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CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT

British units of messurement used in this report can be converted to
metric units as follows:

Multiply ’ By _ To Obtain

pounds per square inch - 0.6804757 newtons pér square centimeter
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SUMMARY

In the past or until recently the majority of stress-deformation
and stability analyses have been restricted to ideal material behavior.
Such ideslizations in material properties-and geometrical conditions
mey lead to divergence between observed and predicted behavior. Real-
istic stress and deformetion- #nalyses of homogenecils earth masses or
soil-structure interaction problems usifig numerical technlques such as
the finite element and finite difference methods require the formula-
tion of & constitutive model for the soil and structural materials.

A literature review made in this study indicsted that most pro-
cedures used in modeling soils are baséd on the theory of elasticity
and curve fitting. (This study is limited to constitutive models
which are based on theory of elasticity.) Linear, bilinear, trilinear,
and hyperbolic models provide, under special conditions, good agree~
ment between observed and predicted suil behavior. Unfortunstely,
these models lack sufficient experimental and theoretical verification
to be qualified es constitutive models. A general constitutive madel
should predict or reprotice soil behavior under any state of stress and
not be restricted to the steté of stress from which it is derived.
Constitutive models based on higher order elsstic continuum are probably
the only hope for gemersting truly representative material models. How-
ever, the procedure useéd in obtaining the needed paremeters for such
models is very difficult if not impossible unless some s1mp11f1ed as~
sumptions are made.

A nonlinear elastic constitutive relationship wes developed for
two granuler materials: crushed Napa basalt and Painted Rock Dam ma-
terial. The behavior of the materisl was assumed to conform with Cauchy
elastic materisl (i.e., the state of stress is only a function of the
state of strain); also, the tensorial dilstancy, vhich contributes to
volume expansion of the material, was ignored. Previous leboratory data
obtained from hydrostatic compression, triaxial compression, and plane
strain shear tests on both criushed Napa basalt snd Painted Rock Dam
material were used to obtain the needed parsmeters. The resulting con~
stitutive model was used to predict the stress-strain relations for
the uniaxial state of strain (i.e., K, tests), and the predicted
curves were compared with laboratory ‘K, -data. The results shoved
that there is & qualitative agreement bhetweén the data predicted by the
model and those observed in the luborstory. ‘However, the quantitative
agreement between the predicted and observed data needs to be improved.
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The proposed constitutive relationship accounts for nonlinear
pressure-volumetric strain behavior, nonlinear shearing stress-strain
behavior, and the effect of superimposed hydrostatic pressure on the
behavior of soils. The conétitutive relastionship, however, does not
account for shear-dilatancy pheniomena often observed during laboretory

“testing of soils. fThereforé, this constitutive model should not be
expected to predict the exact behavior of the material. A more com-
plicated constitutive equstion which includes tensorial nonlinearity
might significantly improve the accuracy of the model. In such a case,
however, more experimental work is required to evaluate the additional
unknown parameters which .are needed to develop the constitutive model,




A SINPLE BLASTIC CONSTITUTIVE EQUATION
FOR_GRANULAR MATERTAL

PARD I: INTRODUCTION
Backgiround

1. In the past, it has been almost imposmble to perform an exact
analysis for any ree.listlc field problem in goil engineenng due to the
lack of high~speed eomputers and powerful mmerical techmques. As &
result, stress and deformation a.nalyses in soll medie ha.ve been Tre-
stricted to ideal material properties, which are only & gross Tepresen—
tation of actual material ‘behavior. ~This ideslization has not only been
restricted to materiel behavier but also to geometrie and boundary con-
ditions. The idealization of material properties and geométrical con- |
ditions may simplify the mabhematical complexity of the problem, but
generally it leads to a divergenée befween obsetrved and preaic’ce'd soil
behavior,

2. In recent years, considerable advancement to a very meture
stage of development has been made in numerical stress anelysis tech-
niques such as the finite element 4nd the finite difference methods,
This advencement, plus large¥ and faster computers vhich can handle the
most complex computations in soil mechanics problems, has prﬁév‘ided re~
search and designing -en'gixieé-r»s wi;th' powerful tbols, However, no stress
or deformstion analysis; firega’.rdless_ of how iﬁtr’icaﬁ‘e and: theoretically
exact it may be, can be useful unless a correct constitutive equation
which describes the actual behavior of the materiel has been used in
the analysis.

3. The selection of a constitutive model is somewhat easier for
structural materials such as steel and concrete than for soils. In most
cases, steel and concrete are assumed to be linear elastic, and the ap-
plication of linear theories of elasticity for such materials yields
reasoneble snswers for all practical purposes. FHowever, the behavioral
chardcteristics of soils dictate thet e lineer elastic essumption will




only provide approximate solutions in representing actual material be-
haﬁior. In cases ‘in which solutions bésed:hpbn theories of plasticity
are used, the soil is usually'aésumed %é hé»figid plastic and its be-
havior is governed by & féilure criterion such as Mohr's failure theory.
Actually, the behavior 6f=soiis is neither linear elastic nor compatible
with rigid plastic or even élastic plastic classification. The nonlinear
propertiss of soils stem from the fact that soils are e three-phase '
system: solids, liquids, and gases. Their ‘stress-strain behavior de-
pends on many factors such &s mineral composition, stress level, drain-
age condition, density, strain ¢ondition, ete. Therefore, eny correct
modeling of soil ﬁy;a éonétitﬁtive relution should consider most if not

41l the varisbles which effect the stress and deformation behavior of

soil.

k., Modeling soil behavior in the form of a constitutive equation
has been the subject of many soil mechanics publications, and the con-
cept of & constitutive relation in its broadest sense is still in a
state of flux, To date, more than 20 different models have beén pro-
posed in soil mechanics literature for soils not subjected to creep or
temperaiure effects. These proposed modeis involve various forms of
nonlinearity to be used for a particular problem. Review and discussion

of these models are two of the objJectives of this report.

Purpose of the Study

5. The initial motivetion of this study was the necessity to
understand the nonlinear response of soils under different stress states
vhen subjJected to monotonically incréasing loads. Consequently, a2 com-
prehensive review of existing procedures publiShed in soil mechanics
litersture was made with emphasis on the following three classes of

constitutive models:

Models derived from theories of elasticity.

o e

. Models derived from theories of plastieity.
. Hybrid models.
The ability of each model to approximate the actual stress-strain

o |




-used also have been presented previously.

behavior_éf soil was c¢onsidered; tﬁé"iﬁhfeory and assulmptions used in de-
riving the -m’ode’i‘: were exaninedy and u_t;vhé:' ﬁtbce&ures used in obtaining
soil péian‘xet‘e:s from experimental data needed to ‘fémulate the model
were summarized.

6. The ultimate o¢bjective of this study was to develop a consti-
tutive relation for granular soils which would be able %o predict -the
nonlinear soil behavior urder: states of stress or deformation different
from those conditions from which it was derived. The model was to be
based on actual laboratory tests such as plane strain, triaxisl com-
pression, and other types of tesits for evaluating the needed soil parem-
eters. The congtitutive model was to be general enough to be adopted
in finite element and Tinite difference methods of stress or deformation

s

analyses.

Beope of the Study

T. The aforementioned objectives were achieved by using lebora-
tory plane strain and triaxial compression test date for two granuler
materials, crushefl Nape basalt and Painted R¢ck Dam meterisl. These
soils were prepared at two relative densities: 7O and 100 peréent. The
description of these materinls and other testing variables are presented

1,2

in reports of previous studies. The testing equipment and procedures

3,4




PART II: REVIEW OF ELASTIC CONSTITUTIVE MODELS

8. Although the nonlinear behavior of soil has been recognized
since the birth of experlmental soil mechanics, the concept of linear
elastic analy51s has proved to be useful in the solutlon of many prob-
lems, particularly those inVOIV1ng very small deformations. The adop-
tion of the theory of elastieity for solutions of certein classes of
problems has been based primarily on practical experience in which
reasonable agreement between ﬁheory and sctual phenomena has been
observed., o ) . » .

9. The simplest elastic model assumes that the soil material is
linear, elastic, and isotropic, i.e., Hooke's law'is valid. In this
context, the stress-strain relationship for soll mey be expressed by
tvo elastic constéants

“ij‘# Aekkaij + QGeid »isd  k=1,2,3 (1a)
6., = Ke 8, +26fc.. ~Le s (1b)
3 ki1 €13~ 3 Skx’iy {1b)
where _
oy = components of stress tensor

Lame's constant
dilatation
i3 Kronecker's delta

Sy M
(] b
tu L} i

shear modulus

i

€33 components of strain tensor
i,J.k = indices
X = bulk modulus
Equation 1 can be written in other forms in which the elastic constants
A and G are expressed by other known elastic constants such ss the
modulus of elasticity - E , the bulk modulus K ; and Poisson’s ratioc v .

The relationships between these'different elastic constants for isotropie
soils are shown in table 1.




Linear Models

Linear elastic model

10, The linear elastic¢ model (fig. 1) has been used in conjunction
with the theory of .elasti:‘ciity for the solution of meny prac’cica‘l prob-
lems such as beems on elsstic 'fou’ndé.f’ioﬁs,s stresses and deformations

b
4 "
N
w
4

3 £x g

vy,

STRAIN €

Fig. 1:‘. The linear elastic model

“beneeth x:nw'en:aerﬂ:s,6 and nany other applica:tions which can be found in
any standard soil mechanies textbook: T Although the linea.r elastic
model usually has heen applied to thick ‘homogeneous layers of soil it
has also been used in stress and deformation anelyses in which more than
one homogeneous layer of soil is encountered., Burnister used the linear
elastic model to derive expressions for stresses and displacements in a
E two-leyered slrport pavement for which he cbteained good agreement be-
tween asctual and predicted pavement behavior under 10811‘.7 '

11. 1In general, the elastic parameters regquired for formuleting
& linear elastic model can be obtained from one or more of the following
experimental tests: triaxial compress‘ion, plane strein, one~dimensionsal
compression {i.e., K test), and sonic tests. Girijavallsbhan and Beese |
used & linesr elastic model for the Bolu:tion of stresses and deformetions.
beneath a circular footing and obtained good 'a.greement between the ob-

served and predicted surface settlements. In & simildr study by




Duncan et:a.l.,8 the deformatien beneath & uniformly loaded circular ares
placed on the surface of a'hpmégeneous suﬁéréde was gnalyzed uéing fi-
nité element techniques by assighing constant E and v values to

each of three layers. The feSulting stresses and deformations compared
very well with those obtained from the elastic layer system developed

by the California Research Corporation.g A linear elastic model was also

incorporated in the finite element program for plane straip;problems

developed by Duncan and_Dunlbplo to study the étability_bf slopes in
homogeneous stiff’fissured-élay and 'shale,

12. 1In general, it appears that the linear elastic model is most
useful in the &nalyéis of stresses and deformations in homogeneous soils
at low stress levels. Howvever, for higher deviatoric stress 1e§els in
which the stress»stfain curve'deviatgs'significantly from the.linear
form, the linear elastic model beécmes of little or no value for analysis.
Bilinear elastic isotropic model

13. The stress-strain behavior of soil in this model is assumed
t0 be bilinear and can be defined by five soil parameters, as shown in
fig. 2. These parameters are the initial elastic modulus (i.e., before
yvield) Eo s elastic modulus gfter yield Ey s Initial Poisson's

A
E
Y’ VY

B

]

]

E fRvieLp

-

]

Ey Ya
STRAIN €

Fig. 2. The bilinear elastic model




ratioc v_ , Poisson's ratio after yieid \'iy , and the yield stress.
This model was used by D"Appolonia and Lambe a2 in the :f‘-i'n'ite element
englysis of a footing restmg on Boston blue clay: under an a.nlsotroplc

state of stress. In their analysis .*bhe mltia.l elastic modulus was
taken as the average modulus for extension and compression at a shea.r
stress egual to half the shear strgss at failure; Ey was assumed to
equél 0.001 Eo , and the yield stress was taken as 90 and 75 percent
of the shear stress at failure for compression and extension,
respectively. - .

lh A blhnear constltutwe model wes also used by Dunlop and
Duncan de incorporated in their fmite ‘element program for pla.ne
strain problems to study the development of the fa.:.lure zone. around ex-
cavated -slopes in .homo__geneous stiff fisgured clay shales. They used &
normalized stress-strain curve for evalusting the elastic paremeters in
the same manner as thet used by D'Appolonis and 'Lam-be .ll Hove*rér"; they
assumed E to be on the order of 0.0001 E

15. Because the conventional finite element Program cannot be
used with values of Poisson's ratio v greater than 0.5 without numer-
ical difficulties,* v must be assigned & value less than 0.5.
D'Appolonia and Ltam‘ne?"1 assumed v to equal 0.499 before yielding end
0.4999995 after yielding, while Dunlop end Duncanl? assumed values rang-
ing from 0.475 to 0.4999. 1In general' the bilinear model hes demon-
strated reasonable agreemerit betveen predicted behavior obtained by
finite eléement ana.lysn.s and. field observations.
Tnlinear elastic isotroplc modél B

16. In this model, the actual stress-strain relationship for soil
is assumed to be approxmted by thrée linear gegments. The first seg-
ment represents the initial part of the stress-strain curve; the second
segment represents traunsient behavior between the initisal &nd yield con-

ditions; and the third segment represents the stress-strain behavior

* The mumerical difficulties arise from the fact that the matrix of the
elastic parameter which relates the stress to the strain matrix con-
tains terms in the demominator equal to 1 - 2v . Hence, a value of
v = 0.5 causes the dencminetor to egquel zero.




after yield., This model was used in the finite element analysis by

Bllison et al.l3 to predict the losd-deformation behavior of bored piles

in London c¢lay. The stress-strain curve was ideslized by three seg~

ments, as shown ig fig. 3, and the elastic modulus of esch segment was

related to the évérage undrained shear strength of soil Su as

where

tg b
]

| el =]

i

e =]
N o
1t

i

Bﬁkl’_

The value of v in
and equal to 0.48,

i

AXIAL STRESS O,

EO = SSu (23)
E, = A B8, (2b)
E2 = *235u (2¢)

initisl elasti¢ modulus

intermediate elastic moduius

elastic mOdulus:after yield

constent parameters used to define the shape of the
stress«strain curve

the analysis was assumed to be constant at all times

Ellison et 61.13 showed that a trilinear model can

AXIAL STRAIN €,

Fig. 3. Trilinear elastic model (after Ellison et al.lB)




accurately predict the loed capacity and load—deformatmn behavn.or of
bored piles in <lay. » '
Multilinesr stress—strain model

17. V¥hile some interesting and useful results have been obtained

using the linear, bilmear, and trilinéar models, ‘the multilinear model
generally is the most useful since it is more representative of the
actual geometyry of the stress-stram eurve for s6ils. A number of Pro-
cedures have been used o mcorpora'be this model in finite element
analyses to represent the nonlinear matenal behavior of sc;ils.lltr V'In
modeling nonlinear soil behavior by multilinesr or plecewise approxima—
tions, two procedures have been widely accepted: the iterative and

mcrementa.l proceﬂures .

a. Iterstive procedur ‘This procedure consists of first
selecting an initial: value of the elastic modulus E for
each elemerxt in the* finite element mesh. A certain chsnge
in the externsal load is a.ppl:ied and the resulting stresses
and strains are compared with the stress-strain relastion
of the material as shown in fig. ba: If the caleulated
stresses end strains are not compatible, then another
value of E 1is chosen for-the next analysis. The process
is ‘repeated until the difference in E caléulated from
one increment and E celculated from the previous incre-
ment is within an sccepted tolerance. The iterative pro-
cedure i5 easy to program end use in the finite element
analysis and can be applied to both loading and unlosding
situations. However, the procedure cannot be used in
problems with an initial stress of zero without some
modification.

b. Incremental procedure. The incrementel procedure consists
of subdividing the external losd into many smell and equal
inerements which are spplied incrementally. The stress-
strain curve between each successive increment is assumed
to be linear as shown in fig. Ub. Thé displacement incre-
ments which are rélated to strain are accumulated to glve
the total displacement at any stage of Ioading. At the
beginning of this procedure, an imitidl yalue for E is
assigned and the stresses and strains in éach element are
caleulated. A new increment "of load is sdded and another
sppropriate ¥ value is selected based upon the stress-
strain curve of the material at that perticuler increment.
The process is repedted and the nonlinesr stress~strain
behavior of the material is approxims.ted by & series of
straight lines, This procedure is slightly more difficult
than the iterative protedurs Yo program; however, it is
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Fig. 4. Techniques for approximsting nonlinearity of material
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nuch more general since it provides a complete descr\iption
of the stress-strain behavior of the material, It can be
epplied for.zero &s well as nonzero initiel stresses, but
it cannot be applied for materials exhibiting stra.ln—
' softening behavior, i,e., & reduction in stress with eddi-
tional postpeak. straining.

In many cases, & mixed prbcédure which employs a eomb'iﬁétiﬂon of incre-
mental and iterative procedures is used. In such cases, the losd is
applied by increments; however, after each inerement, an iterative
procedure is performed to increase the accuracy of the nonl‘ineaf
approxmation. - '

18. ¢ o summarize, the nonlinesr analysis in ‘both iterative and
incremental schemes consists of a sequence of linear ‘approximetions in
which the modulus of elasticity E and Poisson's ratio v are the
only parsmeters needed to .describe the behavior of soil material. Thus,
‘both procedures mplicltly assumed that the material in each element is '

linear, elastie, isotropic, end independent of the stress level. How-

ever, if the effect ‘of the stress devel must be condidered, ‘chen £ Tam-
ily of stress-strain curves under different conf‘lning pressures is
needed to reflect the realistic material behavior. Such a procedure is
not economical because it requires & :la.rge computer space and it is
tedious to obtain closure using itérative or inerementsl techniques.
These disadvantages are responsible for the development of constitutive
models in the form of enalytical functions. o |

Nonlinear Models Using Functional Forms

19. Becsuse of the large computer space required to consider the
effect of the stress level by the iterative or incremental procedure, a
number of functional forms and curve—;ritting techniques have been de-
vised in en effort to approximate a family of stress-strain curves by
one general expression. Two i’uizc_fioha.l forms have been widely used in
finite element analysis to achieve this purpose: the hyperbolic function
and the spline function.




Hyperbolic function

20. The hyperbolic epproximation for idealizing the entire tri-
axial compreésion gtress—-strain curve-wés developed by Kondnerl5 and
Kondner and Zelasko.l6 They showed that the stress-strain relationship
for sand sheared under a constant meanlﬁbrma; stress can be approximated
by a rectangular hyﬁérﬁola whbse shape is controlled bY-the initial
slobe and asymptotic value of the-stfess difference. The proposed hy-

perbola was used to ‘express the principal stress diffgrénce (cl - 03)
and the axial strain €, 8&s '
€
. - 1 .

where

Gl = major principal stress

03 = mitior principal stress

e = axial strain

ab = parambters whoge values depend on the sand tested and the

octdhedral normal stress applied

The physicel mésning of & and b can be seen in fig. 5a, in which &
is equal to the réciprocal of_the initial taﬁéehﬁ modulus ‘Ei ,and b
is equal to the asymptotic value of the vltimate stress difference

(cl = 03) - Equation 3 cen be simplified by expressing el/(al - 03)
es & linear function of €y s which would ensble direct evaluation of
the parameters & and b as depicted in fig. 5b. The linear form of
equation 3 may be written as

1 -
——=——y = a + bey (%)

where & is the intercept end b is the slope of the line. Thus, by
plotting the experimental date in the transformed form, the correspond-
ing values of & and b .can be easily obtained.

21. More compiicated forms of Kondner end Zelasko's hyperbclic
functions have been suggésted by‘HansenIW'as

12
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(5)

(6)

Although in some cages Hensen's equation was found to give a slightly
better ‘fit 10 the <expe'ri§1er{ta.1 data than Kondner.’s equation, eguation 3
has been favored by:: ma.ny researchers due to its simplicity.

22, Duncan and Cha.ng:l‘8 expanded Kondner's hyperbolic stress-
strain function and. used it very conveniently in an incremental finite
element analysis by ‘ex-pressihg the tangent modulus Et as 8 fi‘mmion
of {o, - 03), the initial tangent modulus E, , and the Mohr-Coulomb
soil shear strength parametéers ¢ and § as
R.(1 - sin #)(o, - 0.) |

f S 3

E =11 sin ¢ Ei (1)

t T 2c cos P + 20

3

in which R is the ratio of (o

value of (ci -~ 63) Wt The dependency of the initial tangent modulus

on the stress level was expressed by

y - 03) at failure to the asymptotic

B = KPPl ’ (8)
in which Ka and n are experimentally determined parameters and Pa

is the atmospheric pressure, Substituting equation 8 in equation T
yields

' R.{1 - sin B¥(o, = 6.) 2 o, B
E =11 - ! Sl 3 K P 3 (9)
t 2¢ cos @ + 203 sin ¢ a8 Pa

The five parameters ¢ , ¢ , Ry s L and n may be determined con-

veniently from the results of e series of triexial compression tests,
23. The Duhcan ‘and Chahg model wag uséd primarily to predict the
stress-gtrain behavior of the material, #nd no serious attention was

1k




given to predicting volume changes during shear (i.e., Poisson's ratio
in this model was assumed to be ‘constant). This ‘model was used by
Chang and Duncanlg to predict soil movement around a a'e'epA excavation,
and close agreement was obtained bvetween actual a.nd preﬁic‘bed' behaﬁor.

24, A study mede by Kulhawy et 21.%% on & number of soils showed
that the varistion of radial strain with respeet to mxial straln as
obtained from triaxial compression tests is nonlinear end can be approx-
imated by e hyperbolic function similar to that shown in fig. 5. The
slope &b any poi»n‘t of this hyperbole was designated as the tangent

Poisson's ratio v, ..which is expressed as

¢ t
de

Al {10)
} a

where €, and €, &are the radial 4nd axial strains, respectively. The

value of vy which reflects the nonlinear volume change charsacteris~-

tics of the soil during primary loading, was found to be dependent on -

the stress level in a metiner similar to that of Et « Using the same
procedure ndopted by Duncan and Changla in deriving E_ , Kulhawy

et a.l.20 derived an expression for v_ in terms of stress only as

t
' o
G - F log (f’é)
. o a7 . ~
I B, - o) z W
n[ ) - sin @)1
ep (2Y 1, Bploy = 05)(1 - sin §)
a a Pa 2c cos § + 2c3 sin ¢

where Ka , &y ¢, @ ,8nd Rf are again expe_rimentally determined
and the three additional parameters G, F , and D may be obtained
from volume change and axial strain messii‘ements from the triaxial com-
pression tests.

25. The hyperbolic function model which incorporates the non-
linearity of the stress—strain curve as well as Poisson's ratic hes

also been uséd in a three-dimension finite element program by
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Palmertongl to study flexible pavement behavior. He was able to cbtain
close agreement between the preaicied deformations and the field data.
Because the parameters used in the hyperbolid function were obtained
froﬁ triexial compression tests, their application to problems which
are not axially‘symmefric generslly is mnot -valid. For example in prob-
lems not categorized &s axially symmetrical, the ratio of latersl strain
to axial strain does not represent Poisson's ratio, nor does the slope
of stress difference versus axial strain represent the modwlus of
elasticity of the material.

Spline function

26. The mathematical expression used to-span a given set of ex-
perimental points by several polynomials of different degrees in a man-
ner similar to the one obtained by employing'a mechanical spline or
French curve is referred to as the spline function. In genersl, the
gpline function is not defined as a single expression over the entire
range of data as is the hyperbolic function. Detailed derivations of
spline functions and theif mathematical properties have been presented
by Ahlberg et 31.22 and will not be discussed herein. Spline functions
have been used as a valuable tool in curve fitting and have been ap-
plied to practical problems in science and engineering.es’Zh

27. A cubical spline was used by Desai25 t¢ approximate the non-
linear stress-strain relationship of a cohesionless soil. He incorpo-
rated a spline function iﬁ a finite element analysis for predicting the
load-~deformetion cuive of footings. The application of spline functions
for steady state seepage-problehs hag been discussed by Cheek st 31.23

28. The advantage of the spline function is that the actual ex-
perimental data can be represented to any degree of accuracy. Also,
the intermediamte points and their derivatives at any instance can be
readily obtained. Hovever, spline functions require larger computer
storage than hyperbolic functions. If the effect of confining pressure
must be accounted for, then splines are required for a number of stress-

strain curves under various corfining pressures, which requires consider-
&bly more computer storage.
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Constitutive Models wifhv.Shear and 'Biilk'_lvio_&uli

29, Nonlinesr stress-strain =jx;1”m"‘_tie‘ls with a _jra’x‘iaisle modulus of

elasticity E and constent Poigson's ratio v lesd in most cases to

erroneous estimates of volume chaxig’es,'that oceur in soils: during shear,
To accurately prediet volume é‘hé,nges,, v should :élsq be varied in‘a

manner compatible with the veristion of strains at any inerement of

~ stress. if e constitutive model is to be incorporated in a finite ele-

ment program, then any variation in the value of v should not exceed
0.5; otherwise, the mathematical formulaetions of the finite element

analysis Become unstable. This condition places = restriction on the

- nonlinesy procedure used in accounting for the a.-ct"ua.l de‘formation of

the materiel. Therefore, it appears that E Bnd v are not necessa:r-
ily the most convenient material property parameters, and enother pair
of independent parameters such 88 ‘bhe shear modulus G dnd the bulk
modulus K are more appropriate %o use in me.ny cases.
Constant bulk modulus model '

30. As an alternatlve to using E and v for describing the
nonlinear behavior of soil Clough end Woodward 26 formulated & consti-~

tutive matrix in terms of the shear modulus G , and the bulk modulus

K , end used it in finite element analyses to predict the deformation
end stresses in embankments. Their analysis was based on the assumption
that soil is homogenecus and isotroplc. Based on these assumptions,
the stress—‘st-rain relationship for plane strain deformation may be ex-

pressed as
. E : 12
93] TTE =+ = 2v) v (1 =) ° £3 f( )
T 0 o (.1 ~ 2\:) Y,
2, .
where
6, = mejor principal stress
03 = minor principal stress
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maximum shear stress

T =

m » _ .
£y = major principel strain
53 = minor principal strain
Y, = maximum shear strain

They also defined the values of & and K in terms of E and v as

E
G = 2(1 + v) : (13)
E=smsaa -y (k)

By introducing the gbove definitions of G and K into equation 12,

the stre§s-strain metrix may Ye written as

o (K+G)(K-G)0 el |
ol = (K‘ -G) (k+06) o}, eq] (15)
T 0 0 Glvy

31. The values of G and K in the sbove analysis were obtained
from triaxial compression tests such that

jo. -G
G = %—(E;*—j—e}‘) (16)
1 3

o, + @
1{°1 3
. 2(51 63)

Clough &nd -Uoodward% agsumed K to6 be constsant and handled the stress-
strain nonlinearity by incrementing the shear modulus & in eguation 15.
The model was used to study the deformation of Otter Brook Dam during

construction, and reasoneble sgreements were found between the predicted
and actual deformations of the dam.

and

Variable bulk and
shear modulus model

32. Meny investigators2!*28:29 nave shown that the bulk modulus

18




of soil is not constant but rather is & function of the density and

9

confining pressure. Domaschuk and Wadea conducted two series of tests
on Chattshoochee River sand .over 8 wide range of relaﬁiyé densities.
In the first test series, the sand was Sub’jeéfhéd to hydrostatic pressure

only, end they expressed the bulk modulus by
K=K +mo {18)

vhere K, and m are parameters whose values depend on "}b‘he‘ relative
density and the applied confining pressure, fre‘spectively,»ian& : :cm is
the mean normal stress.
33.£ The second test series conducted by Domaschuk and Wade29

cbnsisted of triaxial compfession tests using & constant % in & man-
ner similar to that in tests conducted by Kondner and Zelasko.16 They
showed that., when the stress-strain curves are plotted in» terms of the
octahedral she&r stress Toct and the octa.tzedral::shear strain Yoot ?
the general shape of each curve is & rectangulsr hyperbola which can be

expressed as

x - 'j{oct
oct o + BYoct

(19)

where a is the reciprocel of the initial shear modulus Gi and B is

the reciprocal of the ultimal octahedral shear stress 1 it The pe-

rameters o and B are analogous but not identical with a and b
in equation 3,

3k, An expression for the tangent shear modulus. G, was derived
by taking the derivative of T

with respect to Yoo to yield

ct t

)2 G, (20)

Gy =(l - Bt i

oct
Equstions 18 end 20 combined défine the nonlinear behavior of soil under
primery loading. The validity of this model was checked by comparing
the predicted and experimental stress-strain curves obtained from tri-
axial compression tests under a constant a, - Good sgreement was
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obtained for each stregs-strain curve.

35. Domaschuk and Wade29 indicated that Gi increased with in-
creasing o, 3 however, no sttempt was made to rglate the variebles in
a mathematical form. Later; Al-Hussaini and Radhakrishnan30 expanded
Domaschuk and Wadefs model and deriVed three empirical eguations to
express Gi . Gf ,:ahd v &as

o, \" '
5 KbPa (i;i- > {21a)

G, =
2
- Bar
_ |- f oct
Gt = 11 - a~:~;g; Gi {21p)
and
K.t
Ve 4 4 oct {21c)
GiGt
where

- m
H

¢ = ratio of the octahedral shear stress ab failure T, to T,

<
n

initisl Polsson's ratio

The constants 4 , ‘e , Kb s 'Kd , n ,and v, can be determined

© from laboratory test results. The equations were incorporated in a

finite element analysis to predict stresses and deformations in soil
specimens sheared under plane strain conditions. Comparisons with the
experimental date showed good agreement between the predicted end ob-
served results. A variable shear modulus model with constant v was
used in conjunction with a finite elemént analysis by Clough and
Duncan> and also by Girijavallabhen and Mehta. o

Higher Order Elastic Maberial Models

36. Although there is no complete theory of constitutive equa-
tiens that encompasses all known physical phenomena, there have been &
few successful sttempts to develop theoretiéally sound constitutive
models on the basis of ‘their gross material behavior rather than their
atomistic behavior. Such constitutive models are based on the assump-

tion that matter can be replaced by a mathematicel model whose kinematic
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or dynsmic varisbles are piecewise contlnuous functions of the spatlal
coordinates. For an ideel material to represent physical behevior
adequately, it should satisfy the principles of invariance, determinism,
isotropy, and consistency.33' Higher order elastic material behavior
hes been divided into ’%h‘r"ee-majoru categories: Mhyperelasti¢, Csucky
elastic, and hypoelastic. The maﬁbf differences between these catego-
ries are that the behavior or % hypoelastlc material is path-independent
while both hyperelastic and Cauchy elastic materials are path-dependent.
Hyperelastic material model _

37. Elastic bodies ‘that possess an energy density function -are

referred to as hyperelastic materiéls The constitutive equation for
33

hyperelsstic materials is derived from laws of thermodynamics For
aedigbatic behavior, the conservatlon of energy requires that -
. _au
g, , & w—— (22)
ij Beij
where cij is the stress tensor, U is the internal erergy density
funection, and gij is strain tensor,

38. For isotropic materials whose strain enérgy density function
saxxsfies the invariance principles, U .can be expressed in terms of
three strein invariants as

vhere Il R 12 , and 13 are the first, second, and third gtrain in-

veriants, respectively, which may be defined as




Employing equation 23 in a.chein rule differentiation of equation 22
leads to the expression

ol 812 a1

18} 1 U 3U 3
g, ¥ o et e ca {25)
iJ 811 aeij BIQ Beij 813 asij

Enploying equation 2k, the variation of the strain invariants with
respect to Eij may be obtained as

BIl :
= 8, (26a)
BaiJ i)
312
g 2 B , : - {(26b)
gy B
3I3
—2- = g, g {26e)
Beij Tim md
where 613 is Kronecker's delta. Substituting equation 26 into
equation 25 yields
U U U
g 2o § b e €, € (27)
i BIl ij 912 ij 313 im mj
which can be gimplified to
i3 = %181 * %2%1y * %3Fintmy (28)
where ai(i =1, 2, 3) is a response function that satisfies the
following condition:
3a 3a
O S §
oI, oL, (29)
3 i

Cauchy elsstic material model

39. Cauchy materiel refers to elastic materials which do not

possess elastic potentiel. For these materials it is not possible to

apply Green's theorem; therefore, an alternative method by Ceuchy may

be applied to obtain & constitutive équation.Bh Cauchy's method is

based on the assumption that the state of stress is only & function of
the current state of strain; thus,
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where fi f is an unknown function which must be determined.
40. fhe most direct approach for evaluating fi j is to expend

equation 30 as & polynomlal such as

= ... € + .
Uij 8y * alEiJ + aze;memJ + a3€3_.m€mn€n,j €, € € E . F.. (31)

im mn ns sj

where a, , By 5 +eoB,  are real coefficients. Since the strain

0 8 0
tensor £y 3 is symmetric then usmg the Cayley-Hamilton theorem of
matrix gnalysis, vhich implies that €, shoulﬁ satisfy its ‘own char-

i
acteristic eguation, it is possible to show that

953 = P1835 * Pofiy * Pafinny (32)
where ¢.1 , ¢2 , and ¢3 are scaler polynohxije.ls.th‘at.ce.n ba exﬁressed
in terms of the strain invarients Il s 12 5 -and 13 .

41. Comparing equations 32 and 28, it can be seen that the gen-
eral form of the Ceuchy elastic model for infinitesimal deformation is
similar to that of & hyperelastic material even though the hyperelastic
ig-derived from themodynemic consideration while Cauchy elastic mate-
rial is based on matrix a.lge‘nra. Because of the thermodynamic restric-
tion imposed on the hyperela.stic mgterial , the Cauchy elastic material
is considered more general.

Hypoelastic material model

42. In both hyperelastic and Cauchy elastic material models, it

is assumed that the stress tensor di Jv is & fuhction of the strain

tensor g, and that their relstionship does not depend on the loading

i

path. However, the stress-strain :elat'io‘nship_ for many engineering

materials is a function of the stress path followed during shear. For

35

such materials, Truesdell™  proposed a constitutive equation in which

the rate of stress is expressed as a function of stress and the rate of

deformetion.




3%y _ . (0 ‘a’su)
id

5t T (33)
Equation 33 can be expended into a general constitutive equation by
employing the RivlinaEricksen36 equation. TFollowing procedures outlined

by Rohani,BT a constitutive equation for rate-independent hypoelastic

material can be obtained as

04 = Qe Bo8iy + amndsmnsls 3 ¥ O leonPaliy * 48R0y
+ Gmndsmnshcij o o ds - 5 13 Enn86°imcmj
* Umndemns'rclsos,j UmnonpdemeBUlscsj

+ ns(oim'd.»:m‘j + deimamj) + n6(omomndenj

+-d€imom3) + n3deij (34)

where d is an increment and the B's &and n's are response functions

that can be expressed as polynomial functions of the stress invariants

Jl , J2 , and J3 » Where

.Jl = O (35a)
- ;, »
J2 2 mndmn (350)
J, = ;-c oG (35¢)
3 3 immn in

The solution of equation 34 for suy stress path may be cbtained by
integration when the initial conditions are specified.

43, fThe degree of GiJ on the right-hand side of equation 3}
dictates the grade of the hypoelastic material. For exsmple, in hypo-
elastic materials of grade zero, all terms containing o

i3 vanish and
consequently equation 34 reduces to
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= :g.dg 61'-'3 + ‘n3 13

do,

i3 . e, _ .(36)

By substituting for -B = 3-%29 and Ny = 26 and after arranging

terms, equation 36 may be reduced further to

do, . = Kde 6, + 26(de ) (37)

L
i3 an’i g 1 =3 %y
as 4 5,
Equation 37 hes the same form ofAincremental Hooke's law. If only temms

up to first power of o,, Aare retaiﬁ'é'd then equation 34 reduces to a

i
hypoelastic ms.terla.l of grade one and so on.
k. ¢ The formulation of higher order elastic models which model

experimental test results presents 8 complmatea. problem, especially

when dealmg with soils. Such difficilties are reflected by the ILimited

amount of research piblished to date on this subject. Rehzan:i355 derived
a nonlinear elastic constitutive equation for earth materials, and he
cbtained reasonsble agreements with experimental results. Chang et a.l.39
used & second order hyperelastie egquation ip an inci‘emepjtal form teo de~
velop & cohsfiitutiive equation for Ottawa sand, vhich: was' then incor.i:o-
rated in & finite ¢lement prograni to prediect sand behavior. Thelr pre-
dicted results agreed only gualitatively with the experimental dsta.
Nelson and Barohho used an incremental constitutive equaﬁion of the

hyperbolic type to investigate ground 'shoc}; effect in nonlinear hys-

teretic media. Two separate models were used ip their study. In the
first model, both the bulk and the shear modulus vere teken to be func~
tions of the strain invariants alone' in the second model they assumed
that the bulk modulus was a function of combined invariznse. However,
they did not attempt to mateh results from the derived model with actual
data. A first order hypoelastic constitutive equation was also used
by Coon and Eva.nghl to interpret the behavior of granular materiel as
tested under triaxial compresgicn. They obtained reasoneble ~agreemeixts
between the predicted and actual stress-strain behavior. '
Concluding remarks

45. In the preceding discussion, it has been shown that the

majority of elastic models which are based on curve-fitting technigues
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(i.e., linear, bilinear, trilinear, and hyperbolic) provide good agree-
ment between the observeaﬂahd‘predictéd soil behavior. However, these
models lack sufficient expériménfal,and theatretical verification to be
quallfled as constltutlve models. A'geﬁerai constitutive model should
be able to predlct or define the ‘behavior of soil medla under any
pgsuxble state of stress,and _d‘_eformatwnf None of the previously
discussed elastic modeis posséss such guslities. In addition, the
majority of the elastic models were derived from triaxial compression
test data, & situation wﬁich implies axisymmetric strESS'ahd strain
conditions, and, inappropriately, these models have been applied to
design problems whiéh might hé‘better'approximated 85 plane siress or
plane strain problems. Such inconsistency between the develobed model
and actugl field conditions may lead to erroneous estimates of soil
behavior. A further restriction of incorporating elastic models in
finite element programs is. that Polsson's ratio must be kept below
0.5 because of instéﬁiliﬁy probiems. This limitation places & restric-
tion on accountlng for' actual soil behav1or

46, Higher order elastic’ material models are very aifficult to
derive since experlmental data under various stress states are required
to evdluate the needéd parameters. In some cases, these parameters are
extremely difficult if not impossible to obtain. This drawback probably
is the major reason why higher order elastic models have not been fully
investigated or spplied. Nevertheless, higher order elastic material
models may prove to be useful in handling soil behavior assnciated with
work softening and dilatancy and in predicting soil behavior under con-
ditionsvdifferent than those from which the parameters were derived.
These higher order elastic material models may slso provide finite ele-
ment formulation free from the instsbility associated when v = 0.5

since the classical definition'of Poisson's ratio is no longer reguired.
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PART III: DEVELOPMENT OF THE CONSTITUTIVE MODEL

47. 1In the previous pert of this report it was concluded that a
constitutive equation based on higher order elastic continumm is prob-
ably the only way to. generdte a truly ;répi-ésv'enfativa:materiﬁl model .
However, the procedure uséd to obtain the various;paraﬁefers needed for
such & model is verY'diffiéult if not impossible.'.ln'this portion of
the report, special forms of the general constitutive equation will be
uséd to generate & simple but practical coné.titutive‘ nodel for granular
materials. Procedures for obtaining ma.teriél ‘constants from verious
tests arefdiscussed and presented, snd the proposed constitutive equa-
tion is evalusted by comparing-the’derived stress-strain relstionship
with observed material behavior.

Total Strain Deformation

48,. The basic sssumption of total deformation theory is that the
state of streéss 1s a function of the current state of strain and is in-
dependent of the stress path. The hyperelastic and Cauchy elastic ma-
terials, which were described in Part II, fall;in this eategory. The
response coefficient ¢i in equatib£:32 (Qauchy elastic material),
which may take various forms for different materiels, must be determined
from experimental data. However, there is no reason (unless one is dic-
tated by experiméntal observation) for requiring all the response co-
efficients in the constitutive equation., For reasons of précticébility
"and mathematical si‘mplicity, the response coefficient ¢3 has been
assumed to be zero in using equation 32 for describing the stress-strain
behavior of soil. For this material, the tensorial dilstancy which con-
tributes to volume expansion of material under shear is ignored; how-
ever, the scaler dilebtancy may be sccounted for by making ¢l and ¢2
functions of Il and .I2 « Thus, egquation 32 beconmes

ci,j = ¢1‘Sij + ¢2ei.! . (38}

The unknown ¢l and ¢2 may be cbtained by first replacing
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i with J and reducing equation 38 to

3, =39, + 9,0, | (39)

By definition, the stress deviatoric tensor SiJ and the strain devia-

toric tensor EiJ may be expressed &s

S.. =0,, ~°

i3 iy Gij (40a)

E., =¢ -

i y 513 {4op)

Using equation 40 in conjunction with equation 38 and equating i to

Jj 5 the following invériant equaticn can be obtained:

Jie %% (k1)

where Jé and Ié are, respectively, the second invariants of the
stress dnd strain deviastoric tensor and are defined as

) ..;'_ o
95 = 5 84384, (42a)
r=tn g (4ob)
2 =5 By

From equations 39 and 41, the values of ¢l and ¢2 can be de-
fined as

(43a)

(43p)

© Bince ¢l and ¢2 are known in terms of the invariants, the stress-

strain relationship expressed in equation 38 may be written, after re-
arranging terms, &8s
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J gl I
= X /._?. ey
o” =3 613 4. Ié (ﬁid -3 sij> (bk)

In eguation by it is only necessary to dg‘temine th,e‘fun‘ctional forms

of the invariants J, and J) in terms of strain lnvarients I, end
T N N ’

I2 .

The Constitutive Model

49. The invariadts g, end J) in equétion bl can be expressed
by twoiparameters '

i

9y = (1) ._ {h5a)

#

3y = Ty(1p, 3) (u50)

_‘where fl expresses the nonlinesr pressure-volume change relationship

and f2~ expresses the'hbnline&_r shear st'ress_—strain relationship.

50. The relationship between J_l and Il
tests in which deviatorie stresses are not permitted, i.e., a spherical
state of stress. A commoi eximple of this is the ‘case of isobropic con-

solidation. - The relationship between Jé -and. ]’.2' ~can be obtained from

may be determined from

tests in which only a deviatoric state of stress is applied; however,

such & condition is difficult to impose by conventionsl means although
an gpproximate relationship oan bé obtajned using f;rfaxial compression
or plane strain sghéar dévices. ‘

Isotropic compression test

[51. This test is characterizeéd by three prinecipal stresses and
three principal strains such that

O3 SO =033 =P 3 U, =0, i #13 (46a)
= = =£ . =
1T T3 5 gy 0 , 1i#3 {Lén)
where on R 02_2 , and 033 are principal stresses, €1 > 822 , and
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533 are principal strains,

the volumetric strain.

p is the hydrostatic pressure, and ¢ is

52. A typical stress-strain curve for granular material under

isctropic compression is shown in fig. 6. Attempts have been made to

|

HRYDROSTATIC PRESSURE p

VOLUMETRIC STRAIN €

FPig. 6. Typical hydrostatic compression test

relate the elastic behavior of individual partiéles 1o the overall elas-

tic behavior of the mass of granular msterial using Hertz'h2 contact

theory. Buch en approach was used by Ko end Scott

et who showed that

the volumetric strain e for 8, simple cubical element of spheres can

be expressed in terms of hydrostatic pressure p =as

vhere w = 3{1 - vz)/hE .

£ = 3(16Wp)2/3

Actusl datsa on sand showed that € does not

vary with the two-thirds power of external pressure as predicted by

Hertz' contact theory. Another empirical expression which is modified

28

from Hertz' contact theory was used by El-Sohby as

(b7)

(48)



where S and m are constants thet can be determined from experimental
data. - '

53. Other expresaions used were strictly based on curve Pittings.
Rohan138 suggested the following:

L o (ko)

where % is the initisl state of stress of the m&tefial that defines
the state of ease® and f 4is a parameter. Both o, and f can be
obtained experimentally. A similar expression was suggested by
Domaschuk and Wade? as

¢ = L (1a(k; + mp)] Y

where K& is the initial bulk modulus and m is & constant.
Sk. For reasons of simplicity, an expression similar to equation
kg was adopted for describing the nonlinear stress-strain behavior under

isotropic compression ss

<

5 co () s

where Jl and Il are the first stress and strain invariants,
respectively.
Trisxial compression test

v 55. This test is characterized by the symetry of stresses and
strains around one of the principal axes (i.e., major principal axis).
Conditions under which the conventionsal trisxisl test is perforned may
be defined as

Oyq > Opp = O 3 9,,=0 , 14 (52a)

143 (52b)

1 22 33

911 > ey 3 &y =0,

o
]

* It should be noted that ¢ is not & materiel constant but rather
a parameter which defines tBe initial state of stress of the soil
tested.




In this test, it is customary to plot the strgss difference (o

_ o 1~ %33
as & Punction of exial strainbvel {see fig.IS), and the resulting curve
can be approximated'by'a hyperbola,ls’a's"18 .For granular material, the
shape and size of such a,hypefboia depend upon many factors such as
relative density, drainage'éonditions, cbnfining pressure, size and
shape of particles, etc. A study by Démaschuk and Wadeag showed that
the hyperbolic shape of the stresg-strain curve will be maintained in
triaxial compression tests if the data are represented by the devistoric

stress Sd and the deviatoric strain Ed where

S = = (0y = 935) (532)
ed{ = %?: (a’ll - 533) _ (53b)

However, because 8, and sd are directly related to J) eand I) ,
respectively, '

[ _g'.. - _1:. -
’Jg = - 8y = - (01l 033) (5ha)
Jlé = =g, = e CP {54v)
2vz ¢ vz M3

Therefore, if \,Jé is to be plotted as & function of Ié for tri-
axigl compression tests, the resulting stress-strain curve should elso
be a hyperbola.

Formulation of the
' hyperbolic function

56. For aAgiven value of relative density and confining pressure
the velue of \/Jé versus \/Ié may be characterized by a rectangular
hyperbolic function in & manner similar to that used by Kondner and
Zelasko.l The parameters are illustrated in fig. 7, and the resulting
equation for the stress-strain curve can be expressed as

I
JT = -2

(55)
2 oty Ié
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Fig. 7. Typical triexisl compression test

where o and vy are parsmeters whose velues depénd on the materisl
properties and testing conditions. The physicdl meaning attached to «
and Yy can be seen in fig. T, in which ¥y 1Is equal to the inverse of
the asymptotic value of \]Jé {called Ithe ultimate value of -"Jé and o
is equal to the reciprocal of the initial slope of the stress-strain

curve u . Thus,

y = — (56a)

o= %- ~ {56b)

For linear elastic material, u = 2G.
Yield criteria

57. Mdhr-Coulomb criteria have been -gene’i-all‘y accepted as useful
and practical failure criteria in theoreticsl end applied soil mechanies.

In simplest form, these criteria may be stated aes
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t=c¢' + ¢' tan §° (57)
where
1 = shear stress on the failure plane
¢' = cohesion _
o' = normal stress on the failure plane
f' = angle of internal friction

‘Despite its wide application and popularity, the Mohr-Coulomb theory

has been the subject of controversy among so0ils engineers regarding the
experimental determination of e¢' and §' . Prdbably’the‘mést severe
criticism is due to the fact that the Mohr-Coulomb theory does not
account for the effect‘of the intermediate principal stress on materisl
strength. Drucker and Prageru3 postulated & generalization of the
Mohr-Coulomb failure criteria which includes the effect of the inter-
mediate principal stress on the behavior of soil. The yield surface
derivéd by them is conical in the principal stress space (fig. 8) and
can beiexpressed as

22

Fig. 8. Three-dimensional representetion of
Drucker—Pragerh3 yield surface
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Jq
Tk N S (58)

where A' and K, are physicel constants as shown in fig. 9.

o

2

{

x|
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3
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Fig. 9. Drucker-Prager ~ yleld envelope

58. Materiasl constants A and K can be related to c¢' and @'
under speciel conditions. The relationship between A' , K , ¢ , and
@ has been derived by Christian

" for :the. following states of stress:
2. Triaxisl compression: ' V

A = 2 sin gt - (59a)
\3(3 - &in #7)

K, = el gos § (590)

® AB(3 - sin #1)

b. Rigid plastic under g@a strain conditions:

l" = tan¢' (603)
N9 + 12 tan? ¢

K = 3¢ (60b)

© Ay + 12 tan® ¢
For cohesionless materisls, ¢' is equal 1o zero. Thus, according to
equations 59b and 60b, K, should also be equal to zero, and equation
58 may be reduced to ’
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_ Iy

(\FT) =20 (61)

2 e 3

It has been observed that the value of (\;Jé) is not exactly similar
¢

to(}fJé ) and the rotio between the two quantities may be desig-
ult

nated by the failure ratio Rf such that

]
%), |
Ry = =i (62)
: ¥ T
(V2)
ult
Using equations 62, 61, and 56a and after simple substitution, the pa-

rameter y may be expressed in terms of Jl and A' as

y = Rf-~‘*%5—‘ (63)
ey
v 3
Knowing the value of vy and u from eguations 63 and 56b, respectively,

équation 55 mey be expressed in the following form:

- Wi (3]

| WRASTT + At {1
£ ¥v°2 ~?§

The value of Jl/3 can be eliminated from equation 64 by using its ap-

(64)

proximate value as expressed in equation 51; thus,

BIl
w1 Xg e -1
V-J_'_: 2 o
2

AT (65)
X 1 v
pr Ié + A oo(e )

The values of 4/J) and Jl/3 as expressed in equations 65 and 51,

respectively, can be used in equation bl to obtain the desired consti-
tutive equation

BIl
( BIl ) ul'oo e - l) ( Il )
953 T 9 \& T -8yt ( BL, ) €3 = 3 8/ (66)
I) + Alg\e -
TN"2 0

uR

It should be noted that equation €6 can be expressed in terms of the
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angle of internal friction by subgtituting kf for @ as indicated in
equations 594 snd 59b. Also, it can be »expreésed in terms of the shear

‘modulus by substituting u = 26,




PART IV: EXPERIMENTAL DETERMINATION OF MATERIAL CONSTANTS

59, Two types of ‘test are neceééary to evaluste the parameters
needed for the cdnstiﬁutive'modelf isotfqpic.ccmpression and triexial
Shear‘testﬁi ‘OtheffteSﬁs sﬁdh as,uniaxiél*stiain and plane strain
shear tests could also be used to develop the model. In this study,
the matefial constants were obtained from isotropic compression, tri;
axial compression, and plane strain shear tests. However, results from

uniaxial strain tests were used to verify the predictability of the
model .

Materisl Parameters o, and 8

60, Ths material parémeﬁers 9, and B describe the behavior
of the granular material under a spherical state of stress {i.e., iso-
tropic compression)., The mathematical expression involving these con-
stants is given'in equation. 51. The experimental data and the mathemat-
ical fit for crushed Népé basalt end Paitited Rock matori«d are shown
in plates 1 and 2, respectively. "he vdlues of Uy ant 8 for the
material tests are presented in tanhle 2.

Maeterial Paramebers o and y

61. The material constants o and y con be deteruined from
either triaxial'cémpreSsion or plane strain shear stiesc--strain curves.
To conveniently obtain these constants, equution 55 sliould be linearized
in the form

=u + yyI} (67)

o
5

where o is the intercept on the \fﬁgA’Jé axis and y is the slope
of the line.

62. The transformed stress-strain curves for crushed Napa basalt

and Painted Rock Dem msterial are shown in plates 3-6 for triaxial
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compression tests dnd pla’ses T<10 Tor plane strmn shear tests. Values
of o and ¥y ohtalned from straight lines that best fit ’thé trans-
formed stress-strain curves are Iisted in table 3 and were used in for-
mulatmg the hyperbélic function’ described in equation. 55. Compa.nsons
of the calculated -st‘re'ss—‘;strain curves and the -Iexperiméntal curves are
shown in plates 11-14 for triaxial ‘compression ‘&estsnhd in plates 15-18
for plane strain shear tests. 'I’hese plots show sat’isfactory sgreement
between the experimentdl and calculated stress-strain curves, mdicating
that the proposed rectangular hyperbols. reasonably prediets the stress-
strain behavior when expressed in terms of \ﬁé_ and \l’f;‘; _

63. The ultimate value of the second invariant of the stress de-
vmatorlc tensor (\[J_"_ ) " is somewhat largéf" than the failure value

(\}J ! ) This would be expected since the hyperbols remsins below the

asymptote for all finite Values of - I’ The ‘ relationshlp between the
failure value and the asymptotic va.lue of \[—é is G.efmed as the fail-
ure ratio R , 85 indicated in equa.tlon 62, Plate 19 shows the rele-
tionship between (\I'JT) and ( ) for the: crushed Napa basalt

ult :

and Painted Rock Dam material under tr:.axié.l compression, ard plete 20

shows the same relationship for plene strain shear tests. These plots

indicate thet R, is 0.83 for crushed Napa basalt and Q.;89 for Peinted
Rock Dem material when tested in tirisxial compression, and .59 for

- erushed Napa basalt and 0.69 for Painted Rock Dam material when tested

under plane strain shear conditions.

Material »Constant A

6L, As indicated in equation 61 the material constant X' can
be obtained by measuring the slope of the genera.lized Mohr—Coulamb en-

velopes as suggested by Drucker and l’rtzge:c'.hsi

These failure envelopes
were constructed by plotting \/-J_g a8 e function of Jl/3 at failure for
_ various stress levels as shown in plates 21-24. It can be seen that
the failure envelopes are not straight lines pessing through the origin-,- -

and the curvature is more pronounced for material tested in triaxial
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compression {plates 21 and 22) than for that ‘tested under plane strain

conditions (platesfeﬁ and 2k%),  However, the failure envelopes were

‘_approximﬁteﬁ-by straight lineé passing through the origih with slopes

é@ual to A ,  A summary of the values of X' for the materisls tested
is shown in table 4.

Material Parameter u

65. With the exception of the unconsdlidated undrained tests on
saturated soil, the initial glope of the stress-strain curve cannot be

expected to remain constant wnder different confining pressuresg. Such

- variation in the initial slope u is clearly shown in plates 11-18,

The velues of p obtained from the inverse of o for the crushed Napa

‘basalt and the Painted Rock Dam materisl are presented in table 5.

Previous studleseg 3, on gronular materials have 1nd1cated that the

initial shear wodulus var;es -expongntially with the mean normal stress.
Since u is directly releted to the shear modulus, it can be expected
that the value of p will vary exponentially with 3,73 .

66. The relationshkips between 3 and Jl/3 for the crushed Napa
basalt and the Painted Rock Dem material are shown in plates 25—28.
These plots indicated thet the relationship between the two.variables

may be approximated by a strasight line, resulting in & convenient ex-

- o)’

vhere ¢ and n. are constants whose values can be cbtained from the
experimental date (see table 6).

pression for u ,

67. The value of u in equstion 68 may be expressed in terms of

the first straln invariant I using eguation 51 as

= C{ao (eﬁll - l)] (69)
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By substituting equetion 68 in equation 66, the stress tensor % mey

pe expressed as

| BI, ) , cx'o ( BI 1) o Il |
g, = c'(e - 1f8, A Py ~n.<%13 - —§'6ij> (70)
CR J—f" + 1'[ ( -1)] ' ”

vhere o , ¢, n ; R_f s B, and X! are soil parameters' Ii is

the first strain invariant; Ié 48 the second invariant of the devia—

toric strain; and 6 1. is Kronecker 8 delts.
68. PFig. 10 summarizes the flow dlagram for evaluating the ma-

teriel constants used in equation 9.
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PART V: APPLICATION OF THE CONSTITUTIVEVEQUATIQN

69. In previous Parts of this report, a constitutive equation was
derived and the soil parameters associated with it vere evaluated for
‘both crushed Napa basalt and Painted Rock Dem materisl. In the follow-
ing p&ragré.iihs » the proeédure’ of exsmining the constitutive equation
is illustrated by.*using exaples of siu{ple-'st‘ates of . stfesse_s ~and

deformations.

Hydrostatic State of Stress
¢ .

T70. The conditions of a hyﬁrostaﬁid' state of gtress {i.e., spheri-
cal state of stress) are '

914 0 0 sll‘ s} 0
di.j = {0 Gll 0 s F’ij =10 511 0
Q0 0 all 0 4] ell

for 1=§ ,
and

for i#3, e.ij“"

Thus, equation 69 for the hydrostatic stress stete becomes

('BIl )
0y = o\e T -1 Gij _ (Tl).

St
i} 3
L
3

The above equation exists only for the case in which i =J or

-Tl/3 = 50(3811 - l) s Which is the_ exact form of equation 51. The rela-
tionship between the observed and predicted stress-strain relationships
for the hyﬂxés'ta.’cic stress state is shown in plates 1 and 2. A good
correlaticn between the observed and pre_di,ctéav'vglues should be
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anticipated since the constitutive model was derived from experimental

- data from hydrostatic compreéssion tests.

Unisxial State of Strain

TL. The uniaxial state of strain, commonly known as the Kb con-
dition, can be described as

oy O 0 €5 0 0
013 = 10 033 0 | s Ei3 0 0 6
0 0 a3 0 0 0o

Also,

- _ 1 ‘
ﬁngﬁen s Ly =en

For i # 3§ , both sijv

~and 6, 3 vanish and equation 69 is equal to
zero for all values of o j vhich is in compliance with the conditions

of the uniaxial .stete of strain. However, for i =) the constitutive
equation takes the form

: . Be
_ Bell . 2A'Co (e L )
g,, = o \e P e S
11 o

Ion 11
, [ ( Bell )} .
; 1 ; -
\}3 CReey, + 3T [0 \e 1/

(12}

and

. | BE;
(Ben > x'cco(e u 1)
o = g_\e -l o — -
733 o
. v \l—. [ ( Ben )]
3 CRi‘ell + 3AY AT 1

The predicted stress-strain relation was compared with K test data on
the crushed Napa basalt and the Painted Rock Dam materiel as shown in
plates 29 and 30. The results showed that, even though there is a
difference in the values of the predicted and observed stresses, the

results are in agreement in at least a qualitative sense.

T €11 (73)

72. The lack of quantitative agreement between the predicted and

the actual data for the uniaxiel state of strain (i.e., X

o test) may

Ly




be due to many factors. 'Héwev'e‘;‘, the 'n_:os’q serious :one is the assumption
that the volumetric strain I‘l is only the result of the spplied mean
normal stress J lf 3 . This assumptidn is & crude spproximation of the

actual behavior of granular material.

Interpretation of Volumetric Deformation of 'Grénul_ar Material

73. It has been chserved that the volumetrie deformation of gran-
wlar matérial during drained shear ranges from dilatational to compres-
sional, depending on many factors _suchv es density of maberial, stress
level, #train condition, and shape and siZze of particles. If secondary
effects are ignored, the total yolumetric strsin cen be sssumed to con-
sist of two components: - v_o_n-é :5c‘ompoﬁent is :‘réla.téa t0 the epplied mean
normal stress, and the other i‘sv due to shear deformations exhibited by
the soil. '

=L =L *I, : (74)

«|Z

vhere I, is the total volumetric strain, I, —1is the component of
volumeétric strain due to compressional stresses, and Ild is the com-
ponent of volumetric strain due to shear deformation.

7h. The wvalue of | Ilc can be obtained directly in terms of Jl/3

using equation 51, The value of I, can be obtained directly from a

pure shear test; however s & pure shear: tf'é‘st is’ ,v,e'rj,' difficult to perform -

in the laboratory. As en elternstive, I,, could be obtained by sheer-
ing soil under & constent mean normel stress, which is much easier to
perforn than the pure shear test. Unfortunstely, the experimental data
neéeded to obtain Il q are not available at the preae"nt'time, but it is
hoped that such tests may be conducted én crushed Napa basalt and
Painted Rock Dam material in the future.
75. An eerly study by Strogsnov'>
deformation showed that Ild is directly related to the shear deforma—
tion. For three-dimensional problems, Stroganov's hypothesis may be

interpreted by

on sand under plane strain
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I = £V , (75)

where f is'some;anﬁown funetion of 1452 that can be determined from
appropriate experimental data.

76. It has been pointed out by Stroganov that f is constant,
and he referred to it as the friability coefficient. However, prelim~
inary examin&%ionfkadevoﬁ'cruSHed Népa’basélt;‘by assigning different
.values for f aé.shGVn in piate 31, indicated that f is not constant
and can be positive or negative depending on the density of the matew
rial, Therefore, unless the actual'value of f 1is obtained, it is not
possible to obtain quantitative agreemeht between the predicted and the

- experimental -data.

. @ylindrical State of Strain

77. The ¢ylindricalvé‘tate of strain , commonly known as trisxial
compression, can be defined as

cll 0 0 . €97 0 0
Oij = 10 033 0 ’ eiJ = 0 833 0
0 0 033 0 0 833

Also,

. P
I =&, +_2e33 . \’IQ ﬂ ;r??(sll 533)

78. The same procedure ¢an be used to cbtain the components of
the stress tensor. In the conVentioﬂal triaxial test, O3y 1s usually
constant and can be designated as P ; the only stress component is
Oyp * Accordingkto equation 69, the major principal stréss and devi-
atoric stress can be expressed as
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; . 51 33

- gle, 42c.,) ] : L ) [e" - l]

30[: 1T i le = [ _

- 6
ot %! S — “c NE) :m-ns(" £33 (7 )
- Py OBpleyy - Eggd + N 6:0,{ 1]
o gle#2e)
. o, L 11+ _.1} _ N
loy, = Yo . . teyy = £330 (77)

el FL e ST e o5
" V‘Em“u‘caa“*‘l [ =3

Predicted and Exp-erimehtal'eCoi'rélation for the
Cylindrical State of Strain

79. TFor the cylindrical state, the meen normal stress canh be ex-

press:ed?fa;s ‘
J A
1oL, .
5=3 (611 033) + 034 (78)
Combining equations 7B and 51 yields
BT, - ) | |
A ) e lte o) %o,
"d(‘—’ =13 (o7, = 0330 * 933 (19)

By substituting equation 79 in eguation 7T, the resulting equation may

be expressed as

.l .
(6. - 6..) = 9*[’3’ (9, = 935 * o3 )(eyy = ¢33) _ (80)
nT %3 T | , “Ton '
3 CRf(an - 533) * A[—g '(cll - 033) + a33]
or
l-n
' A.(o - o) [ (a 93 ) + 0 ]
- 33 33
(sll - e_33) = (81)

(g, = - 0..)
C"‘[s;ﬁ‘;". ag3) + 7 ] T‘CR (o3 = 933)

It should be noted that the experimental deta for the conventional tri-
axial tests (i.e., cylindricel state of strain) were obtained under
constant velue of 633 . Thus, by incrementing ., , the ecorresponding
velues of (ey; - €45) can be generated.

80. The correlation petween the experimental stress—-strain curves
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and those predicted by egquation Bl is shown in plates 32 and 33 for the
Painted Rock Dam material and .in plates 34 and 35 for the crushed Naps
basalt. Once sgain, the predidted and.the'experimental results ere in
reasongble agreement‘inha gualitative sense,

Plane Strain State

81. For plane strain deformation, the stress and strain ten-

sors mey be expressed by

1 11
cij = |0 9y 0 , eij =10 0 0
0 0 033 o] 0 833
Il. = ell + 533
2 2 Y/2

2¢,.

2, .
VTE o= A (22 °33) (2‘33 - ‘11) (°11 * ‘33) . vr(2, .2
2 ¢5K CRER B 3 \73 | (e -ggy)

The ebove equations can be substituted in equation 69 to obtain the

governing equation for plane strain deformation.
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PART VI: CONCLUSIONS AND RECOMMENDATIONS

82. The purpose of this study was twofold: first, to summarize
the metho&ology and procedures used in modellng soxls, segondly, to
develop a mathematlcal model which can describe and predict the non-
linéar behavior of granular soils.

83. ©Based on tle literature review it was found . that the majority
of soil models (1 €.y linear bilingar, trilinear, and hyperbolic) used
‘in numerical techniques such as the finite element method are based on
theories of elasticity and.curve.flttlngs “While these models provide
good agréenment bepween~the observed and'yredlgted-5011 behavior under
restricted conditions, they*Cannot'be ugsed to predict éﬁreéé—stfain
‘behavior for other than those conditions from which they were derived.
Consequently, they cannot be classified as constitutive models. Con-
stitutiVE'modelsvbased on higher order elastic continuum are probably
the only models which realistically répresent material behavior. How-
ever, thevproéédure used in -developing such models is difficult from
the analytical as well as the.experimental point of view.

Bh. A nonlinear elastic constitutive model was derived for two
granuldr materials: =g¢ﬁshed7Népa'basalt énd-Painte@ Rock Dam material.
The derived model was’bgéédvon the folioving*experimgntal observations:

a. The hydrostatic stress-strain curve for granular soil
can be approxlmated by exponential funetion relatlng
J /3 end I,

The magnitude of stress prior to failure for the soil
tested is a function.of the total strain.

I

¢. The stress-strain relationship as expressed in terms of
\[Jé versrm-ql' can be approximated by a rectangular
hypérbola for bSth triaxisl compression and plane strain
shear.

d. ‘The failure peints for both crushed Napa basalt and
Painted Roek Dan materlal fell on the Drucker—Prager
failure envelope.
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e. The portion of the stress-straln curve beyond the failure
point could not be accounted for; therefors, material
which exhibits strain softering characteristicS cannot be
epproximated by the proposed constitutive model..
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B5. The proposed model is the simplest type of nonlinear con-
stitutive model, and it does not account for shear-dilstaney phenomena.
Therefore, while there is a qualitative agreement between the predicted
and asctual material behaviory the quantitative agreement needs to be
inproved. Thus,_a'higher order gonstftutive equatibn, vhich includes
sheara&fléféncy‘phencmena; ghould be studied in order to significantly
improve-fhévaccuracy of:tﬁe,dadel‘~-1t;is also recodmended that the
analytical and experimental research be continued thinciuﬂe a plastic~
ity model in an effort to improve the existing knowledge with regard
to nonlinesr behavior of soils.
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Table 2
Summery of o a.nd B for the Material Tests
—_Crushed Nape Basalt _  Painted Rock Dam Waterial
Material Dr : 100 Dr = TO Dr. = 100 Dr =10
Constant pergent pergent . percent peréent
o k7 " ¢ 18 18

0

g 66.6 36.3 133 ol
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Table 4

Summary of A' Values

“._Crushed Napsa Basé.’it

Painted Rock Dam Meterisl

'»Dr'='100j£ . Dr = T0 Dr-§-100 Dr = 70
Type of Test -percent percent‘.,‘ pereent percent
Triaxial 0.87 0.84 0.9% 0.89
compression .
Plane 0.87 0.80 0.88 0.82
strain .
shear
Table 5 ,
Summary of . u_Values
Crusiied Napa. Basalt ™  Painted Rock Dam Materlal
‘ Dr = .1Q0 D .= T0 D, = 100 D, = 70
Type of Test 933 percent - pércent percent percent
Triaxial 60 10,750 11,490 28,570 13,330
compression
125 19,610 14,080 32,260 31,250
300 23,800 16,390 55,950 45,450
kps — - 66,660 ks, 450
500 30,300 19,600 - -
Plane strain 60 9,090 4,460 1k ,920 13,890
shear : ;
‘ 125 10,990 7,870 21,280 19,610
, 300 14,700 8,547 25,000 23,260
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