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**PREFACE**

This report presents the results of an independent investigation
into tha accuracy of horizontal sextant angles as a method of establish-
ing geographic position conducted by the authors from October 1973 to
March 1974. It includes a description of the system, the development of
a method for determining positioning accuracy and an example problem with
a step-by-step procedure for utilizing the developed method. Supporting
theory, analysis and proofs are included wherever possible for the con-
venience of the reader.
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NOTATION

A The baseline length, 0Q for LOP-1 and QQ' for LOP-2
(fig. 3-2)

C The center of a circular LOP

El’ E, Dependent orthogonal coordinates into which the actual
LOP errors €1 and €, are transfcrmed (Section 2.3)

GMOP The Geometric Multiplication of Precision, % (eq. 3.1)

K The factor obtained from fig. 2-3 which 1is used in eq. 2.36
to determine R

.

K The factor which converts small angular changes in /9
(radians) into distance units (eq. 2.21)

E A constant used in the analysis of Appendix B

0] The left-hand fixed object wher. viewing from the fixed
objects to the observers' position (figs. 1-4)

P The observers position (figs. 1-%)

Q The center fixed object (f.33. 1-4)

Q' The right-hand fixed object when viewing from the fixed
objects to the observers' position (figs. 1-4)

R The radius of the circular probability contour from the
exact position within which the actual position may be
expected to lie

A .

R The radius of a contour of constant /3 (a circular LOP)
(fig. B-1)

R The radius of a Eaﬂ curve

t A unit vector in the r direction in the vpolar coordinate
system

r The distance from a fixed object to P (figs. A-3 and A-4);

also, the magnitude of the ¥ vector in the polar coordinate
system (fig. 3-2)
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ax

Measurable distance errcrs in placing the three-arm
protractor pivot point directly over the desired position
which are used to determins AOl, A8, and aK (figs.
A-3 and A-4)

The independent orthogonal coordinates into which E. and
E, are transformed (Section 2.3); also the variables of
tge Cartesian coordinate system (Appendix B)

The magnitude of the ¥ vector constructed from the exact
three-arm protractor arm position to the actual arm
position, perpendicular to the exact prsition at the
fixed object (fig. A-1)

The angle of intersection of the LuP's (crossing angle);
always an acute angle (fig. 4-1)

The exact measurement of the horizontal sextant angle to
be observed; sometimes subscripted to indicate LOP
reference

An angular error in the measurement of the horizontal
sextant angle; usually subscripted to indicate the source

- of the error (Section 1.3, Section 2.3, Appendix A)

The angle through which the dependent orthogonal E. and
Ep coordinate axes are rotated to yield the independent
orthogonal x and y coordinate axes (Section 2.3)

The angle POC and the angle OPC used in the derivation of o

.in Section 4.1 (fig. 4-2)

The angle POQ for LOP-1 and angle PQQ' for LOP-2; sometimes
subscripted to indicate LOP reference (fig. 4-1)

A unit vector in the 8 direction in the polar coordinate
system

The change in 6 due to the misplacement of the three-arm
protractor pivot point (figs. A-3 and A-4); usually sub-
scripted to indicate LOP reference

The angle PQO for LOP-1 and angle PQ'Q for LOP-2; usually
subscripted to indicate LOP reference (figs. A-3 and A-4)

1he change in K due to the misplacement of the three-arm
protractor pivot puint (figs. A-3 and A-4); usually sub-
scripted to indicate LOP reference




The ccvariance of two depenceat random error variables
in angular units (eq. 2.14); usually subscripted te indicate
LOP reference

The covariance of two dependent random error variables in
distance units (eq. 2.28)

The correlation coefficient of two random error variables
(eq. 2.13)

The standard deviation of a particular random error distribu-
tion in angular units (the square root of'cr'z); usually

subscripted to indicate LOP reference

The standard deviation of a particular random error 9
distribution in distance units (the square root of cra )

The variance of a particular random error distribution in
angular units (eq. 2.8)

The variance of a particular random error distribution in
distance units (eqs. 2.23 and 2.24)

. . . . Y
A quantity which is constant on a particular 975 curve

"~ (Appendix B)

The angle between r, or ry and a tangent to LOP-1 or
LOP-2, respectively, measured as shown in fig. 4-2.
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SUMMARY

The text is preceded by a brief introduction which outlines the
history of horizontal sextant angles as a positioning method, the reason
for the recent interest~in defining the accuracy of the system and the
general direction of the analysis which follows. The description of the
method of hofizontal sextant angles as a means of establishing geographic
position, including the theoretical basis for its use and an illustra-
tion of a particular method of utilization, is contained in Chapter 1.

A general description of the instrumente used is included also. Chapter 1
ends with the development of the error model describing each of the
component depgndent and independent angular error; which affect an exact
angular measurement. Errors in the use of both the three-arm protractor
and the sextant are considered. The error model is used in Chapter 2 to
develop the basic method for determining positioning accuracy.

The development of the basic method for determining positioning
accuracy is begun with an explanation of the necessary mathematical
considerations and a brief look at the applicable probability theory.
The steps in the actual development include:

1. The definition of the individual LOP (line of position)
variances and the combined LOP covariance from the component
angular errors.

2. The conversion of the variances and the covariance to
distanée units.

3. The elimination of the dependence of the LOP errors using

Fraser's method (ref. 3).

Preceding page blank
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4., The determination of the radius of the circular probability
density contour within which the actual position can be

expected to lie.

The Geometric Multiplication of Precision (GMOP) is derived and
analyzed in Chapter 3. The GMOP is defined as a dimensionless quantity
R per unit baseline length, where 2 is the conversion factor used to
obtain the LOP variances and covariance in distance units. (The con-
version is from radians to distance units.) The similarity between
the characteristics of the gradient of/g ggia'defined as the exact
angular measurement of a horizontal sextant angle) and the desired
traits of the GMOP sets the direction of the development toward finding
GMOP as a function of grad/g. The equation o§/3 in the polar coordi-
nate system is found, and the GMOP is derived as the reciprocal of the
magnitude of gradlg. The GMOP is analyzed thoroughly to investigate its
physical correlation and its functional behavior.

Chapterl4 contains the derivation of a simple method for determin-
ing the LOP crossing angle o . This quantity ir required for the
implementation of the basic method described in Chapter 2. It is shown
that & is easily obtainable from the measurable quantities which are
required fcr the calculation of the GMOP.

Chapter 5 presents an example problem for the convenience of the
reader with a step-by-step procedure for applying the total method to
a practical situation. The lack of suitable published human factors
data for the three-arm protractor and the sextant forces certain

assumptions concerning the statistical distributions of the component
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angular errors, All assumptions are explained before the problem
solution is presented.

Appendix A offers the methods of obtaining the component angular
error distributions for the human factors errors in using the three-arm
protractor fiom measurable distance errors in placing the pivot point
and the arms. These methods can be applied to suitable experimental
data to obtain the component angular error distribations from which
the probabilistic variables necessary for the implementation of the
method for determining positioning accuracy are derived.

Appendix B contains the proof of the acceptability of the LOP-error
model of fig. 2-1. Specifically, the contention that, in the neighbor-
hood of the observers' position, the LOP's appréximate straight lines and
the gradlg Eurves along which the error is measured are essentially
straight lines perpendicular to the exact and the error LOP's is proven
to be reasonable. Appendices C and D show some intermediate steps for

derivations contained in Chapter 3.
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INTRODUCTION

The advantages in convenience and precision of using horizontal
angles for finding a position on land was recognized certainly before
the seventeenth century: The application of the method to hydrographic
surveys and shipboard navigation was delayed considerably due to the
lack of a suitable angle measuring instrument. The invention of the
octant by John Hadley in 1731 provided such an instrument for marine
use, and the Rev. John Michell suggested the use of the octant for
triangulation afloat in 1765.8

Since the time of Hadley and Michell, the application of horizontal
sextant angles to marine positioning problems wh£ch require great
precision has increased markedly. One specific application for which
the method is suited well is buoy anchor positioning. The U. S. Coast
Guard maintains more than 20,000 floating aids to navigation which mark
navigable channels and hazards to navigation in the waters of the

United States. The Coast Guard Aids to Navigation Manual (CG-222)

prescribes horizontal sextant angles as the primary buoy anchor position-
ing method to be used by U. S. Coast Guard buoy tenders. Interest in

the accuracy of this positioning method has been spurred within the

Coast Guard by the growing population of very large merchant vessels
whose requirements for accurate channel marking are emphasized by the
; extremely severe consequences of grounding, e.g., cargo loss, ecological
catastrophe and vessel damage.

A methnd for determining the accuracy which can be expected for a

particular horizontal sextant angle position fix is derived and presented
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in this report. Chapter 1 offers the theoretical basis for using
horizontal sextant angles as a positioning method and the development

of the system model for a three-nbject, two-line-of-position fix.

The basic method is developed from a random error analysis in Chapter 2.
Chapters 3 and 4 and Appendix A contain supporting derivations which
provide necessary inputs to the basic method of Chapter 2. An example
problem is presented in Chapter 5 for the convenience of the reader to
demonstrate the application of the total method to a practical situation,

including a step-by-step procedure which facilitutes the calculations.
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1. HORIZONTAL SEXTANT ANGLES AS A POSTTiCNING METHOD

1.1 Theoretical Basis

The utility of horizontal sextant aagles as a means of establishing
geographic position (ca}led position fixing) is based upon the following
geometric principles:

a. Any three points in space are coplanar and define a circle

whose orientation and dimensions depend upon the relative

positions of the three points.

b. Consider a circle with two fixed points on its circumference
which are connected by a chord. The angle formed by the line
segments constructed from each of the two fixed points to any
point P on the circumference is constant for all points P
in the same segment of the circle. (A segment of a circle is
that portion of the circle which is bounded by an ar« and
its,chord.l)

The fact that any three points in space define a plane is basic and
will not be justified further herein. The proof of the second part of
principle "a" is founded upon the equidistance of all the points on the
circumference of a circle from its center. Fig 1-1 shows a typical

triangle OPQ. The perpendicular bisectors of 0Q and OP, labeled WX and

YZ respectively, are shown also. The end points of thc bisected segments

are equidistant from any particular point on the perpendicular bisector.
E Therefoie, O and Q are equidistant from any particular point on WX; and

0 and P are equidistant from any particular point on YZ. It follows that




FIG. 1-1 TYPICAL TRIANGLE OPQ SHOWING
CIRCUMSCRIBING CIRCLE

FIG. 1-2 DIFFERENT TRIANGLES WITH COMMON
gIDE 0Q AND THE SAME CIRCUMSCRIBING
IRCLE
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0, P and Q are equidistant from the point of intersection of WX and YZ,
labeled C. Consequently, O, P and Q are on the circumference of a
circle whose center is C. Further, siace WX and YZ are straight lines,
they intersect at only one point; so only one circle is defined by
0, P and Q.

The contention of principle "b" is illustrated in fig 1-2. If
0 and Q are fixed on the circumference of the circle, the value of the
angle formed by line segments OP and QP is constant for all points P
in the same segment of the circle, i.e., p = P' =@ ", Fig 1-3a
depicts the situation when the lengths of OP and QP are equal (OPQ is
an isosceles triangle). The isosceles triangle 0CQ, whose sides are
the baseline 0Q and the radii CO and CQ, is sacwn also. (The standard
symbols A for triangle and £ for angle will be used henceforth.)
Now, the line segment PS is constructed as the perpendicular bisector of
0Q, which is the base of ACPQ and a chord of the circle. Consequently,
PS passes through C and bisects ZOPQ. Therefore, ZOPC = ZOPS = P/Z;
and, since AOPC is also isosceles, £ POC = Z OPC. It follows that
£OCP =TT -4 and £0CS =8 . This implies that £COQ = _TZL -8
Fig 1-3b shows another possible configuration of the inscribed tciangle.
Again, 0 and Q are the fixed points on the circumference of the same

circle; but this time the triangle is defined by O, P' and Q. The

triangles 0CQ of figs 1-3a and 1-3b are identical. Since ZCO0Q = . -p A
2

from fig 1-3b,

LP'OC=06- LCQ=0+8 -_‘g‘_ Z OP'C (1.1)




L2 s e M e Oy S g e g T I TR Ry - ol Bt 2 e A Mt e S AR T e A M e e
- & 3 iz i B T gt e 8 e e o s S 0 SR 3. g S T oy

-21-

FIG. 1-3a - ISOSCELES TRIANGLE OPQ FROM FIG. 1-2

pori o o ERUIN R LU e D R L STl L £

FIG. 1-3b - TRIANGLE oPQ FROM FIG. 1-2
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Also, ZO0QP' = ‘ﬂ‘-B-P'. But £CQ0 = ZC0Q, so that
ZCQP' = ZOQP' - 4cqo-:g'_-o-p'+’5 = £CP'Q (1.2)

By definition,

B'= LOP'C+ £CP'Q (1.3)

Substituting eqs. 1.1 and 1.2 into 2q. 1.3,
"=+ -+ L -0-2"+
pleieg e T et

" e
This result can be established in the same manner for all other points P
in the same segment of the circle.

The important implication of the preceding devel~ ments is that, for
any set of fixed points O and Q, a particular valve of F? defines a
unique segmept of a circle whose arc is a contour of constant F?. There-
fore, if the points O and Q are fixed, charted objects, the angle F? observed
from any position P defines a circular line of position (LOP) which passes
through P. Further, if two or more such angles are measured from the same
position P using different objects O and Q, the intersection point of the

arcs of the circle segments circumscribing AOPQ, AO'PQ', AO0"PQ",

etc., will fix the position of P within the limits of accuracy of the
system. This is the theoretical basis for position fixing using the method

: of horizontal sextant angles. ' C

1.2 Practical Application

The method of horizontal sextant angles is used as the primary

buoy anchor positioning method aboard most U, S, Coast Guard buoy tenders.
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In this application, the position fix is obtained from two LOP's de-
rived from three fixed objects. {(The reliability of the fix often is
assessed by comparison with a gyro bearing fix.) The case for the three-
object, two-LOP fix versus fixes from other possible combinations of
objects and LOP's will not be argued in this report in order tc preserve
the continuity of the discussion. To align the discussion with the
common practice for positioning buoy anchors, only the three-object,
two-LOP fix will be considered hereafter. The two general geometric
situations which may result when two LOP's are obtained from three ob-
jecis are shown in figs 1-4.

The example of utilizing the method of horizontal sextant angles
which will bé described is called the preset angle method. (The choice
of this particular method for the example does not degrade the general-
ity of subsequent developments.) The mechanics of applying this method
to the buoy anchor positioning protlem begins sometime before the actual
operation. éiles and notes of previous positioning operations for the
same buoy anchor are researched to determine the three fixed objects
(0, Q and Q') which are best situated for the particular intended anchor
position P. Generally, alternate sets of objects are selected, if
available, to permit some flexibility if the primary objects are found
to be unsuitable at the time of the positioning operation. Considera-

tions in selecting fixed objects include:

a. visibility from the intended buoy anchor position,
b. definition of vertical centerline, i.e., a spire is more

desirable than a tangent to a point of land,
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a O,P, AND Q DEFINE LEFT LOP; Q, P, AND o’ DEFINE RIGHT LOP.

b. O,P, AND Q DEFINE RIGHT LOP; Q,P, AND Q/ DEFINE LEFT LOP.

FIG. 1-4 GEOMETRIC SITUATIONS RESULTING FROM TWO-LOP HORIZONTAL SEXTANT
ANGLE FIXES
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¢. suitability of the angle of intersection (crossing angle)
of the LOP's, and

d. the observed angle must not exceed the maximum value which
can be measured by the sextant (126° for the newest

sextants).

Relatively elementary instruments are used to measure the scxtant
angles to be observed and the LOP crossing angle. The three-arm pro-
tractor is used to measure the angles from a standard National Ocean
Survey (NOS) chart. As its name implies, this is a three-armed instru-
ment. Its arms may be rotated about a common pivct point, and the
angles between each outer arm and the center arw are read directly from
a fixed scale. The vernier scale offers marked precision to one or
two minutes depending upon the protractor used. There is a small hole
at the pivot point which is centered over the charted buoy anchor posi-
tion. Then, the arms are aligned through the charted position of each
of the three fixed objects. The measured angles are recorded. 1In
general, the largest scale chart available upon which the necessary ob-
jects are shown is used; and the angular measurements are checked by
several competent personnel. The LOP crossing angle is observed usually
by constructing the circular LOP's on the chart with a compass.

As the vessel procreds to the area in which the buoy anchor will
be positioned, each of :che horizontal sextant angles to be observed is
set on a sextant. Two competent personnel, each with one of the preset

sextants, assume a prescribed position on the vessel which is selected

{
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for its proximity to tlie point from which the anchor will be released
and for its commanding view of thke fixed objects. The vessel is
maneuvered until the vertical centerlines of the objects used to obtain
each LOP appear superimposed when sighting through the appropriate sex-
tant. When this occurs, the anchor is released; and the positioning

operation is complete.

.3 Sources of System Error

The sources of error in the system as described in this chapter
can be classified under three general headings.. These are plotting
error, primary instrument error and &upplementarx error. The specific
components of each general heading are the errors which must be con-
sidered for the analysis of the positioning accuracy of the system.
These include the following:

(1) Plotting error

(a) charting error of the positions of objects

(b) instrument error in angular measurement with the
three-arm protractor

(c) human error in angular measurement with the three-

arm protractor

(2) Primar; instrument error
(d) instrument error in angular measurement with
the sextant
(e) human error in angular measurement with the

sextant

(3) Supplementary error

(f) error introduced by the displacement of the
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sextant angle observers from the position of
buoy anchor

(g) error caused by the effect of current on the
anchor after it is released and/or the effect of
brctom topography on the position of the anchor

after it contacts the bottom.

The supplementary error will be neglected in the error analysis, since
its components are not truly random.

First consider the combined effect of (a) and (c). This combined
error is the source of dependent error between the two angles due to the
use of the three-arm protractor. Fig 1-5 shows ; typical set of fixed
objects 0, Q and Q' which are to be used to determine the position P.
Line segments PO, PQ and PQ' represent the arms of the three-arm protrac-
tor used to measure the sextant angles to be observed. 531 and faz are
the exact angular measurements of ZOPQ and £ QPQ' respectively. The
error in positioning the pivot point of the protractor directly over P
as it affects the angular measurements ;gl and f?z is designated €ip

1
and € . Failure to position the arms through the exaczt positions

P
0, Q andZQ' creates the errors €'o 5 €'q and €’q' in the magnitude of
the angle measured from a reference direction (REF) to arms PO, PQ and
PQ'. The angle from REF to each arm, indicated in fig 1-5, can be sub-
tracted to give £ OPQ and ZQPQ', which define LOP-1 and LOP-2 respec-

tively, as

ZO0PQ = £ (REF-to-PO) + € 5 ° Z (RSF-to-PQ) - €q + ep
1

(1.4}

and  £QPQ' = /£ (REF-to-PQ) + €.q - £ (REF-to-PQ') - €, + €,
2




FIG

. 1-5 HORIZONTAL SEXTAN | ANGLE DESCRIPTION
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The signs of the errors may be either positive or negative. Positive
errors €, €q and €q. tend to increase the magnitude of the angle

between REF and the particular arm while positive errors €p and €,p

increase the total angle. The dependence of the erzor termst shown f:cz)r
both angles in eqs. 1.4, upon each other is apparent from the appearance
of the Cq and €p terms in both equations.

The primgry instrument error and (b), the three-arm protractor
instrument error, are individually independent of all other errors.

Their combined effect on Fl and '62 is designated €,r and €'s

respectively. Adding these errors and noting that

,‘91 = £ (REF-to-PO) - £ (REF-to-PQ)
and 4y = [ (REF-to-PQ) - Z(REF-to-PQ'),
eqs 1.4 become

r

oPQ = + € -€E +€E_ + €
LOPQ= B + € - &4+ &p T

and ZQPQ' = ,52+ €q- eq. + €p2+ €,

The eqs. 1.5 are the expressions for the effective horizontal sextant
angles uced for the positioning operation described in Section 1.2. The
remainder of this presentation is dedicated to the determination of

positioning accuracy from the expected angular errors € .
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2. POSITIONING ACCURACY

2.1 Preliminary Considerations

The ultimate goal of this report is to develop a method for determin-
ing the accuracy of a position fix obtained by ho-izontal sextant angles.
The basic method is derived and presented in section 2.3. The assumptions
which are made to permit a reasonable mathematical development of accuracy
probability are the following:

a. the combined system random error is normally distributed;

b. any bias error has been removed frqm the system so that

"the mean of the random error is zero;
and,in the neighborhood of the observers' position P,

c. the LOP's are coplanar;

d. the exact and error LOP's approximate straight lines and
the angular errors € can be transformed into distance
errors measured along a straight line which is perpendicu-
lér to the exact LOP and the error LOP; and

e. the error LOP's are parallel to the exact LOP's.

The statistical descriptions of the individual angular errors
are derived from analyses of suitable samples of random error data. (The
determination of the angular error distributions of those errors which
result from the use of the three-arm protractor, €o, €q’ Cq" €

Py
and E_p » from measurable distance errors in placing the arms and the
2

pivot point is discussed in Appendix A.) Generally speaking, random
physical phenomena approximate normal distributions. Further, the sum of

random variables with the same distributions which are other than normal
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usually will approach a normal distribution. Consequently, the assump-
tion "a" of .a normally distributed random error for the horizontal sex-
tant angle problem is considered acceptable. The distribution of some
random error variables is offset from a zero mean value by a constant
value called the bias error. In order Lo concentrate the discussion on
the analysis of the system random error, it is assumed by "b'" that the
bias error has been removed from the system.

The geometric model used for this analysis is shown in fig. 2-1.
This model is identical to that used by Burt et al in ref. 2. The fig-
ure depicts an enlarged view of a small area in the neighborhood of the
observers' position P. The effect of a one standard deviation (one - 07 )
error in each LOP is shown. The combination of the
one - O error LOP's for the assumed normally distributed random error
defines the elliptical probability density contour of a bivariate normal
distribution. The ellipse shown in fig. 2-1 might represent the 75%
probability density contour, i.e., there is a 75% probability (three chances
in four) that any particular position fix will be within its boundaries.
Assumptions '"c", "d" and "e" are necessary for the use of this model.

The coplanarity of the LOP's, assumption "c¢", is considered accept-
able if the fixed objects are clearly visible from the observers position
and if the fixed objects and the observers position are at the same
altitude. The first requirement is implicit for the application of the
method of horizontal sextant angles.” The latter is usually reasonable
for buoy anchor positioning problems. The linearity of the LOP's and

the distance error lines assumed by "d" is made temporarily to preserve
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FIG. 2.1 EXPANDED VIEW OF INTERSECTION OF TWO
LINES OF POSITION

CONSTANT F

(@)

FIG. 2.2 CONTOURS OF CONSTANT 3 (circular LOPs)




the continuity of the discussion. Proof of the acceptability of this
assumption is presented in Appendix B. Some of the developments of
Chapter 3 are used in the proof. Fig. 2-2 shows that the assumption "e"
of parallel exact and error LOP's is relatively poor near the points O
and Q. For the relatively small expected LOP error, the LOP's will be
essentially parallel everywhere except in small areas in the neighbor-
hoods of O and Q. Consequently, this assumption, with its recognized
shortcomings near the fixed objects, is considered acceptable for the

purposes of this anelrsis.

2.2 The Probability Theory

The probability density function for a normally distributed random

error variable € with a zero mean value is given by

p(€E ) = e (2.1)

1
Jjrmo
where (O~ is the standard deviation of the distribution and 0'2 is
the variance of the diétribution.

The probability that a particular value of € 1is within the limits €‘a

and E’b is determined by integrating eq. 2.1 from € to €,. In

T TR e

4 equation form,

9 g €

P (E,S€ € €= ) piE)ae 2.2)
& b €a
fa_g}f Tabular data is available for the evaluation of eq. 2.2 for any particular

values of 68, eb and 0 .
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The general form of the joint probability density function of two

normally distributed random error variables € . and 62, both with

1

zero mean values, is the bivariate normal

2 2
1 (€1 _z_e_gg_'_sz_)
2

20 -ph 032 g
02(1 ) 1 0,0,

where P is the correlation coefficient (a measure of the dependence)

of Cl upon €,2.

The probability that a particular value of the crmbined error is within
certain prescribed limits of 61 and 62 can be determined by the double

integration of eq. 2.3 between these limits, i.e.,

¢ €1p n€2b
P€<1°-S€4$€15>=f J‘ P( €5 €z)d€-2d€1 (2.4)
€as€, €, 10 Jez0

The presentation of general tabular data for the evaluation of eq. 2.4
is not feasible due to the variability of F from case to case. However,
tabular data is available for the special case when € 1 and €,2 are

independent ( € = 0). For this special case, eq. 2.3 reduces to

1 € €
- —— (__L.;..Ei)
1 et g
P(€,1> 62)- e
2T o7 07

(2.5)




The dependent nature of each total LOP error upon the other ror the
three-object, two-LOP method of horizoiw.tal sextant angles was discussed
in section 1.3. This dependence requires the more complicated orobability
density function of eq.-2.3. Fraser (ret. 3) gives a method by which
the dependent errors € 1 and €2 can be transformed into orthogonal,
independent errors, x and y, whose probability density function is in
the form of eq. 2.5. Fig. 2-3 (fig. 12 of ref. 2) can be entered, tanen,
directly with a prescrived function of CE: and (7;'to obtain the radius of
an equivalent circular probability contour for various accuracy probabili-
ties. (The elliptical probability density contours of the bivariate
normal are converted to circular contours in ordér to quantify more de-
scriptively the accuracy to be expected for a particular probability.

The actual dimensions of the error ellipse are of interest only when a
specific situation requires the determination of along-track and/or cross-
track error.)

A suitable modification of Fraser's method for application to hori-
zontal sextant angles and the subsequent use of fig. 2-3 will be combined
to form a method by which the positioning accuracy of the system can be
determined. The first task is to define the variances (a’z) of the indi-
vidual LOP error and the correlation coefficient (F) of the combined

LOP error.

.3 The Basic Method

The analysis begins with the definition of the equations for each

LOP from eqs. 1.5 as




LOP - 1= LOPQ= @ + € - §+E, + €
1

r

(2.6)

and LOP-2= ZQPQ'= 8+ € - €+ €, + €,
: 2

As discussed in Section 1.3, the error components combined as € . and €s
are individually independent of all other errors. Further, the errors in

positioning the outer arms of the three-arm protractor, €

o and €q-,

independently afiect LOP - 1 and LOP - 2 respectively. These independent

errors are combined to facilitate the mathematical manipulations as

€1 - 60 + €r
and eh --€q| + Cs

Now, the expressions for the total error affecting each LOP can be written
as

€ =€p.1= &€+ €.p1 (2.7a)
and €2 = CLOP _ = €h+ €q+ €p2 (2.7b)

By definition, the variance of € is equal to the expe:ted value of the

square of € . In equation form
2 2
o = E[€ ] , (2.8)

Applying eq. 2.8 to eq. 2.7a,

2 2
e[ - 6 ) ]




or

2 2 2
o -z[ € - € €rE€E -€EHE €

(2.9)
. |
+ € Epl - & '€P1+ ep1 ]

Since E[x+ Y# 24 soen ] =e[x] +E[¥]+ E[Z+ ] , eq. 2.8 can

be applied to eq. 2.9 to yield

2 2 7 , (2.10)
g, =0 + 0"+ 0 -21-:[ €€+ € €P1-€1e"1]

q P,
The last three terms in eq. 2.10 are the covariance () terms which express
the dependence of the random variables. However, as stated previously, the

€i error is individually independent of all other errors, so that

Mg = E[ €4 éq] =0 and/u-ipl = E[ € €p1 ]= 0. Also, assuming
that the error in aligning arm PQ directly through Q is independent of that

in positioning the pivot point directly over point P,/,b =E|l € € = 0;
Py Q9 P

and all the covariance terms vanish. Eq. 2,10 becomes

0 2= 072+ o;2+ 05;2 (2.11)

A similar sequence of operations cn eq. 2.7b yields

a—-—2 — 0—2 + O—'Z + o—' 2 (2.12)
2 h q P,
The correlation coefficient(ﬂ of €1 and €2 is defined as

Rt v
/0 (Tf 0_2_, (2.13)




where U, = E[ €1 €2] is the covariance of €, and €2 (2.14)

Substituting eqs. 2.7 into the expression for the covariance, eq. 2.14,

LT x[ (€~ €+ )&+ €+ epz)]

or
- - . 2 _
M2 E[ € €+ & €+ €, epz &% & -4 €92
¢ (2.15)
+ eh + € + c €.
" €p1 1 P R
Since €i and €h are independent in themselves and € 1is independent of
: q
€p’ eq. 2.15 reduces to
2
= E - 2,16
A € €, o, (2.16)
1 2
The components of €p and €p are derived in Appendix A as
1 2
€1,1 =- A0 + 49, (A.12)
and e:p2 = - A0, - &K, (A.8)

where AOI, AOZ and AKZ, are angular changes defined in Appendix A

(figs. A-3 and A-.4).

Therefore,

E[ €, epz] - E[ (- 40, + 40,)(- Ao, - AKz)]

s i S

o Bl L PR S e sl filicd




(2.17)

2
- 48, AK.z]

or E[ €.p1 sz] =E[ AOI A92+ AOI AI(Z - A92

The individual angular changes, AOI, A92 and AKZ’ are individually

independent of any other single angular change so that eq. 2.17 may be
written as

E[ epl epz] ” E[ . Aozz] =he 02';2 (2.18)

2

2

2
and /“‘12"' 0;;2 - o; (2.19)

Now, substituting eqs. 2,11, 2.12 and 2.19 into eq. 2.13,

2 2
'( 0& +0: )

(0 2 (2.20)

ot o

0
3
-1
ﬁN
N

Eqs. 2.11, 2.12 and 2.20 define all of the parameters required in eq. 2.3.

In order to continue the development into Fraser's method for eliminat-
ing the dependence of the LOP errors, it is necessary to convert the para-
meters of eq. 2.3 as defined by eqs. 2.11, 2.12 and 2.19 into distance units -
measured over a straight line which is perpendicular to the exact and the
error LOP's. Ultimately, this conversion is necessary to obtain the radius
of a particular circular probability density contour, which must be in dis-

A

tance units. Assume that there is a factor K which meets the stated con-

version requirements. This is expressed in equation form as
A
€. = K € (2.21)

where €dkis the error in distance units

and ea is the error in angular units.
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Applying eq. 2.21 to €. gives €_ = K €.. This implies that

1 1d 11
O'; s 1-:[( ﬁlel)z] (2.22)
But, n[( R, el')z]é ﬁlzs[ elz]
s that 0y = R E[ €’ ] (2.23)
Similarly, 0’2; e ﬁzz E[ 622] (2.24)

Using eq. 2.8 and substituting eq. 2.11 or eq. 2.12 as appropriate, eqs.

2.23 and 2.24 become

2 . A2 2 2 2
0“"lcl = K" (0] +a;’ +ap~1 ) (2.25)
2 a2 2 2 2
and O, "= K, (Oq +0q°+ a9 (2.26)
2

The same procedure can be used to convert the angular covariance term into

distance units. Using eqs. 2.14 and 2,21,

A A A A
or, substituting eq. 2.19 into eq. 2.27,
-- % B 0"2+a’2) (2.28)
124 ST 0, q '

Note that when the variances and covariance in distance units given by

eqs. 2.25, 2.26 and 2.28 are substituted into the general expression for




A
the correlation coefficient /9 (eq. 2.13), the K factors cancel so that

} A2 _ /’iZd @39}
P~ 03" 0 O :

The correlation coefficient/;? is unaffected by the conversion to distance
units and is still given by eq. 2.20. Chapter 3 is dedicated to the deri-

A
vation and analysis of the conversion factor K.

The variance and covariance terms in distance units, as defined by
eqs. 2.25, 2.26 and 2.28, permit the application of Fraser's method
directly. (Fraser's method is abstracted herein for the purposes of this
discussion. fhe details of the entire development are given in ref. 3.)
Since the LOP crossing angle ( & in fig. 2-1) is not necessarily 90°, the

first step is to transform the error variables onto orthogonal axes. The

transformation is given as

1d
(2.30)

6 El = EZ tanol
2d secol

and

where E1 and E2 are the error variables along the new orthogonal axes and

6{ is the LOP crossing angle.

The transformation of eqs. 2.30 can be used to obtain the joint probability

density function of El’ E2 as

B e e e s P b b o e e e S T Hgmiii -
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2 2
SIS SRR, P - L L

—2 o )

P( E, E,) = L n PR G 050, O
2105, O 4|1 -0, (2.31)

where £ - UI;

SO e 2 2
OE- |tana<| JG’ OJd seco - 2/wud seco(

—r————

U, = E [E1 Ez]= - tana( (9 d = /24 S€c%)

2
P - U, O1a © - Mg secx
1 = =
Ok, Te,

0-]:1 JGHZ*- OEEZ seczci - /a-ud secol

Although the error axes are now orthogonal, the cross product term
in the exponent of e in eq. 2.3l indicates the dependence of E2 upon El.
In order to eliminate the cross product teirm, the coordinate axes are rotated

by another linear change of variables. The transformation is statcd as

follows:

E; = x cosf -y sinf

! (2.32)

E, = xsinf + y cos/f

where f is the angle through which the axes are rotated.

The derivation of ref, 3 showrs tnat the expression forf must be

i

™




2 (o 4
f- 1 tan-]' ﬁ 1 "E (2.33)
O, 2- 0%, ?

This transformation for the rotation of the coordinate axes is discussed
in ref. 4 also. When eqs. 2.32 and 2.33 are substituted into eq. 2.31,

the resulting probability density function is

2 2

. (.ﬁ.__,', _L)
1 2 ‘o2 g2
P(x,y) = e X y _ (2.34)
2T O O}‘,’
where O:: \/0';3’1 2 coszf + 0';2 < sinzf + 2U), sinf cos S
(2.35)

and 07: JUEI 2 sinzf + O-Ez 2 Coszf = 2U12 sin f COSf

Eqs. 2.35 define the standard deviations o‘;and O; of the independent
variables x and y. Now, fig. 2-3 can be entered with the smaller of the
ratios -Qz or g - This value and the desired accuracy probability define

gy Ox

a value of K . The radius of the equivalent circular probability density

contour is calculated by

R =K 0‘; (2.36)

where OF is the larger of O and a';

This concludes the development of the basic method for determining the

positioning accuracy of the method of horizontal sextant angles. As stated
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previously, the derivation and analysis of the conversion factor ﬁ used
to convert the angular error to distance error is presented in Chapter 3.
The derivation of a means for calculating the LOP crossing angle of for a

three-object, two-LOP position fix is included as Chapter 4. Finally, an

example of a practical application of the complete method to a buoy pos .-

tioning problem is given in Chapter 5. It should be noted that the presen-

tation will continue through the example problem without the benefit of
suitable, published human factors error data. The consequent assumptions

made in Chapter 5 for the purposes of the example are explicit therein.
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THE GEOMETRIC MULTIPLICATION OF PRECISION (GMOP)

.1 The Role of the MOP

The development of Section 2.3 presumed the existence of a conversion
factor ﬁ , defined by eq. 2.21, which can change the angular variances of
the individual WOP's and the angular covariance of the combined LOP's iato
distance units. Further, in order to conform to the geometric model of
fig. 2-1, it is necessary that, in the neighborhood of the observers' posi-
tion P, the resulting distance error is measured over a straight line which
is perpendicular to the exact and the error LOP's (assumption "d",

Section 2.1). It is the purpose of this chapter to develop and study a
suitable conversion method within the geometric constraints of the systen:.
The ultimate goal is to find some function which is independent of the base-
line length (the distance between the fixed objects, designate. A) such

that the product of this function, evaluated at any point P, and A will
yield ﬁ . Combining this concept with eq. 2.21, this function, named the
Geometric Multiplication of Precision (GMOP), is expressed in equation

form as

GMOP =

(3.1)

:>|9<>
[

>

m

where €a is the error in distance units,
€§a is the error in angular units,

and A is the baseline length

The reader familiar with electronic triangulation systems will recognize

the analogy betweer. the GMOP and the GDOP (Geometric Dilution of Precision)
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commonly used for the electronic systems. The significant difference be-
tween the two is that GMOP equals zero at the fixed objects 0 and Q.

At this point a brief discussion of the directior of the following
development is appropriate. The direction of the development is set by
the desire to describe the GMOP as a function of the magnitude of the
gradient ofp > |$p| . The logic of this choice is abpparent when the
the desired features of the GMOP are compared with the inherent traits of
the gradient off3, iaﬂ . The magnitude of E%S converts distance traveled
between contours of constant fB (the LOP's) along the path of maximum change
in f? to an angular change in fS.* The direction of <?S along the path
of maximum change in fB requires that it is perpéndicular to the contours of
constant fS . Fig. 3-1 illustrates the relationship between the contours of
constantp and curves of ?"3 . (The circular nature of the curves of -V:G
as presented in fig. 3-1 is shown to be accurate during the analysis of
Appendix B.) Obviousiy, the inverse of 'EaS' meets the requirement to
convert angular measure to distance units within the geometric coastraints
of the system. Further, the fact that ias is perpendicular to contours of
constant f3 indicates that the requirement to measure the error in distance
units along a straight line which is perpendicular to the exact and error
LOP's may be approximated by measuring the error along curves of i?? .
Therefore, there is a strong possibility of fulfilling all of the require-
ments of GMOP with a function ofliasl . The development begins with the

derivation of the mathematical expreséion for the LOP in Section 3.2.

.2 The Mathematical Expression for an LOP

Consider the circular LOP shown in fig. 3-2. Again, the observer's

position is P and O and Q are the fixed objects used to generate the hori-

1

*The conversion is from distance units to radians.

e
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zontal sextant angle. The coordinate system is chosen with point O at

the origin. (It is very important to understand that this representa-

tion and the analysis which follows applies to any sextant angle generated
from two fixed objects,.i.e., the points O and Q are representative of any
set of baseline objects.) It is expedient in this case to use the polar
coordinate system where T is the position vector of any point in the plane
of the coordinate system. The position vector T has magnitude r and a direc
tion defined by the angle © between T and the baseline axis. The variables
A andp have been defined as the distance between O and Q along the base-
line and the exact measurement of the horizontal sextant angle respectively.
Referring to fig. 3-2 and using the law of sines,

(3.2)

r =

A
sin )& sin P

Substituting for )(.

r =

A
siﬁﬂ'- (,d+ 9)] B sinﬂ

Noting that sin [‘ﬂ‘ - (P + 0)] = sin (F+ 9),

r

- A
sin (,{3+ 9) sinp

Finally, sin (fg + Q) = sinrﬂcose + cosf!sin@
so that

r = A(cos® + cot{gsine) (3.3)

Eq. 3.3 represents the LOP in polar coordinates in terms of r, A, @ and p c




3.3 The Derivation of the GMOP

Eq. 3.3 can be manipulated to yield an expression for ,6 in terms of

r, A and 8. The manipulation yields

Ps cot-l[{-cs;:g - cotO] (3.4)

The general form of the gradient of'5 in polar coordinates is

V‘ppsf'lrh—i—-g%& (3.5)

where £ and 8 are unit vectors in the r and @ directions respectively.

The components of eq. 3.5 may be derived from eq. 3.4 as

' 1 2
_gér = i cscOsinﬁ

and 1 %é I . 2 sin@ - cot@ cos@
r 0 A cscOsu\ﬂ [cosO + cot:'psino ]

(The details of the derivation from eq. 3.4, through eq. 3.8 are presented

(3.6)

in Appendix C. Also, an understanding of the development through eq. 3.8
should permit the reader to follow the analysis of Appendix B, the proof of

the acceptability of assumption "d" of Section 2.1.)

- -
2 The magnitude of ¥4 is given by

|6ﬁ| - J(-%%)z + (A %%)2 3.7

Substituting eqs. 3.6 into eq. 3.7 yields




el - cscOsinf
!Vﬂl A(cos® + cotg sin@) B.8)

Now, the GMOP may be derived from eq. 3.8 in the desired form of eq. 3.1
as

GMOP = = sinOcscP (cos@ + cot/a sin@) (3.9\)

1
a [l

3.4 The Nature of the GMOP

At this point the behavior of eq. 3.9 over the entire ranges of Ig
and 0 is of interest. The equation may be pué in a more suitable analytical
form by first expanding as

GMOP = csclg sinBcosO + csc’dcot,d sinZ0 (3.10)
Substituting into eq. 3.10 the trigonometric identities

8inBcosO = %sinZO

and sin29 =1 lcosze
2 2

yields

L 1 -1 ‘
GMOP 2csclﬁ sin20 + 2csclﬁcot:'e 2csc'g cot/cosZG (3.11)

Letting

C = %cscﬂ and D = %csc/a cot,ﬁ,

GMOP = D + Csin20 + (-D)cos20

or GMOP = D - JCZ + D2 cos(20 +¥) (3.12)

where ¥ = tan'l(—g—)
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Let E = -\/cz + D2 and notice that %= tan/@ ,so that

GMOP = D - Ecos(20 +p ) (3.13)

The nature of the GMOP is readily discernible from eq. 3.13. Particu-

lar features include the following:

a.

For any ﬁ , GMOP consists of a constant D from which
some portion of a cosine function is subtracted.
The sinusoidal portion of GMOP cycles once each T

radians.
Increasing A between 0° and 90° causés a decrease

in D and E and shifts the cosine curve to the left.

Noting that

E= 1&2 + D% = —f%csczﬂ + %csczﬂ cotzlg = %csc,ﬂ 4/1 + cot%ﬁ

= %csczlg 5

eq. 3.13 can be written as

GMOP = %csczﬂ cos/g - %cscia cos(20 +ﬂ)
Values of @ may vary from gero for P located at Q to -4

for P at O (see fig. 3-2)..

At these boundary values of O,

0= 0, GMOP = %csc%ﬁ cos/d- %csczﬂ cos,& =0
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0=Tr-s, QIOP = -;-csczﬁ cos g - %csczp cos (2T -28+4) = 0

This is the expected result since the contours of constant /9
(the circular LOP's) counverge at 0 and Q (see fig. 2-2).

’ e. The variatioﬁ of @ from 0 to T -@ causes the truncation
of the cosine curve at a distancelg from 20 +f5 = 0 and
from 20 + 8 = 2 ; thus, all possible values of 29-+f3
yield cos(20 +/!)‘cos,3 so that the GMOP is always positive.

f. Intuitively, the points q, » which lie on the perpendicular

bisector of 0Q in fig. 3-3, should be the points at which
GMOP is maximum for any givenfs.. As-indicated in the figure,
for the points Mp , 0= :ELifi. The derived equation may be

checked for agreement as follows:

GMOP
0

= 2Esin(20 + 8 ) = csc?g sin(20+ 4 ) = 0 (3.14)
) B - cadlp sincan 10

for the non-trivial case, eq. 3.14 implies that
20 +fg =Tl (n=0, 1, 2,...)

For any/g in the range of interest, the only one of the
3 values which 20 +f3 assumes is TP . Consequently,

29~+,3 =7

which yields 6 = lfiéz-for;maximum GMOP ((3 = const)

g. Finally, the combined implications of "e' and "f" above indi-
cate that the values of GMOP are symmetrical about the perpendicu-

lar bisector of 0Q.
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Items "d" through "g" above indicate that the mathematical representa-~
tion of the GMOP behaves as expected at several check points. It is con-
cluded from these favorable results that eq. 3.9 does describe a function
which satisfies the form requirement of eq. 3.1 and converts angular errors
to distance units within the system constraints. Fig. 3-4 shows curves of
GMOP vs 0 for 20-degree increments offg from 5° to 125° (within the range
of the newest sextants). The curves are presented to demonstrate the
changing shape aS/S varies. Additionally, contours of constant GMOP are
shown in fig. 3-5. This type of representation usually aids in the visuali-

zation of the physical situation.

.5 The Feasibility of Linear Interpolation for GMOP

An investigation of the feasibility of linear interpolation between
the curves of fig. 3-4 to obtain values of GMOP for intermediate values of
ff and between curves of GMOP vs,ﬂ for incremental @ in order to obtain
GMOP for intermediate values of @ is of interest. For the first case,
values of GMOP (GL’Fgl) and GMOP (0, ;33) would be obtained from fig. 3-4.
Then, the linear interpolation could be performed to obtain GMOP (91,/3 2).
The second case implies that GMOP (91,/31) and GMOP (83, /31) could be
used to find GMOP (02, /6?1) by linear interpolation. The combination of
these two possibilities would yield a relatively concise table from which
@GMOP could be determined for any possiblefg and 8. The advantages of
such a presentarion are obvious. For exact linear intcrpolation in the
first case, GMOP must be constant, i.e., there must be a linear rela-

e
tionship between/3 and GMOP for any constant @, Likewise, exact linear
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interpolation in the second case requires that O GMOP is constant.
SG
Therefore, the behavior of each of these quantities is an indication of the
accuracy which can be expected from linear interpolation for their respective
cases. The equation of.-g%‘ogi is derived readily from eq. 3.9. The de-
e

tails of the derivatio. are shewn in Appendix D. The result is

SGMOP

;ﬂ ,9 - -Gcsc:’P [sinpcos(ﬂ + 0) + 2G] . (3.15)

where G = sin®

Note that the quantity in brackets is a reiatively '"tame'" function whose
individual components never exceed a value of 2.0. The effect of this quantity
is to modify the dominant -csc3 function. The degree of modification will
depend upon the particular values of and 6. The coefficient G exerts a
more commanding influence of the shape of %;M—OP in that the effect of
the constant @ value is not diluted by the varying ‘6 values. Curves of

GMOP are shown in fig. 3-6. Although each curve exhibits constant (or

DP : GMOP
nearly constant) Dﬁ

over scme range of.p , these ranges vary in size
0
and position for different values of @. In general, linear interpolation

between curves of GMOP vs © for constant incremental '5 is acceptable only

over limited ranges of ’6 which differ with changing 6.

The equation for SGMOP

is taken from eq. 3.14 as
de

P

GMOP

AY:)

= 2Esin(20 + 8 ) | (3.16)

4

2
where E= _L.cs
2cclﬁ
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For any constantﬂ » eq. 3.16 represents a sine curve of amplitude csczﬁ .
The most acceptable ranges of 0 for linear interpolation purposes are those
which include the section of the curve near a peak. Since the phase angle
of the curves changes‘with'g (the phase angle is, in fact, equal top ),
these acceptable ranges will vary for varyingrg . Additionally, the ampli~
tude of the curves varies inversely widlfgﬁ and, since a smaller amplitude
‘- will effect a "flatter" curve, the range of ® over which linear interpola-
tion is acceptable increases with increasing (5" Curves of -%wlﬂ are
presented in fig. 3-7. The results of figs. 3-6 and 3-7 promptea general
caution against linear interpolation. Until the acceptable error in GMOP

is determined (as the error effects the calculation of (II; C7;; and/gzizd),

it is advisable to calculate the required value for any specific case

directly from eq. 3.9.

*for os,aS9o°
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THE LOP CROSSING ANGLE (&)

4.1 The Calculation of o

This chapter is dedicated to the derivation and presentation of a
method for calculating .the LOP crossing angle o/ as an input to thz basic
method of determining the positioning accuracy developed in Section 2.3.

The LOP crossing angle is defined as the acute angle between the tangents

‘to the LOP's at the observer's position P (see fig. 2-1). It is shown

physically for the respective cases of figs. 1-4 in figs. 4-1. The effect
of o( on the reliability of a4 position fix will not be addressed speci-
fically in this report. (The deterioration of fix reliability with the
deviation of of from 90° is demonstrated effectively in fig. 7 of ref. 2,)

Consider the illustration of ome LOP in fig. 4-2. The development
of Section 1.1 provides the value of £C0Q = I~ -fg (point C is the

2
center of the circular LOP). It follows from fig. 4-2 that

r(se- 400Q=9-%+/g (4.1)

Since AOPC is isosceles (two of its sides are radii of the circle),

£ POC = £Z0PC; and ’b in fig. 4-2 is given by

;bslfT-+r(=9+le (4.2)

This expression for yb can be derived readily for configurations encompas-

sing all possible combinations of f? and 0.

The two general configurations of the tangents to the LOP's and
the position vectors T at the observers' position P are shown for the case

of fig. 4-la in figs. 4-3. From fig. 4-3a,
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b. Situation correspondi‘ng to fig. 1-4b.

Figure 4-1. lllustration of LOP crossing angles for the two general ggometric cases of fig. 1-4.
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Figure 4.2 One LOP showing the angle ¥
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Figure 4-3. Geometric situations near the intersection of the LOP's for fig. 4-1a.




o= ¢y -y - B0 (4.3)

Substituting eq. 4.2 into eq. 4.3 yields
: X =046 - 0, (4.4)
In like manner, from fig. 4-3b,
o = Tr-[;uz - ',61)]
or & =T - (6 +p2 - 9) ‘ (4.5)

Figs. 4-4 show the two general configurations for the case of fig. 4-1b.

From fig. 4-4a,

x= ¢ - (P, + B

(4.6)
or o(=0)-6-@82=-(02+ 87 -8)
From fig. 4-4b,
« = TP-[¢1 o (51’2*‘/61)]
(4.7)

or x=‘n\'(01‘92'p2)=““[' (92+P2‘01)]

Eqs. 4.4, 4.5, 4.6 and 4.7 can be used to form the general rule for

determining the LOP crossing angle ¢, stated as follows:

0(, = ’

92+p'2 -91l$9o°

92+ﬂ2'91

(4.8)

of = 180° - 62+ B2 - > 90°

b}

92+p2-01

where the absolute value of (02 + '62 - 07) 1is taken to allow for the

negative values of this quantitywhich are encountered for the case of

!-w. s
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Figure 4-4. Geometric situations near the intersection of the LOP’s for fig. 4-1b.




-69~

fig 4-1b (eqs. 4.5 and 4.7).

It should be noted that when c(-=0, the two horizontal sextant angles
define the same LOP (fig. 4-5). This is called commonly a swing angle
and is characterized by‘Oz + f32 = 01, The disastrous implications of
selecting objects which create this situation are apparent from fig. 4-5.
The proper sextant angles can be measured from any point on the LOP.
Also, note that eqs. 4.8 express O in terms of Oz,f?z and 9. Since
these values are required for the calculation of GMOP (eq. 3.9), the
determination of o involves very little additional effort.

The developments of this chapter alon; with those of Chapters 2 and
3 form ti2 copplete method for evaluating the acéuracy of a position
fix obtained from horizontal sextant angles. Since these developments
are cluttered somewhat by the supporting theory, an example problem is
provided in Chapter 5 to demonstrate the aoplication of the complete

method to a practical situation.

Additional Note: 1In order to apply rigorously the method for deter-

mining positioning accuracy developed herein, the vproper absolute

value and sign of the crossing aﬁgle o must be used. The absolute

value of . is determined from;eqs. 4.8. If « is measured frow LOP-2

to LOP-1 in a counter:lockwise direction (figs. 4-3b and 4-4a), the

sign is positive; if measured from LOP-2 to LOP-1 in a clockwise
direction (figs: 4-3a and 4-4b), the sign is regative. However, the
sign éf « affects both Uy, (as defined for egs, 2.31) and Jf (eq. 2.33)
directly. The manipulations of eqs. 2.35 neutralize the sign effects,
ie., the valucs of ¢ and cﬁf calculated from eqs. 2.35 are unaffected
by the sign of . Consequently, to simplify the mechanics of applying

the method, only positive «'s are used.
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FIG. 4-5 A SWING ANGLE (a=0)
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AN EXAMPLE PROBLEM

5.1 The General Procedure

The developments of the preceding chapters can be combined now with
the concepts of Appendix\A to formulate the general step-by-step procedure
for determining the accuracy of a horizontal sextant angle position fix.
The steps of the procedure are listed as follows:
§igg_l: Determine the angular variances of the individual LOP's and the

angular covariance of the combined LOP's using eqs. 2.11, 2.12 and 2.19.

2 _ 2 2 - )
C!"‘1 O“i2 + C"‘q + (7’p’1 (2.11)
2 _ 2 2 2 '
0~2 - 0-" - + a"’q + O“pz_ (2.12)

(2.19)

!
|

AL 0y

The definition of the component variances can be derived from the relation-
ships established in chapters 1 and 2 and Appendix A. Consider first the

variance CTIZ. The angular error G;i is given in Chapter 2 as

61 = €o + €r (5.1)

As defined in Section 1.3, E;o consists of the error in placing the arm PO
directly through the center of point O (fig. 1-5) and the error in charting
the position of the fixed object 0. For the purposes of this example, it
is assumed hereafter that the charted position of each of the points 0, Q
and Q' is exact. Therefore, €§b consists solely of the error in placing

the arm PO. The error €:r is defined in Section 1.3 as the combination

of the independent system errors including the three-arm protractor instrument
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error and the sextant instrument and human errors. In equation form,

€:r = €3a + €st:i + € (5.2)

sth

where €'3a is the three-arm protractor instrument error; E’sti is the
sextant instrument error; and esth is the sextant human error.

Eq. 5.2 can be substituted into eq. 5.1 to give €, as

E:i. E Co it €3a E €‘st:i - €'st:h (5.3)

Since each of the components €., €3, €g¢i and €4y are individually

independent, eq. 5.3 can be used in eq. 2.8 to yield

2 2 2

o= e[€f] - ot o3l v on’ + G (5.

Similarly,
2 _ 3 L s e B 2
O-;l E[ E.’h ] O;, o-;a sti o:th e
The variances 0;' 2 and 0; 2 can be determined by using the expres-
1 2
s?mns for € and € given in Appendix A as
Py P2
! (A.12)
; €, == 4% - ALz o

in eq. 2.8. Since each of the angular changes A91, AOZ and AKZ are

independent of any other single angular change, the results arez

3 2 2 2 2
3 O “=E| € = O+ Oz (5.6)
P L Tpp 48, 48,
2 T 2] 2 )
and g~ " =E = q + (5.7)
Py | Ty % 8K,
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Now, substituting egs. 5.4 through 5.7 into egqs. 2.11 a—d4 2.12,

2 2 2 2
012=032+O;a+0;:i+7;;h +0'(’l+ o-’2+0"’2 (5.8)

48, 86,
and
2. ot e B
O-; = Uy +0;1 + Ugei s*h 0—; JAQZ 8K, (5.9)

Eqs. 5.8, 5.9 and 2.19 show completely the component variances of (712,
CTE ané/&@ which will be considered for this gxample problem. The calcu-
lation of the values of the component variances is considered in Section
5.2.

A A y
Step 2: Determine K1 and K,, the factors required to convert (7;, CT;

and//Aiz from angular units (radians) to distance units. Combining eqs.
3.1 and 3.9,

ﬁ = (A)GMOP = Asin9c593 (cos® + co?g sin@) (5.10)
where A, © and/g are shown in fig. 3-2.

If the values of Al' 8, andlégl for LOP-1 are substituted into eq. 5.10,

A A
the value of K, is obtained; using A_, 92 andfg'z for LOP-2 produces K

1 2
It should be noted that hand calculations of ﬁ can be facilitated by

2°

recognizing that

r = A(cos® + cotfssine) ' (3.3)
so that
ﬁ = rsichsc/s (5.11)

where r is the distance from O to P for LOP-1 and from Q to P for LOP-2.
The variances and the covariances are converted to distance units as

follows:
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A
on B K1 0:
a'gd = ﬁz a; (5.12)

A A :
A = K Ky A4,
Step 3: Calculate the LOP crossing angle &« from eqs. 4.8
x= lgz A, '91,’ %, *A, ’glls e
«=180°-|0, + 48 - ell, ,92+f32 -ell>9o°

CJEE,//aiZd from eqs. 5.12 and o¢ from eqs. 4.8 in the

(4.8)

Step 4: Use g~

1d’
expressions for CE&, CTE;, U12 and /01 as they are defined for eq. 2.31.
O’El = 074

1 2 2 2
= + 0,4 se -2
%, ™ Tean] 1/% 2q Seedl = Ifpq seox

1 2
U = - = X
12 tan X (C7Iﬁ /1212d secet ) (5.13)
2
- sece(
U2 OI; H24
/&1—0’0—’ ) 7 T
E1 E2 (7;&\// OT4° + Oaq° sec?(, %/ZIZd secal

Step 5: Calculate the angle of axis rotation‘fofrom eq. 2.13.

1 2,1CE10‘EZ
jo= ‘2"t:an'1 2 2 (2.33)
o’ - o
1 2
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Step 6: Calculate O~ and g~ by using the values of g, and U
x y Ep Ep 12
obtained from eqs. 5.13 and the value of f from eq. 2.33 in eqs. 2.35.

2 2 2.2
o = A\/GE cosf + 0';2 sinf + 2 Ulzsinfcosf

(2.35)

0';= A\/O’;lzsinzja+ ngzcoszja -2 Ulzsixfcosf
Step 7: Enter the cufves of fig. 2-3 with the smaller of the ratios é;%
or %;%'and the desired accuracy probability to obtain a value of K. The
radius of the circular probability density contour, whose center is the
center of the black dot used to mark the charted buoy anchor position,
within which the particular horizontal sextant angle position fix can be
expected to be for the particular accuracy probability is calculated

using eq. 2.36.

R =K O‘l’) . (2.36)

where Cﬁ; is the larger of g~ andc§1
X

It can be seen that hand calculations of the positioning accuracy
for any particular problem are relatively long and tedious. However, the
method does lend itself nicely to computer programming, where the para-
meters peculiar to the problem would be the required inputs. Many calcu-
lations could be handled by a computer in a short time. Nevertheless, a
sample hand calculation will be carried out in Section 5.3 to illustrate

the mechanics of using the step~ty-step procedure,
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5.2 Probabilistic Variable Definitions

This section addresses the problem of defining the means of calculat-

ing the component variances of c7’2, (7’2 and/Aﬁ., shown in eqs. 5.8,
. 1 2 2
5.9 and 2.19. The reader is referred to Appendix A for the derivation of
the equations which express € , €q, €q,, A91 » A8, and Ali?_ in
o .

terms of measurable distance errors in placing the three-arm protractor
arms directly through the centers of O, Q and Q' and in placing the pivot
point directly over P. Applying egs. 2.8 and the implication of eqs. 2.23

and 2.24 to eqs. A.1l, A.2, A.3, A.6, A.9 and A.10 yields

2 o-;Z
vy,
g, 2
By
2 0722
gy - ’
q 2
)
Gy .2
O—‘v 2
q ry
2 0¥,
O:e ]
1 r1
2
2 O
CAG = 2
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2
and 2 Oy
Tak, = 2
r
3

2 and r, are the lengths PO, PQ and PQ' respectively. Limited

experimental results from twelve samples of each variable taken by two

where rl, r

subjects indicate that it is reasonable to assume the following:

' a. The distributions of yl, y2 and y3 are identical. Each approxi-
mates a uniform distribution which is symmetrical about the
center of the black dot used to chart the position of the
particular fixed object. Further, it seems that the human
mindvcan edit possible error positions Af 0, 7 and/or Q' which
lie beyond the limits of a circle whose center is that of the
black dot but whose diameter is equivalent to that of the
smallest black dot used to chart the positions of fixed objects
ashore (approximatély 0.01 inch on all NOS charts).

b. The error points P¢ (figs. A-3 and A-4) have a circular
uniform distribution about the center of the black dot used
to chart the buoy anchor position. Aéain, error points out-

side a circle of diameter equal to that of the small black

dot used to chart the positions of fixed objects ashore seem

to be eliminated. Consequently, the diameter of the circular
distribution is approximately equal to that of the small black
: ; dot.

Therefore, the variances on the right-hand sides of eqs. 5.14 are equal.

The standard deviation of the uniformly distributed variables is defined by

yeee

o - (5.15)

_d
Wy
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where d is the diameter of the small black dot.
Using 0.01 inch as the value of d and generalizing eq. 5.15 for any chart

scale factor N,

0.1__ (0.01)N

(12)( +/12)

where O 1is in feet.

= (2.4 x 107N (5.16)

This expression for g~ can be used in each of the eqs. 5.14 to determine
the indicated component variances. However, it ﬁust be emphasized that
eq. 5.16 is an expression for g~ which is based upon assumptions made from
very limited dara. Its accuracy will remain suspcct until it is substantia-
ted by much more experimental data.

Preliminary experimental results presented in ref. 7 indicate that
the standard deviation of the human error in measuring angles using the
sextant is approximately 6'05.5". It will be assumed for the purposes

of this example problem that

cy;;h = 6'05.5" = 17,7 x 10 " radians (5.17)

Assuming that the sextants used are adjusted perfectly, the instrument
error in measuring angles with the gextant is due to the limited precision
of the instrument. A general assumption which is made to approximate the
expected error due to this limited precision, called the granularity, is
that the error is uniformly distributed between the smallest graduations

on the instrument. Usually, sextants offer marked precision to the nearest




tenth of a minute. Therefore,

= (0'1) S -1‘
(,;;i (60)(57'3)('Vi§) 0.084 x 10 radians (5.18)

Similarly, since the most commonly used three-arm protractors are marked

to two minutes of arc,

o7 = 2
32 (60)(57.3)(4/12)

= 1.7 x 1074 radians (5.19)

Eqs. 5.14, 5.16, 5.17, 5.18 and 5.19 define all of the component variances

2 2
of (TI . (T; and/Ale for the purposes of the example problem.

.3 The Actual Problem

The problem which will be presented to illustrate the application
of the method for determining positioning accuracy which is derived in this
report is that of positioning the anchor of Bridgeport Entrance Lighted Bell
Buoy #10. A portion of C&GS (now NOS) chart #220 which includes the buoy
anchor position, labeled P, and the labeled fixed objects 0, Q and Q' is

shown in fig. 5-1. The following parameters are taken from the chart:

N = 20,000 r, = 6450 ft
= o ] =

/31 = 92°12 r, = 8400 ft
(it o 1 ] o

/52 = 52732 ry = 10,050 ft

6 = 5006 Al = 10,800 ft
- o -

8, = 7444 A, = 8400 ft
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Step 1: Using eq. 5.16,
0= (2.6 x 1074 (M) = 4.8 £t

Substituting this value into eqs 5.14 yields

0"2 = 0-/ 2 = ( ) = 55.4 x 10...8 vadiang
o Aol
odz g 2. ( ) = 32.7 x 10°8 radians
q a9, 8400
2=0/2'(—4"8—2°228 10-8
0:1" Ay ~ 10,050) = fc.0 X radians

Using these values and those of eqs. 5.17, 5.18 and 5.19 in egs.

and 2.19 yields

22.2 x 10'4 radians -

o =
1
CT; = 20.7 x 10-4 radians
= - 65.4 X 10--8 radians2
Vaae?)

Step 2: Using eq. 5.10,
ﬁl = 5030.5 ft/radian

K2 = 10,237.0 ft/radian

Egs. 5.12 can be used to obtain

cr;h = 11.2 ft
o“;d = 21.2 ft
= - 33.7 ft2

/‘ﬁ2d

5.8, 5.9
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Step 3: Using egs. 4.8,
= 76.2°

Step 4: Substituting CTId,cEa,/Aled and o into eqs. 5.13 yields

= 11.2 ft
E1
g = 22.4 ft
E,
U.. = - 65.5 ftz
12 :

/6& = - 0.26

Step 5: Use eq. 2.33 to find

F=9.6°

Step 6: Calculate ¢g— and cr; using eqs. 2.35 as

X
Oy = 10.7 ft
0‘y‘= 22.6 ft

Step 7: _SZ:E <.£Zix so fig. 2-3 is entered with Ci? = 0.47 and the

desired accuracy probability of 95% to obtain

K= 2.025
Using eq. 2.36, the radius from the center of the black dot within which the

sinker can be expected to be placed for a 95% accuracy probability is

R = 45.8 ft
This step-by-step procedure can be used in like manner to find the position-

ing accuracy for any other problem.
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APPENDIX A

The discussion of error sources in Section 1.3 presents the errors
in measuring the horizontal sextant angle:r using the three-arm protractor
as angular errors which‘modify the exact angular measurements. These
errors result from the improper placement of the protractor arms PO, PQ
and PQ' (fig. 1-5) and the improper placement of the pivot point over the
point (observer's position) P*  This appendi:. addresses the problem of de-
fining the statistical distribution relationships of the angular errors
to measureable distance errors due to the use of the three-arm protractor.
These distributions are necessary to determine some of the variances and
the covariances used in the development of Section 2.3.

Consider first the angular errors EZO, qu anud (Zq. which result from
the improper placement of arms PO, PQ and PQ'. If the protractor pivot
point is fixed directly over the point P and the center arm PQ is positioned
through point Q, all of the angular error will be contributed by the in-
correct placement of the arm. Fig. A-1 shows the exact placement of the
arm PQ and a hypothetical incorrect placement PQ¢ . The vector ?3 is
constructed from PQ to PQ¢ , perpendicular to FQ at Q. Assuming that the
error point Qg 1is always within the small blac dot with which the posi-
tion of an object is charted, the magnitude y, is always much smaller than

the length PQ. Consequently, E:q is small and

e tan- (22 = Y2
Eiq tan™ " ( r2) o (A.1)

where y2 and r2 are shown in fig. A-1 and (;q is in radians.

*It is assumed that the charted position of each of the points 0, Q and
Q' is exact.
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FIG. A-1 THE ERROR IN PLACING ARM PQ
THROUGH THE CENTER OF Q

T R o

FIG. A-2 THE ERRORS AFFECTING 8, DUE TO THE
INCORRECT PLACEMENT OF PIVOT PCINT
OVER P
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Eq. A.l1 implies that the distribution of eq can be specified completely
by the one-dimensional distribution of Yo divided by ry. Note that r,
is constant for any particular problem. Similarly, the distributions of

€ and E,q' are defined by

(o
y
€ ~L (A.2)
r
1
2 y
and [ f g.._3- (A.3)
q r

w

where y1 and yq are the magnitudes of the ¥ vectors from PO and PQ' to
PO¢ and PQg , perpendicular at 0 and Q' respectivelyjand T, and ry are
the lengths PO and PQ'.

The determination of practical expressions for €,pl and €P2 is a
more complicated problem. 1f the arms PO, PQ 'and PQ' are fixed through
the centers of 0, Q and Q', all of the angular error is due to the improper
placement of the pivot point over point P. Fig. A-2 shows the effect of
the error on the measurement of £ OPQ. The incorrect placement of the
pivot point changes the orientations of arms PO and PQ which causes the
angular changes 46; and AF\I. Since the sum of the three angles must
remain 180°, the measured value of the horizontal sextant angle may be
affected also. The angular eff.ect on /61 is designated €p ; in fig. A-2,

1

FIG— = {51 + epl, wheve the sign of €p1 depends on the situation.
So,

/31+ep +0,+ 48, + K + Al(1=180° (A.4)
1

where the signs of AOl and AKI also depend on the situation.




But (61+ 0 + Ky = 180°

Therefore, eq. A.4 reduces to

€, + 80+ af; =0

or €p1 = -( Aol + A"l) (A.5)

Eq. A.5 implies that the distribution of ep can be derived from the
1
distributions of AOl and AKI The distributions of AOI and AKI

can be determined using the method by which €°, €q and €qu were defined.

In fig. A-3 vector ¥ is constructed from PO to Pe O, perpendicular to PO at

P. Since AOI is small,

,

y s
a0 ¥ & (A.6)

where r is the length PO.
Similarly, if T is constructed from PQ to Pg Q, perpendicular t. PQ at P

(fig. A-3),

EHg g%z (A.7)

where r, is the length PQ.

O

The distribution for the angular error in the measurement of £ QPQ' due
A to the improper placement of the protractor pivot point can be derived from

fig. A-4 as

€p2 = -(A92 + A)(2) (A.8)

PO IR N NG Y N

g
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FIG. A-3 DEFINING THE ANGULAR CHANGES Ax, AND A¥,

FIG. A-4 DEFINING THE ANGULAR CHANGES A92 AND Ax,
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where A ¥t (A.9)
2|
2
1 and Al(2 R (A.10)
1 Fq '
i Notice that Z0QQ' = )(1 +8,. Since the arms are fixed through the centers
'f of their respective points, £0QQ' is constant and any change in 92 creates
i an equal and opposite change in ’(l or
¥
; 92 = - K 1 (A.11)
4
1
Eqs. A.7 and A.9 reflect this relationship. Substituting eq. A.l1l1l into
; eq. A.5,
I € = A8_- A9 (A.12)
Eqs. A.12 and A.8 are expressions which define the distributions
i of éip and €$ . The distributions of the components are defined by egs.
1 2

A.6, A.9 and A.10. The important implication of this appendix is that, if
the one-dimensional distributions of yl, Yy and y3are symmetrical about the
centers of the black dots used to chart the positions of the fixed objects
and if the distribution of the error points Pe (figs. A-3 and A-4) about
the center of the black dot used to chart the position of the buoy anchor

is circular, suitable samples of Yis Yos Y3s s, t and u taken from one

experiment can be used to determine the distributions (and the values of the
probabilistic variables) of the angular errors Eio, 6;1 and €iq| and the
angular changes A8;, 48, and AKZ’ which define E‘p and €p . The

1 2

probabilistic variables descriting these errors are necessary for the imple-

mentation of the method for determining positioning accuracy.
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APPENDIX B

Assumption '"d" of Section 2.1, made with reference to fig. 2-1,
is restated for convenience as follows:
in the neighborhnood of.rhe observers' pcsition P,
d. the LOP's approximate straight lines and the angular
errors € can be transformed into distance errors
measured along a straight line which is perpendicular
to the exact LOP and the error LOP,
It is the purpose of this appendix to present the analysis which proves
the general acceptability of this assuamption. As stated in ref. 2, the
LOP's approximate straight lines in the neighborhood of P if the radius
of curvature of the exact LOP is much larger than the one - g~ error (in

distance units). This requirement is represented in equation form as

A

R > 1 ' (B.].)

o4 :
A

where R is the radius of the exact circular LOP and O is the standard

deviation of the random error in distance units.

Fig. B-1 is a reconstruction of fig. 1-3a which includes additionally

some angular and linear measurements derived in Section 1.1. From this

figure it can be seen that

<>

. -;— A cscg (8.2)

The combination of eqs. 3.1 and 3.9 yields
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FIG. B-1 RECONSTRUCTION OF FIG. 1-3a SHOWING
ADDITIONAL ANGULAR AND LINEAR
MEASUREMENTS

1 2 3 3922 a

B (8=90°)

Figure B-2. Graphic Repres~ntation of Equation B.5 for 0< 8 <5°.
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a:;= AsichscP (cos® + cotﬂsin@)o‘: (B.3)

Now, eq. B.2 can be divided by B.3 to give

A
R _ 1 y (B.4)
O3 2 sinB(cosd + cot 8 sin®) O;

Preliminary indications are that O';~10 minutes; therefore, a'a'=

3x 10-3 radians will be assumed for the purposes of this analysis. The

A

R

smallest values of will be encountered when the denominator of

a
eq. B.4 is very large. It can be seen that the trigonometric functions

of © in eq. B.4 are very "tame", i.e., none of them will ever exceed the
value of 1.0. Since Oa/is considered constant, the volatile term is
cot‘d which will approach infiﬁity as F approaches zero. For small
values of ,8 (0 S,ﬁ €59, setting 8 to 90° will permit a clear view of
the worst situations which can be expected, identifying different areas
over the range of(ﬁ from zero to five degrees for which eq. B.1 may

not be satisfied. If © = 90°, eq. B.4 may be rewritten as

A
UR—Z‘) 9 = n = ';a'—g/ T (1.7 x 102)tan'5 (B.5)
2 a

Fig. B-2 is the graphic representation of eq. B.5 for O -‘,6 £ 59, 1t
A

can be seen from this figure that, if cl;_, 2 10 is considered sufficient
d

to satisfy the implication of eq. B.l, the first part of assumption 'd"
is acceptable for 16 2 3922', It should be noted that this result implies
the acceptability of the assumption of linear LOP's in the neighborhood

of P for all possible values of 8 corresponding to any ﬁ greater than or
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equal to 3°22' (the upper limitcnlfg is the maximum angle which can
be measured by the sextant - 126° for the newest sextants). However,
it does not preclude the acceptability of this assumption for some

possible values of @ corresponding to #'s less than 3°22'. In fact
b

A
R

d
except /9 = 0. The logical conclusion is that, in general, the first

there is some 6 which yields 2 10 for every possible value of /?
"part of assumption "d" is acceptable.

The second part of assumption "d" is acceptable if the radius
of curvature of the particular curve of Eaf along which the error is
measured is much larger than the one -0~ error (in distance units).
The logic of this statement can be seen intuitively from the representa-
tion of the contours of const&ntfﬂ and the curves of iaﬂ shown in
fig. 3-1. Unfortunately, the definition of the radius of curvature of
the iag curves is not readily apparent from the figure. 1In order to
verify the shape and determine the expression for the radius of curvature
of these curves, it is most useful to deve'op a ;calar expression, similar
to eq. 3.4, which describes the whole family of i%g curves. To accom-
plish this, the property of the mutual orthogonality of the contours of
constanth and the E%f curves is exploited. By the definition of
the gradient, there is some function 9# which is constant on the ii@
curves and for which the contoufs of constantf? are the gradient curves.
This concept is analogous to the velocity potential-stream function rela-
tionship of fluid dynamics or the potential-flux relationship of electro-

- =

magnetic theory. The fact that ‘665 “79’ = 0 everywhere is used in

the form of the Cauchy-Riemann equations (ref. 5) in polar coordinates.
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These are stated as follows:

(B.6)

Eqs. B.6 can be used to find the function ¢ from eq. 3.4. The form of
—:'_'— -%g which is most useful in this case is given by eq. C.5. As it

is stated in Appendix C,

1 _ 1
DR - I N

- 2§c059 + 1

(C.5)

Y

Substituting this relationship into the appropriate equation of eqs. B.6,

;ﬁ -11_- - -l-cose

)r=r2 b
v 2Ac059+ 1

>

(B.7)

Eq. B.7 can be integrated to obtain¢as follows:

¢= I2 . oLeosd + 1 o
Xz'- ACOS

¢ _ 2/ dr ef dr
= A r(ré - 2rAcos® + A2) ~ Acos® J T orAcos + A2 (B.8)
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From the C. R. C. Standard Mathematical Tables (ref. 6),

dx aelh h x2 . b dx
x(cx2 + bx + a) 2a cx2+ bx+a| 2a) cx2+ bx + a

Applied to the first term on the right-hand side of eq. B.8,

(B.9)

2 dr i r2 dr
A }r(r2 = 2rAcos® + A2) 2 ln[rz - 2rAcos® + A4]+ Acosefrz - 2rAcos® + A2

Substituting eq. B.9 into eq. B.8, the equation for% becomes

= 1 r2 f .
¢ z lnl:rz - 2rAcosf + A2}+ ®) (B.10)

where the additive f(@) term is necessary since the expression is derived
by the integration of the partial derivative of with respect to r.
The evaluation of the f(8) term is accomplished by determining % %g

from eq. B.10 and using the resulting expression in the second equation

of eqs. B.6. From eq. B.10,

1 O@ _ _ -Asing . d [t 1
r o0 ré - 2rAcos® + Al de T
Noting that

= A(cos® + cot/B sin@)
and r2 = A2(cos20 + 25in0cosOcotld + cotz'a sin20),

r2 - 2rAcos® + A2 = Azsinzecscig




-GH=

But, from eqs. 3.6,

—%ré = - i cscbsinz/g
Consequently,
d[f]
a0 =

Lo

or £(8) = constant = -:2!- In K

Therefore, ¢ may be written as

N =
-
]
~

sﬁ = o 1n -
2 rZ + 2rAcos® + AZ

or, finally,

1| %2
¢' 2 lnLrZ  2rAcosO + AZ (B.11)

Eq. B.1l is the scalar equation for the contours of constant ?5
-
(the ‘%9 curves)., A more descriptive form of eq. B.ll is obtained by

conver ting to the Cartesian coordinate system. From eq. B.ll,

3 e2¢ . ?('r
' r2 - 2rAcos@ + AZ

or r2 - 2rAcos@ + A2 = ?(e'2¢ rl

T

Therefore,

L

] (1 - Re-20 )r2 - 2racose + A2 = 0

2
or 2. 2rAcos#@ - A -0 (B.12)

24

a-%7) a-g
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The conversion to Cartesian coordinates is accomplished from eq. B.12 by

recognizing that r2 = x2 + y2 and x = rcos8.

4
]
£
:

Eq. B.12 becomes

24 A2
# -0
Q- -2 )x a-g®,

2y g2 2

Completing the square in x and rearranging terms,

2 A2

2 _ ____2A a2 2 _ A -
ST A B L SR A, 3 A A SR AT, Y SN S T

3 or A 2 2 . A2 1
:- [?1_—7(—23‘5] s T [y Y| 6

Eq. B.13 is in the general form of a circle in the Cartesian coordinate
=
system. Thus, the circular nature of the V?S curves in fig. 3-1 is

accurate. The radii of the circles are defined by

R & 1 1 . (B.14)
R=a \/(1 - Ee‘ias [1 - Re 2P 1]

and the locations of the centers are

A
: . (*, y) = (W) ) (B.15)

Note that eq. B.1l5 indicates that the centers of all of the possible

circles which are described by eq. B.13 are always on the x - axis of

the Cartesian coordinate system (line 0Q in fig. B-1).
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In order to investigate the acceptability of the second part of

A

assumption "d", the ratio £ must be found. The requirement that the

(o] N
radins of curvature of any particular curve of ‘?ﬂ along which the

error is measured is much larger than the one -g— error (in distance

units) is satisfied if

N (B.16)
o » 1

[~

Since cx; is still in polar coordinates (eq. B.3), it is convenient to

[+ : )
convert R into polar coordinates. From eq. B.l1,

5 2 . 2
Ke°2¢ _E 2rA;osQ + A (B.17)
r

Substituting r = A(cos® + cotf?sing)
and rl = A2(c0529 + ZSichosgcotf? + cotzfg sin29) into eq. B.17
yields

o ¢ - sinzgcsczﬁ
(cos@ + cosgrsingfz

~ -2

It follows that

1 il

={cosB + cot@ sin0)”
(- Ke'za ) c0s20 + cotf?sinZQ

and sin29csc§g

1- _1=
(1 - Re ZP ) cos20 + cosg?sinZO

so that
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K (cos® + cota sine)zsinzecsck
(cos20 + cotﬁ sin20)

g or ~ P cos® + cot® sind
4 R = Asin csaﬂ cos20 + cotf3sin20 (B.18)
Dividing eq. B.18 by eq. B.3 yields
R 1
Og {cos2e + cot/!sinZO)cT; (B.19)
Ao
There is an obvious similarity between eq. B.19 for E$= and eq. B.4
A d
for 2. In fact, eq. B.19 can be analyzed as eq. B.4 was for the
a‘; . ‘e

smallest values of the ratio —— which can be expected by assuming that

3 Tq
CT; = 3 x 10  radians and setting 0 to 45°. Eq. B.19 reduces to

R tang _ 2
(5";)9 . ."%‘ Fa,é (3.3 x 10%) canp ‘ (8.20)

R >
~— £ 10 is considered
T4

E Fig. B-3 illustrates eq. B.20 for O 5,6 §$ 50, 1If
sufficient to satisfy eq. B.16, it can be seen from the figure that the

second part of assumption '"d" is acceptable if 2 1%3". Therefore,
P

=
the linearity of the curves of ‘?’ in the neighborhood of P for any
value of @ corresponding to essentially all the possible values of f?

is acceptable; and the second part of assumption "d" is generally

acceptable.
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APPENDIX C

This appendix contains the derivation of eq. 3.8 from eq. 3.4.

Eq. 3.4 is restated for convenience as

/6 « cot™! [-Ecsco - cotQ] ‘ (3.4)

In polar coordinates,
3 ,
Vp - ¥, LB , (3.5)

The components of —V;a are calculated as follows:

ép - % CSCQ (C 1)
or "z r 2
chsc e - zzcscgcotg + cot0 + 1

Using the trigonometric identity csc?0 = cot?0 + 1, eq. C.1 becomes,

bp - %csce

or YRR
csc20(-:-z - ZZcosg + 1)

It follows that

bﬁ - %me
dr 2 _ .t | (C.2)
iz 2Ac080 +1

Finally, substituting

r = A(cos® + cotp sin@)

(C.3)
2

and = A2(c0s20 + 251n9cosOcot’a + cotzld sin20)

into C.2 and combining terms,
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8 1 2
S cscOsin (C.4)

E bﬂ icsczgcosa - cscz(;

a £ or
N cscze(:z- - 2Kcose +1)

1 1

2cos@ - £
1 ; ) Acos - .
s 2 o
L J iz- - Z-Ecose +1

Substituting eqs. C.3 into eq. C.5 and combining terms,

b andi s

1 éﬁ . cos20 + sinGcosOcoti -1
r o8 Asin%csc%@ (cos@ + cot@sing)

or 1 B I § 2 sin@ - cotA cos@
r 0 Acscesin/d cos® + cot'a sin® (C.6)

The magnitude of ?,5 » given by eq. 3.7, is restated here for convenience.

I_V;p'=1/(§r£)2 +(-1—--§§)2 (3.7)

Using the expressions of eqs. C.4 and C.6 in eq. 3.7,

2
I I 1 2 sin@ - cotM cos@
= ——cscOsin’d £
v/d A = )\/ : +[:ose + cot,dsins

Exparding the expression under the radical and combining terms yields
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cscOsin
A(cos@ + cots sing)

(3.8)
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APPENDIX D

This appendix presents the derivation of the expression for

S‘OP , eq. 3.15, from eq. 3.9. To begin, eq. 3.9 is restated for
e
convenience.
GMOP = —IT = sinOcsc/a (cos@ + cot;d sin@) (3.9)
Alv,d|
o GMOP

0 = - sinOcotP csc,d(cose + cotﬁ.sine) - sinzecsc:;@

Y

Expanding and manipulating,

GMOP

P

Factoring and using coszlg =1 - sin%ﬂ 5

- = - sinOcoschsF csc? - SiHZOCOSZ,G csc:;a - sin29csc3£

o GMOP

5

= - sinOcsc2 cosfcosB + sinBcecscB(2 - sin
; B[ conscons + siacacgz - ) |

or

GMOP

bp % = - sinOcsc?A [cosecoslﬁ + ZSinecsc/J - sinOsin/J:I

Noting that cos(,d + 0) = cosOcos,d - sinOsin/d,

%—;;:ILP o = - sinOcsczlﬁ[ cos(/d+ ) + 2s1n9csc/6]

and, finally,

S GMOP

o

= - - sinOcsc:;dl: sin/aco.s(/ﬁ+ 0) + ZsinO] (3.15)

o sy ie—————




