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ABSTRACT

This note considers the problem of detecting the presence of pseudonoise

waveforms. The detector is assumed to have no knowledge of the sequence pro-

viding the pseudorandom phase shift keying. It is found that the structure

and performance of the optimum detector is nearly the same as a radiometer

detector with proper prefiltering. In the special, but important, case when

the received phase of a binary pseudonoise signal is constant over the de-

tection interval it is found that the optimum detector performance is 3 dB

better than the radiometric detector.
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I. INTRODUCTION AND CONCLUSIONS

In this note the structure of the optimum detector of pseudonoise wave-

forms is derived for three channel models. The three models are:

A. Phase known to the detector,

B. Phase unknown to the detector but constant over the detection

interval,

and C. Phase random from chip to chip.

In each case the performance is analyzed fcr the practical situation of a low

SNR per chip.

The received waveform, r(t), is observed for N chips, each of duration2Ec
Tc. Each chip waveform is of the form ±. /!LC Cos (Wt + ) where 0 is the

CT
c

phase on the i-th chip. The sign is unknown to the detector. In addition it

is assumed that additive white Gaussian noise of single-sided density N iso

present. Statistics sufficient for the detector to make a decision consist

of the results of correlating each chip against in-phase and quadrature

references, / 4j cos(wt) and 1W-- sin(wt). These will result in two
No Tc No TC

statistics for each chip, rii and rQi normalized to unity variance. Note that

this correlation is equivalent to passing the received waveform through filters
sin ("f/T )

with (7f/T) - amplitude characteristics but 90 offset phase characteristics

and sampling the outputs every Tc seconds. While synchronization is assumed

in each case, this is not a severe restriction. Clearly several time origins

may be examined, one of which will be close to the results presented here.

'rhe false alarm rate would consequently rise - but an insignificant gain in

required detector SNR will compensate for this.
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The behavior of the optimum detector for binar, pseudonuiu waveforms

with small Ec IN is found to be similar to a radiometric detector preceded by

a signal spectrum matching filter. However, in cases of practical nLerest

there is a 3-dB improvement in SNR compared to the radiometer. If U'e phase

of the received signal is known, the detector SNR will be:

2 _2T P(__ .Wd
2T P2I,

where the total observation time is T=NTc, and the received power is Pr=Ec/Tc .

The false alarm probability and detection probabilities being given by the

following trade-off equations:

Pf - Q(Y)

Pd = Q(y-d)

where y is a threshold. If the phase is random from chip-to-chip d2 is

reduced by 3 dB. (A change in required (P r/N ) of only 1.5 dB.) The case of

unknown but constant phase (which clearly must be between the two previous

cases) has a d2 essentially equal to the known-phase case.

It should be noted that higher order phase modulation (e.g., quadraphase)

would be bounced in behavior by the known and random from chip-to-chip cases

above.

II. KNOWN-PHASE MODEL

If 0 is known, the rli terms can be assumed to be in-phace with the

received waveform. rQi 'an be ignored. The likelihood ratio, X(r), where r
!* 2/

Q(x) = J /2  dx
x /2u-
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refers to the entire set of r j and rQi observed can be written as:

I I -(riim) 2/2 +e-(rIim)
2/2

( -7 2 2
N 

1 -ri2
1e

where m - -. The product is taken over the N chips under observation.
0

Each numerator term is Just the probability density function (pdf) of rli which

is Gaussian with unit variance and mean -m with equal probability. Canceling

common terms and factoring terms out of the product which are independent of r

gives the simp' r form:

[e 2rlim -2r11m]0() const ]T[ +e•

At this point, A( ) can bemanipulated in two ways. If the product were

d i2mE±rii
expanded into a sum, there would be 2 terms each of the form e where

the sum in the exponent would vary over all the 2N ways that signs can be

chosen to combine the rIi terms. This shows that the likelihood ratio for this

composite hypothesis testing problem is the sum of tbh likelihood ratios for

each of the possible 2N received waveforms, a well-established fact but not a

practical way ot designing a detector.

A more interesting manipulation is the following:

X(r) = const- cosh (2rlim)
N

after taking the logarithm (neglecting constants):

L(r) = E Zn cosh (2r im)
N

3



which shows that 2N filters need not be built. Indeed, L(4) consists of a non-

linear weighting of the matched filter outputs which are then summed. The sum,

L(4r), would then of course be compared to a threshold.

The most interesting practical case is when m, c , is small. In
2  o

this case, the approximation kn cosh (x) 1- can be used to show that (except

for constants):

L(r) , F ri
N

Hence the optimum detector is a square-law or energy detector. However 'half'

of the received energy is not L.cluded since it is known to be noise. A

structure for the optimum receiver is shown in Fig. 1.

The impulse response of the filter shown is:

-coswt 0 < t < T
h (t) = T c

0 elsewhere.

The performance of this detector follows readily from noting that L(r) is

,the sum of many independent variables and hence can be considered Gaussian.

Thus all that is required for performance evaluation are the means and

variances under noise-alone (hypothesis H0 ) and signal-plus-noise (hypothesis

H) conditions. For noise alone:

E [L(')] N E [r2i

=N

and

4



cr 1PAS -- h(t) N~ ITHRESHOLD

SHIFT SAMPLE
EVERY Tc

Fig. 1. Optimum detector-known phase.
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Var [L(r)J N Var Cr'i]

-N(E ri1 -E' [r',]

- N (3-1)

- 2N

which all follows from the fact that rli is Gaussian, zero mean and normalied

to unit variance. Assuming signal-plus noise:

E [L(')] N E [r2

=N (I + m)

Var L(r) N Var [r i]

N (E [ri - 2 [r~i] 2

= N (m4 + 6m2 + 3 - (1 + m )2 )

= N (4m2 + 2)

which follow from the fact that rii is a zero mean, Gaussian with unit
2

variance added to ±m. Since moments of ri are being computed the sign of m

is irrelevant.

Hence when signal is present the mean of L() increases by N2, the

variance remains 2N when terms of order m2 are neglected. The "signal-to-

noise ratio" of this detector, d2, is then:

d = (A mean)2
variance

Nm
4

2

2N
0

6



Relating this to the received power, Pr = E c/T cand the total observation time,

T = NT gives:c

2 2T P 2
d (I/Tc) o

C 0

which is 3 dB better than a radiometer of integration time T trying to detect

a signal in bandwidth W - I/Tc . The 3-dB gain comes about because of the known

phase (as will be shown below). It shculd be noted that this detector actually

uses the full signal energy by correlating with chip reference waveforms. A

detector which consisted merely of a rectangular filter of bandwidth I/Tc H7

followed by a sampler, squarer and adder would have about 2 dB poorer performance

2
(i.e., d reduced by 2 dB) since I dB of the signal power would be filtered out.

III. UNKNOWN, CONSTANT PHASE

The case when the 0i are all equal (to 0), but unknown proceeds in a

similar way. The likelihooa ratio can be written as:
t-0

L [e-(rii-m cos 0)2 /2-(rQi -m sin 0)2/2

+ -(rIi+m cos 6) 2 /2-(rQ -m sin 6)2/2]4. ~ +e Q

( rN 1 -(rIi + rQi ) / 2

L 2"~e

m(ri cos O+rQi sin 0) -m(r1i cos 0+rQi sin 0)
S= constil e' +e Q

N

= const Ir cosh m(ri. cos 0 + rQj sin 0)
N

where the whole expression must be averaged over 0 (which is assumed to have a

uniform distribution).

7



If the product is expanded into a sum before averaging, 2N terms will

appear of the form:

e m [(E t rll) cos 0 + (E t rQi) sin 0)0
e

where again the E± notation refers to all combinations of sign used in the

addition. Then, using the Bessel relationship,

1 I 2f a cos 6 + b sin O I (/a+17)

2r 0

performing the average over 0 will lead to a sum of 2N terms of the form

I o(m/(i)2 + (Eri)2) . This again is the sum of the likelihood ratios

for each possible 2N waveforms after envelope detection. (The Bessel function

argument is the envelope.)

The more interesting approach for small m is again to use the expansion
2

for In cosh x 3- to show that

t)= exp [E In (cosh (m(rii cos 0 + rQi sin 0)))j

exp R2 [E(r cos 0 + rQi sin 0)2]

2 2 2 2

=exp S- [(Er 2)Cos 2 0 + (Er 2i)sin 20 + M0 rir i)cos 0 sin 0]

epm2  (A cos2 0 +B sin 2  + 2 Ccos 0sin 0)

where A, B, C represent the three sums. Th: average over 0 can ue performed

by integrating over (0, 2n) which, after some trigonometry yields:

8



-- I -W1 1 - ,7 -17 -- 7

m(A+B)/4 1 27r 2m2w - e /2 [(A-B)/2 coB 20 + C sin 28] dO

0

"em 2 (A+B)/4 Io(2- 4 + )

where

A - 2
Ii

B r r 2

Qi
C r ritrQi.

Note that the only approximation used to derive the above is chat of small m.

If it is now assumed that the argument of the Bessel function is large (greater

than f3) its asymptotic expansion, Io(x) ex, can be used. Ignoring the

x term and other constants, then takiiig the logarithm of X(') yields

L(r) Z (A+B) + (AB+C2
2 4

It will be presently shown that the approximation of the large argument is a

good one. In any case, the above expression defines a good receiver structure

even if not the optimum one. After some manipulation the receiver can be

shown to be of the form shown in Fig. 2. The detector has an interesting

interpretation. The top branch is essentially a radiometer preceded by a

filter matched to the signal spectrum. The output of the squarer also contains

double-frequency energy. The bottom, double branch, is used to detect double-

frequency energy coherent over the measuring interval. It is similar to the

structure of a squaring loop which utilizes the fact that squaring a biphase

signal plus noise strips off the biphase modulation. As will be shown below,

9
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the low-pass and double-frequency noise terms are independent, thus it is not

surprising that both bands should be used for detection.

The analysis of this detector is unfortunately rather tedious. Hence

only a sketch of the derivation will be given. The assumption that will be

made is that A, B and C are jointly Gaussian since each is the sum of many

independent terms. The following second-order statistics can be derived in a

straight-forward manner (assuming hypothesis HI and mI = m cos 0, mQ = m sin t):

E [A] N(1+m1 2) Var (A] - N(4m 2 + 2)

E [B] - N(14m 2) Var [B] - N(m2 +2)

E [C] - Nm mQ Var [C] - N(1+m2 + m).

The terms appearing in L(r) are A+B, A-B and C which will also be Gausslau.

It can be shown that these three variables are uncorrelated (hence independent)

and that Var [A+B] = Var [A-B] = N(4+4m2 ). The mutual lack of correlation

shows that the double-frequency noise terms are independent of the low-

frequency terms in Fig. 2.
7A+B

L(r) is now seen to be the sum of two independent terms, - whch is
Caussian, with mean N and variance N, and /(A-B)2+ C2 which has a Raleigh

distribution with mean under H Under H1 the second term has a

Rician distribution. By a direct calculation it can be shown that the p.d.f.
for L(r) assuming H Is:

7TNm
4

Note that the Bessel function argument has mean which is large

enough to justify the large-argument approximation.

11
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2 2N AFN

Since one is most always interested in low felse alarm probabilities, it is the

tail of this distribution which is of most Importance. This is the region
l x/2

where X >> N and the approximation Q(x) - e for x << 0 can be used.

Keeping only the largest term gives:

pL()  -(-N. e-( 2 /4N
2v 2

L 2 r2N

trom which it follows that the false alarm probability is:

Pr(L>Z) -e

Thus the false alarm probability behaves as if the test statistic, L, was

Gaussian with mean N and variance 2N.
A+B NM2

Under H1 , the mean of--increases by -- while the variance stays

essentially unchanged at N. The square-root term will be essentially Gaussian
Nm2  Nm4

with mean -2- and variance N as long as --- >> I which, it will be shown, is

the condition for good signal detectability. Thus under H1 , L is again

Gaussian with variance 2N with the new mean N + Nm2 . It follows that d can

be defined in the same way as in the known-phase case and will be:

2 = Nm4

2

or
d2  2T Pr22

(d/) () for d2 >> 1.
c 0

This result is identical to that for known 0 which is reasonable in retrospect

12



since it can be shown that the received phase can be estimated with standard

deviation

1 2

radians.

V2 d

Hence the phase estimate will be quite accurate for large d making this case

equivalent to the case of known 0. (The phase estimate with this accuracy

is given by:

1 arctan 2C
0 2 A-B

IV. PHASE RANDOM FROM CHIP-TO-CHIP

In this case the 0 are assumed to be uniformly distributed from 0 to 2w

and independent from chip-to-chip. The likelihood ratio is similar to that of

the previous case, except here the averaging over 0i is done for each term in

the product before multiplying:

\(r) = const I, cosh m(rli cos 0i + rQi sin 0
N

constfIT 0 Im/ 77 ri)

N

In this case it is seen that there is no structure which can take advantage of

the 2N possible transmitted waveforms since they are completely scrambled by

the random phase shifts. Taking logarithms and neglecting constants:

L(r) = Zn Iom/r i + r!i)
N

13



For small m the sufficient statistic can be simply:

L(i) E Zr 2 + 2 i

N Ii Q

which is similar to the known-e case, but now both in-phase and quadrature

components are included. The receiver structure consists of just the top

branch of the receiver in the previous case. The Gaussian approximation for

L(r) will again be involved with the following means and variances:

H, noise alone: E [L(')] - 2N

Vat [1(r)] - 4N

H1 , signal plus noise: E [L(-)] - N(24m 2)

4. 
Var LL(r)] - N(4 + 4m2).

Hence for this case:

4

T P 2T- (N)

c 0

which Is essentially the same ae a radiometer detector with proper pre-filtering

and only 3 dB worse in terms of d2 than the known-phase case. (The difference

in terms of Pr /No will be only 1.5 dB.)
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