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ABSTRACT

This note considers the problem of detecting the presence of pseudonoise
waveforma. The detector is assumed to have no knowledge of the sequence pro-
viding the pseudorandom phase shift keying. It is found that the structure
and performance of the optimum detector is nearly the same as a radiometer
detector with proper prefiltering. In the special, but important, case when
the received phase of a binary pseudonoise signal is constant over the de-

tection interval it is found that the optimum detector performince is 3 dB

better than the radiometric detector.

iii




II.

III.

Iv.

CONTENTS

ABSTRACT

INTRODUCTION AND CONCLUSIONS
KNOWN-PHASE MODEL

UNKNOWN, CONSTANT PHASE

PHASE RANDOM FROM CHIP-TO-CHIP

iii

13




R S s L o S E3 AR ar £ bl

I.  INTRODUCTION AND CONCLUSIONS

In this note the structure of the optimum detector of pseudonoise wave-

g

forms is derived for three channel models. The three models are:
A. Phase known to the detector,

B. Phase unknown to the detector but constant over the detection

interval,

and C. Phase random from chip to chip.

) In each case the performance is analyzed fcr the practical situation of a low
; ' SNR per chip.

£ The received waveform, r(t), is observed for N chips, each of duration

: TC. Each chip waveform is of the form % ;ES cos (wt + 61) where 01 is the
_{_g phase on the i-th chip. The sign 1s unknowncto the detector. In addition it
} é is assumed that additive white Gaussian noise of single-sided density No is
% ’ present. Statistics sufficient for the detector to make a decision consist

of the results of correlating each chip against in-phase and quadrature

g } references, {/g é cos(wt) and //; : sin(wt). These will result in two
- , ocC [o Y]

X statistics for each chip, T1g and rQi normalized to unity variance. Note that

BB this correlation is equivalent to passing the received waveform through filters

a. sin (rf/TC)

-3 with ———5
(nf/rc)

and sampling the outputs every ‘I‘C seconds. While synchronization is assumed

amplitude characteristics but 90° offset phase characteristics

. in each case, this is not a severe restriction. Clearly several time origins
3 may be examined, one of which will be close to the results presented here.
3] The false alarm rate would consequently rise - but an insignificant gain in

L required detector SNR will compensate for this.
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The behavior of the optimum detector for binar, pseudonuise waveforms
with small Ec/No is found to be similar to a radiometric detector preceded by
a signal spectrum matching filter. However, in cases of practical :interest
there 18 a 3-dB improvement in SNR compared to the radiometer. If :he phase
of the received signal is known, the detector SNR will be:

P2
r

2
L T y

——— (==
(l/Tc) N,
where the total observation time is T=NTC, and the received power is PrtEc/TC.

The false alarm probability and detection probabilities being given by the

following trade-off equations:

Pe = QN
pd = Q(Y-d)

where Y is a threshold.* If the phase is random from chip-to-chip d2 is
reduced by 3 dB. (A change in required (Pr/No) of only 1.5 dB.) The case of
unknown but constant phase (which clearly must be between the two previous
cases) has a d2 essentially equal to the known-phase case.

It should be noted that higher order phase modulation (e.g., quadraphase)
would be bounced in behavior by the known and random from chip-to-chip cases

above.

II. KNOWN-PHASE MODFL
If 61 is known, the Try terms can be assumed to be in~phare with the

received waveform. rQi can be ignored. The likelihood ratio, A(?), where T
*

2
X /2

Q(x) 4 J

dx

x V2u
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refers to the entire set of rIi and rQi observed can be written as:

z 2
11 [e-(rli-m) /2 +e-(rn+m) /2]
. 2
A =TT 2L 3
N Ii/2

B

yzn
AE

/

where m = V/ifia . The product is taken over the N chips under observaticn.
o

Each numerator term is just the probability density function (pdf) of r; which

i
is Gaussian with unit variance and mean *m with equal probability. Canceling
common terms and factoring terms out of the product which are independent of r

gives the simp! .r form:
2r,m =2r..m '
A(?) = const TT-[F H +e i ] .
N .

At this point, A(%) can be manipulated in two ways. If the product were
2miir
expanded into a sum, there would be ZN terms each of the form e where

o Arer

the sum in the exponent would vary over all the ZN ways that signs can be
chosen to combine the r;q terms. This shows that the likelihood ratio for this
composite hypothesis testing problem is the sum of th~ likelihood ratios for
each of the possible ZN recelved waveforms, a well-established fact but not a
practical way o1 designing a detector.

A more interesting manipulation is the following:

M¥) = const || cosh (2r  m)
N

after taking the logarithm (neglecting constants):

L(r) = I %n cosh (2r,.m)
N Ii
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which shows that 2N filters need not be built. Indeed, L(?) consists of a non~
linear weighting of the matched filter outputs which are then summed. The sum,
L(?), would then of course be compared to a threshold.

/5E
The most interesting practical case is when m, ——E-, is small. In

N
2 (e]
this case, the approximation &n cosh (x) & 12‘— can be used to show that (except

for constants):

Hence the optimum detector is a square-law or energy detector. However 'half’
of the received energy is not iicluded since it is known to be noise. A
structure for the optimum receiver is shown in Fig. 1.

The impulse response of the filter shown is:

Ll*' coswt 0<t<T,

NT
hc(t) oc

0 elsewhere.

The performance of this detector follows readily from noting that L(?) is

. the sum of many independent variables and hence can be considered Gaussian.

Thus all that is required for performance evaluation are the means and
variances under noise-alone (hypothesis HO) and signal-plus~-noise (hypothesis

Hl) conditions. For noise alone:

2
NE [rIi]

= N

E [L(®)]

and
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var [L(2)]

2
N Vor [r7,]

NeE [rf,] - £ [£2,])

N (3-1)

= 2N

which all follows from the fact that Try is Gaussian, zero mean and normalized

to unit variance. Assuming signal-plus nolse:

E[L®)]

Var L(r)

2
N E [tIi]
N (1 + mz)
N Var [rii]

N (E [r;‘i] - & [r%i] )

2

N @+ 6m? +3 - (1+1d)d)

N (4m2 + 2)

which follow from the fact that rry is a zero mean, Gaussian with unit

variance added to im.
is irrelevant.

Hence when signal

Since moments of r%i are being computed the sign of m

is present the mean of L(?) increases by Nmz, the

variance remains 2N when terms of order m2 are neglected. The 'signal-to-

noise ratio" of this detector, d2, is then:

d2 - (A mean)

2

variance

P



Relating this to the received power, Pr = Ec/Tc and the total observation time,
T = NTc gives:

P 2
2 2T r
| ———— (__)
(I/Tc) N,

d
which is 3 dB better than a radiometer of integration time T trying to detect
a signal in bandwidth W = l/Tc. The 3-dB gain comes about because of the known
phase (as will be shown below). It shculd be noted that this detector actually
uses the full signal energy by correlating with chip reference waveforms. A
detector which consisted merely of a rectangular filter of bandwidth lch Hz

followed by a sampler, squarer and adder would have about 2 dB poorer performance

(i.e., d2 reduced by 2 dB) since 1 dB of the signal power would be filtered out.

III. UNKNOWN, CONSTANT PHASE

The case“whgn the 61 are all equal (to 8), but unknown proceeds in a

similar way. The likelihood ratio can be written as:

1 -(rIi-m cos 6)2/2-(rQi-m sin 6)2/2 .
e

| + ={r,,m cos 9)2/2-(r +m sin 6)2/2
> +e
Mr) o= i 2 2
N -ty D J
L 2n
) m(rn cos 9+rQi sin 6) -m(rIi cos 6+rQi sin 6)
= const l] e +e
N

D

const IJ~ cosh m(rIi cos 8 + rQi sin 6)

where the whole expression must be averaged over 8 (which is assumed to have a

uniform distribution).




If the product is expanded into a sum before averaging, 2N terms will

appear of the form:

m [Ctr)cos 0% (L% Tqp) *in Ch

e
‘f vhere again the It notation refers to all combinations of sign used in the
®
. aidition. Then, using the Bessel relationship,
- 1 2" acos8+bsinf . =1 (FaX4r?)
H o [ e de o
B v
. 0
performing the average over 8 will lead to a sum of 2N terms of the form
 ‘ Io(tnﬂiirn)2 + (XtrQi)?') . This again is the sum of the likelikood ratios
for each possible 2N waveforms after envelope detection. (The Bessel function
; argument 1s the envelope.)
‘ The more interesting approach for small m is again to use the expansion
: 2
for &n cosh x = -’i‘— to show that
2 . n
g 8
Mr) = exp [I &n (cosh (m(rn cos 6 + Tot sin 0)))]
x‘;

__9

~ e -'-'Lz- [2( os 6 + si 9)2]
3 X exp 3 ryc rQi n
—9
e n? 2 2 2 2
;. = exp 5~ [(Zr];)cos” 6 + (irgy)sin® 6 + 2(Zrp;ro )cos B sin 6]
3 m? 2 2
3 = exp 3~ (A cos“ 6 + B sin” 6 + 2 C cos 6 sin O)

where A, B, C represent the three sums. Th: average over 6 can ve performed

by integrating over (0, 27) which, after some trigonometry yields:
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2 2n 2
D) O (AB) /4 ;_“ [ [(A-B)/2 cos 26 + C sin 26] 46
0
2 2 2
m-(A+B}/4 gL_J/?;-B) 2
e Io(2 —-——-——-l‘ +C°)
where
2
A = I 14
2
B = X rQi
cC = I rIirQi'

Note that the only approximation used to derive the above is vhat of small m.
If it is now assumed that the argument of the Bessel function is large (greater

ex, can be used. Ignoring the

than ®3) its asymptotic expansion, I (x) ~
° /2% R
/x term and other constants, then taking the logarithm of A(r) yields

W = m, faw? o

- e . |
It will be presently shown that the approximation of the large argument is a
good one. In any case, the above expression defines a good receiver structure
even if not the optimum one. After some manipulation the recelver can be
shown to be of the form shown in Fig. 2. The detector has an interesting
interpretation. The top branch is essentially a radiometer preceded by a
filter matched to the signal spectrum. The output of the squarer also contains
double -frequency energy. The bottom, double branch, is used tou detect double -
frequency energy coherent over the measuring interval. It is similar to the

structure of a squaring loop which utilizes the fact that squaring a biphase

signal plus noise strips off the biphase modulation. As will be shown below,
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the low-pass and double-frequency noise terms are independent, thus it is not

surprising that both bands should be used for detection.

The analysis of this detector is unfortunately rather tedious. Hence

only a sketch of the derivation will be given. The assumption that will be
nade is that A, B and C are jointly Gaussian since each is the sum of many
independent terms. The following second-order statistics can be derived in a

strajght-forward manner (assuming hypothesis Hl and m; = m cos 0, mQ =m sin v):

Ef[A] = N(lmi) var [A] = N(&m% + 2)
E[B] = N(l+mé) var [B] = N(Amé +2)

2, 2
Efc] = Nmm, var [c] = N(1+m 4+ my) -

The terms appearing in L(;) are A+B, A-B and C which will also be Gaussian.

It can be shown that these three variables are uncorrelated (hence independent)
and that Var [A+B] = Var [A-B] = N(4+4m2). The mutual lack of correlation
shows that the double-frequency noise terms are independent of the low-

frequency terms in Fig. 2.

L(r) is now seen to be the sum of two independent terms, é%ﬁ which is

2
Gaussian, with mean N and variance N, and /(ké_ﬁl_,+ C” which has a Raleigh

/T *
distribution with mean 3 N under Ho. Under Hl the second term has a

Rician distribution. By a direct calculation it can be shown that the p.d.f.

for L(r) assuming HO is:

*

/ 4
Note that the Bessel function argument has mean E%E_ which is large

enough to justify the large-argument approximation.

11
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p. (1) = - [(E-N)Q((N-z)//i) RS R G /2N]
- 2/ /2N /2N

Since one is most always interested in low felse alarm probabilities, it is the

tail of this distribution which is of most importance. This is the region

2
where £ >> N and the approximation Q(x) = 1 - % e X /2 for x << 0 can be used.

Keeping only the largest term gives:

2
p V) = (-N) - Ge-M)T/4N
2/2N

rrom which it follows that the false alarm probability is:

~ L e-(R.-N)Z/loN
V2N

Pr(L>2)

Thus the false alarm probability behaves as if the test statistic, L, was

Gaussian with mean N and variance 2N.

A+B Nm®
Under Hl, the mean of > increases by<—§— while the variance stays
essentially unchanged at N. The square-root term will be essentially Gaussian
2 4

with mean Ez— and variance N as long as E%— >> 1 which, it will be shown, is
the condition for good signal detectability. Thus under Hl’ L is again
Gaussian with variance 2N with the new mean N + Nmz. It follows that d2 can

be defined in the same way as in the known-phase case and will be:

d2 = L“l‘-
2
or
P2
2 _ 2T r 2
d (I/Tc) (No) for d° >> 1.

This result is identical to that for known 6 which 1is reasonable in retrospect

12
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since it can be shown that the recelved phase can be estimated with standard
deviation

1
i n?

(o] ~

8

radians.
V7 q

Hence the phase estimate will be quite accurate for large d making this case
equivalent to the case of known 6. (The phase estimate with this accuracy

is given by:

5 -1 2
) 5 arctan =% $)

I1V. PHASE RANDOM FROM CHIP-TO-CHIP

In this case the 61 are assumed to be uniformly distributed from 0 to 27
and independent from chip-to~chip. The likelihood ratio is similar to that of
the previous case, except here the averaging over 61 is done for each term in

the product before multiplying:

A st TT cosh m( 5 o) 1
(r) const ﬁ cosh m(ry; cos 6, + rQi sin i)

. - 2, 2

= const EI Io(m it rQi)

In this case it is seen that there is no structure which can take advantage of
the ZN possible transmitted waveforms since they are completely scrambled by
the random phase shifts. Taking logarithms and neglecting constants:

2

L(r) = ; n Io(m r

2
i + rQi) .

13
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For small m the sufficient statistic can be simply:

»
- e o ety

é = 2r§i+rgi ‘

- - N- R ———

which is similar to the known-6 case, but now both in-phase and quadrature
components are included. The receiver structure consists of just the top
branch of the receiver in the previous cnse. The Gaussian approximation for

L(?) will again.be involved with the following means and variances:

H_, noise alone: E[LE®] = 2N
var [L®)] = on
Hy, signal plus nose: E [L(F)] = N(2+a®)
var [L(®)] = NG + 4nd).

Hence for this case:

dz = _@-{‘-
A
- <fi>2
1/T N
[ Q

which Is essentially the same ar a radiometer detector with proper pre-filtering

2

and only 3 dB worse in terms of d“ than the known-phase case. (The difference

in terms of Pr/No will be only 1.5 dB.)
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