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PROCEDURES FOR DETECTING OUTLYING OBSERVATIONS IN SAMPLES*

SUMMARY

Procedures are given in this report for determining
statistically whether the highest observation, or the
lowest observation, or the highest and lowest observations,
or the two highest observations, or the two lowest
observations, or perhaps more of the observations in the
sample may be considered to be outlying observations or
discrepant values. Statistical tests of significance are
useful in this connection either in the absence of assign-
able physical causes or to support a practical judgement
that some of the experimental observations are aberrant.
Both the statistical formulae and illustrative applications
of the procedures to practical examples are given, thus
representing a rather complete treatment of significance
tests for outliers in single univariate samples. This
report has been prepared primarily as a useful guide or
as an expository and tutorial approach to the problem of
detecting outlying observations in much experimental work.
We cover only statistical tests of significance in this
report and appropriate interpretations which one might
draw therefrom.

*Subs:antially the same material of this report is to
appear in a recommended practice of the American Society
for Testing and Materlals for dealing with outlying
observations. The author is a member of Committee E-ll on
Statistical Methods of ASTK and was encouraged by various
members of the Society to prepare much of the material
covered herein. He gratefully acknowledges their suggestions
and advice.

3



TABLE OF CONTENTS

SUMM4ARY ................................ 3

TABLE OF CONTENTS ............................. 5

LIST OF TABLES......................7
I . INTRODUCTION .. . .. . ......................... 9

11. GENERAL ........ ... .. ...... ..... 9

III. BASIS C' STATISTICAL CRITERIA FOR OUTLIERS ....... 10

IV. RECOMMENDED CRITERIA FOR SINGLE SAMIPLES.......... 12

V. RECOMMIENDED CRITERION USING INDEPENDENT STANDARD
DEVIATION .. *.......*...... . o..*.....e....... 2S

VI. RECOMMENDED CRITERIA FOR KNOWN STANDARD DEVIATION. 28

VII. ADDITIONAL COMMENTS .......................... 29

REFERENCES ... ... ...... . .... . ......... . ... ...... S3
DISTRIBUTION LIST ...... o.....................*... 55

Preceflug pop laot



LIST OF TABLES

Page No.

TABLE 1 ............................................... . 31

TABLE 2 ................................................. 35

TABLE 3 . ................................................. 36

TABLE 4 .................. 37

TABLE 5 ............. .. ..... o .............. . ......... .. 41

TABLE 6 ..... *......... . ....................... 42
TABLE 7 .. . . . . . . . . . . . . . . . . . . . . ...... 43

TABLE 8 ....................................... 43

TABLE 9 .............................. 0.................. 44

TABLE 10 ..... .. ........................ 46

TABLE 11 .................. ................... 46

TABLE 1Z .......... ........... ....... 0.................. so

Preceding page Iank 7



I. INTRODUCTION

This report deals with the problem of outlying
observations in samples and how to test the statistical
significance of them. An outlying observation, or "outlier",
is one that appears to deviate markedly from other members
of the sample in which it occurs. In this connection, the
following twc alternatives are of interest:

(a) An outlying observation may be merely an extreme
manifestation of the random variability inherent in the
data. If this is true, the values should be retained and
processed in the same manner as the other observations in
the sample.

(b) On the other hand, an outlying observation may be
the result of gross deviation from prescribed experimental
procedure or an error in calculating or recording the
numerical value. In such cases, it may be desirable to
institute an investigation to ascertain the reason for the
aberrant value. The observation may even eventually be
rejected as a result of the investigation, though not
necessarily so. At any rate, in subsequent data analysis the
outlier or outliers will be recognized as probably being
from a different process or universe than that of the sample
values.

(c) It is our purpose here to provide statistical
rules that will lead the experimenter almost unerringly to
look for causes of outliers when they really exist, and hence
to decide whether alternative (a) above is not the more
plausible hypothesis to accept, as compared to alternative
(b), in order that the most appropriate action in further
data analysis may be taken. The procedures covered herein
apply primarily to the simplest kind of experimental data,
that is, replicate measurements of some property of a
given material, or observations in a supposedly single random
sample. Nevertheless, the tests suggested do cover a wide
enough range of cases in practice to have broad utility.

II. GENERAL

When the experimenter believes that a gross deviation
from prescribed experimental procedure has taken place, the
resultant observation should be discarded, whether or not it
agrees with the rest of the data and without recourse to
statistical tests for outliers. If a reliable correction
procedure, for example, for temperature, is available, the
observation may sometimes be corrected and retained.

Preceding page blank 9
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In many cases evidence for deviation from prescribed
procedure will consist primarily of the discordant value
itself. In such cases it is advisable to adopt a cautious
attitude. Use of one of the criteria discussed below will
sometimes permit a clear-cut decision to be made. In
doubtful cases the experimenter's judgement will have
considerable influence. When the experimenter cannot
identify abnormal conditions, he should at least report the
discordant values and indicate to what extent they have been
used in the analysis of the data.

Thus, for purposes of orientation relative to the over-
ill problem of experimentation, our position on the matter
,o screening samples for outlying observations is precisely
-he following:

Physical Reason Known or Discovered for Outl-tier(s):

(a) Reject observation(s).
(b) Correct observation(s) on physical grounds.
(c) Reject it (them) and possibly take additional

,bservation(s).

PhysicaZ Reason Unknown - Use Statistical Test:

(a) Reject observation(s).
(b) Correct observation(s) statistically.
(c) Reject it (them) and possibly take additional

-, ciervation(s).
(d) Employ truncated sample theory for censored

observations.

The statistical test: may always be used to support a

judgment that a physical reason does actually exist for an
outlier, or the statistical criterion may be used routinely
as a basis to initiate action to find a physical cause.

III. BASIS OF STATISTICAL CRITERIA FOR OUTLIERS

There are a number of criteria for testing outliers.
in all of these, the doubtful observation is included in
!he calculation of the numerical value of a sample criterion
(or statistic), which is then compared with a critical value

based on the theory of random sampling to determine whether
ihe doubtful observation is to be retained or rejected. The

ritical value is that value of the sample criterion which
oUld be exceeded by chance with some specified (small)

10
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probability on the assumption that all the observations
did indeed constitute a random sample from a common system of
causes, a single parent population, distribution or universe.
The specified small probability is called the "sigficance
level' or "percentage point" and can be thought o as the risk
of erroneously rejecting a good observation. It becomes
clear, therefore, that if there exists a real shift or
change in the value of an observation that arises from
non-random causes (human error, loss of calibration of
instrument, change of measuring instrument, or even change
of time of measurements, etc.), then the observed value of the
sample criterion used would exceed the "critical value"
based on random sampling theory. Tables of critical values
are usually given for several different significance levels,
for example, 5 percent, 1 percent. For statistical tests
of outlying observations, it is generally recommended that
a low significance level, such as 1 percent, be used and
that significance levels greater than 5 percent would not
be common practice.

Sote Z - In this report, we will usually illustrate the
use of the 5 percent significance level. Proper choice of
level in probability depends on the particular problem and
just what may be involved, along with the risk that one is
willing to take in rejecting a good observation, that is,
if the null-hypothesis stating "all observations in the
sample come from the same normal population" may be
assumed.

It should be pointed out that almost all criteria for
outliers are based on an assumed underlying normal (Gaussian)
population or distribution. When the data are not normally
or approximately normally distributed, the probabilities
associated with these tests will be different. Until such
time as criteria not sensitive to the normality assumption
are developed, the experimenter is cautioned against
interpreting the probabilities too literally.

Although our primary interest here is that of detecting
outlying observations, we remark that some of the statistical
criteria presented may also be used to test the hypothesis
of normality or that the random sample taken did come from
a normal or Gaussian population. The end result is for
all practical purposes the same, that is, we really wish
to know whether we ought to proceed as if we have in hand a
sample of homogeneous observations.

11



IV. RECOMMENDED CRITERIA FOR SINGLE SAMPLES

Let the sample of n observations be denoted in order
of increasing magnitude by x, _ x2 .x ... Xn . Let
×n be the doubtful value, that is the largest value. The

test criterion, Tn, recommended here for a single outlier

is as follows:

T x -
n s

where

x = arithmetic average of all n values, and
s = estimate of the population standard deviation based

on the sample data, calculated as follows:

* =rExi )2  11/2 Inx =zx) 
/s = n -1= n(n -1

If x, rather than xn is the doubtful value, the

criterion is as follows:

x -1
T1=
Tj s

The critical values for either case, for the 1 and 5
percent levels of significance, are given in Table 1.
Tahle 1 and the following tables at the end of the report
give the "one-sided" significance levels. In many previous
treatments of outliers, the tables listed values of
significance levels double those in the present i-eport,
since it was considered that the experimenter would test
either the lowest or the highest observation (or both) for
itatistical significance, for example. However, to be
cinsistent with actual practice and in an attempt to avoid
frther misunderstanding single-sided significance levels
are tabulated herein so that both viewpoints can be
represented.

12



The hypothesis that we are testing in every case is
that all observations in the sample come from the same
normal population. Let us adopt, for example, a
significance level of 0.05. If we are interested onZy in
outliers that occur on the htgh aide, we should always

use the statistic Tn = (xr, - i0/s and take as critical

value the 0.05 point of Table 1. On the other hand, if we
are interested onZy in outliers occurring on the Zow side,

we would always use the statistic T, = (i - xl)/s and again

take as a critical value the 0.05 poinu of Table 1. Suppose,
however, that we are interested in outliers occurring on
either side, but do not believe that outliers can occur on
both sides simultaneously. We might, for example, believe
that at some time during the experiment something possibly
happened to cause an extraneous variation on the high side
or on the low side, but that it was very unlikely that two
or more such events could have occurred, one being an
extraneous variation on the high side and the other an
extraneous variation on the low side. With this point of
view we should use the statistic Tn = (x, - i)/s or the

statistic T, = (i - xl)/s whichever is larger. If in
this instance we use the 0.05 point of Table 1 as our
critical value, the true significance level would be
twice 0.05 or 0.10. If we wish a significance level of
0.05 and not 0.10, we must in this case use as a critical
value the 0.025 point of Table 1. Similar considerations
apply to the other tests given below.

Example l.As an illustration of the use of Tn and Table I,

consider the following ten observations on breaking
strength (in pounds) of 0.104-in. hard-drawn copper wire:
568, 570, 570, 570, 572, 572, 572, 578, 584, 596. The
doubtful observation is the high value, x10 = 596. Is the

value of 596 significantly high? The mean is i = 575.2
and the estimated standard deviation is s f 8.70. We compute

- 596 - 575.2 = 2.39
U.70



-oiI
From Table 1, for n = 10, note that a TI.,, as large as

2.39 would occur b~y chance withi probability less than 0.05.
:r. fact, so large a value would occui- y :hancr= not much
mrore often thlan one percent of the time. Thus, the weight
of the evidenice is against the doubtful value having come
from the same population as the others (assuming the
population is normally distributed). Investigation of the
6.oubtful value is therefore indicated.

An alternativec system, the Dixon criteria, based entirely
on ratios of differences between the2 observations is
c escribcd in the literature (7) and may be used in cases
where it is desirable to avoid calculation of s or where
cquickt _udge menlt is called for. For the Dixon test, th2
sar.-ple criterion or statistic chaniges with sample size.
Table 2gives the appropriate statistic to calculate and
also gives the critical values of the statistic for the
1. 5, and 10 percent. levels of significance.

.7-As an illustration of the use of Dixon's
Lcsc, con sider again the observations on breaking strength
givc~n in 'xample 1, and suppose that a large number of
su-ch samples had lo be screened quickly for outliers and it
w-as iudged :-oo rime-consuring t.o compute s. Table 2
I'n-licites use Of

Xn X2

"-us, for n =10,

-C Xc.

Ti1l 
-,, x 2

':'-r tii ;mc-easurements of breaking strength above,

rl.596 -584 = 0,462
M96577

V-:hi~h is a little less than 0,477, the 5 percent critical
,,,a1iic for n 10. Under the Dixon criterion, we should
t 1)r _r _, . c co nc thi cSob se r a t io n a s a n o utli e r a t
the 5 percent level of significance. These results
il lustrate how, borderlinc cases nay 'oe accepted under one

14



test but rejected under another. It should be remembered,
however, tLat the T--statistic discussed above is the best
one to use for the single-outlier case, and final statistical
Judgment should be based on it, See Ferguson (8,9).

Further examination of the sample observations on
breaking strength of hand-drawn copper wire indicates that
none of the other values need testing.

,Vote "- With experience we may usually just look at the
sample values to observe if an outlier is present. Ilowever,
strictly speaking the statistical test should be applied to
all samples to guarantee the significance levels used.
Concerning "multiple" tests on a single sample, we comment
on this below.

A test equivalent to T (or T,) based on the samplen

sum of squared dev ations from the mean for all the observa-
tioi.-z and the sum cf squared deviations omitting the
"outlier- is given by Grubbs (11).

The next type of problem to consider is the case here
wc have the possibility of two ouLlying observations, the
least and the greatest observation in a sample. (The
problem of testing the two highest or the two lowest
observations is considered below.) In testing the least and
the greatest observations simultaneously as probable outliers
in c sample, ve use. the ratio of sample range to sample
standard deviatlon test of David, Hartley and Pearson (5).
Ihe significance levels for this sample criterion are gpven

ii Tab e 3 Alern tiv lythe largest ivtduais te!-t of

Tietjen and Moore (19) could be used.

,..Z - - here is one rather famous set of observa-
tions that a number of writers cn the subject of outlying
observations have referred to in applying their various
tests for "outliers'. This classic set consists of a
sample of l1. observations ot the vertical semi-diameters of
Venus made by Lieutcnant Herndon in 1846 (2). In the
reduction of the observations, Prof. Pierce assumed two
unknown quantities and, found Lhe following residuals which
have been arranged in ascending ordr, o-' magnitude:

-1.40 Ill. -U.24 - i _', 6. 18 h 0.48

-0.44 -0.22 J.\,J' 0.2(0 0.63
-0.30 -0.13 0. i, 1.01

15
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The deviations - 1.40 and 1.01 appear to be outliers.
Here the suspected observations lie at each end of tho
sample. Much less work has been accomplished for the
case of outliers at both ends of the sample than for the
case of one or more outliers at only one end of the
sample. This is not necessarily because the "one-
sided" case occurs more frequently in practice but
because "two-sided" tests are much more difficult to deal
with. For a high and a low outlier in a single sample, we
Five two procedures below, the first being a combination of
tests, and the second a single test o' Tietjen and Moore
(19) which may have nearly optimum properties.

For optimum procedures when there is an independent
estimate at hand, s2 of c2 , see (6).

For the observations on the semi-diameter of Venus
given above, all the information on the measurement error
is contained in the sample of 15 residuals. In cases
like this, where no independent estimate of variance is
available (that is, we still have the single sample case),
a useful statistic is the ratio of the range of the
observations to the sample standard deviation:

x x
W n - X

s S

. h i r :

If xn is about as far above the mean, x, as x, is below x,
and if w/s exceeds some chosen critical value, then one-. ould conclude that botk. the doubtful values are outliers.If, however, x1 and xn are displaced from the mean by

different amounts, some further test would have to be made
to decide whether to reject as outlying only the lowest
value or only the highest value or both the lowest and
highest values.

16



For this example, the mean of the deviations is
X 0.018, the sample standard deviation, s = 0.SS1, and

wis -= 1.01 -1.40) _ 2.41 4. 7= O-4.Sl 4  
= 2.41 = . 37

A
From Table 3 for n = 15, we see that the value of
w/s = 4.374 falls between the critical values for the 1 a-,d
S percent levels, so if the test were being run at the S
percent level of significance, we would conclude that this
sample contains one or more outliers. Tht. loi..est measure-
ment, -1.40 in., is 1.418 below the sample mean and the
highest measurement, 1.01 in., is 0.992 above the mean.
Since these extremes are not symmetric about the mean,
either both extremes are outliers, or else only -1.40 is an
outlier. That -1.40 is an outlier can be verified by
use of the T1 statistic. We have

0.018 - (-1.40)_ 2.574
T,= (x - Xl)/S - . 40.55

This value is greater than the critical value for the S
percent level, 2.409 from Table 1 , so we reject -1.40.
Since we have decided that -1.40 should be rejected, we
use the remaining 14 observations and test the upper extreme
1.01, either with the criterion

x -x
T = n

n

or with Dixon's r2 2. Omitting -1.40 and renumbering the

observations, we compute
- 1.67
x -- - 0.119, s = 0.401,

and

= 1.0i - 0.119 2.22
0.401

From Table 1, for n 14, we find that a value as large as
2.22 would occur by chance more than 5 percent of the time,

17
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so we should retain the value 1.01 in further calculations.
We next calculate

X 14 - X1 ? 1.01 - 0.48 0.53

.2 x1, - x4 1.=+ .4 042

From Table 2 for n 14, we see that the 5 percent critical
value for r-. is 0.546. Since our calculated value (0.424)

is less than the critical value, we also retain 1.01 by
Dixon's test, and no further values would be tested in this
sample.

. - It should be noted that in a mLltiplicity of tests
of this kind, the final over-all significance level will be
somewhat less than that used in the individual tests, as we
are offering more than one chance of accepting the sample as
one produced by a random operation. It is not our purpose
here to cover the theory of multiple tests.

For suspected observations on both the high and low
sides in the sample, and to deal with the si-uation in
vhich some of k > 2 suspected "outliers" are larger and
some smaller than the remaining values in the sample,
Tietjen and Moore (19) suggesting the following statistic.
Let the sample values be x1 , x2, X 3 ... Xn and compute

the sample mean, x. Then compute the n absolute residuals

rl = 'xl _-x r2 = x2  -~ r = Ix - xl
1 1 1, n ... r n

':ow relabel the original observations xl, x2 , ..., xn as

z's in such a manner that z i is that x whose ri is the

ith largest absolute residual above. This now means that
z I is that observation x which is closest to the mean and

that z is the observation x which is farthest from then
mean. The Tietjen-Moore statistic for testing the
significance of the k largest residuals is then

n-kz (z i  _ k ) 2

E i=l
k =n

(z 2

i=l

18
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I
n-k

where Zk E [ zi/(n-k)

is the mean of the (n-k) least extreme observations and z
is the mean of the full sample.

Applying this test to the above data, we find that the
total sum of squares of deviations for the entire sample is
4.24964. Omitting -1.40 and 1.01, the suspected two
outliers, wa find that the sum of squares of deviations for
the reduced sample of 13 observations is 1.24089. Then
E, = 1.24089/4.24964 = .292, and by using Table 12, we find

that this observed E2 is slightly smaller than the 5%

critical value of .317, so that the E2 tcst would reject

both of the observations, -1.40 and 1.01. We would probably
take this latter recommendation, since the level of ]
significance for the E, test is precisely .05 whereas that A

for the double application of a test for a single outlier
cannot be guaranteed to be smaller than 1 - (.95)2 = .0975.

The tables of percentage points Ek were computed by

Monte Carlo methods on a high-speed electronic calculator.

We next turn to the case where we may have the two
largest or the two smallest observations as probable outliers.
Here, we employ a test provided by Grubbs (10), (11) which
iq based on the ratio of the sample sum of squares when the
,.-o doubtful values are omitted to the sample sum :f squares
when the two doubtful values are included. If simplicity
in calculation is the prime requirement, then the Dixon
type of test (actually ommitting one observation in the sample)

might be used for this case. In illustrating the test
procedure, we give the following Examples 4 and 5.

Examr;Ze 4 - In a comparison of strength of various
plastic materials, one characteristic studied was the
percentage elongation at break. Before comparison of the
average elongation of the several materials, it was desirable
to isolate for further study any pieces of a given material
which gave very small elongation at breakage compared with
the rest of the pieces in the sample. In this example, one
might have primary interest only in outliers to the left of
the mean for study, since very high readings indicate
exceeding plasticity, a desirable characteristic.

19



:1
4

Ten measurements of percentage elongation at break
made on material No. 23 follow: 3.73, 3.59, 3.94, 4.13,
3.04, 2.22, 3.23, 4.05, 4.11, and 2.02. Arranged in
ascending order of magnitude, these measurements are:
2.L2, 2.22, 3,04, 3.23, 3.59, 3.73, 3.94, 4.05, ' .11, 4.13.
The questionable readings are the two lowest, 2.02 and
2.22. We car. test these two low readings simultaneously
bv using the following criterion of Table 4:

s 21,2
I --

For the above measurc-ments:

n n~x~ -

S2  = x ( i  _ ) =i=l 
n

I~q21".3594) - (34,06)" = 5.351,

n n
and (n - 2) .  - ( 1X )2

Pi= 3  i
= (x. - X, .)7 = -
i=3 n

8(112.3506) - (29.82)--

9.5724 1197

n

(where X1 2 =  xi/(n - 2)]
i=3

1%c find:

$2
1,2 _ 1.197- 2

0- .. 224

Yrom Table 4 for n = 10, the 5 percent significance level

for K /S is 0.2305. Since the calculated value is less

than t e critical value, we should conclude that hoth 2.02
.nd 2.22 are outliers. In a situation such as the one

describet! in this example, wbere the outliers are to

20
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be isolated for further analysis, a significance level
as high as 5 percent or perhaps even 10 percent would
probably be used in order to get a reasonable size of
sample for additional study. The problem may really be one
of economics, and we use probability as a sensible basis
for action.

ExwpZe 6- The following ranges (horizontal distances in
yards from gu- muzzle to point of impact of a projectile)
were obtained in firings from a weapon at a constant angle
of elevation and at the same weight of charge of propellant
powder:

4782 4420
4838 4803
4765 4730
4549 4"33

It is desired to make a judgment on whether the
projectiles exhibit uniformity in ballistic behavior or
if some of the ranges are inconsistent with t.,e others. The
doubtful values are the two smallest ranges, 4420 and 4S49.
For testing these two suspected outliers, the statistic
S2 /S 2 of Table 4 is probably the best to use.

1,2

No* 4 - Kudo (15) indicates that if the two outliers are
due to a shift in location or level, as compared to the
scale s, then the optimum sample criterion for testing
should he of the type:
min(2 x - i  x.)/'s = (2Ix x - x2 )/s in our Example S.

The distances arranged in increasing order of
magnitude are:

4420 4782
4549 4803
4730 4833
4765 4838

The value of S2 is 158,592. Omission of the two shortest

ranges, 4420 and 4549, and recalculation, gives S2
1 2

equal to 8590.8. Thus,

21



2

1.2 8590,8 0.054

=- " ~T
which is significant at 0.01 level (See Table 4). it is
thus highly unlikely that the two shortest ranges (occurring
actually from excessive yaw) could have come from the same
population as that represented by the other six ranges. It
shc.ld be noted that the critical values in Table 4 for the
1 percent level of significance are smaller than those for
the 5 percent level.. So for this particular test, the
calculated value is significant if it is less than the
chosen critical value.

Fy Monte Carlo methods using an electronic calculator,
Tietjen and Moore (19) have recently extended the tables of
percentage points for the two highest or the two lowest
obstiv Lions to k > 2 highest or lowest sample values. Their

n-k
results are given in Table 11 where 1 (x i  x)

n n-k
(x i - x)2 and x E x /(n-k). Note that theiri=I i

L- equals our or S2  IS4. The columns headed with

an * in Tables 11 and 12 indicate agreement with exact values
calculated by Grubbs (1950). These new tables may be used
to advantage in many practical problems of interest.

If simplicity in calculation is desired or if a
large number of samples must be examined individually for
outliers, the question-.1ble observations may be tested with
the application of Dixon's criteria. Disregarding the
lowest . "nge, 4420 we test if the next lowest range, 4549
is outly.ng With n = 7, we see from Table 2 that r10 is

the appropriate statistic. Renumbering the ranges as

x! to x7 , beginning with 4549, we find:

x - x 4730 - 4549 181 0.626r X, X ) &3 4549 "

which is only a little less than the 1 percent critical
value, 0.637, for n - 7. So, if the test is being conducted
at any significance level greater than a I percent level, we
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would conclude that 4549 is an outlier. Since the lowest
of the original set of ranges, 4420, is even more outlying
than the one we have just tested, it can be classified as
an outlier without further testing. We note here, however,
that this test did not use all of the sample observations.

Rejection of Several Outliers - So far we have
discussed procedures for detecting one or two outliers in
the same sample, but these techniques are not generally
recommended for repeated rejection, since if several
outliers are present in the sample the detection of one or
twl spurious values may be "masked" by the presence of other
anc.,alous observations. Outlying observations occur due
to a shift in level (or mean), or a change in scale (that
is, change in variance of the observations), or both.
Ferguson (8,9) has studied the power of the various
rejection rules relative to changes in level or scale. For
several outliers and repeated rejection of observations,
Ferguson points out that the sample coefficient of skewness,

n111U V/ n r (x i  - x) 3/[(n 1) )3/S ]

i=l

n
TT (xi  - X) 3! (x X) 2 3/2
i~l

should be used for "one-sided" tests (change in level of
several observations in the same direction), and the sanple
coefficient of kurtosis,

n
b2= n (xi -)2S

]

n
n 7 (xi  - x) /[Z(x i  - X)2].

i=l

is recommended for "two-sided" tests (change in level to
higher and lower values) and also for changes in scale
(variance)(see Note 5). In applying the above tests, the

71_ or the b2 , C0 both, are computed and if their observed
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values exceed those for significance levels given 1r the
following tables, then the observation farthest from the
mean is rejected and the same procedure repeated until
no further sample values are Judged as outliers. (As is

well known v'9 nnd b2 are also used as tests of normality.)

"" . -1n the above equations for 'F1 and bn, s is

defined as used in this standard:

n
S = F (Xi - x)2/(n - 1)

i=l

The significance levels in the following tables for

sample sizes of 5, 10, 15 and 20(and 25 for b2 ) were

obtained by Ferguson on an IBM 704 computer using a
sampling experiment or "Monte Carlo" procedure. The
significance levels for the other sample sizes are from
E. S. Pearson, "Table of Percentage Points of

' 1 and b- in Normal Samples; a Rounding off"',.,*..-r';.,

Vol 52; 1965, pp 282 - 285,

SIGNIFICANCE LEVELS FOR ,Fb

Significance
Level. % _

5- l 0a 15al 20a1 2 1" 0 1 i -n 1 n' 60i
1 1 21 05.41.3 1. 1201 11.0610.98 0.92 0.87 I0.7910.7L 1.05 0.9210.841079 07110.66 0.62 0.59I10.53i.9

SIGNIFICANCE LEVELS FOR b2
[Si~n if ican ce

L __5 aT 1 a 1 i 5a] 2 0 a 2 5 a 50 75 100

1 3.1114.83j15.08 5.23 5.0488114.59i4.39

5 2.8913.8514.07 4.154.03.9913.!7f3.77j
aThese values were obtained by Ferguson, using a Monte Carlo

procedure. For n = 25, Ferguson's Monte Carlo vaLes of
b2 agree with Pearson's computed values.
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The 'F1 and b:, statistics have the optimum property

of being "locally" best against one-sided and two-sided

alternatives, respectively. The ,'F test is good for up

to 50 percent spurious observations in the sample for the
one-sided case and the b, test is optimu,: in the vwo--sided
alternatives case for up to 21 percent "contaminaton" of
sample values. For only one or two outliers the sample
statistics of the previous paragraphs are recormiended, anO
Ferguson (8) discusses in detail their optimum properties of
-o':t ', ol,, one or two outliers.

Instead of the morc complicated b1 and r- statistics,

one can of course use the Tietjen and Moore Tables 11 and
12 included herewith for sample sizes and percentage points
given.

V. RECOUMENDED URITERION US IN(" INDEPENDENT STANDARD DEVIATION

Suppose that an independent estimate of the standard
deviation is available from previous data. This estimate
nay be from a single sample of previous similar data or may
be the result of combining estimates from several such
previous sets of data. In any event, each estimate is said
to hav_ dcgrccs of frccdom equal to one less than the sample
size that it is based on. The proper combined estimate is a
weighted average of the several values of s "', the weights
being proportional to the respective degrees of freedom.
The total degrees of freedom in the combined estimate is
then the sum of the individual degrees of freedom. When
one uses an indenenc'ent estimate of the standard Jeviation,
s , the test criterion recommended here for an outlier is as

follows:

x- X 1

S"

or:

X'n x
n

,here:

total number of degrees of freedom.
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I
Thu. criticail values for T' and Tn" for the 5 percent

;,nd 1 '! ent significance levels are due to David (4) and
are given in Table 5. In Table 5 the sub:icript v = df
Indicates the total number of degrees of freedom associated
with the independent estimate of standard deviation cz and
n indicates the number of observations in the sample under
study. We illustrate with an example on interlaborato-v
testing.

Lxa"', rr '. - >,.t c2'c or'ztcr , .", t. 7' - In an analysis
of inteclaboratory test. procedures, data representing
normalities of sodium hydroxide solutions were determined bv
twL'lve different laboratories. In all rho standardizations,
a 0.1 N sodium hydroxide solution was prepared by the
Standard Methods Committee using carbon-dioxide-free
distilled water. Potassium acid phthalate (P.A.P.), obtained
from the National Bureau of Standards, was used is the test
standard.

Test data by the twelve laboratories are given in
Table 6. The P.A.P. readings have hen coded to simplify
the calculations. The variances between the three readings
within all laboratories were found to be homogeneous.
A one-way classification in the analysis of variance vas first
analyzed to determine if the variation in laboratory results
(averages) was statistically signifi +ct. Th4s VaiLiun

was significant, and indicated a need for action, so tests
for outliers were then applied to isolate the particular
laboratories whose results gave rise to the significant
variation.

Table 7 shows that the variation between laboratories
is highly significant. To test if this (very significant)
variation is due to one (or perhaps two) laboratories that
obtained "outlying" results (that is, perhaps showing non-
standard technique), we can test the laboratory averages
for outliers. Prom the analysis of variance, we have an
estimate of the variance of an individual reading as
0.008793, based on 24 degrees of freedom. The estimated
standard deviation of an individual measurement is

= 0.094 and the estimated standard deviation of
the average of three readings is therefore

0.C94 /" = 0.054.

Since the estimate of within-laboratory variation is
independent of any difference between laboratories, we can
use the statistic T' above to test for outliers. An
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examination of the deviations of the laboratory averay<es I
from the grand average indicates thit Laboratory 10 obtained
an average reading much lower than the grand average, and
that Laboratory 12 obtained a high average compared to the
over-all average. To first test if Laboratory 10 is an
outlier, we compute

1.871 - 0.745
07-054 - 20,9

This value of T' is obviously significant at a very
low level of probability (P - 0.01 - Refer to Table 5
with n 12 and v = 24 degrees of freedom). We conclude,
thereforo, that the test methods of Laboratory 10 should be
investigated.

Exclu,iing Laboratory 10, we compute a new g-rand average
of 1.973 and test if the results cf I.aboraLorv 12 arc
outlying. Ve have

T' 2.327 - 1.973

and this value of T' is significant at P .- 0.01 (Refer to
Table 5 with n = 11 and v 24 degrees of freedLm) Ile

conclude that the procedures of Laboratory 12 shuld also
be invesuigte6.

To verify that the remaining laboratories did indeed
obtain homogeneous results, we might repeat the analysis
of variance omitting T.aboratories 10 and 12. The calculation':
givu Lie LbulLb 6hown in Table 8.

For this analysis, the variation between laboratories
is not significant at: the 5 percent level and we conclude
that all the laboratoies except No. 10 and No. 12 exhibit
the same capability in testing procedure.

IT! conclusion, there should be a systcmati.c inveLtigation
of tCst methods for Laboratories Vo. 10 and No. 12 to
determine why their test procedures are apparently different
from the other ten laboratories. (In this type of pIrot'l em,
the tables of Greenhouse, alipcrin, a d 

" .... If-'ed (I'2) U u UI

also be used for testing outlying labcratory averages.)

'-
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VI. RECOMM IENDED CRITERIA FOR KNOWN STANDARD DEVIATION

Frequently the population standard deviation o may
be known accurately. In such cases, Table 9 may be used for
single outliers and we illstrate with the foilowing example:

Exur-n?1 7 (o know.n) - Passage of the Echo I (Balloon)
Satellite was recorded on star-plates when it was visible.
Photographs were made by means of a camcra with shutter
automatically timed to obtain a series of points for the
Echo path. Since the stars were also photographed at the
same times as the Satellite, all the pictures show star-
trails and are thus called "star-plates."

1he x- and v-coordinate of each point on the Echo
path are read from a photograph, using a stereo-comparator.

eliminate b4 as of the reader, the photograph is placed
in one position and the coordinates are read; then the
photograph is rotated 180 deg. and the coordinates reread.
The average of the two readings is taken as the final reading.
Before any further calculations are made, the readings must
be "screened" for gross reading or tabulation errors. This
iS dorne bv examining the difference in the readings talen
at the two positions of the photograph.

Table 10 records a sample of six reading- made at the
t';o positions and the differences in t' ese readings. On th,
third reading, the differences are ratier large. Has the
operator made an error in placing the cross-hair on the point?

For this example, an independent estimate of o is
available since extensive tests on the stereo-comparator have
shown that the standard deviation in reader's error is about
4,m. The standard deviation of the difference in two
readings is therefore

4 z 7-+47 = 3 or 5.7 ,m

For the six readings (Table 10), the oean difference
in the x-ccordinates is Lx = 3.5 and the mean difference
in the y-coordinates is iy r 1.8. F or the questionable
third reading, we have
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'4 33..5Tx 3.60

V 22 - 1.8 3.54
y 5.7

From Table 9 we see that for n = 6, values of T' as

large as the calculated values would occur by chance less than
1 percent of the time so that a significant reading error
seems to have been made on the third point.

A great number of points are read and automatically
tabulated on star-plates. Here we have chosen a very
small sample of these points. In actual practice, the
tabulat4.ons would probably be scanned quickly for very large
errors such as tabulator errors; then some rule-of-thumb
such a3 +3 standard deviations of reader's error might be
used co scan for outliers due to operator error (Note 6).
In o-her words, the data are probably too extensive to allow
repeated use of precise tests like those described above
(especially for varying sample size), but this example does
illustrate the case where 7 is assumed known. If gross
disagreement is found ir the two readings of a coordinate,
then fhe reading could be omitted or reread before further
corputations are made.

,c'Ioe 6 - Note that the values of Table 9 vary between about
1.4a and 3.S0oa.

VII. ADDITIONAL COMMIENTS

In the above, we have covered only that part of
screening samples to detect outliers statistically. However,
a large area remains after the decision has been reached
that outliers are present in data. Once some of the sample
observations are branded as "outliers," then a thorough
investigation should be initiated to determine the cause.
In particular, one should look for gross errors, personal
errors of measurement, errors in calibration, etc. If
reasons are found for aberrant observations, then one should
act accordingly and perhaps scrutinize also the other
observations. Finally, if one reaches the point that some
observations are to be discarded or treated in a special
manner based solely on statistical judgment, then :*. must
be decided what action should be taken in the further
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analysis of the data. We do not propose to cover this
problem here, since in many cases it will depend greatly
on the particular case in hand. However, we do remark
that there could he the outright rejection of aberrant
observations once and for all on physical grounds (and
preferably not on statistical grounds generally) and
only the remaining observations would be used in further
analyses or in estimation problems. On the other hand,
some may want to replace aberrant values with newly
taken observations and others may want to "Winsorize"
the outliers, that is, replace them with the next closest
values in the sample. Also, with outliers in a sample, some
may wish to use the median instead of the mean, and so on.
Finally, we remark that perhaps a fair or appropriate
practice might be that of using truncated sample theory
(IS) for cases of samples where we have "censored" or
rejected some of the observations. We cannot go further
into these problems here. For additional reading on
outliers, see Refs (1, 3, 4, 14, 16, 17, 18).

Finally, a sample test criterion for non-normality,
and hence possibly for outliers, not co:ered above is the
VWilk-Shapiro W statistic for a sample of size n given by

[n/2] n
W an~~ (X ~~ - x 2 / X', 2xi ] n-i+l (n'i+l ii

1' =31

u here
n

SE x i P ,X1_- x2  _L X3 -< '"< Xn' i=l

[n/2] is the greatest integer in n/2, and the coefficients
a ni+l of the order statistics for n = 2(1)5n are given in

Shapiro, S. S. and M. B. Wilk, "An Analysis of Variance
Test for Non-Normality (Complete Samples)", Biometrika
Vol. 52 (1965), pp 591-611, as is also a table of
percentage points of W for n = 3(1)50.

The Wilk-Shapiro W statistic has been found to be

quite sensitive to departures from normality and may

compare most favorably with the 15- and b2 tests discussed

above. In addition, therefore, the W statistic may be
used also as a test for outliers, or otherwise general
heterogeneity of sample values. Our significance tests
given above have been selected and recommended since the)'
generally "ocut" cut particular suspected outli*rs in the
sample.
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TABLE 1

Table of Critical Values for T(One-Sided Test of 1, or Tn )

When the Standard Deviation is Calculated from the Same Samples

No. Upper Upper Upper Upper Upper Upper

Obs. .1% Sig. .5% Sig. 1% Sig. 2.5% Sig. 5% Sig. 10% Sig.
n Level Level Level Level Level Level

3 1.155 1.155 1.155 1.155 1.153 1.14F
4 1.499 1.496 1.492 !.481 1.463 1.425
S 1.780 1.764 1.749 ].715 1.672 3.602
6 2011 1.973 1.944 1.887 1.822 1.729

2.201 2.139 2.097 2.020 1.938 1.828
8 2.358 2.274 2.221 2.126 2.032 1.909
9 2.492 2.387 2.323 2.215 2.110 1 .977

10 2. 606 2 .482 2 .410 2. 290 2 .176 2.036
II 2.705 2 .564 2 485 2.355 .23 2 .088
12 2.791 2 636 2.5S0 2.412 2.285 2.134
13 2.967 2.699 2.607 2.462 2.331 2.175
14 2.935 2 .755 2.659 2.507 2 371 2.213
15 2.997 2. 806 2 .705 2 .549 2 .409 2.247
16 3.052 2 .852 2.747 2 .585 2 .443 2.279
17 3.103 2 .894 2 .785 2 .620 2 .475 2 309
18 3.149 2.932 2.821 2.651 2.504 2.335
19 3.191 2.968 2.854 2.681 2.532 2.361

L0 3.Z 3 .001 2 .884 2 .709 2 .557 2 .385
21 3.266 3 .031 2 .912 2 .733 2 .580 2 .408
22 3.300 3 .060 2.939 2 .758 2 .603 2 .429
23 3.332 3.087 2.963 2.781 2.624 2.448
24 3.362 3 .112 2 .987 2. 802 2.644 2 .467

25 3.389 3 .135 3.009 2. 82 2 663 2 .46
26 3.415 3.157 3.029 2.841 2.681 2.502

27 3.440 3. 178 3.049 2. 859 2 .698 2 .519
28 3.464 3 .199 3.068 2.876 2 .714 2 .534
29 3.486 3 .218 3.085 2.893 2 .730 2 .549

30 3.507 3 .236 3. 103 2 .908 2 .745 2 .563

31 3.528 3.253 3.119 2.924 2.759 2.577

32 3.546 3 .270 3. 135 2 .938 2 .773 2 .591
33 3.565 3 .286 3 150 2 .952 2 .786 2 .604

34 3.582 3.301 3.164 2.965 2.799 2.616

35 3.599 3.316 3.178 2.979 2.811 2.628
36 3.616 3 330 3. 191 2.991 2 .823 2.639

37 3.631 3 .343 3.204 3.003 2 .835 2.650

38 3.646 3. 356 3.216 3.014 2 .846 2 661

39 3.660 3 .369 3.228 3.025 2 .857 2.671

40 3.673 3. 381 3.240 3.036 2 .866 2 .682

31



A

TABLE I (CONTINUED)

Table of Critical Values for T(One-Sided Test of T1 or Tn)

When the Standard Deviation is Calcilated from the Same Samples

No. Upper Upper Upper tipper Upper Upper
Obs. .1% Sig. .5% Sig. 1% Sig. 2.5% Sig. 5% Sig. 10% Sig.
n Level Level Level Level Level Level

41 3.687 3.393 3. 251 3.046 2.877 2 .692
42 3.700 3.404 3.261 3.057 2.887 2.700
43 3.712 3.415 3.271 3.067 2.896 2.710
44 3.724 3.425 3.282 3.075 2.905 2,,19
45 3.73f 3.435 3.292 3.085 2.914 2.727
46 3.747 3.445 3.302 3.094 2.923 2.736
47 3.757 3.455 3.310 3.103 2.931 2.744
48 3.768 3.464 3.319 3 111 2.940 2.753
49 3.779 3.474 3.329 3.120 2.948 2.760
50 3.789 3.483 3.336 3.128 2.956 2.768
51 3.798 3.491 3.345 3. 136 2.964 2 .775
52 3.808 3.500 3.353 3.143 2.971 2.783
53 3 816 3.507 3.361 3.151 2.978 2.790
54 3.825 3.516 3.368 3.158 2.986 2.798
55 3.834 3.524 3.376 3.166 2992 2.804
56 3.482 3.531 3.383 3.172 3.000 2.811
57 3.851 3.539 3.391 3.180 3.006 2.818
58 3.858 3.546 3.397 3.186 3.013 2.92A
59 3.867 3.553 3.405 3.193 3.019 2.831
60 3.874 3.560 3.411 3.199 3.025 2.837
61 3.882 3.566 3.418 3.205 3.032 2.842
62 3.889 3.573 3.424 3.212 3.037 2.849
63 3.896 3.579 3.430 3.218 3.044 2.854
64 3.903 3.586 3.437 3.224 3.049 2.860
65 3.9].0 3,592 3.442 3.230 3.055 2.866
66 3.917 3.598 3.449 3.235 3.061 2.871
67 3.923 3.605 3.454 3.241 3.066 2.877
68 3.930 3.610 3.460 3.246 3.071 2.883
69 3.936 3.617 3.466 3.252 3.076 2.888
70 3.942 3.622 3.471 3.257 3.082 2.893
71 3.948 3.627 3.476 3.262 3.087 2.897
72 3.954 3.f33 3.482 3.267 3.092 2.903
73 3.960 3.638 3.487 3.272 3.098 2.908
74 3.965 3.643 3.492 3.278 3.102 2.912
75 3.971 3.648 3.496 3.282 3.107 2.917
6 3.977 3.654 3.502 3.287 3.111 2922

77 3.982 3.658 3.507 3.291 3.!!7 2.927
78 3.987 3.663 3.511 3.297 3.121 2.931
79 3.992 3.669 3.516 3. 301 3. 125 2 .935
80 3.998 3.673 3.521 3.305 3.130 2.940
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TABLE I (CONTINIJED)

Table of Critical Values for T(One-Sided Test of T1 or T)

When the Standard Deviation is Calculated from the Same Samples

No. Upper Upper Upper Upper Upper Upper
Obs. .1% Sig. .5% Sig. 1% Sig. 2.5% Sig. 5% Sig. 10% Sig.
n Level Level I.evel Level Level Level

81 4.002 3.677 3.525 3.309 3.134 2.945
,32 4.007 3.682 3.529 3.315 3.139 2.949
83 4.01.2 3.687 3.534 3.319 3.143 2.953
84 4.017 3.691 3.539 3.323 3.147 2.95"
85 4.021 3.695 3.543 3.327 3.1S1 2.96]
86 4.026 3.699 3.547 3.331 3.155 2.966

4.031 3.704 3.551 3.335 3.160 2.970
8 4 .035 3.708 3.555 7 3163 2.973

,89 4.039 3.712 3.559 3.343 3.167
90 4.044 3.716 3.563 3.347 3.171 2.981
91 4. 049 3 720 35 S67 3.350 3 .174 2. 984
92 4 .053 3 725 3 570 3. 355 3. 179 2. 989
93 4.057 3.728 3.575 3.358 3.182 2.993
94 4.060 7 732 3. 579 3 .362 3 .186 .996(
95 4.064 3. 736 3. 582 3.365 3. 189 3.000
96 4.069 3. 739 3586 3.369 3.193 3 003
97 4.073 3 .744 3.589 3 372 .196 (0 0t
98 4.076 3.747 3.593 3.377 3.201 3.011
99 4 .080 3. 750 3 .597 3 380 3 .204 3. 014
100 ,..084 3. ?54 3.600 3.383 3. 207 3 017
101 4.088 3. 757 3.603 3.386 3.210 3.021
102 4.092 3.760 3.607 3.390 3.214 3.024
103 4 .095 3. 765 3.610 3393 3. 217 3 .027
104 4.098 3.768 3.614 3.397 3.220 3.030
105 4 .102 3 771 3.617 3 .400 3. 224 3 .033
106 4.105 3.774 3.620 3.403 3.227 3.037
107 4.109 3.777 3.623 3.406 3.230 3.040
108 4.112 3.780 3.626 3.409 3.233 3.043
109 4.116 34.784 3.629 3.412 .3236 3.046
110 4 .119 3 787 3 .632 3.415 3 .239 3 049
ill 4.122 .790 3.636 3.418 3.242 3.052
112 4.125 3.793 3.639 3.422 3.245 3.055
113 4 129 3 796 3 64 2 3 424 3.218 3.058
114 4 132 3 799 3 645 3.427 3.25) 3 061
I15 4.135 3.802 3.647 3.430 3.254 3.064

116 4 .138 3. 805 3.650 3 433 3 257 3 .067

117 4.141 3.908 3.653 3.435 3.259 3.0-0
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TABLE I (CONTINUED)

Table of Critical Values for T(One-Sided Test of T1 or Tn)

When the Standard Deviation is Calculated from the Same Samples

No. Upper Upper Upper Upper Ulppcr Upper
Obs. .'.' Sig .5% Sig. 1% Sig. 2.5% Sig. S% Sig. 10% Sig.
n Level Level Level Level Level Level

118 4.144 3.811 3.656 3.438 3.262 3.077
119 4.146 3.814 3.659 3.441 3.265 3.07S
120 4.150 3.817 3.662 3.444 3. 267 3.078
121 4.153 3.819 3.66S 3.447 3.270 3.081
122 4.156 3.822 3.667 3.450 3. 274 3.083
123 4.159 3.824 3.670 3.452 3.276 3.086
124 4. 161 3.827 3.672 3.455 3. 279 3. 089
125 4.164 3.831 3.675 3.457 3.281 3.092
126 4.166 3.833 3.677 3.460 3.284 3.095
127 4.169 3.836 3.680 3.462 3.286 3.097
128 4.173 3.838 3.683 3.465 3.289 3,100
129 4.175 3.840 3.686 3.467 3.291 3.102
130 4.178 3.843 3.688 3.470 3.294 3.104
131 4.180 3.845 3.690 3.473 3. 296 3 .107
132 4.183 3.848 3.693 3.475 3. 298 3. 109
133 4.185 3.850 3.695 3.478 3.302 3.112
134 4.188 3.853 3.697 3.480 3 .304 3 .114
135 4.190 3.856 3.700 3.482 3.306 3.116
136 4.193 3.858 3.702 3.484 3. 309 3 .119
137 4.196 3.860 3.704 3.487 3. 311 3 .122
138 4.198 3.86S 3.707 3.489 3.313 3.124
139 4.200 3.865 3.710 3.491 3.315 3.1'6
140 4.203 3.867 3.712 3.493 3.318 3.129
141 4.205 3.869 3.714 3.497 3.320 3.131
142 4.207 3.871 3.716 3.499 3.322 3.133
143 4.209 3.874 3.719 3.501 3.324 3.135
144 4.212 3.876 3.721 3.503 3.326 3.138
145 4.214 3.879 3.723 3.505 3. 328 3.140
146 4.216 3.881 3.725 3.507 3 331 142
147 4 219 3.883 3.727 3.509 3. 334 . 4
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TABLE DIXON CRITERIA FOR TESTING OF EXTREME OBSERVATION

(SINGLE SAMPLE)a

Signi.ficance Level

n Criterion 10 1 

3 r 10  = (x 2 - X1)/(x n  xj) if smallest 0.886 0.941 0.98P

4 value is suspected; 0.679 0.765 0.889
5 = (x n  -n )/(x n  - xI) if 0.557 0.642 0.780

6 largest value is suspected. 0.482 0.560 0.698
7 0.434 0.507 0.637

8 rl] = (x2  - xl)/(xn -1  x1 ) if 0.479 0.554 0.68-

9 smallest value is suspected; 0.441 0.512 0.635
10 = (x - xn M)/(x n  x 2 ) if 0.409 0.477 0.597

largest value is suspected.

11 r 2 1  = (x 3  - xl)/(xn 1  - x ) if 0.517 0.576 0.679

12 smallest value is suspected; 0.490 U.46 0 .642
13 = (xn  - Xn2 )/(xn  - x2 ) if 0.467 0.521 0.615

largest value is suspected.

14 r2 2  = (x3  xl)/(Xn 2  - x1) if 0.492 0.546 0.641

15 smallest value is suspected; 0.472 0.525 0.616
16 = (x n  - x n ,)/(x n  x 3 ) if 0.454 0.507 0.595

largest value is suspected. 0.43I 0.490 0.57"
18 0.424 0.475 0.561

19 0.412 0.462 0.54?
20 0.401 0.450 0.535S
1 0.391 0.440 0.524

22 0.382 0.430 0.514
23 0,374 0.421 0.505

24 0.367 0.413 0.49,
25 0. 360 0.,106 0.48Q(

ax ... x . (See Ref(7), Appendix.)
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TABLE 3

CRITICAL VALUES FOR w/s (RATIO OF RANGE TO SAMPLE

STANDARD DEVIATION)a

Number of 5 Percent I Percent 0.5 Percent
Observations Significance Significance Significance

n Level Level Level

3 2.00 2.00 2.00
4 2.43 2.44 2 .45
5 2.75 2.80 2.81
6 3.01 3.10 3.12
7 3.22 3.34 3.37
8 3.40 3.54 3 58
9 3 .55 3.72 3.77

10 3.68 3.88 3.94
11 3.80 4.01 4.08
12 3.91 4.13 4.21
13 4.00 4.24 4.32
14 4.09 4.34 4.43
15 4.17 4.43 4.53
16 4.24 4.51 4.62
17 4.31 4.59 4.69
18 4.38 4.66 4.77
19 4.43 4.73 4.84
20 4.49 4.79 4.91
30 4.89 5. 2S 5. 39
40 5.15 5S4 5.69
50 5 35 5.77 S.91
60 5 50 S. 93 6.09
80 5.73 6.18 6. 35

100 S.90 6.36 6.54
150 6.18 6.64 6.84
200 6.38 6.85 7.03
500 6.94 7.42 7.60
1000 7.33 7.80 7.99

aSee Ref (S), where:

. x Xn  -X XI  I-- X 2 -<- Xn

S - ttX i - X)2(n -l
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TABLE 4 *

TABLE OF CRITICAL VALUES FOR S2_ 1 ,n/S OR S 21, /S FOR

SIMULTANEOUSLY TESTING THE TWO LARGEST OR TWO SMALLESi

0 B S IL P VAT I': S

No. of Lower Lower Lower Lower Lower Lower
Obs. .1% Sig. .5% Sig. 1% Sig. 2.5% Sig. 5% Sig. 10% Sig.
n Level Level Level Level Level Level

1

4 .0000 .0000 .0000 .0002 .0008 .0031
S .0003 .0018 .0035 .0090 .0183 .0376
6 .0039 .0116 .0186 .0349 0564 .0920
7 .0135 .0308 .0440 .0708 .1020 .1479
8 .0290 0563 .0750 .1101 .1478 .1994
9 .0489 .0851 .1082 .1492 .1909 .2154

10 .0714 .1150 .1414 .1864 .2305 .2863
11 .0953 .1448 .1736 .2213 .2667 .3212
12 .1198 .1738 .2043 .2537 .2996 .3552
13 .1441 .2016 .2333 .283b .3295 .3843

14 .1680 .2280 .2605 .3112 .3568 .4106
is .1912 .2330 .2859 .3367 .3818 .4345
16 .2136 2767 .3098 .3603 .4048 .4562-
17 .2350 .2990 .3321 .3822 .4259 .4761
18 .2556 .3200 .3530 .4025 .4455 .4944
19 2752 3398 .3725 .4214 .4636 .51]3
20 .2939 .3585 .3909 .4391 .4804 5270
21 .3118 .3761 .4082 .4556 .4961 .5415
22 .3288 .3927 .4245 .4711 .5107 5550
23 .3450 .4085 .4398 .4857 5244 .5677
24 .36cj5 .4234 .4543 .4994 .5373 5795
25 .3752 .4376 .4680 .5123 $495 5906

n nS 2  X X) ( . x 2  X E X 1 .)

n i=n

S' 2 F (x x ,2)2 X1, 2  E xi
,2 i=2 n-2 i=2

n-2 n n-2

S2  : z (x. x )2 x
n- , i1 n-l,n 2 n-1, n n_ j x

*These significance levels are taken from Table Ii, fef. (12).

An observed ratio less than the appropriate critical ratio

in this table calls for rejection of the null hypothesis.
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TABLE 4 (CONTINUED) I
SR 2 2/S2FR

TABLL OF CRITICAL VALUES FOR S_ /2 OR FOR
n-1,n I1,2

SIMULTANEOUSLY TESTING THE TWO LARGEST OR TWO SMLLIST OBSERVATIONS

No. of Lower Lower Lower Lower Lower Lower
Obs. .1% Sig. .5% Sig. 1% Sig. 2.5% Sig. 5% Sig. 10% Sig.

n Level Level Level Level Level Level

26 .3893 .4510 .4810 .245 .5609 .6011
27 .4027 .4638 .4933 5360 5717 .6110
28 .4156 4759 .5050 5470 .5819 .6203
29 .4279 4875 .5162 .5574 5916 .6292
30 .4397 4985 .5768 5672 6008 6375
31 .4510 5091 .5369 5766 .6095 tj455
32 .4618 .5192 5465 5856 .6178 .6530
33 .4722 5288 5557 5941 6257 .6602
34 .4821 .5381 5646 .6023 .6333 .6671
35 .4917 5469 5730 .6101 .6405 6
36 5009 5554 .5811 .6175 674 .6800

.5098 5636 5889 .6247 654 .6860
38 .5184 .5714 5963 .6316 .6604 .6917
.9 5266 .5789 .6035 .6382 .6665 .6972
40 5345 .5862 .6104 .0445 .6724 .7025
41 .5422 .5932 6170 6506 .6780 7070
42 5496 5999 .6234 .6565 .6834 .7125
43 5568 .6064 .6296 .6621 .6886 7172
44 .5637 .6127 .6355 6t76 .6136 721
45 5704 .6188 .6412 .6728 o985 .261

40 5768 .6246 .6468 6779 .7032 .7304
47 5831 .6303 .6521 .6828 .7077 .7345

48 5892 .6358 .6573 .6876 .7120 .7384
49 .5951 .6411 .6623 .(921 .7163 .7422
50 .6008 .6462 .6672 .6966 .7203 .7459
51 .6063 6512 .6719 7009 .7243 7495
52 .6117 6560 .6765 .7051 .7281 .7529

53 .6169 .6607 .6809 .7091 .7319 .7563
54 .0220 .6653 .6852 .7130 .7355 .7595
55 .6269 .6697 .6894 .7168 .7390 .7627
56 6317 .6740 .6934 7205 .7424 .7658
57 .6364 .6782 .6974 .7241 .7456 .7687
58 .6410 .6823 .7012 .7276 .7489 .7716
59 .6454 .6862 .7049 .7310 .7520 7744
(10 .6497 .69Yi .7086 .7343 .7550 7772
61 .6539 .6938 .7121 .7375 .7580 7798
62 .6580 .6975 .7155 .7406 .7608 7824
63 .6620 .7010 .7189 .7437 .7636 .7850
64 .6658 .7045 .7221 .7467 .1661 7874

6S .6696 7079 .7253 .7496 .7690 7898
66 .6733 .7112 .7284 .7524 .7716 ,792]

67 .6770 .7144 .7314 .7551 .7741 .7944
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TABLE 4 (CONTINUII))

TABLE 01: CRITICAL VALUES FOR S2 /s2 OR S- /S 2 [ORn-1,n ,2

SIMULTANOUSLY TISTING THE TWO LARG(LST OR TWO SHALLST

OBSERVATIONS

No. of Lower Lower Lower Lower Lowe I.owcr
Ohs. .1% Sig. .5% Sig. 1% Sig. 2.5% Sig. 5% Sig. 10% Sig.

n Level Level Level Level Level Level

68 .6805 .7175 .7344 .7578 7766 79(,()

69 .0839 .7206 .7373 .7604 .7790 .7988
70 .6873 .7236 .740] .7630 .7813 .8009
71 .6906 .7265 .7429 .7655 .7836 .8030

.6938 .7294 .7455 .7679 .7859 .805.0
S.69 0 .7322 .7482 7703 .7881 .807()

74 .7000 .7349 .7507 .7727 .7902 .8089

75 .7031 7376 7532 .7749 .7923 .8108
7o .7000 .7402 .7557 .7772 .7944 .8127
77 .7089 .7427 .7581 .7794 .7964 .8145
7 .7117 74S3 .7605 .7815 .7983 .8162

.7145 .7477 .7628 .7836 .8002 .818F,
s0 7172 .7501 .7650, .7856 .8021 .819"

1 .7!99 .7525 .7672 .787b .8010 8213

82 7225 .7548 .7694 .7896 .8058 .8230
83 .7250 7570 7715 7915 8075 8215

84 .7275 .7592 .7736 .7934 .8093 8261

85 .7300 .7611 .7756 q7953 .109 .827()

86 7324 7635 7776 7971 8126 .291
8q7 7348 7656 .7790 .7989 8142 .300)
88 7371 .7677 .7815 .8006 .8158 832 1

89 .7394 .7697 .7834 .8023 .8174 .8335

90 7416 7717 .7853 .8040 .8190 8 349

91 7438 7736 .7871 .8057 .8205 362
92 .7459 *7755 .7889 8073 8220 .837o

93 7481 7774 .7900 .8089 .8234 .8389
94 .7501 .7792 .7923 .8104 .8248 .8402
95 .7522 .7810 .7940 .8120 .82o3 .8414

96 .7542 .7828 .7957 .8135 .8270 8127

97 .7562 .7845 .7973 .8149 .8290 .8139

98 .7581 .7862 .7989 .8164 .8303 .8451

99 .7600 .7879 '8005 .8178 .8316 .8433

100 .7619 .7896 .8020 .8192 .8329 .8475
101 .7637 .7912 .8036 .8206 .8342 .8iso
102 .765 5 -928 .8051 .8220 8354 8,97
107 7673 7944 8065 .8233 8367 7 .8

104 769 .7959 .8050 .8246 S379 8519
105 7708 7974 8094 82 S.9) p391 .S"%0

106 7725 .7989 8108 .8272 .8402 .8541 
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TABLE 4 (CON!INUED)
TABLE OF CRITICAL VALUI S FOp S2-l,92 OR S2 ,/2 FOP,

n - I .-

SIMULTANFOIISLY TES' IN '1I1E TWO LARGEST 0R TWO SMALILST

B S F R VAT (1 N S

No. of lower Lower l.ower Lower Lower I., 
Ohs, .1% Sig. .51 Sig. 1% Sig. 2.5% Sig. S%, Sig. 10c Sig.

n Level Leve 1 Leve1 lox-cl Level Level

10- 7742 .8004 .8122 8284 8414 .8551
108 7758 .8018 .8136 .8297 .8425 .8503
109 .7774 .8033 .8149 8309 .8436 8571
110 .790 8047 .8162 .8321 .8447 8581
111 806 .80o1 .8175 .8333 .8458 .8591
112 . 8074 .8188 .834,1 84 0 ) .8(0

113 .7837 .8088 .8200 .8356 .84'79 .8610
114 7852 .8101 .8213 8367 .8489 8019
115 786o 8114 8225 8378 .8500
110 7881 8127 8237 .8389 .8510 8o37
117 .7895 .8139 .8249 .8400 8519 80,,0
118 .7909 .8152 .8261 .8410 .8529 .8o55
119 9"923 8 "8272 .8421 .8539 .)04
120 -937 .8170 .8284 .84 31 .8517
121 795 .8188 .8295 .8441 8557 8081
122 97904 .8200 .8300 8451 8z$6 7  8)89
125 "7977 .8211 .. 17 8461 8576 8097
12. 7990 .8223 .8327 .8471 .8585 8705

.800 3 823a .8338 .8480 8593 8713
126 .8010 .8245 .8348 .8490 .8002 .8721
127 8028 .8250 8359 8499 8o1.1 .8729

128 .8041 .8267 .8369 8508 .8619 .8737
129 .8053 .8278 .8379 .8517 .8o27 8.4
130 .8065 .8288 .8389 .8526 .863o .8752
131 .8077 .8299 .8398 .8535 .8044 .8759
1 32 .8088 .8309 .8408 .8544 .8652 .87,6
133 .8100 .8319 .8418 .8553 .8660 .8773
134 .8111 .8329 .8427 .8561 .8668 8780

135 .8122 .8339 .8436 8570 .8675 .8787

] 1 .8134 .8349 .8 415 .8578 .8 o ,8 879 ,
137 .8145 .8358 .8454 .8586 .8090 8801
13s .8155 .8368 .8463 .8594 .8698 .8808
139 .8166 .8377 .8472 .8602 .8705 . 811.
140 .8176 .8387 .8481 .8610 .8712 .. 21
1a1 .8187 .8396 .8489 .8618 8-720 .8827
142 .819- 8405 .8498 Jo25 8727 .8834
143 .8207 .8414 .8506 .8633 .873.1 .8840
144 8218 8423 .8515 8041 .8741 .8846
145 .8227 .8431 .8523 8t48 8747 8853
146 .8237 .8440 .8531 .8655 .8754 .59

147 .82i" .8449 8539 .8663 .8701 .8865
148 .825O .8457 8547 .8670 .8767 .8871
149 .1266 .8165 .8555 .8677 .8774 .8877
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CR1ITICAL VALULS FOR 'I' WHlIN STANI)AR1) 1) 1 .'IlfN I 1 N

x -x X-XI
- n-

nS S

. percentage point

10 2,78 3.10 3.32 3.48 3. 2 3.73 3 . 0.90 4.o4
11 2,72 3.02 3.24 3.39 3.5 3.03 3.72 3,79 3.93
12 2..7 32 3.39-234.7 3..3
1 .63 2.92 3 .12 27 3.38 3.48 S7 3oI .

14 2.60 2.88 07 3.22 3.33 3.43 3 .51 358 5.-0

15 257 2.84 3.03 3.17 329 . .38 34 3.5
]0 54 2.81 3.00 14 3.25 3.34 .42 .49 . 0
17 22 2. .7 .11 3.22 3.31 3.3 .15
is 2 50 .77 295 08 3.19 3 28 3,35 3 . ,
19 2.49 2.75 2 .93 306 3.1 3.25 3.33 -.9 s

20 2.47 2.91 3.0,1 11 3 .2. 3.30 .3- 3. 4
4 2.42 08 2.84 2.97 3.07 3.1 3. 23 .29 .

30 2.38 2.o2 2.791 2 .1 3.C,1 30S 3,15 3, 3.
40 24 2 .5 273 2.85 2. 94 302 .o 3i 3 3 2

..... I .7 -.8 , ~
120 2925 2.60 1 u I.0 2 2S 2 48 .2 . ,2 73 8- 2 89 2 95 3.00 3.08

_4 2.__7 j .68 .76 2 _.83 2 8h 2.93 3.01
Spercentage points

10 2.O1 2.27 2.46 2.60 12.8122.89 2.96 .0
1 .98 224 2.42 2.56 2.67 2: 7o 84 91 .

12 1.96 2.21 2.39 2 .52 2.63 2.7 2.80 87 2.98
13 . .1 .94 l) . 1.9 0 . O 2. .-, G 2 .69 2 .a C76 83 2 ., 9 4

14 1.93 2.17 2.34 2. 47 2.57 2.66 ?.74 2.80 2.91

15 1.91 2.15 2.32 2.45 2 . 2. 4 2 .71 -,77 7 .
16 1 90 2 14 2.31 2.43 2.S3 2.62 2.69 . 2.8
17 1 .89 "13 2.29 2 2 2.52 2.60 73 2.4
18 1.8R 2.11 2 . 2.40 2.. s 5 5 2 .05 2 . 7 1 .2
19 1 87 2.11 2.27 2 .39 2.49 2.57 2.4 .70 2.,0

20 i .87 10 26 .R :,47 ? S6 2.()3 2 278
24 1.84 2.07 2.23 2.34 2.44 2.52 28 2 .(,4 74
30 1.82 2.04 2.20 2 31 2.40 2.48 2.5 1 2.60 2 .6
4, 1.80 2.02 2.17 2 8 2 ";7 2.44 2.So 2.So 2.05

610 1 .78 1 .99 2 .14 2.25S 2 .33 2 .4I1 247 2.52
120 1 . 76 1 . 96 2 . 11 2 . 2 30 2 . 7 243 ..3 2 7

1 74 1 94 2 .08 2.18 2.27 2.33 2.37 ..14 j2.5

hc pcrcentzigc points a 1 I re r cproduced r I . ( 1.
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TABLE 6

STANDARDIZATION OF SODIUM HYDROXIDL SOLUIIONS AS DETERMINElj
BY PLANT LABORATORILS

Standard Used: Potassium Acid Phthalate jP.A.P.)
Deviation

(P.A.P. - of Average
0.096000) from Grand

Laboratory X 103 Sums Averages Average_
1 1.893

1.972
1.876 5./41 1.914 +0.043

2 2.046
1.851

1.949 5.846 1.949 +0.08
31 .874 - '

1.792
1_829 5.495 1.832 -0.039

148 *0.013

1.998

1.98

1.9830 4 97 + 7

2.066 6.038 2.013 +'.142
2.020

I .903 6.134 2.045 +0.174

1.883
1.855 5.569 1.8S6 -0.015

10 0.
_______I 0.777 2.234 0.74S -1.126

11 2.064

1 .891 5.749 1.916 +0.045
12 2 17

S '.102 6.980 2.327 +0.456

Grand Sum .... 67.350 ______ __

Grand Axvcrage . . .. _ _____ 1.871 ______
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TABLE 9

CRITICAL VALUES OF T1' AND T' WHEN THE POPULATION STANDARD

DEVIATION o IS KNOWNa

Number of 5 Percent 1 Percent 0.5 Percent
Observations Significance Significance Significance

n Leve 1 Level Level

2 1.39 1,82 1.99
3 1. 74 2.22 2.40
4 1.94 2.43 2 62
5 2.08 2.57 2.76
6 2.18 2.68 2.87
7 2.27 2.76 2.95

8 2.33 2.83 3.02
9 2.39 2.88 3.07

10 2.44 2.93 3.12
11 2.48 2.97 3.16
1 2.52 3.01 3.20

13 2.56  3.04 3.23
14 2.59 3.07 3.26
15 2.62 3.10 3.29
16 2.64 3.12 3.31
17 2.67 3.15 3.33
18 2.69 3.17 3.36
19 2.71 3.19 3.38
20 2.73 3. 21 3.39

21 2.75 3.22 3.41
22 2.77 3.24 3.42
23 2.78 3.26 3.44
24 2.80 3.27 3.45
25 2.81 3.28 3.46

X . X 2  X 3  . . . X n

T'. x ' = (xn  - )/'o

aThis table is taken from Ref (10).
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TABLE 10

MEASUREMENTS, lim

x-Coordinate y-Coordinate

Position on

Position 1 1 + 180 I x Position 1 1le8 Ay

deg deg

-53011 -53004 -7 70263 70258 +5

-3811' -38103 -9 -39729 -39723 -6

2804 - 2828 +24 81162 81140 +22

18473 18467 +6 41477 41485 -8

25507 25497 +10 1082 1076 +6

87736 87739 -3 -7442 -7A34 -8
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TABLE *11

Critical Values for Lk - 0.01ka

n/k 1 2** 3 4 5 6 7 8 9 10

3 .000 .000

4 .011 .010 .000 .000

5 .045 .044 .004 .004

6 .091 .093 .021 .019 .002

7 .148 .145 .047 .044 .010

8 .202 .195 .076 .075 .028 .008

9 .235 .241 .112 .108 .048 .018

10 .280 .283 142 .142 .07U .032 .012

11 .327 .321 .178 .174 .098 .052 .026

12 .371 .355 .208 .204 .120 .070 .038 .019

13 .400 .386 .233 .233 .147 .094 .056 .033

14 .424 .414 .267 .261 .172 .113 .072 .406 .027

15 .450 .440 .294 .286 .194 .132 .090 .057 .037

16 .473 .463 .311 .310 .219 .15] .108 .072 .049 .030

17 .480 .485 .338 .332 .237 .171 .126 .091 .064 .044

18 .502 .504 .358 .353 .260 192 .140 .104 .076 .053 .036

19 .508 .522 .366 .373 .272 .201 .154 .118 .088 .064 .046

0 .533 .539 .387 .391 .300 .231 .175 .136 .104 .078 .058 .042

,S 603 .468 .377 .308 .246 .204 .168 .144 .112 .092

30 . SO .526 .434 .369 312 268 .229 .19( 166 .142

5 .690 .574 .484 .418 364 321 282 .250 220 .194

40 722 .608 522 .460 .408 364 324 202 .o2 .234

45 745 .636 558 .498 444 399 361 328 .296 .270

50 .768 .668 .592 531 .483 .438 .400 .368 .336 .308

* From Grubbs (1950, Table I).

** Fron Grubbs (1950, Table V).

(This table is taken from Tietjen and Moore, Reference 19)
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TABLE 11

Critical Values for Lk 0.025

n/ 1 1* 2 2** 3 4 5 6 7 8 9 10

3 .001 .001 .000 .000

4 .025 .025 .000 .000

5 .084 .081 .011 .009

6 .146 .145 .034 .035 .005

7 .209 .207 .076 .07] .021

8 .262 262 .11S .110 .045 .013

9 .308 .310 .150 .i49 .073 .030

10 .350 .353 .188 .187 .100 .052 .023

11 .366 .390 .225 .221 .129 .074 .040

12 .440 .423 .268 .254 .162 .096 .057 .031
13 .462 .453 .292 .284 .184 122 .077 .047
14 .493 .479 .317 .311 .214 .145 .098 .063 .038
15 .498 .503 .341 .337 .239 .167 .111 .078 .051

16 537 .525 .372 .360 .261 .185 .137 .096 .065 .045

17 .552 .544 .388 .382 .282 .208 !156 .117 .082 .058

18 .570 .562 .406 .403 .299 .226 .171 .129 .095 .068 .048
19 ..73 .579 .416 .421 .311 .243 .189 .145 .108 .080 .059

20 595 .594 .442 .439 .341 .265 .209 .165 .128 .098 .C.73 .054
25 .656 .654 516 .417 .342 .282 .233 .192 .159 .132

30 .699 .568 .479 .408 .352 .302 .261 226 .193 .165

35 .732 .612 .527 .435 .398 .348 .308 .274 .242 .213

40 .755 .641 .561 .491 .433 .387 .348 .314 .283 .257

45 .773 .667 .592 .529 .473 .430 .391 .356 .325 .295

50 .796 .698 .622 .559 .510 .466 .428 .392 .363 .334

*From Grubbs (1950, 'able 1).
**Fiom Grubbs (1950, Table V).
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TABLE 11

Critical Values for Lk = 0.05

n/ 1 1j 2 2** 3 4 5 6 7 8 9 10

3 .003 .003

4 .051 .049 .001 .001

5 .125 .127 .018 .018

0 .203 .203 .055 .057 .010

7 .273 .270 .106 .102 .032

8 326 .326 .146 .148 .064 .022

9 .372 .374 .194 .191 .099 .045

10 .418 .415 .233 .230 .129 .070 .034

11 .454 .451 .270 .267 .162 .098 .054

12 .489 .482 .305 .300 .196 .125 .076 .042

13 .517 S O .337 .330 .224 .150 .098 .060

14 540 .534 .363 .357 .250 .174 .122 .079 .050

15 .556 556 .387 .382 .276 .197 .140 .097 .066

16 .575 .576 .410 .405 .300 .219 .159 .115 .082 .055

17 .594 .593 .427 .426 .322 .240 .181 .136 .100 .072

18 .608 .610 .447 .446 .337 .259 .200 .154 .116 .086 .062

19 .624 .624 .462 .464 .354 .277 .209 .168 .130 .099 .074

20 .639 .638 .484 .480 .377 .2S9 .238 .188 .150 .115 .088 .066

25 .696 .692 .SSO .450 .374 .312 .262 .222 .184 .154 .126

30 .730 .599 .506 .434 .376 .327 .283 .245 .212 .183

35 .762 .642 .554 .482 .424 .376 .334 .297 .264 .235

40 .784 .672 .588 .523 .468 .421 .378 .342 .310 .280

45 .802 .696 .618 .556 .502 .456 .417 .382 .350 .320

30 .820 .722 .04b .588 .535 .490 .450 .414 .383 .356

*From Grubbs (1950, Fable I).
**From, Grubbs (1950, Table V).
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TABLE 11

Critical Values for Lk = 0.10
k

n/ 1* 2** 3 4 5 6 7 8 9 10

3 .011 .011

4 .098 .098 .003 .003

5 .200 .199 .038 .038

6 .280 .283 .091 .092 .020

7 .348 .350 .148 .148 .056

8 .404 .405 200 .199 .095 .038

9 .448 .450 .248 .245 .134 .068

10 .490 .488 .287 .286 .170 .098 .051

11 .526 .520 .326 .323 .208 .128 .074

12 .555 .548 .361 .355 .240 .159 .103 .062

13 .578 .S73 .388 .384 .270 .186 .126 .082

14 .600 594 .416 .411 .298 .212 .150 .104 .068

15 .611 .613 .436 .435 .3Z2 .236 .172 .124 .086

16 .631 .631 .458 .456 .342 .260 .194 .144 .104 .073

17 .b48 .646 .478 .476 .364 .282 .216 .165 .125 .092

18 .661 .660 .496 .494 .384 .302 .236 .184 .142 .108 .080

19 .676 .673 .510 .511 .398 .316 .251 ,199 .158 .124 .094

20 .688 .685 .530 .527 .420 .339 .273 .220 .176 .140 .110 .085

25 .732 .732 .588 .489 .412 .350 .296 .251 .213 .180 .152

30 .766 .637 .523 .472 .411 .359 .316 .276 .240 .210

35 .792 .673 .586 .516 .458 .410 .365 .328 .294 .262

40 .812 .702 .622 .554 .499 .451 .408 .372 .338 .307

45 .826 .724 .648 .586 .533 .488 .447 .410 .378 .348

50 .840 .744 .673 .614 .562 .518 .477 .442 .410 .380

*From Grubbs (1950, Table I)
**From Grubbs (1950, Table V).
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TABLE 12

Critical Values for Ek,a = 0.01

n/k 1 2 3 4 5 6 7 8 9 10

3 .000

4 .004 .000

S .02 002

6 .068 U12 .001

7 .110 .028 .006

8 .156 .050 .014 .004

9 .197 .078 .026 .009

10 .235 .101 .018 .006

11 .274 .134 .064 .030 .012

12 .311 .159 .083 .042 .020 .008

13 .337 .181 .103 056 .03J .014

14 .374 .207 .123 .072 .042 .022 .012

15 .404 .238 .146 .090 .054 .032 .018

16 .42? .263 .166 .107 .068 .040 .024 .014

17 .440 .290 .188 .122 .079 .052 .032 .018

18 .459 .306 .206 .141 .094 .062 .041 .026 .014

19 .484 .323 .219 .156 .108 .074 .OSO .032 .020

20 .499 .339 .236 .170 .121 .086 .058 .040 .026 .017

25 .571 .418 .320 .245 .188 .146 .110 .087 .066 .050

30 .624 .482 .386 .308 .250 .204 .166 .132 .108 .087

35 .669 .533 .435 .364 .299 .252 .211 .177 .149 .124

40 .704 574 .480 408 .347 .298 .258 .220 .190 .164

45 .728 .607 .518 .446 .386 .336 .294 .258 .228 .200

SO .748 .636 .550 .482 .424 .376 .334 .297 .264 .235

(This table is taken from Tietjen and Moore, Reference 19)
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TABLE 12

Critical Values for Ek 0.05

k
n/ 1 1* 2 3 4 5 6 7 8 9

3 .001 .001

4 .C25 .025 .001

5 .081 .081 .010

6 .146 .145 .034 .004

7 .208 .207 .065 .016

8 .265 .262 .099 .034 .010

9 .314 .310 .137 .057 .021

10 .356 .352 .172 .083 .037 .014

11 .386 .390 .204 .107 .055 .026

12 .424 .423 .234 .133 .073 .039 .018

13 .455 .453 .262 .156 .092 .053 .028

14 .484 .479 .293 .179 .112 .068 .039 .021

15 .509 .503 .317 .206 .134 .084 .052 .030

16 .526 .525 .340 .227 .153 .102 .067 .041 .024

17 .544 .544 .362 .248 .170 .116 .078 .050 .032

18 .562 .562 .382 .267 .187 .132 .091 .062 .041 .026

19 .581 .579 .398 .287 .203 .146 .105 .074 .050 .033

20 .597 .594 .416 .302 .221 .163 .119 .085 .059 .041 .028

25 .652 .654 .493 .381 .298 .236 .186 .146 .114 .089 .068

30 .698 .549 .443 .364 .298 .246 .203 .166 .137 .112

35 .732 .596 .495 .417 .351 .298 .254 .214 .181 .154

40 .758 .629 .534 .458 .395 .343 .297 .259 .223 .195

45 .778 .658 .567 .492 .433 .381 .337 .299 .263 .233

50 .797 .684 .S99 .529 .468 .417 .373 .334 .299 .268

*From Grubbs, Ref. (11), 1950.
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TABLE 12

Critical Values for Ek - 0.10

n/ 1* 2 3 4 5 6 7 8 9 10

3 .003 .003

4 .350 .049 .002

5 .127 .127 .022

6 .204 .203 .056 .009

7 .268 .270 .094 .027

8 .328 .326 .137 .053 .016

9 .377 .374 .175 .080 .032

10 .420 .415 .214 .108 .052 .022

11 .449 .451 .250 .138 .073 .036

12 .485 .482 .278 .162 .094 .052 .026

13 .510 .510 .309 .189 .116 .068 .038

14 .538 .534 .337 .216 .138 .086 .052 .029

15 .558 .556 .360 .240 .160 .105 .067 .040

16 .578 .576 .384 .263 .182 .122 .082 .053 .032

17 .594 .593 .406 .284 .198 .140 .095 .064 .042

18 .610 .610 .424 .304 .217 .156 .110 .076 .051 .034

19 .629 .624 .442 .322 .234 .172 .124 .089 .062 .042

20 .644 .638 .460 .338 .252 188 .138 .102 .072 .051 .035

25 .693 .692 .528 .417 .331 .264 .210 .168 .132 .103 .080

30 .730 .582 .475 .391 .325 .270 .224 .186 .154 .126

35 .763 .624 .523 .443 .379 .324 .276 .236 .202 .172

40 .784 .657 .562 .486 .422 .367 .320 .278 .243 .212

45 .803 .684 593 522 .459 .406 .360 .320 .284 .252

50 .820 .708 .622 552 .492 .440 .396 .3S5 .319 .287

*From Grubbs, Ref. (1i), 1950.
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