) then the transformation 

equation relating the body fixed coordinate system to the elemental 

coordinate system is given by 

>'- ^ 

(3.3.12) 
During the influence calculations which will be described later 

it will be necessary to designate one point on this elemental control 

surface at which the influence is to be calculated. We shall take as 

this control point the centroid of the elemental surface. \l  can be 

shown that the centroid location /'J. .?. Xj^.       is given by 

/ <v 'v ''.', 

l — 
^ 'v '"/ 

r ^' «,' *i 

where 

/^    -'    /^'s 

y« 

s, 

Ji 

^ 

- s 

J^ 

(3.3.13) 

(3.3.1U) 

;3.3.15) 

«MtaHM ^ 
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s* Js, 

h2 

's -' s,   -  ^^-^-7 

■is  - y^j 

^  = iij f/, -jjj 

(3.3.16) 

/  ^ 

^ =   61J 

(3.3.17) 

/P      T       y?,     S     /?£ S      /?J        '      /?? (3.3.18) 

^MMMMiMMi^MMHl .... J-.J.. .. -.■^._-.. ,. .-. ■^. 
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2.k    Blade Influence Calculations 

We have to this point in the discussion essentially described 

the geometry of blade one as a set of upper and lower surface grid 

points. Furthermore, we have presented a method to specify an 

elemental planar control surface in terms of its location in space 

with respect to a blade fixed reference system and with respect to 

its own elemental coordinate system. Therefore, we have the informa- 

tion necessary to compute the influence coefficient of one blade element 

on another blade element. 

In order to make the problem more easily tractable we shall first 

define a new indexing system for identifying the particular elemental 

surface. Recall that in the description of blade one we have specified 

Afj*^.        span stations, /VMA^^      and  /V^^, ^   upper and lower 

chord stations where grid point M=l, N»l corresponds to the root chord 

at the leading edge of the upper or lower surface, and grid point 

/y .- /y , //r /Vj*^        corresponds to the tip chord at the 

trailing edge on the upper surface. If we index the elemertal control 

surface with the indices taken to be the index of the most immediate 

Inboard span station and forward chord station then essentially we can 

describe the particular elemental control surface aa (element)M «.  If 

we define 

W/   =    /^iW ' *■ (3.^.1) 

/VA^cy     '    AWM^- - / (3.14.?) 

//A^  - AW^ -2 (3.1*. 3) 

- - - ■ III MM 
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then we c&a  state that there are  /^/7/K //^ elemental control 

surfaces on the upper blade one surface and likewise, there are 

///V-i/V/v^ elemental control surfaces on the lower blade one surface. 

Because we will be specifying the influence of one element on another 

element it behooves us to index the elements with a single Index. We 

will identify the elements as f   /, ^*-«/ where the elements axe 

numbered consecutively beginning on the upper surface at the root 

leading edge element and proceeding first chordwise  and then spanwise. 

If jf- Jnfti/      Is the last element on the upper surface then 

T, T . /   is taken to be the root leading edge lower surface 

element and the indexing proceeds to ^JH*/     in a similar manner to 

the upper surface.  It follows then that for a particular control 

element specified as //%/^J then in terms of index I we have, 

y-ZW-yyAVX-y *  SJ on the upper surface (3.1«.l*) 

/T S/V-jJ/VA^   ^ //r» /»»v^,  on the lower surface (3.11.5) 

where 

J'twSt;    --    S?"  "   ""u     - (3.1^.6) 

The computation of the blade influence coefficlenls now proceeds 

in a straight forward fashion. That is suppose we first define once 

and for all the  >*>«/• elemental control surfaces of blade one. 

Beginning on the upper surface, say elemental surface (M,n), we can 

immediately using equation (S.^.M index this element as elemental 

niMMrÜHii 
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surface I.    Now proceeding In a clockwise fashion around the element 

we define the corner point coordinates a« 

(3.»».7) 

^    -    XlL'/ii nil 

Vj   --    y/^/^w (3.U.8) 

^     -   -HisSJ n-tj 

yJ     '-   y*V**i,n*t (3.U.9) 

V    '    Wf*",* (3.1*.10) 

Note for the lower surface element we would define the corner point 

coordinates in a clockwise fashion as 

//   -     Xi/^/7 (3A.11) 

   ^^mmm^^^mm 
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AS = X^^/Z^/^  z^^/ 

yy - y* I /sti, si/j 

ij - ZlJ-^tj^   „tx 

** J XHty rf*l 

V -J X//A/ „tj 

^ - iJ f-,,^ sy, j | 

(3.14.13) 

(3.1*.11») 

Nov using the equations developed In the discussion of the elemental 

planar surface (section 3.3) we can define all the geometric relations 

needed for later Influence calculations. That Is, we develop and save 

the following parameters for all elements I of blade one: 

A) Transformation matrix relating the primed reference system 

to the elemental reference system. 

B) Origin of the elemental coordinate system with respect to the 

primed reference system. 

C) Elemental corner point coordinates with respect to the 

elemental reference system. 

D) Elemental centrold coordinates with respect to the elemental 

reference system and with respect to the primed reference 

system. 

E) Elemental area. 

Given now thr. element I of blade 1 on which we wish to find the 

Influence of element J of blade 1 we would proceed as follows: 

A) Recalx the location of the centrold of element I with respect 

to the ^y',  x; *'J   reference system, ie SX' V ',  S 'Jcf, 

MM ----- - ^---  - - 
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B) Using the transformation matrix relating the primed reference 

system to the Jth elemental fS, At Tj7    coordinate system, 

transform the location of the coordinates /&',  // ^'J^    t0 

coordinates /'// ^T yjr 

C) Given now the corner point coordinateJof element J with respect 

to its coordinate system, ie  /'X/l ^/r » calculate 

using equation (2.6.l8)the velocity influence coefficients in 

the //   2 **&    '     direction at point SS, 'J, ^y^^-    . 

that is, define  .^y-, ,  , J*^ T  and JyL  ^ 

D) Since these are the influence coefficients expressed with 

respect to the Jth elemental coordinate system, transform these 

coefficients to the Sx',  /' 7'J   system using the inverse 

of the transformation matrix of B above such that the final 

result is in the form of velocity influence coefficie/as 

expressed with respect to the primed reference system, that 

is. ^^    . 7y'Z/s .and  ^^   . 

Since the boundary condition requires us to define the Influence co- 

efficients on all JMst/-    blade one elements of all elements of all 

blades ^' Jy 4-**/'   we would simply repeat the procedure outlined 

above for all J elements of blade one, and for exactness, ve should 

replace the Jth subscript above with J, to indicate that this represents 

the influence of the Jth element of blade one on the Ith element of 

blade one. 

In order now to compute the elemental influence coefficients of 

blades /■ ?2    on the elements I of blade one we have to alter the 

procedure outlined earlier. Note first that we have assumed all rotor 

■MMMaaa«MMM.a> 
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blades are Identically described. Thus the J elemental surface of 

blade //J     are similar to the J elemental surfaces of blade /--/ 

Thus, since ve are given the geometric parameters defining blade one 

elements, all that we need to do In order to define the parameters of 

the J elements of blade /■ / J   Is to apply a simple transformation 

involving a rotation of axis about the  «?  or ^1      axis. The 

rotation angle Is of course the angle between the blade /!'J     span 

axis and the blade Z? 1      span axis. Once this transformation Is 

accomplished the outlined procedure above may be followed. The final 

result is then a set of Influence coefficients relating the influence 

of blade L, elemental surface J on the blade one Ith elemental surface 

centrold. The total Influence then of all blade J elements on all I 

elements can be written with respect to the primed reference system as 

^ykj      ~    £l    -^^ (3.1..16) 

l2's,J      "    Z'J    ^7,^   ' (3.U.17) 

Thus the blade influence coefficients are determined. 

— 
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3.5 Wake Influence Coefficients 

The problem concerned with calculating the wake influence co- 

efficients once the wake geometry is established is essentially the 

same problem encountered with calculating the blade influence co- 

efficients. For the wake influence, we are concerned with calculating 

the influence on blade one element I, of a wake element as it leaves 

the trailing edge and spirals down in a streamwise direction. Since 

we have shown that the doublet strength remains constant in the wake 

along a streamline, then we may numerically integrate the influence of 

streamline segments and sum the results to present the net effect of a 

particular wake streamline on an element I. 

In this problem, because of the numerical approach, we are concerned 

not with a single wake streamline but rathex »  - a series of adjacent 

streamlines which leave the rotor blade in finite segments on each of 

which the doublet strength is a constant given by the difference in 

upper and lower blade surface trailing edge element doublet strengths. 

As such we wish now to calculate the influence of spiraling finite width 

wake segments on blade elements I"l, Iraax- 

We will choose to represent the wake as MM spiral segments, each 

of which trails from one of the J blade trailing edge surface elements 

previously discussed.  In order to demonstrate the feasibility of a 

lifting rotor surface analysis and to begin the free wake analysis we 

will choose to model the wake in terms of a proscribed classic wake 

model.  The description of this wake is relatively simple and is used 

here because of that fact. In no way is this theory limited to such a 

wake. 
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From the rotor blade one description we know the Mß^ tradling 

edge span station coordinates. These may be expressed in terms of a 

primed cylindrical coordinate system fsi', # ', i'J  such that the 

dimensional coordinates eure given by 

^'rs„ j 4rs„ i l'rr„ )     ^  " '*' "*~* - 
(3.5.1/ 

It follows then that the streamline leaving the trailing edge at any 

of these span stations will follow a helical path, the equation of which 

is expressed in terms of a parameter  ^  as follows, 

-stY^J   -   ^-M/v       - constant 

(3.5.2) 

where     ZsS^f     is a constant rotational rate taken as positive in the usual 

sense about the      ?      axis, and      j£'     is a constant velocity taken as 

positive along the     £ '    axis.    If the distances are nondimensionalized 

in the usual sense using the blade radius  (P), and the velocities are non- 

dimensionalized using the rotor rational tip speed     SAJJAJ      , then 

the above set of equations becomes 

where 

yi 'f/J ~      Sl 'jjr - constant 

S'sd - S^„   - AS' (3-5-3) 

40'    -     ^//^V^y. (3.5.U) 

 «II  i  ■   ■ l    Hü—i   i 
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In this analysis we will take the velocity   StyJ to be the sum of 

the rotor climbing speed and a specified constant increment downwash 

such that the sum represents an average constant momentum downwash 

expressed with respect to the blade fixed reference system. 

Having established these equations it is now a simple matter to 

describe the wake in terms of elemental surfaces Just as was done for 

the blade surface.    We will define the wake as consisting of MM spiral 

segments such that the Mth spiral wake segment has as its origin the 

trailing edge segment lying between trailing edge grid points M and 

M+l.    Each spiral wake segment's influence then on blade one element I 

will be calculated as the sum of a finite number of trailing segments 

derived by incrementing the wake's displacement from the blade in terms 

of the parameter   ££ .    The same procedure as outlined in the blade 

influence coefficients section 3.1* is followed with the result being 

expressed as a set of influence coefficients expressed in terms of the 

primed     <ffX. ¥,  i'J    reference system as    -^V„,   %   ^Yr*. J   ^1', 

where      7^' is the influence coefficient in the    x'   direction, 

derived from the influence on blade one element I of the wake M segments 

trailing the        ^,*-*/    number of blades from the Mth trailing edge 

elemental surface. 

In the actual computation scheme the wake influence calculations 

are terminated depending on one of the following constraints: 

A) After a finite number of wake turns are completed. 

B) After the influence coefficient on a specific blade element 

I has reached a value less than a specified percentage 

amount of a close blade wake element. 
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C) After a specified absolute number of vake Influence 

*    calculations are performed. 

The size of the vake elements are determined by the length of the 

trailing edge span statin grid points and the angular measure A*? . 

An option is included in the program to allow /}<?    to be specified 

as a certain value until a given number of vake turns are completed at 

which time  ^)^?/  will take on a second specified value. This allows 

for finer vake elemental control surfaces to be specified in the vake 

region near blade one and coarser vake elemental control surfaces to be 

specified in the far vake region. 

-  ■ -        ja 
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3.6 Generation of the Set of Surface Boundary Conditions and the 

Numerical Solution 

To this point In the discussion the determination of the geometry 

of the blade and wake system and the analysis of the entire set of 

Influence coefficients have been presented. We are concerned nov with 

the actual formulation of the set of surface boundary conditions. Using 

the results of the previous two sections we may write the Induced normal 

velocity on the centrold of a blade element I as 

Kwz • *>^ "7F *"*,**£, '7FH"(3-6-1' 

where, except for the doublet strength, everything else Is analytically 

determined. The first summation term represents the blade Induced 

velocities and the second sumnatlon term represents the wake Induced 

velocities. The element I unit normal   Hf        expressed with 

respect tu the primed coordinate system has been previously determined. 

J"    represents the normal influence coefficient obtained by 

vectorlally dotting the respective vector primed influence coefficient 

with the unit normal /Zj . 

Once the doublet strengths have been calculated, the surface 

velocity potential Is computed using equation (2.U.6). The Induced 

surface velocity is then computed by 

Vw = rl * , <3•6•^, 
where -?—      represents the tangential surface derivative. 

^^S MMMMMMMM^-. . -  
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It vaa shown earlier that the primed free stream velocity on the 

centroid of an element I can be written as 

K>'     *     '  /fsfjjr    '    ^J (3.6.3) 'ptj ^ — **j- 

where    £C    is the rotor rotational rate   ^Afc £ / ,     Vj-     Is the rotor 

climb velocity    ^fyi J  » **&     ^^4r     ^8 the Primed vector to the 
— / 

centroid of element I.    Now   to  ,     Uj-    and     ^tf y      are linown» 

thus     VpAT     J-8 determined and it follows then that the primed free 

stream velocity normal to the surface element I given by 

^ '     ^ '  *> (3.6.J») 

Is determined. 

Substituting these results Into equation (3.6.2) it follows then 

that the set of ^^^ surface boundary conditions to be satisfied 

is given by 

fij    47?  ^V    frj  +*   ^jr^ "r  (3.6.5) 

./>/« J'tJ,*',**? 

Since   -^f/y   was shown in section 3.5 to be related to specific      ^- 

values the set of equations above are in fact in the form generally given 

by 

/e7A/    = 0/ (3.6.6) 
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where the matrix    A    Is an     -^^ * ^>^-/-   square matrix,    X    Is a 

JT^^JL    column matrix and    B   Is an       ^tj-^     column matrix.    We 

have Identified 

y    -    -   ^r 
-V  "*        sfv (3.6.7) 

^j   ^    ~   ^ (3.6.8) 

The solution to the    jf*^       simultaneous  set of linear algebraic 

equations is carried out numerically by either of two methods depending 

on the program option selected.    One method employs the Gaussian eli- 

mination scheme with pivoting.    This method, which is discussed 

completely in Reference 17, is an exact solution method whose scheme of 

operation Is to successively convert the defined matrix into a matrix of 

one less row and column until in effect an upper triangular matrix 

results.    The solution is obtained then by a back substitution scheme. 

Interchanging of rows is done in order to make the pivot diagonal terms 

dominate which Is a condition necessary to ensure accuracy. 

A second method chosei   to obtain a solution to the set of equations 

is an Iterative approximate method known as "The Method of Simultaneous 

Displacement for Linear Systems".    A complete discussion of this method 

is presented In Reference 18.    In essence, however, this scheme Involves 

expressing the    -OM^     linear equatiois in the form 

/X/    =■   J#J/X/   /   AV (3.6.9) 

^^^tfttmrntum 
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where B is an     J*.^        square matrix and C is the given column 

matrix.    An initial approximation vector is taken as 

(3.6.10) 
A 

Successive approximations       Xj        are generated by the iteration 

(3.6.11) 

This continueo until the criterion 

1 (3.6.12) 

/XA^/ ^   ^ S,*   ^t    J'l   /*^ 

is satisfied. 

In actual practice the iterative scheme is the solution of choice 

for large sets of simultaneous equations.    This point will be discussed 

in a later discussion section. 

^m 
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3.7   Determination of the Velocities, Pressures, and Forces 

Once the solution in terms of the doublet strengths are known 

it is a simple matter to determine the induced primed velocity on 

all blade one elements using equation  (3.6.2).    The pressure coefficient 

at the centroid of element I is then given by 

(3.7.1) 

where    A     is taken here to be the ratio of the rotor climb speed to 

the tip speed    Sto ft.)   . 

The non-dimensional force acting on any element I  is given by 

^ =      ^^g -      - 
^W^     ""    '<^^^S' (3.7.2) 

where    S     is any    X     X        or    /?        direction. / 

The non-dimensional plane of rotation torque acting on any element 

I is given by 

(3.7.3) 

The total rotor axial thrust coefficient is given by 

(3.7.1*) 

iMf—11 11 ■   ^_   in.««  ' null- 
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Similarly the total rotor torque coefficient is given 

(3.7.5) 

This concludes the step by step discussion of the solution scheme. 

As a way of a short summary at this point we have shown how if we are 

given 

A) The rotor geometry including specific surface grid points. 

B) The rotor non-dimensional climb r«itio /   A   =     \&/u)R 

C) Some prescribed wake geometry specifically taken in the 

previous discussion to be a simple classical helix shape 

then we can calculate the pressure, velocities, and forces acting on 

the blade. 

---—■-!■ 
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l+.l    General Deocrlptlon 

In order to demonstrate the feasibility of this lifting surface 

theory and its application to the prediction of rotor blade flow field 

analysis a computer program was written.    The theory as described in 

the previous sections is a relatively straightforward theory, however, 

its application becomes rapidly complicated due to the geometry and 

large system of elemental control surfaces necessary for accurate results. 

As a means of perceiving the extent of the problem we may consider 

at this point a reasonable end problem that we might wish the computer 

program and computer to handle. 

Suppose we are given a two bladed rotor system whose geometry is 

specified along 16 span stations, 21 upper surface chord stations and 

21 lower surface chord stations.    This implies that we will eventually 

describe the three component vector velocities on 600 basic elemental 

surfaces.    We have seen that the description of each elemental surface 

alone requires at least 25 parameters which for this posed problem means 

a total of ]5|000 such parameters.    The blade influence calculations alone 

total 720,000.     If we describe the wake with a total of 1155 basic wake 

elements we require a total of 1,386,000 wake influence calculations to 

be performed.    The simultaneous  set of equations  to be solved is a 600 x 600 

system. 

The computer program was run for this problem and will accommodate 

up to 2000 basic blade elements which is the critical size determining 

factor.    It should be obvious that the constraints to this type of 
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computer solution vill be the available size of the main core computer 

storage and the computational speed of the computer itself. 

The program was designed to be run on West Virginia University's 

IBM 360 Model 75 computer.    The greatest amount of computer core 

storage required at any one time is 2h0,000 bytes with h >ytes being 

required for a word length.    The program requires a minimum of three 

accessible external storage devices with at least two of these devices 

being a high speed storage device.    At WVU this requirement was met by 

using the system disc files with two standard length nine track tapes 

being used for permanent storage.    Seven track tape devices are in- 

compatible with the program as written.    The program itself is written 

in FORTOAN IV language and was compiled on the IBM FORTRAN G version 

compiler.    The program is a research orientated program and does not 

necessarily reflect the most optimum design orientated program, that is, 

it contains various checks and options which are not absolutely necessary 

to the program solution.    We recognize also that there exist areas in 

the program in which the exact analytic expressions may be approximated 

and advantage of these time saving methods have been used in this 

program.    However,  it  is the intent of this program not to incorporate 

all these features at this time.    The philosophy under which we have 

written this program is to make  it as exact a numerical  scheme as 

possible so that if an infinite number of control elements were taken 

the solution would be as exact as possible within the confines of any 

incompressible potential flow analysis. 

The program is designed on a modular basis with each module being 

designed on the premise that given certain input informtion it is 
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the purpose of that module then to specifically calculate a certain 

aspect of the overall problem and to supply certain output information. 

The advantage here is that it allows for easy internal modification 

by simply replacing this module with smother. The actual sharing of 

information is done for the most part through the use of common machine 

storage centers. In this way the amount of in core storage necessary 

is minimized as storage locations are used at different times for 

different parameters. 

k.2   Specific Program Description 

The overall progran is subdivided into seven main programs 

identified as follows: 

1. MAIN - INFLUENCE COEFFICIENTS 

2. MAIN - CREATE SOLUTION FILE 

3. MAIN - SOLVE BY ELIMINATION 

U. MAIN - SOLVE BY ITERATION 

5. MAIN - TRANSFER SOLUTION FILE 

6. MAIN - VELOCITY CALCULATIONS 

7. MIN - PRINT 

The purpose of each program is generally indicated by the assigned name. 

The Print program is actually an auxiliary program whose sole purpose 

is to retrieve additional non-essential information stored on the two 

permanent files.    It was used during the program check procedures to 

study individual elemental influence coefficients. 

iMMMiiiiii Mi "--—- mm    ■ -- 
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The reason a series of main programs are used rather than one 

single main program is because the overall program logically divides 

Itself into these areaa and secondly ve can minimize the amount of 

external storage devices and Internal core storage required during 

any one series of computational steps thereby allowing for the computer 

to be run in a time sharing mode as is common procedure at most in- 

stallations.    A general computer program flow diagram is given in 

Figure h Indicating the major steps in the program.    The solid lines 

indicate continuation to the next step with  cne broken lines indicating 

continuation into another main program. 

In Appendix D we have discussed the internal structure of the pro- 

gram at the level of the subroutine.    Basically we have presented each 

subroutine as an entity and described its function and options.    Except 

for the MAIN-INFLUENCE CALCULATIONS program, the actual program operation 

is straightforward.    We have presented a detailed flow diagram for the 

MAIN-INFLUENCE CALCULATIONS program in order to serve as an aid in 

discussing this program operation in terms of its various options. 

We have also included in Appendix D a discussion of the input procedures 

and output information. 

~^-- urn 
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CHAPTER 5.  RESULTS AND CONCLUSIONS 

In this section we will present a summary of the results of two 

major case studies. These cases were chosen so as to verify the mathe- 

matical model and the computer program for the case of a prescribed 

wake model. Recall that the present work is not directly concerned 

with the force free wake analysis which, in fact, would require subse- 

quent wake iterati 'e computer runs to be made for each of the cases 

presented. The results presented here thua j'epresent the starting or 

zeroth order solution to the overall rotor analysis. Subsequent 

solutions will, however, make use of the same program with the prescribed 

wake geometry having been predicted from the previous program solution. 

In Table 1 we have presented a summary of the rotor description, 

elemental blade surface description, elemental wake surface description 

and free stream conditions as used in the first case study. This single 

bladed rotor system does not correspond to any real rotor system but 

was chosen because its analysis requires a relatively small number (l6o) 

of basic elemental surfaces for each blade description. Figure 5 

attempts to visualize the density distribution of the elemental surfaces 

which describe the rotor blade surface. This plot is a planform projec- 

tion of the symmetrically described 80 upper and 80 lower elemental 

surfaces. We have spaced the elemental surfaces more closely in those 

regions where we expect the pressure to vary most rapidly. The rotor 

hub radius of this two bladed system is taken to be 90%  of the rotor 

radius, thus, the rotor blade occupies the outboard 10%.    In Figures 

6 through 9 we have presented a plot of the pressure coefficients vs. 

■ ■■ 



61* 

chord station at each of the four span segments as identified on 

Figure 5.  The pressure coefficient is defined on the basis of the 

rotor rotational tip speed squared and  each point plotted represents 

an elemental centroid point at which the normal surface boundary condi- 

tion was satisfied. These plots represent a realistic chordwise variation 

in pressure and show the three dimensional character of the flow near 

the rotor blcde tips.  In Table 2 we have summarized the computer time 

required for this case. 

In order to more clearly show the three dimensional effects we 

studied the same two bladed rotor system as described above except 

that the geometric pitch angle at all ppan positions was now taken to 

be zero degrees. All other conditions remained the same as given in 

Table 1.  This analysis thus corresponds to a three dimensional non- 

lifting potential flow thickness problem and as such no wake analysis 

was performed. Figure 10 is a plot of the surface velocity vs. chord 

station.  The surface velocity here plotted is the velocity at each of 

the elemental centroid locations of the tip span segment (span segment 

k  of Figure 5) divided by the local free stream velocity given by 

Äsxf      whore M       is the position vector to the elemental 

centroid from the blade center of rotation. On this plot is also shown 

two-dimensional, zero angle of attack, NACA 0012 sectional, potential 

flow derived surface velocities non-dimensionalized by the free stream 

velocity as given in Reference 19-  Only the upper surface velocities 

are plotted since the velocities are the same on the lower surface 

for this symmetric airfoil.  Note that the three dimensional blade 

velocities are less in magnitude than the comparable sectional airfoil 

timil—lüMi                     -      —mmm 
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velocities and the velocity curve defined by the rotor blade points 

has a near zero slope over much of the chord distance. These differ- 

ences represent here the change in flow character between a three 

dimensioned body executing a constant rotating motion compared to a 

two dimensional body executing a constant translatory notion. The fact 

that the rotor velocity ratio does not equal the two dimensional result 

is due to the three dimensional divergence effect on the flow over this 

small blade segment. 

The second major caie study is an analysis of an actual rotor system 

for which experimental surface pressure data is available (reference 20). 

In Table 3 we have presented a summary of the rotor description, elemental 

blade surface description, elemental wake surface description and free 

stream conditions as used in this second case study. The density 

distribution of the pianfcrm projected elemental surfaces is shown in 

Figure 11.  Note that there are on each of the two blades 600 basic 

blade elemental surfaces synsnetrically distributed on the upper and 

lover blade surfaces along the 15 identified span segments. The surface 

elements are more concentrated near the leading edge where we expect 

the surface pressure to vary most rapidly.  In Figures 12 through 22 we 

have plotted the difference in the upper and lower surface pressure 

coefficient vs. the chord station at 11 selected span stations.  Each 

point plotted represents the pressure coefficient difference obtained 

at two respective elemental centroid locations where the normal surface 

boundary condition was satisfied.  The prepsure coefficient is defined 

here on the basis of the rotor rotational tip speed squared.  In order 

to better appreciate the chordwise and spanwise pressure variation 

MQI 
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we have presented In Figure 23 a composite curve again showing the pressure 

difference vs. chord station at the same selected span stations In dimen- 

sional units. Figure 2k  presents an experimentally determined plot of 

the absolute upper and lover surface pressure difference on the same 

rotor as a function of chord station at various span stations. This 

figure is a tracing of a figure presented in reference 20, in which the 

pressure difference was obtained experimentally at 6 chord stations at 

each of 8 span selected stations. Notice that the same scales have been 

used for both curves in order to facilitate comparison between the 

theoretical and experimental results. The span stations do not correspond 

however, so care should be taken when comparing specific values. There 

is a very close similarity In the distribution of the chordwise pressure 

between the experimentally measured and computed results. Since pressure 

taps were not located near the nose of the experimental rotor the authors 

of reference 20 rounded off their curves rather abruptly in these regions 

which probably contributed to their not checking AS  closely the Integrated 

experimental force measurements with the test stand value.  It is 

interesting to note that both the experimental and theoretical results 

show qualitatively similar losses in pressure near the tip. 

The Integrated results of Figures 23 and 2h  are shown in Figure 25. 

This figure shows a comparison of the spanwise loading distribution between 

the experimental results and the theoretical calculations. The agreement 

is remarkably close in view of the fact that the classical prescribed 

wake was used for the theoretical lifting surface calculations. As shown 

in reference 21, the prencribed classic wake tends to predict higher 

thrust coefficients than the experiment shows.  This reference also 

iii HMMMJMM—IIM^M»«»^-.^—li 
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points out that force free vakea reduce the spanvlse loading over the 

clasilc vake prediction. The present results are therefore, in agreement 

and it is anticipated that the inclusion of a force free vake program 

will bring the theory into better agreement. The computed thrust 

coefficient for this case was  Cr « 0.00UU compared to the experimental 

value of Cy»  0.0038. Therefore the classic rigid wake theoretical 

result was approximately 15^ high.  The corresponding theoretical torque 

coefficient was computed to be  CQ« 0.00011 for this case. 

Figures 26 and 27 present plots of the predicted relative surface 

velocity direction on the upper and lower rotor surfaces respectively 

for case 2. In these plots we have forced the rotor surface to conform 

to the plane of the figure. The direction of the local surface velocities 

are shown drawn as a constant length vector from a series of surface 

control points which approximate selected elemental -;tntroid locations. 

The plots are essentially comparable to what would result from an 

experimental flow visualization tuft study. The figures c"'»!«rly show 

the three dimensional nature of the flow on the rotor bl^le surface. 

Note the circular nature of the flow which is evident at all span stations 

but which is most prominent at inboard span segments. This result is, 

of course, expected since the free stream component is truly circular 

( ^L **  ~ w * R')   .    However, if one studies these results more clearly 

it becomes evident that the induced velocity component does alter the 

flow direction.  If we restrict the following discussion to the in- 

duced spaswise surface velocity component the results show that beyond 

approximately the 50%  span station the induced velocity is directed 

Inboard. Inboard to the 50%  span station the induced velocity is 

MMMMHMi doa 
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directed outboard at surface points forward of the quarter chord 

approximately and Inboard beyond the quarter chord. The flow deviation 

between the top and bottom surfaces near the tip trailing edge Is of 

Interest. The flow leaves the top surface trailing edge at approximately 

a 20 degree difference fron the corresponding flow leaving the bottom 

surface. The directions Indicate that the shed vortex sheet Is already 

beginning to roll up. In Table h  we have summarized the computer time 

required for each of the major steps In the execution of this 600 case 

study. 

Prom the summary of results presented we conclude that the lifting 

surface theory as developed Is applicable to rotor system analyses. 

Furthermore the application of this theory is feasible. The results, 

however, are highly dependent on the prescribed wake model used in 

the analysis and use of the classical wake model is insufficient to 

yield accurate results. It appears that the prescribed wake geometry 

must be s 1mlleu: to th^ actual free wake geometry in order to obtain 

accurate loading results. 

There is a lack of experimental data or theoretical analyses which 

would help us confirm the theory developed here.  To the authors' 

knowledge there exist very little available literature giving rotor 

blade surface velocities and directions and loading measurements on an 

■^ting rotor system. The conclusions we have drawn above have as a 

necessarily assumed zhe  present theory and application to be 

The general potential theory certainly has been proven by past 

application on planar body motion analyses and we have systematically 

checked all application procedures in order to ensure accuracy. 

• i i      r——iw 
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CHAPTER 6.  EXTENSIONS 

The theory and  formidable program presented in essence completes 

the basic approach to theoretically analysing a lifting rotor using 

potential lifting surface theory• Much work needs to be doae, however, 

before the application of this theory can be used routinely for rotor 

design analysis. We recognize that extensions to this work should 

proceed along two major routes. One major route of study should be 

concerned with the wake. At present the program (not the theory) 

uses a classical helix wake washed avay at some constant velocity 

from the rotor blades. As is noted by various authors (explicitly 

cited earlier in the report) the wake geometry plays a major role in 

determining blade surface velocities. Obviously a more accurate pre" 

scribed wake representation needs to be incorporated. At the present 

time we are extending this work in order to incorporate a theoretical 

force free wake analysis. This extension is to be accomplished by 

predicting a new wake geometry configuration based upon the solution 

obtained by this present work. In this manner successive solutions 

will be obtained by iteration on the wake geometry such that the force 

free wake solution will result. 

A second major area where further extensions to this work is 

needed is in the area of reducing the required computer time. This 

may be practically accomplished in basically two ways, that is, first 

reduce the total number of influence calculations to be performed 

and, second, reduce the time required for each set of influence 

calculations. The former may best be accomplished by further studying 

M^M. _.j.—-j^.-. 
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the individual wake elemental influence and optimizin«, based on this 

study, the actual extent and elemental description of the vake Itself. 

The latter above may best be accomplished by using approximate relations 

to describe the influence coefficients at a far removed surface point 

instead of using the exact relations which require perhaps twice as much 

computer time.    The numerical results shown here have already incorporated 

this simplification in the program. 

There are of course other mesas to reduce the required computer time. 

Linearizing the surfacr; boundary condition would reduce the time required. 

Furthermore, incJrriorating an experimentally determined wake geometry 

would result in a sabstantial overall computer time reduction.    This 

type of extension would make the present work suitable for studies on 

existing rotor systems but not necessarily applicable to new configuration 

rotor systems. 

With the advances b«lng made in computer technology, especially In 

the areas of Increasing core storage coupled with the extensions above, it 

does appear that \...ic rotor lifting surface theory will allow the aerodynamicist 

to perform a completely theoretical design analysis of any given rotor system. 

The problem which remains to be analysed is the problem posed by 

a helicopter which is climbing as well as advancing perpendicular to 

its axial climb direction.  The analysis of this rotor system requires 

an unsteady analysis as the blade loadings now become functions of the 

blade azimuth position thereby increasing the number of unknowns in the 

problem.    The theory is simply an extension to the present problem, 

however, the actual solution scheme becomes rather complex. 

*z***m*mmmmmmm**~ml*m*m**mmam*mm*.*m 



71 

REFERENCES 

l. Multhopp, H., "Methods tor Calculating the Lift Distribution 
ot Wings (Subsonic Litting Surtacf! Theory)", ARC R&M 2884, 1955. 

2. Verbaush, P. J . , "Unsteady Lifting Surface Theory tor Ship Screva", 
Hydronautics - Europe, Technical Report No. 9, October 1965. 

3. Heaa, J. L. and Smith, A.M. o., "Calculation ot Potential Flow 
about Arbitrary Bodies", Progress in Aeronautical Sciences, Vol. 
8, Pergamon Preas, Nev Yo~k, 1966. 

4. Johnaon, W., "Application of a Litting-Surtace Theory to the 
Calculation ot Helicopter Airloada", AHS 27th Annual Forum, No. 
510, ~ 1911. 

5. Erickson, J. c., "A Continuous Vortex Sheet Representation ot 
Deformed Wakes ot Hovering Propellers", Procee~inga ot Third 
CAL/AVLABS Symposium on Aerodynamics ot Rotary Willg and VTOL 
Aircratt, Vol. I, June 1969. 

6. L4Ddgrebe, A. J., "An AnaJ..ytic Method tor Predicting Rotor Wake 
Geometry", AIAA/AHS VTOL Research Design and Operations Meeting, 
AIAA Paper No. 69-196, February 1969. 

1. Erickson, J. c. and Hough, G. R., "On the Fluctuating Flow Field ot 
Propellers in Cruise and Static Operation", Submitted to AIAA J 
ot Aircratt, January 1969. 

8. Rorke, J. B. and Wells, C. D., "The Prescribed Wake-Momentum 
An~aia", Proceedings ot Third CAL/AVLA.BS Symposium on Aerodynamics 
ot Rotary Wing and VTOL Aircraft, Vol. I, June 1969. 

9. Clark, D. R. and Leiper, A. C., "The Free Wake Analysis", AHS 25th 
Annual Forum, Paper No. 321, M~ 1969. 

10. Ellie, C. W., "Recommendations for Future Aerodynamic Research", 
Proceedings ot Third CAL/AVLABS Symposium on Aerodynamics ot Rotary 
Wing and VTOL Aircratt, Vol. III ;. June 1969. 

ll. Carter, E. S., "Nov is the Ti tor Aerodynamics to Come to the Aid 
ot the Hardware", Proceedings ot Third CAL/AVLABS Symposium on 
Aerodynamics ot Rotary Wing and VTOL Aircraft, Vol. III, June 1969. 

12. DJoJodihardJo, R. H. , "A Numerical Method tor the Calculation ot 
Nonlinear Unsteady' Lifting Potential Flow Problems , " Sc. D. Thesis , 
MIT, Dept. ot Aeronautics and Astronautics, October 1968. 



P""- ...-..„...»■«, «|N,.-IBIIW  JipHLI   ..  .|.  .  ... -,^-«-- -^ «„ , »■, , . ■ >! >- 

72 

13. DJoJodihardJo, R. H. and Widnall, S. E., "A Numerical Method 
for the Calculation of Nonlinear Unsteady Lifting Potential Flow 
Problems", AIAA 7th Aerospace Sciences Meeting, AIAA Paper No. 
69-23, January 1969. 

1U. Hess, J. L. and Smith, A. M. 0., "Calculation of Non-Lifting 
Potential Flow about Arbitrary Three-Dimensional Bodies", Douglas 
Aircraft Report No. ES '♦0622, pp. 66-73, March 1962. 

15. Bole, 0. Petit, Tables of Indefinite Integrals, p. 67 (6b), Dover 
Publications, Inc., New York, 196l. 

16. Refer to Reference Ik,  above, p. kk. 

17. Conte, S. D., Elementary Numerical Analysis. pp. 156-162, McGraw- 
Hill, New York, 1965.    

18. Refer to Reference IT above, pp. 191-197. 

19. Abbott, I. H. and Doenhoff, A. E., Theory of Wing Sections. p. 321, 
Dover Publications, Inc., New York 1958. 

20. Meyer, J. R. eurf  Falabella, G., "An Investigation of the Experi- 
mental Aerod/nam.c Loading on a Model Helicopter Rotor Blade", 
NACA TN 2953, May 1953 

21. Beiiinger, E. Dean, "Experimental Investigation of Effects of Blade 
Section Camber and Planform Taper on Rotor Hover Performance," 
United Aircraft Research Laboratories, Report No. K 911076-1^, 

January 1972. 



lipn>^nMMminwnnmmwE>n*ii»^)nv..i MiniMiii it IMIMUH upui 

73 

BIBLIOGRAPHY 

1. Van de Vooren, A. I., Numerical Methods for Solving Fluid Flow 
Problems, Course given at WVU, Dept. of Aerospace Engineering, 
1969-70. 

2. van de Vooren, A.  I.,  "Some Additions to Lifting Surface Theory", 
Mathemateich Instituut, Universiteit Groningen, Report TW-33- 

3*    Mil, M. L.  et al.; "Helicopters - Calculation and Design, Voluir- 
I Aerodynamics", NASA TT 7-U9U, September 1967. 

U.    Ashley, H., Windall, S., and Landahl, M., "New Directions in 
Lifting Surface Theory", AIAA J., Vol.  3, No.  1, January 1965- 

5. Bradley, R. G.  and Miller, B. D., "Lifting Surface Theory - 
Advances and Applications", AIAA 8th Aerospace Sciences Meeting, 
AIAA Paper No. 70-192, January 1970. 

6. Jenney, D. S., Olson. J. R.  and Landgrebe, A. J. , "A Reassessment 
of Rotor Hovering Performance Prediction Methods", AHS 23rd Annual 
Forum, Paper No.  100, Msy 1967. 

7. Sopher, R., "Three-Dimensional Potential Flow Past the Surface of 
a Rotor Blade", AHS 23th Annual Forum, Msy 1969. 

6.    Mandl, P., "Analytic Determination of the Axial Velocity through 
a Propeller Moving Perpendicular to its Axis", AGARD Conference 
Proceedings No.  22, September 1967. 

9.    Cummings, D.  E.  and Kervin, J. E., "Propeller Wake Deformation 
Due to Instability of a Trailing Vortex Sheet", Proceedings of Third 
CAL/AVLABS Symposium on Aerodynsmics of Rotary Wing and VTOL 
Aircraft, Vol.  I, June 1969- 

10. Sadler, S. G., "A Method for Predicting Helicopter Wake Geometry, 
Wake-Induced Flow and Wake Effects on Blade Airloads", AHS 27th 
Annual Forum, May 1971. 

11. Landgrebe, A. J. , "The Wake Geometry of a Hovering Helicopter Rotor 
and its Influence on Rotor Performance", AHS 28th Annual Forum, Paper 
No. 620, May 1972. 

12. Geasow, A.  and Myers, G. C, Aerodynamics of the Helicopter. 
Third Printing, Frederick Ungar Publishing Co., New York, 1967. 

13. Gray, R.  B., Series of Helicopter Courses given at Georgia Tech, 
1966-67. 

"-—-—***■*—"'—■'**—' .^MMi^   ■ 



™m^^**^mmmm "^■—T" '^mm^mim>- qixi.m  ,mjm   |L .mi^UfpH.1   ..  ..H. ».p., ■  ■  ■••    H     rmum 

n 
■ 

FIGURES 

■ MMMt—I 



PJPPliiPWi<P*iiiiP|ipappppPill!«PP>PPWWR^»W',^^W^—■.J"..p.^-—W"P...-l.«" njMMA ■■'■'W!«-"-» i.>  ■■«.■   '    UM..w-.u,IIJPWU.IL,    I UP(   III.I       . I. . I ..ij.ui.UJHiiiqni 

AXIS CONVENTION RELATING THE POTENTIAL AT 
A FIELD POINT INDUCED BY A 

DOUBLET SURFACE DISTRIBUTION 

75 

sfrj,') -HcÄs) 

ßaasi /" 7" 

SVAFHce 

-*y 

»     ^ -'    =• 

^|J 

FIGURE 1 

'fa^ -"- '     - -■ ■-—^•^■^"^ ^- _j._^. .. 



WH^^mm i   ■■■pii.   nmajmntMm.  .   v   niHniPP^PWipi .■! i       H riii.J.iujiii.^ii.inwa^Mu.iiiii.H.w..    Pum.^. .iw.i ,11 IA»^ ■!>■. .-■!■.WWILW.-^'W ur   .. WJUI«y.^^-TTtwg»--^.i7- -^ 

ROTOR SYSTEM AXIS CONVENTION 

76 

(X.Y.Z) 
(X'.Y'.Z') 

VC-*){Z 

V- ■ - ö» x /? 

INERTIAL FIXED REFERENCE FRAME 
BLADE FIXED REFERENCE FRAME 
BLADE ROTATION DIRECTION & RATE 
BLADE CLIMB VELOCITY 
FREE STREAM VELOCITY NORMAL TO 
PLANE OF ROTATION 
FREE STREAM VELOCITY PARALLEL TO 
PLANE OF ROTATION 

FIGURE 2 

■ 



■in .■■. imummmvm i 'fMm^iini.u'^tm.'r.u^^jm.^m. im,. *,**,, •***.•-  »^.-" '.""•  T^B^IWPWP—iBPpWI^lBW^ipWB   i-'   ijw." üHJ'-.Wi" 

ROTOR BLADE AXIS CONVENTION 

77 

*:*2 

Figure 3a: Lifting Attitude of Blade 

y' V/ 

-f i"7 

v xi 

*X'S 

Ail 

5< fiXIS 
' 

* 
 *. '~~ —< — — ■*■    "     ' ' —_. 

_    , |    ,  ..,_ 
^»•y 

* V7 

J   J f^mmm 

Figure 3b:     :ec«netric Pitch & Grid Network 

FIGURE 3 

ii in 11 — -" 



COMPUTER PROGKAM FLOW DIAGRAM 

78 

Rotor Geometry Specification 

Specialized Planform 
Option 
Constant Chord 
Constant Airfoil Section 
Linear Twist 

General Planforra 
Option 
Sharp Trailing Edge 

Free Stream Specifica- 
tion and 
Wake Calculation 
Parameters 

Blade Elemental 
Surface 

Calculations 

Blade 
Influence 

Calculations 

Wak« 
Influence 
Calculations 

T 

(Continued on next page) 

FIGURE h  (a) 

i— 



 ■im -""• mmmm i mm ,""1 11
' -—■-" '•.■| 

COMPUTER PROGRAM FLOW DIAGRAM 

79 

(Continued from previous page) 

I 

Set up of 
Simultaneous Set of 
Equations 

Solution nf S#>t. nf Rqii*t.<nnH 

Iterative 
Solution 

Method 

Exact 
Gaussian 

Elimination 
Method 

Transfer 
Solution 

File 

Velocity 
Pressure and 

Force 
Calculations 

FIGURE k  (b) 

am 



u    iim\\\iw^mmmm*m*mmmmmm**mi*^****^*' ^*^*mmm*mwmm 

to 

h 
D 
J 
Q. 

>- 

III 
z 
u 

LJ 

c 
L 

3 
Ul 

J 
D 
K 
h 
Z 
D 
Y 

Z u 

Q 

a z 

N 

FIGURE 5 

; MHOa iiMai i am 



p        I wnmm MWUfMIMIfmilWlMILWHIi-, JJilugwIjf M^t'^f^--.'^"^^^^r ■yiiilliliPIII LII^III J| ■■ i IIIIW>»Iwi,.ti w.iBfiiJ ■■ LV.IIIIILIM itLii^,.:ii»>!.jiimv»i8JimwftfWAI ■"■■-.^n'-*Wi'-"1--r^    ,    IP 111,^ 

81 

111 
> 

h 
zz 1           fc~ 

UJ [; 

^h 
LI 
a. - 
um 
D 
UÖ 

Q: 
U D 
C I 
D U 

Ul 
i 

K 
D. 

? 
as 

3 

<3 

- h 

Z 
n 

c 
h 

6 
K 
n 

^5 
o* 

o < 

< 

I L ^ 

o 
^-L X 

< 

B 
Z * 
Q 

2 
Z 
c z 

J I ̂  i^   ig L j i 
h'i- n- i-i- ff-    a*-    h-    e*- ■     r    K     s    er  sri   n   hi+ 

1N3DIJJ3D> 3dn553dd 

FIGURE 6 

utmum^*m 



wgmmmfff^mmmwmmm " " i|iJiiiiii".ii^Mtiiiii^m-^.'"wiinM|M n». uf\^m9mm').iß- tgm w^m '*i,i>*.*w*'.'*sTr-i,ryr'wy>» «JSBWWPT^- ■ 'T 

> 

h 
Z 
i 

Ü 

J. 

u 
D 
U 

Ul 
in 
u 

Z 
D 
h 

h 

I 

i 

04 

H 

<* 

O^ 

G    <Jj 

i Q?     I   #i 

o 

x J L 

g 

in 

D 
I 
U 

<a 
<i 

^u 

B 

I! 
z " 
c z 
a. 3 
n K 

X J—I 
hi- n- ffi- ff- g-- h-   r- H     r   h-    g- 

iN3l>ÜJ30> 3dn553yd 

FIGURE 7 

W    ffl    71    hl + 

82 

^-,-,-. 



■""■ ' 11 I ■■■■ ...■in ui j i. .1    miiii .mini. 1^1 jii^niiupin»     i,.   ii» .,..« ^i...  i .i L, I,:IM i  ..■*mui, iu ii«;wwipin^«l^ 

83 

^ 

ül 
> 

z 

L 
L 
U 
D 

U 

HI 
ül 

c 
[L 

Z 
D 
h 

h 

6 
VC 
D 
I 
U 

8 

5 
2 
3 

1 

0<- 

O     <3- 

O <J. 

A 

z 
D 

^ IT 
h 
in 

Ha 
a 
D 
i 

- n 

_ N 

0° I       I 0 i X 

< 

< 

s 
I- z 

z - 
t z 
Q. a 
■ K 

X J I 
hi-   ZM-   ffH   ff-   ff-   h-     r-   B    r      h'     ff     ff     ffl   n   hl+ 

iN3DIJJ3n> 3yn553Hd 

FIOURB 8 

■ ■ mmmmm 



■i wsmmmmm wrm*mm*mimm^mmrmmmmm*m. wmmm 

81. 

^ 

Ul 
> 

z 
LJ 
U 
L 
L 
U 
D 

y 

01 
Ul 
u 

ö. 

z 
g 

ui 

D 
I 

2 

s 

i 

: 

z 
-» n 

h 
i 

o« 

o« 

6 
E 

-IT D 
I 

o  < 

o 

o 

L £. L -L -L X 

- n 

z 
g 

'S 

z 
c z 
■ c 

J- J_ J dl ^L X J 
h-i- e-i- »i- ff-  ff-    h-    r- H   z"     K     ff  ff 

iN3i:>üJ3D:> 3yn553yd 

FIGURE 9 

ffl      71    h'l+ 

iliylUUMUkMMlr J 



 •""■ I niui^i i      i ,iiiiiiwiiiipji.ii«i.iiii.uuiiw»Miii,iiiiiii!iu, iniiiump^wnMMpnMPOTwmji mmimi«,.WMWI 

85 

0 
4 

• 4® " 

in 40 n 

> I 
z 4 

0 I 
>- D z 

h p 4 

0 

IE 
L 
in 
T 

U C 4 
J 
U 

D h 0 Si 
U 

4 

U  Q 

> 6 
0 P  D 

- 5 

U □ 
4 

0 

E  E 

a 
z z 

U I 4 y iii 
1-  H 
a o 

c u 0 
L  D. 

L 0     * 
6  6 

1    1 
N n 

ry 0   4 04 

I 04 
- 

-1 04 
- 

1 
1 

l       1     ** a* 
1   4 I 1111   —i _ 

er        BTI 
i 

JNIA/A Aii>a-i3A 3>ujän5 

1 FIGURE 10 

Jo 

• \ 
X 

ü Z 
D 
h 

in 

D 
I 

in 

A* 

B 

-:--—-■■- — - -  



\.   IPIIPIWI|JMI|IU1IIJI^H.   PII.WWII- ^..vvmrnw      ,    I I .|| ||l|p|||... |   ,   |      |, ^liL.Mi   -in -.r»,V.'.l'.-.t"P«.  i    .Ml.Lj.|..^Wi.j.,^|ff>UmM..MM|l<Mi  »...4L1IA I 

M 

h 
D 
J 
1 

> 

in 
z 
i 

•J 
I 
L 
\L 
3 
Ul 

J 
D 
\L 
t- 
Z 
D 

CT> 

00 

vO 

ir\ 

^ 

CM 

B 
y . 

i 
N 

N 
s 

G 
z 

PIOURE 11 

i.Mf r   »f. 



.ipiji»aiiiH.I»iWiilHii.iJWiWl.pminiBiiiW''i "' '■ ■ -iiu.nii.mi.ii^ipii.iii.ii.. ii i I.B.I'W-~, »—i..i.|i.u   •*,•• •* m.  n i. ■■-■ "■   i =-^- -—-     ,11,11. n uwin 

8T 

n 
H 
UJ7 

h 
(LUl 
K> 

6 
IK 

D 
nI 

G> 

0. 

I—J L 

C 
s 

Si 

J I I I I I L J I L J I I L^. 

z 
Q 

IE 
h 

K 
a 

^5 

a—j 
:-  n-  31- h'l-     z*i-     BTI- B*-    gr-     h- 

E3d3ddra cD 
Z"-      B r+ 

FIGURE 12 

IIIIM . -   . ,.„■,   ..■ ,^*>.., ^.^ 



«■H «PHHPPPWWMi | !■'u uumwmmm^mmi ■ ..»IWI^PJ.-.V, iimi.. ..-^   .1.«J.C^.II.  ...i    ,,.cii.   iHKnaiiwjpiaiiJi juii  .j     m      .■HW>WI»H,IJ»„-|   n ■■.! jmi . lyj ■■• HU»» 

88 

" B 

& 
5 

Z 

i 

n 

iiji 

D nI 
y 

D-.n -ill] 
G> 

Q. 

i_—i i i i i—i i—i—i—i—i—i—u 

s 

Z □ 
IE 
h 

a 
G 

r-5 
n 

-1 

J I L ä j i 
•I-      SM-     h'l-       n-     B*l- ff-       3-       h- 

Iü3m-M d> - CM3ddn3 d> 
r- 0 r* 

FIGURE 13 

mmmmilt.wmamMMm 
MAM ^—-^-^--I     



,illlp^lji,.w..i|j|WLituviii,.|itiitü<ii^wiJiui,iJ.i.i.l I... ipjjjj^piiwpi)!!!! hVWB»' [■'.■■■■■■^.■■■«.■aJWpiiw|iiBi..|i.i.i.iWil.Ul.u»-.lllllw»l..l..iWli-<1M-4»i<iJ»'l.lMJiW 

90 

M 
8 

z 
g 

s 

n 
Q: 

h 
O-in 

IQ: 
D ni 

-iin 

Q. 

l—J I I I I I—U-J—I—i—I—l—I—I—!•'  I.I—I—u 

^ 

-B 

z 
n 

-up 
c 
h 

6 
K 
D 

^5 

-i—j 
n~     n-    n- h'l-     C'l-       n-        B"-       B'-' h'- 

CHSMDI] d> - Cä3ddn3 d^ 
r- r+ 

PIOURE 15 

IMII   II mtmtl m   - - —     "-^ 



n^ wmmm*m*^m™mmi^*mmmm^*m ,""1 -""-' 

U 

91 

n 
[I 

Y 
Ö 

IK 
nI 
jj 

Q. 

M 
in 

ft 

."I 

Hfll 

0 

Z 
a 

lap 

h 

6 

I I I I I I I I I I I tl—J I J I I L 
at-    ffi-      a'l-    h*i-     n-    a*!-      a--      a-       w~ 

J L 
r- B 

J I 
Z+ 

FIGURE 16 

—   tgumgmtmtmmmtmm^^. ■■—■■■ ■—— ■-- —■ "-• ■ 



MW wmmm—m^z**?**' ' ' n «■■»■■■■^m    ■> ■■ ■ <■ ■-'  ■■■   ■ ■ — ~ Jl^l    IJ^HIMIIII 

OP 

n 
i 

. /— 

^.^ i   i 

u.l 
h 

I ' I 
1       ' 

I 111 

hl 
ri 

o N 
El 

Z 
a 
St a 

Z 
c z 
Q.   3 
Ul   E 

u 

■^ ,1 

.L1 

it 

1 Ln 
u> ..r. 

'v 
i     l     I 

grz~    ffi- B'l- 
i      l     i   • 1      I     i i --I l     i 

i-;;-    s'i-      ffi-      ff-      9'- n- 

cyjMuij d.^ - ca3ddn3 dj 

FIGURE   17 

-i 
r r-:+ 

üi — ■■ —^   MUWMMk II  ^.i    .■    .     -..    ■-..:1..... —   ...^■:J-....J.  . 



mm •'"•'•••' ■ '■—w^PBimiwiBpw^wwpw^iiPHiipi ""   ■' .  '■"•M     ' '  ".- —-»■■,.. „lmvWm. 

')! 

/— 

LI 
Ld- 

h- 
[LJ1 
u 

Ö 
IE 

G 
n T 

a 

z 
a 

i-  z 

h 
u c 

s 

-tm 

-40 

1   Z □ 

if 

- ü 

h 

'I* 

L- L -_J I I L "-l I-. X-_U_.I 1 I 1 I L 
ffE-        ETl-      3*1-      h'l-      EM-        Ifl-        B*- 9- 

a i—u..i -X—i. 

cy3MDi3 d> - nyaddm d> 

FIGURE 18 

E+ 

IMM M MMMMMHki ^^MMM 
— ■■—■■         -' —■— ■ '—"' 



■    '^TT^^fS^^'WI[. VJ I •■ "" mmmimmmn3immi.>.in»iwwiiim\ m.«.!..^!   '•"»,.!?.BI 

nh 

n 

jh 
ud 

h 

Ö 
I IT 

n T 

ui 
Q. 

I * 

u> 

i -ILJJ i -a 

f s 
la 

•-tin 

l 

f 
i 

4 

1^ 
1 2 

Q 
- mr I -r 

It 
h 
IJ1 

4   ft 
a n 

■4n 

._l_..i.._-i 1—L~ 
hM- ZM-      BTl- 

J I 1 1 1 1 L ■1,1    1 

CH3MD-13  d>  -  CfcOddm  d^ 
r- 0 z+ 

FIGURE 19 

^^^^  i ■ --- i   — 



i mmtmiummim m m  m ■■■ i n9^flPipPippnp|«MV^^WmnB*.. .-    .,    -FT--—T-  ^ «..p.a.vwTiiipup,!!!^!.     i i   p   j   «.B^-^-PP i ^^..^ ■(-»...-■--^ «-if--.-tr-P"r^,»!»w..M«i jut PI wiM J-■■"'•""■    "» -J'-r I*"«"-. •>PI>**M<{U| 

lO 

n 
s 

u il. 
h 

[LU1 
U 

IK 
D 

nI 

U 
Q. 

U 
TTE-      ffl- 

Z 
a 
t 
10 

I 

Q 
Z 

"Dl 

-4 8} 

1 

Z 

i   6 

4  U 

•4n 
■ 

i 

4« 

.1      L    X l_X--U.-i—i—L_ I      i i—J      I    a.-L-X-i- 
3-i-    KI-      si-    n-      ff-       a-      h-      z-       z 

Lti3mi2 d>  - CfeOddm  d^ 
2*+ 

FIGURE 20 

mmm      ■  ^mmmmmM 



11 "■ I ii)iigi»iwii^ww!rpffiimi.»iiimiji|wnBww^ ■.        "'     '    nwinimiiiin »i.i>iiiiiiiiiiiia»ini,,ii»iLLi i ■IUIIIHIHIHI.HIWIII. ii JW-WMUMWI . - IMU ii tumi^^^j 

q6 

n 

% 

6 
ry 

n T 

X 

u> 

I—1 "x- 
ffE-    a-i- 

^B 
Z 
Q 

I! 

s 

4B 

^ 

Z 

-   Cx 

- 
•I 

Hn 

-4 
! 

■4« 

... x. x i-*-i—L i i—a 
a-i-      h-i-    e-i-      0-i- 

J—i i—i L 
ff-        3- h- 

FIGURE 21 

-L...  I U J I 

«MliMM.MMM -   - -        iiiiBiifiMmi 



Mi.i. i   III«^I iiuMii.ii.iiiii.mi-H.1"' ' ^pi—iqriy^fW-1.^1"^ wjpuii^wpim.Bjfiiiigi mu uy   nmt". ■., i mmHmm' '"''*''' WWW 11 ■' 

97 

n 

n — 

h 

I LI □ ni 

z n 
P 
i 
h 
il 

Z 
I a. 

K 
B 

Q 
Z 

z 
i 

1 
in 

-to 

1^ 

'■'   z 
a 

-»or 

''a 
■^ ü 

. a 

i 

L- 
BZ- ffi-   3-i-   h'i-    z"i-     n- a--     a- 

CMaHDi] cO - cy3cidn3 d> 

FIGURE 22 

■ ■— - -   - ^•^t^»»*—^—*-J—— ■-  - ■        ■  niM^MHüilii'iti mi iiimt 



**mmmmmmmmmm**>'>'m'vfi>n' MI.U...MM..I»WUW. • .■II .1IJIUI,, Ul !kjiwl.mw..i..|». m  p. "■.  . (.p ... I....W.,M,   .w-T^-w^mm^,- 

98 

a 
CO 

u 

ro 

I 

0\ h- o\ Q «n lAoo ON 

iriC"iHO\t"-»rimH 

'Ni ös/ai 'aouauajiia aunssaud 

FIGURE 23 

K 

IE o I 
to 

o 
i 

MBMMMMi^MMHH — '-■—  -  ■    ■ 



m^utv.^wwT^a^fmt^imsm^if^fmmnfmp u '■"■! ■ i*'Äi-'ii*iniiiipji4i.i,i'Li.u   ■"■^■■'*-Mt«-ii"'^"i. ip'   > . *>— M»I«JW ■Ai«jii,i_iiiMi*«'",. «..■"■PWJI JMvv^aw^,'^»-'w^-r.^i'"www^ 

o 

<  - 
W Ei lA 
SB ON 
M  Q  <VJ 

2 O B 

Q 10 Ö 

-a w 

||e 

CO 
w 

e 

Oi/NOirvirvooirv 
vp (\j ov cu C\J awo fy 

on^DiA-jpnpj^ 

90 

_     (Xl 

_   "t» 

n 

•   a. 

f\j 

o 

■MI  ?1S/m  'aONSTHHiild ^HnSGHHd 

FIÜUHE 2U 

( 

nn^^M^^^m      



^^m wrnn^m**^*** mniu'ii i    Mm  iiHI !■   mu lij.-.n."..« 11 J I- i. JI.....P. ..   ^-~,~~.—™ 

100 

I 

s o 
S-. 

o 
M 

w 
to 

«n 
0\ 
eu 

s 5 w 
O fe CO 

o as 
o a« 

a 

I 

Os 

-    CO 

•   u 

% 

_   «^ 
5 

^ S 

co 

- -* 

«n 

_   CM 

-   H 

-T— T— 

CM 

1 

•si/ai •aoHM IVWHOI 

FIGURE 25 

MM ■■"-""  ' -i   



'»■ju  .' "PH   "    ■'  ■' ■"*" 'LIIW'.R  "I ^-^■■(  ( .■..ii-.^mi. ■WI-III.II i.ii I.,.IJ., ■w^  ■■ ■»-»<. 1'   ■ Jf * uwi , ■ i n j Bint ^■.>y 

101 

h 
a 
J 
a. 
z 
a 
h 

u 
c 

> 
h 
C" 
a 
J 
y 
> 

y 
K> 
I 
L 
K 
H 
in 

IE 
a 
h 
a 
IT 

X 
y 
a. 
Q. 

10 

w 

z 
a 
h 
a: 
h 
ui J 

z 
a, 
in 

n 

N 

J 

Cl 

a 

z 
D 
h 
II 
h 
Ul 01 

z 
I 
Q. 
Ul 

01 

FIGURE 26 

mmmmmmmmmm^mt llll        I    ' mil MHM^^^__ 



JHIPWli .«IUII1J.I,«  11 mi.iwui uif nmnan 

r 
102 

h 
D 
J 
(L 

Z 
a 
h 
u 
u 
ir 

)- 
h 
u 
D 
J 
u 
> 

Li 
V 
H 
L 
\L 
3 
U1 

H 
a 
h 
a 

Q: 
u 
z 
a 
J 

m 

w 

z 
a 

I 
h 
in 
z 
a: 
a. 
m 

n 

nix 

J 

n 

H 

z 
□ 
h 
a: 
in 
z 
IE 
Q. 
in 

DT 

ar- 

■; 

FIGURE 27 

—M^HM   ^     n. —i        i      i^mmä^^mim ......        .^ . 



[liiu^ilwi(Www|ipjip.lwui),Bi..i,         

103 

TABLES 

^^ilMM1MiaiMi^ llllllMlll 



101» 
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HOTOH INPUT SUMMARY 
FOR 

CASK STUDY 1 

HO'L'OR DUSCH IPI'IOri 

NACA  001:'  AIRFOIL SECTION 
HOTOK  RADiUi; 
HO'i'OH UUii ]{ADiu:; 
TKUK  SPAW   LKNGTI1 
CONSTANT CHORD LENGTH 
SPAl^  AXIo CHüHD STATION 
ROOT CHORD GEQIETHIC PITCH 
LINEAR TWIST ABOUT SPAN AXIS 
.UMBJH OF  i^OTO.i  LIADES 
.Ii'JITIIEH TIP  K: FAIRED 

I.fi 

0.9 
0.1 
'). i' 

10.0° 
0.0° 

FREE STREAM CONDITIONS 

HOVER MODE 
ASSUMED CONSTANT WAlvE DOWNWASH 

VTijH =  0 
W/WR =0.05 

ELEMENTAL  iiLADi:  SURFACE  OFSCRlP'i'ION 

NUMBEl? OF  SPAN  SEGMENTS 
NUMBER OF CHOKD SEGMl'NTS 

a) UPPER SURl^ACE ONLY 
b) LOWEH SURFACE ONLY 

ELEMENTAL AREAS AHi^ SYilMETHICALLY 
DESCRIBED WTTil Hl'/'.PI'CT TO CHORD PLANE 

TOTAL tJUHBER OF  UASIC  liLADE ELEMENTS 

ELEMENTAL WAKE SURFACE DESCRIPTION 

1.0 
vo 
?0 

l6o 

PRESCRIBED CLASSIC WAKE MODEL 
NUMBER OF SPAN SEGMENTS 
NUMBER OF STREAMWISE SEGMENTS 
WAKE ELEMENT ANGULAR INCREMENT 

a) NEAR BLADE REGION 
b) FOR  BLADE REGION   (> 80° FROM BLADE) 

NUMBER OF WAKE TURNS COMPLETED 

TOTAL NUMBER OF BASIC WAiCE ELEMENTS 

U 
85 

20° 
30° 
8a 

iko 

} 

TABLE  1 
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COMPUTE!'. KXECUTION TIME SUMMARY 
FOH 

CA^E STUDY 1 

EXKCUTAÜLE SECTION 

I. INFLUENCE CALCULATIONS PHOGKAM 

A. BLADE INFLUENCE CALCULATIONS 
(TOTAL NUMBER = 25,600) 

B. WAKt; INFLUENCE CALCULATIONS 
(TOTAL NUMBER = S'i,UOO) 

C. OTHER ROUTINES 

II. CREATE SOLUTION FILE PROGRAM 

III. SOLVE BY ELIMINATION PROGRAM 
(EXACT SOLUTION METHOD) 

IV. TRANSFER SOLUTION FILE PROGRAM 

V. VELOCITY CALCULATION PROGRAM 

TIME 
(SECONDS) 

07 

TOTAL ABOVE 

228 

6 

11 

lOU 

1 

16 

'»57 

TABLE 

  ^^^^ 
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!^OTOH INPUV SUMMARY 
FOR 

CAGE STUDY 2 

ROTOR DESCHIPi'IOH 

ior, 

IJACA  0015 AIRFOIL SECTION 
ROTOR  RADIUS 
ROTOR   HUB RADIUS 
TRUE  SPAN  LENGTH 
CONSTANT CHORD LENGTH 
SPAN  AX IG CHORD STATION 
ROOT  CHORD GEOMETRIC PITCH 
LINEAR TWIST ABOUT SPAN AXIS 
fllJMBKH OF ROTOR  BLADES 
NEITHER TIP  IS FAIRED 

1.0 
0.1625 
0.8375 
0.1 
0.270^ 
a.oo 
0.0 

2 

FREE STREAM CONDITIONS 

liuVER MODE 
RESUMED CONSTANT WAKE DOWNWASH 

VT/^R = 0 

ELEMENTAL  ElADE SURFACE DESCRIPTION 

NUMBER OF SPAN SEGMENTS 
NUMBER OF CHORD SEGMENTS 

a) UPPER SURFACE ONLY 
b) LOWER SURFACE ONLY 

ELEMENTAL AREAS ARE SYMMETh.r'".Mv 

DESCRIBED WITH RESPECT TO CHORD PLANE 

TOTAL NUMBER OF BASIC   BLADE ELEMENTS 

ELEMENTAL  WAKE  SURFACE UESCRIPi'ION 

15 
llO 
20 
20 

6no 

PRESCRIBED CLASSIC WAKE MODEL 
NUMBER OF SPAN SEGMENTS 
NUMBER OF STREAMWISE SEGMENTS 
WAKE ELEMENT ANGULAR  INCREMENT 

a) NEAR BLADE REGION 
b) FAR BLADE REGION (> 90° FROM BLADE) 

NUMBER OF WAKE TURNS COMPLETED 

TOTAL NUMBER OF BASIC WAKE ELEMENTS 

15 
77 

20° 
350 

7.3 

1155 

TABLE 3 

mmm. .•uaMBBI 
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COMPUTER EXECUTION TIME  SUMMARY 
FOR 

CASE STUDY 2 

EXECUTABLE SECTION 

I. INFLUENCE CALCULATIONS PROGRAM 

A.     BLADE  INFLUENCE CALCULATIONS 
(TOTAL NUMBER = 720,000) 

ii.     WAKE INFLUENCE CALCULATIONS 
(TOTAL NUMBER = 1,386,000) 

C.     OTHER ROUTINES 

II. CREATE  SOLUTION FILE PROGRAM 

III. SOLVE  BY  ITERATION PROGRAM 
(TOTAL NUMBER OF ITERATIONS =  281) 

IV. TRANSFER  SOLUTION FILE PROGRAM 

V. VELOCITY  CALCULATION PROGRAM 

TOTAL ABOVE 

TIME 
(SECONDS) 

2328 

5»»75 

20 

137 

5970 

130 

1^33'* 

TABLE  U 
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APPKIIDIX A 

GUMIIARY OF THE TRAMCFORMATION  EQUATION: 

Preceding page blank 
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We are concerned here with presenting in summary form the 

transformation equations which relate aninertial reference fram? 

(   A,   y   /   / ) to a body fixed reference frame  (   ,x '.   y'.   / ',   ' 

in which the body is  translating with a constant velocity      V; 

given by 

vri (A.l) 

and rotating about the 

given by 

axis  at a constant  rotational rate 

/■Ü UJd i (A.2) 

We assume that at time 1 - / '-' <?      the axis systems were coincident, 

It follows then that the coordinates of a point  '   in the inertial 

frame are related to the body fixed frame as follows: 

(A.3) 

(A.M 

(A.5) 

where the inverse is given by 

x T    x'  a*t ^j *' 

y 

y'^t* t^/' 

X '   siu*.  Wj ^       y-     y 'tzrtt  ^ * 

2 -      Z' ,   iyr-£   . 

(A.6) 

(A.7) 

(A.8) 

mm^^imm »» — - - I 
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From these relations it follows then that 

111 

yiuti MSj y 
1 

''<*•/■   (A,9) 

^U*t A 'j/j/'        /     &*. *$ S &•    (A.10) 

/. 
(A.11) 

Furthermore, derivations with respect to     /*     are given by 

^    -      -/^^Ji't    i/jJ'V'SJ     '   J> -   (A.12) 

where 

V7 (A.I:) 

x xx      /   y y     '   ' ' (A.D.) 

It follows from the above that 

\7 (A.15) 

and similarly 

v* --   V (A.16) 

  ■ ■   - - ^ ÜM* -_*- '-   --            I IIJ 
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The substantial derivations are related as follows 

(A.IT) 

V   ■-    y< * '   '   yy y      +    Vj 7 (A.18) 

v' -   K *' '   vyv'   '    **'*   •      (A'19) 

where 

The velocities are related as follows 

\/     :        Vj.       *      **    *    * J       Y (A.20) 

Furthermore, any sealer function    /V     evaluated at some point 

/> / A,  V,  t,   * )      must have the same value when evaluated at point 

/> ■ us in;/, /t'Sx' y    t    S J        if point /'  is related to point 

the set of transformation equations given by equations (A.3), (A.l*) 

and (A.5). That is 

= sy/y;y;s;/'J t 

(A.21) 
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Uaing relation  (A.12) we may note that for some  scalar function 

Z7    which is independent of     S     that the above relation reduces 

to 

AYK K ' S /y/y:/'Jr U.22) 

mmt^^mmmll^M ——— -• - - ■ '     --       —^ 
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APPENDIX B 

RELATIONS  BETWEEN DOUBLETS AND VORTICITY AND EXTENSION 
OF HEIWHOLTZ CONDITION 
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We will discuss in this section the relations between doublets 

and vorticity.    Having established the relationships it is then an 

easy matter to extend Helmholtz's theory which concerns vorticity to 

a corollary involving doublets in order to determine the strengths 

of the wake doublet surface distributions. 

Let us assume that we have a surface doublet distribution whose 

potential at some point    Z3    is given by    sf'/^J    and whose strength 

is given by    '■4fSi//}s     •    '^ie doublet axis is assumed to be directed 

everywhere along the positive local surface normal direction.    We shall 

assume further that   -/"     and -J       axe two orthogonal axes lying on the 

surface with the     X   axis directed along the unit normal as shown in 

Figure B.l.     If doublets and vorticity are related we should be able 

to derive an expression relating the local doublet strength    .yy /> ^J 

to the vorticity components     Ö'S/,/})       and      •$SS, ^ J      whoae 

assumed directions are as shown in Figure B.l.     In order to derive this 

relationship we shall assume that U, V and W are the velocities along 

the    //  /'       and   X"      axis respectively.     It can be shown now that 

)'S',1>J =   iyS/,s)ty'J   -   i/Sfs^T'J (B.l) 

where X*   and /"  represent some small distance above and below the 

vortex location ^// /h   fij . 

The velocity tS      ,  however, is related to the derivatives 

of the doublet potential with respect to / such that we may write, 

.^aaaaaia -*MMMi MilMi  ■ IMI..M«,,,,.', ....^--.■^ .......  ■   ^.,-   .. IM l^ 
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SURFACE AXIC CONVENTION 

FIGURE  B.l 
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yS',0) - &'?<",'% r'J 
(B.2) 

If we now rewrite the derivative  in terms of its definition as a limiting 

process we have 

sfS/'A', % rJ - tfS^ ■% S y 

(B.3) 

Rearranging the terms above we may further write ^  as, 

^/> jj  -    J* r \'f
//'*/' tir^" <f//'*f^'/'J 

A/ J 
(B.10 

It can be shown that the value of the doublet potential at a point 

Just above or below the doublet itself approaches one half the negative 

or positive value of the lora i doublet strength itself.    Thus we find 

that 

V 
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/ 
"/ SS'A/,lJ   ' ^// "s.J 

AS 

(B.! 

But the limit term is Just the definition of the derivative of the 

doublet strength with respect to /    ,  therefore the relationship 

between the /?*   vorticity and doublet strength at a point is given by 

fJlJ  *   ' }/VylJ . (B.ro 

In a similar manner or by using the following vortex compatability 

relation 

(H.T) 

it follows that 

S/y, iJ - ' & " "-iJ (13.8) 

Now about a wing surface it can be shown that at a particular span 

station /*/       the total circulation  f/jJ     is given by the line 

integral of the }'   vorticity from the point on the trailing edge 

lower surface   /^y     j      to the point on the trailing edge upper 

surface  A,      that is referring to Figure B.2, "^     / 

IMMIMIMMilMMMMMi ■     «MMBMte^ ^MMM -■     ■ • —  .   -.      . 
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in 

LINE  INTEGRAL PATH FOR EVALUATION 
OF TILE CIRCULATION 

FIGURE  B.2 
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/: 

f/^J   --   ft       f^oJsfr (13.9) 

^ 

Using relation B.f5 above it follows then that the circulation about a 

particular space station is given in terms of doublet strength by, 

(B.10) 

In the wake region the application of Helmholtz's theorem on the 

conservation of vorticity shows that 

J •flu a 3w 

^   '-   T? (1)-11) 

where now /     and ^  are orthogonal ajcej lying on the wake surface 

with the S     axis directed along a local streamline and the   "; 

axis being directed generally from root to tip across the wake.  In 

order for a zero pressure discontinuity to exist across the wake in 

steady flows it can be shown that ?*/      must be zero. Thus it follows 

using relation (B.6), where we now define  --*/*/   as the local wake 

surface doi  t strength whose axis is along the y     axis, that 

^ - A. (5.12) 

ÜÜJMMiliiilüMimfci iiiiiiimriiii uniiiiailMMiiMitMMMiiii■■■--■'- ....t.tm^^^m^^^^^ 
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everywhere in the wake surface. Since Kutta's hypothesis requires 

the fluid to leave the trailing edge smoothly and because the above 

relation implies that  -^A/   is a constant alonp, a streamline we 

find following such a streamline that 

^S'rfJ    -     ^uSS^j^), (13.13) 

Thus we find that along a wake streamline the value of the wake doublet 

strength is a constant and is given by its value at the trailing edge, 

that is 

along a wake streamline. 

(b.iM 

Note at this point that by properly integrating about the wake region 

one finds (as one should) that the circulation in the wake   /£, 

about some constant /h to be 

/l^J   -      fS'^^J   '   t'/t'tjlj    (B.15) 

which is Just the negative of the bound circulation given by equation 

(B.10). 
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APPENDIX C 

ANALYTIC EXPRESSIONS FOR   /f/S>J    AND       V/fS/U 

L 
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We will be concerned in this section with deriving an analytic 

algebraic expression for the doublet potential ^  and its derivative 

V </        at som* field point  Z7 given some arbitrary #     sided 

plamar doublet distribution of constant strength whose doublet axis is 

everywhere normal to the surface.  Before we begin this derivation 

let us first define the doublet so as to make clear the axis convention 

used. 

In a physical sense a doublet is derived as the sura of a source 

and a sink.  Suppose we have a point source of strength p      and 

a point sink of strength - p      located about the origin of an /V, ^ yj 

rectangular coordinate system as shown in Figure C.l. It follows from 

this that the potential at some field point  Z5 is given by 

(C.l) 

where the position vectors     ^l    and    /ij    are as shown in the figure. 

Let us now define the vector distance from the sink to the source as 

^       where 

Ji - ^s*   =   & - K (c-2) 

where k     is the unit vector along the line joining the sink to the 

source. It follows from this that the doublet potential at the field 

point  Z3 is obtained by taking the limit of the source plus sink 

potential at the point  Z* as  they each approach the origin assuming 

the product of the strength and vector distance V remain constant 

.._-. IM—       -,,., „.^.».■.,.„..  ■-—-iMiiiAi i     ^ggim 
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and  given by -*/      where 

.,//    ^ M '       </ -/ M        , (C.3) 

Performing; thf limiting process we find that the potential at a 

field point /'    resultinp: from a doublet situated at the origin 

in Figure C.l is given by 

jy/>j -   -y^   ^^ (cJ0 

where X      is the direction of the doublet axis directed along the 

positive ?     axis. Extending this result to a surface doublet 

distribution whose axis is everywhere directed normal to the local sur- 

face we find that the potential at a point  /^  becomes 

where /tj>j  is the vector distance from a point on the local doublet 

surface to the field point /^ and -^  is now the doublet strength 

per unit area. 

Given this expression for the potential what we now wish to do is 

to integrate this expression for an arbitrary >7  sided planar doublet 

surface distribution of constant strength. More specifically we may 

state the problem as follows: 

M'"'^""l">t""""'^^^""""'''      ^M^-„...„.. -,... ||1||        ■M—i—IIXL^ 
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Given:    A planar    /?       sided figure as shown in Fipure C.2  (for 

ft      = U) whose surface lies within the      S S,  -J J 

plane and whose positive unit normal       K     is   along th^ 

positive     Y     axis and, given this plane to be a surface 

doublet distribution plane of constant  strength      -^ 

whose axis Is everywhere directed along the unit normal 

then 

Determine:    A.    The potential    </'    at an arbitrary point      ^ 

whose coordinates are     /,*, y, £ J 

B.    The vector gradient of     <f      at some arbitrary 

point     /^ v, Z^/,that is,determine      VJ^S^J 

where 

(c.r>) 

1P6 

Note, in the analysis to follow the point  '   coordinates are 

given in terms of an ft, V,  ij     reference system which is coincident 

with the fff't. TJ     system (refer to Fig\are C.2) in order to distinguish 

the coordinates of the fixed point /*     from the surface integration 

variables. 

Now from Figure C.2 we may identify the following relationships: 

if  -- f (CT) 

//^A" IS*-//   / Sy-jJ* *  StJ'J^   (c.8) 

^45  r ^fStSy) (c.9) 

  - - in      mf^m^ in r-- ■■  ..-----■ 
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Thus the expression for the doublet potential reduces to 

(CIO) 

Identifying the integral above as   JSS3/    we may write 

JSW --   -^   JS/>J (c.n) 

V<f/S>J   -   -J?   VJS'J    . (C.12) 

The problem now is the evaluation of the integral     ,7 fj    .    Given 

the evaluation of     SS/U    then the gradient may be obtained by 

straightforward differentiation.    Note that the gradient may be taken 

inside the integral and then the resulting integrand may be integrated. 

We choose not to use this procedure as singularities of higher order 

than what already exist will result.    Although these singularities may 

be evaluated in terms of the Cauchy principal values it does unnecessarily 

complicate the evaluation. 

Let us consider now the evaluation of the integral given by 

(C.13) 

In Figure C.3a we have sketched the surface S     for an ^< = 1+ 

sided figure and have indexed the corner points in a manner such that 

|        - —-n     -i-,^.--.-  Minlinnliiixnn .^j^MMl— ,1,,^. I, \*          ■-  . ....^u..-..u.. 
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irjDEXING CONVENTION  FOR THE 
PLANAR N=lt ÜIDED SURFACE 

3 
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/ 

FIGURE C.3a 
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Z 

FIGURE C.3b 
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when viewing the surface along the negative surface normal direction 

the corner points are Indexed consecutively   £•'?/*■ in a 

clockwise direction. Figure C.3b shows that the surface   S may 

be subdivided into ft      regions such that the integral may be evaluated 

as the sum of H      Integrals each integrated about a specific rep;ion, 

.Sl//fi .    We may define these regions more precisely if we first 

let the corner point coordinates be füven by fs'l-K'ij *     and define 

J"     as the indexed corner point located Immediately clockwise (with 

respect to the negative surface normal direction) to the J     indexed 

corner point.  Now the equation of the straight line Joining corners / 

and J   is given by  ^ v - /h4jS/)   where 

'?// " ^V S    *    ^s (cm) 

where 

/ lies between  S      and  /l 

»*<,   '-    Slj -yttJ/S/, - SJ (C.15) 

''j  = '-><<, - 'h'<J/S<,  tJ .       (c-l6) 

Note at this point that if the slope   ^»/^ .       of the straight line 

is infinite a potential problem exists. However, in this case 

/,.   - /-   and the surface area of the region Si, j       i-3 zero. Thus 

the integral contribution of this region is also zero. 
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It follows now that the integral     fSSy     may be written as 

r//}J ^   f,/S' /Sjl) ^3 ^S      (c.17) 

where 

^^ ''   /tx-sr'sy-u* st'J* (c-l8) 

The integration with respect to     /« may however be rewritten as 

follows 

(C.19) 

Thus we may write 

x     ,<r„ ^^\^jjc-rj^M^, >      -"      %J -"^'^""S 

(C.20) 

1^ 
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The second summation term is zero, however, since after integrating 

with respect to ^  the integration with respect to /"    effectively 

represents a line integral evaluation about a closed path. Thus the 

integration reduces to 

y//>j  ■--   s    7, /fJ (c.2i) 

where we have defined 

(C.22) 

The integration with respect to  ^  may be carried out using 

Reference 15 such that the resulting expression for ^S/y    become: 

(C.23) 

The evaluation of this remaining integral may be carried out using 

Reference 16 after substituting for    ^{ ^      using relation  (C.lM. 

The resulting analytical algebraic relation for     _Z"/'/^/  is given by 

 ■ -   - .ülMMMriMMMiMMMliM 
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S,   S/V -    /a«      y r^   ,   >.      ^    .    ,<    .    -,.7 ^ V 
/   7K 

y      /sx/.J'sty-'fj'/Z'J 

/S//.J* ssy-^J^^'J"' 

(C.210 

Summarizing what we have done to this point, we can write tue 

analytic algebraic expression for the doublet surface potential at 

some field point      P      as 

where 
ft- 

Ss/y * ^r J, s/>j (c.26) 
t-j 

j    *e,s K    - ^ jssj * y*~-'H   "2    / y / 

s r J  i*-*, *(, ~ 4/ 

Ax (C.27) 

•*Vv   = ^ - ^ J/S/j -JJ (C.28; 

(C.29) 

^   -"   rsz-tJ*- * sy">,)*' t'J*    (c-31) 

^     ^   -  ^       P^x^     ^V/y =^ (C.32) 

m—m—mmmm~— -———-——- JM^^g|^^^^i^l^^^|^^^   |     | ,_      __ ,_   
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The cartesian gradient vector of the potential can now be 

determined by simply differentiating equation (C.P5). The result may 

be written as 

M-     ,     JJ'y     ,    U ? (C   r V/f^j = yz *   ' jy y   ' JJ 

where for     5      a dummy variable of differentiation we find 

where 

/ ■ r 

(c.36) 

^^   JT    >      ^'.'13     >    ^   '   <>3        (C  37) 

//        /.   ■-   /T ,7>>-r>/      J^.S/i/^/? (C.38) 
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The remaining parameters are given by equation (C.28) through  (C.31). 

The expression for      V^^J    is valid for all    /-W, K ?J 

locations except for a point     ^       lying on the edge of the surface 

where it is undefined.    For a point     /*     in the plane of the surface 

we find that   j^f        and     <T^        are zero. 

The expression for    sfS/i)       is valid for all      /V^ K sj 

locations away from the doublet plane.    For the point    /^     lying in 

the plane of the doublet distribution we find that 

A.    For     /P    within the doublet surface 

~     1 
t J 

s -><? 

B.    For    /*   outside the doublet purface 

(C.39) 

sf/K/^J   -   & (c.Uo) 

C.    For     z0     on the edge of the doublet surface 

^/V, y^J     = UNDEFINED. (C.i»l) 

We should note at this point that in the computer program all 

velocities and lengths are nondimensionalized based on the rotor tip 

speed ^it'/^J    and the rotor radius //v  respectively, flince 

'<r/^5    actually represents the velocity  i's      along the  5" 

direction at point Z3      the form of the preceding equations as 

■ —11 
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propranmed is aa follows where the tilda S^J      represents the 

norullmenaional peirameter: 

Vsrf>}  =    f SsS'J 

where 

K 

^ 

(C.U2) 

(C.U3) 

-^     :    * WTTTZOT* (C.UU) 

The actual expression for  ^J   is the same as for  v^   but now 

all lengths are to be first nondimensionalized by the radius Ä     , 

for example instead of 2-       read  ?        where   2        *' ^ 

This completes the discussion of the analytic expressions for /f"//JJ 

and V<f //>)  . 

   -       
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APPENDIX D 

DETAILED DISCUSSION OF THE COMPUTER PROGRAM 

-  ■      -   ..^i^K.^i^ .*.■>..*-* , 
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D.l INTRODUCTION 

In the following discussions we will consider the internal 

structure of the program at the level of the subroutines in termr, of 

their function. Following this we will discuss the program operation 

and where necessary a specific flow diagram will be presented. The 

above discussion and flow diagram will then serve as an aid in describing 

the major program options and the input and output procedures. 

In Section U.O we noted that the program is divided into seven 

major programs each of which is concerned with a particular aspect of 

the overall problem.  In the discussions to follow we will consider 

these programs one at a time and discuss the programs as though they 

were independent of each other. It will be assumed here that the 

reader is familiar with the symbols and coordinate reference r.yiitemn 

described earlier in r.ectlons (?) and (3). 
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D.P MAIN-TMFLUENCE CALCULATIONf. PROGRAM 

In this section we will discuss the program MAIN - TNFI.UKNCK 

CALCULATIONS.  It is the function of this program to define the 

necessary geometry and to perform the calculations necessary to define 

the blade and wake influence coefficients.  We shall present first a 

summary discussion of each subroutine found in this program. 

 -   ---i I IM nil—Tlli—MH ~" ■- -' 
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D.3.1    Summary Discussion of the Subroutines 

The subroutines used  in the MAIN - TNFLUKNCK CALCULATIorr prorram 

are  nummarized here in  the general order in which they are calleri 

upon b;  the main program. 

Subroutine irEAD(K) 

The function of this subroutine is to simply print a heading page 

indicating the main program title.    This page is used as a cover page 

for the results printed out later. 

Subroutine INI 

The function of this subroutine is to accept the card-input 

necessary to define the rotor blade for the specialized planfonn 

option described in section  3.?.     The routine also checks certain  input 

before allowing the program to continue to the next step.    If an input 

error is found the program will abort after printing out the data as 

inputted and additional parameters determined on the hasir. of input 

supplied which would have been passed on to other routines. 

Subroutine IN2 

The function of this  subroutine is to accept the card input 

necessary to define the rotor blade for the general planform option 

described in  section  3.2.     It also defines  certain parameters based on 

the Input supplied and passes these on to other routines. 

iilMiliillri i jgmn^ipi ■   ■   ■■ -   ■111    !     ■-    -■    ■      ■   —■       ■"   —    -■-"- 
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Subroutine IN3 

The function of this subroutine la to accept the card Input 

necessary to define the rotor free stream conditions, the number of 

rotor blades and parameters necessary to define the method in which 

the woke influence calculations are to be performed. 

Subroutine mk 

This is an auxiliary subroutine which is not used in the rotor 

problem.  It is an input subroutine corapatable with IN3 and is used 

to input card data comparable to IN3 when the program is selected to 

do a lifting surface theory analysis of a planar wing rather than of a 

rotor system. 

Subroutine OUTl 

The function of this subroutine is to print the input data of 

Kll. This output serves as a permanent record of the specialized 

planform geometry specified for the rotor system. 

Subroutine OUTP 

The function of this subroutine is to print the input data of 

IN?. This output serves as a permanent record of the general nlanform 

geometry specified for the rotor system. 

Subroutine 0UT3 

The function of this subroutine is to print the input data of I'H. 

This output serves as a permanent record of the specified free stream 

condition and wake calculation mode selected. 

'-- ■ mmmtm *mumm 
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Subroutine OUTU 

The function of this  subroutine is to print the  input data of 

INU.    The output is comparable to 0UT3 except that the output is for 

the planar wing rather than the rotor system. 

Subroutine OirT\ 

The function of this subroutine is to print out a coordinate 

description of the airfoil chosen in the specialized planform option. 

This may be used to check the accuracy with which the airfoil is 

described in the program.     This subroutine supports ROTORG and calls 

on AFOIL. 

Subroutine AFOIL  (X,ZU,ZL,DZUDX,DZLDX,BU,BL) 

The function of this subroutine may be stated as follow:;: 

Given:    A chord station  (X), where X represents the chord non- 

dimensionalized distance from the airfoil leading edge alon^ 

the chord line. 

Find:      At the station X,  the nondimensionalized upper and lower airfoil 

thickness   (ZU and ZL), the upper and lower airfoil tangent 

slopes  (DZUDX and DZLDX)  and the angle the airfoil tanpent lines 

make with the chord line in radians  (BU and BL). 

The subroutine defines the NACA OOXX family of airfoils as a set of 

equations.    The thickness ratio  (TC),a parameter in this equation,is 

transferred to the subroutine implicitly.    This subroutine supports 

ROTORG. 
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Subroutine ARCL (XI,XF,DARCLU,DARCLL) 

The function of this  subroutine la to calculate the upper and lower 

airfoil arc distances   (DARCLU and DARCLL)  lying between two lines drawn 

perpendicular to the two chord stations  (XI,XF).    This subroutine calls 

on AFOIL and is generally not used in the overall problem.     Tt serves a 

part in checking the planform description when this option to he 

described later is chosen.    This subroutine supports ROTORG. 

Subroutine GE0MR1  (XC,YTS,ITIP) 

The function of this  subroutine may be stated as follows: 

Given:     A control point  location  in terms of a chord station  (XC) 

and a true span station  (YTG). 

Find:       The actual upper and lower surface coordinates  and the local 

aurface tangent slopes  in terms of the blade one coordinate 

system. 

The information is transferred implicitly.    The parameter ITIP is used 

to indicate whether the rotor tip or tips are to be faired.    This 

subroutine supports  ROTORG. 

Subroutine ROTORG 

The function of this  subroutine is to serve as  a control nrorrarn 

in order to systematically define the actual control point  locations  in 

terms of the blade  fixed coordinate system when the specialized  planforn 

description option  io  selected.     Its main  supporting subroutine  is 

GK0MR1. 

■ i  i ■MM MtMMiMMMMHM 
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In aildition to this function the subroutine has an option which 

r.erven the purpose of printing the surface grid point coordinates 

and/or card punching these coordinates in a form compatable with that 

required as input data by subroutine IN2. 

Furthermore, this subroutine contains an option which will calcu- 

late mean control surface locations and slopes and print these results. 

This option may, however, not be selected during the running of the 

overall program. Independently this option serves as a reference check 

on the elemental control surface calculations done in a different manner 

later in the program. 

Subroutine SURF 

The function of this subroutine is to define an elemental planar 

four sided control surface in terms of its location, corner point 

coordinates and transformation matrix given initially four control 

point locations which do not necessarily lie in a plane. This sub- 

routine supports CGURP and CWAKE. 

Subroutine CO (CX,Y,XB,YB,ASUM, A) 

The function of this subroutine is to calculate the centroid 

location (X,Y)g, and area (ASUM) of a four sided planar figure whose 

corner point coordinates are given by (X.Y)^ ^ where (X,Y)i = (0,0) 

and the corners are numbered in a clockwise direction.  This subroutine 

supports ~URF. and APPROX. 

■■'  --—■"     -       -■ -    ^^^nffgnnm^eum,^ 
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Subroutine ROTZ (TIF.TA.X.Y.AJ) 

The function of this subroutine may be stated as follows: 

Given: A coordinate system // ^I f)      whose origin and transformatic 

matrix are given with respect to an (^YZ) coordinate system by 

X,Y,Z and AJ. 

Find:  The origin and transformation matrix of the // '/. ? )     system 

if it is simply rotated about the 7, axis through a displacement 

THETA. THETA being positive in the usual sense. 

The results «ire transferred explicitly using X,Y and AJ. This subroutine 

supports CWAKE and CBLADE. 

Subroutine CALLOC 

The function of this subroutine is to reallocate the main core 

storage registers. 

Subroutine ROUM 

The function of this subroutine is to renumber the blade elemental 

control surfaces in terms of an integer I. Prior to the use of this 

subroutine the upper and lower control surfaces were sequenced in terms 

of (N,M). 

Subroutine WT1 (ITI.IRW) 

The function of this subroutine is to write or read off external 

file IT1 (depending on whether IRW equals 0 or is not equal to 0 

respectively) the control parameters and data allocated in designated 

■...■«III.-I H   ^y,'..... .T.-.;,,'.  .... ., .. .,,.-       ^  -' ■■   ^^^tmttttM 



1.1*6 

common storage locationa  LINDA and LiRENDA.     i'>ome parameters  and data 

in these two locations are needed effectively in all of the major 

programs.    Thus this subroutine and file IT1 serves as a continuity 

link among the programs. 

Subroutine CSURF 

The function of this subroutine is to serve as a control program 

in order to systematically define the geometry of all the blade one 

elemental control surfaces.     The main supporting subroutine used  for 

this task is SURF. 

In addition this subroutine computes the free stream velocity 

conditions on each blade element and writes all the above results on 

external file IT1. 

Gubroutine INTEG   (X,Y,Z,G,E,XI,XIS) 

The function of this subroutine is to calculate the nondimen- 

sionalized doublet potential and velocity influence coefficients  in 

a   Ss, ),/)      reference system at a field point  u,Y,Z) resulting 

from an M sided planar doublet distribution whose direction is along 

the   f   axis and whose corner point locations are given clockwise 

in the     //; ^J     plane as   (G,E)M.    The potential influence coefficient 

is given by XI, and the velocity influence coefficients in the     /, y 

and     f    directions are given by XIS(l), XIS(2) and XIS(3)  respectively. 

The subroutine tests to ensure that the field point does not lie on 

the edge of the planar surface.    This subroutine supports CBLADE and 

CWAKE subroutines. 

- «-»—i^-^-.-. ^i .^^m^mmm^ 
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Subroutine CBLADK (ISTART,ISTOP) 

The function of this subroutine is  to serve as a control propram 

in order to systematically define the total influence coefficients 

of all J=1,JMAX blade elements on blade one elements I where I 

lies inclusively between control input specified elements I-1GTART 

and I=IGTOP. 

The blade influence coefficients are calculated with respect to 

the (X'.Y'»Z1) blade fixed axis system and are written out on file 

IT2 immediately after all J elements of all blades influence on a 

blade one element I axe know.  mhey are written out as three sets of 

JMAX influences corresponding to tht X'.Y' and Z' directional influences 

Subroutine PWAKT 

'.'he function of this subroutine iu to serve as a preliminary 

subroutine to the wake subroutine when specific program options are 

selected,  basically it is used when the blade influence coefficients 

were defined during a previous execution run and entry is now made 

into the CWAKE subroutine directly. It serves the function of reading 

external file IT1 and positioning in main core storage the data 

necessary to execute the CWAKE routine. 

Subroutine CWAKE 

The function of this subroutine is to serve as a control program 

in order to systematically define the total wake influence coefficients 

of all M=1,MM wake span stations on blade one elements 1=1, IMAX. 

 —-in 
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The procedure is to begin at span station M=l and to proceed 

streamline wise down the wakes calculating wake elements and their 

influence coefficients with respect to the (X'.Y'.Z1) syctem on nil 

1=1, IMAX blade elements. At any single wake span station the 

influences are additive thus a single set of IMAX total influence 

coefficients is kept. When the final streamwise wake element trailinr, 

M=l wake span station is defined the set of three vectored IMAX total 

wake influence coefficients are written out en external file IT3. The 

procedure is now repeated for span station M^M+l through M=MM. 

This subroutine also has a planar wake model to be used during 

the planar wing option. 

Subroutine SETUPl 

The function of this subroutine is to interchange the IMAX 

column and three sets of MM rows of data written on external file 

IT3 during the CVWUCE routine and write this information on file IT1 

behind the Information already written on IT1. 

Subroutine ApPROX (X,Y,Z,S,E,XI,XIG) 

The function of this subroutine is to replace INTRG to calculate 

the influence coefficients when the field point (X,Y,Z) ir> farther 

than a certain distance from the centroid of the doublet element. 

It uses multi-pole expansion, which is an approximation to the 

algorithm shown in Appendix C, and will save the time of calculation. 

IM—I 
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D.2.2    Program Operation in Terms of a Flow Diagram 

liaving completed now the discussion of the subroutines we may 

now describe the "Influence Calculation" program in terms of a flow 

diagram.  In Figure D.l is shown the detailed flow diagram.  We huve 

attempted to present this flow diagram at the level of the sub- 

routines.  We have indicated in the flow diagram the stages at which 

input is required and where output is effected. We have shown on the 

side of the flow diagram proper the supporting elements including 

external files and supporting subroutines required by each major sub- 

routine called on by the major program. 

Note in this diagram that the program has essentially 5 entry 

points and 5 exit points depending on the value of the parameters 

MCTHL(l) and MCTRL(2) respectively.  Note further that the parameter 

MCTRL(l) determines whether INI (Hotor Analysis) or ink   (Planar Wing 

Analysis) is selected. The external files are designated as I'i'l, 

IT2 and IT3.  If the prop;ram is executed from beginning to end in one 

step three files are required. Note, however, that by executing the 

program in stages using the program option parameters MCTRL(l) and 

MCTRL(R) the maximum number of on Line external filei: needed at 'iny 

one tine Is  two if the number of uiade elements is  1000 or lees.  The 

third file in this case must be defined as a dummy file, say equal to 

one of the other two. Files IT1 and IT2 on program completion contain 

all the information needed in later main programs and are to be 

considered as permanent storage files.  File IT3 on program completion 

contains wake influence coefficient data which has been rewritten in 

i m*mm« i .......  —^^MMMMM 
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MAIN-  INFLUENCE CALCULATIONS, 
DETAILED FLOW DIAGRAM 

Declarations 
Initialize Clock Timer 
Initialize Control 

Parameters 
Print.   HpRtHng     

Head Card  Input  Data 
NAMELIL'.T/MAINI/ 

Initialize External 
Files IT1,IT2,IT3 

Yes 

PRINT 
Program Monitor 
Kile I'll is   
File l'i'2 is 
File IT3 is   
Program Enters WT1 

Call WTldTl.l) 

PRINT 
Exit Normal 
Program Enters PWAKE 

Call PWAKJ 

(Continued on next page) 

FIGURE D.l (a] 

GO TO 'tu 
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(Continued from previous  paße) 

 L.„_ 
PRINT 

Exit Normal 

PRINT 
Program Minitor 
File IT1 is 
File IT2 is ' 
File IT3 is   
Program Enters WTI 

Call WTldTl.l) 

Print 
Exit Normal 
Program Enters T 

Call PWAKE 

PRINT 
Exit Normal 

GO TO ikO 

(Continued on next page) 

FIGURE D.l  (b) 

GO TO  50    | 
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(Continued from previous page) 

MCTHL(l)     >Xea- 
NE 

PRINT 
Program Monitor 
File ITl is 

liü_ffi & = 

GO TO 130 

; 

GO TO  ''IO 

[Name Name Card 

>DATA2 

Paper 
Output 

MCTHL(l) ^fes 

\ 

Wo 

I Initialize Specific 
llCTRL Parameters 

Read Assigned NAME 

Call IN2 

Call OUT;- 

GO TO 100 

r.n TO 70 

(Continued on next page) 

FIGURE Ü.1   (c) 
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(Continued from previous page) 

(Continued on next page) 

FIGURE D.l (d) 
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(Continued from previous pnce) 

es^ 

$DA'i'A3 

Paper 
Output 

Call Itl3 

Call OUT3 

GO TO IPO 

110 

j   $DATAU 

Paper 
Output 

Call mi* 

Call OUTl» 

PRINT 
Program Monitor 
File IT1 is   
File IT? is   
File IT3 is 

(Continued on next page) 

FIGURE D.l (e) 

GO TO 110 

GO TO 900 
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(Continued from previous pare) 

Call CALLOC 

PRINT 
Exit Normal 
prngrHm Eatpra HKNUM 

Call HENUM 

PHI NT 
Exit Wormal 
Program Entpra Vfl'l 

Call WT1 

PRINT 
Exit Normal 

tprg CGURF 

Call CnURF 

PRINT 
■Jxit Normal 

2URF 

■lC'i,KL(ll) = l 

(Continued on  next pap;e) 

FIGURE D.l   (f) 
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(Continued from previous pajie) 

MCTHL(IP) 
NEQ.O 

Yes MCTHLUP! 
ir^AX 

\. [MAX y 

Uo 

MCi,HL(2)= 5 

PRINT 
Program Enters CBLADE 

IT1 

^ j JLMMJMQQi —    Call CBLADE 

PHIOT 
Summary Type Data 

Wi'l     j 

IHTEG 

ROT? 

Ud TO 000 

GO TO 900  I 

(Continued on next page) 

FIGURE D.l (g) 
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(Continued from previous  pu^e) 

PRINT 
Program Enters CWAKE 

Call CWAKE 

PRINT 
Summary Type Data 

. Jnrma.1   

;CTRL(2) y^3- 

PHItIT 
Program Enters CETUP1 

Call GLTUPl 

PR HIT 
ijxit Normftl 
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T 

(Continued on next pape) 

FIGURE D.l (h) 

-00 TO 1S5 

f GUI^F 

--TinTEG 
.: 

00  TO  000 
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PHIIIT 
Program otop 

IT. 

Rewind Data Get Files 
I'i'l I'x'P IT3 

END 

FIGURE ü 1 (i; 

158 

■ ■i \t'-i,;tima*nmmäiimu \    i .-*   J^..-^-.. ^^. f^. 



159 

HM altered format on file IT1. Aa such Kile TT3 may be discarded on 

completion of the MAIN - INFLUKNCK CALCULATION;-. PROGRAM. 

!).?. ^ Program Input Procedures 

The input required and input sequence can be determined from the 

flow diagram and this of course is a function of the MCTRL parameters 

which are inputted in the NAMELIST/MAIN1/ data group at the start 

of the program. 

Except for the input read in subroutine IN? and the identification 

name assigned to the run, the input is entered in a iJAMELI^T mode. 

This allows us to preset the input parameters and only input those 

parameters which we want to override in any particular run. 

We shall consider now the details of inputting the data in the 

order in which they are executed in the overall program, that ir; 

1. Main Program Control Parameters 
NAMELIST/MAIN1/ 

2. Message Card 
NAME 

3.a Specialized Planform Geometry Description 
NAh^LIHT/DATA?/ 

or 

3.b General Planform Geometry Description 

k.&  Cotor Free Stream and Wake Analysis Parameters 
NAMELIST/DATA3/ 

or 

h.h  Planar Free Stream and Wake Analysis Parameters 
NAMELIST/DATAU/ 

■■■■• ■  -■■ -*—■"■"-■■ —'- ■ 
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1.  Main Program Control Parameters 

The following data is to be inputted in the NAMELIHT/MAI.Jl/ 

data statement: 

MCTRLd) = K       (Default value is K = 1) 

K = 5 if the program is to effect execution at GETUP1. 

K = 1* if the program is to effect execution at CWAKE. 

K = 3 if the program is to effect execution at CBLADE. 

K = 2    if the program is to effect execution at the initial 
entry point and use the General Planform Option. 

K = 1    if the program is to effect execution at the initial 
entry point and use the Specialized Planform Option 

MC,irHL(2) = K       (Default value is K = 0 

K = 't    if the program is to terminate execution after completion 
of CWAKE. 

K = 3    If the program is to terminate execution after completion 
of CBLADE. 

K = ?    if the program is to terminate execution after completion 
of CSURF. 

K = 1    if the program is to terminate execution after completion 
of HOROHG. 

K = 0    if the program is to terminate execution after completion 
of the entire program. 

MCTRL(3) = K       (Default value is K = 1) 

K = 2    if the program is to execute the "Planar Wing Option". 

K = 1    if the program is to execute the "Rotor Blade Option ' 

MCTAL(ll) = K      (Default value is K = 1) 

K = I where I is em integer indicating the Blade element I on 
which the blade influence calculations of CBLADE are to 
begin. (1^1^ Imax) 
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MCTRL(12) = K (Default value is K = Iraax) 

K a I    where I is an integer indicating the blade element I 
on which the blade influence calculations of CBLADK 

are to end. (l " I ^ Imax^ 

IT1 = K (Default value is K = l) 

K = I    whfre I is an integer indicating the external file 
ass., ^ned number on which the control parameters, 
selected geometry, blade element geometry and on 
program completion wake influence coefficients are to 
be written. 

IT2 = K (Default value is K = 2) 

K = I    where I is an integer indicating the external file on 
which the Blade Influence Coefficients are to be 
written. 

IT3 = K (Default value is K = 3) 

K = I    where I is an integer indicating the external file on 
which the Wake Influence Coefficients are initially 
to be written prior to entering GETUP1. 

DUMMY = K 

I    where I is an integer.  If the default values of the 
above pareuneters are to be selected simply input this 
parameter. 

2.  Message Card 

Any message or title which is to be assigned to the run for 

identification is to be inputted here. The mesaage must be on one 

card and may fill part or all of the 80 column card. 

-■-■^*~~'***~i*~^'"---^~*am''''m*m~WKBttKKtmmmmiiui u        ....■-..--.  - 
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3.a Cpecialized Planforra Description 

The following parameters muat be inputted as part of the 

IJAMELIST/MTAx/ data statements: 

CGU = 0.0, A.a , B.b.l.O       (Default values are 0.0) 

where SG is maximally dimensioned for 52 real numbers each 
indicating the true span station along which the upper and 
lower surface grid control points are to be defined. The first 
and last station must be 0.0 and 1.0 respectively, where HO = 
0.0 is the root span station and GO = 1.0 is the tip span station. 
The list must be of increasing magnitude. 

CGU = 0.0, v.a   B.b,1.0       (Default values are 0.0) 

where CGU is maximally dimensioned for 52 real numbers each 
indicating the chord station along which the upper surface 
grid control points are to be defined.  The first and last station 
must be 0.0 and 1.0 respectively, where CGU = 0.0 is at the 
leading edge and CGU = 1.0 is at the trailing edge. The list 
must be of increasing magnitude. 

CGL = 0.0, A.a  B.b, l.o      (Default values are CGU) 

where CGL is the same as CGU except CGL refers to lower aurf'are 
grid control points.  If no CGL stations are included in the 
/DATAl/ list the program assumes the chord station grid point'. 
are to be symmetric with respect to upper and lower surface anc 
thus sets CGL = CGU for all CGU input points. 

TC a o.a (Default value is 0.0) 

where TC is the maximum airfoil thickness to chord ratio of the 
NACA 00XX family of airfoils. 

C = A.a (Default value is 0.0) 

where C is the chord length to rotor radius (R) ratio. 

Bl = O.a (Default value is 0.0) 

where Bl is the distance the root chord is displaced from the 
axis of rotation as measured alonf; the span axis and nondimen- 
sionalized by the rotor radius.  This is the hub radius and must 
be greater than zero.  The true span is defined from this parameter 
as (1.0 - Bl). 

MMMIMM 
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B3 = O.a (Default value is 0.0) 

where 133 ia the distance the span axis la displaced from the 
leading edp;e as measured along the chord line and non- 
ilimensionalized by the chord length. 

TO = A.a (Jefault value is O.i 

where TO is the root airfoil section geometric an»'/  of at taci 
in decrees, '.'he angle ia i)03itive in the usual aer^-dynamic- 
üense and is the angle measured from the plane of rotation to 
the chord line. 

TT = A.a (Default value is 0.0) 

where TT is the amount of linear twist in degrees which is to 
be applied to the rotor blade along the span axis. It is 
defined as the tip chord geometric pitch less the root chord 
geometric pitch. 

ITIP = K (Default value is K = 0) 

where I'lV  1s an option which allows for fairing of the rotor 
blade ends.  Select K as follows: 

K * P.     INBOARD TIP AND OUTBOARD TIP IT. FAIRED 
K = 1 OUTBOARD TIP If, FAIRED 
K = 0 NEITHER TIP ID FAIRED 

IPRIilT = i: (Default value is K = 0) 

where IPRINT is an option which allows for printing of the 
computed surface grid point coordinates.  Select K as follows: 

K = 1 Coordinates are printed 
K = 0 Coordinates are not printed 

IPUIICH = K (Default value is K = 0) 

where IPUNCH is an option Thich allows for card punching of the 
computed surface grid point coordinates in a form compatabie 
for input in the "General Planform Option". Select K as follows: 

K = 1 Coordinates are punched 
K = 0 Coordinates are not punched 

II Mill I ,,||MMMMMMM)|        I l ■Ml" ■.-^-^■. 
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IFOILD ■ K (Default value la K = 0) 

where IKOILD is an option which allows for computinr and printing 
of the airfoil coordinates at every l/100th chord station. 
Select K as follows: 

K = 1 Coordinates printed 
K = 0 Coordinates not printed 

IHURF = K (Default value is K = 0) 

where LIURF is an option which allows for additional elemental 
surface parameters to be computed and printed. For each element 
an average location, average slope and calculated surface area 
are presented.  If this option is selected the program will 
automatically terminate execution after completion of this step. 
Select K as follows: 

K = 1 Additional surface data presented 
K = 0 *Io additional surface data presented 

Please note in addition to the above that the maximum number of 

elemental surfaces that may be defined may not exceed P000. Thus 

if IIMAXU and NMAXL, are the number of specified chord grid stations 

on the upper and lower nurface ami MMAX is the number of speci tied 

span grid stations then the following relation must hold 

I (NMAXU-1) + (NMAXL-1)/ V'MMAX-1 / '-' ^00 . 

mi       —      ^M^^mmm 
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j.b General Planform Geometry Description 

In order to discuss the input procedure we must first define a 

reference system.  Let us define a cartesian coordinate system 

(XI, Yl, Zl) such that the rotor blade axis of rotation is the 7.1 

axis.  The projection of the blade span axis into the (XI, Yl) plane 

will lie along the Yl axis and the XI axis w: 11 generally be directed 

toward the pointed trailing edge.    The blade must have a non zero 

hub radius.  Uow with the rotor blade in its liftinr; configuration 

within this reference system one must be able to define a system of 

surface grid point coordinates as follows: 

A.  Inscribe a series of non intersecting lines (not necessarily 
straight lines) on the rotor blade uppei surface Joining a 
point on the root section to a point on the tip section. 
Two of these lines must lie along the leading edge and trailing, 
edge.  Index these lines consecutively as IJ = 1,, NMAXU where 
N = 1 is the line along the leading edge and N a NI4AXU 
is the line along the trailing edge.  NI4AXU must ^e no greater 
than 'jl. 

i.  Repeat (A) above for the lower surface where n JW "1 = 1, 
WMAXL - 51. 

C,  Inscribe a series of non intersecting lines on the rotor blade 
upper and lower surface starting at a point on the leading 
edge going to the trailing edge along the upper surface and 
returning to the leading edge point along the lower surface. 
Identify these lines as M = 1, MMAX - U9 where M = 1 lies 
along the root and M = MMAX lies along the tip. 

Ü.  The intersection of a line of constant M with a line of 
constant N will now define a control grid point inlexed as 
(N,M).  Four lines Joining grid points (ri,M), (:,',^+1),'..+1 ,. > . / , 
(N+1,M) will define a control surface such that the sum of 
the control surface areas equals the wetted area of the blade. 
The number of control surface areas must not exceed 2000, that 
is {.(NMAXU-l) + (IIMAXL-1)/ x (MMAX-l) * 2000. 

E. .tov  for each grid point (ii,M) the blade surface coordinute:; it; 
terras of (Xl,Yl,Zl) must be defined. These lengths are to 
be non dimensionalized on the rotor radius. 

MUilMiMiftlkHMa 
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Having determined this information, the data input is card 

punched and arranged as follows: 

i.  Punch on one card the value of NMAXU, NMAXL and MMAX accordinp 
to the FORMAT (3110). 

?.     Punch a set of car*such that the complete set of upper 
surface grid coordinates at all (N,M) grid points is riven 
on these cards as N,M,X1U(N,M), nu(N,M), Z11J(N,M) 
according to the FORMAT (215,3E20.6). 

'\.     Pepeat (?) above for the complete set of lower surface //riJ 
coordinates. 

'i.a Rotor Free stream and Wake Analysis Parameters 

The following data is tu be inputted in the NAMELKT/DATAl/ data 

statement: 

LAMBDA = A.a (Default value is 0.0) 

where LAMüDA is the free stream rotor inflow ratio and is given 
positively by the rotor climb speed divided by the rotor tip speed. 

WAV = A.a (Default value is 0.0) 

where WAV is the average induced downwash at the trailing edge 
which may be determined using actuator disk theory assuming a 
given thrust.  This parameter along with LAMBDA is used to 
prescribe the wake geometry. 

DWTl = A.a (Default value is 20.0°) 

where DWT1 is the anple increment in deprees which determines the 
initial wake elemental areas used for calculating near wake 
influences. 

DWTP = A.a (Default value is DWTl) 

where DWT'2 is the angle incremert in degrees which determines the 
wake elemental areas used for caiculating far wake influences. 

■■■■■■ ■-■ ■ I l^MII 
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ANGLE =» A.a (Default value is 100.0°) 

where ANOLE la the angular measure In degrees from trie span 
axis beyond which point the wake calculations are to be done 
in increments of DVr2. 

A.a (Default value is 1.0) 

where TURiJC is the number of wake revolutions from the span axis 
beyond which the wake calculations are to cease. 

INFLU = K (Default value is 0) 

where INFLU is an option which allows the program to cease wake 
calculations at an angle comparable to TURNo above if the wake 
elemental influence coefficients becomes less than a prescribed 
amount described in AIUFLU belo' .  Select K as follows: 

K = 1  to effect this option 
K = 0  to negate this option 

ALNFLU = A.a (Default value is 0.01) 

where AIUFLU is a parameter defined as the absolute value ratio 
of the total influence at a point of one wake element to the 
total influence of another wake element.  The point at which 
the influences are compared is the centroid of the first span 
station upper leading edge element.  The program computes the 
influence for all elements of vake span station one comparinr, 
this always to the influence of the first wake element.  When 
this ratio becomes less than AINFLU the parameter TURN:' is 
redefined to effect the termination of calculations at this 
point for all span stations. 

ISAFE = K (Default value ir 250000) 

where ISAFE is a parameter which indicates the total number 
of woke elemental influence calculations that are to be performed. 
Internally the program computes from this the maximum number of 
wake elements trailing any one blade at one span station that 
will approximate this ISAFE number of calculations thus it ensures 
all span woke segments have the same number of spiral wake elements, 

MMB. 
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NLIFT = K (Default value  is 0) 

wh' e NLIFT ia a parameter which indicates whether the program 
is > include a wake analysis (Lift Case) or is not to include 
a wake analysis  (No Lift Case).    Select K as  follows: 

K =  1       NO LIFT OPTION 
K = 0       LIFT OPTION 

LMAX =  K. (Default value is P) 

where LMAX  is the number of equally spaced,  identical rotor 
blades. 

Note that j n  the above data there are three  input parameterr. 

(TUBN^s   IiJFLU.   IGAFE) which may be used to terminate the wake analysis 

calculations.    They are in fact independent of each other. 

^.b    Planar Free Stream and Wake Analysis Parameter 

The following data is to be inputted in the NAMELIST/DATA 1*/ data 

statement: 

WAV = A.a (Default value is 0.0) 

where WAV  is  the average induced downwash at the trailing edge 
nondimensionalized by the free stream velocity.    This velocity 
is used to wash the wake below the plane of the free stream 
velocity. 

NLIFT = K 

where NLIFT is as defined in the preceeding section. 

Please note that the planar wing analysis option of this program 

has not at the present time been thoroughly checked.  It is included 

here only to document the program. The planar wing analysis option 

- - i ...j^-.i.,^-^..^^ riMI 
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is obtained by altering the rotor blade analysis routine and we 

acknowledKe the fact that this approach is very ir.efflcient. 

Ü.P.k    Program Output 

The main output from this  program is as follows: 

A. Printed output which essentially prints out the data that 
was read into the program. 

B. Printed output which essentially i:? a program monitor. 
This output indicates the curamulative time at which the 
major subroutines were entered and whether they terminated 
normally.  Additional output indicating specific ite^.b are 
included in the CRLAPE and CWAKE related monitor output 
statements.  This output is self explanatory. 

C. Data output stored on external files IT1 and IT2.  Unlike 
items (A) and (B) above this output is required for the 
continuation of the overall program.  We will describe the 
detailed data on these two files when we discuss the 
"MAIN-PRINT" program whose function is to retrieve apenfic 
data from these files and print on paper this data. 

In addition to the above listed output additional output may be 

selected.  We have already discussed the nature of this output in the 

section describing the input procedures and program options available. 

The output as printed is self-explanatory. 
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D.3 MAIN - CREATE SOLUTION FILE PROGRAM 

In this section we will discuss the program MAIN - CRHATK 

MUJTION FILE. This program Is rather straightforward with it:; 

function being to operate on the coefficient data written on external 

files ITl and IT2 by the MAIN - INFLUENCE CALCULATION program, in 

order to generate the set of normal Influence coefficients and 

normal free stream velocities. This set of coefficients and velo- 

cities are then stored on external file IT3 or IT3 and ITU in a form 

compatable for the solution programs which will be discussed in the 

next section. 

D. .1 Summary Discussion of the Subroutines 

vubroutlnes GETUP2 (ITl, IT2, IT3) 

The function of this subroutine is to generate from the data 

given on external files ITl and IT2 the set of normal influence 

coefficients expressed as an IMAX square matrix [A3 and to generate 

the set of IMAX normal free stream velocities expressed as the negative 

of the IMAX matrix |B|such that the linear set of IMAX algebraic 

equations to be solved is of the form 

CM Ul - IBI 

This data is then written on external file IT3 in double precision as 

follows where each line represents a separate write statement: 
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IMAX 

B(l),  B(2),   (B3) B(IMAX) 
A{1,1). A(l,2) A(l,  IMAX) 

A(IMAX,1) A(IMAX,IMAX) 

This data file i3 compatable with the exa:t solution program discussed 

later. 

Subroutine SETUP3 (IT1,IT2,IT3,IT1*) 

The function of this subroutine is the same as SETUP2 to the point 

where the algebraic equations are defined by 

[AJ IK I   = Ißj 

This subroutine further operates on the coefficient such that the cet 

of equations may be written as 

^ I ^/t *i      '   *'jd   **     ' V 

^ ^ C s-J X
S-J J 

/ 
/. 

/ 
sz j r 

which in matrix form becomes 

Ar/ r    {tJ/*!*   SOI 
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This aubroutine then writes on external file IT3 the /^Cj matrix 

as shown below where each line represents a separate write statement; 

^/  ^-'  ^./ ■ / l/?** 

^/w, *-Zn,/* j m " * 

^M 
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On external file IT4 is written the column matrix lnl. 

This data as written on files IT3 and IT4 is compatable with the 

iteration program discussed later. 

Subroutine WTl 

See dicussion in section D.2.1. 

D.3.2 Program Operation 

The program operation requires three or four external files 

depending on whether the solution will be obtained using the exact 

elimination or the iterative solution method respectively. If three 

files are required then th~ fourth file must be defined as a dummy 

file. Since the main program simply calls on either one of two suu-

routines no flow diagr~will be presented. 

D.3.3 Program Input 

The input required consists of the following parameters given 

as part of a NAMELIST/SOLUF/ data statement: 

METH = K 

where METH is a control parameter which indicates the proper 
solution file tc be created. Select K as follows: 

K = 1 Elimination Solution File 
K = 2 Iterative Solution file 
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IT1 = K (Default value is 1) 

where K is the reference number assigned to the comparable 
external file IT1 of the Main - Influence Coefficients program. 
No changes will be made to the file contents. 

m 

IT2 = K (Default value is :>) 

where K is the reference number assigned to the comparable external 
file IT2 of the Main - Influence Coefficient program. iJo changes 
will be made to the file contents. 

IT3 = K (Default value is 3) 

where K is the reference number assigned to the input file 
created. 

ITU = K (Default value is h) 

where K is the reference number assigned to the additional solution 
file required if METH = 0 option is used. If METH = 1 option is 
chosen input the same reference number for ITU as inputted for IT3. 

D.3.U Program Output 

The output of this program consists of the following: 

1) A printed statement indicating whether the elimination or 

iterative solution file was created. 

2) Data written on external file IT3 if the elimination solution 

file was created or data written on external file IT3 

and IT't if the iterative solution file was created. 
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D.h    MAIH - SOLVE BY ELIMINATION PROGRAM 

In this section we will discuss the program MAIN - SOLVE BY 

ELIMINATION. The function of this program is to solve a simultaneous 

set of equations using the Gaussian elimination method with pivotal 

condensation as described in Section 3.^. This program is not 

competitive with routines not requiring peripheral storage and it 

is suggested that this method be used only for simultaneous sets of 

equations having less than 350 unknowns because of time considerations, 

D.i*.l Summary Discussion of the Subroutines 

Subroutine SSIMQ 

The function of this subroutine is to accept the coefficients as 

written on an external file in the manner described in the discussion 

of subroutine SETUP2 (Section D.3.1) and operate on this matrix of 

coefficients in order to reduce it to an effective diagonal matrix 

whose lower half is composed of zero elements. This is the pivot eli- 

mination part of the solution routine. 

Subroutine BSUB 

The function of this subroutine is to operate further on the 

diagonal matrix derived from SSIMQ and by th» back substitution method 

obtain the unknowns to the simultaneous set of equations. 

Subroutine HEAD 

Refer to Section D.2.1. 
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D.U.2 Program Operation 

The operation of this program is relatively straightforward. 

It does require four or three external data files depending on whether 

the Initial coefficients are to be saved until the solution is completed 

or not saved respectively. The initial data must be given on file 

ITF and the final results are written on file ITF. Files labeled 

ITA, and ITC should be high speed data files as they are actively used 

in the elimination phase of the program. If the initial data is m/t 

to be kept, file ITF and file ITA may be the same file. File ITB is 

used to record the diagonal matrix and subsequently is used along with 

file ITF in the back substitution phase of the problem. The speed of 

transferring data from files ITB and ITF into and out of main core 

storage is not as critical as for ITA and ITC, 

The program does contain a series of options which allow the 

solution to proceed in a series of executable runs or in one single 

executable run. These options are described in the next section but 

briefly we may list the options here as follows: 

A. The program may proceed from data entry through the elimination 
phase, through the back substitution phase to the recording of 
the solution value. 

B. The program may proceed from data entry into the elimination 
phase and terminate after a given amount of time has elapsed, 
or after the elimination phase -'s completed. 

C. The program may be restarted in the elimination phase and terminated 
as in (E). 

D. The program may initiate execution in the back substitution phase. 
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The solution values as written on file  ITF are in a form compatable 

for input into the program MAIN - MOVE SOLUTION FILE which transfers 

the answers to one of the two permanent files. 

T).k.3    Program  Input 

The following parameters Eire to be inputted as part of the 

NAMELIST/GELIM/  data statement: 

IP = K 

where IP is  an option controi parameter  such that  for: 

K = 0    The program will solve the system of equations in one 
execution step. 

K « 1 The program will begin execution in the back substitution 
routine assuminr: the elimination phase has been completed 
and the necessary data is on file ITB described later. 

II a ?    The program will bep;in execution as   for K  = 0 above 
but will terminate after the elimination  phase is 
completed. 

K » 3    The program will restart in the elimination routine at 
elimination row (M) and pivot row  (N) described later 
In the TMAX discussion. 

TMAX = A.a (Default value is  1200.0) 

where TMAX  is a parameter which  is an input estimate of the time 
in seconds  required for the elimination phase of the program. 
If the elimination phase has not been totally completed by this 
time the program will terminate the elimination phase after setting 
up  files ITA and  ITB in a manner compatable for the  restart option 
selected by IP -  3 above.    All restart Inforriation including the 
restart elimination row  (M) and pivot row  (N) are written for 
files ITA and ITB. 
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IMAX ■ K (Default value is 0) 

where IMAX is a parameter indicating the number of unknowns  in 
the syatem of equations. 

DUMMY = K 

where K must be inputted as 69P.6 if TMAX above la greater than or 
equal to 1200. 

ITA =» K (Default  value is K =  l! 

where K is the reference number assigned to external file ITA 
which is a data file active in the eliminatior; routine and 
contains data necessary for the restart option. 

ITJJ = K (Default value  is K = ;>) 

whi?re K is the reference number assigned to external file ITB 
which is a data file active in the elimination routine and contains 
data necessary for the restart option and the back substitution 
routine. 

ITC = K (Default value is K =  3) 
f 

where K is the reference number assigned to e\ternai file ITC which 
is a temporary data file active in the elimination phase.    The 
data written on it is not necessary for the restart option or back 
substitution routine. 

ITF = K (Default value is ITA) 

where JV is the reference number assigned to external file ITF which 
is the initial data input file created by program "MAIN-CREATL 
SOLUTION FILE"..   This is also the file on which the final solution 
values are written replacing the column input data record.    File 
ITA may be taken to be the same as file ITF but in this case the 
data is destroyed before the program has obtained the solution 
values, 
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D.^.l* Program Output 

The main output of this program conaists of the following: 

A. A printed statement Indicating whether a successful solution 
or singular solution resulted or a statement indicating where 
the solution was terminated. 

li. A printed listing of the solution values which are also 
written on Pile ITF in a form compatable for data-input into 
the program MAIH - TRAIWER SOLUTION FILE. 

If the elimination phase is to be run in stages, files ITA and 

ITB should be considered as output both of which are needed as the data 

set input for the restart option. 

If the program terminates after the elimination phase then file 

ITB should be considered as output which becomes the data set input for 

the back substitution phase. 

mimmm^ttimaammamtlmmmimim^^ 
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D.5    MAIN - GOLVK  BY ITERATION PROGRAM 

In this section we will dlscuBa the program MAIN - SOLVE BY 

ITERATION.    The function of this program la to solve a simultaneous 

set of equations using the simultaneous displacement iterative method 

described In section 3.6. 

D.5.I    Summary Discussion of the Subroutines 

Subroutine ITER(FB,FC,IMAX.K.KMAX,DELTA,TMAX,JR ) 

The function of this  subroutine is to perform the actual iterative 

procedure.    The IMAX set of coefficients are given on external files 

labeled FB and FC which are described in section D.3.1 in the dis- 

cussion of SETUPS.    The parameter K indicates the iteration number. 

Delta is a test parameter which dictates the greatest difference that 

all present solution values may differ from their previous Iterative 

values in order for the Iteration scheme to be completed.    KMAX and 

TMAX are parameters which may terminate the iterative scheme after 

KMAX iterations or after TMAX elapsed seconds.    The parameter IH is a 

return code indicating on what basis the subroutine execution was 

terminated. 

Subroutine DIFF (FB,FC,IMAX,K) 

The function of this  subroutine is to compute the value of the 

solution vector using the coefficients and compare this vadue to the 

K"1 Iterative solution vector and print out the results. 

«MM 
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Subroutine HEAD(K) 

Refer to section D.2.1. 

U.5.2 Program Operation 

The progreun operation requires two external data files.  These 

files are the solution flies created In the MAIN - CREATE SOLUTION 

FILE program and are discussed more specifically In the SETUPB 

discussion of section D.3-1. 

The program contains a number of options which permit the program 

to terminat."» when a certain convergence criteria is established, or 

when a given number of iterations have been performed or when a given 

amount of time has elapsed.  The program prior to termination writes 

out on one of the external data files the latest iterative solution 

values thus allowing the program to be executed again using these 

last values as the initial iterative values for another series of 

iterations. The solution values are written on file FC immediately 

after the data records written on file FC by GETUP3 and they are 

written in a form compatable for input into the program .'lAIil - TRAÜCFER 

G0LUTI0I1 FILE which transfers the solutions to one of the tv^ permanent 

files. 

U.5.3 Program Input 

The following parameters are to be inputted as part of the 

NAMELIGT/SITER/ data statement: 

■Mi 4^. --.—„j 
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Fb = N (Default value is N = 1) 

where N is the reference number indicating the external file 
on which the square coefficient matrix is written. This 
data file is data file IT3 created in the MAIN - CREATE 
SOLUTION FILE program if option METH-0 was executed.  (Refer 
to section D.3) 

PC ■ N (Default value is TJ = 2) 

where K is the reference number indicating the external file 
on which the column matrix is written. This data file is 
data file ITl* created in the MAIN - CREATE SOLUTION FILE 
program if option METH=0 was executed.  (Refer to section D.3). 
During execution the present iteration solution values are 
stored on this file immediately after the column matrix record 
destroying any other previously written iterative values. 

IMAX = N (Default value is N = 0) 

where N is the number of unknowns. 

K = N (Default value is W = 0) 

where the parameter K dictates whether previous iterative 
solution values are stored on file FC and are to be used as 
starting iterative values. Select N as follows 

iJ = 1  Indicates previous solution values are stored 
on file FC and are to be used as starting 
iterative solution values. 

N = 0  Indicates no previous solution values are stored 
on file FC and the program will assume the starting 
iterative solution values to be all zero. 

KMAX = N (Default value is N=K+10) 

where the value of W indicates the number of iterations to be 
performed subject to DELTA and TMAX constraints described 
below. 

mMiBr- -  •"•   —^MI^. J 



pw^wiumwjmiiii.iRifp'^i.'.-i.iuii uMiiiii.ii.    iii       .     i    . i mj ii, i          I ^^^Flj 

103 

TMAX = A.a (Default value is 120.0) 

where A.a la the cummulatlve time in seconds after which the 
program is to terminate the iteration scheme. 

DELTA A.a (Default value is 0.01) 

where DELTA la a convergence criteria such that if all 
calculated values of the solution vector leas the iterative 
solution vector values divided by the calculated solution 
vector values are less than DELTA in the absolute sense, 
then the iteration scheme is terminated. 

D.5-^    Program Output 

The printed output of the program consists of the following: 

1. A printed line of output after each iteration which indicates 
the iteration number, the number of present solution values 
whose change from the previous solution values are less 
than the prescribed convergence parameter, the cummulatlve 
time and the actual value of the first number in the solution 
vector and its change from its previous value. 

2. A printed line indicating on what basis the program 
terminated. 

3. After the last iteration the entire solution vector and 
the difference vector  (present solution less previous 
solution) are printed. 

In addition to the above the solution vector is also written 

on file FC and this output should be considered as input for successive 

iteration program executions or for input to the MAIN - TRANSFER 

SOLUTION FILE program. 

-" -- ■ ---        —--^^-. 
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D.6 MAIN - TRANSFER SOLUTION FILE PR0GK\M 

The function of the MAIN - TRMSPER SOLUTION FILE propram is to 

read the solution values written on an external file by either the 

elimination or iteration scheme program and to write these same 

answers on one of the two permanent files so that the two permanent 

files now have recorded on them all the information necessary to 

compute the various velocities, pressures and forces. 

The program requires two files for its operation and is rather 

straightforward. The input required for this program Includes the 

specification of the following two parameters as part of the 

NAMELIST/MOVEC/ data statement: 

FA = K (Default value is K = 1) 

where K is the reference number assigned to the permanent file 
FA which was initially created in the MAIN - INFLUENCE CALCU- 
LATIONS program and was there designated file IT1. 

FC = K (Default value is K = M 

where K is the reference number assigned to the file FC which has 
written on it the solution vector. If the solution was obtained 
using the elimination method then file FC is identical to tne 
elimination file ITF.  If the solution was obtained using the 
iterative scheme then file FC is identical to the iterative 
file FC. 

The printed output of this program is simply a statement indi- 

cating successful completion of the program. 

«■MHHBMMM^   
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D.7 MAIN - VELOCITY CALCULATIONS PROGRAM 

In thifl lection we will discusa the MAIN - VELOCITY CALCULATION!: 

program. The function of this program is to compute on each blade 

element 1=1, IMAX, tlie various velocities, pressure coefficients 

and forces and to print these results as well as a summary of the 

geometry for each of these blade elements. The program also computes 

and prints the rotor thrust, torque and in plane force coefficients. 

The subroutines called are WT1 and HEAD. These have previously been 

discussed in section D.2.1 and will not be repeated here. 

The program requires for its operation the two external permanent 

files initially created in the MAIN - INFLUENCE CALCULATIONS program 

and a temporary file to be used during the executior. of this program. 

D.7.1 Program Input 

The program receives all of its data'input from the permanent 

file. The card data input Includes specification of the following 

parameters as part of the NAMELIST/DATAV/ data statement: 

IT1 = K (Default value is K = l) 

where K is the reference number assigned to the permanent 
external file IT1. This file is to be Identical to file IT1 
created in the MAIN - INFLUENCE CALCULATIONC program. 

IT2 = K (Default value is K = 2) 

where K is the reference number assigned to the permanent external 
file IT2. This file is to be identical to file IT2 created 
in the MAIN - INFLUENCE CALCULATIONS program. 

^^^t^mmmmkm^^immmmmmt 
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IT3 = K 

where K is the reference number assigned to the temporary 
external file IT3.    This file is used during execution of the 
program and upon completion contains no useful information. 

D.T.P    Program Output 

The program prints out the  following summary results using the 

indicated symbols for each blade surface element  1=1,  IMAX: 

1. Element  index location in terms of I and in termls of indices 
(rJ,M) where N is the chord station and M is the span station. 

2. Centroid location in terms of the blade fixed coordinate  system. 
The symbols used is RCG where RCG =  (XCG2 + YCG2)^. 

3. The length of the curve connected by the centroids, starting  from 
the leading edge, following the chordwise direction and ending 
at the trailing edge.    The symbol used is CHODTL. 

h.      Nine components of the transformation matrix between the elemental 
surface coordinate system and the blade fixed coordinate system. 
The symbols used are TPIX, TP1Y, TP1Z, TP2X, TP2Y, NX, NY, NZ. 

5. The chordwise and spanwise surface velocities and their resultant 
at the centroid of the element with respect to the blade fixed 
coordinate system.    The symbols used are VT1', VT2,, and VT'. 

6. The  free stream velocity and its  components at  Che centroid of 
the element with respect to the blade fixed coordinate  system. 
The symbols used are respectively VINF1, VINTX1, VINFY', and VINFZ'. 

7. The components of the free stream velocity in chordwise and 
spanwise directions at the centroid of the element with respect 
to the blade fixed coordinate  system.     The  symbols  used are 
VINFTl'   and VITTC^'. 

8. The derivatives of the velocity potential in both chordwise and 
spanwise directions.    The  symbols used are DPHIDC and DPHIDY. 

9. The pressure coefficient,  CP1, nondiraensionalized on the basis 
of the  tip  speed velocity. 

10.       The pressure coefficient,  CP2, nondimensionalized on the basis 
of the  local  free stream velocity. 

■■■MMHMMiMHiMMk   li—MM————  i          
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11. The ratio of the surface velocity to the free stream velocity 
(VT/VINF). 

12. The doublet, strengths, MU. 

13. The velocity potentials, PHI. 

ih.    The angle that the surface velocity makes with the chordwise 
direction, THETA. 

15. The elemental force components (FXE, FYE, and PZK) in terms of 
the blade fixed coordinate system. 

16. The elemental torque (QZE) about the axis of rotation. 

All lengths and velocities above are nondimensionalized on the basis 
of the rotor radius and tip spee I respectively. 

In addition to the above a summary of the rotor aerodynamic 

coefficients are printed. This output is self explanatory. Also 

the differences between the pressure coefficients of upper and 

lower surfaces are calculated and printed. 

-——--       -■—■    
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Ü.8 MAIN - PPINT PROGRAM 

In this section we will discuaa the MAIN- PRINT program.  The 

function of this program is to selectively read data stored on the 

two permanent data set files and print this data. This is an auxiliary 

program and is not used in the normal execution of the overall program. 

It was designed initiaxly to be used in checking out the program 

operation. We will describe here how this program may be used for the 

purpose of printing out the net blade influence or wake influence 

coefficients on some blade control element I, and for printing out a 

complete description of the elemental control surfaces. The program 

does require for its operation the two permanent external files 

created in the MAIN - INFLUENCE CALCULATIONS program. 

D.8.1 Program Input 

The card input data consists of the following parameters inputted 

as part of the NAMELIST/DATAP/ data statement: 

IT1 = K (Default value is K = 1) 

where K is the reference number assigned to file IT1 which is 
identical to file IT1 created during the MAIN - INFLUENCE CALCU- 
LATIONS program. 

IT2 = K (Default value is K = 2) 

where K is the reference number assigned to file IT2 which is 
identical to file IT2 created during the MAIN - INFLUENCE CALCU- 
LATIONS program. 
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ISUSF « K (Default value is K = 0) 

where K is eui integer indicating whether the control surface 
geometry data is to be printed.  Select K as follows: 

K = 1  Surface data printed 
K ■ 0 ' Surface data not printed 

Ml - ICp K2, . . . Kj,. . . K^o (Default value is K,, = 0) 

where Kn>Kn_1 and 1^ is the integer spanwise wake station for 
which the wake influence coefficients on all blade elements 
1=1, IMAX are to be printed. Select K as follows: 

K^ = 0   No wake influence coefficient printing. 

KJL = 9999  All spanwise wake influence coefficients are printed. 

Kn » K   The K
th spanwise wake influence coefficients are 

printed. 

II » Ki, Kg, K3 . . . Kp, . . . K20 (Default value is ^ = 0) 

where K^ >   K,^ and Kn Is the Integer blade control surface on 
which all blade elemental control surfaces influence coefficients 
are to be printed. Select Kp as follows: 

K^ a 0   No blade influence coefficients are printed. 

KJL = 9999  All blade influence coefficients are printed. 

KJJ » K   All elemental blade influence coefficients on blade 
control surface K are printed. 

D.8.2 Program Output 

The program output may consist of the following depending on the 

options selected: 

MMMMM— 
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A.  CONTROL SURFACE GEOMETRY DATA 

This conslsto of the geometry data which describes each elemental 
control surface.  It includes the following: 

1. The transformation matrix CAj relating the blade fixed 
reference system to the elemental coordinate system. The 
symbols used are 

[A] 
TP1X TPIY TP1Z 
TP2X TP2Y TP2Z 
TP3X   TPSY   TP3Z 

3. 

The location of the origin of the elemental coordinate system 
with respect to the blade fixed coordinate system (XO, Y0, Z0), 

The centroid location of the elemental surface with respect 
to both the blade fixed (XCG, YCG, ZCG) and elemental 
(XTCG, YTCG) reference systems. 

k.    The area of the element (ACS). 

5. The corner point coordinates of the elemental surface with 
respect to the elemental reference system, (XTP, YTP). , , 

1— L , I 

6. The negative of the free stream velocity components (VX, 
VY, VZ) at the elemental centroid location with respect to 
the blade fixed reference system. The negative of the normal 
free stream velocity (VN) is also given. 

B.  WAKE INFLUENCE COEFFICIENTS 

For the selected spanwise wake station the influence coefficients 
(CXW, CYW, CZW) on all blade control surfaces 1=1, IMAX are printed. 
These influence coefficients are referenced to the blade fixed coordinate 
system. 

C.  BLADE INFLUENCE COEFFICIENTS 

For the selected control surface the influence coefficients 
(CXB, CYB, CZB) of all blade elements on this control surface are printed. 
These influence coefficients are referenced to the blade fixed coordinate 
system. 

In addition to the above output those parameters of common statements 
LINDA and EBENDA which are essentially internal control parameters are 
also printed out. This information was written on file IT1 by subroutine 



mi...». .  ..LI   ,^T^r-;r- J l ! ^ LIJMWIW^I Ul JJf ^U^WW^l. W Wl'^ .   . |||1 |IHHJPHIUI|I|U||IIII| > JIW< I ■ IHHUUU l.m ' I I I   I m^Hjl 

191 

WT1 in the MAIN - INFLUENCE CALCULATIONS program. This information 
is shared by the various MAIN programs and serves as the continuity 
link among them. 

  —   - - ■ - 
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Ü.9 CONCLUDING REMARKS 

We have attempted In the previous sections to describe the aeries 

of computer programs and their operation in a manner more detailed 

than a typical "user's manual". We have chosen to describe it this 

way in order to document not only the program but the philosophy under 

which the program systematically performs the overall problem. With 

this as the basic program we hope to further modify the various 

routines in order to optimize the program in terms of reducing the 

computer time required. 
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