
y"^*^^"-«"" •' ■■ ■ tmsw^
^

AD-781 305

REMOVING THE DYNAMIC LINKER FROM THE
SECURITY KERNEL OF A COMPUTING UTILITY

Philippe A. Janson

Massachusetts Institute of Technology

/

Prepa red for:

Office of Naval Research.
Advanced Research Projects Agency

June 1974

DISTRIBUTED BY:

\m
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

- *

^

BIBLIOGRAPHIC DATA
SHEET

). Report No.

MAC TR- 132
3. Rrciptent'x Am-siiiini Ni

iru! "-uhiitli

Removing the Djmamic Linker from the Security Kernel of a
Computing Utility

5. K.|Mirt n.iu ; fäiuea
June 1974

6.

7. \litllot(s)

Philippe A. Janson
8- rirlornitii) Or |:.in i,MI ion IM

No-MAC TR- U2
9. Performing Organization Name ami Addrt-^s

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOCY :

545 Technology Square, Cambridge, Massachusetts 02139

10. Proici ; l.isl Work l mi \,

I 1. I ontr.u I i iram \.

N0014-70-A-0362-OOO6

12. Sponsor.nn Orftanization NMBC and Address

Office of Naval Research
Department of the Navy
Information Systems Program
Arlington, Va 22217

13- I > pi- ol 1M i nri X I Vno.l
< overci : Interim
Scientific Report

U.

15. Supplementary Notca

16. Ahsirai ts

In order to enforce the security of the information stored in a computing
utility, it is necessary to certify the correctness of the protection mechanism.
Certification requires that the security kernel of the system be much smaller and
simpler than the supervisor of present general purpose operating systems.

This thesis explores one aspect of simplifying the kernel of a system by
designing a dynamic linker that mns outside the kernel domain. The linker is
designed to run in any user domain of the computing utility. It is shown that it
never needs the privileges of the security kernel to properly operate. In particular
the thesis demonstrates the ability of the linker to link modules together across
domain boundaries, without violating the protection of either domain involved in
the operation.

17. Key Votda and Docunifm AH.IIVM:-. 17a. De script ori

Computing utility

Security kernel

Dynamic linker

Protection

Domains

Certification

17b. Identifiers Open-Endtd Terms

17c. (i»s,.\ I I I u-M/Croup

Reoroduced by

NATIONAL TECHNICAL
INFORMATION SERVICE
U S Department of Commerce

Spnngfiplrt VA P?!";!

18. Availability Siateneoi

Approved for Public Release;
Distribution Unlinitod

19. ^n urity < I.ISN (THP

K> pon i
IN'. l.AsSU 11.1)

20. <,-> innv (Li-- (This
IV.
 i N< i issiiiUin

21. \o. ,,i I',,-,

>(50

Ulis FORM MAY BE REPRODU« in

■ USj IMS'

«M^AJ

■IM -^ juvaw mm •q

-/-

REMOVING THE DYNAMIC LINKER

FROM THE SECURITY KERNEL OF A COMPUTING UTILI'JY

By

Philippe Arnaud Jansen

Ingenieur Civil Mecanicien-Electricier

University Libre de Bruxelles

(1972)

This research was performed in the Computer Systems
Research Division of Project MAC, an M.I.T. Interdepart-
mental Laboratory, and was sponsored in part by the
Advanced Research Projects Agency of the Department of
Defense under ARPA Order No. 2095 which was monitored by
ONR Contracc No. N00014-70-A-0362-0006; in part by the
Air Force Information Systems Technology Applications
Office (ISTAO) and by ARPA under ARPA Order No. 2641
which was monitored by ISTAO; and in part by Honeywell
Information Systems, Inc.

D D C

lUJ JUL 5 »9T4 jlj

D
PROJECT MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE MASSACHUSETTS 02.139

^ T-

^

-2-

REMOVING THE DYNAMIC LINKER

FROM THE SECURITY KERNEL OF A COMPUTING UTILITY

by

Philippe Arnaud Janson

M^m^te?Q^ ^ DePartment of Electrical Engineering on
^ Itl I in Partial fulfillment of the requirements
fox the degree of Master of Science.

ABSTRACT

ev^ ln.order to enforce the security of the information
Su fei.in a comPuting utility, it is necessavry to certiiy
SU Ii!e Protection mechanism is correctly implemented so
that there exist no uncontrolled access path to the stored
information. Certification requires that the security
kernel be much smaller and simpler than the supervisor of
present general purpose operating systems. This thesis
explores one aspect of improving the certifiability of a
computing utility by designing a dynamic linker that runs
outside the security kernel domain.

The dynamic linker is designed to run in any user
protection domain of a muicidomain computing utility It
is shown that the dynamic linker never needs the privileges
?LTI

securitv kernel to Properly operate. In particular,
the thesis aemonstrates the ability of the dynamic linker
to link programs together across domain boundaries without
operation.^ pr0tection of either ^^in involved in the

/

THESIS SUPERVISOR: Michael D. Schroeder
TIT1.E: Assiocant Professor of Electri cal Engineering

^'■' ^ _«--L_ mupi

^

■3-

ACKNOWLEDGEMENTS

Master's theses are usually read by people in a

relatively small circle. I do not expect this thesis to

reach readers beyond Multics ring 7. However, I would

like to express my gratitude to people in all rings (even

beyond ring 7) who contributed to this research.

To start with ring 0, I would like to express special

gratitude to my thesis supervisor. Professor Michael D.

Schroeder. The correctness of his juJ7emer.tf the effec-

tiveness of his comments, the usefulness of his criticisms

were second only to the amount of time he spent working

with me.

I also thank Dr. David D. Clark for his interesting

comments on selective parts of the design, and Mr.

Rajendra Kanodia for the hours he spent helping me to test

the final implementation of the design.

Going out to the user rings, I should like to thank

Elaine Thomas, who coded the entire user ring dynamic

linker in a single stroke, a real performance!

This paragraph would be ircomplete Lthout special thanks

to Bernard Greenberg, whose in/aluable-though somewhat rjisy-

help was appreciated, especially in the early phase of

i i ■— ^Hrftari»

~f' *■ ^J » ^^"^^iMBPi 7

-4-

the design and during the final debugging phase of the

irnpl^mentation.

Thanks are also due to Norma Robinson who carefully

typed the thesis in an end-of-term rush period.

Finally I need to apologize for having spent so

little time lately with my little Perrine and with my

dear wife, Cath envers qui j'ai une ^amense dette de

patience et de courage.

Research reported here was performed in the Computer

Systems Research Division of Project MAC, an MIT Interde-

partmental Laboratory. The work was supported by Honeywell

Information Systems, Inc., the Advanced Research Projects

Agency, the Air Force Information Systems Technology

Applications Office, and the Harkness Fellowships of

the Commonwealth Fund of New York.

s)

^r ?■ -''•SB'

^

-5-

TABLE OF CONTENTS

Page
Chapter I: Introduction
 8

1. Security Kernel
2. Dynamic Linker ..*!.".*.'.'] 8

3. Background ,, H
4. Motivations .'.'.'.'"'*" 13

5. Objectives,', 14

6. Plan of the thesis 16

 19

Chapter II: A Computing Utility Model 21

1. Information Protection Model ,,
^. Information Storage Model ,7
3. Dynamic Linking Model H

Chapter III: Design ,..
 31

1• General

2. Security Kernel'initialization *.*.'.'.* .* l\
3. Dyiamic Linker Initialization 07

a. Design principles ii
b. Prelinking the linker . '! ti

4. Link Fault Handling ^T
5. Cross Domain Problems " ^
0. Summary 0 u
 68

Chapter IV: Implementation

1. General
2. Information Protection'in'Multiis* .*.'i'** * i?
J. Information Storage in Multics ü
4. Dynamic Linking in Multics . nt
5. Initialization 'J
6. Fault Handling .*.'.'."' ??
7. The Dynamic Linker ??

a. Implementation of peripheral'features 93
b. Compatibility of interfaces 99
c. Limitations of privileges .* 102

1 1 ■■■ ~*v^^

"■*»*' ii mi»! T: ^■^^
^

-6-

TABLE OF CONTENTS

Paae

Chapter V: Conclusion 108

Bibliography 120

Appendix 125

HMH—>-

^r _>-4.^ ".„P

^ H

-7-

TABLE OF FIGURES

Figure Page

1. Environment of the dynamic linker 39

2. Dynamic linker and the security kernel 4 3

3. Address spaces 46

4. Prelinking the linker 51

5. Multics rings 72

6. Multics object segment . 77

7. Dynamic linking on Mulnics 80

8. Functional dynamic linker of Multics 81

9. 03 d dynamic linker of Multics 94

10. Now dynamic linker of Multics 96

11. Static storage allocation on Multics 97

12. Interface of the linker to the
Multics file system 101

13. Cross-ring linking on Multics 1(^

14. Comparison of old and new Multics linkers ... 109

15. Multics kernel dor.ain 114

i i — dtaa

'S ^r^mmm T-

^

-8-

I. Introduction

1. Security Kernel

The concept of computing utility designates a computer

system or a network of computer systems dedicated to ser-

vice a community of users (1). The type of the computers,

of the services rendered and of t-.he community of users may

vary widely. Yet it remains that in all cases one of the

most important features of the computing utility is to

provide the users of the community with the ability to share

the resource^ of the system. We will be specifically con-

cerned about sharing the information stored in the compu-

ting utility. Different members of the community of users

may have different intentions which are in conflict with

one another with respect to the stored information. Some

user might willfully or accidentally access (use, steal

or modify) the information kept by another user in the

computing utility. Hence uncontrolled sharing of all

information poses a direct threat to the security of the

information and to the privacy of the individuals con-

cerned by the information (?-6).

In order to enforce the security of the information

and to safeguard the privacy of the individuals concerned

by the information, the access to the stored information

must be controlled by some protection mechanism (7-11).

y
. i i —

_ .—.-. - _^ - J. LI —J

^

-9-

However, no protection mechanism will serve our purpose

unless it is trusted by its users. Several features of a

protection mechanism contribute to make it reliable (6,15).

It is not our purpose here to discuss or even to list these

features. Only one of them is of interest to us: the

certification of correctness of the protection mechanism.

Certification of correctness guarantees that the protection

mechanism completely controls the access to the stored

information, that it is an effective implementation of the

desired protection scheme, and that there is no way a user

program could subvert, circumvent or modify it to gain un-

authorized access to the stored information. Certification

of a protection mechanism is the result of a careful audit-

ing of each component contributing to the protection of

the stored information. Such auditing not only includes

a verification of the intention and the implementation of

each component of the protection mechanism but also a ver-

ification that interactions among them and with the outside

world cannot cause malfunction or unexpected behavior

resulting in unauthorized access to information.

The protection mechanisms are usually implemented by a

combination of hardware and software. The programs and

data bases of the software portion are a very sensitive

part of the computing utility, for they control who can

access what irformation. As a result, this protection

J

•x L -*^^^^—. M im i jjy

-10-

software must be isolated from and protected against other

programs in the computing utility. Any protection software

component, if tampered with, could cause unauthorized

access to stored information. Hence, user programs must

be prevented from modifying, subverting or circumventing

the protection software. Such enforcement should provide

a complete control over the interactions between the pro-

tection software and other programs in a computing utility.

The security kernel of a computing utility is that

part of the software which could, as a result of a bug or

malicious alteration, cause unauthorized access to infor-

mation. Thus it is the programs and data bases of the

protection software plus any other programs (and data

bases which control their behavior) that have direct

access to the protection software.

In most systems the security kernel corresponds closely

to the supervisor. It includes a great many programs and

data bases that are not functionally part of the protec-

tion software. As a result, the security kernel is much

larger and more complex than the subsystem which implements

the protection mechanisms. This is unfortunate, because

it is the entire security kernel which must be certified

to establish confidence in the security of stored infor-

mation. Extra size and complexity make certification

more difficult.

j

-11-

This thesis will explore one aspect of making the

security kernel of a computing utility smaller, simpler,

and thus more cerlifiable by developing a system design

in which the linking function is outside the security ker-

nel. The linker of a computing utility is the program

responsible for binding together separate procedure and

data modules to build larger program elements. In current

systems, the linker is almost always part of the security

kernel, but as will be demonstrated in this thesis, is not

part of the protection software. Removing the linker can

significantly reduce the complexity and the size of the

security kernel.

2. Dynamic Linker

In writing a complex program, it is extremely desirable

to subdivide it into several modules. In doing so, the

complexity of the programming task is reduced for the

modules can be programmed and tested independently and

existing modules may be incorporated into new programs.

The idea of modularity implies the existence of some mech-

anism to assemble modules into larger programs. The

writer of a module must be able to connect his module to

others. One simple way to achieve the connection is to

give a symbolic name to each module and to denote it by

that, name in other modules. This establishes a symbolic

■ cimii.-

I I M^ i

-12-

link between the two modules. The problem is that symbolic

links are meaningless for the hardware of the processor.

For a symbolic link between two modules to become a snapped

link usable by the processor, the symbolic name used by

the programmer must be translated into the logical (hard-

ware interpretable) address of the module denoted by the

symbolic name. When used to combine separately compiled

modules translation is called linking. The program which

takes care of the translation is called the linker.

There exists a wide variety of linkers which we will

not describe here (12). Often a linker is invoked when a

program is loaded into primary memory. Before control is

given to that program, each symbolic name it uses is

translated into a logical address by the linker. In

other schemes, control is given to a program module as

soon as it is in primary mei.iory. When execution of the

module hits a symbolic name, a hardware event (fault, inter-

rupt, trap) triggers the linker execution to translate the

symbolic name into a logical address. Execution resumes

after the link is translated (snapped). This type of

linking is called dynamic linking and is carried on by a

dynamic linker. It is more flexible and saves the cost

of loading into memory and linking together modules

which may not be used by the program every time it is

invoked. Although the rest of our thesis will be talking

rf^Mi - i «MM

-13-

about dynamic linkers, the results of the research are

also applicable to regular linkers. The problem is more

challenging for dynamic linkers precisely because of the

dynamic aspect introduced by the hardware events.

3. Background

Certification is a relatively recent topic in the field

of computer science. Many authors have occasionally men-

tioned the need for certification, as we did here. But

there exists no concensus on the best way to certify a

large software system. The area is not very well struc-

tured and much work has still to be done to organize it.

Yet most of the papers on that topic seem to agree that

whatever hypothetical method is used to audit and certify

the security kernel, the correctness of a "simple" kernel

will be easier to verify than the correctness of a

"complex" kernel. A small number of modules, strict con-

straints on the interactions between the modules, method-

ical design, systematic implementation, precise supporting

documentation, simple language constructs, formatting and

readability are factors likely to simplify the task of

auditing the security kernel. Conversely, a large number

of modules will undoubtedly complicate the problem. In

addition, it is likely to increase the number of inter-

actions to worry about. Complexity and sophistication of

-14-

the modules themselves would also make auditing harder.

A good guideline when trying to simplify the security

kernel is the principle of least privilege. This princi-

ple is the equivalent of the military "need-to-know" rule.

It states that any program module should be granted just

the privileges it needs to properly operate and no more.

Modules of the security kernel should be granted the

privileges of the security kernel on the basis that they

contribute to the protection of the stored information.

Modules not contributing to the protection goal should

not be able to use such privileges. Keeping them inside

the security kernel increases the size and complexity of

the kernel and brings in functions and constructs that are

hard to validate with respect to the protection goal of

the kernel. Keeping them outside the kernel cuts down on

the number of modules and interactions to be considered

as part of the certification process. A module cannot

abuse privileges it doesn't have to modify, circumvent, or

subvert the security kernel operation.

4. Motivations

Designing a dynamic linker to run outside the security

kernel environment of a computing utility is motivated by

the desire to improve the certiflability of the protection

/

i i '■ «toate^MMB

-15-

mechanism in the system under concern. A linker is char-

acterized by four features which suggest it should run

outside the security kernel of the system to ease the

auditing of the kernel.

Firstly, a linker does not implement any concept re-

lated to the protection of the system, or needed to support

the protection mechanisms.

Secondly, in view of the function implemented by the

linker, it seems reasonable to suspect that the linker

does not need any of the privileges granted to typical

modules of the security kernel. Therefore, the least

privilege principle implies that the linker be outside the

security kernel.

Thirdly, a linker is in general a very complex program.

Even though its fanction is easy to describe, the details

of its i-aplementation require the use of intricate and

sophisticated language constructs which make the reading

and auditing of the program a quasi impossible task.

Finally, the linker, by its very nature handles data

directly accessible to the users of the system. Such

data could contain - purposely or not - inconsistencies

capable of causing the linker to malfunction or perform

unexpected operations. One suspects that it is much

harder to verify the correct operation of a program when

it can be presented with an arbitrary input than to verify

J

■v

-16-

correct operation when a "correct" input is guaranteed.

Since malfunction and unexpected behavior are ruled out

for prograir. components of the security kernel, very

sophisticated machinery would be required to verify the

consistency of user requests to the linker and insure

proper operation. Even if such machinery were available,

it would only increase the complexity of the linker.

Again we come to the conclusion that the linker should

not be part of the security kernel. If so, no malfunction

of the linker will ever subvert the protection mechanism

of the system and cause unauthorized access to protected

information.

To Fommarize our motivation we can say that designing

the linker to run outside the security kernel environment

of a system is a step towards simplifying, isolating and

better defining the security kernel, thereby making its

auditing easier.

5. Objectives

The motivation for our thesis is based on four argu-

ments which suggest that the linker should run outside

the security kernel environment of the system. The first

objective of our thesis is to show that it can run outside

the security kernel. We will have to show that the linker

indeed does not contribute anyhow to the protection of the

IT

-17-

syste.: and is „ever needed to support the operation of the

kernel. We also will have to show the inverse relation;

that is, the linker does not use or need any of the priv-

ileges of the security kernel modules. We eventually will

have to show that the idea of forcing the linker to exe-

cute outside the security kernel environment does not

introduce any unsuspected, unsolvable problems.

Clearly we would not pay so much attention to our

problem if its solution were obvious and if all linkers

known today were running outside the security kernel

environment of the system for which tney were designe

There exist a few systems (13) where the problem has been

solved. However, it was solved only for the very simple

case of a static linker binding modules together inside

one protection environmenf. instead cur thesis will pro-

pose a general solution of the problem for a dynamic

linker binding modules together acros^protection environ-

ment boundaries. The design t. be proposed can be applied

to any type of computing utility with some variations

which we will eventually mention when appropriate.

Except for a few cases already mentioned, all systems

are designed with their linker being a component of the

security kernel, and having the privileges of the security

kernel (14). The second objective of the thesis is to show

the feasibility of the design to be proposed for a

^r

-18-

particular real world system. We have chosen to remove the

linker of the Multics (Multiplexed Information & Computing

Service) (15-18) system from the security kernel environ-

ment and to force its execution into the user environment.

The linker presently runs in the environment of the

security \ernel of Multics as do many other components of

the system which do not belong in the security kernel either,

The main reason for this design was that the cost of

dynamically changing the protection environment of a

computation was prohibitive in the initial version of

Multics. Hence, it was decided to include many system

components in the security kernel that were not part

of the protection mechanisms in order to minimize the

number of times the protection environment was changed

in the course of a computation. Snapping a single link

requires two environment changes with the linker inside

the security kernel, but may require 10 to 100 with the

linker outside. A second version of the Multics hardware

(15) has reduced the cost of a change in protection

environment to the level of a normal interprocedure

call. As a result, there is no longer an economic

incentive to leave the linker in the security kernel.

t - *— M^i

T
^

-19-

Before we go on to deveiop the design we will mention

a third o'oeotive ot the thesis. In removing the dynam.c

linker from the seourity kernel of Multios. we hope to

estabiish a few more criteria for deciding whether or not

a program belongs in the security kernel of a system. M.

also hope to better define what general programing fea-

tures contribute or hinder the task of removing a program

from the security kernel. These lists of criteria and

features of interest will certainly be as helpful as the

removal of the linker itself to better define the security

kernel ,« a computing utility in general and of Multics in
particular.

6. Plan of the Thesis

Before we come to the body of the thesis we would like

to briefly describe how we will develop the research and

carry it on to the detaii.,J implementation of a linker

running outside the security kerne! of a computing utility.

Chapter II „in develop a computing utility model where

emphasis will be put on features directly relevant to our

research. The model will serve as a basis to describe the

design and it will help the reader to apply the design to

different systems by matching the model with that system.

Chapter in will propose a complete design of relevant

parts of the computing utility. Problems encountered in

the design „ill be discussed and solutions will be proposed.

■^T
^ H

-20-

In Chapter IV we will demonstrate the feasibility of

the proposed design by describing its implementation on

Multics.

ft., ^ i i tr\m i mmm

^

-21-

II. A Computing Utility Model

In order to better define the features of the df;dign

we will propose, and ^o generalize its applicabilitv to

any computing utility, we will describe a computing utility

model. This will enable us to explain the proposed design

in terms of the model. It will enable the reader to apply

the design to cny specific computing utility by matching

that computing utility with the model.

We will develop the model in two steps. Firstly, we

will describe a protection model suited to the environment

of a computing utility. Secondly, we will build on top of

this model an information storage model suited to the

needs of a dynamic linker. The model will help us to

better define the concepts of protection environment and

logical address space which we have occasionally mentioned

but have not carefully defined yet. We then will explain

in detail the operation of the linker in terms of the

model. This will greatly simplify the subsequent, descrip-

tion of the design of a linker running outside the security

kernel of a computing utility.

1. Information Protection Model

In order to better understand and study the problems

related to protection of stored information, several

^r (■ m

^

-22-

structural ard mathematical models of proteccion schemes

have been proposed (19,20). We will briefly describe here

a model based on the concept of protection domain (21,22).

This model will help us understand what is meant ^y a

protect Lon environment and particularly what the security

kernel environment is.

For the purpose of our discussion, we will talk about

the environment of the computing utility in terms of

objects and subjects. Objects are passive. They are the

information containers of the computing utility. They

must be protected to prevent unauthorized access to

stored information. Objects are the procedures and data

bases stored in the computing utility. Subjects are

active. Subjects are the internal representation of users

of the computing utility. Subjects, sometimes called

processes or jobs, act on behalf of users to create,

delete, modify, use and manipulate objects.

Subjects can access objects by means of capabilities.

A capability is an identifier denoting some object in the

computing utility. Any subject possessing a capability

for an object is entitled to access that object.

The set of capabilities available to a given subject

defines the do;uain of execution of the subject. The domain

of execution of the subject is the protection environment

where the subject operates.

i i mmi ■ I

»^^■5^"WWI"H ¥ - Ji—_. u.

-23-

When a subject changes domain of execution, it changes

its set of capabilities. He can enter a n3W domain of

execution only through a gate. A gate is a procedure

object which forces entrance to a domain to coincide with

invocation of certain procedure objects in the domain.

These procedures completely determine the activity of the

subject la the domain. For a given subject, a gate is an

entry point into a given domain. However, for two

different subjects, the same gate object leads into dis-

tinct domains. We make the assumption that each domain

can be entered by only one subject. Thus when two subjects

wish to enter the "same" domain, they are actually

installed into distinct domains containing equivalent sets

of capabilities.

With this model in mind we can better talk about the

environment of the security kernel. For each user compu-

tation, i.e. for each subject of the computing utility,

there exists one domain-the security kernel domain (23,25)-

where capabilities exist for the subject to access pro-

cedure and data objects of the security kernel. Access to

the data objects is constrained by the access pattern

encoded in the procedures of the kernel. Access to the

procedures is further restricted to certain entry points:

the gates into the security kernel domain. Hence complete

control is gained on the interactions between the kernel

J
i

^7 _»-<.!

^

-24-

and the OUL.ide world. The security kernel is a so called

protected subsystem, (24,25) an instance of which exists

in the first domain created for each subject in the com-

puting utility.

2. Information Storage Model

The previo\:s paragraphs have made more precise the

notion of protection environment. We will now consider

the concept of logical address space.

The set of all objects in a computing utility con-

stitutes the file system of the computing utility. Among

these objects is a particular set of objects called

catalogs. Catalogs are data bases containing descriptive

information about sou.^ ret of objects. One of the items

contained in a catalog about each object described in that

catalog is the physical address of each object. The

physical address of an object defines where the object is

located on some memory device attached to thr computing

utility. The physical address of an object must be clearly

distinguished from its logical address. The logical

address of an object is the address by which an existing

subject references the object. Only logical addresses are

meaningful to processors executing machine code. An

object always has a physical address even when it resides

on secondary storage and no subject uses it. But it may

i i ■— ■ ■ -

-25-

not have any logical address if no subject uses it.

Assigning a logical address to an object on behalf of a

subject is the role of the file system manager (FSM) .

When a subject wants to assign a logical address to

an object, it must pass to the FSM the unique identifier

of the object. The unique identifier of an object can be

a unique name, a unique number, or a catalog unique iden-

tifier and the symbolic name of an object in that catalog.

Unique identifiers are different from symbolic names in

that more than one object may have the same symbolic name

as long as they are described in different catalogs, but

no two objects can have the same unique identifiers.

When given a unique identifier, the FSM performs two dis-

tinct functions. Firstly, it searches the file system to

find the description of the object denoted by the unique

identifier. If the search fails or if the FSM decides that

the requesting subject does not have the right to know about

the object under concern, an error message is returned

and no action is taken. If the search succeeds and the

requesting subject has the right to know about the object,

the FSM maps the object into a logical address of the

address space currently seen by the subject (enables a

logical address) , remembers the binding between the

unique identifier and the logical address, and returns the

-26-

logical address to the subject.

One question is now in order. What is the real

nature of a logical address? Since the FSM, a component

of the security kernel, releases logical addresses on the

basis of a protection decision, a logical address is

merely a capability to access an object. As long as a

subject has no enabled looiczl address for an object, it

cannot reference that object. If and when a logical

address is enabled and delivered to the subject by the

FSM, it gains access to the corresponding object, i.e. it

has a capability for that object. This establishes the

connection between our information protection model and

our information storage model.

This connection between the two models brings up the

question of the nature of the logical address space. Since

a capability for an object is granted to a given subject

in a given domain, one might wonder whether the logical

address allocated to the object is valid only for that

subject in that domain. In other words, once a logical

address is assigned to an object for some subject in some

domain, will that subject see the same object at the same

address in other domains? Will all subjects see the same

object at the same address in all domains? The answer to

these questions depends very much on the type of logical

address space supported by the system under concern. In

^

'

-27-

the simplest case, where the logical address of an object

is its primary memory address, if any, then we can talk of

a system wide address space. Once an address of the space

is allocated to an object, all subjects in all domains

will see that object at that address if they have access

to it. On a virtual memory system, each user, i.e. each

subject may have one address space of its own. When an

address is allocated to an object in a subject address

space the subject will see the object at that address in

all domains where he can access the object and the address

will be meaningless (not usable) in other domains. But

all other subjects may or may not use the corresponding

address of their own address space for the same object.

Finally in some systems, there may be one address space

in each domain. Such is the case, for instance, of base

and bound machines. A domain is defined by the base and

the bound of its address space. A logical address is

mapped into a physical address by relocating it relatively

to the base and within the bound of the address space of

that domain. Once an object is mapped into one address

space, the address space of another domain may or may not

contain the same object at the same logical address depen-

depending on what its base and bound are. To conclude this

discussion, we will assume for the rest of this thesis,

that the concept of address space, when unqualified, means

J

■ i —i

^sr
^

-28-

the address space seen by the given subject in the given

domain. Unless specifically stated, no assumption will be

made about who can see the same address space in what

domain.

3. A Dynamic Linking Model

The last paragraph described the models we will use

to support our design. Before we move on to the design

itself we will describe the detailed operation of linker

with respect to the models. In doing so, we will not have

to worry about what a unique identifier, a logical address,

a domain, or a gate is. We know that all these concepts

can be identified in any computing utility and that our

description can be based on them without ambiguity.

Whenever a subject executing an object encounters a

symbolic name of, or a symbolic link to another object,

a hardware event called a link fault occurs. As a result

of the link fault a copy of all machine registers, called

the machine status, is handed to the linker.

The first task of the linker is to analyze the machine

status to determine which symbolic link caused the fault

and which object was being executed at the time of the

fault. This object is called the faulting object. The

domain where it was executed is called the faulting domain.

J
— t— ' ^m ■ - -

^sr
^

-29-

By searching the faulting object, the linker will find a

complete description of the symbolic link and in particular

the symbolic name associated to the link which designates

some object of the environment. This object is called the

target object of the link. The domain in which it belongs

is called the target domain.

The second task of the linker is to search for the

target object in the file system and to map it into the

logical address space. In order to do this the linker

will of course need to invoke the FSM. The search is

driven by so called search rules. Each domain has

associated with it a different set of search rules.

Search rules are an ordered set of catalog unique iden-

tifiers. Of course, it is irrelevant to talk about search

rules when the file system is one single catalog. However,

in general, it contains many catalogs. The seaich rules

force the linker to search only some of these catalogs

in the desired order. The linker takes one search rule

at a time, combines it with the symbolic name of the

target object thereby making an object unique identifier.

The linker hands the unique identifier to the FSM to search

the file system. If the search fails, the FSM returns an

error code to the linker. The linker will keep trying

the next search rule, if any, until a search succeeds.

i i —i

^r
^

-30-

In this case the FSM returns the logical address of the

target object to uhe linker.

The third task of the linker is then to translate

the symbolic link into a snapped link usable by the pro-

cessor. This is called snapping the link. The linker

just replaces the symbolic name in the link by the

logical address of the target object.

Finally the linker must modify the machine status

to force the executing subject to reuse the now snapped

link.

By a mechanism external to the linker itself, the

machine status is then restored so that the executing

subject jumps back to where it was just before the link

fault.

Once a symbolic link is replaced by a logical link,

it will no more cause any link fault for the current

subject in the current domain.

I t Ml— - ^ -

■V ^ -""-"TS^WH^^»^

^

-31-

III. Design

1. General

The last chapter presented a computing utility model

which will be used to support the discussion of the design.

The steps in the operation of a dynamic linker have been

described. As it should now be clear to the reader that

programming the linker itself is a feasible task, the

current chapter will rather concentrate on the problems

of inserting such a linker into the overall design ot a

computing utility such that it be outside the If curity

kernel. The next chapter will then present a test case

implementation of the design to demonstrate the use of the

model in identifying the components of a real system and to

show the feasibility of implementing the design on a real

system.

In developing the discussion of the design we will

try as much as possible to progress naturally and to

handle each problem as it shows up. In a first section

we will explain how the security kernel can operate

without the help of the dynamic linker. In the remaining

sections we will demonstrate that the dynamic linker can

operate without the privileges of the security kernel.

This order of discussion coincides with the order of

events when a computing utility is brought up into

operation: the security kernel by its fundamental

. '

■ - ■"■

^

-32-

purpose is the first subsystem to be operational and is

used to bring up the rest of the system functions, the

dynamic linker among others.

We do not claim in any way that the design to be

outlined is the only possible design solving our problem.

By its very nature, the topic of the research poses

several structural problems which are easy to identify

and to describe. However, designing solutions to these

structural problems cannot be done systematically as

would be the case for mathematical problems. Solutions

to a particular structural problem may bring up other

structural problems. It is hard to predict and to control

the propagation of the effects of a particular solution

to a particular problem. Hence it is hard to estimate a

priori which solution minimizes the number and the mag-

nitude of hidden potential problems. As it is impossible

to discuss all solutions in detail, we will attempt to

justify our choice between different solutions whenever

possible, and especially where a sophisticated solution

has been prefered to an apparently more obvious one.

Even so, we do not claim that all possibilities will be

discussed. We are convinced that equivalent designs could

be proposed. We believe only that our design is among

the simplest ones.

T7 _«-4lJ. J"J

^

-33-

Finally, we will attempt as mucn as possible to be

sufficiently precise in the discussion of the design to

convince the reader that subsequent implementation is

practical and straightforward. At the same time, we will

try to remain sufficiently abstract to enable the reader

to implement the design on any general purpose computing

utility.

..'

2. Security Kernel Initialization

Before any user can request service from a computing

utility, the system must be brought up into operation.

This initialization task is done under the responsibility

of a subject called the initializer. The initializer must

cause the loading and set up of all programs required to

support the operation of the syste. i. The first of all

subsystems which needs to be initialized is the security

kernel because of its fundamental function: generating

other subjects and domains ror these subjects would be

impossible without an operational security kernel. We

are concerned about one aspect of making the kernel

operational. Like all subsystems in a computing utility,

the security kernel is a modular program. Hence its

operation does require a linking function to combine the

modules together. However, our objective is to propose

a design where no dynamic linker exists in the security

.*-_^fciM

-^ _* - 4, -L J«^.^

^

-34-

kernel domain. The security kernel is not allowed to cause

link faults. Hence all links of the security kernel must

be snapped prior to the operation of the kernel. This

task is part of the security kernel initialization.

Linking together all modules of the security kernel

requires the help of a static linker. Essentially two

types of static linker could be used: a binder or a

prelinker. The binder is a static linker which prepares

once and for all a fully operational security kernel

that can be used without any further initialization as

many times as desired. The prelinker is a static linker

which links the modules of the security kernel together

each time the system is stacked, during an initialization

phase. We will not describe the detailed design of either

a binder or a prelinker. This topic is below the level

of our discussion. We will ask the reader to realize that

writing a static linker is feasible in many ways. We

will just discuss the properties of each type of static

linker.

The technique of the binder seems both simple and

economical. It is economical because the links of the

security kernel are snapped only once for a given system

version and the resulting operational security kernel can

be reused as many times as desired. It is simple because

.^A. •dki ——- *mm

'■^r
^

-35-

'

auditing and certification of the kernel must be done

only once on the final operational kernel. The binder

is kept outside the environment to be certified; only

the results of its operation are to be audited.

The technique of the prelinker instead requires that

the prelinker be audited and certified. Since domains

are meaningless until the security kernel is initialized

to support them, the virgin environment seen by the

initializer may be viewed as just one single domain

bound to become the domain of the security kernel. Con-

sequently the prelinker of the security kernel which is

executed prior to any module of the kernel is in some

sense a component of the soon-to-be kernel. The pre-

linker must therefore be certified. By now the reader

may wonder what is gained by the prelinker technique.

We want to remove the dynamic linker from the security

kernel but we propose to keep a prelinker in the kernel.

Firstly, the use of a prelinker may make the system

initialization more flexible. The use of a binder fre-

quently implies that not only the version of the system

but also the initial configuration of the system (hard-

ware configuration and sizes of various supervisor tcibles)

always be what the binder assumed. Instead, in the case

of the prelinker, even though the version of the system

used may always be the same, the configuration of the

-

■. TJ ' ~ _l ,ü ■!! ^■^-^i

^

-36-

system may be changed each time the system ia started by

properly notifying the prelinker of relevant configuration

data to be respected. Thus a prelinker is more flexible

than a binder.

äcondly, believing that the certification of the

prelinker is just as bad as the certification of the

dynamic linker is wrong. By its dynamic aspect, by the

requirement that it be able to deal with objects scattered

in a large file system, and by the fact that it may support

miscellaneous sophisticated linking features needed by

user programs (see next chapter), the dynamic linker is

a much more elaborate program than the prelinker. The

prelinker is a static linker; it deals only with objects

of the supervisor concentrated in just a few well known

catalogs of the file system; and it may not support

sophisticated linking features because security kernel

modules, unlike user modules, may be programmed to avoid

such features. In addition, by its very nature, the pre-

linker is an atomic program while the dynamic linker is a

modular program. All such factors make a prelinker a lot

simpler and hence easier to certify than a dynamic linker.

Finally since the prelinker is needed only during

initialization the security kernel can discard its own

capability to ever again access it during regular system

operation. Thus the prelinker cannot be executed again

J

- -

^

-37-

once the system is initialized, and therefore it cannot

hurt the system. This also simplifies the problem greatly.

Consequently, the choice between binder and prelinker is

a choice between relative certiflability and flexibility. In

general this choice is independent of where the future

dynamic linker will be running. Since the implementation

to be described in the next chapter is based on the pre-

linker idea, we will assume the same idea in this chapter.

However, we acknowledge the fact that using a binder is

most probably equivalent as far as our thesis is concerned.

We will now temporarily abandon the operational security

kernel we have obtained. The next section will first dis-

cuss a few design principles and then carry on the develop-

ment of the system by ouilding other domains around the

security kernel.

3. Dynamic Linker Initialization

a. Design Principles

In the previous section, we have shown how the

security kernel modules can be linked together without the

help of the dynamic linker. Once linked, they no longer

need any linker, thus they can operate without one. The

rest of this chapter will examine the other side of the

design. It will be demonstrated step by stet that the

dynamic linker can operate outside the security kernel.

"^
mm ■P-P ¥

-38-

It seems that the first problem we encounter is to

define what "outside" means. One half of our design is to

remove the linker from the domain of the security kernel.

The second half of it is to decide in which other domain

or domains the linker will run.

It seems very appealing to simply install the linker

once and for all in a domain of its own (see figure 1) where

a subject will be able to go if and when necessary. Even

though this solution may seem clean and obvious, it is very

likely to raise implementation problems. Indeed, on each

link fault, the linker domain would have to be provided

dynamically with appropriate capabilities to access the

faulting object, and perhaps the target object or even

other objects in the faulting or the target domain. When

the dynamic linker was always running in the same domain

and that domain was the security kernel domain, providing

it with dynamic capabilities was easy given the unique

privileges available in the security kernel. However,

this is no more true if the linker runs in a domain

different from the security kernel domain. Furthermore,

a linker domain containing capabilities for objects in

several domains, even if only one at a time, can poten-

tially operate as an unauthorized information channel

between these domains if it malfunctions. Therefore, such

a linker must be certified to prevent potential unauthorized

j i —i

-39-

Flgure 1: Different environments for the linker

Domain A

Securlty
kernel

(77 I Linker
I domain

Domain B

Case 1: Linker In Its own domain.

Case 2: Linker In each domain except the kernel.

LInker

Securlty
kernel

Domain A

' 'Linker

Domain B

I I Linker

Domain C

ii im i - - — • ■

-40-

access to the information.

A second potential answer can be found by thinking

in terms of capabilities. Since the linker will need to

access objects in the faulting domain and perhaps in the

target domain, both domains seem potential candidates to

host the linker. The target domain is actually not a

good candidate because it is not determined until the

target object is identified. Hence it is undetermined

at the time of the fault and the only domain where the

linker could initially run is the faulting domain which

is easily determined by .he machine status.

Consequently, even though we do not definitely reject

the first solution, we strongly recommend and will fur-

ther assume the second solution which at least guarantees

easy access to the faulting domains and eliminates a

security threat. It will be seen that access to the

target domain is usually not required and eventually easy

to provide. In the above discussion we have identified

the major problem of removing the linker from the security

kernel domain: it no more has alj. the privileges to access

any object in any domain; each particular invocation of

the linker will see access capabilities constrained to

those of the faulting domain for the invocation (see

figure 1) .

- -

-41-

We have just decided to design the linker to run in

"the" faulting domain. Since any domain is a potential

faulting domain except for the security kernel domain, the

linker must be made "available" in all domains except the

security kernel domain. The second problem which we will

now discuss is the notion of availability of the linker

in a domain. What does availability of the linker mean?

Firstly, it means that capabilities must exist in all

domains, except the security kernel domain, to execute

the linker. Providing such capabilities in each domain

is rather trivial and should pose no implementation problems

Secondly, a dynamic linker, like most programs of a

computing utility is a modular program. As such proper

operation will be possible only if there exists a means

to snap links between the various modules involved in

dynamic linking. For most programs in a computing

utility links can be snapped dynamically. In the case

of the dynamic linker, this proposition is nonsense:

if the dynamic linker contains unsnapped links, it is not

operational and cannot count on itself to snap its own

links. Hence a static linker must be used to link the

dynamic linker modules prior to using them. As long as

. .ie linker was part of the security kernel, its modules

were linked together by the prelinker of the security

kernel. Now we have removed the linker from the kernel.

_w i i mm ■ > *aum

-42-

it will no more be automatically pralinked. Hence, its

modules must somehow be linked together independently to

make it operational in other domains. We may ask ourselves

what sort of links exist in the dynamic linker and have

to be snapped statically. The linker is a set of proce-

dures and data modules which according to our objective

can be executed in any domain except the security kernel

domain. Clearly at least all links between these modules

must be snapped to ensure proper operation. In addition,

the earlier description of the linker operation mentioned

the need to invoke the FSM. Since the linker is anywhere

but in the security kernel, it can invoke the ESM only

through one or more gates into the security kernel. Hence

there will exist links to these gates. They must also be

snapped. Consequently, the situation can be pictured by

figure 2. Each domain has capabilities, like domain D,

to execute "the" linker. "The" linker is the set of all

procedures and data bases potentially invoked in dynamically

linking two modules. The linker also contains one or more

links to security kernel gates. Notice that these gates,

as kernel components, are guaranteed to be further pre-

linked to internal modules of the kernel during system

initialization. Hence we do not need to worry about them

anymore even though they contain links to be involved in

dynamic linking.

-43-

Flgure 2: Linker and security kernel
InFtlallzatlon: ccnffguratlon
of the links to be snapped.

o
o

data

procedure

■ gate

Already prellnked

To be snapped yet

J

i i i ^^^M^MaHM

-44-

b. Prelinking the linker

We are now in a position to discuss how static

linking of the dynamic linker can be done. We had left

the development of '-.he system at the stage where the

security kernel was operational in the first and only

domain ol the environment. We will now pursue that dis-

cussion and examine the problems involved with miking

the linker available in new domains around the security

kernel domain.

The first question to be asked is: when do we want

to link the modules of the linker together? To answer

this question, we must bear in mind the important fact

that linking modules together in some domain, whether

statically or dynamically, first requires mapping the

modules into the relevant address space.

Since each domain or future domain in the computing

utility could, in the most general case, have its own

address space, this suggests that mapping and consequent

linking of the linker should be done each time a domain

is generated. Such a design would be very expensive in

comparison to the design where the linker was in the s'ecurity

kernel and was prelinked only c.nce.

We would rather like a desitm where the linker

modules are linked together only once for the whole sys-

tem just as in the case where the linker was in the

-45-

security kernel. However, such a design requires that the

linker be mapped into identical addresses in the address

space of each potential faulting domain for the same

snapped links to be meaningful in all domains. This

condition can actually be fulfilled because in all real

systems that we can think of, even when each domain has a

private address space, all address spaces contain some

set of logical addresses in overlapping numerical ranges.

Since the linker is the first program needed in any domain,

it is the first program to be mapped into any domain

address space. Hence we can impose to map its modules

into the same numerical logical addresses for all domain

address spaces (except the security kernel address space

of course). This is pictured in figure 3. Mapping of the

linker into logical address spaces would still have to

happen once for each logical address space created, but

the costly operation of fabricating the snapped links

could be performed only once. These snapped links will

be valid in all domains if the logical mapping on which

they are based is enforced in all domains. We will new

see how this can ba done.

The second question to be asked is: how can we link

the linker modules together? The above discussion has

actually divided th9 task of linking the linker modules

i t ** Mta^M

-46-

Flgure 3: Domains and their address space.

Domalns Associated logical
address spaces

Physical address
space

Linker - (a, b, c)

-47-

i
*

into two. We first must fabricate all necessary snapped

links on the basis of some fictive mapping (to be

decided upon). We then must enforce that mapping in each

domain address space we create and we must communicate

the snapped links based on that mapping to each new domain.

We will now examine these two steps in detail.

Fabricating the snapped links is, as we already men-

tioned, the task of a static linker. Since the snapped

links must be fabricated before any domain is created

around the kernel domain, the static linker must do its

job before or during system initialization. "Before"

corresponds to the idea of a binder. "During" corresponds

to that of a prelinker. The choice between the two is

the same as in the case of the security kernel initializa-

tion. As we have assumed the idea of the prelinker for

the security kernel, it is all but natural to keep the

same idea for the linker. The flavor of the design is

of course to use the security kernel prelinker a second

time (with some variations perhaps) to prelink the dynamic

linker. This saves the trouble of writing and certifying

another prelinker. Once the security kernel is prelinked,

and just before capabilities to use the prelinker are dis-

carded, the initializer invokes the prelinker again to

prelink the future dynamic linker. The following para-

graphs will discuss step by step the operation of the

J

-48-

prelinker on the linker because some aspects of that

operation have hidden implications that the prelinking of

the kernel did not have.

In prelinking a link between two modules, the first

task is the retrieval of the symbolic name corresponding

to the target of the link. This symbolic name is stored

somewhere in the origine object of the link. Since we

want to prelink all links issued from the linker, all

modules of the linker must be mapped into the security

kernel address space during system initialization. The

prelinker will then have the ability to discover all

symbolic links it must translate by a methodical scan-

ning of all modules of the linker accessible in the

address space.

The second task to be accomplished in prelinking a

link is to search in the "file system" for the target

object correspDniing to the symbolic link being trans-

lated. The nature of the "file system" in the elementary

environment of system initialization is however question-

able. Any computing utility includes some FSM to support

a file system during normal operation. But it is not

obvious that in all computing utilities, the file system

and the FSM are initialized and available at the time

the prelinker is run. If they are, searching of a target

*mmam

-49-

object can be achieved by the PSM. If they are not, the

target object must be initially brought into the address

space of the security kernel from whatever memory device

is used to load and start the system, otherwise it could

not be accessed and identified by the prelinker. In the

latter case, searching is reduced to a simple scanning

of all objects in the address space and will succeed

when the right symbolic name is found. This of course

implies that any potential target object, i.e. the linker

and any security kernel gate it calls, be in the address

space of the kernel.

Finally we have to worry about mapping. Once the

target object of a link has been identified, a logical

address must be obtained for it to build the link to it.

The problem may seem trivial here since everything refer-

enced by the linker and the linker itself is mapped in

the current address space to start with. However, we

must remember that whatever mapping we base the snapped

links on will have to be enforced in all future domains.

It may not be feasible or reasonable to map the linker

and security kernel gates it calls into all address spaces

at the addresses where they currently are in the kernel.

In particular, we have mentioned that logical addresses in

a domain are a form of capabilities for that domain. We

have also mentioned that after initialization, the security

— 1- - - — .^n^^MrtHMM

-50-

kernel will want to discard its own capabilities to ever

again access the prelinker. This means it has to unmap

the prelinker from the address space it currently sees.

Along the same lines of thought, the linker is mapped in

the initial kernel address space- for the purpose of pre-

linking. But the linker is not part of the security

kernel. Hence the initializer will also unmap it after

prelinking is completed. Consequently, we are facing the

following problem. All objects we are interested in are

currently mapped into the only valid address space, but

this mapping is temporary and the future mapping to be

used in all domains other than the security kernel domain

may be entirely different as represented by figure 3.

This future mapping ie of course the fictive mapping we

discussed earlier. Determining the fictive mapping is

thus done by the prelinker by assigning the target object

of each link it translates a logical address suitable for

all future domains.

Let us now conclude the above discussion by describ-

ing the mapping function of the prelinker. Figure 4

illustrates this function. The prelinker uses and pro-

gressively builds up two tables. The fictive mapping

table contains a set of entries of the form (logical

address - unique identifier). Each such entry defines

the future logical address of the uniquely identified

J

± i —

-51-

Flgure U: Prellnklng the linker,

Logical links
table

FIctIve mapping
table

Securlty Kernel
address space

Physical
address space

Linker
module A

/ - vl

'

J

Configuration of
future user domain space

iimnm

-52-

object. Each time the prelinker snaps a link to a target

object in the linker not already assigned a fictive log-

ical address, it generates a suitable fictive address

and adds one entry to the table for that object. The

snapped links table contains snapped links already fabri-

cated by the prelinker. Such snapped links of course will

be meaningful in all domains as they are based on the

fictive mapping which will be enforced in all domains.

Once all logical links issued from the linker are fabri-

cated, the prelinker task is completed. The security

kernel can thus discard its own capabilities for the

prelinker and the linker by disallccating their addresses

in the current address space. Only the two tables built

by the prelinker remain in the address space of the

security kernel. They will be used to drxve the initiali-

zation of each subsequently created domain

We have just described how the snapped links of

the linker could be generated. It remains to be demon-

strated how the fictive mapping on whic'i they are based

can be enforced in each new domain. Such a task is part

01 each domain initialization. It is straightforward.

Each time the security kernel creates a new domain, it

uses the fictive mapping table to drive the FSM and have

it enforce the mapping in the new domain. Each er.try of

■ " ^ - - ■ ^ 1 ^»^T^^—^—^.

^r

-53-

the table is interpreted as a request from the new domain

to search the file system for the object uniquely iden-

tified by the entry and to map it into the specified fic-

tive logical address. After having done so for all

entries, the fictive logical addresses are actual valid

logical addresses for the new domain. Then the security

kernel maps a copy of the snapped links table into the

new domain address space. This will finally enable the

linker to properly operate in the new domain by using

the snapped links based on the now real mapping for that

domain.

What we have achieved is providing each domain with

an operational linker, i.«. a prelinked linker. The

first section of this chapter described how the security

kernel could be initialized without the help of the dy-

namic linker. The current section has described now the

dynamic linker could in turn be initialized in much the

same way. A fictive mapping of the linker and some

security kernel gates had to be generated during system

initialization and must be enforced by the FSM indepen-

dently for each domain created during system operation.

Each such domain then sees the linker and relevant security

kernel gat«,.^ in its logical address space. In addition,

each domain has a copy of the snapped links required by

the linker to operate. Link faults can now safely occur

■ i -

^9

-54-

in such domains. This will be the topic in the next

section.

4. Link fault handling

So far we have shown how to initialize a security

kernel without the help of a dynamic linker. We then

have shown how the security kernel can in turn initialize

a linker in each domain it creates. It remains to be

demonstraced how the operational linker we now have in

each domain can handle link faults without the privileges

it would have if it were in the security kernel domain.

As long as it was part of the security kernel, th2 linker

had all the capabilities it wanted to access faulting

domain objects, target domain objects, and any object in

general. We now will show that the constrained privileges

available to the linker in the faulting domain are still

sufficient to guarantee proper operation.

The first problem we will now discuss is that of

invoking the linker in the faulting domain. Suppose that

an object being executed in some domain causes a link

fault by attempting to reference another object through

a untranslated symbolic link. This link fault is an

event recognized by the hardware of the system. As a

^asult of the event, control must be given to the linker.

^r ^r

-55-

events themselves,

since .We processor reco^rzes „sra- y_

„ct know about their nature or their
but may not know ^ ^^ by

it i, fre.juentlv neoessarv that

the security kernei he.ore hein, "-* *>™ ^ ^

domain .or hanaiin,. Conse.uentiy, on a nk

. to be invoked is the security ke-nel

-—»"tr^^^rrr •
suoh action .ay see. stra.ght ^^

.ernei couia .ust caii a ,.t. ^ ^

i£ we wa„t to he absoiute^ — ^^ aomalns. In
 ,.*. = very large numoer

„stems which support a v y ^^ ^^

that oase, since any aomain is a p

■ tv kernel neeas to know about a gate
the security kernel „.-eatea

. But since aomains ana gates can be create
domain. But sin ^^on it is

. „.d at Will during system operatxon,
and destroyed at vii

.Hi. to prelink the kernel to a gate impossible to pre
. .vstem initialization txme. Hence

domain at system ,^m^n without
. to enter the faulting domain wit

flna some means to ^ ^^

Knowing about any gate into it. An

.. linker ^n that domain. Many differen

"^ rlrproposea to these probiems aepenaing
solutions can be pr general,

on the aetails o£ a particular system.

• ■ n P

^

-56-

a computing utility always has a mechanism to transfer

control from the security kernel to another domain without

knowing anything about that domain.

We will only mention one possible solution for the

sake of completeness. but we do not claim authorship for

it and we insist on the fact that different systems may

require different mechanisms. Since the security kernel

maintains and enforces protection, it usually has the

power to dynamically and temporarily force access to any

object in any domain if necessary. For instance, on

many machines, the supervisor can reset the privileged

mode bit at will. Consequently, even though the linker

is not a gate, the security kernel can force contro to

jump to the linker in the middle of a faulting domain.

This solves the problem of entering the domain but we

still have to know where the linker is in that domain to

jump to it. For that purpose we can simply store the

logical address of the linker at some conventional address

in the faulting domain. Hence, on a link fault, the

security kernel analyzes the machine status to determine

the faulting domain. It then looks up the logical

address of the linker for that domain at the conventional

address and forces the control to jump to the linker in

the faulting domain. Initialization of the conventional

location is part of the domain creation operation.

■ ■ —

^sT If 1
-57-

This design has a side advantage. By changing the

address of the linker in the conventional location, the

subject executing in the faulting domain can define any

other program to be its linker. It just has to prelink

its own linker with the standard linker prior to changing

the content of the conventional object.

Having described how the linker is invoked in a link

fault, our second topic will be to demonstrate that the

symbolic link which caused the fault can be snapped with

only the capabilities of the faulting domain. In the

earlier description of the operation of the linker, we

identified three steps in the snapping of a link:

- Identification of the symbolic name of the link

- Search for and mapping of the target object

corresponding to that name

- Translation of the symbolic link into a snapped

link based on the previous mapping.

The first and third steps require exclusively access to

the faulting domain because that is where the symbolic

link and the mapped link belong. The target object and

the target domain do not contain any information about

links directed towards them. The linker has access to

the faulting domain and can thus handle steps one and

three. If the target domain is different from the

i i f ■ ii

■ ■ ■ -T-

^

-58-

faulting domain, the second step might require information

embedded in the target domain. However, searching and

mapping are actually performed by the FSM in the security

kernel. The security kernel can access information about

any target object. Thus the linker just calls the FSM

through a gate into the kernel. The FSM then searches

for the target object, decides whether the faulting

domain has the right to know about it, eventually maps it

into the faulting address space and returns a capability,

i.e. the logical address of the target objec^ to the linker

in the faulting domain. We will see in the next chapter

that in some systems, complementary information about the

taiget object must nevertheless be extracted from the

target domain. It will be shown then how this can be done.

We finally discuss the third problem, namely return-

ing control from the linker to the faulting object

The goal is that the action of the dynamic linker be

entirely transparent to the faulting object. The only

noticeable difference in the environment is the now

translated link. Apart from this, the faulting objects

expects to find everything unchanged.

The machine registers must reflect the machine status

just before the hardware fault occurred. For this purpose

the linker needs to restore the status of the machine.

TT _»-4.a m^m

^

-59-

When the linker was invoked it received a copy of the

status of the machine to find out what caused the fault.

Restoring this status in the machine registers must be an

atomic operation to guarantee consistency of the status

as a whole. It would be a protection violation to allow

any domain other than the security kernel to restore the

status of the machine. Restoring the machine status is

done by copying data out of some object into the machine

registers. If any domain could perform such an operation

it could set the machine status to a pattern reflecting

a subject in some other domain. This would be equivalent

to jumping right in the middle of a domain and by-passing

the entire protection mechanism Hence restoring the

machine status requires security kernel privileges which

the linker does not have. The only solution is to have

the linker call the security kernel. A gate must be

installed in the security kernel for that purpose. The

gate will examine the machine status it is asked to

restore. If and when properly validated, the machine

rtatus is restored and control jumps back to where the

fault occurred in the faulting object. Validation of the

machine status to be restored must determine what domain

is defined by the machine status, and verify that that

domain is the faulting domain. Again, the latter mech-

anism described is one among several possible designs

i i ■■■ " -

TT
1 ■■* ? ji— -i.-^i

-60-

o£ ? feature of general interest which any computing

utility supports under some form. In many cases, the

simple fact of trying to restore the machine status from

the faulting domain causes control to switch to r~ivileged

mode in the supervisor. The restore instruction itself is

the return gate. ^gain we do not claim authorship for

the mechanisms just described.

5. Cross domain problems

The first two sections of this chapter have discussed

the initialization of the security kernel and of the

dynamic linker. The previous section has then discussed

the handling of link faults by the operational linker.

The design may therefore seem complete. It is not. We

w. 11 now discuss a hidden problem which we have only

indirectly approached and carefully avoided mentioning

so far. The problem is directly related to '-.he multi-

domain aspect of the computing utility. It is a problem

of general interest which exists m any multi-domain

computing utility. Our research came across it and

uncovered it for the first time. We believe that it may

have been solved in particular cases almost by accident.

In general, it has been ignored. Hence we will propose

a general solution for it.

J

^
^

-61-

•/

The linker is invoked on a link fault and completes

its task by asking the security kernel to restore the

machine status. It is not properly speaking called by

the faulting object and does not properly return to that

object. It takes no "input" or "output" arguments.

Instead the objects it receives to work on are defined

by the machine status automatically saved by the security

kernel and the result of its computation is a snapped link

The question we will now discuss is where does the linker

store the snapped link so that the faulting object can

later retrieve it? Or in other words, what is the

nature of a logical link?

In a computing utility where information sharing is

a fundamental objective, special care must be taken to

organize the sharing of program modules. In order to

operate, a program requires working storage to store and

retrieve data. One usually distinguishes three kinds of

working storage: in a PL/1 environment, these classes

or types are known as external, internal static and

automatic storage. Data modules or data objects as we

referred to them in the thesis are examples of external

storage. Many programs can refer to a particular piece

of external storage. That piece is external to each pro-

gram and shared by all. External storage can be created

i i urn» mi M ■ M i^M^haM—MMi^tH

"T
^

miJL. ■■

-62-

or destroyed at any time and can exist as long as desired.

Automatic storage on the other hand belongs to a given

program, is not shared, is created when the program is

invoked and disappears when action resulting from that

invocation terminates. A stack frame in an Algol machine

is a typical example of automatic storage. Internal

static storage shares features of automatic and of

external storage. Like automatic storage it is private

to one program and not shareable. Like external storage,

its life time can be more than just one invocation of the

program. Internal static storage by definition is allocated

to a program when that program is invoked for the first

time in a domain, and is destroyed only when the domain is

destroyed. In other words internal static storage con-

tinues to exist between invocations of a program as long

as the domain which contains it exists. Going back to the

problem of information sharing in a computing utility, it

is clear that procedure code (provided it is pure) can be

shared by different subjects in different domains.

Similarily, external storage can be shared, perhaps with

some precautions: sharing external storage allows sharing

data. Howevfr, it may be desirable not to share internal

static, and it is certainly desirable not to share auto-

matic storage. Let us consider the case of internal

 ■« "V ' -■ -»-4S-^ T;
^ T

-63-

static storage. Sharing internal static storage may lead

to conflicts since subjects in different domains may carry

on different computations with the same procedure. Thus

mutual protection and independence of domains will in

such cases require different static storage areas to be

allocated in each domain where a procedure is currently

used. We will assume such a case in the following dis-

cussion and will propose a design which allocates static

storage on a per domain basis. It should now be cleur

that a snapped link is a typical example of an internal

static information item. It is meaningful only in a

given domain during the existence of that domain. Hence

in each domain where some procedure object is currently

used, an instance of each link issued from the procedure

is stored in the static storage area assigned to that

procedure in that domain. The set cf all links issued

from a procedure is referred to as the linkage section

of the procedure. Thus, an instance of the linkage

section of a procedure exists in each static storage

area assigned to that procedure in the domains where it

is currently used. Both the linker and the procedure can

retreive the appropriate linkage section according to some

system wide convention which is left to the discretion

of the designers of the system.

i i — ■Ai <^m «■■ft

HI! a - «wm T: wm^mam*-ß
^

*——^^

-64-

The hidden problem we mentioned earlier is that of

deciding how static storage should be allocated when a

procedure is about to be used for the first time by some

subject in some domain. Often this task is left to the

dynamic linker. Such awkward design results in^a major

protection violation instance. We will now discuss why

and propose a correct design.

Clearly we do not want to allocate static storage for

all programs executable in a given domain when we initialize

that domain: it is impossible to scan the whole file system

to find all procedures executable in the domain and allo-

cate static storage for them; it is simply impossible to

know in advance about all procedures executable in the

domain because of the dynamic aspect of the file system.

On the other hand we want to be certain ti:at when a pro-

gram is invoked for the first time in a given domain,

static storage is already allocated for its linkage sec-

tion so that the executing subject can look it up when it

needs to follow a link to some external object.

The first solution which comes to the mind is to allocate

the space when the object is invoked for the first time.

On the assumption that all objects are invoked by symbolic

names and given that all symbolic links are handled by the

linker, we conclude that the linker should allocate static

storage when it discovers it is snapping a link to a tar-

get object which has not yet any static storage in the

-^r _>-?.■.■ ^^p—p

^

-65-

ux^t änmain. Although this seems to ^ a ^^ ^^^^

t viouf. proteotion. lndeedi if a ^^^ ^^

logical address nf a ■»-..,.
of a target object by guessing it or by

appropriate calls to the security kernel t* ■ u y Kernei/ it might call
that object dlrectly by logicai address and not ^

W c n-e. In doing so, it will ^^ ^ ^^ ^

end * ^^^ " ^«t which has not heen pro-

t
v;ded with static •*•"»•' ^. - ukely t0 terminate

6 "" " the ^- —«on „Ue it is perfeotly
^.l as long as the subject ^^ ^^ ^^^ ^ ^

current domain. But if the tar,,** K
the tar9et ob3ect the subject was

calUng is a 9ate into another do.ain, by-passing the

-rt.ali.in, some static storage as expected. This of

course is a violation of the protection of the other

domain, m addition, having the im.er in the faultin,

domain allocate storage in the target domain could he

very hard to achieve.

The second soiution which comes to the mind and

seems perhaps easier to implement is to make static stor-

age allocation a function of the FSM. slnce using . pro.

cedure in a domain retires mappin, it into the address

«Pace of that domain, the FS„ is guaranteed ^ be invoked

for any procedure each time that procedure is used in a

■ - -

■L T^J I— IT^- ~—^ » ■"• I

^

-66-

different domain. Thus the FSM could at that time allocate

static storage to that procedure in the appropriate domain.

The FSM is more likely than the linker to have the capa-

bilities to do so. However this design also violates pro-

tection. Since the linker invokes the FSM, by symbolically

referencing without even invoking all gates into a domain B,

a domain A covld create a mass of link faults causing static

storage to be allocated to each gate into domain B. Such

mass allocation could overflow the storage available in

domain B thereby violating its protection since it would

nave been triggered by domain A.

As our research naturally came across the question

of static storage allocation, the above problem was uncov-

ered. Obviously another solution had to be proposed

which would solve the protection problem. In addition, it

was felt that static storage allocation did not functionally

belong to the dynamic linker to start with. Thus a correct

design, but also a much cleaner and more efficient design

is proposed hereafter. It is based on the fact that static

storage al.ocation is triggered by the domain itself where

it must be allocated. Thus no protection violation is

possible.

When execution of a procedure object starts, the sub-

ject must, according to the system convention already men-

tioned, retrieve the linkage section of the object in the

I I Mil '——

-67-

current domain. We suggest that this search generate a

hardware internal static storage fault (ISS fault) when

and if it fails. This "SS fault should be handled by the

system in a manner very similar to a link fault. It

should be passed to the faulting domain. Analysis of the

machine status would tell which object requires static

storage to be allocated. Static storage would be created

in the faulting domain for that faulting object. After the

machine status is restored, the subject would successfully

retry the search. Of course just like the linker had to

be prelinked, the static storage allocator must hav^ its

static storage allocated at domain initialization to be

operational.

The design we have just proposed guarantees the pro-

tection of all domains because static storage allocation

is made independent of dynamic linking. Hence allocation

is no more triggered by the execution of a random untrus-

ted object, but by the execution of the object itself

which needs static storage. The design stems from the

simple fact that no object, and particularly no gate into

any domain, can depend on a caller action to perform any

task in general, static storage allocation in particular.

Given that links are per domain static items, it is

now clear why the security kernel must communicate a copy

of the linker links independently to each domain it

-68-

creates. This copy is installed in the static storage

area of the linker in that domain.

6. Summary

This chapter has attempted to present a complete

design of a dynamic linker running outside the security

kernel of a computing utility. Four main problems have

been distinguished. It has been demonstrated first that

the security kernel could be made operational without the

help of a dynamic linker. It has been shown that the

dynamic linker could be made available in all domains

while being prelinked only once. It has then been

explained how the linker handles link faults. Finally, the

hidden although fundamental problem of static storage

allocation in a multidomain system was discussed. This

concludes the presentation of the complete design. The

following chapter will illustrate the use of the computing

utility model and the principles of the design by identi-

fying the components of the model to those of a real world

system and applying the design to that system. Concluding

remarks on the actual implementation will convince the

reader of the feasibility and usefulness of the design.

i m - —*——

-69-

IV. Implementation

1. General

In developing our thesis we have first discussed a

computing utility model which enabled us to give a formal

description of the operation of a dynamic linker. In a

second stage we have presented and discussed in terms of the

the model the general design features of a computing util-

ity where the dynamic linker is executed outside the

security kernel domain. We will now build up the third

level of the thesis. This level consists in demonstra-

ting the feasibility of the proposed design by describing

and analyzing the details of its implementation on a real

world computing utility.

The i\ultics system has been chosen as a test case for

the implementation. The Multics system (15-18) is a com-

mercial computing utility developed jointly by the

Massachusetts Institute of Technology and Honeywell Infor-

mation SysteitB, Inc. It is supported by the Honeywell 6180

computer system. It implements a powerful virtual memory

time sharing system with extensive information sharing

facilities. In addition to being easily available for

this research, Multics was a very interesting test case

for our design.

Firstly, Multics was designed with protection of

' * i *i*

-70-

information as an initial objective. Protection has influ-

enced almost all of its design features. Protection

mechanisms are embedded in most of the functions available

on Multics. Even the hardware of the 6180 processor was

designed to support the concept of domain (15).

Secondly, a recent project has been launched with the

objective of defining and auditing the security kernel of

Multics to certify the correctness of the protection

mechanism. Since the dynamic linker of Multics was

initially designed to be executed in the security kernel

environment, the present research matched exactly the

objectives of the certification project.

Finally, the protection mechanism of Multics matches

very closely the domain protection model as described

earlier. Hence there is a direct para., '.el between the

description of the domain based design and its implemen-

tation.

We will divide the discussion of the implementation

into four parts. The following two sections will at the

same time briefly describe the general design features of

Multics and match the real system components with the con-

cepts of the computing utility model described earlier.

The next section will then talk about a dynamic linking

specificatiors on Multics to familiarize the reader with

-ä-^^mmmmm

-71-

the nature of the functions which the dynamic linker is

expected to support. The remaining sections will present

the reader with a discussion of the implementation of the

dynamic linker. Emphasis will be put on the discussion

of selected specific problems encountered by the imple-

mentation. We do not claim that the problems to be discussed

constitute an exhaustive list of all problems which the

implementation faced. Out of the complete list of prob-

lems encountered during the implementation, wc have

carefully selected specific problems which we believe are

instances of more general problems that any designer is

bound to face on any computing utility under some form or

another.

2. Information Protection in Multics

The equivalent of a domain in Multics is a ring (15,

18). Rings can be viewed as a set of domains with a

linearly nested ordering of privileges. The set of capa-

bilities of any given ring is a subset of the capabilities

in the next most privileged ring, as represented in

figure 5. The 6180 hardware processor supports up to

eight rings for each user. The eight rings are numbered

from 0 to 7 by decreasing order of privileges. Because

every ring has at least the capabilities of the next

!■ II

-72-

PUure 5: Multics Drot^^i
protectfon r 'n^s.

(Br

•VlUbl. in the'dX5^"?' "»«"int...
w» enc ri ngs.)

I ■■■ «AMfaMMMOHtt

-73-
'.

h\gher numbered ring the concept of gate exists only in

the downward direction of cross-ring calls. A subject

executing in ring n must ask entry permission to a gate

if he wants to obtain the extra capabilities of ring m

(m smaller than n). On the other hand, a subject execu-

ting in ring m and willing to move to ring n (again m

smaller than n) can freely do so. The idea of a gate

into ring n for ring m is irrelevant.

All users (presumably) crust the security kernel more

than their own programs which may contain bugs capable of

causing trouble. In turn they probably trust their own

programs more than other user's programs. This relative

ordering of programscan be superimposed to the relative

ordering of rings. Since the security kernel is by

nature the most trustworthy set of programs, it is designed

to be executed in ring 0. But it must be isolated in

this ring from everything else in the environment. Hence

the rest of the supervisor should be rejected to ring 1.

Perhaps programs under development or less sensitive pro-

grams of the supervisor should be installed in ring 2.

This idea is currently being studied. User programs,

commands, compilers and other tools directly related to

the actions of users can be executed in rings 3, 4 and 5.

The normal case is ring 4. This allows the user to execute

J

-74-

protected subsystems in ^ing 3 on the assumption that

everything in rings below 3 is trusted and will not sub-

vert the subsystem in ring 3. A user can also test un-

trusted programs in ring 5. Rings 6 and 7 are absolutely

virgin: no function of the operating system is available

there. They initially have no capabilities for any gate

into lower rings. Hence a user may use these two rings

to install any two-ring system he wants and keep it en-

tirely within his control.

3. Information Storage in Multics

The Multics equivalent of a subject is a process. A

process is defined by a site of execution and a logical

address space. Each process has its own address space.

A process is the entity representing a user in the machine,

^he address space seen by a user in a two-dimensional

virtual memory of very large capacity (15). Along one

dimension the memory is partitioned into segments addressed

by their order number. Along the other dimension, it is

addressed by word. Hence the logical address of an object

in this virtual memory is of the form (s,w) where s is a

segment number and w a word number in that segment. The

format of such references limits the size of the virtual

memory to 256 K segments X 256 K words.

iA.M «^

-75-

Multics file system is a tree-structured hierarchy of

catalogs. Catalogs are called directories. The leaves

of the tree are called segments. A segment is the equiv-

alent of a collection of objects in our model. An atomic

object is an entry in a segment. Directories are also

atomic objects. The unique identifier of a directory is

the tree-name of the directory. The unique identifier of

a segment is the tree name of the parent directory concat-

enated with the symbolic name of the segment. Directories

and segments of the file system are of course mapped into

segments of the virtual memory when they are used. Such

mapping is supported by the FSM.

The security kernel ot the operating system is

shared by all users. Since it is the very first thing

which has to be operational in any process, it is the

first thing to be mapped into any process address space.

Hence the security kernel always occupies the same loca-

tions of the virtual memory of each process. Furthermore,

all rings in a process share t.he same address space.

4. Dynamic linking in Multics

The previous two sections have established a parallel

between the Multics system and the computing utility model

of the thesis. Our second step towards the discussion of

i i ■— ■ - -

-76-

the implementation will be the statement of dynamic link-

ing specifications in Multics.

The Multics system supports various high-level

languages but was initially designed to support PL/1.

Most of the system programs of Multics are written in

PL/1. As the address space of a Multics process is two-

dimensional it was both easy and desirable to have a two-

dimensional name space for PL/1 symbolic names. An object

symbolic name or entry name is of the form segname$entryname

where segname is the symbolic name of the seg-

ment containing the entry and entryname is the symbolic

name of the word offset where the entry is located in

the segment.

Given a source program (or source segment) any com-

piler generates an object program (or object segment)

which contains three sections as described in figure 6.

Vhe last section contains the pure executable code of the

program. The definition section contains on one hand the

list of entry names and word offsets of all entries in the

object segment. On the other hand it contains the list of

all names of entries into external object segments which

this object segment may reference. Finally there is the

virgin linkage section. We insist on the word virgin

which is used to distinguish the present type of linkage

i i i _*^fe*^^MM

-77-

Flgure 6: Multics object segments

Source segment

Compller

Object sTfeinent

Text
section

Def Inl tlon
sectlon

Virgin
11nkage
section

-78-

section from a non virgin linkage section which will be

derived from the virgin one and is in the static storage

area as described in the thesis. The virgin linkage sec-

tion always remains virgin and is sharable. For each ex-

ternal object referenced in the source program, a link is

inserted in the virgin linkage section.

A link is a triple (s,w,f). (s,w) is a logical

address as defined earlier and f is a flag. In a symbolic

link, the flag is always a bit pattern indicating that

(s,w) is invalid. Attempting to use (s,w) as such will

cause a link fault. At this point (s,w) somehow points

to the symbolic name associated with the link, in the

definition section and not to the target object of the

link. When the object segment is first executed in a

ring, static storage is allocated for it in that ring.

The virgin linkage section is copied into the static stor-

age area yielding a non-virgin linxage section. The

address of the non-virgin linkage section is stored in a

conventional location where an executing process can

always retrieve it when it uses the object segment. When

execution encounters a reference to an external object,

the linkage section address is used to look up the corre-

sponding link. This triggers the hardware fault since

(f) is set. As a result of it, the linker will snap the

I I Mil ■ *m

-79-

link by replacing the invalid (s,w) by the valid address

of the object corresponding to the entry name which

caused the fault. The fault flag (f) will be turned off

to indicate the validity of (s,w). We now have a snapped

link to the target entry. If and when the same link is

used again in the future by the same user process, no

more linkage fault will be taken. To clarify the above

discussion, the situation is pictured in figure 7.

In view of the above description, we can now present

a simplified basic functional block diagram of the

dynamic linker (see figure 8). On a link fault caused by

object A (see figure 7) the dynamic linking driver is

invoked. It analyzes tne machine status to determine

which link caused the linkage fault. By following the

pointer (s,w) currently in the symbolic link, the linker

finds the symbolic name B $ b correpsonding to that link

in the definition section of the faulting object A. It

then passes name B to the segment search driver. The

segment search driver tries a set of search rules (direc-

tory treenamcs) on the FSM until the FSM finds B in one

of the directories. The FSM then maps B into the address

space of the faulting process and returns the segment

number s of B to the search driver which it) turn returns

it to the linking driver. The linking driver then passes

•

use
Unk

* B$h

(s.w)

-80-

Flgure 7: Dynamic linking
on Multics

tatlc storage

(s.w)
kth
link

Object A

Before snapping B$b
Object B

After snapping B$b
Object A , Object B

A' s stati c Istora^e

^b,wb)i -

J

- *■"• I I Mi ■■■ II11 ^mt

TJ

-81-

Flgure 8: Functional diagram of the
Multics dynamic 1'nker.

link
fault

'
*

i

DynamIc
linking
dr1ver

/

/ \

\

Entry
search
dr1ver

Segment
search
dr1ver

i i

F S M

< « mmm

V

J

•82-

the segment number s and the name b to the entry search

driver. This one scans the definition section of segment

numbered s (i.e. B) until it finds the name b. It then

returns the offset w of bin B to the linking driver.

The dynamic linking driver finally replaces the address

(s,w) in the symbolic link by the address (s,w) of B $ b

and turns off the flag (f) to make the link a snapped

link. The machine status can then be restored and

execution can proceed.

We do insist on the fact that the above description

is a simplified strictly functional definition of the

linker. In no way should it be assumed that the linker

contains only three modules ö.nd that linking happens as

naturally as we described it. In thö- course of this

chapter we will progressively complicate the description

we have just given and discuss the problems encountered

by the implementation. This section concludes the

descriptive part of the chapter. We will now apply our

design to Multics and present selected aspects of the

implementation.

5. Initialization

In this first section about the implementation of

the design, we will outline how the security kernel and

f < —11 !■ ~ - - -^ «^

N
^

-83-

the linker are initialized. This outline will be brief

because no particular problem was encountered. The im-

plementation of the design was relatively' straightforward.

The Multics system is initialized by a dedicated

initializer process. All modules of the security kernel

are loaded into the system from a generation tape.

Immediately after the loading, the virtual memory address-

ing mechanism is initialized so that the initializer pro-

cess sees a regular virtual memory with the restriction

that the capacity of chat virtual memory is temporarily

constrained to that of the real memory. A prelinker is

then invoked to link togethei all modules of the security

kernel which are read in from the tape. After the pre-

linker is run, miscellaneous initialization tasks are

performed. When the security kernel is entirely opera-

tional, the prelinker, as well as other initialization

programs are unmapped and thrown out of the addressable

\ce. We have described this mechanism for the sake of

completeness. However it existed before we implemented

our design. We used it as a basis for our implementation.

We now turn our attention to the initialization of

the linker. Since the security kernel is initialized by

a prelinker, it is all but natural to US<J the same pre-

linker a second time to initialise th-j linker. Actually

the implementation uses a hybrid technique involving both

^7 • ■■■) —q

-84-

a binder and a prelinker. Multics provides its users with

a binder of which the goal is to take several object seg-

ments and to merge them into one which has only one text

section, one definition section and one virgin linkage

section. Of course any link between the original dis-

tinct object segments submitted to the binder are directly

translated into relative offsets within the resulting bound

object segment. The binder was used to bind together the

modulec of the linker, i.e. the modules inside the main

box of figure 8. Consequently the only links issued from the

bou.id linker, which the binder could not translate are

links to the FGM and links to external data bases. Notice

that figure 8 shows only one link to the FSM. In reality

there are several such links. As we said earlier figure 8

is only a simplified functional diagram. To be more

accurate too, the links to the FSM are actually links to

ring 0 gates since the FSM is in the security kernel and

is accessible only through these gates. Also the links

to external data bases are not represented in figure 8.

The external data bases are error code tables and system

data tables. They are used by the linker but are not

really part of it and do certainly not belong in its

functional diagram.

The task of the prelinker is thus to snap the links

from the bound linker to the external data bases and to

-■ -

■^
_>-■■« wmw~w V

-85-

the security kernel gates The operation of the prelinker

matches exactly that described in the general case. Since

the prelinker does not know about any file system, (even

though the bound linker, the external data bases and the

security kernel gates are catalogued in the file system

and stored on secondarymemory) a copy of each module must

be loaded into the initializer address space from the

system generation tape. The bound linker is loaded with

attributes such that it does not get prelinked as a module

of the kernel. Instead when the kernel is initialized

and just before it throws the prelinker out of its address

space, it invokes the prelinker a second time to prelink

the bound linker. The prelinker builds a fictive mapping

table and a snapped links table as stated in the general

design. In the particular case of Multics, the snapped

links table is simply a copy of the virgin linkage section

of the bound linker where all symbolic links are replaced

by snapped links reflecting the fictive mapping. The

fictive mapping table is a little more interesting. Since

there is only one address space per process common to all

rings instead of one per process and per ring, the reader

ma^ wonder why a fictive mapping of the linker, the data

bases and security kernel gates is necessary. Couldn't

they just stay where they are? The answer is negative

■ —■ - --

^

-86-

because ot th. peouliar Kay the „^ ^ ^ ^

into each process access space. It is . ^„^ ^

an scents „hict, are part of the security ^^

reguiar operation are mapped into the lowest ^^

numbers of each process »AAr—
P ocess address space. Hence all lowest

segment numbers are reserved for the kernel „
tne Kernel and constiute

.0- sort of private a.aress space. Ko such se9me„t

nu.her is ever used outside the kernel. Hencei ^

tHou9h the iia.er, the externai data hases and th. security

they must he capped into higher segment numbers for the

higher numbered rinas Th^i- e* i. •
mgs. That fictive mapping wilJ be valid

fot all rings (1 to 7) of .n
7) of all processes. To summarize the

Problem, although the address space of „ nm sspace ot a Process is common
to all rings, a fictive mappi„g must be installed by ^

Ptei.n.er hecause Some specific ruie cuts a piece out of

the process address space and turne it into „hat may he

did not exist, clearly, the inlt^i
x, tne initial mapping could be

kept and be the final >-^ i
real mapPln'- «ter the two tabies

are generated, the eecuritv kernel thrOKs ^ .^ ^

bilitl.. to access the preiin.er, the linKer and the ex-

ternai data bases by simply deaiiocating their current

-gment nu.bers. RemB^r that «,. linker and ^ ^

^^ - I I —I I - - - - - —-^ ——^«

"^
"'•"■-4 ¥

-87-

bases are still stored in the file system on secondary

memory, so that the system can retrieve them there liter

on when they will be needed. Of course the two tables

built by the prelinker may rot be thrown away. Since

they will be used throughout the life of the system each

time a ring is created, th-y must remain permanently in

the address space of the kernel.

We finally come to discussing the task of enforcing

the fictive mapping. This task is also straightforward

and identical to the general design. In order to operate

correctly, Multics object segments need a static storage

area and an automatic storage area. Automatic storage

is allocated in a special segment called the stack. This

segment is used as an Algol call stack. Static storage

is allocated in a special segment called the combined

linkage segment (els). There exists one stack and one

els per ring and per process. There exists a system

wide convention stating that the stack of a given ring

always occupies the same segment number in the address

space of any process. This enables any process to find

the right stack in the right ring. Each stack header

contains (conventional) the address of the els for the

s-ime ring. This enables any process to retrieve the

right els for the right ring. Given these two conven-

tions, it is clear that no process will ever be able to

.JIM^ ■ WHBW^VWW^^^HP^^MW^^M^WMOT-

-88-

touch its els in a ring before it touches its stack in

that ring. Hence the convention is that when the process

uses its stack segment number for the first time, a hard-

ware fault occurs which is interpreted as a ring initiali-

zation fault and triggers action of the kernel to initialize

the ring. When the stack and the els for that ring are

initialized, the kernel invokes the FSM. As stated in the

general design, the FSM uses the fictive mapping table

prepared by the prelinker to map the linker, the external

data bases and the security kernel gates in the process

address space. Finally the kernel copies the snapped

links table built by the prelinker into the els just

fabricated for the new ring. Control is then restored

into the new ring. The linker has been mapped into the

address space and its non-virgin linkage section contain-

ing only snapped links exists in the els of the new ring.

Thus the linker is operational in that ring.

The last question which needs perhaps a brief comment

is why do we need to invoke the FSM each time a ring is

initialized in a process? Doing so for the first ring

should be enough since the address space in which the FSM

enforces the fictive mapping is the same for all other

rings. Our implementation is justified by an aspect of

the Multics virtual memory. In mapping a segment into a

/
j

^r j-i"^»i

^

-89-

segment number, one needs to specify the unique identifier

of the segment and the ring on behalf of which the mapping

is done. Once the bound linker for instance is mapped into

its final address for one ring all rings will see the

address occupied but it will not be meaningful to them

until they also require the linker to be mapped there on

their behalf.

This discussion completes the section on initializatior

of the kernel and of the linker. It has been demonstrated

that straightforward implementation of the design was

possible on a computing utility like Multics. No major

problem and no particularly interesting issue was raised

so far. Now we have shown how to implement an operational

linker, we will proceed by showing how to invoke it in the

faulting ring on a link fault.

6. Fault Handling

We have shown how the Multics dynamic linker was

made operational in a ring. Our next step Js to show how

link faults are passed to it and how it can return control

to the faulting object. Again this can be done by a

straightforward application of the design, using pre-

existing mechanisms.

All faults on Multics are intercepted by a special

module of the kernel. This module existed already in the

i MM

^s
^

-90-

initial version of Multics and it purpose is to analyze

and sort faults. Just a few lines of code had to be

modified so that link faults would be directed to a sig-

nalling module instead of being directed to a ring 0

linker. The signalling module of the kernel existed as

well in the initial version of Multics. It is already

used to signal events other than link faults in outer

rings. Because of the hierarchy of rings, the security

kernel and the signalling module in particular can access

any object in a higher numbered ring and can switch the

ring of execution of a process. These privileges are

exploited to signal a link fault. When the signalling

module receives a copy of the machine status saved by

the fault interceptor module, it analyses it to determine

the number of the faulting ring, and the segment number

of the stack used at fault time. It then makes a stack

frame for itself on that stack and copies into it the

machine status. It copies as well a return address to

be used by the linker. It finally switches ring of execu-

tion and calls the linker. The address of the linker is

found in the stack header (conventional). This address

must be set at ring initialization and may be changed by

the process if it wants to define another linker of its

own in that ring.

i ii mni ■ - - 1—^——»

■^
p

^

-91-

Let us assume for a moment thai: we know how the

linker itself works and suppose that it has snapped the

faulting link and wants to restore control to the faulting

object. The linker simply returns to the signalling module

in the current ring. The signalling procedure then calls

a gate into the kernel. The purpose of this gate is to

validate the machine status returned to it by the signaller

and to restore it. Validation simply consists in verifying

that the status reflects a ring of execution not lower

than the faulting ring. This is to make sure that the

linker which handled the status in the faulting ring did

not maliciously set it so that control would be restored

in a lower numbered ring than the faulting ring, which

of course violates protection. The gate then destroys

the signalling stack frame in the faulting ring to make

the stack look as if nothing had happened. Restoring the

status is finally done in one indivisible hardware in-

struction which reloads all the machine registers, thereby

forcing control back into the formerly faulting object.

7. The dynamic linker

The last two sections have discussed respectively

the prelinking of the linker and the handling of link

faults. It remains to be demonstrated how the linker

^r I " n I ^r

-92-

itself can be implemented to translate links properly. So

far the implementation did not encounter any major problem

or any operation oJ outstanding interest. In this section

we will only very briefly outline the implementation as

a whole and then concentrate on selected interesting fea-

tures of the Multics system of which the implementation

cannot be derived directly from the global design princi-

ples. As we mentioned it before, these selected topics

are only instances of broader problems which any designer

would face in any computing utility perhaps under differ-

ent aspects.

The btarting point o. the implementation is the

block diagram of figure 8. The basic dynamic linker is

programmed according to the functional specifications of

that diagram. This basic linker contains a dozen inde-

pendent program modules. Once compiled, the resulting

object segments are bound together by the binder. A

bound object segment results which contains about forty

1:nks to aata bases and kernel gates and can itself be

invoked through about fifteen different entries; one of

which is the main link translation entry used for link

faults.

On top of this basic linker we will now progressively

add other features, functional boxes and specifications

as we go about discussing specific implementation problems,

i ttam m - - -—■ M^^M

=?~^r wm*^
^

^

-93-

a. Implementation of peripheral features

Let us first turn our atterti.on to the question of

static storage allocation. As we mentioned it in the

chapter about the global design, static storage allocation

is a general problem which must be solved in any computing

utility The wrong way of solving it is to leave it in

the responsibility of the linker. One correct way to solve

it is to install a hardware fault which we called the ISSF.

When a process attempts to get a hold of the address of

the static storage (non-virgin linkage section) of the

program it is executing and if that storage is not yet

allocated, a ISSF occurs which triggers storage allocation.

The old design of the Multlcs dynamic linker was such that

static storage allocation was part of the linker task

(see figure 9). On snapping a link, the dynamic linking

driver used to always verify that the trrget of the link

did have static storage in the target ring. As stated

in the thesis, this design violates protection because a

target object in a target ring cannot depend on a faulting

object in a faulting ring to use the linker and allocate

static storage where appropriate. In addition, even if

this was not a protection violation, it would simply be

impossible for the new linker in a faulting ring to

allocate space in a target ring if the target ring is

-94-

Flgure 9: Old Multics dynanic linker.

link fault

i /

Dynamlc
linking
dr1ver

Static
storage

al locator

1

V

Entry
search
dr1ver

Segment
search
dr1ver

..

i r

F S M

A ^*m m*m

TT ■ ill» WH^^I

V

J

-95-

lower than the faulting ring. This was possible in the old

design because ehe linker was in the security kernel and

could access any ring.

Consequently we have proposed to implement a hardware

ISSF as described, such that dynamic linking and static

storage allocation are functionally distinct. Yet there

is still one advantage in keeping them physically together

(see figure 10). Keeping dynamic linking and static stor-

age allocation physically together means keeping them in

the same bound object segment, the bound linker. Thus

they are prelinked and initialized together at the same

time. Adding the static storage bo< in figure 10 increases

the complexity of the dynamic linker but does not increase

the complexity or modify the design of prelinking and ring

initialization.

The operation of the linker is thus as follows.

Assume object A in ring 4 wants to invoke gate B in ring

3. Whether A invokes B by symbolic name (link fault) or

directly by its address it happened to already know is

irrelevant. When execution moves to the target segment B

in ring 3, as soon as segment B tries to find a presumably

unallocated static storage, an ISSF occurs which results

in the linker (static storage allocator part) to be

invoked in ring 3. Allocation can and will thus safely

■

r^^^^^Hi! 1 "i" 7

-96-

Flgure 10: New Multics dynamlc linker.

link fault

Dynamlc
linking
drIver

Entry
search
drlver

ISS fault

Static
storage

allocator

Segment
search
drlver

F S M

■-w.^

1 L""

^

-97-

Flture 11: Static storage allocation on
Multics

rln« ^

Dynami c
linker

Static
storage

tl locator

i
link fault causes invocation of linker

Static
storage
for B

r 1 n«? 3

ISS fauU causes storage allocation

r
Dynami c
11nker

Static
storage
allocator

i m ■

I. ■«« I UIW >l-(I • Jlil

-98-

occur. This is pictured by figure 11.

Tho problem of static storage allocation was just

one example, and perhaps the most typical, of a feature which

was hooked to the linker for convenience. Unfortunately, the

linker was not the right place to hook that feature to. Other

problems of the same kind were encountered during the implemen-

tation. Just to mention a few we can cite trap handling and

impure object segment handling. Such features are typical

examples of sophisticated tools which have been hooked to

the linker for convenience but do not actually belong

there. Trcp handling is a feature which allows a program-

mer to force execution of certain routines before his

program can be called for the first time. The feature is

named after the fact that it is based on trapping the first

invocation of - program. Again the first invocation may

not be a symbolic invocation; thus the linker can be by-

passed; thus hooking the trap handling mechanism to the

linker is vast as disastrous as hooking static storage

allocation to the linker. The solution is also to use a

hardware fault. We will not describe it here as it is

really not part of the implementation of the linker.

Impure object segment handling is a facility which pro-

vides uaers with the ability of creating an object seg-

ment and then writing into it perhaps over the definition

and virgin linkage sections. Of course such an object

—-

■ I ■■»■

^

-99-

se^ent is not s.ar.We. « is i^tant t, save *.

aeanition ana vi^in U-^ —n ^^^^

zeier^. sue. tasK «aa ^t to the UnK«. »^ "

^ not .eion, there. B.-passin, the iinKe. and thus not

A -Mr^vsae sections could cause
saving the definition and Imkage

o.i- in addition it dxd put an
damage to the object segment, m

.he linker by always forcing it to check extra burden on the linker oy

£or „iteahie oh^ect segments. The soiution to the proh-

!. is to aiways save the aefinition ana vir9in Un.a^e

80ctions .« a writeabie oh.eot se^ent in a separate se,-

„ent when the object se^ent is c.eatea. ^"^ J

isms to hanale other features on Multxcs.

static stores aUocation, trap hanalin, ana r^ e

. —t are typical examples of peripheral features
object segment are typ-^

. result, they were mishanalea. violatea protection, com-

. , „* (nterferea with it performance,
plioatea the linker ana rnterlere

our assign has correctea that situation.

b. compatibility of interfaces

the implementation encounterea. This problem is specrfrc

Z „ultics hut proems of the same ■*- wouia certarnly

■ -

r^9^^ß^f^mm ■q

J

-100-

tä

arise in any computing utility. The present problem does

not have so much to do with the linker itself as it has

with t/e general idea of pulling a module outside the

kernel.

Any program which is part of the kernel is very

likely to use other functions of the kernel. In trying

to pull that program outside the kernel, one must make

sure that it still can use the other kernel functions as

it did before. In the particular; case of the linker, the

old Multics linker used the FSM inside the security ker-

nel. Of course, once the linker is pulled outside the

kernel, it cannot call the FSM directly. All it can do is

invoke, it through appropriate gates (see figure 12). For-

tunately the FSM of Multics was already available to the

higher rings through such gates. We did not have to

implement them. However the interface to the FSM across

these gates is not the same as the interface which the

linker used to see directly inside ring 0. Directories

ar : currently implemented as ring 0 data bases. Their

logical address in a process is also a protected item.

User rings (1 to 7) may talk about directories only by

treename and not by segment number. Directory segment

numbers are exclusively used inside the kernel. Thus

when the linker was inside the kernel, the search rules

■ tfM

1 - I ■■■ T?

-101-

FlRure 12: Interface of the linker to the FSM.

ring n

rln« 0

LInker

W-

FSII ?ate

I I
i Old k
I linker |
I I

FSM

i i -

I «■■■■^^■■WB^i^BIH^Vi
^

J

-102-

it used across the interface with the FSM were a set of

directory segment numbers. Now the linker is moved

outside the kernel, directory segment numbers are not

suitable directory unique identifiers. Therefore the

linker must use directory treenames. This implementation

of search rules has the disadvantage that for each direc-

tory searched or each link fault, the treename presented

to the FSM gate must be converted irto corresponding seg-

ment nuruher to perform the sear h. Such conversion is

costly and has a negative effect on the performance of

the linker. A parallel project is currently on its way

to make directory segment numbers available in user rings.

Such a design will restore the interface to the FSM which

the linker used to see. However it has some major protec-

tion implications of which the solution is rot obvious.

We will not discuss these implications here.

The problem of the search rules was a typical

example of a compatibility problem. By removing the

linker from the kernel, we were forced to make it compat-

ible with the interface of the kernel seen by the user

rings.

c. Limitation of Privileges

The last problem which we propose to discuss will

illustrate the impact on the capabilities of a program

of removing that program from the kernel. The problem

i -

:^ "^T IU^

^

-103-

deals with snapping downward cross ring links, a feature

which the ring the linker used to support very easily and

which is now complicated by the fact that the linker is in

the faulting ring.

In the general design described earlier, the FSM was

described as a security kernel primitive which given a

catalog unique identifier and an object symbolic name

returns a logical address. On Multics, this is not the

exact function of the FSM. the FSM takes a directory

troename and a segment name and returns a segment number.

The differ',nce between these two descriptions is that a

segment name is not an object symbolic MM and a segmant

number is only a partial logical address. As a consequence

a search of the definition section of the target segment

must be performed to find the offset of the target object

in the target segment (sec figure 8). When the target

object is in a ring equal to or higher than the faulting

ring, such search poses no problem. But when the target

object ii a gate into a ring lower than the faulting ring,

the linker in the faulting ring does not have the

capability to read or search the target segment. The old

linker executing in the kernel did have that capability.

When snapping a link to a gate intc a lower numbered

ring, the linker must extract the offset of that gate

from information contained in the target segment

J
*MM

V J »^J^^^^— ■■ iiji i M

-104-

containing the ^ate. The only way to extract information

from that target segment is to invoke another gate, a

linker gate, into the target ring. The function of the

linker gate is equivalent to the function of the "entry

search driver" in figure 8. But the search happens in

the target ring instead of happening in the faulting ring.

The question which the reader is now entitled to ask

is how does the linker know about the linker gate in the

first place? There are several possible answers to this

question. One way the linker could know about it is by

conventions. It would be possible to impose that any

ring contain a gate named after its own ring number and

located in a segment of some conventionr1. directory.

The linker could then invoke the FSM to obtain a segment

by giving the FSM the name of the conventional directory

and the conventional name of the gate into the target

ring. It would thus receive a segment number. Then,

using a conventional offset into that segment, it could

dynamically fabricate for itself a link to the linker

gate. Such design is feasible and very appropriate if

there was a large number of rings per process. However

we know that the number of rings per process is finite.

Thus there is a much simpler solution to our problem which

consists in providing the standard Multics system with a

J

•■

TT ■ ■ ■"

^

-105-

finite set of gates (one per ring), loading these gates

into the machine during system initialization, prelinking

the linker to each such gate as usually and throwing the

gates out of the kernel address space after prelinking.

This is the solution which was implemented on Multics.

It is pictured in figure 13. During system initialization,

the linker is prelinked to the FSM gates as well as to

one linker gate for each ring. Then when A takes a link

fault in trying to call gate B, the linker is invoked in

ring 4. it obtains a segment number s for B from the FSM.

The FSM also tells it that B is a gate into ring 3.

Instead of calling the entry search module in ring 4, the

linker then calls the linker gate in ring 3. The linker

gate can search the eject segment B and thus returns the

offset w of b in B to the linker in ring 4.

The last problem discussed was an example of a case

where by being removed from the kernel, a program, the

linker, lost privileges which it used to exploit to per-

form its task. Other such examples were encountered

during the implementation. For instance, the linker used

to store in a system wide data base, various meters count-

ing the number of link faults, the distribution of pro-

cessing time required, etc. Data could be extracted from

that data base by anybody interested in performance. Of

course, now the linker is in user rings it could still do

J

^^*^ *—*

11 ■■■*

^

J

-106-

Flgure 13: Cross rin? linking I n Multi cs

rl nr, k

ring

r I ng 0

Dynamlc
11nkf ng
drIver

Static
storage

allocator

Entry
search
drIver

Segment
search
dr Iver

prelinked

11nker
gate

__*.^taM

^r I I' n I

^

J

-107-

J

such metering, but results could not be trusted because

the system wide data base would have to be accessible in

user rings too. Hence anybody could write garbage into

it. The solution which we propose instead is to just

keep a count of link faults in ring 0. This is done by

the fault interceptor module. The count is thus protected,

Other meters can be stored in per ring data bases if the

user desires. Such meters would of course reflect only

the activity of that user in that ring.

This is the last problem we proposed to present here

about the implementation. In no way do we suggest that

the implementation faced no more problems than explained

here. The problems presented here were just typical

examples representative of classes of problems relevant

to the topic of our research. Problems not discussed

here either fell into categories for which we have given

examples or into categories not relevant to our thesis

topic.

 *_*_Mn

^_.

^

-108-

V, Conclusion

To conclude this thesis, we would like to step back

and consider the design and its implenentation as a whole

to summarize what has been achieved, try to abstract the

main results of the thesis, and examine the cost of the

implementation.

We first propose to compare the old design of

with the new design we have implemented. Our comparison

is based on figure 14. The old dynamic linker was part of

the security kernel, it was constituted by a set of

modules scattered across the whole kernel. Some of these

modules were directly available to the user through appro-

priate gates into the kernel (see Appendix). Miscellaneous

peripheral functions like static storage allocation and

trap handling were directly hooked to the linker inside the

kernel. The new dynamic linke, is a bcund object segment.

Capabilities to use it exist la all ri-^s except ring 0.

The modules of the dynamic linker which used to be available

through gates in the kernel are now directly available in

user rings. All peripheral features have beon detached

from the linker ai>d are now handled indeperdently as

described earlier. The static storage allocator is still

Physically connected to the linker to simplify initialization,

but it is functionally independentt its operation is

J

i i — ■ - --*^ tmm

^v • ™ ■ I

^

-109-

user ring

I4JI|JL|J r.ngo gry

Linker F S M

Old configuration

Figure Ul Mulcics linker

New configuration

user ring

J

\ ^ Vm i ^H amm

^^^—^

^

-110-

triggered by a special hardw-re fault. As a result of the

above facts the complexity of the security kernel has been

reduced by a non-negligible, although hard to measure,

amount. What can be me^^ared is the reduction of the size

of the kernel. The following items have been extracted

from the kernel:

15000 words out of 300000 (5%),

30 entries out of 1200 (2.5%),

15 programs out of 300 (5*),

18 gates out of 165 (11%).

The case of the gates is particularly interesting. Since

the linker has oeen removed from the kernel, all gates

which used to lead to it inside the kernel could be

removed too. The figure of 11% deserves a special comment.

Since the interface between the kernel and the outer world

is one of the most sensitive, directly threatened part of

the kernel, a reduction of size of 11% is a significant

improvement. We attribute this high score to the fact

that the linker was, as we have shown, essentially a user

ring program. Thus even though it was in ring 0, it was

natural that it be available to user rings through many

gates.

J

Ts -ja. -«««««I ^^^—^

^

-111-

Secondly we propose to discuss the results of the

thesis. A first result is the demonstration of the

feasibility of the design. Some components of the design

have not been implemented because they were thought to be

of minor importance and could not have any impact on the

overall success of the implementation. Other components

of the design like the funccional independence of the

static storage allocator could not be implemented simply

because the supporting hardware is not yet available on

Multics. However it was approximated by software and

when the hardware becomes available, only a simple change

of a few lines of code is required to separate static

storage allocation from dynamic linking. On the whole thus

the major aspects of the design and of the implementation

have been verified to work correctly. System initializa-

tion, fault handling and dynamic linking have been imple-

mented. All features crucial to the operation of the

linker itself have been extensively tested and proved to

work under all circumstances. In particular cross-ring

linking was carefully tested.

The second result of the thesis is the improvement of

the protection and the certifiability of the kernel of

Multics. Size and complexity have been reduced in the

proportions mentioned above thereby making the auditing

J

■ i mmm

^
I^^^^VWVI ^mmr

^

-112-

of the kernel an easier task. In addition, the thesis

has corrected some bugs in the Multics system. The

protection threat resulting from having peripheral features

hooked to the linker has been eliminated. The protection

of tie kernel itself is no more threatened by the uncon-

trollable operation of the linker. Moreover the careful

study and the redesign of the linker uncovered and

remedied several unsuspected protection flaws, not the

least of which is the problem of static storage allocation.

The last major results worth mentioning here are the

insights gained about the nature of a kerrel. Although

the thesis has not provided any definition of what

programs belong inside the kernel, it certainly has pro-

vided a few insights about what programs can easily be

moved outside the kernel. The a posteriori analysis of

the linker has revealed a few interesting features which

at the same time made the linker an easy to remove pro-

gram and are a direct result of its user ring nature.

We do not suggest in any way that all programs exhibiting

the features to be described should or even could be

removed from the kernel. We only suggest that such pro-

grams are certainly better candidates for removal than

others and that any attempt to simplify a kernel should

start by examining such programs.

J

■^r~ ■ «ma
^

-113-

The first feature which made the linker a good can-

didate for removal is the number of gates which lead to

it inside the kernel. As we already suggested, this fact

is most probably connected to the user ring nature of the

linker. A program which is already available to user

rings through many gates is inside the kernel but close

to the outside world. Pulling it out should in general

be easier than pulling out a program deeply nested inside

the kernel (see figure 15).

The second feature of the linker which made it a good

candidate for removal is the fact that it was not used to

support any other kernel function. In figure 15, program

b is callable through a gate. Thus according to our fin

criterion, it should be easy bo remove it. However B is

needed to support A (invoked by A) inside the kernel, and

A is not available through a gate. Hence it is probably

hard to pull A outside the kernel and B has to stay

inside as well. This does not me-.n that B can never be

executed in a user ring when invoked by a user ring, but

it implies it must still be part of ^he kernel and thus

audited to support the operation of A. In the cc«se of

the linker, since no other function like A used it, it

could easily be removed.

The third interesting feature of the linker is that

J
ii A ~mm

"N »■n I

^

-114-

Flf'j.e 15: Multics security kernel.

^ B cannot be removed because It Is used by A;
: Z may be hard to remove because It would need a
sate to reach X, which may be hard to provide.

J

^jp JB ■^BwawHPi

^ T

-115-

all kernel primitives (e.g. the FSM) it used to invoke

from inside ring 0 were already available to user rings

through gates. Thus removing it simply moved back the

boundary of ring 0 without even creating new gates through

it. Instead removing Z from the kernel in figure 15 would

require a gate to be added to reach X because X is not yet

available in the user rings.

The last three paragraphs have described overall

features of a program which make it a good candidate for

removal. Of course further functional investigation may

reveal that such a program cannot possibly be removed simply

because it deals directly with protection and is a proper

component of the kernel.

We finally would like to examine the cost of our

implementation: how much did the removal of the linker

alte- the performance of the system? Given that performance

and performance evaluation were not among the goals of our

thesis, we will not present an exhaustive performance study

of the linker. However we have run a few simple performance

tests which consists simply in measuring the time required

to snap "average" links. By "average" we mean links of the

type most frequently handled by the linker. That is links

not going cross-ring and tWt using any sophisticated features,

The measurements were taken in two different cases. First,

we measured the time required to snap a link to an object

- -

"^r ■ ■■■■

^

-116-

T4~

currently mapped in the logical address space. Secondly,

we measured the time required to snap a link to an object

not currently mapped in the logical address space. Such

measurements were carried on for both the old linker and

the new linker.

In the first case, the new linker requires 10 more

milliseconds than the old linker, which represents an

increase of 40 to 60 percent of the total time required

by the old linker to snap the link. This fixed increase

in time is independent of the amount of processing

required to handle the link itself. We attribute it to

the fixed overhead involved in signalling the link fault

in the faulting ring, invoking security kernel primitives

through gates, and requesting the kernel to validate and

restore the machine status. All these operations are

required for the new linker to operate and were not

required or not so complicated with the privileges of the

old linker. This increased overhead is the basic price

paid by our design.

In the case of the second set of measurements, the

new linker requires roughly twice as much time as the old

linker does. Such overhead is not a fixed overhead

although it contains the fixed overhead of 10 milliseconds

Instead this overhead is relatively proportional to the

J

• ■ I" T-

^

J

-117-

length of the search for the target object in the file

system. In order to speed up the search for and mapping

of a target object, it is staniard practice on Muitics

to first lo^k in the logical address space in case the

object is already there. The first set of measurements

corresponds to this case. Only if the object is not found

in the address space is the FSM invoked to search the file

system. The reason why i-his search is roughly twice as

long for the new linker as it used to be for the old one

is mainly because search rules are now directory treenames

instead of directory segment numbers. As we mentioned it

earlier, we expected this to yield a non-negligible

overhead because translation of a treename to a segment

number prior to each directory search is very expensive.

Fortunately, when the project of removing name space

management from the kernel is firished, we will be able to

restore the search rules under their old form and the per-

formance will no more suffer from the overhead described

above.

To conclude the discussion of performance, it must be

said that clearly some fixed overhead (10 ms) was paid by

the new design. However the overhead in the search is a

price paid only temporarily. In addition it is believed

that the figures presented can be improved. They are the

^mmmM

m. ^v * ■ _»J«m. !■_!» mm
^

-118-

results of very rough measurements; a more careful analysis

is clearly deeded to identify the bottlenecks in the new

linker and try to optimise the code there. Also, when

static storage allocation, trap handling and oth«*r features

will be separated from the linker as recommended, the

perfonance of the linker is likely to increase signifi-

cantly because it will no more have to check and worry

about all such peripheral features. Thus the performance

perspective is not as bleak as the above figures seem to

suggest.

Summary

This thesis has attempted to open a road towards

security kernel simplificatiun by removing the dynamic

linker from the security kernel of a computing utility.

A second wave aimed at simplification of the kernel is now

on its way to remove name space management from the

security kernel. No matter how large an effort these two

first simplifications will have required, this effort is

almost negligible in comparison to what remains to be done.

Even when we will have reached the minimal definition of a

security kernel, the hardest part of its certification will

remain to be worked out: the auditing. There exists so

far no formal theory of kernel auditing. While program

verification techriques are a first step towards kernel

J

■^ _»-U.—L'-J-P « ■ • I

^

-119-

-«tin,, they are not the panaoea_ ^^^^ a ^^^ ^

-h „„ae. than au,sitin? the _ of it3 ^^ ^^^

because of all hidden lnt6ractions between ^ ^^^^

Vet because of the incre.sing need for security and

rellablnty of info^tion stored in a conlputing

-~. Powerfui andcarefuny verified protection .echanis.s

are demanded. Protection of information is not only the

fact of defense, census, medicai or criminal information

W—. it is a vital characterlstic requ.red by our

eocrety fro. any information storage system, computers

of certification to satisfy the fundamental need for

true protection.

J
• j.

^v
-' - .' ■■ ^■«■■■^MBi^^^^"^""""^t^BW^^W^^-"P

^

J

-120-

BIBLIOGRAPHY

(1) R.M. Fano

"The Computing Utility and the Community"

IEEE Int. Conv. Record, Part 12, P30-37, 1967

(2) A.R. Miller

"l^j Assault on Privacy"

Signet, March 1972

(3) National Bureau of Standards

"Government Looks at Privacy and Security in

Ccmputer Systems"

U.S. Department of Comirerce, NBS TN 809, February 1974

(4i A.M. Noll

"The Interactions of Computers and Privacy"

Honeywell Computer Journal, 7, 3, P163-172, 1973

(5) D.B. Parker

"Threats to Computer Systems"

Lawrence Livermore Laboratory Technical Report,

UCRL 13574, March 1973

(6) D.B Parker, S. Nycum, S.S. Oura

"Computer Abuse"

Stanford Research Institute, November 1973

(7) J.H. Saltzer

"Protection and the Control of Information Sharing

in Ncities"

To appear in CACM 17, 7, July 1974

' ' **~— — - ■ — .a>^Mn*iK&!

•^r- i«i

^

-121-

(8) B.W. Lampson

"Protection" in Proc. Fifth Princeton Symposium on

Information Sciences and Systems, Princeton University,

P437-443, March 1971

(9) G.S. Graham, P.J. Denning

"Protection - Principlesand Practice"

Proc. AFIPS 1972 SJCC, 40, AFIPS Press, Montvale,

New Jersey, P417-429, 1972

(10) D.H. Vanderbilt

"Controlled Information Sharing in a Computing

Utility"

M.I.T. Project MAC, MAC TR-67, 1969

(11) L.J. Rotenberg

"Making Computers Keep Secrets"

M.I.T. Project MAC, MAC TR-115, 1974

(12) J.J. Donovan

"Systems Programming"

McGraw-Hill, Computer Science Series, 1972

(13) IBM

"IBM OS Linkage Editor"

IBM Systems Reference Library, GC28-6538, January 1972

(14) CDC

"Scope 3.4 Workshop Handbook"

CDC 6000/7000 Development: Services, 1970

j" • ^{^ai^^i^i^ ^■»"^i^^—^

^

-122-

(15) *See note

"Introduction to Multics"

M.I.T. Project MAC, MAC TR-123, 1974

(16)

"Multics Programmers' Manual"

M.I.T. Project MAC, 1972

(17) E.I. Organick

"The Multics System: An Examination of its Structure"

M.I.T. Press, Cambridge, Massachusetts, 1972

(18) R.M. Graham

"Protection in an Information Processing utility"

CACM 11, 5, P365-369, May 1968

(19) G.J. Popek

"Access Control Models"

Center for Research in Computing Technology,

Harvard University, ESD-TR-106, February 1973

(20) D.E. Bell, L.J. LaPadula

"Secure Computer Systems" (3 volumes)

Mitre Corporation, MTR-2547, 1973

(21) B.W. Lampson

"Dynamic Protection Structures"

Proc. AFIPS 1969 FJCC, 35, AFIPS Press, Montvale,

New Jersey, P27-38, 1969

-^ * "
■« ^ • »

^

-123-

(22) M.J. Spier

"A Model Implementation for Protective Domains"

Submitted to the International Journal of Computer

and Information Sciences, 1973

(23) M.J. Spier, T.N. Hastings, D.N. Cutler

"An Experimental Implementation of the Kernel/Domain

Architecture"

ACM Fourth Symposium on Operating Systems Principles,

Yorktown Heights, New York, 1973

(24) M.D. Schroeder

"Cooperation of Mutually Suspicious Subsystems in

a Computing Utility"

M.I.T. Project MAC, MAC TR-104, 1972

(25) W.A. Wulf et al.

"Hydra: The Kernel of a Multiprocessor Operating

Sy«tem"

Carnegie-Mellon University, Computer Science

Department, 1973

J
—A—^^^-ai

-^^ • ■■■ m

^ 1
-124-

*Note:

This manual contains a series of reprints which originally

appeared elsewhere:

F.J. Corbatö, J.H. Saltzer, C.T. Clingen

"Multics - The First Seven Y^ars"

A. Bensoussan, C.T. Clingen, R.C. Daley

"The Multics Virtual Memory: Concepts and Design"

R.C. Daley, j.B. Dennis

"Virtual Memory, Processes, and Sharing in Multics"

J.H. Saltzer

"Protection and the Control of Information Sharing

in Multics"

M.D. Schroeder, J.H. Saltzer

"A Hardware Architecture for Implementing Protection

Rings"

R.A. Freiburghouse

"The Multics PL/1 Compiler"

J.H, Saltzer, J.F. Ossanna

"Remote Terminal Character Stream Processing in Multics"

R.J. Feiertag, E.I. Organick

"The Multics Input/Output System"

- ^ -

■^T" J4AI« ■^■W—■

^

-125-

Appendix: Gates removed from the Multics security kernel

To illustrate the variety and the number and the

complexity of the functions removed from the Multics

kernel by the implementation described in Chapter IV,

we list here all gates removed from the kernel with their

respective description.

assign_linkage

allows the user to request the static storage

allocator to allocate a given amount of space in

the els of the requesting ring. A pointer to

the allocated space is returnee*;

fs_search_get_wdir

allows the user to ask the treename of his current

working directory. The working directory is used in

the search rules and can be any directory so definad

by the user;

fs search_set_wdir

allows the user to define his new working directory;

ge t_co un t_l ink age

allows the user to obtain a pointer to the static

storage of a segment given a pointer to and the

bitcount of that segment;

J
■

TT .'" ^ ^~ii

^

-126-

get_defname_:

is a generalization of get_entry_name for entries

not necessarily into executable programs;

get_entry_naine:

allows the user to find out the name of en entry into

a program given a link to that entry;

get_linkage:

is essentially the same as get_count_linkage but does

not require the bitcount of th^ segment under concern;

get_lp:

allows the user to get a pointer to the static stor-

age of a program in the requesting ring given a

pointer to the segment containing the program;

get_rel_segment:

allows the user to get a pointer to the definition

or the linkage section of a segment given a pointer

to the segment;

get_search_ rules:

allows the user to find out what his current search

rules are;

get_seg_count:

allows the user to get a pointer to and the bitcount

of a segment given the segmer name;

get_segment:

same as above but doesn't return the bitcount;

M^te

"57 -S
1- _»il4.J " »■

^

-127-

initiate_search_rviies:

allows the user to define new search rules and enable

tiem in the current ring;

link_fcrce:

allows the user to force a link to be snapped. This

is a "static linking" entry in the dynamic linker;

make_ptr:

allows the user to fabricate a pointer (i.e. a link)

to an object from scratch, given the symbolic name

of the object;

rest_of_datxnk:

allows the user to grow a data object under a given

symbolic name if that object doesn't exi3t yet. This

is a gate into one of the sophisticated feature

handler hooked to the linker;

set_lp:

allows the user to set the static storage pointer for

a given program in the current ring;

unsnap_service:

allows the user to undo the work of the linker by

unsnapping any link the linker may have snapped in

the requesting ring to a given entry.

J
i m»

^r » ^^^

^

-128-

We hope this exhaustive list of once gates into the

linker has convi;iced the reader of the variety and the

complexity of the linker interface. This is one of the

reasons why it was very desirable and rewarding to

remove it from the kernel. In addition to having to

audit 18 gates into the kernel, on the average 4 arguments

per gate had to ho validated, which increased the complexity

and the certification problem even more.

■ i — - - mi

