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CONVERSION FACTORS, BRITISH TO MMRIC UNITS OF MSASUREMET

British units of measurement used in this report can be converted to

metric units as follovs:

Mu.tii 'Byy To. Obtain

pounds per square inch o.6894757 newtons per square centimeter
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SUMMARY

In the past or until recently the majority of stress-deformation
and stability analyses have been restricted to ideal material behavior.
Such idealizations in material properties and geometrical conditions
may lead to divergence between observed and predicted behavior. Real-
istic stresp and deformation analyses of homogeneous earth masses :or
soil-structure interaction problems using numerical techniques such as
the finite element and finite difference methods require the formula-
tion of a constitutive model for the soil and structural materials.

A literature review made in this study indicated that most pro-.
cedures used in modeling soils are based on the theory of elasticity
and curve fitting. (This study is limited to constitutive models
which are based on theory of elasticity.) Linear, bilinear, trilinear,
and hyperbolic models provide, under special conditions, good agree-
ment between observed and predicted soil behavior. Unfortunately,
these models lack sufficient experimental and theoretical verification
to be qualified as constitutive models. A general constitutive model
should predict or reproduce soil behavior under any state of stress and
not be restricted to the state of stress from which it is derived.
Constitutive models based on higher order elastic continuum are probably
the only hope for generating truly representative material models. How-
ever, the procedure used in obtaining the needed prameters for such
models is very difficult if not impossible unless some simplified as-
sumptions are made.

A nonlinear elastic constitutive relationship was developed for
two granular materials: crushed Napa basalt and Painted Rock Dam ma-
terial. The behavior of the material was assumed to conform with Cauchy
elastic material (i.e., the state of stress is only a function of the
state of strain); also, the tensorial dilatancy, which contributes to
volume expansion of the material, was ignored. Previous laboratory data
obtained from hydrostatic compression, triaxial compression, and plane
strain shear tests on both crushed Napa basalt and Painted Rock Dam
material were used to obtain the needed parameters. The resulting con-
stitutive model was used to predict the stress-strain relations for
the uniaxial state of strain (i.e., K. tests), and the predicted
curves were compared with laboratory Ko data. The results showed
that there is a qualitative agreement between the data predicted by the
model and those observed in the laboratory. However, the quantitative
agreement between the predicted and observed data needs to be improved.

ix



The proposed constitutive relationship accounts for nonlinear
pressure-volumetric strain behavior, nonlinear shearing stress-strain
behavior, and the effect of superimposed hydrostatic pressure on the
behavior of soils. The constitutive relationship, however, does not
account for shear-dilatancy phenomena often observed during laboratory
testing of soils. Therefore, this constitutive model should not be
expected to predict the exact behavior of the material. A more com-
plicated constitutive equation which includes tensorial nonlinearity
might significantly improve the accuracy of the model. In such a case,
however., more experimental work is required to 'evaluate the additional
unknown parameters which are needed to develop the constitutive model.
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A SI14PLE ELASTIC CONSTITUJTIVE EqUATIOY

FOR GRANULAR MATERIAL

PART I: INTRODUCTION

Background

.1. In the past, it has been almost impossible to perform an exact

analysis for any realistic field -problem in soil engineering due to the

lack of high-speed computers and powerful numerical techniques. As a

result, stress and deformation analyses in soil media have been re-

stricted to ideal material properties, which are only a gross represen-

tation of actual material behavior. This idealization has not only been

restricted to material behavior but also to geometric and boundary con-

ditions. The idealization of material properties and geometrical con-

ditions may simplify the mathematical complexity of.the problem, but

generally it leads to a divergence between observed and predicted soil

behavior.

2. In recent years, considerable advancement to a very mature

stage of development has been made in numerical stress analysis tech-

niques such as the finite element and the finite difference methods.

This advancement, plus larger and faster computers which can handle the

most complex computations in soil mechanics problems, has provided re-

search and designing engineers with powerful tools. However, no stress

or deformation analysis, regardless of how intricate and theoretically

exact it may be, can be useful unless a correct constitutive equation

which describes the actual behavior of the material has been used in

the analysis.

3. The selection of a constitutive model is somewhat easier for

structural materials such as steel and concrete than for soils. In most

cases, steel and concrete are assumed to be linear elastic, and the ap-

plication of linear theories of elasticity for such materials yields

reasonable answers for all practical purposes. However, the behavioral

characteristics of soils dictate that a linear elastic assumption will
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only provide approximate solutions in representing actual material be-

havior. In cases in which solutions based upon theories of plasticity

are used, the soil is usually assumed to be rigid plastic and its be-

havior is governed by a failure criterion such as Mohr's failure theory.

Actually, the behavior Of soils is neither linear elastic nor compatible

with rigid plastic or even elastic plastic classification. The nonlinear

properties of soils stem from the fact that soils are a three-phase

system: solids, liquids, and gases. Their kstress-strain behavior de-

pends on many factors such as mineral composition, stress level, drain-

age condition, density, strain condition, etc. Therefore, any correct

modeling of soil by a constitutive relation should consider most if not

all the variables which affect the stress and deformation behavior of

soil.

4. Modeling soil behavior in the form of a constitutive equation

has been the subject of many soil mechanics publications, and the con-

cept of a constitutive relation in its broadest sense is still in a

state of flux. To date, more than 20 different models have been pro-

posed in soil mechanics literature for soils not subjected to creep or

temperature effects. These proposed models involve various forms of

nonlinearity to be used for a particular problem. Review and discussion

of these models are two of the objectives of this report.

Purpose of the Study

5. The initial motivation of this study was the necessity to

understand the nonlinear response of soils under different stress states

when subjected to monotonically increasing loads. Consequently, a com-

prehensive review of existing procedures published in soil mechanics

literature was made with emphasis on the following three classes of

constitutive models:

a. Models derived from theories of elasticity.

b. Models derived from theories of plasticity.

c. Hybrid models.

The ability of each model to approximate the actual stress-strain

2



behavior of soil was considered; the theory and assumptions used in de-

riving the model were examined.; and the procedures used in obtaining

soil parameters from experimental data needed to formulate the model

were summarized.

6. The ultimate objective of this study was to develop a consti-

tutive relation for granular soils which would be able to predict the

nonlinear soil behavior under states of stress or deformation different

from those conditions from which it was derived. The model was to be

based on actual laboratory tests such as plane strain, triaxial com-

pression, and other types of tests for evaluating the needed soil param-

eters. The constitutive model was to be general enough to be adopted

in finite element and finite difference methods of stress or deformation

analyses.

Scope of the Study

1. The aforementioned objectives• were achieved by using labora-

tory plane strain and triaxial compression test data for two granular

materials, crushed Napa 'basalt and Painted Vock Dam material. These

soils were prepared at two relative densities: 70 and 100 percent. The

description of these materials and other testing variables are presented

in reports of previous studies.1,2 The testing equipment and procedures

Sused also have been presented previously.3'34



PART II: REVIEW OF ELASTIC CONSTITUTIVE MODELS

8. Although the nonlinear behavior of soil has been recognized

since the birth of experimental soil mechanicS, the concept of linear

elastic analysis has proved to be useful in the solution of many prob-

lems, particularly those involving very small-deformations. The adop-

tion of the theory of elasticity for solutions: of certain Classes of

problems has been based primarily on practical experience in which

reasonable agreement between theory and actual phenomena has been

observed,

9. The simplest elastic model assumes that the soil~material is

linear, elastic, and isotropic, i.e., Hooke's law is valid. In this

context, the stress-strain relationship for soil may be expressed by

two elastic constants

ai =Ae k6j + 2Gc ,i j ,k =1 , 2 (la3

C ekij+ 2G j- ekk'iý) (lb)

where

ci = components of stress tensor

A = Lame's constant

E = dilatation

6 ij = Kronecker's delta

G = shear modulus

Eij = components of strain tensor

i,j ,k = indices

K = bulk modulus

Equation 1 can be written in other forms in which the elastic constants

4 and G are expressed by other known elastic constants such as the

modulus of elasticity- E , the bulk modulus K and Poisson's ratio v

The relationships between these different elastic constants for isotropic

soils are shown in table 1.
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Linear Models

Linear elastic model

10. The linear elastic model (fig. 1) has been used in conjunction

with the theory of elasticity for the solution of many practical prob-
5lems such as beams on elastic foundations, stresses and deformations

SE E0

STRAIN C

Fig. 1. The linear elastic model

beneath pavements, and many other applications which can be found in

any standard soil mechanics textbook . Although the linear elastic

model usually has been applied to thick homogeneous layers of soil, it

has also been used in stress and deformation analyses in which more than

one homogeneous layer of soil is encountered. Burmister used the linear

elastic model to derive expressions for stres~ses and displacements in a

two-layered airport pavement for which he obtained good agreement be-

tween actual and predicted pavement behavior under load.'

ll. In general, the elastic parameters required for formulating

a linear elastic model can be obtained from one or more of the following

experimental tests: triaxial compression, plane strain, one-dlmensional

compression (i.e., Ko test), and sonic tests. Girijavallabban and Reese 7

used a linear elastic .model for the solution of stresses and deformations

beneath a circular footing and obtained good agreement between the ob-

served and predicted surface settlements. in a similar study by
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Duncan et al., 8 the deformation beneath a uniformly loaded circular area

placed on the surface of a homogeneous subgrade was analyzed using fi-

nite element techniques by :assigning constant E and v values to

each of three layers. The resulting stresses and deformations compared

very well with those obtained from the elastic layer system developed

by the California Research Corporation.9 A linear elastic model was also
incorporated in the finite element program for plane strain problems

10developed by Duncan and Dunlop to study the stability of slopes in
homogeneous stiff fissured clay and 'shale.

12. In general, it appears that the linear elastic model is most

useful in the analysis of stresses and deformations in homogeneous soils

at low stress levels. However, for higher deviatoric stress levels in

which the stress-strain curve deviates significantly from the linear

form, the linear elastic model becomes of little or no value for analysis.

Bilinear elastic isotropic model

13. The stress-strain behavior of soil in this model is assumed

to be bilinear and can be defined by five soil parameters, as shown in

fig. 2. These parameters are the initial elastic modulus (i.e., before

yield) EO , elastic modulus after yield E , initial Poisson's

Ey y

*YIELD
I-.

E 0 . Pa0

STRAIN C

Fig. 2. The bilinear elastic model
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ratio v ,Poisson's. ratio after yi eld v and the yield stress.
21

This model was used by D'Ap'polonia and Laxnbe in the Pinite element

analysis of a footing resting :on Boston blue clay under an anis.0tropie

state of stress, In their analysis, teitilela~stic modulus was

taken as the average modulus for extension and compression at a shear

stress equal to half the shear stress at failure; E was assumed to

equal 0.001 E0 S and the yield stress was taken as 90 and 75 percent

of the shear stress at failure for compression and extension,

respectively.

i14. A bilinear constitutive model was also used by Dunlop and

Duncan 12 6nd incorporated in their finite element program for plane

strain problems to .stiidy the development of the failure zone aroun~d ex-

cavated slopes in homogeneous stiff fissured clay shales. They used a

normalized stress-strain curve for evaluating the elastic parameters in

the same manner as that used by D'Appolonia and Lambe. Hiowever, they
assumed E to be on the order of .0.0001 E

y 0
15. Because the conventional finite element program cannot be

'used with values of' Poisson's ratio v greater that 0.5 without numer-

ical difficulties,* v must be assigned a value less than 0.5.

D'Appolonia and Lambe 11assumed v to equal 0.1499 before yielding and

0.14999995 after yielding, while Dunlop and Duncan 12assumed values rang-

ing from 0,4475 to 0-4i999. In general, the bilinear model has demon-

strated reasonable agreement between predicted behavior obtained by

finite element analysis :and field observations.

Trilinear elastic isotropic model

16. in this model, the Actun stress-strain relationship for soil

is assumed to be approximated by three linear segments. The first seg-

ment represents the initial part of the stress-strain curve; the second

segment represents transient behavior between the initial and yield con-

ditions; and the third segment represents the. stress-strain behavior

*The numerical difficulties arise from the fact that the ma~trix 6f the
elastic parameter which relates the stress to the strain matrix con-
tains terms in the denominator equal to 1 - 2v Hence, a value of~
v t0.5 causes the denominator to equal zero.



after yield. This model was used in the finite element analysis by

Ellison et al.13 to predict the load-deformation behavior of bored piles

in London clay. The stress-strain curve was idealized by three seg-

ments, as shown in fig. 3, and the elastic modulus of each segment was

related to the average undrained shear strength of soil Su as

E0 = SSu (2a)

E1 = xIaS u (2b)

E2 = A2 (2c)

where

E0 = initial elastic modulus

E1 = intermediate elastic modulus

E2 = elastic modulus after yield

x x I, = constant parameters used to define the shape of the
- 2 stress-strain curve

The value of v in the analysis was assumed to be constant at all times

and equal to 0.48. Ellison et al.13 showed that a trilineax model can

bE

w

U)

WW
(n

EO EE =kx Eo
SE2 = Eo

V1 = 0.48

AXIAL STRAIN 61

Fig. 3. Trilinear elastic model (after Ellison et al. 1 3)
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accurately predict the load capacity aand load-deformation behavior of

bored piles in clay.

Multilinear stress-strain model

17. While some interesting and useful. results have been obtained

using the linear, bilinear, and trilineAr models, the multilinear model

generally is the most useful since. it is more representative of the

actual geometry of the stress-strain curve for soils. A number of pro-

cedures have been used to. incorporate this model in finite element

analyses to represent the nonlinear material behavior of soils. In

modeling nonlinear soil behavior by multilinear or piecewise approxima-

tions, two procedures have been widely accepted: the iterative and

incremental procedures.

a. Iterative procedure. This procedure consists of first
selecting a itil value of the elastic modulus E for
each element in thefinitte element mesh. A certain change
in the external:lOad. is applied and the resulting- stresses
and strains are compared With the stress-strain relation
of the material -as shown in fig. 4a. If the calculated
stresses and strains are not compatible, then anotherz
value of E is chosen forthe next analysis. The process
is repeated until the difference in E calculated from
one increment and E calculated from the previous incre-
ment is within an accepted tolerance. The iterative pro-
cedure is easy to program and use in the finite element
analysis and can be applied to both: loading, :nd unloading
situations. However, the procedure cannot be used in
problems with an initial stress of zero without some
modification.

b. Incremental procedure. The incremental procedure consists
of subdividing the external load into many small and equal
increments which are applied incrementally. The stress-
strain curve between each successive increment is assumed
to be linear as shown in fig. 4b. The displacement incre-
ments wbich are related to strain are accumulated to give
the tot•al displacement at any stage of loading. At the
beginning of this procedure, an initial value for E is
assigned and the stresses and strains in each element are
calculated. A new increment of load is added and another
appropriate E value is selected based upon the stress-
strain curve of the material at that particular increment.
The process is repeeted and the nonlinear stress-strain
behavior of the material is approximated by a series of
straight lines. This procedure is" sligbtly more difficult
than they iterative procedure to program; however, it is

9
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b

Iii

STRAIN C

a. The Iterative procedure

b

Iii

STRAIN C

b, The incremental procedure

Fig. I. Techniques for approximating nonlinearity of material
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much more general since it provides a complete description
of the stress-strain behavior of the material. It can be
applied for. zero as well as nonzero initial stresses, but
it cannot be .applied for materials exhibiting strain-
softetning behavior, iPe., a reduction in stress- with addi-
tional postpeak straining.

In many cases, a mixed procedure which employs a. combination of incre-

mental and iterative procedures is used. In such cases., the load is

applied by increments; however, after each increment, an iterative

procedure is performed to increase the accuracy of the nonlinear

approximation.

18. To summarize, the nonlinear analysis in. both iterative and

incremental schemes consists of a sequence of linear approximations in

which the modulus of elasticity E and Poisson's ratio v are the

only parameters needed to describe the behavior of soil material. Thus,

both procedures implicitly assumed that the material in each element is

linear, elastic, isotropic, and independent of the stress level. How-

ever, if the effect of the stress level must be considered, 'then a fam-

ily of stress-strain curves under different confining pressures is

needed to reflect the realistie material behavior. Such a procedure is

not economical because it requires a large computer space and it is

tedious to obtain closure using iterative or incremental techniques.

These disadvantages are responsible for the development of constitutive

models in the form of analytical -functions.

Nonlinear Models Using Functional Forms

19. Because of the large computer space required to consider the

effect of the stress level by the iterative Or incremental procedure, a

number of functional forms and curve-fitting techniques have been de-

vised in an effort to approximate a family of Stress-strain curves by

one general expression. Two functional forms have been widely used in

finite element analysis to achieve this purpose: the hyperbolic function

and the spline function.

11



Hyperbolic function

20. The hyperbolic approximation for idealizing theý entire tri-

axial compression stress-strain curve was developed by Kondner15 and
16Kondner and Zelasko. They showed that the stress-strain relationship

for sand sheared under a constant mean normal stress can be approximated

by a rectangular hyperbola whose shape is controlled by the initial

slope and asymptotic value of the stress difference. The proposed hy-

perbola was used to express the principal stress difference (o- d 3 )

and the axial strain e1  as

(1 " 3) a + beI B

where

major principal stress

03 minor principal stress

Cl = axial strain

a,b = parameters whose values depend on the sand tested and the
octahedral normal stress applied

The physical meaning of a and b can be. seefi in fig. 5a, in which a

is equal to the reciprocal of the initial tangent modulus Ei , and b

is equal to the asymptotic value of the ultimate stress difference

(a1 - a3)ult ' Equation 3 can be simplified by expressing E1/(a1 - 03)

as a linear function of e , which would enable direct evaluation of

the parameters a and b as depicted in fig. 5b. The linear form of

equation 3 may be written as

£i
Sa + be (4)

where a is the intercept and b is the slope of the line. Thus, by

plotting the experimental data in the transformed form, the correspond-

ing values of a and b can be easily obtained.

21. More complicated forms of Kondner and Zelasko's hyperbolic
17functions have been suggested by Hansen as

12



ASYMPTOTE

(i

ww

(L
IEt I =-T N6

• (~~~0,l o..1 = '.o./ II

J IJ

0.

< B E =T.ANO k

AXIAL STRAIN Cl

a . Lninear s

-z

-w

(U)
-w

-I

a:

AXIAL STRAIN C

b. Linear~

Fig. 5. Representations of the byperbolic stress-strain function

13



a e1 (6)(al -Y 3) =a + be (6

Although in some cases Hansen's equation was found to give a slightly

better fit to the experimental data than Kondner's equation, equation 3

has been favored by many researchers due to its simplicity.

22. Duncan and Chang expanded Kondne-r's hyperbolic stress-

strain function and used it very conveniently in an incremental finite

element analysis by expressing the tangent modulus Et as a function

o 1 ( - a), the initial tangent modulus E. , and the Mohr-Coulomb

soil shear strength parameters c and 0 as

[i Rf (l-_ sin 0)(01-e3]

2c cos 0 + 2a 3 sin0(7)

in which Rf is the ratio of (a - a 3) at failure to the asymptotic

value of (aI - a3 )ult . The dependency of the initial tangent modulus

on the stress level was expressed by

Ea= aPa (P3na,

in which K and n are experimentally determined parameters and Pa a
is the atmospheric pressure, Substituting equation 8 in equation 7

yields

Rt [ f (l-si )(ali 1 s a3 2 a' 3
Et = - 2c cos 0 + 2a3 sin 0 Ka F

The five parameters c 0 , Rf * Ka , and n may be determined con-

veniently from the results of a series of triaxial compression tests,

23. The Duncan and Chang model was used primarily to predict the

stress-strain behavior of the material, and no serious attention was

l14



given to predicting volume changes during shear (i.e., PoIsson's ratio

in this model was assumed to be constant). This model was used by

Chang and Duncan19 to predict soil movemenrt around a deep excavation,

and close agreement was obtained between actual and predicted behavior.

24. A study made by Kulhawy et al. 20 on a number of soils shoved

that the variation of radial strain with respect to axial strain as

obtained from triaxial compression tests is nonlinear and can be approx-

imated by a hyperbolic function similar to that shown in fig. 5. The

slope at any point of this hyperbola was designated as the tangent

Poisson's ratio v 'which is expressed as

dr
Vt d (=O)

a

where E and ea are the radial and axial strains, respectively. The

value of vt , which reflects the nonlinear volume change characteris--

tics of the soil during primary loading, was found. to be dependent on

the stress level in a manner similar to that of Et . Using the same

procedure adopted by Duncan and Chang in deriving Et , Kuihavy

et al.20 derived an expression for vt in terms of stress only as

G - F log

K P 1 "f"l '3)(l 7 sin. 0)1

aKP(~) [ 2c: cos 0 + 20 3 sin 0 j

where Ka , n , c , 0 , and Rf are again experimentally determined

and the three additional parameters G , F , and D may be obtained

from volume change and axial strain measurements from the triaxial. com-

pression tests.

25. The hyperbolic function model which incorporates the non-

linearity of the stress-strain curve as well as Poisson's ratio has

also been used in a three-dimension finite element program by

15



Palmerton21 to study flexible pavement behavior. He was able to obtain

close agreement between the predicted deformations and the field data.

Because the parameters used in the hyperbolic function were obtained

from triaxial compression tests,, their application to problems which

are not axially symmetric generally is not Valid. For example in prob-

lems not categorized as axially symmetrical, the ratio of lateral strain

to axial strain does not represent Poisson's ratio, nor does the slope

of stress difference versus axial strain represent the modulus of

elasticity of the material.

Spline function

26. The mathematical expression used to span a given set of ex-

perimental points by several polynomials of different degrees in a man-

ner similar to the one obtained by employing a mechanical spline or

French curve is referred to as the spline function. In general, the

spline function is not defined as a single expression over the entire

range of data as is the hyperbolic function. Detailed derivations of

spline functions and their mathematical properties have been presented

by Ahlberg et al. and will not be discussed herein. Spline functions

have been used as a valuable tool in curve fitting and have been ap-

plied to practical problems in science and engineering.23,24

27. A cubical spline was used by Desai25 to approximate the non-
linear stress-strain relationship of a cohesionless soil. He incorpo-

rated a spline function in a finite element analysis for predicting the

load-deformation curve of footings. The application of spline functions

for steady state seepage problems has 'een discussed by :Cheek et al. 2 3

28. The advantage of the spline function is that the actual ex-

perimental data can be represented to any degree of accuracy. Also,

the intermediate points and their derivatives at any instance can be

readily obtained. However, spline functions require larger computer

storage than hyperbolic functions. If the effect of confining pressure

must be accounted for, then splines are required for a number of stress-

strain curves under various confining pressures, which requires consider-

ably more computer storage.

16



Constitutive Models with Shear and Bulk Moduli

29. Nonlinear streSs-strain models with a variable modulus of

elasticity E and constant Poisson's ratio V lead in most cases to

erroneous estimates of volume changes that occur in Soils during shear.

To accurately predict volume changes, v should also be varied in a

manner compatible with the variation of strains at any increment of

stress. If a constitutive model is to be incorporated in a finite ele-

ment program, then any variation in the value of v should not exceed

0.5; otherwise, the mathematical formulations of the finite element

analysis become unstable. This condition places a restriction on the

nonlinear procedure used in accounting for the actual deformation of

the material. Therefore., it appeaso that t and v are not necessar-

ily the most convenient material property parameters, and another pair

of independent parameters such as :the shear nodulus G and the bulk

modulus K are more appropriate to use in many cases.

Constant bulk modulus model

30. As an alternative to using E and v for describing the
26nonlinear behavior of soil., Clough end Woodward formulated a consti-

tutive matrix in terms of the shear modulus G , and the bulk modulus

K , and used it in finite element analyses to predict the deformation

and stresses in embankments. Their analysis was based on the assumption

that soil is homogeneous and isotropic. Based on these assumptions,

the stress-strain relationship for plane strain deformation may be ex-

pressed as

- 01['] = (i ÷ v)(l-2v,") [ V (l - V) (] (12)

m l-2 Ym

where

a, =major principal stress

a = minor principal stress
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maximum shear stress

major principal strain

E, =minor principal strain
3

= maximum shear strain

They also defined the values of G and K in terms of E and v as

E
0 2(17211v+ (13)

K

a(l + ')C 2') (+))

By introducing the above definitions of G and K into equation 12,

the stress-strain matrix may be written as

'(K + ) (K G) 0' :l

S- G) (K 4 G) 3(15)
•m0 0 G m

31. The values of G and K in the above analysis were obtained

from triaxial compression tests such that

G "1 0(16)

and

Clough and Woodward26 assumed K to be constant and handled the stress-

strain nonlinearity by incrementing the shear modulus G in equation 15.

The model was used to study the deformation of Otter Brook Dam during

construction, and reasonable agreements were found between the predicted

and actual deformations of the dam.

Variable bulk and
shear modulus model

32. Many investigators27'28,29 have shown that the bulk modulus

18



of soil is not constant but rather is a function of the density and
29

confining pressure. Domaschuk and Wade conducted two series of tests

on Chattahoochee Eiver sand over a wide range of relative densities.

In the first test series, the sand was subjected to hydrostatic pressure

only, and they expressed the bulk modulus by

K =K. + ma
1 = , o (18)

where K. and m are parameters whose values depend on the relative

density and the applied confining pressure, respectivelyy, and .cX is

the mean normal stress.

33. The second test series conducted by Domaschuk and Wade 2 9

consisted of triaxial compression tests using a constant o in a man-
ner similar to that in tests conducted by Kondner and Zelasko.16 They

showed that, when the stress-strain curves are plotted in terms of the

octahedral shear Stress cOct and the octahedral shear strain yoct '

* the general shape of each curve is a rectangular hyperbola which can be

expressed as

Yoct
Toct a + Byoct (19)

where a is the reciprocal of the initial shear modulus Gi and . is

the reciprocal of the ultimal octahedral shear stress x , The pa-

rameters a and 0 are analogous but not identical with a and b

in equation 3.

34. An expression for the tangent shear modulus, Gt was derived

by taking the derivative of t with respect to yoct to yield

Gt ( ¶~) Gi (20)°t -l Oct) .1

Equations 18 and 20 combined define the nonlinear behavior of soil under

primary loading. The validity of this model was checked by comparing

the predicted and experimental stress-strain curves obtained from tri-

axial compression tests under a constant a . Good agreement was

19



obtained for each stress-strain curve.

35. Domaschuk and Wade 2 9 indicated that G. increased with in-1

creasing a ; *however, no attempt was made to relate the variables in
m 30

a mathematical form. Later, Al-Hussaini and Radhakrishnan0 expanded

Domaschuk and Wade's model and derived three empirical equations to

express G , G t :and v as

n

G, = )n(21a)

Gt = df + e G. (21b)T(+St 2

and

V = (21c)

where

S = ratio of the octahedral shear stress at failure Tf to t

v = initial Poisson's ratio
0

The constants d, e , Kb KdI n and v can be determined

*from laboratory test results. The equations were incorporated in a

finite element analysis to predict stresses and deformations in soil

specimens sheared under plane strain conditions. Comparisons with the

experimental data showed good agreement between the predicted and ob-

served results. A variabl.e shear modulus model with constant v was

used in conjunction with a finite element analysis by Clough and

Duncan31 and also by Girijavallabhan and Mehta. 32

Higher Order Elastic Material Models

36. Although there is no complete theory of constitutive equa-
tions that encompasses all known physical phenomena, there have been a

few successful attempts to develop theoretically sound constitutive

models on the basis of their gross material behavior rather than their

atomistic behavior. Such constitutive models are based on the assump-

tion that matter can be replaced by a mathematical model whose kinematic
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or dynamic variables are piecevise continuous functions of the spatial

coordinates. For an ideal material to represent physical behavior

adequately, it should satisfy the principles of invariance, determinism,

isotropy, and congsistenoy. 3 3 Higher order elastic material behavior

has been divided into three major categoriesi. hyperelastic, Cauchy

elastic, and hypoelastic. The major differences.:between these catego-

ries are that the behavior of :a hypoolastic material is path-independent

while both hyperelastic and Cauchy.,elastic materials are path-dependent.

Hyperelastic material model

37. Elastic bodies that possess an energy density functio.n are

referred to as hyperelastic materials. The constitutive equation for

hyperelastic materials is derived from 'laws of thermodynamics.33 For

adiabatic behavior, the conservation of energy requires that

au (22)
j DUij

where a iis the stress tensor, U is the internal. energy density

function, and c J is strain tensor.

38. For isotropic materials .•hose strain energy density function

satisfies the invariance principles, U can be expressed in terms of

three strain invariants as

u= u(x1,I 2 ,I3 ) (23)

where IiI, 12 , and I3 are the first, second, and third strain in-

variants, respectively, which may be defined as

1 ie=k (24a)

2 2 m n (22fb)

= immn~in (24c)
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Employing equation 23 in a chain rule differentiation of equation 22

leads to the expression

BU 1I BU 12 •U I3

a I1+ T 1 + .j3 (25)°iJ a= 1 DE ij ýI12 ae ij K 3 ac ij(5

Employing equation 24, the variation of the strain invariants with

respect to c.. may be obtained as

3,)
ij = 6 (26a)

;e 8 •j (26b)

ij

i rn m1 (2 6 c)
a imjmJ

where 6ij is Kronecker's delta. Substituting equation 26 into

equation 25 yields

ýU 6 i + ý U e U C e( 7S*-- --- •.mcm (2T)
iJ a! 1  31 2 iJ + 23 )m mj

which can be simplified to

i 6j li '2ij + 3im`ýj (28)

where a.(i = 1, 2, 3) is a response function that satisfies the

following condition:

Buo 3a.
B.I= B,. (29)

Cauchy elastic material model

39. Cauchy material refers to elastic materials which do not

possess elastic potential. For these materials it is not possible to

apply Green's theorem; therefore, an alternative method by Cauchy may

be applied to obtain a constitutive equation.34 Cauchy's method is

based on the assumption that the state of stress is only a function of

the current state of strain; thus,
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ai j-- (30)

where fiJ is an unknown function which must be determined.

40. The most direct approach for evaluating f is to expand

equation 30 as a polynomial such as

ij = a0 + a ' a2'imE + a+ a3 6 imemne + aimemncnss +... (31)

where a0 , a 1 , a 2 , ... a are real coefficients. Since the strain

tensor ei, is symmetric, then using the Cayley-Hamilton theorem: of

matrix qnalysis, which implies that e should. satisfy its /on char-

acteristic equation, it is posSible to show that

Oij = 0l1 ij + 02eij + 03 eimcm (32

where 0•1 02 a end 03 are scaler polynomials that can be expressed

in terms of the strain invariants I1 , 12 , and I3

41. Comparing equations 32 and 28, it can be seen that the gen-

eral form of the Cauchy elastic model for infinitesimal deformation is

similar to that of -a hyperelastic material even though the hyperelastic

is derived from thermodynamic consideration while Cauchy elastic mate-

rial is based on matrix algebra. Because of the thermodynamic restric-

tion imposed on the hyperelastic material, the Cauchy elastic material

is considered more general.

Hypoelastic material model

42. In: both hyperelastic and Cauchy :elastic material models, it

is assumed that the stress tensor di, is a function of the strain

tensor ci, and that their relationship does not depend on the loading

path. However, the stress-strain relationship for many engineering

materials is a function of the stress path followed during shear. For

such materials, Truesdel135 proposed a constitutive equation in which

the rate of stress is expressed as a function of stress and the rate of

deformation.
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at = ij (m ) •(3

Equation 33 can be expanded into a general constitutive equation by
36employing the Rivlin-Ericksen equation. Following procedures outlined

by Rohani,37 a constitutive equation for rate-independent hypoelastic

material can be obtained as

aij = nnaO ij + omndcmnBl6ij + amncnp, pma26ij + dEnn3 aij

+ amdemn 4aij + c=npdc pmB5aij + denn 6aimamj

+ arndEmn87aiscsJ + aimnnnp dEpm B8isasj

+ n5 (amdEmj + deimamj) + n6(aimamnd nj

+ (ditimmj) + n3deij (34)

where d is an increment and the B's and n's are response functions

that can be expressed as polynomial functions of the stress invariants

jl 1 J2 I and J3' where

J 1  a kk (35a)

Cr a= (35b)
2 20xsmin (m5h

3 3 im = in (35c)

The solution of equation 34 for any stress path may be obtained by

integration when the initial conditions are specified.

43. The degree of aij on the right-hand side of equation 34

dictates the grade of the hypoelastic material. For example, in hypo-

elastic materials of grade zero, all terms containing oij vanish and

consequently equation 34 reduces to

24



dcr ij 0 + ;n 3ij (36)

By substituting for K0 3• -2G and n3 2G and after arranging

terms, equation 36 may be reduced .futher to
1

d =KdE nniJ + 21(deij - 3 de nnSi ) (37)nnj jijni

Equation 37 has the same form of incremental Hooke's law. If only termsA

up to first power of a. are retained, then equation 34 reduces to a

hypoelastic material of grade one and so on.

44.C The formulation of higher order elastic models which model

experimental test results, ýpresents a complicated problem, especially

'when dealing with Solls. Such difficulties are reflected by the limited

amount of research published to date on this subject. Rohani 8 derived

a nonlinear elastic constitutive equation for earth materials, and he

obtained reasonable agreements with experimental results. Chang et al.3 9

used a second order hyperelastic equation in an incremental form to de-

velop a constitutive equation for Ottawa sand, which was: then incorpo-

rated in a finite element -program to predict sand behavior. Their pre-

dicted results agreed only qualitatively with the experimental data.

Nelson and Baron used an incremental constitutive equation of the

hyperbolic type to investigate ground shock effect in nonlinear hys-

teretic media. Two separate models were used, in their study. In the

first model, both the bulk and the shear modulus were taken to be func-

tions of the strain :invariants alone; in the second model,. they assumed

that the bulk modulus was a function of combined invariance. However,

they did not attempt to match results from the derived model with actual

data. A first order hypoelastic constitutive equation was also used

by Coon and Evans to interpret the behavior of granular material as

tested under triexial compression. They obtained reasonable -greements

between the predicted and actual stress-strain behavior.

Concluding remarks

45. In the preceding discussion, it has been shown that the

majority of elastic models which are based on curve-fitting techniques
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(i.e., linear, bilinear, trilinear, and hyperbolic) provide good agree-

ment between the observed and predicted soil behavior. However, these

models lack sufficient experimental and theoretical verification to be

qualified as constitutive models. A general constitutive model should

be able to predict or define the behavior of soil media under any

possible state of stress and deformation. None of the previously

discussed elastic models possess such qualities. In addition, the

majority of the elastic models were derived from triaxial compression

test data, a situation whnih implies axisymmetric stress and strain

conditions, and, inappropriately., these models have been applied to

design problems which might be better approximated as plane stress or

plane strain problems. Such inconsistency between the developed model

and actual field conditions may lead to erroneous estimates of soil

behavior. A further restriction of incorporating elastic models in

finite element programs is that Poissonts ratio must be kept below

0.5 because of instability problems. This limitation places a restric-

tion on accounting for actual soil behavior.

46. 'Higher order elastic material models are very difficult to

derive since experimental data under various stress ý;tates are required

to evaluate the needed parameters. In some cases, these parameters are

extremely difficult if not impossible to obtain. This drawback probably

is the major reason why higher order elastic models have not been fully

investigated or applied. Nevertheless, higher order elastic material

models may prove to be useful in handling soil behavior assc•ciated with

work softening and dilatancy and in predicting soil behavior under con-

ditions different than those from which the parameters were derived.

These higher order elastic material models may also provide finite ele-

ment formulation free from the instability associated vhen v = 0.5

since the classical definition of Poissbn's ratio is no longer required.
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PART III: DEVELOPMENT OF THE CONSTITUTIVE MODEL

47. In the previous part of this report it was concluded that a

constitutive equation based on higher order elastic continuum is prob-

ably the only way to generate a truly representative material model.

However, the procedure used to obtain the various parameters needed for

such a model is very difficult if not impossible. In this portion of

the report, special forms of the general constitutive equation will be

used to generate a simple but practical constitutive model for granular

materials. Procedures for obtaining material constants from various

tests are discussed and presented, and the proposed constitutive equa-

tion is evaluated by comparing the derived stress-strain relationship

with observed material behavior.

Total Strain Deformation

48., The basic assumption of total deformation theory is that the

state of stress is a function of the current state of strain and is in-

dependent of the stress path. The hyperelastic and Cauchy elastic ma-

terials, which were described in Part II, fall in this category. The

response coefficient 0i in equation 32 (Cauchy elastic material),

which may take various forms for different materials, must be determined

from experimental data. However, there is no reason (unless one is dic-

tated by experimental observation) for requiring all the response co-

efficients in the constitutive equation. For reasons of practicability

and mathematical simplicity, the response coefficient 3 has been

assumed to be zero in using equation 32 for describing the stress-strain

behavior of soil. For this material, the tensorial dilatancy which con-

tributes to volume expansion of material under shear is ignored; how-

ever, the scaler dilatancy may be accounted for by making 01 and 02

functions of I and I Thus, equation 32 becomes
1. 2 euain2beos

=j 0 + O2 eij (38)

The unknown 01 and 02 may be obtained by first replacing
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i with j and reducing equation 38 to

J, = 301 + 021I (39)

By definition, the stress deviatoric tensor S and the strain devia-

toric tensor Eij may be expressed as

J1
Si J • i (40a)

0.j I 3 ii(ha

E =E -- (40b)
ij ij 3 ij

Using equation 40 in conjunction with equation 38 and equating i to

j the following invariant equation can be obtained-

where J' and I' are, respectively, the second invariants of the2 .
stress and strain deviatoric tensor and are defined as

2, = L (4~2a)

12' 21 ij~ij (42b)

From equations 39 and 41, the values of 01 and 0 2 can be de-

fined as

31 11 I 21 (43a)

0 2 (43b)2 121

Since 01 and 02 are known in terms of the invariants, the stress-

strain relationship expressed in equation 38 may be written, after re-

arranging terms, as
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_- + i Ii a(44)i °j 3- Y27 ii-• ij

In equation 44 it is only necessary to determine the functional forms

of the Invariant2 JI and J. in terms of strain Invariants 11 and

The Constitutive Model

S49. The invariants J and J1 in'equation 44 Can be expressed

by twocparameters

J2 =P(11 1) (45b)

where fI expresses the nonlinear pressure-volume change relationship

and f2 expresses the nonlinear shear stress-strain relationship.
50. The relationship bet"een J and II may be determined from

tests in which deviatoric stresses are not permitted, i.e., a spherical
state of stress. A commn example of this is the case of isotropic con-
solidation. The relationship betwen J1 and. I can be ob ned fom

tests in which only a deviatoric state of stress is appliedý however,
such a condition is difficult to impose by .conventional means although
an approximate relationship can be obtained using triaxial compression

or plane strain shear •devices.

Isotropic compression test

151. This test is characterizqd by three. principal stresses and

three principal strains such that

011. '22 - 3 3  p ; oi 0 ii'i (46a)

1u =L 22 = 3 3 =ij , i# j (46b)

where '11 022 , and 033 are principal stresses, £11 C C22  and
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C33 are principal strains, p is the hydrostatic pressure, and E is

the volumetric strain.

52. A typical stress-strain curve for granular material under

isotropic compression is shown in fig. 6. Attempts have been made to

9LW

0
0

I

VOLUMETRIC STRAIN E

Fig. 6. Typical hydrostatic compression test

relate the elastic behavior of individual particles to the overall elas-
t42tic behavior of the mass of granular material using Hertz? contact

27theory. Such an approach was used by Ko and Scott vho showed that

the volumetric strain s for a simple cubical element of spheres can

be expressed in terms of hydrostatic pressure p as

s = 3(16p)2/3 (47)

where w = 3(1 - v E . Actual data on sand showed that c qoes not

vary with the two-thirds power of external pressure as predicted by

Hertz' contact theory. Another empirical expression which is modified

from Hertz' contact theory was used by El-Sobby28 as

SPiM (48)
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where S and m are constants that can be determined from experimental

data.

53. Other expressions used were strictly based on curve fittings.
38

Rohnni suggested the following:

p =y 0e (49)

where o is the initial state of stress of the material that defines
0

the state of ease* and 8 is a parameter. Both a and B can be

obtained experimentally. A similar expression was suggested by

Domascxuk.and Vaaee as

-- •- n(Ki + mp)] ('50)Sm

where X. is the initial bulk modulus And m is a constant.
I

54. For reasons of simplicity, an expression similar to equation

49 was adopted for describing the nonlinear stress-strain behavior under

isotropic compression as

0(e 1) (51)

where Jl and I1 are the first stress and strain invariants,

respectively.

Triaxial compression test

55. This test is characterized by the symmetry of stresses and

strains around one of the principal axes (i .e., major principal axis).

Conditions under which the conventional triaxial test is performed may

be defined as

°11 202 2 33 ; i 0 i#J (52a)

Il > e 22 e 33 ; 'iJ =0 , i# j (52b)

SIt should be noted that a is not a material constant but rather
a parameter which defines tfe initial state of stress of the soil
tested.
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in this test, it is customary to plot the stress difference (o - a3
as a function of axial strain e (see fig. 5), and the resulting curve

can be aporoximated by a hyperbola.15'A,18 For granular material, the

shape and size of such a hyperbola depend upon many factors such as

relative density, drainage conditions, confining pressure, size and

shape of particles, etc. A study by Domaschuk and Wade 2 9 showed that

the hyperbolic shape of the stress-strain curve will be maintained in

triaxial compression tests if the data are represented by the deviatoric

stress S and the deviatoric strain 5d where

Sd = •3 (011 - 033)(5)S C (53a)
•d 11 3-3

2 ( e) (53b)

However, because S and e are directly related to J' and IVd d 2 2'
respectively,

,J' = 8d=.r-(oI - 033) (54a)

,fj ' d11 33
I = 2V2 Ed =V3 (el - •33) 5b

Therefore, if is to be plotted as a function of for tri-

axial compression tests, the resulting stress-straixL curve should also

be a hyperbola.
Formulation of the

hyperbolic function

56. For a given value of relative density and confining pressure
the value of~ versus - may be characterized by a rectangular

hyperbolic function in a manner similar to that used by Kondner and

Zelasko.16 The parameters are illustrated in fig. 7, and the resulting

equation for the stress-strain curve can be expressed as

A17 N -(55)
3+

32



Fig. 7. Typical triaxial compression test

where a and y are parameters whose values depend on the material

properties and testing conditions. The phyoical meaning attached to a

and y can be seen in fig. 7, in which y is equal to the inverse of

the asymptotic value of V (called the ultimate value of r; and a

is equal to the reciprocal of the initial slope of the stress-strain
curve i Thus,

J1 (56a)

1 (56b)

For linear elastic material, v =2G.

Yield criteria

57. Mohr-Coulomb criteria have been generally accepted as useful

and practical failure criteria in theoretical and applied soil mechanics.

In simplest form, these criteria may be stated as
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T c' + a' tan 0' (57)

where

T shear stress on the failure plane

'= cohesion

1' = normal stress on the failure plane

0' = angle of internal friction

Despite its wide application and popularity, the Mohr-Coulomb theory

has been the subject of controversy anong soils engineers regarding the

experimental determination of c' and 0' . Probably the most severe

criticism is due to the fact that the Mohr-Coulomb theory does not

account for the effect of the intermediate principal stress on material

strength. Drucker and Prager 4 3 postulated a generalization of the

Mohr-Coulomb failure criteria which includes the effect of the inter-

mediate principal stress on the behavior of soil. The yield surface

derived by them is conical in the principal stress space (fig. 8) and

can be expressed as

-I l
C 11l 0" 22 -=7c33

022

Fig. 8.Three-dimensional represente.tion of
Drucker-Prager43 yield surface

34

V/



'J1

=K= + x (58)fi 3

where X' and K are physical constants as shown in fig. 9.C

472

S • -r:~A N-'•

3

Fig. 9. Drucker-Prager43 yield envelope

58. Material constants X and K can be related to c' and 0'
under special conditions. ýThe relationship between .%I., K c , and

0has been derived by Christian ior the following states of stress:

a. Triaxial compression:

A / 2 sin 0'(
'ý3(3- sin 0'(59)

K 6c' cos01 (59b)

SN(3 - sin

b. Rigid plastic unde.r plane strain conditions:

' = t .(60a)49 + 12 tan2 0'

For cohesionless materials, c' is equal to zero. Thus, according to

equations 59b and 60b, K should also be equal to zero, and equation

58 may be reduced to
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It has been observed that the value of (7 is not exactly similar

toI - ) 7 and the ratio between the two quantities may be desig-
Jý 

)

S- ult

nated by the failure ratio R such that
f

, (2(62)

Using equations 62, 61, and 56a and after simple substitution, the pa-

rameter y may be expressed in terms of J and A, as

= R (63)

Knowing the value of y and -p from equations 63 and 56b, respectively,

equation 55 may be expressed in the following form:

(64)

The value of J1/3 can be eliminated from equation 64 by using its ap-

proximate value as expressed in equation 51; thus,

•.I•'•jT X' 0 (e' - 1)(5
NV- - , 2 (65)

The values of N and J1 /3 as expressed in equations 65 and 51,

respectively, can be used in equation 44 to obtain the desired consti-

tutive equation

$ij ( 1 - + XtOo(e - 1)_ -' _ I, (6

It should be noted that equation 66 can be expressed in terms of the
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angle of internal friction by substituting Xt for 0 as indicated in

equations 59a and 59b. Also, it can be expressed in terms of the shear

modulus by substituting p = 2G.
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PART IV: EDPERIMENTAL DETERMINATION OF MATERIAL CONSTATS

59, Two types of test are necessary to evaluate the parameters

needed for the constitutive model: isotropic. compression and triaxial

shear tests. Other tests such as uniaxial strain and plane strain

shear tests could also be used to develop the model. In this study,

the material constants were obtained from isotropic compýýession, tri-

axial compression, and plane strain shear tests. However, results from

uniaxial strain tests were used to verify the predictability of the

model.

Material Parameters a and 8

6W. The material parameters a and 0 describe the behavior
0

of the granular material under a spherical state of stress (i.e., iso-

tropic compression). The mathematical expression i ivo2.vinv these con-

stants is given in equation 51. The experimental daat.a and The mathemat-

ical fit for crushed Napa basalt and Pailited Rock at ,.,r1,l are sho~nh

in plates 1 and 2, respecti.vely. The Values of u( d eaJ for the0

material tests are presented in table 2.

Material Parameters a and

61. The material constants u and y can be detertiinel from
either triaxial compression or plane strain shear stie:oi--strain curves.

To conveniently obtain these constants, equttion 53 should bE linearized

in the form

+ Y A + 1 (67)
N 2

where a is the intercept on the axis and y is the slope

of the line.

62. The transformed stress-strain curves for crushed Napa basalt

and Painted Rock Dam material are shown in plates 3-6 for triaxial
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compression tests and plates 7-10 for plane strain shear tests. Values

of a and y obtained from straight lines that bett fit thi trans-

formed stress-strain curves are listed in table 3 and were used in for-

mulating the hyperbolic function described in equation 55. Comparisons
of the calculated stress-strain curves and the experimental curves are

shown in plates ll- for triaidal compression tests and in plates 15-18

for plane strain shear tests. These plots shov satisfactory agreement

between the experimental and calculated stress-strain curves, indicating

that the proposed rectangular hyperbola reasonably predicts the stress-

strain behavior when expressed in terms of VfI and -rTFj

63. The ultimate value of the second invariant of the stress de-

viatoric tensor (;T is somewhat larger than the failure value

(•If This wouldL be expected since the hyperbola remains below the

asymptote for all finite values of 42. The relationship between the

failure value and the asymptotic value of •f is defined as the fail-

ure ratio Rf , as indicated in equation 62. Plate 19 shows the rela-

tionship between (ý)f and (•2)Ul for the crushed Napa basalt

and Painted Rock Dam material under triaxial compression, and plate 20

shows the same relationship for plane strain shear tests. These plots

indicate that Rf is 0.83 for crushed Napa basalt and 0489 for Painted
Rock Dam material when tested in triaxial compression, and 0.59 for

crushed Napa basalt and 0.69 for Painted Rock Dam material when tested

under plane strain shear conditions.

Material Constant X'

64, As indicated in equation 61, the material constant X' can

be obtained by measuring the slope of the generalized Mohr-Coulomb en-
4J3velopes as suggested by Drucker and Prager. These failure envelopes

were constructed by plotting it, as a function of J /3 at failure for

various stress levels as shown in plates 21-24. It can be seen that

the failure envelopes are not straight lines passing through the origin,

and the curvature is more pronounced for material tested in triaxial
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compression (plates 21 and 22) than for that tested under plane strain

conditions (plates 23 and 24), However, the failure envelopes were

approximated by straight lines passing through the origin with slopes

equal to V', A summary Of the values of X' for the materials tested

is shown in table 4k

Material Parameter ti

65. With the exception of the unconsolidated undrained tests on

saturated soil, the initial slope of the stress-strain curve cannot be

expected to remain constant -wnder different confining pressures. Such

variation in the initial slope it is clearly shown in plates 11-18.

The values of P obtained from the inverse of a for the crushed Napa

basallt and the Painted Rock Dam material are presented in table 5.
29,ý30Previous studies on granular' materials have Indicated that the

initial shear modulus varies exponentially with the mean normal stress.

Since ji is directly related to the shear mcduLus, it can be expected

that the value of ;j will vary exponentially with J1 /3

66. The relationships between p and Jl/3 for the Larushed Napa

basalt and the Painted Rock Dam material are shown in plat'es 25-28.

These plots indicated that the relationship between the two varieules

may be approximated by a straight line, resulting in a conyenient ex-

pression for u ,

(-- ) (68)

where ( and a are constants whose values can be obtained from the

experimental data (see table 6).

67. The value of u in equation 68 may be expressed in terms of

the first strain invariant I using equation 51 as

O=C[ e -'T (69)
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By substituting equation 68 in equation 66, the stress tensor aij may

be expressed as

06"-)'e - - (70)

CRCi + X{ieI~11

'where c , C n , and V.' are soil parameters, II is

the first strain invariant; V is the second invariant of the devia-

toric strain; and 4 is Kyonecker's delta.

68. Fig. 30 summarizes the flow diagram for evaluating the ma-

terial constants used in equation 69.
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PART V: APPLICATION OF THE CONSTITUTIVE EQUATION

69. In previous Parts of this report, a constitutive equation was

derived and the soil parameters associated with it were evaluated for

both crushed Napa basalt and Painted Rock Dam material. In the follow-

ing paragraphs, the procedure of examr~ing the constitutive equation

is illustrated by using examples of simple states of stresses and

deformations.

Hydrostatic State of Stress

70. The conditions of a hydrostatic state ot stress (i.e., spheri-

cal state of stress) are

al1  0 0. 0 0

aij = 0 all 0 eiJ 0 ei1 0

10 0 'l0

Applying the above conditions in the expression , j -(1./3)6 , yields

I.

for ij - 6 =-0

and I1
for iJ j e -- = 0ii ý3 iji

Thus, equation 69 for the hydrostatic stress state becomes

, (e ll (Ti)oi•e= 1 - (71)

The above equation exists only for the ease in which i = J or

1/3 =0(e1 - 1) , which is the exact form of equation 51. The rela-

tionship between the observed and predicted stress-strain relationships

for the hydrostatic stress state is shown in plates I and 2. A good

correlation between the observed and predicted values should be
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anticipated since the constitutive model was derived from experimental

data from hydrostatic compression tests.

Uniaxial State of Strain

71. The uniaxial state of strain, commonly known as the K con-
0

dition, can be described as:
el 0 0

0 = 0 (3 0 E, 0 0 0
ij33 ij

0 0 0 0 0

Also, V 11 ii 1 I I

For i # j both aij and iJ vanish and equation 69 is equal to

zero for all values of ai , which is in compliance with the conditions
of the uniaxial.state of strain. However, for i .j the constitutive

equation takes the form

a I = 0 e 2V 1 0 e "-n 11 (72)

and

033 (73) - ) - ..... 1 1)

3C C11+ 3?.' IL (e~ell 1-

The predicted stress-strain relation was :compared with K test data on

0
the crushed Napa basalt end the Painted Rock Dam material as shown in

plates 29 and 30. The results showed that, even though there is a

difference in the values of the predicted and observed stresses, the

results are in agreement in at least a qualitative sense.

7Ž2. The lack of quantitative agreement between the predicted and

the actual data for the uniaxial state of strain (i.e., K test) may
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be due to many factors. How~ever, the most, serious :One is the assumption

that the volumetrit strain I Iis only the result of the applied mean

normal stress J 1/3 i This assumption is a crude approximation :of the

actual behavior of granular material.

Interpretation of Volumetric Deformation of Granular :Material

T3. it has been observed that the volumetric deformation of gran-

ular material during drained shear ranges from dilatational to compres-

sional, depending on msany factors such as density of material, stress

level, itrain condition,.n shape and site of -particles. If secondary

effects axe ignored, the total volumetric strain *can be assumed to con-

sist of two components,.: one compon ent is related to the. applied mean

normal stress, and the other is due to shear deformations exhibited by

the soil.

~I ld

vhere I Iis the total volumetric strain, I 1Cis the component of

volumetric strain due to compressional stresses, and I is the com-
id

ponent of volumetric strain due to shear deformation.

741. The value of I1 can be obtained directly in terms of J /3le1
using equation 51. The value of I can be obtained directly from a

pure shear test; however, a pure: shear test, is very difficult to perform

in the laboratory. As an alternative, I ldcould be obtained by, shear~-

ing soil under a constant mean normal. stress, which is much ea~sier to

perform than the pure sertest. Unfortunately, the experimental date,

needed to obtain I are not available at the present time, but it is
1d

hoped that such tests may be conducted Qfl crushed N~apa 'basalt and

Painted Rock Dam material in the future,

75. An early study by Stroganov4 on sand under plane strain

deformation shoved that I Id is. directly related to the shear deforma-

tion. 'For three-dimensional problems, Stroganov's hypothesis may be

interpreted by



S= f(• )(75)lld2

vhere f is some unknown function of V that can be determined from

appropriate experimental data.

76. It has been pointed out by Stroganov that f is constant,

and he referred to it as the friability coefficient. However, prelim-

inary examination made on crushed Napa basalt, by assigning different

values for f as shown in plate 31, indicated that f is not constant

and can be positive or negative depending on the density of the mate-

rial. Therefore, unless the actual value of f is obtained, it is not

possible to obtain quantitative agreement between the predicted and the

.experimental data.

Cylindrical State of Strain

77. The cylindrical state of strain, commonly known as triaxial

compression, can be defined as

a 11 0E

oij 0 a33 0 sij 0 C33 0

0 0 33 0 0 33

Also.,

I , .ji c + , -

78. The same procedure can be used to Obtain the components of

the stress tensor. In the conventional triaxial test, a$3 is usually

constant and can be designated as P ; the only stress component is

011 According to equation 69, the major principal stress and devi-

atoric stress Can be expressed as
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011~ (* -*I 1f+%3 3 
- • •::• -t33• (7)

•33 " , 11*" . 33

S:f:'1 C 3"3) (77)U r ýn2F33)

[e gci £. 2C 33 77Pi c, < 33 + 0: 1 e<•>L

Predicted and Experimental Correlation for the
Cylindrical State of Strain

79. For the cylindrical state, the mean normal stress can be ex-

pressed: •as

3 31( - 33) + ' (78)

Combining equations 78 and $1 yields

o'6(4 i (1 03 033 (79)

By substituting equation 79 in equation T7, the resulting equation may

be expressed as

(a 01 )L 33) 33~ ~ £33) (80)
(al 33) .

- VT -f 3) [ 33 (,13 -1 33) +, ,331

11 ( 033 + a3 .. (a - a 3)

It should be noted that the experimental data for the conventional tri-

axial tests (i.e.., cylindrical state of strain) were obtained under

constant value of c33 * Thus, by incrementing all , the corresponding

values of (ell - C 33) can be generated.

80. The correlation between the experimental stress-strain curves

47



and those predicted by equation 81 is shown in plates 32 and 33 for the

Painted Rock Dam material and in plates 34 .and 35 for the crushed Napa

basalt. Once again, the predicted and the experimental results are in

reasonable agreement in a qualitative sense.

Plane strain State

81. For plane strain deformation, the stress and strain ten-

sors may be expressed by

o 0 0 0

a1 0 a 22 0 £ = 0 0 0

0 0 033 0 0 £33

C 1 1 + C33

2; 3 +( + C-ic3

The above equations can be substituted in equation 69 to obtain the

governing equation for plane strain deformation.
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PART VI: CONCLUSIONS AND RECOMMENDATIONS

82. The purpose of this study was twofold: first, to summarize

the methodology and procedures used in modeling soils; secondly, to

develop a mathematical model4.hich can describe and predict the non-

linear behavior of granular soils.

83. Based on the literature review it was found that the majority

of soil models (i.e., linear, bilinear, trilinear, and hyperbolic) used

in numerical techniques such as the finite ,element method are based on

theories of elasticity and curve fittings.* While these models provide

good agreement between the observed and predicted .soil behavior under

restricted conditions, they cannot be used to predict stress-strain

behavior for other than those conditions from which they were derived.

Consequently, they cannot be classified as constitutive models. Con-

stitutive models based on higher order elastic continuum are probably

the only models which realistically represent material behavior. How-

ever, the procedure used in developing such models is difficult from

the analytical as well as the ,..,experimental-point of view.

84. A nonlinear elastic constitutive model was derived for tw6

granular materials: crushed Nap• basalt and Painted Rock Dam material.

The derived model was based on the following experimental observations:

a. The hydrostatic stress-strain curve for granular soil

can be approximated by exponential function relating
J1 /5 and Ii1

b. The magnitude of stress prior to failure for the soil
tested is a function of the total strain.

c. The stress-strain relationship as expressed in terms of
Sversus J7 can be approximated by a rectangular

hyperbola for both triaxial compression and plane strain
shear.

d. The failure points for 'both crushed Napa basalt and
Painted Rock Dam material fell on the Drucker-Prager
failure envelope.

e. The portion of the stress-strain curve beyond the failure
point could not be accounted for; thereforel, material

which exhibits strain softening characteristics cannot be
approximated by the proposed constitutive model.
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85. The proposed model is the simplest type of nonlinear con-

stitutive model, and it does not account for shear-dilatancy phenomena.

Therefore, while there is a qualitative agreement between the predicted

and actual material behavior, the quantitative agreement needs to be

improved. Thus, a higher order constitutive equation, which includes

shear-dilatancy phenomena, should be studied in order to significantly

improve the accuracy of the model. It is also recommended that the

analytical and experimental research be continued to include a plastic-

ity model in an effort to improve the existing knowledge with regard

to nonlinear behavior of soils.
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Table 2

Summary of o and f for the Material Tests
0

Crushed NApaa Basalt Painted Rock Dam MaterialD=10 0 D =TO1 100 D = 70
Material Dr 100 Dr r r
Constant percent percent percent percent

a 47 18 18

0 66.6 36.3 133 94
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Table 4

Summary of A' Values

Crushed Napa Basalt Painted Rock Dam Material
Dr =ý 100" Dr =70 Dr =100 Dr 70

Type of Test percent percent percent percent

Triaxial 0.87 o.814 o.94 0.89
compression

Plane 0.87 0.80 0.88 0.82
strain
shear

Table 5

Summary of p Values

Crushed XNapa. Basalt Paintea Rock Dam Material
D 100: D = 70 Dr =100 Dr = 70

Type of Test a 33 percent percent percent percent

Triaxi al 6o 10,750 11,490 28,570 13,330
compression

125 19,610 14,080 32,260 31,250

300 23,800 16,390 55,550 45,450

425 -- -- 66,66o 45,450

500 30,300 19,600 -- --

Plane strain 60 9,090 4,460 114,920 13,890
shear

125 10,990 7,870 21,280 19,61o

300 14,7o T8,547 25,000 23,26o
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Ii. ABSTRACT
In the pa•st or until recently the nsaority of stresss-de.formsation and stability s•nalyses huve been restrictedtO ideal material: behavior. Such idealizations in raateris properties and CIImeIricLl conditions may lead

A dirvered and pdedittedbehav~or. Renlisti stress and feoormsron analyses of homoge-
neous earth masses or aoil-structu-e interaction problems using numerical techniqses such af the finite el(&-
eet ae finite dnilfe rncenmetho require the foreulalion of a constitutive model for the s0il and struc-

tural materials. A literature reviev made in this study indicated that most procedures used in modeling
soils are based on the theory of elasticity azd curve fitting. (This study is limited to constitutive models
vhich are based on theory of elasticity. ) Linear, bilinear, trilinear, and hyperbolid nodels provide, under
sj'ecial Conditions, good agreement between observed and prsdicted 'soil behavior. Unfortunately, these models
lack sufficient erperimental and theoretical verification to be qualified as cons.itutive models. A general
constitutive model should predict or reproduce soil behavior under any state of stress and not be restricted

to the state of stress from which it Is derived. Constitutive models based on higher order elastic contin-
uus art probably the only hope for generating truly representative material models. However, the procedure
used in obtaining the needed parameters for such models is very difficult if not impossible unless some sim-
plified assumptions are made. A nonlinear elastic constitutive relationship was developed for two granular
materials: crushed Napa basalt and Painted Rock Dam material. The behavior of the material was assumed to
confors with Cauchy elastic material (i.e., the state of stress is only a function of the state of strain);
also, the tensorial dilatoacy, which contributes to volume expansion of the material, was ignored. Previous
laboratory? data obtained from hydrostatic compression, triaxial compression, and plane strain shear tests on
both crushed Napa basalt swe Painted Rock Dam material vera used to obtain the needed parameters. The re-
sulting constitutive model was used to predict the stress-strain relations for the uniaxial state of strain
,i.e., KO tests), and the predicted curves were compared with laboratory KC data. The results showed
that there is a qualitative agreement between the data predicted by the model and those observed in the lab-
oratory,. Fowever, the quantitative agreement between the predicted and observed data needs to be improved.
T.e proposed constitutive relationshlp accounts for nonlinear pressure-volmsetric strain behavior, nonlinear
shearing stress-strain behavior, an-d the effect of superimposed hydrostatic presture on the behavior of
soils, The Consttlutive relationshIp, however, does not account for shear-dilat•ascy phenomena often observed
during laboratory testing of soils. Therefore, this constitentive model should nc. be expected to predict
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