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ABSTRACT 

ev^    ln.order to enforce the security of  the  information 
Su  fei.in  a  comPuting  utility,   it  is necessavry  to certiiy 
SU Ii!e Protection mechanism is  correctly implemented so 
that there  exist no  uncontrolled access path to the stored 
information.     Certification requires  that the  security 
kernel be much smaller and simpler  than  the  supervisor of 
present general purpose operating  systems.     This  thesis 
explores one  aspect of  improving  the  certifiability of a 
computing  utility by designing a dynamic  linker that runs 
outside  the  security kernel domain. 

The  dynamic  linker is designed  to run   in  any user 
protection  domain of  a muicidomain  computing utility      It 
is  shown  that  the  dynamic linker never needs  the privileges 
?LTI 

securitv kernel  to Properly operate.     In particular, 
the thesis  aemonstrates  the ability of the dynamic  linker 
to link programs  together across  domain boundaries without 
operation.^ pr0tection of either  ^^in involved in the 
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I.  Introduction 

1.  Security Kernel 

The concept of computing utility designates a computer 

system or a network of computer systems dedicated to ser- 

vice a community of users (1).  The type of the computers, 

of the services rendered and of t-.he community of users may 

vary widely.  Yet it remains that in all cases one of the 

most important features of the computing utility is to 

provide the users of the community with the ability to share 

the resource^ of the system.  We will be specifically con- 

cerned about sharing the information stored in the compu- 

ting utility.  Different members of the community of users 

may have different intentions which are in conflict with 

one another with respect to the stored information.  Some 

user might willfully or accidentally access (use, steal 

or modify) the information kept by another user in the 

computing utility.  Hence uncontrolled sharing of all 

information poses a direct threat to the security of the 

information and to the privacy of the individuals con- 

cerned by the information (?-6). 

In order to enforce the security of the information 

and to safeguard the privacy of the individuals concerned 

by the information, the access to the stored information 

must be controlled by some protection mechanism (7-11). 

y 
. i i — 
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However, no protection mechanism will serve our purpose 

unless it is trusted by its users.  Several features of a 

protection mechanism contribute to make it reliable (6,15). 

It is not our purpose here to discuss or even to list these 

features.  Only one of them is of interest to us:  the 

certification of correctness of the protection mechanism. 

Certification of correctness guarantees that the protection 

mechanism completely controls the access to the stored 

information, that it is an effective implementation of the 

desired protection scheme, and that there is no way a user 

program could subvert, circumvent or modify it to gain un- 

authorized access to the stored information.  Certification 

of a protection mechanism is the result of a careful audit- 

ing of each component contributing to the protection of 

the stored information.  Such auditing not only includes 

a verification of the intention and the implementation of 

each component of the protection mechanism but also a ver- 

ification that interactions among them and with the outside 

world cannot cause malfunction or unexpected behavior 

resulting in unauthorized access to information. 

The protection mechanisms are usually implemented by a 

combination of hardware and software.  The programs and 

data bases of the software portion are a very sensitive 

part of the computing utility, for they control who can 

access what irformation.  As a result, this protection 

J 
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software must be isolated from and protected against other 

programs in the computing utility.  Any protection software 

component, if tampered with, could cause unauthorized 

access to stored information.  Hence, user programs must 

be prevented from modifying, subverting or circumventing 

the protection software.  Such enforcement should provide 

a complete control over the interactions between the pro- 

tection software and other programs in a computing utility. 

The security kernel of a computing utility is that 

part of the software which could, as a result of a bug or 

malicious alteration, cause unauthorized access to infor- 

mation.  Thus it is the programs and data bases of the 

protection software plus any other programs (and data 

bases which control their behavior) that have direct 

access to the protection software. 

In most systems the security kernel corresponds closely 

to the supervisor.  It includes a great many programs and 

data bases that are not functionally part of the protec- 

tion software.  As a result, the security kernel is much 

larger and more complex than the subsystem which implements 

the protection mechanisms.  This is unfortunate, because 

it is the entire security kernel which must be certified 

to establish confidence in the security of stored infor- 

mation.  Extra size and complexity make certification 

more difficult. 

j 
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This thesis will explore one aspect of making the 

security kernel of a computing utility smaller, simpler, 

and thus more cerlifiable by developing a system design 

in which the linking function is outside the security ker- 

nel.  The linker of a computing utility is the program 

responsible for binding together separate procedure and 

data modules to build larger program elements.  In current 

systems, the linker is almost always part of the security 

kernel, but as will be demonstrated in this thesis, is not 

part of the protection software.  Removing the linker can 

significantly reduce the complexity and the size of the 

security kernel. 

2.  Dynamic Linker 

In writing a complex program, it is extremely desirable 

to subdivide it into several modules.  In doing so, the 

complexity of the programming task is reduced for the 

modules can be programmed and tested independently and 

existing modules may be incorporated into new programs. 

The idea of modularity implies the existence of some mech- 

anism to assemble modules into larger programs.  The 

writer of a module must be able to connect his module to 

others.  One simple way to achieve the connection is to 

give a symbolic name to each module and to denote it by 

that, name in other modules.  This establishes a symbolic 

■ cimii.- 
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link between the two modules.  The problem is that symbolic 

links are meaningless for the hardware of the processor. 

For a symbolic link between two modules to become a snapped 

link usable by the processor, the symbolic name used by 

the programmer must be translated into the logical (hard- 

ware interpretable) address of the module denoted by the 

symbolic name.  When used to combine separately compiled 

modules translation is called linking.  The program which 

takes care of the translation is called the linker. 

There exists a wide variety of linkers which we will 

not describe here (12). Often a linker is invoked when a 

program is loaded into primary memory.  Before control is 

given to that program, each symbolic name it uses is 

translated into a logical address by the linker.  In 

other schemes, control is given to a program module as 

soon as it is in primary mei.iory.  When execution of the 

module hits a symbolic name, a hardware event (fault, inter- 

rupt, trap) triggers the linker execution to translate the 

symbolic name into a logical address.  Execution resumes 

after the link is translated (snapped). This type of 

linking is called dynamic linking and is carried on by a 

dynamic linker.  It is more flexible and saves the cost 

of loading into memory and linking together modules 

which may not be used by the program every time it is 

invoked.  Although the rest of our thesis will be talking 

rf^Mi - i «MM 
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about dynamic linkers, the results of the research are 

also applicable to regular linkers.  The problem is more 

challenging for dynamic linkers precisely because of the 

dynamic aspect introduced by the hardware events. 

3.  Background 

Certification is a relatively recent topic in the field 

of computer science.  Many authors have occasionally men- 

tioned the need for certification, as we did here.  But 

there exists no concensus on the best way to certify a 

large software system.  The area is not very well struc- 

tured and much work has still to be done to organize it. 

Yet most of the papers on that topic seem to agree that 

whatever hypothetical method is used to audit and certify 

the security kernel, the correctness of a "simple" kernel 

will be easier to verify than the correctness of a 

"complex" kernel.  A small number of modules, strict con- 

straints on the interactions between the modules, method- 

ical design, systematic implementation, precise supporting 

documentation, simple language constructs, formatting and 

readability are factors likely to simplify the task of 

auditing the security kernel.  Conversely, a large number 

of modules will undoubtedly complicate the problem.  In 

addition, it is likely to increase the number of inter- 

actions to worry about.  Complexity and sophistication of 
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the modules themselves would also make auditing harder. 

A good guideline when trying to simplify the security 

kernel is the principle of least privilege.  This princi- 

ple is the equivalent of the military "need-to-know" rule. 

It states that any program module should be granted just 

the privileges it needs to properly operate and no more. 

Modules of the security kernel should be granted the 

privileges of the security kernel on the basis that they 

contribute to the protection of the stored information. 

Modules not contributing to the protection goal should 

not be able to use such privileges.  Keeping them inside 

the security kernel increases the size and complexity of 

the kernel and brings in functions and constructs that are 

hard to validate with respect to the protection goal of 

the kernel.  Keeping them outside the kernel cuts down on 

the number of modules and interactions to be considered 

as part of the certification process.  A module cannot 

abuse privileges it doesn't have to modify, circumvent, or 

subvert the security kernel operation. 

4.  Motivations 

Designing a dynamic linker to run outside the security 

kernel environment of a computing utility is motivated by 

the desire to improve the certiflability of the protection 

/ 
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mechanism in the system under concern.  A linker is char- 

acterized by four features which suggest it should run 

outside the security kernel of the system to ease the 

auditing of the kernel. 

Firstly, a linker does not implement any concept re- 

lated to the protection of the system, or needed to support 

the protection mechanisms. 

Secondly, in view of the function implemented by the 

linker, it seems reasonable to suspect that the linker 

does not need any of the privileges granted to typical 

modules of the security kernel.  Therefore, the least 

privilege principle implies that the linker be outside the 

security kernel. 

Thirdly, a linker is in general a very complex program. 

Even though its fanction is easy to describe, the details 

of its i-aplementation require the use of intricate and 

sophisticated language constructs which make the reading 

and auditing of the program a quasi impossible task. 

Finally, the linker, by its very nature handles data 

directly accessible to the users of the system.  Such 

data could contain - purposely or not - inconsistencies 

capable of causing the linker to malfunction or perform 

unexpected operations.  One suspects that it is much 

harder to verify the correct operation of a program when 

it can be presented with an arbitrary input than to verify 

J 
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correct operation when a "correct" input is guaranteed. 

Since malfunction and unexpected behavior are ruled out 

for prograir. components of the security kernel, very 

sophisticated machinery would be required to verify the 

consistency of user requests to the linker and insure 

proper operation.  Even if such machinery were available, 

it would only increase the complexity of the linker. 

Again we come to the conclusion that the linker should 

not be part of the security kernel.  If so, no malfunction 

of the linker will ever subvert the protection mechanism 

of the system and cause unauthorized access to protected 

information. 

To Fommarize our motivation we can say that designing 

the linker to run outside the security kernel environment 

of a system is a step towards simplifying, isolating and 

better defining the security kernel, thereby making its 

auditing easier. 

5.  Objectives 

The motivation for our thesis is based on four argu- 

ments which suggest that the linker should run outside 

the security kernel environment of the system.  The first 

objective of our thesis is to show that it can run outside 

the security kernel.  We will have to show that the linker 

indeed does not contribute anyhow to the protection of the 
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syste.: and is „ever needed to support the operation of the 

kernel.  We also will have to show the inverse relation; 

that is, the linker does not use or need any of the priv- 

ileges of the security kernel modules.  We eventually will 

have to show that the idea of forcing the linker to exe- 

cute outside the security kernel environment does not 

introduce any unsuspected, unsolvable problems. 

Clearly we would not pay so much attention to our 

problem if its solution were obvious and if all linkers 

known today were running outside the security kernel 

environment of the system for which tney were designe 

There exist a few systems (13) where the problem has been 

solved.  However, it was solved only for the very simple 

case of a static linker binding modules together inside 

one protection environmenf.  instead cur thesis will pro- 

pose a general solution of the problem for a dynamic 

linker binding modules together acros^protection environ- 

ment boundaries.  The design t. be proposed can be applied 

to any type of computing utility with some variations 

which we will eventually mention when appropriate. 

Except for a few cases already mentioned, all systems 

are designed with their linker being a component of the 

security kernel, and having the privileges of the security 

kernel (14).  The second objective of the thesis is to show 

the feasibility of the design to be proposed for a 
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particular real world system.  We have chosen to remove the 

linker of the Multics (Multiplexed Information & Computing 

Service) (15-18) system from the security kernel environ- 

ment and to force its execution into the user environment. 

The linker presently runs in the environment of the 

security \ernel of Multics as do many other components of 

the system which do not belong in the security kernel either, 

The main reason for this design was that the cost of 

dynamically changing the protection environment of a 

computation was prohibitive in the initial version of 

Multics.  Hence, it was decided to include many system 

components in the security kernel that were not part 

of the protection mechanisms in order to minimize the 

number of times the protection environment was changed 

in the course of a computation.  Snapping a single link 

requires two environment changes with the linker inside 

the security kernel, but may require 10 to 100 with the 

linker outside.  A second version of the Multics hardware 

(15) has reduced the cost of a change in protection 

environment to the level of a normal interprocedure 

call.  As a result, there is no longer an economic 

incentive to leave the linker in the security kernel. 

t - *— M^i 
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Before we go on to deveiop the design we will mention 

a third o'oeotive ot  the thesis.  In removing the dynam.c 

linker from the seourity kernel of Multios. we hope to 

estabiish a few more criteria for deciding whether or not 

a program belongs in the security kernel of a system.  M. 

also hope to better define what general programing fea- 

tures contribute or hinder the task of removing a program 

from the security kernel.  These lists of criteria and 

features of interest will certainly be as helpful as the 

removal of the linker itself to better define the security 

kernel ,« a computing utility in general and of Multics in 
particular. 

6.  Plan of the Thesis 

Before we come to the body of the thesis we would like 

to briefly describe how we will develop the research and 

carry it on to the detaii.,J implementation of a linker 

running outside the security kerne! of a computing utility. 

Chapter II „in develop a computing utility model where 

emphasis will be put on features directly relevant to our 

research.  The model will serve as a basis to describe the 

design and it will help the reader to apply the design to 

different systems by matching the model with that system. 

Chapter in will propose a complete design of relevant 

parts of the computing utility.  Problems encountered in 

the design „ill be discussed and solutions will be proposed. 
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In Chapter IV we will demonstrate the feasibility of 

the proposed design by describing its implementation on 

Multics. 
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II.  A Computing Utility Model 

In order to better define the features of the df;dign 

we will propose, and ^o generalize its applicabilitv to 

any computing utility, we will describe a computing utility 

model. This will enable us to explain the proposed design 

in terms of the model.  It will enable the reader to apply 

the design to cny specific computing utility by matching 

that computing utility with the model. 

We will develop the model in two steps.  Firstly, we 

will describe a protection model suited to the environment 

of a computing utility.  Secondly, we will build on top of 

this model an information storage model suited to the 

needs of a dynamic linker.  The model will help us to 

better define the concepts of protection environment and 

logical address space which we have occasionally mentioned 

but have not carefully defined yet.  We then will explain 

in detail the operation of the linker in terms of the 

model.  This will greatly simplify the subsequent, descrip- 

tion of the design of a linker running outside the security 

kernel of a computing utility. 

1.   Information Protection Model 

In order to better understand and study the problems 

related to protection of stored information, several 
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structural ard mathematical models of proteccion schemes 

have been proposed (19,20).  We will briefly describe here 

a model based on the concept of protection domain (21,22). 

This model will help us understand what is meant ^y a 

protect Lon environment and particularly what the security 

kernel environment is. 

For the purpose of our discussion, we will talk about 

the environment of the computing utility in terms of 

objects and subjects.  Objects are passive.  They are the 

information containers of the computing utility.  They 

must be protected to prevent unauthorized access to 

stored information.  Objects are the procedures and data 

bases stored in the computing utility.  Subjects are 

active.  Subjects are the internal representation of users 

of the computing utility.  Subjects, sometimes called 

processes or jobs, act on behalf of users to create, 

delete, modify, use and manipulate objects. 

Subjects can access objects by means of capabilities. 

A capability is an identifier denoting some object in the 

computing utility.  Any subject possessing a capability 

for an object is entitled to access that object. 

The set of capabilities available to a given subject 

defines the do;uain of execution of the subject.  The domain 

of execution of the subject is the protection environment 

where the subject operates. 

i i mmi ■ I 
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When a subject changes domain of execution, it changes 

its set of capabilities.  He can enter a n3W domain of 

execution only through a gate.  A gate is a procedure 

object which forces entrance to a domain to coincide with 

invocation of certain procedure objects in the domain. 

These procedures completely determine the activity of the 

subject la the domain.  For a given subject, a gate is an 

entry point into a given domain.  However, for two 

different subjects, the same gate object leads into dis- 

tinct domains.  We make the assumption that each domain 

can be entered by only one subject. Thus when two subjects 

wish to enter the "same" domain, they are actually 

installed into distinct domains containing equivalent sets 

of capabilities. 

With this model in mind we can better talk about the 

environment of the security kernel.  For each user compu- 

tation, i.e. for each subject of the computing utility, 

there exists one domain-the security kernel domain (23,25)- 

where capabilities exist for the subject to access pro- 

cedure and data objects of the security kernel.  Access to 

the data objects is constrained by the access pattern 

encoded in the procedures of the kernel.  Access to the 

procedures is further restricted to certain entry points: 

the gates into the security kernel domain.  Hence complete 

control is gained on the interactions between the kernel 

J 
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and the OUL.ide world.  The security kernel is a so called 

protected subsystem, (24,25) an instance of which exists 

in the first domain created for each subject in the com- 

puting utility. 

2.   Information Storage Model 

The previo\:s paragraphs have made more precise the 

notion of protection environment. We will now consider 

the concept of logical address space. 

The set of all objects in a computing utility con- 

stitutes the file system of the computing utility.  Among 

these objects is a particular set of objects called 

catalogs.  Catalogs are data bases containing descriptive 

information about sou.^ ret  of objects.  One of the items 

contained in a catalog about each object described in that 

catalog is the physical address of each object.  The 

physical address of an object defines where the object is 

located on some memory device attached to thr  computing 

utility.  The physical address of an object must be clearly 

distinguished from its logical address.  The logical 

address of an object is the address by which an existing 

subject references the object.  Only logical addresses are 

meaningful to processors executing machine code.  An 

object always has a physical address even when it resides 

on secondary storage and no subject uses it.  But it may 
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not have any logical address if no subject uses it. 

Assigning a logical address to an object on behalf of a 

subject is the role of the file system manager (FSM) . 

When a subject wants to assign a logical address to 

an object, it must pass to the FSM the unique identifier 

of the object.  The unique identifier of an object can be 

a unique name, a unique number, or a catalog unique iden- 

tifier and the symbolic name of an object in that catalog. 

Unique identifiers are different from symbolic names in 

that more than one object may have the same symbolic name 

as long as they are described in different catalogs, but 

no two objects can have the same unique identifiers. 

When given a unique identifier, the FSM performs two dis- 

tinct functions.  Firstly, it searches the file system to 

find the description of the object denoted by the unique 

identifier.  If the search fails or if the FSM decides that 

the requesting subject does not have the right to know about 

the object under concern, an error message is returned 

and no action is taken.  If the search succeeds and the 

requesting subject has the right to know about the object, 

the FSM maps the object into a logical address of the 

address space currently seen by the subject (enables a 

logical address) , remembers the binding between the 

unique identifier and the logical address, and returns the 
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logical address to the subject. 

One question is now in order.  What is the real 

nature of a logical address?  Since the FSM, a component 

of the security kernel, releases logical addresses on the 

basis of a protection decision, a logical address is 

merely a capability to access an object.  As long as a 

subject has no enabled looiczl  address for an object, it 

cannot reference that object.  If and when a logical 

address is enabled and delivered to the subject by the 

FSM, it gains access to the corresponding object, i.e. it 

has a capability for that object.  This establishes the 

connection between our information protection model and 

our information storage model. 

This connection between the two models brings up the 

question of the nature of the logical address space.  Since 

a capability for an object is granted to a given subject 

in a given domain, one might wonder whether the logical 

address allocated to the object is valid only for that 

subject in that domain.  In other words, once a logical 

address is assigned to an object for some subject in some 

domain, will that subject see the same object at the same 

address in other domains? Will all subjects see the same 

object at the same address in all domains? The answer to 

these questions depends very much on the type of logical 

address space supported by the system under concern.  In 



^ 

' 

-27- 

the simplest case, where the logical address of an object 

is its primary memory address, if any, then we can talk of 

a system wide address space.  Once an address of the space 

is allocated to an object, all subjects in all domains 

will see that object at that address if they have access 

to it.  On a virtual memory system, each user, i.e. each 

subject may have one address space of its own.  When an 

address is allocated to an object in a subject address 

space the subject will see the object at that address in 

all domains where he can access the object and the address 

will be meaningless (not usable) in other domains.  But 

all other subjects may or may not use the corresponding 

address of their own address space for the same object. 

Finally in some systems, there may be one address space 

in each domain.  Such is the case, for instance, of base 

and bound machines. A domain is defined by the base and 

the bound of its address space.  A logical address is 

mapped into a physical address by relocating it relatively 

to the base and within the bound of the address space of 

that domain.  Once an object is mapped into one address 

space, the address space of another domain may or may not 

contain the same object at the same logical address depen- 

depending on what its base and bound are.  To conclude this 

discussion, we will assume for the rest of this thesis, 

that the concept of address space, when unqualified, means 

J 
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the address space seen by the given subject in the given 

domain.  Unless specifically stated, no assumption will be 

made about who can see the same address space in what 

domain. 

3.   A Dynamic Linking Model 

The last paragraph described the models we will use 

to support our design.  Before we move on to the design 

itself we will describe the detailed operation of linker 

with respect to the models.  In doing so, we will not have 

to worry about what a unique identifier, a logical address, 

a domain, or a gate is.  We know that all these concepts 

can be identified in any computing utility and that our 

description can be based on them without ambiguity. 

Whenever a subject executing an object encounters a 

symbolic name of, or a symbolic link to another object, 

a hardware event called a link fault occurs.  As a result 

of the link fault a copy of all machine registers, called 

the machine status, is handed to the linker. 

The first task of the linker is to analyze the machine 

status to determine which symbolic link caused the fault 

and which object was being executed at the time of the 

fault.  This object is called the faulting object.  The 

domain where it was executed is called the faulting domain. 

J 
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By searching the faulting object, the linker will find a 

complete description of the symbolic link and in particular 

the symbolic name associated to the link which designates 

some object of the environment.  This object is called the 

target object of the link.  The domain in which it belongs 

is called the target domain. 

The second task of the linker is to search for the 

target object in the file system and to map it into the 

logical address space.  In order to do this the linker 

will of course need to invoke the FSM.  The search is 

driven by so called search rules.  Each domain has 

associated with it a different set of search rules. 

Search rules are an ordered set of catalog unique iden- 

tifiers.  Of course, it is irrelevant to talk about search 

rules when the file system is one single catalog.  However, 

in general, it contains many catalogs.  The seaich rules 

force the linker to search only some of these catalogs 

in the desired order.  The linker takes one search rule 

at a time, combines it with the symbolic name of the 

target object thereby making an object unique identifier. 

The linker hands the unique identifier to the FSM to search 

the file system.  If the search fails, the FSM returns an 

error code to the linker.  The linker will keep trying 

the next search rule, if any, until a search succeeds. 
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In this case the FSM returns the logical address of the 

target object to uhe linker. 

The third task of the linker is then to translate 

the symbolic link into a snapped link usable by the pro- 

cessor.  This is called snapping the link.  The linker 

just replaces the symbolic name in the link by the 

logical address of the target object. 

Finally the linker must modify the machine status 

to force the executing subject to reuse the now snapped 

link. 

By a mechanism external to the linker itself, the 

machine status is then restored so that the executing 

subject jumps back to where it was just before the link 

fault. 

Once a symbolic link is replaced by a logical link, 

it will no more cause any link fault for the current 

subject in the current domain. 

I t   Ml— -  ^ - 
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III. Design 

1.  General 

The last chapter presented a computing utility model 

which will be used to support the discussion of the design. 

The steps in the operation of a dynamic linker have been 

described.  As it should now be clear to the reader that 

programming the linker itself is a feasible task, the 

current chapter will rather concentrate on the problems 

of inserting such a linker into the overall design ot a 

computing utility such that it be outside the If curity 

kernel.  The next chapter will then present a test case 

implementation of the design to demonstrate the use of the 

model in identifying the components of a real system and to 

show the feasibility of implementing the design on a real 

system. 

In developing the discussion of the design we will 

try as much as possible to progress naturally and to 

handle each problem as it shows up.  In a first section 

we will explain how the security kernel can operate 

without the help of the dynamic linker.  In the remaining 

sections we will demonstrate that the dynamic linker can 

operate without the privileges of the security kernel. 

This order of discussion coincides with the order of 

events when a computing utility is brought up into 

operation:  the security kernel by its fundamental 

. ' 
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purpose is the first subsystem to be operational and is 

used to bring up the rest of the system functions, the 

dynamic linker among others. 

We do not claim in any way that the design to be 

outlined is the only possible design solving our problem. 

By its very nature, the topic of the research poses 

several structural problems which are easy to identify 

and to describe.  However, designing solutions to these 

structural problems cannot be done systematically as 

would be the case for mathematical problems.  Solutions 

to a particular structural problem may bring up other 

structural problems.  It is hard to predict and to control 

the propagation of the effects of a particular solution 

to a particular problem.  Hence it is hard to estimate a 

priori which solution minimizes the number and the mag- 

nitude of hidden potential problems.  As it is impossible 

to discuss all solutions in detail, we will attempt to 

justify our choice between different solutions whenever 

possible, and especially where a sophisticated solution 

has been prefered to an apparently more obvious one. 

Even so, we do not claim that all possibilities will be 

discussed.  We are convinced that equivalent designs could 

be proposed.  We believe only that our design is among 

the simplest ones. 
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Finally, we will attempt as mucn as possible to be 

sufficiently precise in the discussion of the design to 

convince the reader that subsequent implementation is 

practical and straightforward.  At the same time, we will 

try to remain sufficiently abstract to enable the reader 

to implement the design on any general purpose computing 

utility. 

..' 

2.   Security Kernel Initialization 

Before any user can request service from a computing 

utility, the system must be brought up into operation. 

This initialization task is done under the responsibility 

of a subject called the initializer.  The initializer must 

cause the loading and set up of all programs required to 

support the operation of the syste. i.  The first of all 

subsystems which needs to be initialized is the security 

kernel because of its fundamental function:  generating 

other subjects and domains ror these subjects would be 

impossible without an operational security kernel.  We 

are concerned about one aspect of making the kernel 

operational.  Like all subsystems in a computing utility, 

the security kernel is a modular program.  Hence its 

operation does require a linking function to combine the 

modules together.  However, our objective is to propose 

a design where no dynamic linker exists in the security 

.*-_^fciM 
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kernel domain.  The security kernel is not allowed to cause 

link faults.  Hence all links of the security kernel must 

be snapped prior to the operation of the kernel.  This 

task is part of the security kernel initialization. 

Linking together all modules of the security kernel 

requires the help of a static linker.  Essentially two 

types of static linker could be used:  a binder or a 

prelinker.  The binder is a static linker which prepares 

once and for all a fully operational security kernel 

that can be used without any further initialization as 

many times as desired.  The prelinker is a static linker 

which links the modules of the security kernel together 

each time the system is stacked, during an initialization 

phase. We will not describe the detailed design of either 

a binder or a prelinker.  This topic is below the level 

of our discussion.  We will ask the reader to realize that 

writing a static linker is feasible in many ways.  We 

will just discuss the properties of each type of static 

linker. 

The technique of the binder seems both simple and 

economical.  It is economical because the links of the 

security kernel are snapped only once for a given system 

version and the resulting operational security kernel can 

be reused as many times as desired.  It is simple because 

.^A. •dki ——- *mm 
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auditing and certification of the kernel must be done 

only once on the final operational kernel.  The binder 

is kept outside the environment to be certified; only 

the results of its operation are to be audited. 

The technique of the prelinker instead requires that 

the prelinker be audited and certified.  Since domains 

are meaningless until the security kernel is initialized 

to support them, the virgin environment seen by the 

initializer may be viewed as just one single domain 

bound to become the domain of the security kernel.  Con- 

sequently the prelinker of the security kernel which is 

executed prior to any module of the kernel is in some 

sense a component of the soon-to-be kernel.  The pre- 

linker must therefore be certified.  By now the reader 

may wonder what is gained by the prelinker technique. 

We want to remove the dynamic linker from the security 

kernel but we propose to keep a prelinker in the kernel. 

Firstly, the use of a prelinker may make the system 

initialization more flexible.  The use of a binder fre- 

quently implies that not only the version of the system 

but also the initial configuration of the system (hard- 

ware configuration and sizes of various supervisor tcibles) 

always be what the binder assumed.  Instead, in the case 

of the prelinker, even though the version of the system 

used may always be the same, the configuration of the 

- 
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system may be changed each time the system ia started by 

properly notifying the prelinker of relevant configuration 

data to be respected.  Thus a prelinker is more flexible 

than a binder. 

äcondly, believing that the certification of the 

prelinker is just as bad as the certification of the 

dynamic linker is wrong.  By its dynamic aspect, by the 

requirement that it be able to deal with objects scattered 

in a large file system, and by the fact that it may support 

miscellaneous sophisticated linking features needed by 

user programs (see next chapter), the dynamic linker is 

a much more elaborate program than the prelinker.  The 

prelinker is a static linker; it deals only with objects 

of the supervisor concentrated in just a few well known 

catalogs of the file system; and it may not support 

sophisticated linking features because security kernel 

modules, unlike user modules, may be programmed to avoid 

such features.  In addition, by its very nature, the pre- 

linker is an atomic program while the dynamic linker is a 

modular program.  All such factors make a prelinker a lot 

simpler and hence easier to certify than a dynamic linker. 

Finally since the prelinker is needed only during 

initialization the security kernel can discard its own 

capability to ever again access it during regular system 

operation.  Thus the prelinker cannot be executed again 

J 
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once the system is initialized, and therefore it cannot 

hurt the system.  This also simplifies the problem greatly. 

Consequently, the choice between binder and prelinker is 

a choice between relative certiflability and flexibility. In 

general this choice is independent of where the future 

dynamic linker will be running.  Since the implementation 

to be described in the next chapter is based on the pre- 

linker idea, we will assume the same idea in this chapter. 

However, we acknowledge the fact that using a binder is 

most probably equivalent as far as our thesis is concerned. 

We will now temporarily abandon the operational security 

kernel we have obtained.  The next section will first dis- 

cuss a few design principles and then carry on the develop- 

ment of the system by ouilding other domains around the 

security kernel. 

3.  Dynamic Linker Initialization 

a.  Design Principles 

In the previous section, we have shown how the 

security kernel modules can be linked together without the 

help of the dynamic linker.  Once linked, they no longer 

need any linker, thus they can operate without one.  The 

rest of this chapter will examine the other side of the 

design.  It will be demonstrated step by stet that the 

dynamic linker can operate outside the security kernel. 
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It seems that the first problem we encounter is to 

define what "outside" means.  One half of our design is to 

remove the linker from the domain of the security kernel. 

The second half of it is to decide in which other domain 

or domains the linker will run. 

It seems very appealing to simply install the linker 

once and for all in a domain of its own (see figure 1) where 

a subject will be able to go if and when necessary.  Even 

though this solution may seem clean and obvious, it is very 

likely to raise implementation problems.  Indeed, on each 

link fault, the linker domain would have to be provided 

dynamically with appropriate capabilities to access the 

faulting object, and perhaps the target object or even 

other objects in the faulting or the target domain.  When 

the dynamic linker was always running in the same domain 

and that domain was the security kernel domain, providing 

it with dynamic capabilities was easy given the unique 

privileges available in the security kernel.  However, 

this is no more true if the linker runs in a domain 

different from the security kernel domain.  Furthermore, 

a linker domain containing capabilities for objects in 

several domains, even if only one at a time, can poten- 

tially operate as an unauthorized information channel 

between these domains if it malfunctions.  Therefore, such 

a linker must be certified to prevent potential unauthorized 

j i —i 
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Flgure 1: Different environments for the linker 
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access to the information. 

A second potential answer can be found by thinking 

in terms of capabilities.  Since the linker will need to 

access objects in the faulting domain and perhaps in the 

target domain, both domains seem potential candidates to 

host the linker.  The target domain is actually not a 

good candidate because it is not determined until the 

target object is identified.  Hence it is undetermined 

at the time of the fault and the only domain where the 

linker could initially run is the faulting domain which 

is easily determined by .he machine status. 

Consequently, even though we do not definitely reject 

the first solution, we strongly recommend and will fur- 

ther assume the second solution which at least guarantees 

easy access to the faulting domains and eliminates a 

security threat.  It will be seen that access to the 

target domain is usually not required and eventually easy 

to provide.  In the above discussion we have identified 

the major problem of removing the linker from the security 

kernel domain:  it no more has alj. the privileges to access 

any object in any domain; each particular invocation of 

the linker will see access capabilities constrained to 

those of the faulting domain for the invocation (see 

figure 1) . 

- - 
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We have just decided to design the linker to run in 

"the" faulting domain.  Since any domain is a potential 

faulting domain except for the security kernel domain, the 

linker must be made "available" in all domains except the 

security kernel domain.  The second problem which we will 

now discuss is the notion of availability of the linker 

in a domain.  What does availability of the linker mean? 

Firstly, it means that capabilities must exist in all 

domains, except the security kernel domain, to execute 

the linker.  Providing such capabilities in each domain 

is rather trivial and should pose no implementation problems 

Secondly, a dynamic linker, like most programs of a 

computing utility is a modular program.  As such proper 

operation will be possible only if there exists a means 

to snap links between the various modules involved in 

dynamic linking.  For most programs in a computing 

utility links can be snapped dynamically.  In the case 

of the dynamic linker, this proposition is nonsense: 

if the dynamic linker contains unsnapped links, it is not 

operational and cannot count on itself to snap its own 

links.  Hence a static linker must be used to link the 

dynamic linker modules prior to using them.  As long as 

. .ie linker was part of the security kernel, its modules 

were linked together by the prelinker of the security 

kernel.  Now we have removed the linker from the kernel. 
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it will no more be automatically pralinked.  Hence, its 

modules must somehow be linked together independently to 

make it operational in other domains.  We may ask ourselves 

what sort of links exist in the dynamic linker and have 

to be snapped statically.  The linker is a set of proce- 

dures and data modules which according to our objective 

can be executed in any domain except the security kernel 

domain.  Clearly at least all links between these modules 

must be snapped to ensure proper operation.  In addition, 

the earlier description of the linker operation mentioned 

the need to invoke the FSM.  Since the linker is anywhere 

but in the security kernel, it can invoke the ESM only 

through one or more gates into the security kernel.  Hence 

there will exist links to these gates.  They must also be 

snapped.  Consequently, the situation can be pictured by 

figure 2.  Each domain has capabilities, like domain D, 

to execute "the" linker.  "The" linker is the set of all 

procedures and data bases potentially invoked in dynamically 

linking two modules.  The linker also contains one or more 

links to security kernel gates.  Notice that these gates, 

as kernel components, are guaranteed to be further pre- 

linked to internal modules of the kernel during system 

initialization.  Hence we do not need to worry about them 

anymore even though they contain links to be involved in 

dynamic linking. 
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Flgure 2: Linker and security kernel 
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b.  Prelinking the linker 

We are now in a position to discuss how static 

linking of the dynamic linker can be done.  We had left 

the development of '-.he system at the stage where the 

security kernel was operational in the first and only 

domain ol the environment.  We will now pursue that dis- 

cussion and examine the problems involved with miking 

the linker available in new domains around the security 

kernel domain. 

The first question to be asked is:  when do we want 

to link the modules of the linker together?  To answer 

this question, we must bear in mind the important fact 

that linking modules together in some domain, whether 

statically or dynamically, first requires mapping the 

modules into the relevant address space. 

Since each domain or future domain in the computing 

utility could, in the most general case, have its own 

address space, this suggests that mapping and consequent 

linking of the linker should be done each time a domain 

is generated.  Such a design would be very expensive in 

comparison to the design where the linker was in the s'ecurity 

kernel and was prelinked only c.nce. 

We would rather like a desitm where the linker 

modules are linked together only once for the whole sys- 

tem just as in the case where the linker was in the 
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security kernel.  However, such a design requires that the 

linker be mapped into identical addresses in the address 

space of each potential faulting domain for the same 

snapped links to be meaningful in all domains.  This 

condition can actually be fulfilled because in all real 

systems that we can think of, even when each domain has a 

private address space, all address spaces contain some 

set of logical addresses in overlapping numerical ranges. 

Since the linker is the first program needed in any domain, 

it is the first program to be mapped into any domain 

address space.  Hence we can impose to map its modules 

into the same numerical logical addresses for all domain 

address spaces (except the security kernel address space 

of course).  This is pictured in figure 3.  Mapping of the 

linker into logical address spaces would still have to 

happen once for each logical address space created, but 

the costly operation of fabricating the snapped links 

could be performed only once.  These snapped links will 

be valid in all domains if the logical mapping on which 

they are based is enforced in all domains.  We will new 

see how this can ba done. 

The second question to be asked is:  how can we link 

the linker modules together? The above discussion has 

actually divided th9  task of linking the linker modules 

i t  ** Mta^M 
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Flgure 3: Domains and their address space. 
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into two.  We first must fabricate all necessary snapped 

links on the basis of some fictive mapping (to be 

decided upon).  We then must enforce that mapping in each 

domain address space we create and we must communicate 

the snapped links based on that mapping to each new domain. 

We will now examine these two steps in detail. 

Fabricating the snapped links is, as we already men- 

tioned, the task of a static linker.  Since the snapped 

links must be fabricated before any domain is created 

around the kernel domain, the static linker must do its 

job before or during system initialization.  "Before" 

corresponds to the idea of a binder.  "During" corresponds 

to that of a prelinker.  The choice between the two is 

the same as in the case of the security kernel initializa- 

tion.  As we have assumed the idea of the prelinker for 

the security kernel, it is all but natural to keep the 

same idea for the linker.  The flavor of the design is 

of course to use the security kernel prelinker a second 

time (with some variations perhaps) to prelink the dynamic 

linker.  This saves the trouble of writing and certifying 

another prelinker.  Once the security kernel is prelinked, 

and just before capabilities to use the prelinker are dis- 

carded, the initializer invokes the prelinker again to 

prelink the future dynamic linker.  The following para- 

graphs will discuss step by step the operation of the 

J 
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prelinker on the linker because some aspects of that 

operation have hidden implications that the prelinking of 

the kernel did not have. 

In prelinking a link between two modules, the first 

task is the retrieval of the symbolic name corresponding 

to the target of the link.  This symbolic name is stored 

somewhere in the origine object of the link.  Since we 

want to prelink all links issued from the linker, all 

modules of the linker must be mapped into the security 

kernel address space during system initialization.  The 

prelinker will then have the ability to discover all 

symbolic links it must translate by a methodical scan- 

ning of all modules of the linker accessible in the 

address space. 

The second task to be accomplished in prelinking a 

link is to search in the "file system" for the target 

object correspDniing to the symbolic link being trans- 

lated.  The nature of the "file system" in the elementary 

environment of system initialization is however question- 

able.  Any computing utility includes some FSM to support 

a file system during normal operation.  But it is not 

obvious that in all computing utilities, the file system 

and the FSM are initialized and available at the time 

the prelinker is run.  If they are, searching of a target 
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object can be achieved by the PSM.  If they are not, the 

target object must be initially brought into the address 

space of the security kernel from whatever memory device 

is used to load and start the system, otherwise it could 

not be accessed and identified by the prelinker.  In the 

latter case, searching is reduced to a simple scanning 

of all objects in the address space and will succeed 

when the right symbolic name is found.  This of course 

implies that any potential target object, i.e. the linker 

and any security kernel gate it calls, be in the address 

space of the kernel. 

Finally we have to worry about mapping.  Once the 

target object of a link has been identified,  a logical 

address must be obtained for it to build the link to it. 

The problem may seem trivial here since everything refer- 

enced by the linker and the linker itself is mapped in 

the current address space to start with.  However, we 

must remember that whatever mapping we base the snapped 

links on will have to be enforced in all future domains. 

It may not be feasible or reasonable to map the linker 

and security kernel gates it calls into all address spaces 

at the addresses where they currently are in the kernel. 

In particular, we have mentioned that logical addresses in 

a domain are a form of capabilities for that domain.  We 

have also mentioned that after initialization, the security 
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kernel will want to discard its own capabilities to ever 

again access the prelinker.  This means it has to unmap 

the prelinker from the address space it currently sees. 

Along the same lines of thought, the linker is mapped in 

the initial kernel address space- for the purpose of pre- 

linking.  But the linker is not part of the security 

kernel.  Hence the initializer will also unmap it after 

prelinking is completed.  Consequently, we are facing the 

following problem.  All objects we are interested in are 

currently mapped into the only valid address space, but 

this mapping is temporary and the future mapping to be 

used in all domains other than the security kernel domain 

may be entirely different as represented by figure 3. 

This future mapping ie of course the fictive mapping we 

discussed earlier.  Determining the fictive mapping is 

thus done by the prelinker by assigning the target object 

of each link it translates a logical address suitable for 

all future domains. 

Let us now conclude the above discussion by describ- 

ing the mapping function of the prelinker.  Figure 4 

illustrates this function.  The prelinker uses and pro- 

gressively builds up two tables.  The fictive mapping 

table contains a set of entries of the form (logical 

address - unique identifier).  Each such entry defines 

the future logical address of the uniquely identified 

J 
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object.  Each time the prelinker snaps a link to a target 

object in the linker not already assigned a fictive log- 

ical address, it generates a suitable fictive address 

and adds one entry to the table for that object.  The 

snapped links table contains snapped links already fabri- 

cated by the prelinker.  Such snapped links of course will 

be meaningful in all domains as they are based on the 

fictive mapping which will be enforced in all domains. 

Once all logical links issued from the linker are fabri- 

cated, the prelinker task is completed.  The security 

kernel can thus discard its own capabilities for the 

prelinker and the linker by disallccating their addresses 

in the current address space.  Only the two tables built 

by the prelinker remain in the address space of the 

security kernel.  They will be used to drxve the initiali- 

zation of each subsequently created domain 

We have just described how the snapped links of 

the linker could be generated.  It remains to be demon- 

strated how the fictive mapping on whic'i they are based 

can be enforced in each new domain.  Such a task is part 

01 each domain initialization.  It is straightforward. 

Each time the security kernel creates a new domain, it 

uses the fictive mapping table to drive the FSM and have 

it enforce the mapping in the new domain.  Each er.try of 
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the table is interpreted as a request from the new domain 

to search the file system for the object uniquely iden- 

tified by the entry and to map it into the specified fic- 

tive logical address.  After having done so for all 

entries, the fictive logical addresses are actual valid 

logical addresses for the new domain.  Then the security 

kernel maps a copy of the snapped links table into the 

new domain address space.  This will finally enable the 

linker to properly operate in the new domain by using 

the snapped links based on the now real mapping for that 

domain. 

What we have achieved is providing each domain with 

an operational linker, i.«. a prelinked linker.  The 

first section of this chapter described how the security 

kernel could be initialized without the help of the dy- 

namic linker.  The current section has described now the 

dynamic linker could in turn be initialized in much the 

same way.  A fictive mapping of the linker and some 

security kernel gates had to be generated during system 

initialization and must be enforced by the FSM indepen- 

dently for each domain created during system operation. 

Each such domain then sees the linker and relevant security 

kernel gat«,.^ in its logical address space.  In addition, 

each domain has a  copy of the snapped links required by 

the linker to operate.  Link faults can now safely occur 

■  i - 
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in such domains.  This will be the topic in the next 

section. 

4.   Link fault handling 

So far we have shown how to initialize a security 

kernel without the help of a dynamic linker.  We then 

have shown how the security kernel can in turn initialize 

a linker in each domain it creates.  It remains to be 

demonstraced how the operational linker we now have in 

each domain can handle link faults without the privileges 

it would have if it were in the security kernel domain. 

As long as it was part of the security kernel, th2 linker 

had all the capabilities it wanted to access faulting 

domain objects, target domain objects, and any object in 

general.  We now will show that the constrained privileges 

available to the linker in the faulting domain are still 

sufficient to guarantee proper operation. 

The first problem we will now discuss is that of 

invoking the linker in the faulting domain.  Suppose that 

an object being executed in some domain causes a link 

fault by attempting to reference another object through 

a untranslated symbolic link.  This link fault is an 

event recognized by the hardware of the system. As a 

^asult of the event, control must be given to the linker. 
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a computing utility always has a mechanism to transfer 

control from the security kernel to another domain without 

knowing anything about that domain. 

We will only mention one possible solution for the 

sake of completeness. but we do not claim authorship for 

it and we insist on the fact that different systems may 

require different mechanisms.  Since the security kernel 

maintains and enforces protection, it usually has the 

power to dynamically and temporarily force access to any 

object in any domain if necessary.  For instance, on 

many machines, the supervisor can reset the privileged 

mode bit at will.  Consequently, even though the linker 

is not a gate, the security kernel can force contro to 

jump to the linker in the middle of a faulting domain. 

This solves the problem of entering the domain but we 

still have to know where the linker is in that domain to 

jump to it.  For that purpose we can simply store the 

logical address of the linker at some conventional address 

in the faulting domain.  Hence, on a link fault, the 

security kernel analyzes the machine status to determine 

the faulting domain.  It then looks up the logical 

address of the linker for that domain at the conventional 

address and forces the control to jump to the linker in 

the faulting domain.  Initialization of the conventional 

location is part of the domain creation operation. 

■ ■ — 



^sT If 1 
-57- 

This design has a side advantage. By changing the 

address of the linker in the conventional location, the 

subject executing in the faulting domain can define any 

other program to be its linker. It just has to prelink 

its own linker with the standard linker prior to changing 

the content of the conventional object. 

Having described how the linker is invoked in a link 

fault, our second topic will be to demonstrate that the 

symbolic link which caused the fault can be snapped with 

only the capabilities of the faulting domain.  In the 

earlier description of the operation of the linker, we 

identified three steps in the snapping of a link: 

- Identification of the symbolic name of the link 

- Search for and mapping of the target object 

corresponding to that name 

- Translation of the symbolic link into a snapped 

link based on the previous mapping. 

The first and third steps require exclusively access to 

the faulting domain because that is where the symbolic 

link and the mapped link belong.  The target object and 

the target domain do not contain any information about 

links directed towards them.  The linker has access to 

the faulting domain and can thus handle steps one and 

three.  If the target domain is different from the 

i i f ■ ii 
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faulting domain, the second step might require information 

embedded in the target domain. However, searching and 

mapping are actually performed by the FSM in the security 

kernel. The security kernel can access information about 

any target object.  Thus the linker just calls the FSM 

through a gate into the kernel. The FSM then searches 

for the target object, decides whether the faulting 

domain has the right to know about it, eventually maps it 

into the faulting address space and returns a capability, 

i.e. the logical address of the target objec^ to the linker 

in the faulting domain.  We will see in the next chapter 

that in some systems, complementary information about the 

taiget object must nevertheless be extracted from the 

target domain.  It will be shown then how this can be done. 

We finally discuss the third problem, namely return- 

ing control from the linker to the faulting object 

The goal is that the action of the dynamic linker be 

entirely transparent to the faulting object.  The only 

noticeable difference in the environment is the now 

translated link.  Apart from this, the faulting objects 

expects to find everything unchanged. 

The machine registers must reflect the machine status 

just before the hardware fault occurred. For this purpose 

the linker needs to restore the status of the machine. 
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When the linker was invoked it received a copy of the 

status of the machine to find out what caused the fault. 

Restoring this status in the machine registers must be an 

atomic operation to guarantee consistency of the status 

as a whole.  It would be a protection violation to allow 

any domain other than the security kernel to restore the 

status of the machine.  Restoring the machine status is 

done by copying data out of some object into the machine 

registers.  If any domain could perform such an operation 

it could set the machine status to a pattern reflecting 

a subject in some other domain. This would be equivalent 

to jumping right in the middle of a domain and by-passing 

the entire protection mechanism  Hence restoring the 

machine status requires security kernel privileges which 

the linker does not have.  The only solution is to have 

the linker call the security kernel.  A gate must be 

installed in the security kernel for that purpose.  The 

gate will examine the machine status it is asked to 

restore.  If and when properly validated, the machine 

rtatus is restored and control jumps back to where the 

fault occurred in the faulting object.  Validation of the 

machine status to be restored must determine what domain 

is defined by the machine status, and verify that that 

domain is the faulting domain.  Again, the latter mech- 

anism described is one among several possible designs 
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o£ ? feature of general interest which any computing 

utility supports under some form.  In many cases, the 

simple fact of trying to restore the machine status from 

the faulting domain causes control to switch to r~ivileged 

mode in the supervisor.  The restore instruction itself is 

the return gate.  ^gain we do not claim authorship for 

the mechanisms just described. 

5.   Cross domain problems 

The first two sections of this chapter have discussed 

the initialization of the security kernel and of the 

dynamic linker.  The previous section has then discussed 

the handling of link faults by the operational linker. 

The design may therefore seem complete.  It is not.  We 

w. 11 now discuss a hidden problem which we have only 

indirectly approached and carefully avoided mentioning 

so far.  The problem is directly related to '-.he multi- 

domain aspect of the computing utility.  It is a problem 

of general interest which exists m any multi-domain 

computing utility.  Our research came across it and 

uncovered it for the first time.  We believe that it may 

have been solved in particular cases almost by accident. 

In general, it has been ignored.  Hence we will propose 

a general solution for it. 

J 
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The linker is invoked on a link fault and completes 

its task by asking the security kernel to restore the 

machine status.  It is not properly speaking called by 

the faulting object and does not properly return to that 

object.  It takes no "input" or "output" arguments. 

Instead the objects it receives to work on are defined 

by the machine status automatically saved by the security 

kernel and the result of its computation is a snapped link 

The question we will now discuss is where does the linker 

store the snapped link so that the faulting object can 

later retrieve it? Or in other words, what is the 

nature of a logical link? 

In a computing utility where information sharing is 

a fundamental objective, special care must be taken to 

organize the sharing of program modules.  In order to 

operate, a program requires working storage to store and 

retrieve data.  One usually distinguishes three kinds of 

working storage:  in a PL/1 environment, these classes 

or types are known as external, internal static and 

automatic storage.  Data modules or data objects as we 

referred to them in the thesis are examples of external 

storage. Many programs can refer to a particular piece 

of external storage.  That piece is external to each pro- 

gram and shared by all.  External storage can be created 
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or destroyed at any time and can exist as long as desired. 

Automatic storage on the other hand belongs to a given 

program, is not shared, is created when the program is 

invoked and disappears when action resulting from that 

invocation terminates.  A stack frame in an Algol machine 

is a typical example of automatic storage.  Internal 

static storage shares features of automatic and of 

external storage.  Like automatic storage it is private 

to one program and not shareable.  Like external storage, 

its life time can be more than just one invocation of the 

program. Internal static storage by definition is allocated 

to a program when that program is invoked for the first 

time in a domain, and is destroyed only when the domain is 

destroyed.  In other words internal static storage con- 

tinues to exist between invocations of a program as long 

as the domain which contains it exists.  Going back to the 

problem of information sharing in a computing utility, it 

is clear that procedure code (provided it is pure) can be 

shared by different subjects in different domains. 

Similarily, external storage can be shared, perhaps with 

some precautions: sharing external storage allows sharing 

data.  Howevfr, it may be desirable not to share internal 

static, and it is certainly desirable not to share auto- 

matic storage.  Let us consider the case of internal 
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static storage.  Sharing internal static storage may lead 

to conflicts since subjects in different domains may carry 

on different computations with the same procedure.  Thus 

mutual protection and independence of domains will in 

such cases require different static storage areas to be 

allocated in each domain where a procedure is currently 

used.  We will assume such a case in the following dis- 

cussion and will propose a design which allocates static 

storage on a per domain basis.  It should now be cleur 

that a snapped link is a typical example of an internal 

static information item.  It is meaningful only in a 

given domain during the existence of that domain.  Hence 

in each domain where some procedure object is currently 

used, an instance of each link issued from the procedure 

is stored in the static storage area assigned to that 

procedure in that domain.  The set cf all links issued 

from a procedure is referred to as the linkage section 

of the procedure.  Thus, an instance of the linkage 

section of a procedure exists in each static storage 

area assigned to that procedure in the domains where it 

is currently used.  Both the linker and the procedure can 

retreive the appropriate linkage section according to some 

system wide convention which is left to the discretion 

of the designers of the system. 

i i — ■Ai <^m «■■ft 
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The hidden problem we mentioned earlier is that of 

deciding how static storage should be allocated when a 

procedure is about to be used for the first time by some 

subject in some domain.  Often this task is left to the 

dynamic linker.  Such awkward design results in^a major 

protection violation instance. We will now discuss why 

and propose a correct design. 

Clearly we do not want to allocate static storage for 

all programs executable in a given domain when we initialize 

that domain: it is impossible to scan the whole file system 

to find all procedures executable in the domain and allo- 

cate static storage for them; it is simply impossible to 

know in advance about all procedures executable in the 

domain because of the dynamic aspect of the file system. 

On the other hand we want to be certain ti:at when a pro- 

gram is invoked for the first time in a given domain, 

static storage is already allocated for its linkage sec- 

tion so that the executing subject can look it up when it 

needs to follow a link to some external object. 

The first solution which comes to the mind is to allocate 

the space when the object is invoked for the first time. 

On the assumption that all objects are invoked by symbolic 

names and given that all symbolic links are handled by the 

linker, we conclude that the linker should allocate static 

storage when it discovers it is snapping a link to a tar- 

get object which has not yet any static storage in the 
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very hard to achieve. 

The second soiution which comes to the mind and 

seems perhaps easier to implement is to make static stor- 

age allocation a function of the FSM. slnce using . pro. 

cedure in a domain retires mappin, it into the address 

«Pace of that domain, the FS„ is guaranteed ^ be invoked 

for  any procedure each time that procedure is used in a 
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different domain.  Thus the FSM could at that time allocate 

static storage to that procedure in the appropriate domain. 

The FSM is more likely than the linker to have the capa- 

bilities to do so.  However this design also violates pro- 

tection.  Since the linker invokes the FSM, by symbolically 

referencing without even invoking all gates into a domain B, 

a domain A covld create a mass of link faults causing static 

storage to be allocated to each gate into domain B.  Such 

mass allocation could overflow the storage available in 

domain B thereby violating its protection since it would 

nave been triggered by domain A. 

As our research naturally came across the question 

of static storage allocation, the above problem was uncov- 

ered.  Obviously another solution had to be proposed 

which would solve the protection problem.  In addition, it 

was felt that static storage allocation did not functionally 

belong to the dynamic linker to start with.  Thus a correct 

design, but also a much cleaner and more efficient design 

is proposed hereafter.  It is based on the fact that static 

storage al.ocation is triggered by the domain itself where 

it must be allocated.  Thus no protection violation is 

possible. 

When execution of a procedure object starts, the sub- 

ject must, according to the system convention already men- 

tioned, retrieve the linkage section of the object in the 
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current domain.  We suggest that this search generate a 

hardware internal static storage fault (ISS fault) when 

and if it fails.  This "SS fault should be handled by the 

system in a manner very similar to a link fault.  It 

should be passed to the faulting domain.  Analysis of the 

machine status would tell which object requires static 

storage to be allocated.  Static storage would be created 

in the faulting domain for that faulting object.  After the 

machine status is restored, the subject would successfully 

retry the search.  Of course just like the linker had to 

be prelinked, the static storage allocator must hav^ its 

static storage allocated at domain initialization to be 

operational. 

The design we have just proposed guarantees the pro- 

tection of all domains because static storage allocation 

is made independent of dynamic linking.  Hence allocation 

is no more triggered by the execution of a random untrus- 

ted object, but by the execution of the object itself 

which needs static storage.  The design stems from the 

simple fact that no object, and particularly no gate into 

any domain, can depend on a caller action to perform any 

task in general, static storage allocation in particular. 

Given that links are per domain static items, it is 

now clear why the security kernel must communicate a copy 

of the linker links independently to each domain it 
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creates.  This copy is installed in the static storage 

area of the linker in that domain. 

6.   Summary 

This chapter has attempted to present a complete 

design of a dynamic linker running outside the security 

kernel of a computing utility.  Four main problems have 

been distinguished.  It has been demonstrated first that 

the security kernel could be made operational without the 

help of a dynamic linker.  It has been shown that the 

dynamic linker could be made available in all domains 

while being prelinked only once.  It has then been 

explained how the linker handles link faults.  Finally, the 

hidden although fundamental problem of static storage 

allocation in a multidomain system was discussed.  This 

concludes the presentation of the complete design.  The 

following chapter will illustrate the use of the computing 

utility model and the principles of the design by identi- 

fying the components of the model to those of a real world 

system and applying the design to that system.  Concluding 

remarks on the actual implementation will convince the 

reader of the feasibility and usefulness of the design. 

i  m  -        —*—— 
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IV.  Implementation 

1.   General 

In developing our thesis we have first discussed a 

computing utility model which enabled us to give a formal 

description of the operation of a dynamic linker.  In a 

second stage we have presented and discussed in terms of the 

the model the general design features of a computing util- 

ity where the dynamic linker is executed outside the 

security kernel domain.  We will now build up the third 

level of the thesis.  This level consists in demonstra- 

ting the feasibility of the proposed design by describing 

and analyzing the details of its implementation on a real 

world computing utility. 

The i\ultics system has been chosen as a test case for 

the implementation.  The Multics system (15-18) is a com- 

mercial computing utility developed jointly by the 

Massachusetts Institute of Technology and Honeywell Infor- 

mation SysteitB, Inc.  It is supported by the Honeywell 6180 

computer system.  It implements a powerful virtual memory 

time sharing system with extensive information sharing 

facilities.  In addition to being easily available for 

this research, Multics was a very interesting test case 

for our design. 

Firstly, Multics was designed with protection of 

' *  i *i* 



-70- 

information as an initial objective. Protection has influ- 

enced almost all of its design features.  Protection 

mechanisms are embedded in most of the functions available 

on Multics.  Even the hardware of the 6180 processor was 

designed to support the concept of domain (15). 

Secondly, a recent project has been launched with the 

objective of defining and auditing the security kernel of 

Multics to certify the correctness of the protection 

mechanism.  Since the dynamic linker of Multics was 

initially designed to be executed in the security kernel 

environment, the present research matched exactly the 

objectives of the certification project. 

Finally, the protection mechanism of Multics matches 

very closely the domain protection model as described 

earlier.  Hence there is a direct para., '.el between the 

description of the domain based design and its implemen- 

tation. 

We will divide the discussion of the implementation 

into four parts.  The following two sections will at the 

same time briefly describe the general design features of 

Multics and match the real system components with the con- 

cepts of the computing utility model described earlier. 

The next section will then talk about a dynamic linking 

specificatiors on Multics to familiarize the reader with 
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the nature of the functions which the dynamic linker is 

expected to support.  The remaining sections will present 

the reader with a discussion of the implementation of the 

dynamic linker.  Emphasis will be put on the discussion 

of selected specific problems encountered by the imple- 

mentation.  We do not claim that the problems to be discussed 

constitute an exhaustive list of all problems which the 

implementation faced.  Out of the complete list of prob- 

lems encountered during the implementation, wc have 

carefully selected specific problems which we believe are 

instances of more general problems that any designer is 

bound to face on any computing utility under some form or 

another. 

2.   Information Protection in Multics 

The equivalent of a domain in Multics is a ring (15, 

18).  Rings can be viewed as a set of domains with a 

linearly nested ordering of privileges.  The set of capa- 

bilities of any given ring is a subset of the capabilities 

in the next most privileged ring, as represented in 

figure 5.  The 6180 hardware processor supports up to 

eight rings for each user.  The eight rings are numbered 

from 0 to 7 by decreasing order of privileges.  Because 

every ring has at least the capabilities of the next 

!■ II 
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h\gher numbered ring the concept of gate exists only in 

the downward direction of cross-ring calls.  A subject 

executing in ring n must ask entry permission to a gate 

if he wants to obtain the extra capabilities of ring m 

(m smaller than n).  On the other hand, a subject execu- 

ting in ring m and willing to move to ring n (again m 

smaller than n) can freely do so.  The idea of a gate 

into ring n for ring m is irrelevant. 

All users (presumably) crust the security kernel more 

than their own programs which may contain bugs capable of 

causing trouble.  In turn they probably trust their own 

programs more than other user's programs.  This relative 

ordering of programscan be superimposed to the relative 

ordering of rings.  Since the security kernel is by 

nature the most trustworthy set of programs, it is designed 

to be executed in ring 0.  But it must be isolated in 

this ring from everything else in the environment.  Hence 

the rest of the supervisor should be rejected to ring 1. 

Perhaps programs under development or less sensitive pro- 

grams of the supervisor should be installed in ring 2. 

This idea is currently being studied.  User programs, 

commands, compilers and other tools directly related to 

the actions of users can be executed in rings 3, 4 and 5. 

The normal case is ring 4.  This allows the user to execute 
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protected subsystems in ^ing 3 on the assumption that 

everything in rings below 3 is trusted and will not sub- 

vert the subsystem in ring 3.  A user can also test un- 

trusted programs in ring 5.  Rings 6 and 7 are absolutely 

virgin:  no function of the operating system is available 

there.  They initially have no capabilities for any gate 

into lower rings.  Hence a user may use these two rings 

to install any two-ring system he wants and keep it en- 

tirely within his control. 

3.   Information Storage in Multics 

The Multics equivalent of a subject is a process.  A 

process is defined by a site of execution and a logical 

address space.  Each process has its own address space. 

A process is the entity representing a user in the machine, 

^he address space seen by a user in a two-dimensional 

virtual memory of very large capacity (15).  Along one 

dimension the memory is partitioned into segments addressed 

by their order number.  Along the other dimension, it is 

addressed by word.  Hence the logical address of an object 

in this virtual memory is of the form (s,w) where s is a 

segment number and w a word number in that segment.  The 

format of such references limits the size of the virtual 

memory to 256 K segments X 256 K words. 
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Multics file system is a tree-structured hierarchy of 

catalogs.  Catalogs are called directories.  The leaves 

of the tree are called segments.  A segment is the equiv- 

alent of a collection of objects in our model.  An atomic 

object is an entry in a segment.  Directories are also 

atomic objects.  The unique identifier of a directory is 

the tree-name of the directory.  The unique identifier of 

a segment is the tree name of the parent directory concat- 

enated with the symbolic name of the segment.  Directories 

and segments of the file system are of course mapped into 

segments of the virtual memory when they are used.  Such 

mapping is supported by the FSM. 

The security kernel ot the operating system is 

shared by all users.  Since it is the very first thing 

which has to be operational in any process, it is the 

first thing to be mapped into any process address space. 

Hence the security kernel always occupies the same loca- 

tions of the virtual memory of each process.  Furthermore, 

all rings in a process share t.he same address space. 

4.   Dynamic linking in Multics 

The previous two sections have established a parallel 

between the Multics system and the computing utility model 

of the thesis.  Our second step towards the discussion of 

i i ■— ■ - - 
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the implementation will be the statement of dynamic link- 

ing specifications in Multics. 

The Multics system supports various high-level 

languages but was initially designed to support PL/1. 

Most of the system programs of Multics are written in 

PL/1.  As the address space of a Multics process is two- 

dimensional it was both easy and desirable to have a two- 

dimensional name space for PL/1 symbolic names.  An object 

symbolic name or entry name is of the form segname$entryname 

where segname is the symbolic name of the seg- 

ment containing the entry and entryname is the symbolic 

name of the word offset where the entry is located in 

the segment. 

Given a source program (or source segment) any com- 

piler generates an object program (or object segment) 

which contains three sections as described in figure 6. 

Vhe last section contains the pure executable code of the 

program.  The definition section contains on one hand the 

list of entry names and word offsets of all entries in the 

object segment.  On the other hand it contains the list of 

all names of entries into external object segments which 

this object segment may reference.  Finally there is the 

virgin linkage section.  We insist on the word virgin 

which is used to distinguish the present type of linkage 

i i i _*^fe*^^MM 
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Flgure 6: Multics object segments 
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section from a non virgin linkage section which will be 

derived from the virgin one and is in the static storage 

area as described in the thesis.  The virgin linkage sec- 

tion always remains virgin and is sharable.  For each ex- 

ternal object referenced in the source program, a link is 

inserted in the virgin linkage section. 

A link is a triple (s,w,f).  (s,w) is a logical 

address as defined earlier and f is a flag.  In a symbolic 

link, the flag is always a bit pattern indicating that 

(s,w) is invalid.  Attempting to use (s,w) as such will 

cause a link fault.  At this point (s,w) somehow points 

to the symbolic name associated with the link, in the 

definition section and not to the target object of the 

link.  When the object segment is first executed in a 

ring, static storage is allocated for it in that ring. 

The virgin linkage section is copied into the static stor- 

age area yielding a non-virgin linxage section.  The 

address of the non-virgin linkage section is stored in a 

conventional location where an executing process can 

always retrieve it when it uses the object segment.  When 

execution encounters a reference to an external object, 

the linkage section address is used to look up the corre- 

sponding link.  This triggers the hardware fault since 

(f) is set.  As a result of it, the linker will snap the 

I I Mil ■ *m 
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link by replacing the invalid (s,w) by the valid address 

of the object corresponding to the entry name which 

caused the fault.  The fault flag (f) will be turned off 

to indicate the validity of (s,w).  We now have a snapped 

link to the target entry.  If and when the same link is 

used again in the future by the same user process, no 

more linkage fault will be taken.  To clarify the above 

discussion, the situation is pictured in figure 7. 

In view of the above description, we can now present 

a simplified basic functional block diagram of the 

dynamic linker (see figure 8).  On a link fault caused by 

object A (see figure 7) the dynamic linking driver is 

invoked.  It analyzes tne machine status to determine 

which link caused the linkage fault.  By following the 

pointer (s,w) currently in the symbolic link, the linker 

finds the symbolic name B $ b correpsonding to that link 

in the definition section of the faulting object A.  It 

then passes name B to the segment search driver.  The 

segment search driver tries a set of search rules (direc- 

tory treenamcs) on the FSM until the FSM finds B in one 

of the directories.  The FSM then maps B into the address 

space of the faulting process and returns the segment 

number s of B to the search driver which it) turn returns 

it to the linking driver.  The linking driver then passes 

• 
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Flgure 7: Dynamic linking 
on Multics 
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Flgure 8: Functional diagram of the 
Multics dynamic 1'nker. 
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the segment number s and the name b to the entry search 

driver.  This one scans the definition section of segment 

numbered s (i.e. B) until it finds the name b.  It then 

returns the offset w of bin B to the linking driver. 

The dynamic linking driver finally replaces the address 

(s,w) in the symbolic link by the address (s,w) of B $ b 

and turns off the flag (f) to make the link a snapped 

link.  The machine status can then be restored and 

execution can proceed. 

We do insist on the fact that the above description 

is a simplified strictly functional definition of the 

linker.  In no way should it be assumed that the linker 

contains only three modules ö.nd that linking happens as 

naturally as we described it.  In thö- course of this 

chapter we will progressively complicate the description 

we have just given and discuss the problems encountered 

by the implementation.  This section concludes the 

descriptive part of the chapter.  We will now apply our 

design to Multics and present selected aspects of the 

implementation. 

5.   Initialization 

In this first section about the implementation of 

the design, we will outline how the security kernel and 

f  <  —11  !■ ~ -   -  -^ «^ 
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the linker are initialized. This outline will be brief 

because no particular problem was encountered. The im- 

plementation of the design was relatively' straightforward. 

The Multics system is initialized by a dedicated 

initializer process.  All modules of the security kernel 

are loaded into the system from a generation tape. 

Immediately after the loading, the virtual memory address- 

ing mechanism is initialized so that the initializer pro- 

cess sees a regular virtual memory with the restriction 

that the capacity of chat virtual memory is temporarily 

constrained to that of the real memory.  A prelinker is 

then invoked to link togethei all modules of the security 

kernel which are read in from the tape.  After the pre- 

linker is run, miscellaneous initialization tasks are 

performed.  When the security kernel is entirely opera- 

tional, the prelinker, as well as other initialization 

programs are unmapped and thrown out of the addressable 

\ce.  We have described this mechanism for the sake of 

completeness.  However it existed before we implemented 

our design.  We used it as a basis for our implementation. 

We now turn our attention to the initialization of 

the linker.  Since the security kernel is initialized by 

a prelinker, it is all but natural to US<J  the same pre- 

linker a second time to initialise th-j linker.  Actually 

the implementation uses a hybrid technique involving both 
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a binder and a prelinker. Multics provides its users with 

a binder of which the goal is to take several object seg- 

ments and to merge them into one which has only one text 

section,  one definition section and one virgin linkage 

section.  Of course any link between the original dis- 

tinct object segments submitted to the binder are directly 

translated into relative offsets within the resulting bound 

object segment.  The binder was used to bind together the 

modulec of the linker, i.e. the modules inside the main 

box of figure 8.  Consequently the only links issued from the 

bou.id linker, which the binder could not translate are 

links to the FGM and links to external data bases.  Notice 

that figure 8 shows only one link to the FSM.  In reality 

there are several such links.  As we said earlier figure 8 

is only a simplified functional diagram.  To be more 

accurate too, the links to the FSM are actually links to 

ring 0 gates since the FSM is in the security kernel and 

is accessible only through these gates.  Also the links 

to external data bases are not represented in figure 8. 

The external data bases are error code tables and system 

data tables.  They are used by the linker but are not 

really part of it and do certainly not belong in its 

functional diagram. 

The task of the prelinker is thus to snap the links 

from the bound linker to the external data bases and to 

-■ - 
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the security kernel gates  The operation of the prelinker 

matches exactly that described in the general case.  Since 

the prelinker does not know about any file system, (even 

though the bound linker, the external data bases and the 

security kernel gates are catalogued in the file system 

and stored on secondarymemory) a copy of each module must 

be loaded into the initializer address space from the 

system generation tape.  The bound linker is loaded with 

attributes such that it does not get prelinked as a module 

of the kernel.  Instead when the kernel is initialized 

and just before it throws the prelinker out of its address 

space, it invokes the prelinker a second time to prelink 

the bound linker.  The prelinker builds a fictive mapping 

table and a snapped links table as stated in the general 

design.  In the particular case of Multics, the snapped 

links table is simply a copy of the virgin linkage section 

of the bound linker where all symbolic links are replaced 

by snapped links reflecting the fictive mapping.  The 

fictive mapping table is a little more interesting.  Since 

there is only one address space per process common to all 

rings instead of one per process and per ring, the reader 

ma^ wonder why a fictive mapping of the linker, the data 

bases and security kernel gates is necessary.  Couldn't 

they just stay where they are?  The answer is negative 

■ —■ - -- 
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bases are still stored in the file system on secondary 

memory, so that the system can retrieve them there liter 

on when they will be needed.  Of course the two tables 

built by the prelinker may rot be thrown away.  Since 

they will be used throughout the life of the system each 

time a ring is created, th-y must remain permanently in 

the address space of the kernel. 

We finally come to discussing the task of enforcing 

the fictive mapping.  This task is also straightforward 

and identical to the general design.  In order to operate 

correctly, Multics object segments need a static storage 

area and an automatic storage area.  Automatic storage 

is allocated in a special segment called the stack.  This 

segment is used as an Algol call stack.  Static storage 

is allocated in a special segment called the combined 

linkage segment (els).  There exists one stack and one 

els per ring and per process.  There exists a system 

wide convention stating that the stack of a given ring 

always occupies the same segment number in the address 

space of any process.  This enables any process to find 

the right stack in the right ring.  Each stack header 

contains (conventional) the address of the els for the 

s-ime ring.  This enables any process to retrieve the 

right els for the right ring.  Given these two conven- 

tions, it is clear that no process will ever be able to 
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touch its els in a ring before it touches its stack in 

that ring.  Hence the convention is that when the process 

uses its stack segment number for the first time, a hard- 

ware fault occurs which is interpreted as a ring initiali- 

zation fault and triggers action of the kernel to initialize 

the ring.  When the stack and the els for that ring are 

initialized, the kernel invokes the FSM.  As stated in the 

general design, the FSM uses the fictive mapping table 

prepared by the prelinker to map the linker, the external 

data bases and the security kernel gates in the process 

address space.  Finally the kernel copies the snapped 

links table built by the prelinker into the els just 

fabricated for the new ring.  Control is then restored 

into the new ring.  The linker has been mapped into the 

address space and its non-virgin linkage section contain- 

ing only snapped links exists in the els of the new ring. 

Thus the linker is operational in that ring. 

The last question which needs perhaps a brief comment 

is why do we need to invoke the FSM each time a ring is 

initialized in a process?  Doing so for the first ring 

should be enough since the address space in which the FSM 

enforces the fictive mapping is the same for all other 

rings.  Our implementation is justified by an aspect of 

the Multics virtual memory.  In mapping a segment into a 

/ 
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segment number, one needs to specify the unique identifier 

of the segment and the ring on behalf of which the mapping 

is done.  Once the bound linker for instance is mapped into 

its final address for one ring all rings will see the 

address occupied but it will not be meaningful to them 

until they also require the linker to be mapped there on 

their behalf. 

This discussion completes the section on initializatior 

of the kernel and of the linker.  It has been demonstrated 

that straightforward implementation of the design was 

possible on a computing utility like Multics.  No major 

problem and no particularly interesting issue was raised 

so far.  Now we have shown how to implement an operational 

linker, we will proceed by showing how to invoke it in the 

faulting ring on a link fault. 

6.   Fault Handling 

We have shown how the Multics dynamic linker was 

made operational in a ring.  Our next step Js  to  show how 

link faults are passed to it and how it can return control 

to the faulting object.  Again this can be done by a 

straightforward application of the design, using pre- 

existing mechanisms. 

All faults on Multics are intercepted by a special 

module of the kernel.  This module existed already in the 

i MM 
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initial version of Multics and it purpose is to analyze 

and sort faults.  Just a few lines of code had to be 

modified so that link faults would be directed to a sig- 

nalling module instead of being directed to a ring 0 

linker.  The signalling module of the kernel existed as 

well in the initial version of Multics.  It is already 

used to signal events other than link faults in outer 

rings.  Because of the hierarchy of rings, the security 

kernel and the signalling module in particular can access 

any object in a higher numbered ring and can switch the 

ring of execution of a process.  These privileges are 

exploited to signal a link fault.  When the signalling 

module receives a copy of the machine status saved by 

the fault interceptor module, it analyses it to determine 

the number of the faulting ring, and the segment number 

of the stack used at fault time.  It then makes a stack 

frame for itself on that stack and copies into it the 

machine status.  It copies as well a return address to 

be used by the linker.  It finally switches ring of execu- 

tion and calls the linker.  The address of the linker is 

found in the stack header (conventional).  This address 

must be set at ring initialization and may be changed by 

the process if it wants to define another linker of its 

own in that ring. 
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Let us assume for a moment thai: we know how the 

linker itself works and suppose that it has snapped the 

faulting link and wants to restore control to the faulting 

object.  The linker simply returns to the signalling module 

in the current ring.  The signalling procedure then calls 

a gate into the kernel.  The purpose of this gate is to 

validate the machine status returned to it by the signaller 

and to restore it. Validation simply consists in verifying 

that the status reflects a ring of execution not lower 

than the faulting ring.  This is to make sure that the 

linker which handled the status in the faulting ring did 

not maliciously set it so that control would be restored 

in a lower numbered ring than the faulting ring, which 

of course violates protection.  The gate then destroys 

the signalling stack frame in the faulting ring to make 

the stack look as if nothing had happened.  Restoring the 

status is finally done in one indivisible hardware in- 

struction which reloads all the machine registers, thereby 

forcing control back into the formerly faulting object. 

7.   The dynamic linker 

The last two sections have discussed respectively 

the prelinking of the linker and the handling of link 

faults.  It remains to be demonstrated how the linker 
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itself can be implemented to translate links properly.  So 

far the implementation did not encounter any major problem 

or any operation oJ  outstanding interest.  In this section 

we will only very briefly outline the implementation as 

a whole and then concentrate on selected interesting fea- 

tures of the Multics system of which the implementation 

cannot be derived directly from the global design princi- 

ples.  As we mentioned it before, these selected topics 

are only instances of broader problems which any designer 

would face in any computing utility perhaps under differ- 

ent aspects. 

The btarting point o. the implementation is the 

block diagram of figure 8.  The basic dynamic linker is 

programmed according to the functional specifications of 

that diagram.  This basic linker contains a dozen  inde- 

pendent program modules.  Once compiled, the resulting 

object segments are bound together by the binder.  A 

bound object segment results which contains about forty 

1:nks to aata bases and kernel gates and can itself be 

invoked through about fifteen different entries; one of 

which is the main link translation entry used for link 

faults. 

On top of this basic linker we will now progressively 

add other features, functional boxes and specifications 

as we go about discussing specific implementation problems, 

i ttam   m -     - -—■ M^^M 
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a.   Implementation of peripheral features 

Let us first turn our atterti.on to the question of 

static storage allocation.  As we mentioned it in the 

chapter about the global design, static storage allocation 

is a general problem which must be solved in any computing 

utility  The wrong way of solving it is to leave it in 

the responsibility of the linker.  One correct way to solve 

it is to install a hardware fault which we called the ISSF. 

When a process attempts to get a hold of the address of 

the static storage (non-virgin linkage section) of the 

program it is executing and if that storage is not yet 

allocated, a ISSF occurs which triggers storage allocation. 

The old design of the Multlcs dynamic linker was such that 

static storage allocation was part of the linker task 

(see figure 9).  On snapping a link, the dynamic linking 

driver used to always verify that the trrget of the link 

did have static storage in the target ring.  As stated 

in the thesis, this design violates  protection because a 

target object in a target ring cannot depend on a faulting 

object in a faulting ring to use the linker and allocate 

static storage where appropriate.  In addition, even if 

this was not a protection violation, it would simply be 

impossible for the new linker in a faulting ring to 

allocate space in a target ring if the target ring is 
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Flgure 9: Old Multics dynanic linker. 
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lower than the faulting ring.  This was possible in the old 

design because ehe linker was in the security kernel and 

could access any ring. 

Consequently we have proposed to implement a hardware 

ISSF as described, such that dynamic linking and static 

storage allocation are functionally distinct. Yet there 

is still one advantage in keeping them physically together 

(see figure 10).  Keeping dynamic linking and static stor- 

age allocation physically together means keeping them in 

the same bound object segment, the bound linker.  Thus 

they are prelinked and initialized together at the same 

time.  Adding the static storage bo< in figure 10 increases 

the complexity of the dynamic linker but does not increase 

the complexity or modify the design of prelinking and ring 

initialization. 

The operation of the linker is thus as follows. 

Assume object A in ring 4 wants to invoke gate B in ring 

3.  Whether A invokes B by symbolic name (link fault) or 

directly by its address it happened to already know is 

irrelevant. When execution moves to the target segment B 

in ring 3, as soon as segment B tries to find a presumably 

unallocated static storage, an ISSF occurs which results 

in the linker (static storage allocator part) to be 

invoked in ring 3.  Allocation can and will thus safely 

■ 
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Flgure 10: New Multics dynamlc linker. 
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Flture 11: Static storage allocation on 
Multics 
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occur. This is pictured by figure 11. 

Tho problem of static storage allocation was just 

one example, and perhaps the most typical, of a feature which 

was hooked to the linker for convenience. Unfortunately, the 

linker was not the right place to hook that feature to.  Other 

problems of the same kind were encountered during the implemen- 

tation. Just to mention a few we can cite trap handling and 

impure object segment handling. Such features are typical 

examples of sophisticated tools which have been hooked to 

the linker for convenience but do not actually belong 

there.  Trcp handling is a feature which allows a program- 

mer to force execution of certain routines before his 

program can be called for the first time.  The feature is 

named after the fact that it is based on trapping the first 

invocation of - program.  Again the first invocation may 

not be a symbolic invocation; thus the linker can be by- 

passed; thus hooking the trap handling mechanism to the 

linker is vast as disastrous as hooking static storage 

allocation to the linker.  The solution is also to use a 

hardware fault.  We will not describe it here as it is 

really not part of the implementation of the linker. 

Impure object segment handling is a facility which pro- 

vides uaers with the ability of creating an object seg- 

ment and then writing into it perhaps over the definition 

and virgin linkage sections. Of course such an object 

—- 
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tä 

arise in any computing utility.  The present problem does 

not have so much to do with the linker itself as it has 

with t/e general idea of pulling a module outside the 

kernel. 

Any program which is part of the kernel is very 

likely to use other functions of the kernel.  In trying 

to pull that program outside the kernel, one must make 

sure that it still can use the other kernel functions as 

it did before.  In the particular; case of the linker, the 

old Multics linker used the FSM inside the security ker- 

nel.  Of course, once the linker is pulled outside the 

kernel, it cannot call the FSM directly.  All it can do is 

invoke, it through appropriate gates (see figure 12).  For- 

tunately the FSM of Multics was already available to the 

higher rings through such gates.  We did not have to 

implement them.  However the interface to the FSM across 

these gates is not the same as the interface which the 

linker used to see directly inside ring 0.  Directories 

ar : currently implemented as ring 0 data bases.  Their 

logical address in a process is also a protected item. 

User rings (1 to 7) may talk about directories only by 

treename and not by segment number.  Directory segment 

numbers are exclusively used inside the kernel.  Thus 

when the linker was inside the kernel, the search rules 

■ tfM 
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FlRure  12:   Interface of   the   linker   to   the  FSM. 
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it used across the interface with the FSM were a set of 

directory segment numbers.  Now the linker is moved 

outside the kernel, directory segment numbers are not 

suitable directory unique identifiers.  Therefore the 

linker must use directory treenames.  This implementation 

of search rules has the disadvantage that for each direc- 

tory searched or each link fault, the treename presented 

to the FSM gate must be converted irto corresponding seg- 

ment nuruher to perform the sear h.  Such conversion is 

costly and has a negative effect on the performance of 

the linker.  A parallel project is currently on its way 

to make directory segment numbers available in user rings. 

Such a design will restore the interface to the FSM which 

the linker used to see.  However it has some major protec- 

tion implications of which the solution is rot obvious. 

We will not discuss these implications here. 

The problem of the search rules was a typical 

example of a compatibility problem.  By removing the 

linker from the kernel, we were forced to make it compat- 

ible with the interface of the kernel seen by the user 

rings. 

c.   Limitation of Privileges 

The last problem which we propose to discuss will 

illustrate the impact on the capabilities of a program 

of removing that program from the kernel.  The problem 
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deals with snapping downward cross ring links, a feature 

which the ring the linker used to support very easily and 

which is now complicated by the fact that the linker is in 

the faulting ring. 

In the general design described earlier, the FSM was 

described as a security kernel primitive which given a 

catalog unique identifier and an object symbolic name 

returns a logical address. On Multics, this is not the 

exact function of the FSM.  the FSM takes a directory 

troename and a segment name and returns a segment number. 

The differ',nce between these two descriptions is that a 

segment name is not an object symbolic MM and a segmant 

number is only a partial logical address. As a consequence 

a search of the definition section of the target segment 

must be performed to find the offset of the target object 

in the target segment (sec figure 8). When the target 

object is in a ring equal to or higher than the faulting 

ring, such search poses no problem.  But when the target 

object ii a gate into a ring lower than the faulting ring, 

the linker in the faulting ring does not have the 

capability to read or search the target segment.  The old 

linker executing in the kernel did have that capability. 

When snapping a link to a gate intc a lower numbered 

ring, the linker must extract the offset of that gate 

from information contained in the target segment 
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containing the ^ate.  The only way to extract information 

from that target segment is to invoke another gate, a 

linker gate, into the target ring.  The function of the 

linker gate is equivalent to the function of the "entry 

search driver" in figure 8.  But the search happens in 

the target ring instead of happening in the faulting ring. 

The question which the reader is now entitled to ask 

is how does the linker know about the linker gate in the 

first place? There are several possible answers to this 

question.  One way the linker could know about it is by 

conventions.  It would be possible to impose that any 

ring contain a gate named after its own ring number and 

located in a segment of some conventionr1. directory. 

The linker could then invoke the FSM to obtain a segment 

by giving the FSM the name of the conventional directory 

and the conventional name of the gate into the target 

ring.  It would thus receive a segment number.  Then, 

using a conventional offset into that segment, it could 

dynamically fabricate for itself a link to the linker 

gate.  Such design is feasible and very appropriate if 

there was a large number of rings per process.  However 

we know that the number of rings per process is finite. 

Thus there is a much simpler solution to our problem which 

consists in providing the standard Multics system with a 

J 

•■ 



TT ■ ■ ■" 

^ 

-105- 

finite set of gates (one per ring), loading these gates 

into the machine during system initialization, prelinking 

the linker to each such gate as usually and throwing the 

gates out of the kernel address space after prelinking. 

This is the solution which was implemented on Multics. 

It is pictured in figure 13.  During system initialization, 

the linker is prelinked to the FSM gates as well as to 

one linker gate for each ring.  Then when A takes a link 

fault in trying to call gate B, the linker is invoked in 

ring 4.  it obtains a segment number s for B from the FSM. 

The FSM also tells it that B is a gate into ring 3. 

Instead of calling the entry search module in ring 4, the 

linker then calls the linker gate in ring 3.  The linker 

gate can search the eject segment B and thus returns the 

offset w of b in B to the linker in ring 4. 

The last problem discussed was an example of a case 

where by being removed from the kernel, a program, the 

linker, lost privileges which it used to exploit to per- 

form its task.  Other such examples were encountered 

during the implementation.  For instance, the linker used 

to store in a system wide data base, various meters count- 

ing the number of link faults, the distribution of pro- 

cessing time required, etc.  Data could be extracted from 

that data base by anybody interested in performance.  Of 

course, now the linker is in user rings it could still do 
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such metering, but results could not be trusted because 

the system wide data base would have to be accessible in 

user rings too.  Hence anybody could write garbage into 

it.  The solution which we propose instead is to just 

keep a count of link faults in ring 0.  This is done by 

the fault interceptor module.  The count is thus protected, 

Other meters can be stored in per ring data bases if the 

user desires.  Such meters would of course reflect only 

the activity of that user in that ring. 

This is the last problem we proposed to present here 

about the implementation.  In no way do we suggest that 

the implementation faced no more problems than explained 

here.  The problems presented here were just typical 

examples representative of classes of problems relevant 

to the topic of our research.  Problems not discussed 

here either fell into categories for which we have given 

examples or into categories not relevant to our thesis 

topic. 
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V,  Conclusion 

To conclude this thesis, we would like to step back 

and consider the design and its implenentation as a whole 

to summarize what has been achieved, try to abstract the 

main results of the thesis, and examine the cost of the 

implementation. 

We first propose to compare the old design of 

with the new design we have implemented. Our comparison 

is based on figure 14.  The old dynamic linker was part of 

the security kernel,  it was constituted by a set of 

modules scattered across the whole kernel.  Some of these 

modules were directly available to the user through appro- 

priate gates into the kernel (see Appendix).  Miscellaneous 

peripheral functions like static storage allocation and 

trap handling were directly hooked to the linker inside the 

kernel.  The new dynamic linke, is a bcund object segment. 

Capabilities to use it exist la all ri-^s except ring 0. 

The modules of the dynamic linker which used to be available 

through gates in the kernel are now directly available in 

user rings.  All peripheral features have beon detached 

from the linker ai>d are now handled indeperdently as 

described earlier.  The static storage allocator is still 

Physically connected to the linker to simplify initialization, 

but it is functionally independentt  its operation is 
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triggered by a special hardw-re fault. As a result of the 

above facts the complexity of the security kernel has been 

reduced by a non-negligible, although hard to measure, 

amount.  What can be me^^ared is the reduction of the size 

of the kernel. The following items have been extracted 

from the kernel: 

15000 words out of 300000 (5%), 

30 entries out of 1200 (2.5%), 

15 programs out of 300 (5*), 

18 gates out of 165 (11%). 

The case of the gates is particularly interesting.  Since 

the linker has oeen removed from the kernel, all gates 

which used to lead to it inside the kernel could be 

removed too.  The figure of 11% deserves a special comment. 

Since the interface between the kernel and the outer world 

is one of the most sensitive, directly threatened part of 

the kernel, a reduction of size of 11% is a significant 

improvement. We attribute this high score to the fact 

that the linker was, as we have shown, essentially a user 

ring program.  Thus even though it was in ring 0, it was 

natural that it be available to user rings through many 

gates. 
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Secondly we propose to discuss the results of the 

thesis.  A first result is the demonstration of the 

feasibility of the design.  Some components of the design 

have not been implemented because they were thought to be 

of minor importance and could not have any impact on the 

overall success of the implementation.  Other components 

of the design like the funccional independence of the 

static storage allocator could not be implemented simply 

because the supporting hardware is not yet available on 

Multics.  However it was approximated by software and 

when the hardware becomes available, only a simple change 

of a few lines of code is required to separate static 

storage allocation from dynamic linking.  On the whole thus 

the major aspects of the design and of the implementation 

have been verified to work correctly.  System initializa- 

tion, fault handling and dynamic linking have been imple- 

mented.  All features crucial to the operation of the 

linker itself have been extensively tested and proved to 

work under all circumstances.  In particular cross-ring 

linking was carefully tested. 

The second result of the thesis is the improvement of 

the protection and the certifiability of the kernel of 

Multics.  Size and complexity have been reduced in the 

proportions mentioned above thereby making the auditing 
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of the kernel an easier task.  In addition, the thesis 

has corrected some bugs in the Multics system.  The 

protection threat resulting from having peripheral features 

hooked to the linker has been eliminated.  The protection 

of tie kernel itself is no more threatened by the uncon- 

trollable operation of the linker.  Moreover the careful 

study and the redesign of the linker uncovered and 

remedied several unsuspected protection flaws, not the 

least of which is the problem of static storage allocation. 

The last major results worth mentioning here are the 

insights gained about the nature of a kerrel. Although 

the thesis has not provided any definition of what 

programs belong inside the kernel, it certainly has pro- 

vided a few insights about what programs can easily be 

moved outside the kernel.  The a posteriori analysis of 

the linker has revealed a few interesting features which 

at the same time made the linker an easy to remove pro- 

gram and are a direct result of its user ring nature. 

We do not suggest in any way that all programs exhibiting 

the features to be described should or even could be 

removed from the kernel.  We only suggest that such pro- 

grams are certainly better candidates for removal than 

others and that any attempt to simplify a kernel should 

start by examining such programs. 
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The first feature which made the linker a good can- 

didate for removal is the number of gates which lead to 

it inside the kernel. As we already suggested, this fact 

is most probably connected to the user ring nature of the 

linker. A program which is already available to user 

rings through many gates is inside the kernel but close 

to the outside world.  Pulling it out should in general 

be easier than pulling out a program deeply nested inside 

the kernel (see figure 15). 

The second feature of the linker which made it a good 

candidate for removal is the fact that it was not used to 

support any other kernel function.  In figure 15, program 

b is callable through a gate.  Thus according to our fin 

criterion, it should be easy bo remove it.  However B is 

needed to support A (invoked by A) inside the kernel, and 

A is not available through a gate.  Hence it is probably 

hard to pull A outside the kernel and B has to stay 

inside as well.  This does not me-.n that B can never be 

executed in a user ring when invoked by a user ring, but 

it implies it must still be part of ^he kernel and thus 

audited to support the operation of A.  In the cc«se of 

the linker, since no other function like A used it, it 

could easily be removed. 

The third interesting feature of the linker is that 
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Flf'j.e 15: Multics security kernel. 

^ B cannot be removed because It Is used by A; 
: Z may be hard to remove because It would need a 
sate to reach X,  which may be hard to provide. 
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all kernel primitives (e.g. the FSM) it used to invoke 

from inside ring 0 were already available to user rings 

through gates.  Thus removing it simply moved back the 

boundary of ring 0 without even creating new gates through 

it.  Instead removing Z from the kernel in figure 15 would 

require a gate to be added to reach X because X is not yet 

available in the user rings. 

The last three paragraphs have described overall 

features of a program which make it a good candidate for 

removal.  Of course further functional investigation may 

reveal that such a program cannot possibly be removed simply 

because it deals directly with protection and is a proper 

component of the kernel. 

We finally would like to examine the cost of our 

implementation:  how much did the removal of the linker 

alte- the performance of the system? Given that performance 

and performance evaluation were not among the goals of our 

thesis, we will not present an exhaustive performance study 

of the linker.  However we have run a few simple performance 

tests which consists simply in measuring the time required 

to snap "average" links.  By "average" we mean links of the 

type most frequently handled by the linker.  That is links 

not going cross-ring and tWt using any sophisticated features, 

The measurements were taken in two different cases.  First, 

we measured the time required to snap a link to an object 
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currently mapped in the logical address space.  Secondly, 

we measured the time required to snap a link to an object 

not currently mapped in the logical address space.  Such 

measurements were carried on for both the old linker and 

the new linker. 

In the first case, the new linker requires 10 more 

milliseconds than the old linker, which represents an 

increase of 40 to 60 percent of the total time required 

by the old linker to snap the link.  This fixed increase 

in time is independent of the amount of processing 

required to handle the link itself.  We attribute it to 

the fixed overhead involved in signalling the link fault 

in the faulting ring, invoking security kernel primitives 

through gates, and requesting the kernel to validate and 

restore the machine status. All these operations are 

required for the new linker to operate and were not 

required or not so complicated with the privileges of the 

old linker. This increased overhead is the basic price 

paid by our design. 

In the case of the second set of measurements, the 

new linker requires roughly twice as much time as the old 

linker does.  Such overhead is not a fixed overhead 

although it contains the fixed overhead of 10 milliseconds 

Instead this overhead is relatively proportional to the 
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length of the search for the target object in the file 

system.  In order to speed up the search for and mapping 

of a target object, it is staniard practice on Muitics 

to first lo^k in the logical address space in case the 

object is already there.  The first set of measurements 

corresponds to this case.  Only if the object is not found 

in the address space is the FSM invoked to search the file 

system.  The reason why i-his search is roughly twice as 

long for the new linker as it used to be for the old one 

is mainly because search rules are now directory treenames 

instead of directory segment numbers.  As we mentioned it 

earlier, we expected this to yield a non-negligible 

overhead because translation of a treename to a segment 

number prior to each directory search is very expensive. 

Fortunately, when the project of removing name space 

management from the kernel is firished, we will be able to 

restore the search rules under their old form and the per- 

formance will no more suffer from the overhead described 

above. 

To conclude the discussion of performance, it must be 

said that clearly some fixed overhead (10 ms) was paid by 

the new design.  However the overhead in the search is a 

price paid only temporarily.  In addition it is believed 

that the figures presented can be improved.  They are the 
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results of very rough measurements; a more careful analysis 

is clearly deeded to identify the bottlenecks in the new 

linker and try to optimise the code there.  Also, when 

static storage allocation, trap handling and oth«*r features 

will be separated from the linker as recommended, the 

perfonance of the linker is likely to increase signifi- 

cantly because it will no more have to check and worry 

about all such peripheral features.  Thus the performance 

perspective is not as bleak as the above figures seem to 

suggest. 

Summary 

This thesis has attempted to open a road towards 

security kernel simplificatiun by removing the dynamic 

linker from the security kernel of a computing utility. 

A second wave aimed at simplification of the kernel is now 

on its way to remove name space management from the 

security kernel.  No matter how large an effort these two 

first simplifications will have required, this effort is 

almost negligible in comparison to what remains to be done. 

Even when we will have reached the minimal definition of a 

security kernel, the hardest part of its certification will 

remain to be worked out:  the auditing.  There exists so 

far no formal theory of kernel auditing.  While program 

verification techriques are a first step towards kernel 
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-«tin,, they are not the panaoea_ ^^^^ a ^^^ ^ 
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because of all hidden lnt6ractions between ^ ^^^^ 

Vet because of the incre.sing need for security and 

rellablnty of info^tion stored in a conlputing 

-~. Powerfui andcarefuny verified protection .echanis.s 

are demanded. Protection of information is not only the 

fact of defense, census, medicai or criminal information 

W—. it is a vital characterlstic requ.red by our 

eocrety fro. any information storage system, computers 

of certification to satisfy the fundamental need for 

true protection. 
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Appendix: Gates removed from the Multics security kernel 

To illustrate the variety and the number and the 

complexity of the functions removed from the Multics 

kernel by the implementation described in Chapter IV, 

we list here all gates removed from the kernel with their 

respective description. 

assign_linkage 

allows the user to request the static storage 

allocator to allocate a given amount of space in 

the els of the requesting ring.  A pointer to 

the allocated space is returnee*; 

fs_search_get_wdir 

allows the user to ask the treename of his current 

working directory.  The working directory is used in 

the search rules and can be any directory so definad 

by the user; 

fs search_set_wdir 

allows the user to define his new working directory; 

ge t_co un t_l ink age 

allows the user to obtain a pointer to the static 

storage of a segment given a pointer to and the 

bitcount of that segment; 
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get_defname_: 

is a generalization of get_entry_name for entries 

not necessarily into executable programs; 

get_entry_naine: 

allows the user to find out the name of en entry into 

a program given a link to that entry; 

get_linkage: 

is essentially the same as get_count_linkage but does 

not require the bitcount of th^ segment under concern; 

get_lp: 

allows the user to get a pointer to the static stor- 

age of a program in the requesting ring given a 

pointer to the segment containing the program; 

get_rel_segment: 

allows the user to get a pointer to the definition 

or the linkage section of a segment given a pointer 

to the segment; 

get_search_ rules: 

allows the user to find out what his current search 

rules are; 

get_seg_count: 

allows the user to get a pointer to and the bitcount 

of a segment given the segmer  name; 

get_segment: 

same as above but doesn't return the bitcount; 
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initiate_search_rviies: 

allows the user to define new search rules and enable 

tiem in the current ring; 

link_fcrce: 

allows the user to force a link to be snapped.  This 

is a "static linking" entry in the dynamic linker; 

make_ptr: 

allows the user to fabricate a pointer (i.e. a link) 

to an object from scratch, given the symbolic name 

of the object; 

rest_of_datxnk: 

allows the user to grow a data object under a given 

symbolic name if that object doesn't exi3t yet.  This 

is a gate into one of the sophisticated feature 

handler hooked to the linker; 

set_lp: 

allows the user to set the static storage pointer for 

a given program in the current ring; 

unsnap_service: 

allows the user to undo the work of the linker by 

unsnapping any link the linker may have snapped in 

the requesting ring to a given entry. 
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We hope this exhaustive list of once gates into the 

linker has convi;iced the reader of the variety and the 

complexity of the linker interface.  This is one of the 

reasons why it was very desirable and rewarding to 

remove it from the kernel.  In addition to having to 

audit 18 gates into the kernel, on the average 4 arguments 

per gate had to ho validated, which increased the complexity 

and the certification problem even more. 
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