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ABSTRACT 

The evolution of the power spectrum of surface 

gravity waves is described by means of a transport 

equation.  The effectc of a slowly varying, prescribed 

ocean current and nonlinear wave-wave interactions are 

included.  A definition due to Wigner of a localized 

power spectrum is used to derive the transport equation 

from the dynamical equations describing surface wave 

motion. 
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I.  Introduction 

In this paper we present a derivation of a trensci-:. L 

equation to describe the evolution of the power spectrum of 

surface waves in the deep ocean.  Our transport equation is 

obtained directly from the dynamical description of surface 

gravity waves and is to be contrasted with more empirical formu- 

lations (Rarnett, 1968; Thomson and West, 1973).  Included 

will be the effect of a slowly varying, prescribed current 

and the influence of nonlinear wave-wave interactions.  The 

dynamic equations are in irode coupled form and are obtained 

by expanding tl^e surface displacement and velocity potential 

in Fourier series (Hasselmann, 1961, 1963; West, et al., 1974). 

Our treatment begins, as does that of Hasselinann (1961, 1963), 

with the time dependent equations for these Fourier coef- 

ficients.  Using the definition of a local power spectrum 

due to Wigner (1932), a transport equation is obtained that 

has interaction terms of lower order than those obtained 

by Hasselmann (1961, 1963). 

/' 
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II.  The Eigenmode Equations for Surface Waves 

The difficulty with a strictly phenomenological construc- 

tion of a spectral transport equation (Thomson and West, 1973) 

is the inherent uncertainty in modeling the individual inter- 

active mechanisms.  Also, because of the nonlinear nature of the 

interaction process, superposition of separate mechanir.ms 

is not formally justified, although it may be pragmatically. 

To obviate these complications we ure the dynamic equations 

for the interaction of surface waves to construct a 

transport equation.  We are concerned with a description 

of the evolving spectrum of surface gravity waves lue both 

to the nonlinear interactions among these waves and to the 

interaction with a prescribed oceanic current.  Such a 

current might represent tidal currents at the mouth of 

a bay or estuary, perhaps wind-driven currents, etc.  We 

assume the characteristic distances over wh'.ch this current 

varies, as well as the ocean depth, to be very large com- 

pared to the wavelength of the surface waves being studied. 

The basis for our development will be a set of 

eigenmode equations similar to ones published previously (West, 

et al., 1974).  Incompressible, irrotational flow is assumed. 

The fluid velocity is thus expressed as the gradient of a 

velocity potential «t, 

• •#♦•. (1) 
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In Eq. (1) the velocity potential is given by a linear 

superposition of the short wavelength, high frequency 

surface waves represented by 4» and the long wavelength, 

slowly varying prescribed current represented by I« 

The undisturbed ocean surface is assumed to coincide 

with the plane z = 0 of a rectangular coordinate system. 

The z axis is directed upward and the {x,y) plane lies in 

this surface.  The horizontal flow associated with the 

prescribed current is 

U{x,t)   -  Vs$ z = 0 , (2) 

where V  is the gradient operator acting in the horizontal 

plane, ^x = (x,y) is a vector in this plane, and we assume 

* to vary slowly with z so we can evaluate y, at z = 0. 

a* 
8z 

is assumed to be very The vertical flow of the current 

small compared with |jj| , and the surface displacement 

H(x,t) due to this flow is also assumed to be correspon- 

dingly small. 

When surface waves are present the equation of the 

sea surface is of the form. 

z = H(x,t) + ;(x,t) (3) 

*- - 
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where C(x,t) represents the short wavelength vertical dis- 

placement due to surface gravity waves.  Because H{K,t) 

is considered to be very small, in our discussion we shall 

replace Eq. (3) by the equation 

z = ^ (x,t) . (4) 

(The self-consistent hydrodynamic implications of the assump- 

tions made about H(x,t) and y- are discussed in Appendix A.) 

In West, et al., (1974) the velocity potential $ and vertical 

displacement C were represented as discrete Fourier series 

in a rectangular ocean of large area A0.  Time-dependent equations 

were obtained for these Fourier coefficients, similar to those 

previously obtained by other authors (Phillips, 1960; Benney, 

1962; Hasselmann, 1961, 1963), and numerical integration of 

these equations was described.  For our present application, 

it is desirable to introduce a somewhat modified modal analy- 

sis.  The velocity potential 

^sUS't) " <Mx,z,t)  ,   at z = Q(x,t)      , 

is used instead of $Q   ,   defined as %  on  the plane z = 0. 

The difficulty with the use of $Q  is that the shorter wave- 

lengths may undergo many e-foldings of attenuation between 

the true ocean surface and the plane z = 0. 

J 
■    
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We represent the flow by the complex amplitude Z(x,-t), 

defined by the equations 

*  = V (Z+Z )/2  , 

I  =  i{Z-Z )/2  . (5) 

Here V  is the "velocity operator" (g is the acceleration 

of gravity) 

V  i iq/Q»*   3 ^/(D 

0 5 i-vl)* (6) 

These quantities are assumed to operate on functions ex- 

pressed as Fourier series, for which the proper operation 

is self-evident.  For example, we assume Z to be a function 

defined in a rectangular ocean of area Ao and write 

$'"■ 
ik«x 

Z{x,t) = )  A(jO e (7) 

where the Fourier coefficients k{k)   are time dependent. 

Thus, 

ik«x I V Z = /  V, A(k) e 

' 
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where 

V I (g/k)*5 E u)k/k 
{8) 

is the phase velocity of a small amplitude surface gravity 

wave of wavenumber k in deep water.  The corresponding angular 

frequency is w. = (gk) . 

in our rectangular two-cümensional space representing 

the quiescent ocean surface, the Fourier exponentials 

satisfy the relations 

A-1 I d2x exp(ik-x) = 6k 

A  (9) f1 ST e:<p(ik-x) = 6 (x) 

k 

where 6k is the Kroneckerand 6 (x) the Dirac delta function. 

The prescribed current is given the Fourier repre- 

sentation 

J^t) = V U(K) cos(K.x - nKt) (10) 
ju^,   -w^x^»   -K-. 

K 

where aK is some (presently) unspecified function oflK|and 

the vector mode amplitudes U(K) are also unspecified. 

- ■ 
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It is straightforward tc obtain from the fluid dynamic 

equations the time-dependent differential equations satisfied 

by the Fourier amplitudes A (k) of Eq. (7).  This procedure is 

outlined in Appendix B for the case that there is no prescribed 

current or ü = 0.  The additional terms required to account 

for this current are obtained in Appendix A in an approxi- 

mation that keeps only terms linear in the surface wave 

amplitudes.  The resulting equations are [here A 5 dA/dtJ 

Ä(k) ♦ imt  A(k) = TW(A) ♦ VA) ♦ T2(A) ♦ T3(A) ♦ .... (ID 

In obtaining Eqs. (11) we have neglected surface tension 

and have supposed the ocean to be much deeper than the longest 

wavelengths considered.  We must therefore set equal to 

zero those amplitudes corresponding to capillary waves or 

corresponding to wavelengths comparable to or oreater than 

the depth, e.g., in Eq. (ID , T models the effect of wind 
w 

and viscosity.     Based on a model of Miles   (1957,   1960)    (see, 

also,  Phillips,   1969),  we adopt  for this the simple linear ex- 

pression  [an explicit derivation was given  in West,   et al.    (1^74)] 

TW(A)   =   [.a-is/(2V   "  vk2]A{JS)      * (12) 

Here a  is  a vector  parallel  to the wind direction and having 

a magnitude dependent on the wind speed. 

**. • - ~- äm 
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form 

The quantity ^ describes  the coupling  to  the pre- 

ribed current.     As  obtained  in Appendix A,   this has the 

Tu =  -i y P^ %&   AUS-iS)   exp(-ifiKt) 

» c(+)(k,K) AUS*  exp(iaKt)J   , (13) 

where 

«(*)#!. v>   = w nnri.ik +  k±Kl    !s—I        . (14) 

wave The ten. T2 in Eq. (11) represents the nonlinear wave- 

interaction of (^(A2)-  This is derived in Appendix B and 

has the form 

V     r k JS'~P    * 
T (A) - )  6        C   AC) A(p) + r    All)   A (-p) 

4 ^'-'"^ A*(-n A*(-p)] . (15) 

The explicit expressions for the coefficients T  are given 

in Eq. (B.7) of Appendix B. 

Finally, the term T3 describes nonlinear wave inter- 

actions of ^(A3).  This is also shown in Appendix B to 

have the form 

11—- ~      —• ■^■^ 
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i.'£'il 
) A (n) 

^p^-n ^^Ü5 AlP) A(-^) ♦ r7  -   AU)   A (.p) A"(n) 

-P) A*(n) 
+ T A (-Ü) A ( (16) 

Of the above coefficients, only I1?** «Hli K* «  *_. , y  Jl,p Wl11 be needed in this 
paper.  Thls is given in ^   iB_~~t ^^  ^     ^ 

re^ainin, terms in „. ,U) tend to have rap.dly ^^^ 

exponentials and are not expected to contribute slgnlfl- 

cantly to transfer of excitation between modes In Eq. (11). 

The final dots In B,. (U) indicate that we have 

induded only terms toO,*3, m the Interaction.  That Is, 

«. suppose the amplitudes to be sufficiently small that 

terms of ^A4) and higher may be neglected. 

i^^^hMnv^^HM 
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III.  Correlation Functions and the Power 3pectrum of the 

Wave Amplitude 

We wish to construct spectral transport equations 

from Eq. (11) .  To do this we first introduce an ensemble 

average, indicated as 

■<•••>■  . 

over many observations of the sea state.  In this way we 

can construct a hierarchy of average quantities such as 

<Agc)> , <A(k) A(^)> , etc. 

Using Eq. (11), we then obtain a corresponding hierarchy of 

coupled equations for these quantities.  To close this set 

we need a statistical postulate to express the higher order 

correlation functions in terms of lower order correlation 

functions. 

The postulate which we adopt is that 

<AU) A(g) A*(k) A*(n)> =<AU) A*(k)><A(>g) A* (£)> 

+ <A(<Ä,) A*(n)><A(p) A*(k)>  ,        (17) 

with all other fourth-order correlation functions vanishing. 

10 
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We shall also neglect as «?mall all correlation products 
* 

involving more than four factors of A and A . 

The above oostulate permits us to use Eq. (11) 

to express the averages of products of one, two, and three 

A's in terms of the <. A^) A (ri) > and to also  obtain an 

equation to determine this second order correlation 

function. 

The postulate (17) has arisen in a Vririety of guises 

in other applications of statistical mechanics, perhaps 

the earliest being Boltzmann's assumption of "molecular 

chaos".  It is clearly only an approximation.  In the 

remainder of Ltis paper we shall accept this postulate and 

shall not attempt to assess its validity here. 

At this point it is convenient (but not necessary) 

to remove the term T- from Eq. (11) with a transformation 

on the Fourier amplitudes.  W3 write 

rX 
A(J<; = a(k) + G(k)  , (18) 

where G satisfies the equation 

G(k) + la)k G(jO = T2U) (19) 

This equation may be formally integrated to give 

11 
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G(k) = e 
-ico, 

T2(a) df  . (20) 

Thus G is of Pia2).     The differenc 

T'(a) I T2(Ä) - T2(a)   , 

expressed as a functional of the a's  is of (^(a3) .  Thi- 

lets us finally re-writs Eq. (11) in the form 

.■*- 

where 

a(k) + i^  a(k) = Tw(a) + ^(a) + T'(a)  , (21) 

fJUJ = T3(a) + T^(a) (22) 

and we have dropped terms of order higher than (^(a3).  We 

have also dropped the higher order terms in T and T 
W     U ' 

which is consistent with our use of only simple linear 

models for these. 

Equation (21) contains only terms with an odd 

number of factors of the a's.  Thus, it is consistent with 

this equation to require that the average of any product 

with an odd number of a-factors vanish.  We have then, for 

example, 

<a(k)> =<agc) aU) a* (n)> = 0 (23) 

12 
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etc.  The corresponding averages of the A's, obtained with 

the use of Eg. (18), ar-_ not expected to vanish.  Since 

we are neglecting higher than fourth order correlation 

functions, we may simply replace the A's by the quantities 

a  in Eq. (17). 

We shall formally suppose that Tw , tg , and T3 

are of the same order of smallness in Eq. (21).  This 

permits us to evaluate Eq. (20) in a simple approximation, 

writing 

a (JO ■ 3 (JO e 
-ia.kt 

and considering the time variation of the q's to be very 

slow.  Then, we obtain 

out) J<) s i L Vl-P 

>-J8 

r4a(i) *& 

UL)    a 1-9) JS'-l'-P  *  „, *lmmy 

^S, " ^P " "k "^ + "p + "k 

(24) 

Subst itution into Eq. (22) lets us finally write 

T^(a) = 
Zk,n * 

6   ,  c7~ a(il) a(p) a (n) 

-^'£'~ + terms not needed. (25) 

J 

13 
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The "terms not needed" here have the form of the final three 

terms in Eq. (16).  They have rapidly oscillating exponentials 

and will not contribute to the calculation of the correlation 

functions <aU) a* (k) > , according to our statistical postu- 

late (17) and its accompanying postulates.  Were we to 

evaluate <a(X) a (j>) > , on the other hand, we would require 
"~ K. j li 

some of those other terms in T^.  The coefficient C,    is 

giver in Appendix C. 

Following Wigner (1932) we now introduce th« power 

spectrum of the a's with tht definition 

F(xfk) = ^ V e1^*- <a(k+£/2) a*(k-#p/2)> 

= (2Aor
ird2r e-i^^<|(x+r/2) j* (x-r/2)>   .  (26) 

Here 

^(x,t) i /  a(k) e1^*^  , (27) 

which differes from the quantity (7) by terms of Ö'a ) 

Using Eq. (5), we see that 

/  FfiS'JS) = <;2(x)> + terrns of ^^ )- (20 

14 
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In the next section we shall use Eq. (21) and the 

stctittical postulate (17) to obtain an equation for 

F(x,k).  The other correlation functions, <aU) a(p)> and 

its complex conjugate, may then be evaluated in terms of 

the F's [of ^(F2)] by an argument similar to that by which 

Eg. (24) was obtained.  Using the above, power spectra for 

wave energy or wave amplitude can be constructed.  We may 

then consider F^Jk) to represent an approximation to rne 

power spectrum for wave amplitude.  The precise power 

spectiam for wave amplitude will contain additional terms 

of &[Y2),  Ullloh can be readily evaluated as just described. 

For most applications it is convenient to change Uon 

discrete to continuum normally, tion by replacing the sum 

over discrete wavenumbers by integrals with the substitution 

t-     (2TTr J 

This allows us to define 

(29) 

^(x.k)   I  —^ F(x^ 
~~     (2TTr 

(30) 

with the normalisation 

ld2k f ^x k) 
m A2 <cJW> (31) 

J 
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in the approximation of Eq. (28).  The function ^(x.k) 

defined by Eq. (30) provides a generalization of the spectral 

function >Mk) described by Phillips (1969) for a spatially 

homogeneous ocean. 

In practice, the Wigner spectral function [Eq. (3Q)] 

is useful only if 4» (x,k) varies very slowly over distances 

comparable to k   for all k of interest.  For oceanic 

applications this condition is usually well satisfied 

except near physical discontinuities (such as the shore). 

We thus introduce a characteristic distance W over which 

H'UtfJ«) varies appreciably and assume that 

k >> W (32) 

for thosek of interest*.  Referring back to Eq. (26) we 

see that Eq. (32) implier that 

<^a(k+£/2) a*(k-^/2N*s 0 (33) 

-x for IjoJ >> W 

The spectrum of energy per unit area is, correct to 

second order in the a's, 

E(x,k) = pa fteJÜ 

J 

where P-is the sea water density. 

This, for example, implies thac k >> K in Eq. (13) 

16 
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If we write a{k,t)   to indicate the explicit time depen- 

dence of the a(k)'s, we may express the spectral distribution 

for wavenumber and frequency in the form 

^(x,k,t,a,) = {Ao/[2(2Tr)
3|2_Jj

d dx exp(ip*x, + iwi) 

<a(k+p/2f t+T/2) a*{k->p/2, t-T/2)^ 

The equation satisfied by this quantity is more complicated 

than that derived in the next section for ^,k) and will 

not be described here. 

17 
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IV.  The Spectral Transport Equation 

In the preceeding section we introduced the 

spectral function in terms ^f an ensemble average 

over products of the eigenmode amplitudes.  In appendix A 

we presented the dynamic equations for the mutual inter- 

action of these surface eigenmodes and their interaction 

with a prescribed surface current.  In this section we 

synthesize these approaches to construct an equation for the 

evolution of the spectral function ^tx.Jc).  To obtain 

this equation we differentiate the first form of Eq. (26) 

with respect to time; 

SJ^Ml = * Y k^(~+-£/2)   a*(^"^/2l> + <aUS+.£/2' ^UrA^J 

x exp(i£'-x) (34) 

The time derivative of the complex amplitude a (JO can be 

eliminated from Eq. (34) by substitution from Eq. (21). 

We then obtain on the right-hand sidt of Eq. (34) a sum 

of terms involving correlation functions such as 

<aUs) a*(iJ)> (35a) 

J 

18 
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and 

<^a(£) at«,) a*(n) a* (k)^> (35b) 

The spectral function F(x,JO is of course just a Fourier 

transformed version of Eq. (35a) . 

The classification of correlation functions given 

by Eq.  (35) suggest that we rewrite Eq. (34) in the form 

3t     a + rb (36) 

We  consider   first  the  rather   simple  T     term.     This   is 

». "-lO'Wal ""W»! +I"<^/2) +t><i-^2'l 
P     » 

x  <Ji(k+£/2)   a* (^72)^ 

+   Z_   r"^"*^/2'^ <Ca (iStE/2-^)   a*US-£/2)^> exp(-inKt) 

+ C( + \k+p/2,K)   ^a(k+£/2+K)   a* {k-£/>.)*} exp(iQKt) 

- C("\k-p/2,K) va(k+p/2)   a* (k-p/2-K),> exp(in   t) 

- C( + ][k-p/2,K)  <(a(k+p/2)   a* (k->p/2+K)^> exp(-inKt) I  exp(i<£'j<) 

(37) 

19 

J 



_. 

^ 

where a (Jc)=i[ia-Jc/2vk - vk ) . 

Because of the variation in f {£,k)   indicated by 

Eq. (33) and the assumption that \k\   >> |K| I 
we need 

keep only the lowest order i^n-vanishing terms on expanding 

the functions in Eq.  (37) in £ and K.  With some little 

algebra, then, we find that 

T  = - C^V  F(:,k) + (a-k/v, - 2vk2) F(x,k) 

*      L *   J 

- (vx-[(kk-JU/(2k
2)]\F(x,k) 

\f{M »i5)1 

(38) 

where £k I V^ , Vx is the gradient operator in the hori- 

zontal plane Ind VkTs the corresponding wave vector gradient. 

The assumed form [Eq. (17)] of the fourth-order 

correlation function allows us to -xpress Tb in Eq. CG) in 

terms of the spectral density function F(k,£).     A straight- 

forward evaluation leads to the expression 

Tb = ^ )  P
2^ T'l'k)  / d2r )  expli£- (x-r) + iq- (r-^)J 

Ao  L ^ J     D,q 

^/2,^/2-ä 
FU^-q/2) -^L-q/2,k-£/2+q ^'^2\ 

(39) 
-1 

We expect p and q to have magnitudes of order W  , and thus 

to be very small compared with k and L in Eq.  (39). We 

20 
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can therefore expand £  and F in terms of _p and cj, keeping 

only firs'-.-order terms.  We de'.ine^ and ß2 by the equations 

q-J&j  I lim 
k,L+q/2     JS'i-q/2 

(40) 

and find thav 

Tb" 

;x,k) rjg2-Vx F(x,L)| +g.VxF(x,L) F(x,k) i 

L 

- F( (41) 

Using the forms of Ta and Tb given by 

Eqs. (38) and (41) in Eq. (36), we can express the 

time derivative of F(x,^) in terms of F itself.  A more 

convenient expression may be constructed by using f(xjc)however. 

Employing Eqs. (29) and (30) and with a little re-arranging 

we obtain, 

A + att* vx+ at * vkl *&'# = s{-) ^-'-^ + ^•ii/vk"2vk2)4'(^ ,-:" 
(42) 

In  Eq.   (42) 

dt 
=  V^ 

(43) 

-  V fi x 
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where 

A = k'U + Ji -I' 
and 

S(k) = < 

(44) 

-kk.U/(2^) + /d^^-^g) fQ|,4)l !  . (45) 

We emphasize that the gradient operato- (V ) in Eq. (45) 

does not act outside the curly brackets / . . .1 ;  i.e., does 

not act on ^(Xjk) in Eq. (42). 

Equations (43) and f44) have the form of the familiar 

ray equations of wave propagation in the approximation of 

geometric optics.  With rr having the form ^ = K'U + w they have 

previously been used (Whitham, 1961) to study wave refraction 

(Kenyon, 1971) by ocean currents.  The integral term in Eq. (44) 

represents the influence of nonlinear wave interactions on 

refraction and propagation.  We shall describe some impli- 

cations of this term in the following sections. 

Were the right-hand side of Eq.  (42) equal to ze.-o, 

this equation could be integrated in terms of the "ray 

equations" (43) and (44) . I'o do this, one first integrates 

Eq. (43) to find a parametrized set of solutions 

x = x(x k t) 

k = 

0,^0, 

k(x k t) ~^o,—o, 

(46) 

J 
.MMMMMK«*« 
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with the boundary conditions 

J* = ^o, iS = ^   at t = 0 

At time t = 0, let us assume that 

y = v04&'&) 

Then, at time t 

US,k) = ^[xoUS^'t), Js0^,k,t)]  . :47) 

where Eq. (46) has been inverted to express £0 and Js0 

as functions of je, Jc, and t. 

The second term on the right in Eq. (42) represents, 

in a fairly obvious way, the implications of our modelling 

of wind and damping forces.  The first tM*  in the function 

S(J<) can be rewritten in tensor notation as 

- T hUw  k.k./uk2)] ^ + is* 
i,j=l * 

This is seen to correspond to the radiation stress term intro- 

duced by Longuet-Higgins and Stewart (1960, 1961).  The re- 

maining portion of ^S represents a kind of "stress" associated 

with the interaction of waves of wavenumber k with the 

entire spectrum. 
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„aa M Kept higher order terms in Eg. UD  corres- 

ponaingi. higher order terms wouid have heen ootained in 

Eq.(42).  For e^pie. border terms in E,. ,.  « - 

haVe ied us to third-order terms (simiiar to those .o.nd 

by Hasseimann. 1961. »63, in Eg. (43).  To what order 

one oan oontinue and yet neglect fifth and higher 

order oorrelation functions is presently not evident. 
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V.  The Phase Velocity of a "Test Wave" 

The group velocity at wavenumber Jc is obtained from 

Eqs.   (43)    and   (44)    as 

dt 
= u +£is - jd2!^ rdOP (48) 

The first two terms are obvious.  The third terra represents 

the influence of the nonlinear wave interactions.  Since 

,Cx,L) will in general be asymmetric due to the influence 

of wind and/or obstructions, the group velocity can have 

a component not parallel to k. 

Some insight can be obtained into Eq. (48) by 

considering a "test wave" interacting with a spectrum of 

ocean waves in a uniform ocean.  We imagine the test wave 

to be mechanically generated with identical characteristics 

for each of a sequence of observations.  Thus, we write 

aU) = l^CII + a,^) 6k-i  ' 
(49) 

where a0 is a random variable describing the ambient sea 

and a' represents the small amplitude "test wave".  We 

substitute (49) into Eq. (21), neglect the prescribed 

current, wind and viscosity terms, and obtain a linear 

equation for a' (k).  Because we have assumed a uniform ocean, 
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integration with respect to time then gives us the angular 

frequency 

Jk  ^k 
■/' 

L,k       —' 
(50) 

where we have indicated no x-dependence of ».  The phase 

velocity is u./k and the group velocity deduced from 

Kq,  (50) is in agreement with that of Eq. (48) . 

To illustrate the implications of Eq. (50) we consider 

the sr-ctrum of Tyler, et al. (1974), which is based 

on a representation proposed by Longuet-Higgins, -artwright, 

and Smith (1963).  This is 

H-CL) S (0.4xl0"2/L4) [G(S)/N]   ,  for ^ ■ ^  ■    -r  . k  < L < k 

= 0  for L < k0 or L > k (51) 

Here the angular variation of the spectrum is given by 

s (L) 
G(ß) = a + (1-a) cos    (ß/2' 

and        W 

G{ß) dß 

"■/. 
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-2 
In these equations a is very small t-10  ), and k0 and k 

ara the respective long and short wavelength cut-offs of 

the spectrum, and ß is the angle between L and the wind 

direction.  Finally, s (L) is a functio.i of wavenumber which 

is near unity for short wavelengths and becomes quite 

large compared with unity near L = k  . 

We shall evaluate Eq. (50) for wavelengths shorter 

than the cut-off, or 

k >> k. (52) 

In this case the principal contribution to the integral 

in Eq. (50) comes from L-values near L = K and a simple 

analytic evaluation is possible. 
k,lj 

The coefficient ^7* "iT i-s  obtained from Eq. (c.l) of 

Appendix C.  For k » L, this is 

k,L 
(53) 

On  evaluating  the integral we   find  that 

^k s ^k  \l  +1-4xl0~     cosßMk/k o)%l   • (54) 

where Q  is the angle between k  and the wind direction.  The 

group velocity obtained from Eq. (54) is 
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\/k a)k = jQk + W |1.4xlo~
2 cosßCg/^)*5   ,  (55: 

where W is a unit vector paiallel to the wind direction, 

* 
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VI.  Wave Shadowing by an Island 

During the series o. experiments reported in Tyler, et al.^ 

(1974), the "shadow" of an island for receding waves was observed 

At sufticiently large distances from the island tiis shadow 

is absent.  There are evidently several possible causes for 

the filling in of the spectrum away from the island.  One 

of these is nonlinear wave interactions, which we now 

discuss as an application of Eq. (42). 

We calculate the filling in of the spectrum of 

wavenumbers k directed aw. y from the island and in its 

shadow.  That is, 4» (x,k) will be very small where effec- 

tive shadowing occurs.  On the other hand, we assume 

that MMx,L) = f(fc) will not have much x-dependence for 

those waves L which have "missed" the island.  If the 

shadowing angle is small, we can take (we now suppose that 

U = 0 and the effects of wind a:>d viscosity can be 

neglected) 

sao,  ^so 

in Eq. (42) . Equation (48) gives the group velocity with which 

waves of wavenumber k propagate into the shadow 

dx II ' fife) mJ% - j^Si ^   • (56) 

'we are indebted to Professor Walter Munk for describing 
these observations to us prior to publication. 
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If this were a time-dependent problem, with a sharply 

outlined shadow at t = 0, say f = *o(jx,j0, then at time t 

Eq. (47^ would imply that 

f^k) = » (Jl -  C{k)t..   k) (57) 

The expression (55) would lead us to expect a 

triangular shadow of half anglo 

^ s 1.4xl0"2 sin(2ß) (k/^)^2 (59) 

When waves travelling parallel to the wind are shadowed 

by the island, then the filling in of the spectrum wi1l 

be modified.  Should a significant portion of the spectrum 

be in the island shadow, then H'(JL) in Eq. (56) must be 

appropriately modified. 
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VII.  Other Correlation Functions 

The correlation function <a(q) a(k)> is easily ob- 

tained in terms of F, or equivalently, <a (M a*(p)> . 

Using Eq. (21) (and ignoring Tw and T^. we obtain 

I* ♦ uvv ] <a(q)   a(k)>=     ^    [Wrl0! 
JS'P'Ü 

+   6q+n+p-£ Cl 
i »«. A. •*•    **• 

<a(£)   mil)   a*(p)   a   (ji) > 

7     ~<a(Jc)   a (I)   a   (p)   a   Cß) > J 

i   T(k,5) 
(59) 

Thus 
pi. 

<a(q)   a(k)>£ -U****^   T^'SÜ    ' 
(60) 

Use of Eq. (17) then permits explicit evaluation of this 

quantity. 
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APPENDIX A:  ^^jrn^r^tion of Surface Waves^/ith a Current 

In this Appendix we obtain the terms in Eq. (11) 

which represent the interaction of surface waves with the 

prescribed current U.  Bernoulli's equation and the kine- 

matic boundary condition at the surface are, respectively, 

I* + J5 {V$)2 + gh = 0 
o t 

^+ (V^).(Vsh) ■ ||  ' 
(A.D 

where both equations are evaluated on the surface 

= h{x,t) = H + C 
(A.2) 

If we extract the long wavelength, low frequency 

part of Eq. (A.l) in linearized form, there results 

•1 • •♦ 
at " at 

^ ♦ *• - • 
(A.3) 

both eva luated on the surface z = 0, 

J 
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The current associated with * is 

^      /^ /\ 
U = V<D = Uz k + U 

where U is given by Eq. (2).  We have assumed that 

ö.l << IJ2 
(A.4) 

Our conditions also imply that 

|v In H! << |vs ^n c (A.5) 

or that the surface curvature due to the current is much 

less than that due to the surface waves. 

To extract the high frequency linearized terms from 

(A.l) we note that 

9$ 

z=h    'z=H 
92 z= z=H 

3$_ 
3z z=h 

s= 3z 

2* 
+ 5 —2 

z=H     9z  Z=H 

- ^ = -£  ' 
z=H 

since V $ = 0. 
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Thus, the high frequency part of Eq. (A.l), linear 

in the surface wave amplitudes, and evaluated on the 

surface z = H, is 

^+ U.VsC ♦ (Vs*).(VsH) ♦ UVs.U) - §1  . (A.6) 

Equation (A. 6) is to be evaluated by replacing 

(})(x,2,t) by 

(Mx,H,t) i 4" (x,t) {A.D 

after the indicated differentiations are performed. 

Following a treatment of Milder (1973), we re-express 

Eq. (A. 6) in terms of *  .  For example, 
H 

Z—n 
(A.8) 

This lets us replace the first of Eqs. (A. 6) by 

ät + £-Vs TH   eff 
= 0  , (A.9) 

'eff 
= g + z (A.10) 
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The unit normal n to the surface is, to first order in H, 

A      /\ 

ri = k - V H  . (A.11) 

Thus,   the  second  of  Eqs.    (A.6)   is  equivalent  to  the 

equation 

{jt  +ü*Vs)    ^   +  C(VJ0   =  "'^ on   z   =  H     .      (A.12) 

To express this in terms of *  , we use the relation 
n 

2 
v # ■ 0 to write 

lz=H      H 
9?H 

ix u (A.13) 

and 

i V^  . (A.14) 

The conditions (A.4) and (A.5) finally give us the equat equations 

(äWvs) äT-f ^VJ *u  + -■ ^ ö •• s;  H 

9T + il-vs) K ♦ 5 vs.u -•^ (A.15) 

J 
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On writing 

=   i   (Z   -  Z   )/2 

H 
=   (g/d))15   W  + z*)/2 

(A.16) 

and using  the Fourier  expansion  [iq.   (7)],   we obtain 

reguired  terms   in  Eg.    (ID • 

the 
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APPENDIX B:  The Wave-Wave Interaction 

In this Appendix we show how to obtain the terms 

T- and T, in Eq. (11). 

Extracting from Eqs. (A.l) the part which pertains 

to surface gravity waves, we obtain the equations 

^ + ^ m)2 + gr = z = C 

Ü ♦»».♦>• cv.u-H    ' z = C (B.l) 

We first re-express these equations in terms of 4i(^,zft) 

evaluated on the surface z = c(,x,t); that is, 

(|,s(x,t) - (|)[x, ^(x,t), t] (B.2) 

Then, we define 

•(».*> > H 
z=c 

(B.3) 

and  re-write  Eqs.    (B.l)   as 

_£. w|i+  ^   (VsVWVs;)2  +  b W^   +gc =   0 

M+  (vs$s-wvso-vsc = w      . (B.4) 

J 
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It remains to express W in terms of 4  , which is a special 

and rather simple application of potential theory with a Dirichlet 

boundary condition (Jackson, 1962).  This is easily done 

by first expressing both ^ and W as Taylor series in 5 

about the plane z = 0.  Then W can be expressed in terms of 

(() by successive substitution.  The result is 

w=(®<}>s)-   [(i)U(I)<i)s)-(c(D2*s)] f Wc&Q^v] " ^b)2(':®v]j 

- ^[ua>2os)] - ^2((D3*S)}   • (B.5) 

The term f^ can bj eliminated from the first of 

Eqs. (B.4) using the second of these equations and W eliminated 

from both using Eq. (B.5).  Finally, a first-order equation 

for 

z= -u + v;1 $s (B.6) 

can be obtained by differentiation with respect to time and 

substituting from Eqs. {B.4).  The Fourier expansion [Eq. (7)J 

then gives us the terms T~  and T., of Eq. (11) . 

The coefficients in T2 [Eq. (15)] are 
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^'£ i r i r 

iUl'£ 
= I [(v^vp/vk) (JlP+i.,£) + vp(kP+i,*ü) + v^(k£+iS*ii) • (B.7) 

The first coefficient in Eq. (16) (the only one required in 

this paper) is 

(CJo+u)^) Ii.+Pl (k--|k+n|) + co p(k-p) + U.Mk-t) " " n(k-n) x,  p  '^» *<     •^»,^»     p it        n 

m, p'n - »„ l«ll - 200^ <L«p + (aj.co /a). )k (n-|n-pl+2.-U+p| ) 
**. •■   p **• **•    n^»»^    ünK     -*"»*»    *» •*• 

+ (wpu)n/(Jük)k(n-|n-^|+p-|p+£|) - ((JJ;La)p/a)k)k(p-|p-n|+£-|£-<n| I 

(B.8) 

Since the condition (32) has been used in our derivation of 

Eq. (42), we mast restrict ourselves to wavelengths small 

compared to the length parameter W.  To do this, we suppose 

the coefficients (B.7) and (B.8) vanish if any of their wave- 

number arguments violate the condition (32). 

40 

J 

' -* *• __M^teM*H« 



APPENDIX C:  The Coefficients in Equation (25) 

For reference we quote the form of the coefficients 

of the a's in Eq. (25): 

i#p 
J?,,p-n p       p,il-n ,i 

p  n  |p-n| Ü n |t-n| 

- H 

k'ii-P Ji-P'P 
r.   C v,     n 

n p  |p-n 
- H 

r   r 
p   ü 

n  £   .-n 
1 --N-   ^W  ■ 

JS'ii ii+P 
r   r **• 
it8 l'£ 

UJ 
Ip+i 

-L -(i) 
+ 2 

I p l£+p J 
(C.l) 

For the evaluation of the coefficients (40) certain of the 

terms in (C.l) appear to be singular, corresponding to the 

resonant excitation of arbitrarily long wavelengths.  In 

accordance wicli the discussion following Eq. (B.8), these 

terms are to be dropped, corresponding to the assumed 

vanishing of the F-coefficients. 

For the evaluation of Eq. (53) , one should note the 

sequence of cancellations of the terms with powers of k 

greater than the first. 
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