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**PREFACE** 

I 

This report presents the results of an independent investigation 
into tha accuracy of horizontal sextant angles as a method of establish- 
ing geographic position conducted by the authors from October 1973 to 
March 1974.  It includes a description of the system, the development of 
a method for determining positioning accuracy and an example problem with 
a step-by-step procedure for utilizing the developed method.  Supporting 
theory, analysis and proofs are included wherever possible for the con- 
venience of the reader. 
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NOTATION 

A The baseline length, OQ for LOP-1 and QQ' for LOP-2 

(fig. 3-2) 

C The center of a circular LOP 

E,, E~     Dependent orthogonal coordinates into which the actual 
LOP errors £.-,  and £2 are transformed (Section 2.3) 

GMOP       The Geometric Multiplication of Precision, - (eq. 3.1) 
A 

K The factor obtained from fig. 2-3 which is used in eq. 2.36 
to determine R 

A 
K The factor which converts small angular changes in & 

(radians) into distance units (eq. 2.21) 

K A constant used in the analysis of Appendix B 

0 The left-hand fixed object wher, viewing from the fixed 
objects to the observers' position (figs. 1-4) 

P The observers position (figs. 1-4) 

Q The center fixed object (i'-gs. 1-4) 

Q'        The right-hand fixed object when viewing from the fixed 
objects to the observers' position (figs. 1-4) 

R The radius of the circular probability contour from the 
exact position within which the actual position may be 
expected to lie 

R The radius of a contour of constant A   (a circular LOP) 
(fig. B-l) n 

R The radius of a V/3    curve 

r A unit vector in the r direction in the polar coordinate 
system 

r The distance from a fixed object to P(figs. A-3 and A-4); 
also, the magnitude of the t vector in the polar coordinate 
system (fig. 3-2) 



s', t, u   Measurable distance errors in placing the three-arm 
protractor pivot point directly over the desired position 
which are used to determine A9., A©2 an(* &Kl    ^^8S' 
A-3 and A-4) 

x, y       The independent orthogonal coordinates into which E, and 
E9 are transformed (Section 2.3); also the variables of 
the Cartesian coordinate system (Appendix B) 

y The magnitude of the "f vector constructed from the exact 
three-arm protractor arm position to the actual arm 
position, perpendicular to the exact position at the 
fixed object (fig. A-l) 

oC The angle of intersection of the LuP's (crossing angle); 
always an acute angle (fig. A-l) 

ß The exact measurement of the horizontal sextant angle to 
" be observed; sometimes subscripted to indicate LOP 

reference 

€ An angular error in the measurement of the horizontal 
sextant angle; usually subscripted to indicate the source 
of the error (Section 1.3, Section 2.3, Appendix A) 

J The angle through which the dependent orthogonal E and 
E2 coordinate axes are rotated to yield the independent 
orthogonal x and y coordinate axes (Section 2.3) 

h The angle POC and the angle OPC used in the derivation of oC 
( in Section 4.1 (fig. 4-2) 

9 The angle POQ for LOP-1 and angle PQQ1 for LOP-2; sometimes 
subscripted to indicate LOP reference (fig. 4-1) 

A 
9 A unit vector in the 9 direction in the polar coordinate 

system 

AÖ The change in 9 due to the misplacement of the three-arm 
protractor pivot point (figs. A-3 and A-4); usually sub- 
scripted to indicate LOP reference 

)( The angle PQO for LOP-1 and angle PQ'Q for LOP-2; usually 
subscripted to indicate LOP reference (figs. A-3 and A-4) 

&k Ihe change in >^ due to the misplacement of the three-arm 
protractor pivot point (figs. A-3 and A-4); usually sub- 
scripted to indicate LOP reference 



XC        The ccvariance of two dependeat random error variables 
in angular units (eq. 2.14); usually subscripted tc indicate 
LOP reference 

ZAy The covariance of two dependent random error variables in 
distance units (eq. 2.28) 

f The correlation coefficient of two random error variables 
(eq. 2.13) 

Or' The standard deviation of a particular random error distribu- 
tion in angular units (the square root of O* )l  usually 
subscripted to indicate LOP reference 

O^J        The standard deviation of a particular random error 
distribution in distance units (the square root of C"J ) 

_,2 
V The variance of a particular random error distribution in 

angular units (eq. 2.8) 

0~*A The variance of a particular random error distribution in 
distance units (eqs. 2.23 and 2.24) 

(i A quantity which is constant on a particular ^A   curve 
(Appendix B) 

lp The angle between r, or ^ and a tangent to LOP-1 or 
LOP-2, respectively, measured as shown in fig. 4-2. 
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SUMMARY 

The text is preceded by a brief introduction which outlines the 

history of horizontal sextant angles as a positioning method, the reason 

for the recent interest in defining the accuracy of the system and the 

general direction of the analysis which follows. The description of the 

method of horizontal sextant angles as a means of establishing geographic 

position, including the theoretical basis for its use and an illustra- 

tion of a particular method of utilization, is contained in Chapter 1. 

A general description of the instruments used is included also.  Chapter 1 

ends with the development of the error model describing each of the 

component dependent and independent angular errors which affect an exact 

angular measurement. Errors in the use of both the three-arm protractor 

and the sextant are considered. The error model is used in Chapter 2 to 

develop the basic method for determining positioning accuracy. 

The development of the basic method for determining positioning 

accuracy is begun with an explanation of the necessary mathematical 

considerations and a brief look at the applicable probability theory. 

The steps in the actual development include: 

1. The definition of the individual LOP (line of position) 

variances and the combined LOP covariance from the component 

angular errors. 

2. The conversion of the variances and the covariance tu 

distance units. 

3. The elimination of the dependence of the LOP errors using 

Fraser's method (ref. 3). 

Preceding page blank 
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4.  The determination of the radius of the circular probability 

density contour within which the actual position can be 

expected to lie. 

The Geometric Multiplication of Precision (GMOP) is derived and 

analyzed in Chapter 3. The GMOP is defined as a dimensicnless quantity 

K per unit baseline length, where K is the conversion factor used to 

obtain the LOP variances and covariance in distance units.  (The con- 

version is from radians to distance units.) The similarity between 

the characteristics of the gradient oiß (ß is defined as the exact 

angular measurement of a horizontal sextant angle) and the desired 

traits of the GMOP sets the direction of the development toward finding 

GMOP as a function of gradyö . The equation of A  in the polar coordi- 

nate system is found, and the GMOP is derived as the reciprocal of the 

magnitude of gxa&ß.    The GMOP is analyzed thoroughly to investigate its 

physical correlation and its functional behavior. 

Chapter 4 contains the derivation of a simple method for determin- 

ing the LOP crossing angle OC . This quantity ir required for the 

implementation of the basic method described in Chapter 2.  Ic is shown 

that QC is easily obtainable from the measurable quantities which are 

required fcr the calculation of the GMOP. 

Chapter 5 presents an example problem for the convenience of the 

reader with a step-by-step procedure for applying the total method to 

a practical situation. The lack of suitable published human factors 

data for the three-arm protractor and the sextant forces certain 

assumptions concerning the statistical distributions of the component 

mmmm iiiu 
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angular errors. All assumptions are explained before the problem 

solution is presented. 

Appendix A offers the methods of obtaining the component angular 

error distributions for the human factors errors in using the three-arm 

protractor fiom measurable distance errors in placing the pivot point 

and the arms. These methods can be applied to suitable experimental 

data to obtain the component angular error distributions from which 

the probabilistic variables necessary for the implementation of the 

method for determining positioning accuracy are derived. 

Appendix B contains the proof of the acceptability of the LOP-error 

model of fig. 2-1. Specifically, the contention that, in the neighbor- 

hood of the observers' position, the LOP's approximate straight lines and 

the gradrf curves along which the error is measured are essentially 

straight lines perpendicular to the exact and the error LOP's is proven 

to be reasonable. Appendices C and D show some intermediate steps for 

derivations contained in Chapter 3. 

m 
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INTRODUCTION 

The advantages in convenience and precision of using horizontal 

angles for finding a position on land was recognized certainly before 

the seventeenth century. The application of the method to hydrographic 

surveys and shipboard navigation was delayed considerably due to the 

lack of a suitable angle measuring instrument.  The invention of the 

octant by John Hadley in 1731 provided such an instrument for marine 

use, and the Rev. John Michell suggested the use of the octant for 

g 
triangulation afloat in 1765. 

Since the time of Hadley and Michell, the application of horizontal 

sextant angles to marine positioning problems which require great 

precision has increased markedly. One specific application for which 

the method is suited well is buoy anchor positioning.  The U. S. Coast 

Guard maintains more than 20,000 floating aids to navigation which mark 

navigable channels and hazards to navigation in the waters of the 

United States. The Coast Guard Aids to Navigation Manual (CG-222) 

prescribes horizontal sextant angles as the primary buoy anchor position- 

ing method to be used by U. S. Coast Guard buoy tenders.  Interest in 

the accuracy of this positioning method has been spurred within the 

Coast Guard by the growing population of very large merchant vessels 

whose requirements for accurate channel marking are emphasized by the 

extremely severe consequences of grounding, e.g., cargo loss, ecological 

catastrophe and vessel damage. 

A method for determining the accuracy which can be expected for a 

particular horizontal sextant angle position fix is derived and presented 

jB^aaa^rtMatrtiM^iaMiw.»^.-^-,-:,^^ ■ -,    tniaimwtt-iiitfci 
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in this report. Chapter 1 offers the theoretical basis for using 

horizontal sextant angles as a positioning method and the development 

of the system model for a three-object, two-line-of-position fix. 

The basic method is developed from a random error analysis in Chapter 2. 

Chapters 3 and 4 and Appendix A contain supporting derivations which 

provide necessary inputs to the basic method of Chapter 2. An example 

problem is presented in Chapter 5 for the convenience of the reader to 

demonstrate the application of the total method to a practical situation, 

including a step-by-step procedure which facilitates the calculations. 

Mti 
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1. HORIZONTAL SEXTANT ANGLES AS A POSITIONING METHOD 

1.1 Theoretical Basis 

The utility of horizontal sextant a igles as a means of establishing 

geographic position (called position fixing) is based upon the following 

geometric principles: 

a. Any three points in space are coplanar and define a circle 

whose orientation and dimensions depend upon the relative 

positions of the three points. 

b. Consider a circle with two fixed points on its circumference 

which are connected by a chord. The angle formed by the line 

segments constructed from each of the two fixed points to any 

point P on the circumference is constant for all points P 

in the same segment of the circle.  (A segment of a circle is 

that portion of the circle which is bounded by an arc and 
1 

its chord. ) 

The fact th*t any three points in space define a plane is basic and 

will not be justified further herein.  The proof of the second part of 

principle "a" is founded upon the equidistance of all the points on the 

circumference of a circle from its center. Fig 1-1 shows a typical 

triangle OPQ. The perpendicular bisectors of OQ and OP, labeled WX and 

YZ respectively, are shown also. The end points of the bisected segments 

are equidistant from any particular point on the perpendicular bisector. 

Therefore, 0 and Q are equidistant from any particular point on WX; and 

0 and P are equidistant from any particular point on YZ.  It follows that 

IgjIg^lHI mmm^n, gj aumnjgiiiin,^ fc^.,^.^^Mai^a^, 
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FIG. 1-1 TYPICAL TRIANGLE OPQ SHOWING 
CIRCUMSCRIBING CIRCLE 

FIG. 1-2 DIFFERENT TRIANGLES WITH COMMON 
SIDE 00 AND THE SAME CIRCUMSCRIBING 
CIRCLE 
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0, P and Q are equidistant from the point of intersection of WX and YZ, 

labeled C. Consequently, 0, P and Q are on the circumference of a 

circle whose center is C. Further, since WX and YZ are straight lines, 

they intersect at only one point; so only one circle is defined by 

0, P and Q. 

The contention of principle "b" is illustrated in fig 1-2.  If 

0 and Q are fixed on the circumference of the circle, the value of the 

angle formed by line segments OP and QP is constant for all points P 

in the same segment of the circle, i.e., ß ■ ß ' * ß ". Fig l-3a 

depicts the situation when the lengths of OP and QP are equal (OPQ is 

an isosceles triangle). The isosceles triangle OCQ, whose sides are 

the baseline OQ and the radii CO and CQ, is s'.icwn also. (The standard 

symbols A for triangle and ^ for angle will be used henceforth.) 

Now, the line segment PS is constructed as the perpendicular bisector of 

OQ, which is the base of &0PQ and a chord of the circle. Consequently, 

PS passes through C and bisects Z.0PQ. Therefore, ^OPC = ^OPS » A/2\ 

and, since AOPC is also isosceles, £_ POC = <£0PC. It follows that 

^ OCP = TT -A  and ^.OCS =&   . This implies that ZCOQ = JL -A. 

Fig l-3b shows another possible configuration of the inscribed triangle. 

Again, 0 and Q are the fixed points on the circumference of the same 

circle; but this time the triangle is defined by 0, P' and Q.  The 

triangles OCQ of figs l-3a and l-3b are identical.  Since C COQ ■ 3£ -A 
2      r 

from fig l-3b, 

^P'OC-0-    ZCOQ=0 + Ö    -3L"    £0P'C (1.1) 

IttiilttilMiaiiii^^ -:'1(rtMBMMMI<a-■■ ■•"^fflfflTlitoiayr v   il-it^fr llllMli *^»^«» 
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FIG. 1-3a - ISOSCELES TRIANGLE OPQ FROM FIG. 1-2 

FIG. 1-3b - TRIANGLE OPb FROM FIG. 1-2 

'-- ■B ^■H^ 
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Also,    ZOQP' «   *fT - 6 - A'.    But    ZCQO«    Z COQ,  so that 

^CQP' -   ZOQP'   -    ^CQO - 3L. - 0 - ß • + Ä  -    ^CP'Q      (1.2) 

By definition, 

*' «   £OP,C+   ^CP'Q (1.3) 

Substituting eqs.  1.1 and 1.2 into eq.  1.3, 

A' = 9+ A - JL+ JL - e - a% + ^ 

or 

This result can be established in the same manner for all other points P 

in the same segment of the circle. 

The important implication of the preceding developments is that, for 

any set of fixed points 0 and Q, a particular valve of ß  defines a 

unique segment of a circle whose arc is a contour of constant 8 .  There- 

fore, if the points 0 and Q are fixed, charted objects, the angle A  observed 

from any position P defines a circular line of position (LOP) which passes 

through P.  Further, if two or more such angles are measured from the same 

position P using different objects 0 and Q, the intersection point of the 

arcs of the circle segments circumscribing AOPQ, AO'PQ*, ^0"PQ", 

etc., will fix the position of P within the limits of accuracy of the 

system. This is the theoretical basis for position fixing using the method 

of horizontal sextant angles. ' 

1.2 Practical Application 

The method of horizontal sextant angles is used as the primary 

buoy anchor positioning method aboard most U. S. Coast Guard buoy tenders. 

 L_I : __. . 
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In this application, the position fix is obtained from two LOP's de- 

rived from three fixed objects.  (The reliability of the fix often is 

assessed by comparison with a ?/ro bearing fix.) The case for the three- 

object, two-LOP fix versus fixes from other possible combinations of 

objects and LOP's will not be argued in this report in order tc preserve 

the continuity of the discussion. To align the discussion with the 

common practice for positioning buoy anchors, only the three-object, 

two-LOP fix will be considered hereafter. The two general geometric 

situations which may result when two LOP's are obtained from three ob- 

jects are shown in figs 1-4. 

The example of utilizing the method of horizontal sextant angles 

which will be described is called the preset angle method.  (The choice 

of this particular method for the example does not degrade the general- 

ity of subsequent developments.) The mechanics of applying this method 

to the buoy anchor positioning problem begins sometime before the actual 

operation. Files and notes of previous positioning operations for the 

same buoy anchor are researched to determine the three fixed objects 

(0, Q and Q') which are best situated for the particular intended anchor 

position P. Generally, alternate sets of objects are selected, if 

available, to permit some flexibility if the primary objects are found 

to be unsuitable at the time of the positioning operation. Considera- 

tions in selecting fixed objects include: 

a. visibility from the intended buoy anchor position, 

b. definition of vertical centerline, i.e., a spire is more 

desirable than a tangent to a point of land, 
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a 0,P. AND Q DEFINE LEFT LOP; Q, P. AND Q DEFINE RIGHT LOP. 

b. 0,P, AND Q DEFINE RIGHT LOP; G.P. AND a' DEFINE LEFT LOP. 

FIG. 1-4 GEOMETRIC SITUATIONS RESULTING FROM TWO-LOP HORIZONTAL SEXTAN! 
ANGLE FIXES 

L mm 
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c. suitability of the angle of intersection (crossing angle) 

of the LOP's, and 

d. the observed angle must not exceed the maximum value which 

can be measured by the sextant (126° for the newest 

sextants). 

Relatively elementary instruments are used to measure the sextant 

angles to be observed and the LOP crossing angle. The three-arm pro- 

tractor is used to measure the angles from a standard National Ocean 

Survey (NOS) chart. As its name implies, this is a three-armed instru- 

ment. Its arms may be rotated about a common pivrt point, and the 

angles between each outer arm and the center aria are read directly from 

a fixed scale. The vernier scale offers marked precision to one or 

two minutes depending upon the protractor used. There is a small hole 

at the pivot point which is centered over the charted buoy anchor posi- 

tion. Then, the arms are aligned through the charted position of each 

of the three fixed objects. The measured angles are recorded. In 

general, the largest scale chart available upon which the necessary ob- 

jects are shown is used; and the angular measurements are checked by 

several competent personnel. The LOP crossing angle is observed usually 

by constructing the circular LOP's on the chart with a compass. 

As the vessel proc^ds to the area in which the buoy anchor will 

be positioned, each of ehe horizontal sextant angles to be observed is 

set on a sextant. Two competent personnel, each with one of the preset 

sextants, assume a prescribed position on the vessel which is selected 
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for its proximity to the point from which the anchor will be released 

and for its commanding view of the fixed objects. The vessel is 

maneuvered until the vertical centerlines of the objects used to obtain 

each LOP appear superimposed when sighting through the appropriate sex- 

tant. When this occurs, the anchor is released; and the positioning 

operation is complete. 

1.3 Sources of System Error 

The sources of error in the system as described in this chapter 

can be classified under three general headings. These are plotting 

error, primary instrument error and supplementary error.  The specific 

components of each general heading are the errors which must be con- 

sidered for the analysis of the positioning accuracy of the system. 

These include the following: 

(1) Plotting error 

(a) charting error of the positions of objects 

(b) instrument error in angular measurement with the 

three-arm protractor 

(c) human error in angular measurement with the three- 

arm protractor 

(2) Primary instrument error 

(d) instrument error in angular measurement with 

the sextant 

(e) human error in angular measurement with the 

sextant 

(3) Supplementary error 

(f) error introduced by the displacement of the 
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sextant angle observers from Che position of 

buoy anchor 

(g) error caused by the effect of current on the 

anchor after it is released and/or the effect of 

bottom topography on the position of the anchor 

after it contacts the bottom. 

The supplementary error will be neglected in the error analysis, since 

its components are not truly random. 

First consider the combined effect of (a) and (c). This combined 

error is the source of dependent error between the two angles due to the 

use of the three-arm protractor. Fig 1-5 shows a typical set of fixed 

objects 0, Q and Q* which are to be used to determine the position P. 

Line segments PO, PQ and PQ1 represent the arms of the three-arm protrac- 

tor used to measure the sextant angles to be observed, ß    and A    are 

the exact angular measurements of ^.OPQ and £_ QPQ' respectively. The 

error in positioning the pivot point of the protractor directly over P 

as it affects the angular measurements A     and A    is designated £ 

and £  . Failure to position the arms through the exact positions 

0, Q and Q' creates the errors £  , £ and £ , in the magnitude of 

the angle measured from a reference direction (REF) to arms PO, PQ and 

PQ'. The angle from REF to each arm, indicated in fig 1-5, can be sub- 

tracted to give ^lOPQ and ^QPQ1, which define LOP-1 and LOP-2 respec- 

tively, as 

^OPQ »  ^(REF-to-PO) + £  - ^(FSF-to-PQ) -  £ +  £ 
° q     Pi 

(1.4) 

and   ^QPQ' - ^ (REF-to-PQ) + £q . ^ (REF-to-PQ') -  £q. + £ 

MMH 
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REF 

FIG. 1-5 HORIZONTAL SEXTAN I ANGLE DESCRIPTION 
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The signs of the errors may be either positive or negative. Positive 

errors £0, £L and £t  tend to increase the magnitude of the angle 

between REF and the particular arm while positive errors £  and £ 
Pl     p2 

increase the total angle. The dependence of the error terms, shown for 

both angles in eqs. 1.4, upon each other is apparent from the appearance 

of the £ and £ terms in both equations. 

The primary instrument error and (b), the three-arm protractor 

instrument error, are individually independent of all other errors. 

Their combined effect on 3-,  and ^. is designated £ and £ 

respectively. Adding these errors and noting that 

h ^(REF-to-PO)  -    ^(REF-to-PQ) 

and      ^2»    ^ (REF-to-PQ)  -    ^(REF-to-PQ'), 

eqs  1.4 become 

^OPQ= px± £0 - eq+ ePi+ €r 

and        £QPQ' =  ^ + £q -  £qt +  £p^ +   £s 

(1.5) 

The eqs. 1.5 are the expressions for the effective horizontal sextant 

angles used for the positioning operation described in Section 1.2. The 

remainder of this presentation is dedicated to the determination of 

positioning accuracy from the expected angular errors £ . 

I Mill! Ill) III         _i mMMri■ - ■ =-.  
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2. POSITIONING ACCURACY 

2.1 Preliminary Considerations 

The ultimate goal of this report is to develop a method for determin- 

ing the accuracy of a position fix obtained by hcizontal sextant angles. 

The basic method is derived and presented in section 2.3. The assumptions 

which are made to permit a reasonable mathematical development of accuracy 

probability are the following: 

a. the combined system random error is normally distributed; 

b. any bias error has been removed from the system so that 

the mean of the random error is zero; 

and,in the neighborhood of the observers' position P, 

c. the LOP's are coplanar; 

d. the exact and error LOP's approximate straight lines and 

the angular errors € can be transformed into distance 

errors measured along a straight line which is perpendicu- 

lar to the exact LOP and the error LOP; and 

e. the error LOP's are parallel to the exact LOP's. 

The statistical descriptions of the individual angular errors 

are derived from analyses of suitable samples of random error data.  (The 

determination of the angular error distributions of those errors which 

result from the use of the three-arm protractor, £ ,  £ , £ ■> £ 

and £, , from measurable distance errors in placing the arms and the 
p2 

pivot point is discussed in Appendix A.) Generally speaking, random 

physical phenomena approximate normal distributions. Further, the sum of 

random variables with the same distributions which are other than normal 

MHMtaawHMMHiMM 
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usually will approach a normal distribution. Consequently, the assump- 

tion "a" of a normally distributed random error for the horizontal sex- 

tant angle problem is considered acceptable. The distribution of some 

random error variables.is offset from a zero mean value by a constant 

value called the bias error.  In order to concentrate the discussion on 

the analysis of the system random error, it is assumed by "b" that the 

bias error has been removed from the system. 

The geometric model used for this analysis is shown in fig. 2-1. 

This model is identical to that used by Burt et al in ref. 2.  The fig- 

ure depicts an enlarged view of a small area in the neighborhood of the 

observers' position P.  The effect of a one standard deviation (one - 0" ) 

error in each LOP is shown. The combination of the 

one - 0"~ error LOP's for the assumed normally distributed random error 

defines the elliptical probability density contour of a bivariate normal 

distribution.  The ellipse shown in fig. 2-1 might represent the 75% 

probability density contour, i.e., there is a 75% probability (three chances 

in four) that any particular position fix will be within its boundaries. 

Assumptions "c", "d" and "e" are necessary for the use of this model. 

The coplanarity of the LOP's, assumption "c", is considered accept- 

able if the fixed objects are clearly visible from the observers position 

and if the fixed objects and the observers position are at the same 

altitude.  The first requirement is implicit for the application of the 

method of horizontal sextant angles. The latter is usually reasonable 

for buoy anchor positioning problems.  The linearity of the LOP's and 

the distance error lines assumed by "d" is made temporarily to preserve 

i^lMMte.^1 
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FIG. 2-1 EXPANDED VIEW OF INTERSECTION OF TWO 
LINES OF POSITION 

CONSTANT 

FIG. 2-2 CONTOURS OF CONSTANT/3 (circular LOPs) 
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the continuity of the discussion. Proof of the acceptability of this 

assumption is presented in Appendix B. Some of the developments of 

Chapter 3 are used in the proof. Fig. 2-2 shows that the assumption "e" 

of parallel exact and error LOP's is relatively poor near the points 0 

and Q. For the relatively small expected LOP error, the LOP's will be 

essentially parallel everywhere except in small areas in the neighbor- 

hoods of 0 and Q. Consequently, this assumption, with its recognized 

shortcomings near the fixed objects, is considered acceptable for the 

purposes of this aiul/sis. 

2.2 The Probability Theory 

The probability density function for a normally distributed random 

error variable £ with a zero mean value is given by 

P(€ ) 

lit 
2 0s*- 

(2.1) 

2 
where (J~ is the standard deviation of the distribution and 0~    is 

the variance of the distribution. 

The probability that a particular value of £ is within the limits £ 

and £  is determined by integrating eq. 2.1 from  £ to £..  In 
Q 3 Ö 

equation form, 

p   ( ca < c ^ eb) - L  p(o d€ (2.2) 

Tabular data is available for the evaluation of eq. 2.2 for any particular 

values of £ ,  £. and ö". 
a    D 
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The general form of the joint probability density function of two 

normally distributed random error variables £  and £ , both with 

zero mean values, is the bivariate normal 

p( € . £ ) . , e    r (2 3) 

where /O is the correlation coefficient (a measure of the dependence) 

of 6j upon £ . 

The probability that a particular /alue of the cmMned error is within 

certain prescribed limits of £  and £  can be determined by the double 

integration of eq. 2.3 between these limits, i.e., 

P€ 
/CXa * £, J €lb\ =    f "T      p(£       £)d£     d£ (2.4) 
Wi^ieJ      ^4a 12 2 1 

The presentation of general tabular data for the evaluation of eq. 2.4 

is not feasible due to the variability of O   from case to case. However, 

tabular data is available for the special case when £ , and £ are 
1      2 

independent ( p = 0). For this special case, eq. 2.3 reduces to e 
■i d 

"'er t2>" 7rbre      **    ^ (2.5) 
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The dependent nature of each total LOP error upon the other tor the 

three-object, two-LPP method of horizontal sextant angles was discussed 

in section 1.3. This dependence requires the more complicated orobability 

density function of eq. 2.3. Fraaer (ret. 3) gives a method by which 

the dependent errors £  and £  can be transformed into orthogonal, 

independent errors, x and y, whose probability density function is in 

the form of eq. 2.5. Fig. 2-3 (fig. 12 of ref. 2) can be entered, then, 

directly with a prescribed function of C and QT  to obtain the radius of 
' x    y 

an equivalent circular probability contour for various accuracy probabili- 

ties.  (The elliptical probability density contours of the bivariate 

normal are converted to circular contours in order to quantify more de- 

scriptively the accuracy to be expected for a particular probability. 

The actual dimensions of the error ellipse are of interest only when a 

specific situation requires the determination of along-track and/or cross- 

track error.) 

A suitable modification of Fräser's method for application to hori- 

zontal sextant angles and the subsequent use of fig. 2-3 will be combined 

to form a method by which the positioning accuracy of the system can be 

determined. The first task is to define the variances (<T* ) of the indi- 

vidual LOP error and the correlation coefficient (0)  of the combined 

LOP error, 

2.3 The Basic Method 

The analysis begins with the definition of the equations for each 

LOP from eqs. 1.5 as 

mmmmmmmmm 
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LOP - 1 - £ OPQ - ^ + G0 - Cq + £p + cr 

(2.6) 

and  LOP - 2 - Z QPQ' « ^ + £q - £q. + £p + £s 

As discussed in Section 1.3, the error components combined as £ and £ 

are individually independent of all other errors. Further, the errors in 

positioning the outer arms of the three-arm protractor, £Q and £„•> 

independently aftect LOP - 1 and LOP - 2 respectively. These independent 

errors are combined to facilitate the mathematical manipulations as 

€i - C0 + £r 

and     £h =-£q« + £s 

Now,  the expressions for the total error affecting each LOP can be written 

as 

ei-CLOP-l-   €i-£q+   \ <2'7a> 

and    C2 = CLOP - 2 * €h + c
q 

+ £p2 
(2-7b> 

By definition, the variance of £ is equal to the expected value of the 

square of £ . In equation form 

<7-2=E[€2] (2.8) 

Applying eq.  2.8 to eq.  2.7a, 

2        r 2- 
0\   -£[<€,-   £q+   %)] 

 -—— >.^——  •^z-j ■• ■ ■■ '   '■    ■— : , - . 
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or 

or2 -1[ et
2 - ct cq+ et ePi - et cq+ eq

2 - e. e 
q   ~P, 

♦ '. S - €, S ♦ S2 ] 
(2.9) 

Since E[X + Y+ Z + 1 - E[X]   + E[Y] + E[Z +  ...1 , eq.  2.8 can 

be applied to eq.  2.9 to yield 

1 1 7 (2-10) 

07 -or +<+^
2 -2E[£leq+ e, S^^SJ 

The last three terms in eq. 2.10 are the covariance (j<Q  terms which express 

the dependence of the random variables. However, as stated previously, the 

€. error is individually independent of all other errors, so that 

Aq - E[ £"1 S ] ' ° and>66ip = Ef ^i S I* °- Als°' a8Sumin8 
that the error in aligning arm PQ directly through Q is independent of that 

in positioning the pivot point directly over point P, JJL>       • Ef £ £   "0: 
/qPi [     q      PiJ 

and all  the covariance terms vanish.    Eq.  2.10 becomes 

aT2 s   C7T2 +   Of2+   Op"'2 (2.11) 

A similar sequence of operations en eq. 2.7b yields 

072- C7^2+ C7^2+ flf2 (2.12) 

The correlation coefficient 4 of £, and ^ *s defined as 

/°-^r (213) 

■MM 
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where /^2 - E|" C1  €2  is the covar lance of ^  and €2 •     (2 .14) 

Substituting eqs. 2.7 into the expression for the covariance, eq. 2.14, 

y"i2 - E[ < <4 - «n + SH€h + 6« + V] 
or 

y^i2-E[ €i £h+ ei V£i e   - e e. - e2 - e c P2 q      h q q   ^p 

(2.15) 

Since £ and C are independent in themselves and £ is independent of 
i     h °. 

£ , eq. 2.15 reduces to 

^ ■ E[ S S ] -T2 (2.16) 

The components of £  and £  are derived in Appendix A as 
Pl     V2 

£  ■ - Afli + A89 (A.12) 

and  £  = - A92 -  A^2 (A 8) 

where  A 8, ,  &9 and &k  are angular changes defined in Appendix A 
1     2      * 

(figs. A-3 and A-4). 

Therefore, 

E [   S   S]    " E[   <_   A91 +    A92M-  A02  -      *12>] 

HÜÜ^ MMMM •'■-'■■   ■■ '• /:- ■ ■-  ■' -■■       - :■■■.■  ■'■:----'.->--:.-i- •   ■■  -.-    /■   ■■■■■■■    : ■■-■■• 
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(2.17) 

°r       E [   €Pl %] " E [  AG1   *92 +   A91  **2   "   *922 "    A62 ^2] 

The Individual angular changes,    A0 ,    A62 and     AJ^2» are individually 

independent of any other 'single angular change so that eq.  2.17 may be 
written as 

2 
E [se.j-.r- w]-- < (2.18) 

-* /*ü • - s2 ■ °r2 (2'19) 

Now, substituting eqs.  2.11, 2.12 and 2.19 into eq.  2.13, 

2 _2 
-<  ^2  

+<7T ) 

Wer2* <r2+ ör2)(Var2+ <C2 + or2) 
(2.20) 

'Px ' N V w h    wq    Vp2 

Eqs. 2.11, 2.12 and 2.20 define all of the parameters required in eq. 2.3. 

In order to continue the development into Fräser*s method for eliminat- 

ing the dependence of the LOP errors, it is necessary to convert the para- 

meters of eq. 2.3 as defined by eqs. 2.11, 2.12 and 2.19 into distance units 

measured over a straight line which is perpendicular to the exact and the 

error LOP's. Ultimately, this conversion is necessary to obtain the radius 

of a particular circular probability density contour, which must be in dis- 

A 
tance units. Assume that there is a factor K which meets the stated con- 

version requirements. This is expressed in equation form as 

£. - K Ca (2.21) d       a 

where €. is the error in distance units 

and   £ is the error in angular units. 

mm^^mmt^nmmmmk 
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Applying eq. 2.21 to £ gives  £  - K, €.. This implies that 
* Id 1      *■ 

oz2'*[<\*/] (2-22) 

But.    E[(    ^c/]-      K^f^l2] 

so that  0^ 2=      ^2 E|"     ex
2   1 (2.23) 

Similarly,   tf^J        =    K^    ET   £ 2
2 1 (2.24) 

Using eq.  2.8 and substituting eq.  2.11 or eq.  2.12 as appropriate,  eqs. 

2.23 and 2.24 become 

G~2 = K 2 ( o-2 + a--2 + err2) (2-25) 
Id 1 i q P1 

and      CT^d
2=    l2

2 (C7t2 + C772+   ^2) (2.26) 

The same procedure can be used to convert the angular covariance term into 

distance units.    Using eqs.  2.14 and 2.21, 

Al2d= E[   ( *1 £1)( «2  £2>]   = *1 *2 E[ei   Cl] (2.27) 

or,  substituting eq.  2.19 into eq.  2.27, 

/^i2da - KX K2 (   o^2 + o^2) (2.28) 

Note that when the variances and covariance in distance units given by 

eqs. 2.25, 2.26 and 2.28 are substituted into the general expression for 

JEgJMHfcMlMiimMlilMM -■■•i r ■■■■     —ii■irniiiMi Yjriii'irir.,■■  -   nüiiütMaill 
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the correlation coefficient f>  (eq. 

/>-     ^12    _      ^l2d 
C " <T\ <Ti '   Cl& Git 

2.13),  the K factors cancel so that 

(2.29) 

The correlation coefficient f is unaffected by the conversion to distance 

units and is still given by eq. 2.20. Chapter 3 is dedicated to the deri- 
A 

vation and analysis of the conversion factor K. 

The variance and covariance terms in distance units, as defined by 

eqs. 2.25, 2.26 and 2.28, permit the application of Fraser's method 

directly.  (Fraser's method is abstracted herein for the purposes of this 

discussion. The details of the entire development are given in ref. 3.) 

Since the LOP crossing angle ( o( in fig. 2-1) is not necessarily 90°, the 

first step is to transform the error variables onto orthogonal axes. The 

transformation is given as 

and 

€ld = El 

(2.30) 

r El ~ E2 tan<*. 
2d sec«C 

where E. and ^  are the error variables along the new orthogonal axes and 

°Cis the LOP crossing angle. 

The transformation of eqs. 2.30 can be used to obtain the joint probability 

density function of E., E_ as 

■^»■M 
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P(   El,    E2) 

 1 (    
El        2ftElE2  ,     E22 

2d-Pl
z)  of/   öf;or    öT/ 

where     0^7 =  OT\ 

(2.31) 

2        2_ 
°£= "jshjr V^2+ ^i" ■«c'b< ■ 2

A- 
secoc 

12d 

°12"    E[ElE2]
=-I^(^:2-/^2dsecoC) 

l°l 
U 12 <7u 2 ">"l2d secoC 

Gix OE2 
oTd V°id2 + &2A 2 sec2oc - y*i 2d secoC 

Although the error axes are now orthogonal,   the  cross product  terra 

in the exponent of   e    in eq.  2.31  indicates  the dependence of E    upon E  . 

In order  to eliminate  the  cross product  term,   the coordinate axes are rotated 

by another  linear change of variables.    The  transformation is statc-i as 

follows: 

E. -  x cos/ - y sin/ 
(2.32) 

E» ■   x sin/ +   y cos/ 

where /  is  the angle through which the axes are rotated. 

The derivation of ref.   3 showr  unat the expression for/ must be 

fü^ttitfjMM :■ fa1 ,--,-.-^--i   ■■■ «■   ■ ---■■ 
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/- JL tan 
' 2 

-1 
2/°t 0^ ^ 

oir2-OE:2 
(2.33) 

This transformation for the rotation of the coordinate axes is discussed 

in ref. 4 also. When eqs. 2.32 and 2.33 are substituted into eq. 2.31, 

the resulting probability density function is 

1     . x 
—5- ( 

P(x,y) = 
2     NQ-2'    (J-V 

x ^y 
2-rr Q~ of 

(2.34) 

where (TZ=   J 0~£        cos2/   + 0~£n 
l sinZ/   + 2U19 sin/ cos/ 

(2.35) 

and  0^* = -JO"E~ 
2 sin2/ + CTg' 2 cos2/ - 2U12 

sin -^ cos/ 

Eqs. 2.35 define the standard deviations (T^ and CTtT of the independent x      y 

variables x and y. Now, fig. 2-3 can be entered with the smaller of the 

ratios SiJL  or sLL  .  This value and the desired accuracy probability define 
Oy"   CTx" 

a value of K .  The radius of the equivalent circular probability density 

contour is calculated by 

R = K Ofe' (2.36) 

where (j£ is the larger of Q^ and O^. 

This concludes the development of the basic method for determining the 

positioning accuracy of the method of horizontal sextant angles. As stated 

IHMM WM iMitt i   i Mmmmii mmsmk ■ ■■ __—„._ -._*—^_-_ -* ■'. ■■■■■■■ ■:■.--.-■    - 
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K 
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previously, the derivation and analysis of the conversion factor K used 

to convert the angular error to distance error is presented in Chapter 3. 

The derivation of a means for calculating the LOP crossing angle oc for a 

three-object, two-LOP position fix is included as Chapter 4. Finally, an 

example of a practical application of the complete method to a buoy pos -- 

tioning problem is given in Chapter 5.  It should be noted that the presen- 

tation will continue through the example problem without the benefit of 

suitable, published human factors error data. The consequent assumptions 

made in Chapter 5 for the purposes of the example are explicit therein. 

m «au ngggagfe 
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3. THE GEOMETRIC MULTIPLICATION OF PRECISION (GMOP) 

3.1 The Role of the GMOP 

Th«. development of Section 2.3 presumed the existence of a conversion 

A 
factor K , defined by eq. 2.21, which can change the angular variances of 

the individual LOP's and the angular covariance of the combined LOP's into 

distance units.  Further, in order to conform to the geometric model of 

fig. 2-1, it is necessary that, in the neighborhood of the observers' posi- 

tion P, the resulting distance error is measured over a straight line which 

is perpendicular to the exact and the error LOP's (assumption "d", 

Section 2.1).  It is the purpose of this chapter to develop and study a 

suitable conversion method within the geometric constraints of the system. 

The ultimate goal is to find some function which is independent of the base' 

line length (the distance between the fixed objects, designated A) such 

that the product of this function, evaluated at any point P, and A will 

A 
yield K .  Combining this concept with eq. 2.21, this function, named the 

Geometric Multiplication of Precision (GMOP), is expressed in equation 

form as 

K    €d 
GMOP =  =  jr- (3.1) 

A   A £a a 

where €. is the error in distance units, 

€  is the error in angular units, 

and  A is the baseline length 

The reader familiar with electronic triangulation systems will recognize 

the analogy between the GMOP and the GDOP (Geometric Dilution of Precision) 

IMMMi1MB<lililiii        i «<M*li«-|ill>   lUMMiil—IM   mil    n          
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commonly used for the electronic systems. The significant difference be- 

tween the two is that GMOP equals zero at the fixed objects 0 and Q. 

At this point a brief discussion of the direction of the following 

development is appropriate. The direction of the development is set by 

the desire to describe the GMOP as a function of the magnitude of the 

gradient of ß ,  ^ß     The logic of this choice is apparent when the 

the desired features of the GMOP are compared with the inherent traits of 

the gradient oiß,   VjS> The magnitude of V/3    converts distance traveled 

between contours of constant A  (the LOP's) along the path of maximum change 

in ß   to an angular change in A .* The direction of wA    along the path 

of maximum change in 3  requires that it is perpendicular to the contours of 

constant A .  Fig. 3-1 illustrates the relationship between the contours of 

constant A   and curves of VA   •  (The circular nature of the curves of V/S 

as presented in fig. 3-1 is shown to be accurate during the analysis of 

Appendix B.) Obviously, the inverse of | v^S |  meets the requirement to 

convert angular measure to distance units within the geometric constraints 

of the system. Further, the fact that \J8 is perpendicular to contours of 

constant A   indicates that the requirement to measure the error in distance 

units along a straight line which is perpendicular to the exact and error 

LOP's may be approximated by measuring the error along curves of V/3   • 

Therefore, there is a strong possibility of fulfilling all of the require- 

ments of GMOP with a function of \Vß\  .  The development begins with the 

derivation of the mathematical expression for the LOP in Section 3.2. 

3.2 The Mathematical Expression for an LOP 

Consider the circular LOP shown in fig. 3-2.  Again, the observer's 

position is P and 0 and Q are the fixed objects used to generate the hori- 

*The conversion is from distance units to radians. 

veumämmmmmäm 
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CURVE OF 

CONTOURS OF 
CONSTANT ß 

FIG. 3-1 THE RELATIONSHIP BETWEEN CONTOURS 
OF CONSTANT   ß    AND $* CURVES 

FIG. 3-2 CIRCULAR LOP SHOWING PERTINENT PARAMETERS 
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zorital sextant angle. The coordinate system is chosen with point 0 at 

the origin.  (It is very important to understand that this representa- 

tion and the analysis which follows applies to any sextant angle generated 

from two fixed objects,, i.e., the points 0 and Q are representative of any 

set of baseline objects.) It is expedient in this case to use the polar 

coordinate system where r is the position vector of any point in the plane 

of the coordinate system. The position vector r has magnitude r and a direc- 

tion defined by the angle 0 between r and the baseline axis. The variables 

A and &   have been defined as the distance between 0 and Q along the base- 

line and the exact measurement of the horizontal sextant angle respectively. 

Referring to fig. 3-2 and using the law of sines, 

sin sin 
(3.2) 

Substituting for k 

sin (3 if - ( A + 6)1   sinÄ 

Noting that sin [ TT - ( A + 0)1 = sin ( A+  0) , 

sin ( & + 0)  sin/3 

Finally,  sin ( £ + 0) ■ sin^cos0 + cos^ösinO 

so  that 

r ■ A(cos0 + cotigsinO) (3.3) 

Eq. 3.3 represents the LOP in polar coordinates in terms of r, A, 0 and Z3 
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3.3 The Derivation of the GMOP 

Eq. 3.3 can be manipulated to yield an expression for A in terms of 

r, A and 0. The manipulation yields 

A"  cot"  £csc9 - cot9 

The general form of the gradient of A   in polar coordinates is 

(3.4) 

(3.5) 

where £ and 9 are unit vectors  in the r and 6 directions respectively. 

The components of eq.   3.5 may be derived from eq.  3.4 as 

and 

- -~- cscGsin^Ö 

cscOsin \g jsing - cotig cos9   I 
r     cosQ + cot^sinO    I 

(3.6) 

(The details of the derivation from eq. 3.4, through eq. 3.8 are presented 

in Appendix C. Also, an understanding of the development through eq. 3.6 

should permit the reader to follow the analysis of Appendix B, the proof of 

the acceptability of assumption "d" of Section 2.1.) 

The magnitude of \^tf is given by 

^81 - V(~l^)2+ ^^fe*' 
Substituting eqs. 3.6 into eq. 3.7 yields 

(3.7) 
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m-  cscQsinß 
A(cos9 + cot£ 8inO) 

(3.8) 

Now, the GMOP may be derived from eq. 3.8 in the desired form of eq. 3.1 

as 

GMOP sin9cscÄ (cos9 + cotjS sinO) (3.9) 

3.4 The Nature of the GMOP 

At this point the behavior of eq. 3.9 over the entire ranges of p 

and 9 is of interest. The equation may be put in a more suitable analytical 

form by first expanding as 

GMOP ■ cscÄsin9cos9 + cscAcota sin29 CAi zjBzotA\ 

Substituting into eq. 3.10 the trigonometric identities 

sin9cos9 = isin29 

and  sin 9 = I - icos29 
2  2 

yields 

Letting 

C = —csc/g and D = —cacjScot^ff, 

GMOP = D + Csin29 + (-D)cos29 

or   GMOP = D - -/°2 + D* cos(29 + *") 

where   Y ■  tan    (""fT") 

(3.10) 

GMOP = -csc^sin29 + icsc^cot^d   - ^cscA cot^cos29 (3.11) 

(3.12) 

raa 
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Let      E -    -yC2 + D2    and notice that - = tan J9 ,so that 

GMOP - D - Ecos(2Q +ß ) (3.13) 

The nature of the GMOP is readily discernible from eq. 3.13. Particu- 

lar features include the following: 

a. For any ß , GMOP consists of a constant D from which 

some portion of a cosine function is subtracted. 

b. The sinusoidal portion of GMOP cycles once each If 

radians. 

c. Increasing A   between 0° and 90° causes a decrease 

in D and E and shifts the cosine curve to the left. 

d. Noting that 

E -     -yC2 + D2 - T/TCSC
2
^   + ^csc2^ cot2^  - ^csc^ «JI + cot2/* 

1      2„ 

eq. 3.13 can be written as 

GMOP * icsc2^ cosA   - icsc/3 cos(29 +^ ) 

Values of 0 may vary from gero for P located at Q to "TT-^ 

for P at 0 (see fig. 3-2).. 

At these boundary values of 0, 

9 - 0, GMOP - Icsc2^ cos^- Icsc2^ cos^ - 0 



-53- 

9 « TT-iJ , GMOP ■ lese2* cos* - icsc2* cos(2Tt-2*+^) - 0 

This is the expected result since the contours of constant ß 

(the circular LOP's) converge at 0 and Q (see fig. 2-2). 

e. The variation of 6 from 0 to If -A   causes the truncation 

of the cosine curve at a distance ß   from 20 + &   ■ 0 and 

from 29 + A   -  2"»* ; thus, all possible values of 29 + 6 

yield cos(29 +J#)*COSA  so that the GMOP is always positive. 

f. Intuitively, the points M* , which lie on the perpendicular 

bisector of OQ in fig. 3-3, should be the points at which 

GMOP is maximum for any given A  . As indicated in the figure, 

"ft -& 
for the points M* , 9 ■    *~. The derived equation may be 

checked for agreement as follows: 

^ GMOP 
To -   2Esin(29 + A ) - csc2* sin(29 +A ) 7 V* (3.14) 

for the non-trivial  case,  eq.  3.14 implies  that 

29 + A   = nTT (n - 0,  1,  2,...) 

For any ß   in the range of interest, the only one of the 

values which 29 + A    assumes is *f? . Consequently, 

29 +ß   - TT 

which yields 9 ■ "~P   for;maximum GMOP (A  » const) 

g. Finally, the combined implications of "e" and "f" above indi- 

cate that the values of GMOP are symmetrical about the perpendicu- 

lar bisector of OQ. 



-54- 



-55- 

Items "d" through "g" above indicate that the mathematical representa- 

tion of the GMOP behaves as expected at several check points. It is con- 

cluded from these favorable results that eq. 3.9 does describe a function 

which satisfies the form requirement of eq. 3.1 and converts angular errors 

to distance units within the system constraints. Fig. 3-4 shows curves of 

GMOP vs 9 for 20-degree increments of &   from 5° to 125° (within the range 

of the newest sextants). The curves are presented to demonstrate the 

changing shape as A   varies. Additionally, contours of constant GMOP are 

shown in fig. 3-5. This type of representation usually aids in the visuali- 

zation of the physical situation. 

3.5 The Feasibility of Linear Interpolation for GMOP 

An investigation of the feasibility of linear interpolation between 

the curves of fig. 3-4 to obtain values of GMOP for intermediate values of 

A  and between curves of GMOP vs A    for incremental 9 in order to obtain 

GMOP for intermediate values of 9 is of interest. For the first case, 

values of GMOP (0 , A \)  and GMOP (0]_, ^3) would be obtained from fig. 3-4. 

Then, the linear interpolation could be performed to obtain GMOP (9j, A 2) • 

The second case implies that GMOP (0]_, 3 1)  and GMOP (93, &■£)  could be 

used to find GMOP (9,, £])  by linear interpolation.  The combination of 

theoe two possibilities would yield a relatively concise table from which 

GMOP could be determined for any possible rf and 9. The advantages of 

such a presentation are obvious. For. exact linear interpolation in the 

first case, gGMOP   must be constant, i.e., there must be a linear rela- 

tionship between^ and GMOP for any constant 9. Likewise, exact linear 
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interpolation in the second case requires that  yGMOP        is constant. 
we \ß 

Therefore, the behavior of each of these quantities is an indication of the 

accuracy which can be expected from linear interpolation for their respective 

cases. The equation of- g v*^   is derived readily from eq. 3.9. The de- 
*p   |e 

tails of the derivation are shown in Appendix D. The result is 

^GMOPl 
2ß    |e -Gcsc ̂ A     stnAcos{A + 9) + 2G (3.15) 

% 

% 

where G ■ sin9 

Note that the quantity in brackets is a relatively "tame" function whose 

individual components never exceed a value of 2.0. The effect of this quantity 

3 
is to modify the dominant -esc function. The degree of modification will 

depend upon the particular values of ß  and 9. The coefficient G exerts a 

*\ /TMOPI 
more commanding influence of the shape of 4r-r 1  in that the effect of 

*P      19 
the constant 9 value is not diluted by the varying &   values. Curves of 

3GM0P 

nearly constant) 

are shown in fig. 3-6. Although each curve exhibits constant (or 
9 

afcGMOP 

* 
over seme range of &  , these ranges vary in size 

and position for different values of 9.  In general, linear interpolation 

between curves of GMOP vs 9 for constant incremental A   is acceptable only 

over limited ranges of A   which differ with changing 9. 

The equation for 
^GMOP 

^ 9 
is  taken from eq.   3.14 as 

^ GMOP 

;>o 
= 2Esin(29 + A ) (3.16) 

where  E - _L_csc ß 2     r 
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2 
For any constant/J, eq. 3.16 represents a sine curve of amplitude csc/S. 

The most acceptable ranges of 0 for linear interpolation purposes are those 

which include the section of the curve near a peak.  Since the phase angle 

of the curves changes -with A  (the phase angle is, in fact, equal to A   ), 

these acceptable ranges will vary for varying A  . Additionally, the ampli- 

tude of the curves varies inversely with A*\  and, since a smaller amplitude 

will effect a "flatter" curve, the range of 0 over which linear interpola- 

N (5MOP i 
tion is acceptable increases with increasing A*.    Curves of -* 1 are 

' d e   If* 
presented in fig.  3-7.    The results of figs.  3-6 and 3-7 prompt a general 

caution against linear interpolation.    Until  the acceptable error  in GMOP 

is determined (as the error effects the calculation of  0~?A    &2d an(*/*\")t) 

it  is advisable to  calculate the required value for any specific case 

directly from eq.  3.9. 

*for 0^490° 
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4. THE LOP CROSSING ANGLE («C ) 

4.1 The Calculation of oC 

This chapter is dedicated to the derivation and presentation of a 

method for calculating the LOP crossing angle «£ as an input to the basic 

method of determining the positioning accuracy developed in Section 2.3. 

The LOP crossing angle is defined as the acute angle between the tangents 

to the LOP's at the observer's position P (see fig. 2-1).  It is shown 

physically for the respective cases of figs. 1-4 in figs. 4-1. The effect 

of o( on the reliability of a  position fix will not be addressed speci- 

fically in this report.  (The deterioration of fix reliability with the 

deviation of oC from 90 is demonstrated effectively in fig. 7 of ref. 2.) 

Consider the illustration of one LOP in fig. 4-2. The development 

of Section 1.1 provides the value of ^COQ - ^L-  - ß    (point C is the 

center of the circular LOP).  It follows from fig. 4-2 that 

^= e - £COQ= 9 - 3?- + /3 (4.1) 

Since    ^OPC  is  isosceles  (two of  its  sides are radii of  the  circle), 

^.POC =    rflOPC;  and p in fig.  4-2 is given by 

ty- -TT+ \  - e+^ (4-2) 

I • 
| This expression for th  can be derived readily for configurations encompas- 
% 

f sing all possible combinations of A  and 9. 
i - I 
i 

The  two general  configurations of  the  tangents  to  the LOP's and 
i 

the position vectors r at  the observers'  position P are shown for  the  case 

I of fig.  4-la in figs.  4-3.    From   fig.  4-3a, 
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a. Situation corresponding to fig. 1-4a. 

b. Situation corresponding to fig. 1-4b. 

Figure 4-1.   Illustration of LOP crossing angles for the two general geometric cases of fig. 1-4. 
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TANGENT TO LOP AT P 

P 

icra i 

/ 

Figure 4.2   One LOP showing the angle ♦ 
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[a.J 

[b.] 

Figure 4-3.   Geometric situations near the intersection of the LOP's for fig. 4-1a. 
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°c- h-W-pJ (4.3) 

Substituting eq.  4.2 into eq.  4.3 yields 

°C= e2+^2 " el 

In like manner,  from fig. 4-3b, 

or o^ = TT- (02 +^3 2 - 0!) 

(4.4) 

(4.5) 

Figs. 4-4 show the two general configurations for the case of fig. 4-lb. 

From fig. 4-4a, 

or << = 9i - 92 - j32 - - (62 + {3 2 -  9l) 
(4.6) 

From fig. 4-4b, 

or 

«- lT-[)fri - (^2+/Si>~| 

<* = *TT - («! - 02 - |8 2) - IT- f- (92 + ^ 2 - 9l)1 
(4.7) 

Eqs. 4.4, 4.5, 4.6 and 4.7 can be used to form the general rule for 

determining the LOP crossing angle 0^, stated as follows: 

<* 92 + /rf 2  " 91 i 92 + fit * 91 i 90° 

< - 180° - 02 + ^ *2 - 6l > e2 + |Ö 2 - «1 

(4.8) 

> 90 

where the absolute value of (92 + ß ^  - 9^) is taken to allow for the 

negative values of this quantity which are encountered for the case of 
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[a.] 

Ib.] 

Figure 4-4.   Geometric situations near the intersection of the LOP's for fig. 4- 1b. 
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flg 4-lb (eqs. 4.6 and 4.7). 

It should be noted that when of = 0, the two horizontal sextant angles 

define the same LOP (fig. 4-5). This is called commonly a swing angle 

and is characterized by 92 + &2 -  6l» The disastrous implications of 

selecting objects which create this situation are apparent from fig. 4-5. 

The proper sextant angles can be measured from any point on the LOP. 

Also, note that eqs. 4.8 express 0( in terms of Ö2i/£?2 an<* Öj_.  Since 

these values are required for the calculation of GMOP (eq. 3.9), the 

determination of a/   involves very little additional effort. 

The developments of this chapter along with those of Chapters 2 and 

3 form ti.j complete method for.evaluating the accuracy of a position 

fix obtained from horizontal sextant angles. Since these developments 

are cluttered somewhat by the supporting theory, an example problem is 

provided in Chapter 5 to demonstrate the application of the complete 

method to a practical situation. 

Additional Note:  In order to apply rigorously the method for deter- 

mining positioning accuracy developed herein, the proper absolute 

value and sign of the crossing angle c< must be used. The absolute 

value of -vis determined from eqs. 4.8.  If oi is measured frotu LOP-2 

to L0P-1 in a counterclockwise direction (figs. 4-3b and 4-4a), the 

sign is positive; if measured from LOP-2 to L0P-1 in a clockwise 

direction (figs. 4-3a and 4-4b), the sign is negative.  However, the 

sign of ocaffects both U12 (as defined for eqs. 2.31) and jf (eq. 2.33) 

directly.  The manipulations of eqs. 2.35 neutralize the sign effects, 

ie., the. values of c£  and G~J   calculated from eqs. 2.35 are unaffected 

by the sign ofec.  Consequently, to simplify the mechanics of applying 

the method, only positive %£s  are used. 



-70- 

FIG. 4-5 A SWING ANGLE (a=0) 
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5.  AN EXAMPLE PROBLEM 

5.1 The General Procedure 

The developments of the preceding chapters can be combined now with 

the concepts of Appendix A to formulate the general step-by-step procedure 

for determining the accuracy of a horizontal sextant angle position fix. 

The steps of the procedure are listed as follows: 

Step 1: Determine the angular variances of the individual LOP's and the 

angular covariance of the combined LOP's using eqs. 2.11, 2.12 and 2.19. 

cr2 = err2 + <r2 + cr^2 (2.ID 

<rt - °t+ <+ °72
2 (2-12) 

y^U = -    <^2
2-< (2'19) 

The definition of the component variances can be derived from the relation- 

ships established in chapters 1 and 2 and Appendix A.  Consider first the 

variance O"".   . The angular error £. is given in Chapter 2 as 

e, = e + cr (5.D 
i    o    r 

As defined in Section 1.3, £ consists of the error in placing the arm PO 

directly through the center of point 0 (fig. 1-5) and the error in charting 

the position of the fixed object 0.  For the purposes of this example, it 

is assumed hereafter that the charted position of each of the points 0, Q 

and Q' is exact.  Therefore, £. consists solely of the error in placing 

the arm PO.  The error Gr is defined in Section 1.3 as the combination 

of the independent system errors including the three-arm protractor instrument 
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error and the sextant instrument and human errors. In equation form, 

C    -   C    +€k4+GfcU (5.2) r       TJa sti sth 

where Co is the three-arm protractor instrument error; £ „. is the 
3a r sti 

sextant instrument error; and £sth is the sextant human error. 

Eq. 5.2 can be substituted into eq. 5.1 to give Gi as 

e±- e0
+ e3a 

+ csti 
+ c; sth (5.3) 

Since each of the components G0, Gßg, Gsti 
and Ggth are individually 

independent, eq. 5.3 can be used in eq. 2.8 to yield 

of = E[ Ci2] = of + c^2 + cTTti2 + ösTh
2 (5.4) 

Similarly, 

< ■E [ £h2 ] ■ <^2+ <+ «^i2 + ^th2 <"> 
2        2 The variances (JT     and £7""  can be determined by using the expres- 

Pl      P2 
s^ jns for £  and £,  given in Appendix A as 

Pi     P2 

€  - A92 - A9j_ (A-12> 

P„ " " "°2 
A6, - i 

9 

)^2 (A.8) 

in eq. 2.8.  Since each of the angular changes A 8 , A6? and AK2 are 

independent of any other single angular change, the results are 

< = E[G
Pl

2]=      <+      < (5'6) 

and   cr'-sTe  2I      qr-^+   e-- (5.7) 
L      p2    J P2 L      P2    J ^ 2 A^2 
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Now,  substituting eqs.  5.4 through 5.7 into eqs.  2.11 a-.d 2.12, 

Of = (To2 + 0%2 +  C^i2 + TTth
2 + <^2 +     C^2

2 +   (T-^       (5.8) 

and 

(T2
2 =   Of* + C7^2 +  0Tti

2 +   C7^h
2 + CTq

2 +    J^z   +     C7^2
2      (5.9) 

 2 
Eqs. 5.8, 5.9 and 2.19 show completely the component variances of C7T » 

2 
C"" and/fs which will be considered for this example problem. The calcu- 

lation of the values of the component variances is considered in Section 

5.2. 

A        A ^      , 
Step 2: Determine K and K2, the factors required to convert CTT, CT 

and  IjL~  from angular units (radians) to distance units. Combining eqs. 

3.1 and 3.9, 

£ = (A)GMOP = AsinGcsc^ (cos9 + cot^ sinG) (5.10) 

where A, 0 and A   are shown in fig. 3-2. 

If the values of A , 0. and /3^  for LOP-1 are substituted into eq. 5.10, 

A A 
the value of K is obtained; using A , 9~ and^ 2 f°r L0P-2 produces K_. 

A 
It should be noted that hand calculations of K can be facilitated by 

recognizing that 

r * A(cos9 + cot/*sin0) (3.3) 

so that 

K = rsinöcsc^ (5.11) 

where r is the distance from 0 to P for LOP-1 and from Q to P for LOP-2. 

The variances and the covariances are converted to distance units as 

follows: 
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cr =K  r 
Id        11 

<r2i = K2 cr2 

A       A 

,Al2d = Kl K2/l2 

Step 3: Calculate the LOP crossing angle o(_ from eqs. 4.8 

*~\\+Pi-\\-\\*fli-\\-v*' 

«-"*,-|V/a2-,i|- |e2V2-
ei >90 

(5.12) 

(4.8) 

Step 4: Use CTT . C7TI, Z4OJ from eqs. 5.12 and o<. from eqs. 4.8 in the 
Id   za s   \lo. 

expressions for (jl  , CF^  >  U19 
and /&,  as they are defined for eq. 2.31. 

V°" 
t2 tanoC 

/       2       _-*2        2 
/C^d    

+  C7^    secoC   - 2/^12d secoc 

12 tanoC 
( °Zd    -/"I2d S6C0t > (5.13) 

Ui 
0-    - secc* 

/I; J12 Id       ^12d 

^       ^1   ^2 M/  ^ + ^ S6C^   ~  2^l2d SSCOC 

Step 5:     Calculate  the angle of axis  rotation j   from eq.   2.13, 

J  =  2 tan"1 
2A fjl ^2 

1 2 

(2.33) 
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Step 6; Calculate O"" and 0* bY using the values of CT" , 0"   and Ü 
x     y EX   E2     12 

obtained from eqs. 5.13 and the value of f  from eq. 2.33 in eqs. 2.35. 

(2.35) 

Cr" *   -\/0^ 2cos^ + <T^ 2sin/   + 2 U   sin/cosy* 

°7= 'yöE2sin2f+ °^2cos2f -2 \f*°f*>*f 

C7x 
Step 7: Enter the curves of fig. 2-3 with the smaller of the ratios —~r 
—*ZJ c^y 

CTy 
or r=y and the desired accuracy probability to obtain a value of K. The 

Ux 
radius of the circular probability density contour, whose center is the 

canter of the black dot used to mark the charted buoy anchor position, 

within which the particular horizontal sextant angle position fix can be 

expected to be for the particular accuracy probability is calculated 

| using eq. 2.36. 

| R - K cTh - (2.36) 

I 
I where (JT is the larger of or" and^"". 
I b x   y 

I 
I It can be seen that hand calculations of the positioning accuracy 

for any particular problem are relatively long and tedious. However, the 

I % method does lend itself nicely to computer programming, where the para- 

meters peculiar to the problem would be the required inputs. Many calcu- 
I 

lations could be handled by a computer in a short time. Nevertheless, a 

sample hand calculation will be carried out in Section 5.3 to illustrate 

| the mechanics of using the step-by-step procedure. 
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5.2 Probabilistic Variable Definitions 

This section addresses the problem of defining the means of calculat- 

2    2 
ing the component variances of oT > U*~    and >££-» shown in eqs. 5.8, 

5.9 and 2.19. The reader is referred to Appendix A for the derivation of 

the equations which express £ , £ , £ ,,  A 9 » A99 and AKo in o   q   q     * " * 

terms of measurable distance errors in placing the three-arm protractor 

arms directly through the centers of 0, Q and Q' and in placing the pivot 

point directly over P. Applying eqs. 2.8 and the implication of eqs. 2.23 

and 2.24 to eqs. A.l, A.2, A.3, A.6, A.9 and A.10 yields 

2 
<K - 2 

rl 

2 

^ - 2 
r2 

%>' 
2 

r3 

(5.14) 

UA9      2 
1   rl 

^— 2  ^t 
VA9,      2 

2    r2 
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and   ^.2. _ gu 
«fife" r2 

3 

where r , r and r~ are the lengths PO, PQ and PQ' respectively. Limited 

experimental results from twelve samples of each variable taken by two 

subjects indicate that it is reasonable to assume the following: 

a. The distributions of y , y and y„ are identical. Each approxi- 
12    3 

mates a uniform distribution which is symmetrical about the 

center of the black dot used to chart the position of the 

particular fixed object. Further, it seems that the human 

mind can edit possible error positions of 0, Q and/or Q' which 

lie beyond the limits of a circle whose center is that of the 

black dot but whose diameter is equivalent to that of the 

smallest black dot used to chart the positions of fixed objects 

ashore (approximately 0.01 inch on all NOS charts). 

b. The error points P£  (figs. A-3 and A-4) have a circular 

uniform distribution about the center of the black dot used 

to chart the buoy anchor position. Again, error points out- 

side a circle of diameter equal to that of the small black 

dot used to chart the positions of fixed objects ashore seem 

to be eliminated. Consequently, the diameter of the circular 

distribution is approximately equal to that of the small black 

dot. 

Therefore, the variances on the right-hand sides of eqs. 5.14 are equal. 

The standard deviation of the uniformly distributed variables is defined by 

cr=—=■ (5.i5) 
yi2 
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where d is the diameter of the small black dot. 

Using 0.01 inch as the value of d and generalizing eq. 5.15 for any chart 

scale factor N, 

cr-   (o.om    m (2>4 x 10-4)N (516) 
(i2) ( yi2) 

where O* is in feet. 

This expression for Q* can be used in each of the eqs. 5.14 to determine 

the indicated component variances. However, it must be emphasized that 

eq. 5.16 is an expression for Q^which is based upon assumptions made from 

very limited da^a. Its accuracy will remain suspect until it is substantia- 

ted by much more experimental data. 

Preliminary experimental results presented in ref. 7 indicate that 

the standard deviation of the human error in measuring angles using the 

sextant is approximately 6'05.5". It will be assumed for the purposes 

of this example problem that 

<7"" = 6'05.5" = 17.7 x 10~4 radians (5.17) 
sth 

Assuming that the sextants used are adjusted perfectly, the instrument 

error in measuring angles with the sextant is due to the limited precision 

of the instrument. A general assumption which is made to approximate the 

expected error due to this limited precision, called the granularity, is 

that the error is uniformly distributed between the smallest graduations 

on the instrument. Usually, sextants offer marked precision to the nearest 
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tenth of a minute. Therefore, 

°Tti = (60)(5?:3)(VI2) " °-°84 * 10'4 tadianS (5'18) 

Similarly, since the most commonly used three-arm protractors are marked 

to two minutes of arc, 

°^  * =- = 1.7 x 10"4 radians (5.19) 3a  (60)(57.3)(-i/T2) 

I - —2  —'2 
Eqs. 5.14, 5.16, 5.17, 5.18 and 5.19 define all of the component variances 

2    2 
°f €J~T » (To and >^|2 ^or tne purposes of the example problem. 

|        5.3 The Actual Problem 

I The problem which will be presented to illustrate the application 

I of the method for determining positioning accuracy which is derived in this 

I 
report is that of positioning the anchor of Bridgeport Entrance Lighted Bell 

I 
I Buoy #10. A portion of C&GS (now NOS) chart #220 which includes the buoy 

anchor position, labeled P, and the labeled fixed objects 0, Q and Q' is 

I 
shown in fig. 5-1. The following parameters are taken from the chart: 

* N = 20,000 r = 6450 ft 

ß   = 92°12' r2 = 8400 ft 

ß2  = 52°32' r3 = 10,050 ft 

9X = 50°06' A = 10,800 ft 

92 = 74°44' A2 = 8400 ft 
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O =*■*■'-< V ■»>•' 

43113 
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Step 1; Using eq. 5.16, 

(T*  (2.4 x 10"4)(N) = 4.8 ft 

Substituting this value into eqs 5.14 yields 

O-"2 = <r?n 
2 - (4-8 ) - 55.4 x 10"8 radians u o     A6,    6450 

<^2 - o%2
2 - <Mo)2 = 32-7 x 10*8 radians 

CT,2 ' Ot^2    - <ij$50> " 22.8 x 10-8 radians 

Using these values and those of eqs. 5.17, 5.18 and 5.19 in eqs. 5.8, 5.9 

and 2.19 yields 

-4 
CT" = 22.2 x 10  radians 

1 

(K m  20.7 x 10  radians 

-8      2 
JJ,      - -  65.4 x 10  radians 

Step 2; Using eq. 5.10, 

K = 5030.5 ft/radian 

K2 = 10,237.0 ft/radian 

Eqs. 5.12 can be used to obtain 

Cjr\ = 11.2 ft 
Id 

crjd - 2i.2 ft 

/4iu - - 33.7 ft2 
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Step 3: Using eqs. 4.8, 

o(.= 76.2° 

Step 4;    Substituting   O~[A'0Zä> /^^A 
and °C  into eqs.  5.13 yields 

rT   = 11.2 ft 
El 

(T    = 22.4 ft 
E2 

U12 = - 65.5 ft 

A 0.26 

Step 5;    Use eq.   2.33  to find 

/=9.6° 

Step 6:    Calculate  Q~ and (j* using eqs.  2.35 as 
x      .    y 

0~x - 10.7 ft 

cTm 22-6 ft 

Step 7; JZJS < 0~V. so fig. 2-3 is entered with -^ = 0.47 and the 

desired accuracy probability of 95% to obtain 

K = 2.025 

Using eq. 2.36, the radius from the center of the black dot within which the 

sinker can be expected to be placed for a 95% accuracy probability is 

R = 45.8 ft 

This step-by-step procedure can be used in like manner to find the position- 

ing accuracy for any other problem. 
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APPENDIX A 

The discussion of error sources in Section 1.3 presents the errors 

in measuring the horizontal sextant angler using the three-arm protractor 

as angular errors which modify the exact angular measurements.  These 

errors result from the improper placement of the protractor arms PO, PQ 

and PQ1 (fig. 1-5) and the improper placement of the pivot point over the 

point (observer's position) e.    This appendi, addresses the problem of de- 

fining the statistical distribution relationships of the angular errors 

to measureable distance errors due to the use of the three-arm protractor. 

These distributions are necessary to determine some of the variances and 

the covariances used in the development of Section 2.3. 

Consider first the angular errors £ , £ and £ i which result from 

the improper placement of arms PO, PQ and PQ'.  If the protractor pivot 

point is fixed directly over the point P and the center arm PQ is positioned 

through point Q, all of the angular error will be contributed by the in- 

correct placement of the arm. Fig. A-l shows the exact placement of the 

arm PQ and a hypothetical incorrect placement PQ£ . The vector y„ is 

constructed from PQ to PQC , perpendicular to FQ at Q. Assuming that the 

error point Q^ is always within the small blac'c dot with which the posi- 

tion of an object is charted, the magnitude y£ is always much smaller than 

the length PQ. Consequently, £  is small and 

e  -tan"1^) 9Jl (A.l) 
q       r2    r2 

where y and r are shown in fig. A-l and £ is in radians. 

*It is assumed that the charted position of each of the points 0, Q and 
Q' is exact. 
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f 

FIG. A-1 THE ERROR IN PLACING ARM PQ 
THROUGH THE CENTER OF Q 

FIG. A-2 THE ERRORS AFFECTING ß, DUE TO THE 
INCORRECT PLACEMENT OF PIVOT POINT 
OVER P 
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Eq. A.l implies that the distribution of £,  can be specified completely 

by the one-dimensional distribution of y» divided by r~.  No:e that r- 

is constant for any particular problem.  Similarly, the distributions of 

£ and C ' are defined by 

r~ yl C0ar-i (A. 2) 
°  rl 

and  £ |!yJ (A.3) 
q "r3  . 

where y and y~ are the magnitudes of the y vectors from PO and PQ1 to 

PQg and PQ^ , perpendicular at 0 and Q1 respectivelyiand r and r_ are 

the lengths PO and PQ'. 

The determination of practical expressions for £.  and £  is a 
Pl     P2 

more complicated problem.  If the arms PO, PQ and PQ' are fixed through 

the centers of 0, Q and Q*, all of the angular error is due to the improper 

placement of the pivot point over point P. Fig. A-2 shows the effect of 

the error on the measurement of ^.OPQ. The incorrect placement of the 

pivot point changes the orientations of arms PO and PQ which causes the 

angular changes &6t and  AK ,.  Since the sum of the three angles must 

remain 180°, the measured value of the horizontal sextant angle may be 

affected .ilso.  The angular effect on A.   is designated €.     ;   in fig. A-2, 

ß,c    =&■>+£»    > where the sign of £  depends on the situation. 
rifc    r1     pi pi 
So, 

/3l + €p    + ex +     A«!+\l+     AI^-1800 (A.4) 

where   the  signs  of     A©,   and      AKI   also depend on  the  situation. 
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But ß ! + 9X + ^ 180L 

Therefore, eq. A.4 reduces to 

£pi+    A91+     A<1-0 

or £      = -(  A«! +     A^) (A. 5) 

Eq. A.5 Implies that the distribution of £  can be derived from the 
Pl 

distributions of A9i and  AK •  The distributions of  £0 and  ^K 

can be determined using the method by which £Q, £ and £ ■ were defined. 

In fig. A-3 vector s* is constructed from PO to P^ 0, perpendicular to PO at 

P.  Since A 9* is small, 

49, ar«_ 
rl 

(A.6) 

where r1 is the length PO. 

Similarly, if t is constructed from PQ to Pe Q, perpendicular to PQ at P 

(fig. A-3), 

^1=1 (A.7) 

where r„ is the length PQ. 

The distribution for the angular error in the measurement of £. QPQ' due 

to the improper placement of the protractor pivot point can be derived from 

fig. A-4 as 

£p2 
= -<A92+   A^2) (A.8) 
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FIG. A-3 DEFINING THE ANGULAR CHANGES A*, AND A&, 

FIG. A4 DEFINING THE ANGULAR CHANGES A#2   AND  A* 2 



^P*^t* 

f 

i: 

-89- 

where    A9„ * -L_ (A.9) 
r2 2  r, 

and      A»( * ::y- (A. 10) VI 3 
Notice that £0QQ' = ^- + 83. Since the arms are fixed through the centers 

of their respective points, Z.0QQ* is constant and any change in 8- creates 

an equal and opposite change in K-t  or 

| 62 = "  1 1 (A.11) 

I 
I 

Eqs. A.7 and A.9 reflect this relationship.  Substituting eq. A.11 into 

I eq. A.5, 

I 

I £  = A9„ - 46, (A.12) 
Pi     2~1 

Eqs. A.12 and A.8 are expressions which define the distributions 

of £  and £ . The distributions of the components are defined by eqs. 
pl     P2 

A.6, A.9 and A.10.  The important implication of this appendix is that, if 

the one-dimensional distributions of y , y and y~are symmetrical about the 

centers of the black dots used to chart the positions of the fixed objects 

and if the distribution of the error points Pt (figs. A-3 and A-4) about 

the center of the black dot used to chart the position of the buoy anchor 

is circular, suitable samples of y , y?, y.,, s*", t and u taken from one 

experiment can be used to determine the distributions (and the values of the 

probabilistic variables) of the angular errors €. , £ and £ i and the 

angular changes A8^, A92 and &K?» which define £  and £ . The 
Pl     P2 

probabilistic variables describing these errors are necessary for the imple- 

mentation of the method for determining positioning accuracy. 
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APPENDIX B 

Assumption "d" of Section 2.1, made with reference to fig. 2-1, 

is restated for convenience as follows: 

in the neighborhood of the observers' position P, 

d.  the LOP's approximate straight lines and the angular 

errors £ can be transformed into distance errors 

measured along a straight line which is perpendicular 

to the exact LOP and the error LOP. 

It is the purpose of this appendix to present the analysis which proves 

the general acceptability of this assumption. As stated in ref. 2, the 

LOP's approximate straight lines in the neighborhood of P if the radius 

of curvature of the exact LOP is much larger than the one - cr* error (in 

distance units).  This requirement is represented in equation form as 

» 1 <B.l) 
OH 

where R is  the radius of  the exact circular LOP and  <7~^ is  the standard 

deviation of  the random error  in distance units. 

Fig.   B-l  i-^  a reconstruction of  fig.   l-3a which  includes additionally 

some  angular and linear measurements derived  in Section 1.1.     From this 

figure  it  can be seen that 

R = ~Y A cscfl (B.2) 

The combination of eqs. 3.1 and 3.9 yields 
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FIG. B-1 RECONSTRUCTION OF FIG. 1-3a SHOWING 
ADDITIONAL ANGULAR AND LINEAR 
MEASUREMENTS 

15 i- 

A 
R 

1 2 3   3°22 4 

ß   (0=90°) 

Figure B-2.  Graphic Representation of Equation B.5 for 0< ß <5°. 
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CT?= Asin9csc>5 (cos9 + cot/Jsin9)Or' (B.3) 

Now,   eq.   B.2  can be divided by B.3  to give 

A 
R     _ 

CT^      2 sin0(cos9 + cot£ sin9)Q^ 
(B4) 

Preliminary indications are chat O^^^IO  minutes; therefore, Q"*'= 
3 

-3 
3 x 10  radians will be assumed for the purposes of this analysis.  The 

A 
D 

smallest values of   will be encountered when the denominator of 

eq. B.4 is very large.  It can be seen that the trigonometric functions 

of 9 in eq. 3.4 are very "tame", i.e., none of them will ever exceed the 

value of 1.0.  Since (7~^is considered constant, the volatile term is 

cot A  which will approach infinity as A   approaches zero. For small 

values of (3  (0 * Ö *  5 ), setting 9 to 90° will permit a clear view of 

the worst situations which can be expected, identifying different areas 

over the range of A   from zero to five degrees for which eq. B.l may 

not be satisfied.  If 9 = 90°, eq. B.4 may be rewritten as 

(l^) 9 . J£_ - fgr » (1.7 x 102)tan^ (B.5) 

Fig. B-2 is the graphic representation of eq. B.5 for 0 - S  -  5 .  It 
A ' 
R  > can be seen from this figure that, if    ' 10 is considered sufficient 
°d 

to satisfy the implication of eq. B.l, the first part of assumption "d" 

is acceptable for ß  - 3°22'.  It should be noted that this result implies 

the acceptability of the assumption of linear LOP's in the neighborhood 

of P for all possible values of 9 corresponding to any A   greater than or 
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equal to 3°22* (the upper limit on j3  is the maximum angle which can 

be measured by the sextant - 126° for the newest sextants). However, 

it does not preclude the acceptability of this assumption for some 

possible values of 0 corresponding to /S's  less than 3 22'.  In fact, 
A     ' 
R  > 

there is some 0 which yields   y 2 10 for every possible value of ß 

except A  = 0.  The logical conclusion is that, in general, the first 

part of assumption "d" is acceptable. 

The second part of assumption "d" is acceptable if the radius 

of curvature of the particular curve of Vj£  along which the error is 

measured is much larger than the one -O*   error (in distance units). 

The logic of this statement can be seen intuitively from the representa- 

tion of the contours of constant p   and the curves of V0     shown in 

fig. 3-1.  Unfortunately, the definition of the radius of curvature of 

the T/A    curves is not readily apparent from the figure.  In order to 

verify the shape and determine the expression for the radius of curvature 

of these curves, it is most useful to develop a scalar expression, similar 

to eq. 3.4, which describes the whole family of T3A     curves.  To accom- 

plish this, the property of the mutual orthogonality of the contours of 

constant A   and the ^7A    curves is exploited.  By the definition of 

the gradient, there is some function w  which is constant on the ^A 

curves and for which the contours of constant /? are the gradient curves. 

This concept is analogous to the velocity potential-stream function rela- 

tionship of fluid dynamics or the potential-flux relationship of electro- 

magnetic theory.  The fact that VA ' vy » 0 everywhere is used in 

the form of the Cauchy-Riemann equations (ref. 5) in polar coordinates. 
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These are stated as follows: 

>     r ^9 
(B.6) 

and  J_ $&  _ ^L 

Eqs. B.6 can be used to find the function w  from eq. 3.4.  The form of 

 &^~ which is most useful in this case is given by eq. C.5.  As it 

is stated in Appendix C, 

i_M= _A 
icosG  - - 

r     ^G      4-   Äort+T" (C5) 
&*■ A 

Substituting this relationship into the appropriate equation of eqs. B.6, 

I - IcosQ 
r  A 

^r  *>i*«r 
A7 ■ 2äCOSö + l 

Eq. B.7 can be integrated to obtain (J) as follows; 

(B.7) 

C     I - IcosQ 

*'     7J-1  / ±j  - 27COS9 + 1 
dr 

Ä7  "A 

f  = AVr(r2 - 2rAco39+ A2) " Acos9A* - 2rAcos9 + A2   (B.8) 
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From the C.  R. C.  Standard Mathematical Tables (ref.  6), 

f dx . JL lnLi__l.   b_  f        dx 
J x(cx2 + bx + a)      2a      [cx2 + bx + aj    2a ) cx2 + bx + a 

Applied to  the. first term on the right-hand side of eq.  B.8, 

(B.9) 

A  /r(r2 - 2rAcos9 + &T 2 Hr2 - 2rAcosO + A2J+ Acos9jr2 - 2rAcos9 + A* 

Substituting eq.  B.9 into eq.  B.8,  the equation for Q becomes 

^=ilnL £ 2+ f(9) (B.10) 
'        2        r2 - 2rAcos9 + A* 

where  the additive f(0)  term is necessary since the expression is derived 

by  the  integration of  the partial  derivative of 0 with respect to r. 

The evaluation of  the f(0)  term is  accomplished by determining —  \Jt- 

from eq.  B.10 and using the resulting expression in the second equation 

of eqs.  B.6.    From eq.  B.10, 

I^i=      -AsinQ         d [f (9)]     _J_ 
r ^9        r* - 2rAcos0 + A* d9 r 

Noting  that 

r = A(cos9 + cot^ösin9) 

and      r2 = A2(cos29 + 2sin9cos9cot^ + cot2^sin29), 

r2 -  2rAcos9 + A2   ■ A2sin20csc2^ 

so that 

I  *£ .  . I C8c9slnfc + I d &W3    = &- 
r^9 A Trd9 ^r 
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But,  from eqs.   3.6, 

cscfcsin' 
ir A 

Consequently, 

ijjlgj]   , 0 
d0 " u 

1   "■* 
or   f(9) = constant = -j ln K 

Therefore,© may be written as 

0= iln 
r* + 2rAcos9 + A2 

In K 

or, finally, 

1 <t>- In 
fei 

L^Z - 2rAcos9 + A2 (B.ll) 

Eq. B.ll is the scalar equation for the contours of constant <b 

(the V^ curves). A more descriptive form of eq. B.ll is obtained by 

converting to the Cartesian coordinate system. From eq. B.ll, 

e20 _    Kr2  
" r2 - 2rAcos9 + A^ 

or   r2 - 2rAcos9 + A2 = Ke"2* r2 

Therefore, 

(1 - Ke-2^ )r2 - 2rAcos9 + A2 = 0 

or 
r2 

2rAcos9        A'' 

(1 - &"* ) ' (1 - Ä* ) 

= 0 (B.12) 
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The conversion to Cartesian coordinates  is accomplished from eq.  B.12 by 

recognizing that r2 = x2 + y2 and x = rcosO. 

Eq.   B.12 becomes 

x2 + y2 2A -x + 
(1 - &"2* $ (1  - fc-2* ) 

= 0 

Completing the square in x and rearranging terms, 

(1  - fc-J*T +  (1 - fc-2# )A + y2 =   (1  - Xe-W )2 
A2 

(1 - Ke-Z* ) 

or 

[■ (1 
A 
Xe-20 ) f' y2 = a - fe-*# > (1 - fe-20 )" 1 (B.13) 

Eq. B.13 is in the general form of a circle in the Cartesian coordinate 

system. Thus, the circular nature of the VS    curves in fig. 3-1 is 

accurate.  The radii of the circles are defined by 

R = A Vd - &'&) [Tri^w - ij 

and the  locations of  the centers are 

(X'>)=  ((l-Se-2*)'0) 

(B.14) 

(B.15) 

Note that eq. B.15 indicates that the centers of all of the possible 

circles which are described by eq. B.13 are always on the x - axis of 

the Cartesian coordinate system (line OQ in fig. B-l). 
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In order to investigate the acceptability of the second part of 

assumption "d", the ratio —-; must be found. The requirement that the 

radius of curvature of any particular curve of Vfi along which the 

error is measured is much larger than the one -<J~ error (in distance 

units) is satisfied if 

JL» l (B.16) 

Since C7T is still in polar coordinates (eq. B.3), it is convenient to 

convert R into polar coordinates. From eq. B.ll, 

ice'2* = f2 - 2rA2
COs6 ±  A2 (B.17) 

r 

Substituting r = A(cos9 + cot^sin9) 

and      r2 = A2(cos29 + 2sin9cos9coti? + cot2^  sin29)  into eq.  B.17 

yields 

V -2<f>   = sin Qcscy 
(cos9 + cot^'sin0)2 

It  follows  that 

 *    - -      = (cosfl + CO t^ sinS)2 

(1  - Ke"2P )       cos29 + cot^sin29 

and       1 ,  _ sin29csc4g 
(1  - Be-2? ) cos29 + cotv?sin29 

so  that 
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ff     A    /(c°se ± cots sin9)2sin29csc3g 
Ay       (cos20 + cot^sin29)2      ^~ 

or        /y      .   .  _       .1 cosQ ± cotjg sing 
rsin29 R = AsinOcscd 

I cosQ +   COtyg 
cos20 + coti (B.18) 

Dividing eq. B.18 by eq. B.3 yields 

(7^  (cos29 + cot/Ssii>29)0~Z (B.19) 

There is an obvious similarity between eq. B.19 for -JL_ and eq. B.4 
A <7d 
R • for -—?.    In fact, eq. B.19 can be analyzed as eq. B.4 was for the 

d R smallest values of the ratio ■—: which can be expected by assuming that 

-3 * C£ B  3 x 10  radians and setting 9 to 45°. Eq. B.19 reduces to 

(O=*)Q - —= TF^"" (3,3 x lo2) tmfi (B20) 

/v 

Fig. B-3 illustrates eq. B.20 for 0 S/3 *  5°. If ~ * 10 is considered 

sufficient to satisfy eq. B.16, it can be seen from the figure that the 

second part of assumption "d" is acceptable if /3 « 1 43'. Therefore, 

the linearity of the curves of VA   in the neighborhood of P for any 

value of 9 corresponding to essentially all the possible values of ß 

is acceptable; and the second part of assumption "d" is generally 

acceptable. 
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APPENDIX C 

This appendix contains the derivation of eq. 3.8 from eq. 3.4. 

Eq. 3.4 is restated for convenience as 

JS  ■ cot" I jcscO - cot© I 

In polar coordinates, 

(3.4) 

*-■£■*♦+£-« (3.5) 

The components of ^A     are calculated as follows: 

- csc9 
A ä£_  

■v*— " ~2  
*r        •E7csc29 - 27CSc9cot6 + cot29 + 1 

(C.l) 

Using the trigonometric identity esc 9 ■ cot-9 + 1, eq. C.l becomes, 

¥■ 
- icsce 

T 
r   csc2G(*7 - 27COS9 + 1) 

A     A 

It follows that 

VJ,    - isin9 
*ß A  
*>r   C - 2^cos9 + 1 

A*   A 

(C.2) 

Finally, substituting 

r ■ A(cos9 + cot^fl sin9) 

and      r2 ■ A2(cos29 + 2sin9cos9cot^  + cot2/5 sin29) 

into C.2 and combining terms, 

(C3) 
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i-csc9sin^3 (C4) 

r      2 2 v^ —csc*9cos9 -  esc t 

* ?        csc^^y - 2jcos6 + 1) 

±COs9  - i 

r   W    g - 2lcose + i 
(C.5) 

Substituting eqs.  C.3 into eq.  C.5 and combining terms, 

_L_  g^   =        cos2Q + sinOcosQcot^g  -  1 
r    ^0    " Asin29csc20 (cos9 + cot/5sin9) 

or      _I__M_=_Icsc6sin: 
r     <J9 A 

sing - cot^t cos9 
cos9 + cotyct sin9 (C6) 

The magnitude of \&   , given by eq. 3.7, is restated here for convenience. 

M-V<^>2 ♦<-!-$-> (3.7) 

Using the expressions of eqs. C.4 and C.6 in eq. 3.7, 

I* 4-csc9sin2 
1 + sin9 -  cot^JcosQ 

cos9 + cot^sinQ 

Expanding the expression under the radical and combining terms yields 
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tyfl- cscQsin^  
A(cosO + cot4sin9) (3.8) 
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APPEND IX D 

This appendix presents the derivation of the expression for 

* 

GMOP 

0 
,  eq.   3.15,   from eq.   3.9.     To begin,  eq.   3.9 is restated for 

convenience. 

GMOP = 

^ GMOP 

-T3—r = sinQcsc/S (cos9 + cot^ 
IV/51     ' I 

sinO) (3.9) 

d/f 
2Q^C^3>! » - sin0coti5 csc^(cosO + cot^sinO) - sinz9csc43 

Expanding and manipulating, 

^GMOP 
sin9cos9cos/3 cscjS    -  sin^9cosyö csc^5    -  sin 9csc3^ 

Fa ctoring and using cosfg   =  1  -  sin*/} 

^GMOP sin9csc^[    cos9cos/3  + sin9csc^(2  - siim ) I 

or 

^ GMOP 
-  sin9cscM  cos9cosy5 + 2sin9csc^5 - sin9sin^ 

Noting that cos (A + 9) » cos9cos^ - sin9sin/5> 

^GMOP iin9csc2yd     co8(/3+ 9) + 2sin9csc^ 

and,  finally, 

^GMOP s^csc^f sin^cos(/(^+ 9) + 2sin9| (3.15) 


