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SUMMARY 

A mathematical model is described which forms the basis of 

a spectral enhancement program that follows along the lines 

of the MAZE series of spectral unfolding codes.   The treatment 

of a priori and a posteriori information functions are elaborated 

as well as their optimization and subsequent implementation. 

The code was developed for a serial computer and the results 

are demonstrated for several examples.   The code has also 

been converted to the Illiac IV parallel processor computer 

system in the Glypnir language. 
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1.   INTRODUCTION 

The MAZE series of computer programs are generzil purpose 

estimation codes that are and have been used for unfolding, resolution 

enhancement, smoothing, interpolation and fitting.   MAZEr1^ and 
(2) 

MAZE2      have been sponsored by the Defense Nuclear Agency.   This 

report describes the development of an improved version of MAZE2, 

now designated MAZE3 and the subsequent conversion of this improved 

version of Illiac IV 04) which is designated MAZE4.   It should be 

emphasized that this effort was not strictly a conversion of an 

existing computer program from a serial computer to the 14 computer. 

Rather, there was a great deal of emphasis placed on introducing the 

latest information theory techniques into MAZE3 and debugging a 

code that would work very well for serial computers.   Only after 

this was accomplished was the code then fitted to the 14 computer to 

take advantage of the unique computational advantages provided by 

that system. 

The 14 is a parallel computer system basically consisting of a 

Control Unit (CU) and 64 Processing Elements (PE's).   The PE's 

work in parallel and can execute 64 instructions simultaneously. 

The CU can also be executing instructions at the same time.   The 

obvious advantage of the 14 over serial computers is the simultaneous 

execution of up to 64 instructions; however, they have to be the same 

instruction.   In each PE ♦he instructions operate on data elements 

within the individual PE's own memory. 

■    -— --■■- •■     ■^.^..—^. -.■..-. MMMkMMaMyMMMkihMu ,..      „._.      .W 
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Surrounding the 14 system is a great deal of peripheral storage 

which will be useful when MAZE is beinf; used for unfolding a 

spectrum with a large number of channels.   It is possible (although 

perhaps not very practical, as will be described later) to parameterize 

the response data from Ge(Li) detectors in order to minimize the 

size of the response matrix.   However, the manner in which MAZE 

is expected to be used on 14 is that the full response matrix will be 

necessary.   Thus, the use of the peripheral storage (14 disk) is 

imperative.   Also, since the computation time goes up as the square 

of the increased number of channels, it is evident that the 14 system 

can be an effective tool for unfolding. 

Section 2 describes the principles of unfolding which form the 

basis of the mathematical model.   Section 3 elaborates upon a specific 

form of the optimization function and Section 4 explains the method 

of implementation.   Section 5 has some comments on the parameter- 

ization of the Ge(Li) response function, while Section 6 contains 

some specific examples of unfolding. 
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2.   PRINCIPLES OF UNFOLDING 

The underlying mathematical principles of unfolding are well 
(1 2) covered elsewhere,    '     nonetheless parts of it will be reproduced 

here ^or completeness. 

The system consisting of source, spectrometer, unfolding 

processor, and receiver involves the following flow of information: 

Source 
Object 

o(E) 
Spectro- 
meter 

Data 

3)i 
unfolding 

Processor 
Image 

Receiver 
o(E) 

The object spectrum ö(E), is the energy distribution of neutrons or 

gammas from the source.   It is viewed by the spectrometer, which 

produces a data vector, D..   3) has passed through a complex detection 

process and suffers from lois of resolution, from partnle recoil 

effects, and from noise due to statistical fluctuations of he discrete 

count data.   It is the job of the unfolding processor to minimize the 

effects of the spectrometer response and the count fluctuations, and 

to construct from the data an image spectrum, c3(E), that corresponds 

closely to the true object, transmitting this image spectrum to the 

receiver. 

One way of viewing the unfolding processor is in terms of its 

objective.   How closely the image function, <o, corresponds to the 

object function, o, is a measure of the effectiveness of the unfolding 

9 
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processor.   Generally there is a distance function, 3(0,0), which tells 

how far a given V is separated from a given ^.   Given the true object 

9, the optimum image, <P, is the one for which s(0,0) is as small as 

possible.   This is of conceptual interest but of no practical utility, 

because if ö were known there would be no need for a measurement. 

However, one can construct a function W which measures the 

effectiveness of the unfolding processor, but which is a function only 

of quantities that are input to or output from the processor, that is 

W   =  W(»,(P)     . 

Then, given the data set, D, the opümum image would be the one for 
which W(T,<P) is as small as possi^'e. 

Let us begin with a more precise statement of the optimization 

principle:   There is a function of the data 5^ and the image estimate o, 

W(T,</>)      , 

such that for a given data set the optimum image under the W-criterion 

occurs at that <P which minimizes W.   The principle does not say 

that the resulting 9 is universally optimum, only optimum under 

the criterion defined by W.   K remains for the inventors of 

W-functions to insure that they have a precise understanding of what 

constitutes an optimum image and that they are accurately translating 
that understanding into mathematical forms. 

The next important point is that W can be thought of as an 

information function.   Information functions are related to probability 

10 
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distributions in a simple, precisely defined way, and we now explain 

that relationship. 

Information has to do with reduction of the unknown, that is with 

the specification of qvaptities that had been random relative to 

previously acquired knowledge.   The shape and magnitude of an 

energy spectrum are such quantities.   Before actual measurement 

no definite statement can be made.   At best a probability density 

can be assigned to a given shape and magnitude, based upon known 

characteristics of the source and known distributions among popula- 

tions of sources.   Certain classes of conceivable configurations may 

be ruled out as occurring with vanishingly small probability, and 

this fact will be used in the unfolding process; but the idea that a 

given spectrum is, even before measurement, of definite shape and 

magnitude is of no practical utility when these parameters are 

unknown. 

If a measurement could determine these parameters, an amount 

of inforiration would be acquired.   The amount would depend upon 

the rarity of the spectrum that was observed.   That observation of a 

common spectral shape conveys a smaller amount of information 

than observation of a rare spectral shape agrees with the intuitive 

notion of information, as does the idea that the observation of two 

spectra with similar shapes conveys twice as much information as 

observation of one.   Suppose the probability of that shape is p; then 

the probability of n spectra with that shape is P = p .   Consequently, 

the desired additivity of information is guaranteed if it has the form 

il 
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W  = klnV     , 

where k is a constant and In stands for the natural logarithm, since 

it is a property of logarithms that 

-f-n p n ^-n P 

There is no particular significance to the value of k or to the choice 

of logarithmic base other than to define units of information.   It is 

customary to take 

W   =   - -tn P     . 

The minus sign is necessary because information increases as 

probability decreases. 

Now, a generalization of the simple probability p, is the proba- 

bility distribution f (9).   If we imagine a space of all possible spectra 

5 such that each ^ is a point in the space, and if dn is an infinitesi- 

mal volume surrounding such a point, then 

dp  =  f(<p) dfi 

is the infinitesimal probability of finding 5 in da.   That is a definition. 

We can turn it around, write 

'<" = Z ' 
and think of f («P) as the density of probability at <P.   The corresponding 

generalization of information is the information function 

12 
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As before, information is additive when probability is multiplicative. 

Notice a very important property of the information function that 

the point of minimum information corresponds to the point of 

maximum probability. 

The information function required for unfolding is complex 

conceptually, because it involves two random states, the data and 

the image.   Let us next consider this complication, first from the 

viewpoint of probabilistic arguments that motivate it, and secondly 

from the viewpoint of intuitive notions of why it works.   The coordinate 

(E) and the analogous subscript (i) are unimportant to this discussion, 

and will be dropped.   What is most important, is the fact that 

object, data, and image are random variables. 

We have already considered the fact that before measurement 

the object function is random relative to available knowledge.   We 

called its probability distribution,  f(P).   After measurement 5 

is not reduced to certainty.   It is still a random variable, but its 

probability distribution fCöJT) is reduced in size.   We have not 

discussed the size of probability distributions and will not, but the 

precise notion defined in terms of entropy corresponds to the 

intuitive notion that a probability distribution is smaller or tighter 

when the range of probable variation is decreased.   In the distribution 

f(9|?>), known as the "conditional probability of <P-if-5)M,  5 is 

thought of as a random variable, and T is thought of as fixed. 

13 
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Of course it is also possible to think of the data  7) as random. 

If a measurement of a known state <ö is made, say of a test source, 

the data that would result from an ensemble of separate measure- 

ments with the gamma camera would be distributed probabilistically 

with some distribution f(T>|5), primarily due to the discrete nature of 

the gamma flux.   This time D is thought of as the random variable 

and <? is thought of as fixed, and the resulting probability distribution 

f(»|5) is called the conditional probability of Ti-if-cö.   It is important 

to realize that f(^ <5) contains a mathematical model of the camera 

response as well as of the fluctuation process, since both are 

necessary for defining the distribution of S).   It is also worth re- 

marking that so far the symbol f has been used to specify three 

di.ferent distributions,  f(^),  f(^ P), and t{%\*ö), with the hope 

that the different argument structures will be sufficient to distinguish 

them.   The freest possible variation of T* occurs when <5 is 

unspecified.   The associated distribution, w'iich of course is larger 

than f(^ ö), we call f(S)). 

One more distribution involving ^ and D:   if nothing is known, 

neither the state of the source nor the state of the data, then both 

must be treated as random.   A product space may be formed such 

that each point in space corresponds to a pair  (^,5)).   The associated 

probability density f(<5, 55) is known as the joint probability of <P 

and D. 

Now this distribution, the joint distribution of (5 and y, is a 

complete specification of the random properties of <P and 5), and 

14 
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therefore determines the four previous distributions.   The distribu- 

tion of <P is just the joint distribution of <r and Ji with integration 

over all possible 5): 

UV) - S...Ji{7pts) dn     . 
all 5) ^ 

The distribution of J3 is the pint distribution of ö and D with 

integration over all possible <P: 

f(5)) = J...Jf(ö,T) m_   . 

The relationship with the conditional probability of vJ-if-S) is 

f(^,T) = f(ö |5)) f(35)     , 

because tlie probability of T being an infinitesimal volume dn_ about 

5) is 

m do. 

while the probability of <o being simultaneously in dfi   about «P is 
<ß 

f(ö Is) dn_     , 

the compound probability being 

f(5,35) dn_ dß^ = f( 0 | s) dß_ f(S) dn       . 
0 p 

15 
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Bv the same token, the relationship with the conditional probability 

of 3)-if-^ is 

f(p,S) = f(S)|p) f(5)    . 

Finally, the fact that the two conditional probabilities a^e related to 

the joint probability means that they are themselves related by the 

very important equation 

f(^ IS)  f(D)  = f(S)|p) f(p)      . 

This implies that any one cf the conditional or single probabilities 

can be expressed in terms of the other three. 

All the probability distributions have an analogous information 

function defined by the logarithmic relationship 

W » - to £ 

mentioned previously.   Here they are:   The information function of 

9,  W(cp); and the information function of S),  W(X)).   The conditional 

information function of «p-if-S,  W(^ T>); and the conditional informa- 

tion function of 5)-if-(ö,   W(5) ö).   The joint information function of 

(P and 5), W((0,5)).   Again we mention that the same symbol, W, 

stands for different functions distinguished by their argument 

structure.   The multiplicative relationships involving conditional 

probability become additive relationships involving conditional 

information, as we can see by the following: 

16 
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W((p,5))  = W((/3 | 5))  + W(5)) 

= W(S)|^)  + W(^)      , 

with any one of the conditional or single variable information 

functions being expressible in terms of the other three.   These are 

the basic mathematical elements to be used in the construction of 

the optimization function. 

One small obstacle remains, the fact that all these information 

functions involve (H and D instead of 0 and ^ as required by the 

unfolding processor.   The arguments 0 and 8 are reasonable 

starting points for any theoretical investigation of the information 

flow process, because both are firmly grounded in the physical 

nature of the source in question and of the spectrometer and therefore 

lead to physically motivated probability distributions and information 

functions, while cp is a synthetic object, a construction of the 

unfolding processor.   There are no physically motivated probability 

distributions or information functions involving <P, except those 

generated by fiat. 

Here is that fiat.   If the distributions involving ö and U were 

known, it would be possible to construct a Monte Carlo unfolding 

processor which, using the known distributions of p and 5), generated 

random 0 in such a way that all probability distributions or informa- 

tion functions involving «P and 3? were the same as those involving 

0 and 5).   This would be a processor different from the optimizing 

processor, because its output would be random, but it is valuable 

17 
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conceptually because it represents a probabilistic inverse of the 

spectrometer mf asurement process, the image distribution for 

given data,  f(<P S), being the same as the object distribution, 

f ((£ S) for thaA data.   Therefare, let all distributions involving <P 

be generated from those involdng <p by the replacement rule <p-»(p. 

To return to the determination of the optimum image, the optimum 

image is that image function which corresponds to the most probable 

object function for the observed data.   It is therefore the image 

function that minimizes the conditional information of <p-if-3), 

W((P j S).   This is a straightforward and precise statement of the 

principle of unfolding which combines the previously mentioned 

principle of optimization with a specific form of the W-criterion. 

The construction of W(<p| D) by direct consideration of the 

conditional probability of cp-if-D is usually impossible.   Theoretical 

models generally follow the true direction of information flow, that 

is not from S to <p, but from cp to 5).   Remember that f (3) p) is the 

distribution and therefore W(3) 0) the information function which 

contains a (usually linear) mathematical model of the spectrometer 

response as well as of the statistical fluctuations.   This requires 

consideration of the conditional distribution of data 8 while the 

object function is held fixed, a point that will become less abstract 

when we consider in Section 4 a specific form for the iriormation 

function.   To do this we use the relationships among the conditional 

and single variable information functions to write 

W(^ I D) = W(S I (p) + W((p) - WCS)     . 

18 
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Since the minimization of W(<p S) occurs by varying V, the 

information function W(5)) acts like a constant and may be 

dropped.   Then 

W = W(4) | (p) + W(<p) 

is the function that is minimized. 

One of the nicest properties of the information function W, 

consistent with intuition and easy to remember, is its additivity. 

The form of W, a sum of two terms, may be interpreted as meaning 

that information comes from two sources.   The function W^ o) is 

often called the a posteriori information, ano represents information 

that became available upon measurement.   As <£> varied from its 

initial form toward the minimum of W(S cp), and in ir.any i-erational 

techniques this means from a relatively structureless form to a 

sharply varying spectrum,  cp is brought closer and closer toward 

consistency with data S.   Consistency is a good thing to a degree, 

but beyond some limit <P ceases to acquire meaningful detail from $ 

and instead acquires noise.   Since the spectrometer introduces 

blurring of 5 relative to v, and since W(5) v) is constructed in 

such a way that (p is consistent with S when it is relatively sharp 

with respect to S,  (p contains high spatial frequency components 

and is extremely susceptible to the acquisition of noise.   This is 

where W(<p) comes in.   We know from our understanding of physics 

that it is extremely unlikely for noisy random fluctuations and typical 

source spectra to look alike.   There is a certain range of reasonable 

spectral shapes.   This is information represented by W(cp), 

19 
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important information such as the tendency for peaks to assume a 

Gaussian vai ition.   This is a priori information, known prior to 

measurement.   The total information is the sum of information known 

before and independently of the measurement and information acquired 
upon measurement. 

To expand on the point raised In the preceding paragraph con- 

cerning consistency with the data, an image is consistent with its 

associated data if it predicts that the data is probable, that is, if 

knowledge of the camera response and the nature of the statistical 

c »unting fluctuations leads from an object like the proposed image 

to a data set close or similar to the observed data set.   Than an 

understanding of the spectrometer response and the distribution of 

fluctuations allows one to assume an object spectrum and compute 

the probability of a given data set will be discussed further in the 

next section.   The negative logarithm of this probability is the 

a posteriori information.   It is a function of the estimated image <p 

and the data 5), but also of the size of the data fluctuations and of 

the instrumental response.   The more probable the observed data, 

the more consistent the estimated image, and the smaller the value 

of a posteriori information.   A value of a posteriori information can 

be chosen such that all spectra with a posteriori information smaller 

than this value are considered consistent and all images with 

a posteriori information greater than this value are considered 

inconsistent.   This defines a geometric region of consistency within 
the space of possible images. 

20 
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This is not quite true, due to a geometrical condition present 

in high-dimensional spaces such as the high-dimensional data space, 

but with no analog in th<; three-dimensional space our intuition is 

based upon.   In a hign-dimensional spree nearly all the volume of a 

smoothly bounded region is concentrated at the boundary of the 

region.   It is as if all solid objects had nothing inside.   This may 

sound strange, but its truth is easily demonstrated in the case of an 

n-dimensioral sphere.   If the volume of an n-dimensional sphere is 

obtained by integrating the volume of a series of infinitesimally thin 

concentric shells, the result is 

V = a r ~   dr     , 
0 

where a is a constant.   The contribution of any infinitesimal shell, 

ar ~  dr, rises extremely rapidly with radius because r is raised 

to a high power.   For a 100-dimensional vector data, 99 percent of 

the spherical volume is concentrated within the outermost 1 percent 

of radius!   This effect is sometimes known as "the curse of many 

dimensions".   Its consequence is the concentration of nearly all 

data sets for a given true <P at the boundary of the region of 

consistency. 

The information value determining this boundary can be deduced 

from the random properties of the a posteriori information function. 

If some fixed, known «p generates an ensemble of data sets by an 

ensemble of separate measurements, all of the generated data sets 

are known to be consistent with <p by the very nature of the experiment. 

21 
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but some will appeav to be inconsistent with a large a posteriori 

information value, due to statistical fluctuations in S.   After all, 

the a posteriori information, being a function of the random 

variable 3), is itself a random variable.   On the average, some 

expectation value <W(s|^)> will be attained.   In addition,  W(S ^) 

acts as a r?.dius, defining shells in »-space of the form 

Wj s (W(5)|p)> ^ Wj + dWj     , 

so that as a consequence of the curse of many dimensions it is a 
good approximation to say 

W(T|Ö)  =   <W(Tiö)>       . 

Th"5 chance of this equality failing to a given accuracy diminishes 

rapidly with increasing dimensionality. 

In the light of this nonintuitive behavior at high dimensionality, 

some statements concerning consist3ncy with the data should be 

reviewed and revised.   In the optimization, as «p is varied from 

its initial form toward the minimum of W(3)|p), which in many 

iterational techniques means from a relatively structureless form 

to a detailed image, <p is probable brought closer and closer toward 

consistency with the measured data » until 

W(S) | ^) = < W(D | p) >     . 

[Since <p is unknown, <W(5) p)> can be approximated by <W(» <p)>. 

Anyway it is usually found to be approximatoiy constant, independent 

of ^. ]   Beyond this, further optimization of W(S p) is fruitless. 
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because <A probably becomes less consistent with 5),   As a result 

the optimization of W(S 0) alone would end with <P confined to a 

subspace of the space of all possible <p defined by the expectation 

value of the a posteriori information.   That is,  <P would not be 

uniquely determined. 

A random choice of <P from the subspace of cp-space defined by 

the equation 

W(D|<p) =   <W(3)|p)>      , 

would be most unsatisfactory.   The noise magnification resulting 

from resolution enhancement would obliterate all recognizable 

features.   Good spectra are present within the subspace, but they 

represent an extremely small fraction of the total region.   It is the 

function of a priori information functions to locate these small 

regions.   The combined optimization of 

W = W(S I </?)  + W(<p) 

results in the minimization of W((p) within the region of consistency. 

If W(<P) is constructed to minimize for the desired class of spectra, 

the desired selection will be achieved. 

The a posteriori information,  W(S) <p), determines the region 

of consistent spectra, and the a priori information,  W((/5), determines 

the most regular spectrum within the region of consistency.   As a 

practical matter, it is relatively easy to construct a form of W(cp) 

that prejudices toward regular images, and relatively difficult to 
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normalize it so that its relative strength in W   is exactly that 

required to pull W{v (p) to its expectation value.   Therefore, it is 

more direct to state the optimization problem as 

minimize  W((p) 

subject to W(D | <p) =  < W(5) | p) > 

On the other hand it is relatively difficult to implement a constrained 

optimization like this, and relatively easy to implement a simple or 

unconstrained optimization.   Two methods have been developed for 

converting the constrained optimization to an unconstrained one. 

In the first method the function that is minimized has the form 

2 2 
W = i{wCD|<p)  -  <W(5)|^)>}    + e{w((p)|       , 

where e is a smaller number.   The first term dominates until the 

a posteriori information approaches its expectation, after which the 

minimization of the a priori information dominates.   In the second 

method, the method of Lagrange multipliers, the function that is 

minimized has the form 

W = W(£ | cp)  + X W((p)      , 

where X is the Lagrange multiplier.   Generally, the value attained 

by W^ (p) increases as X increases, causing W(<p) to pull the 

optimum v away from the value that vould minimize W(5) o). 

Therefore, the Lagrange multiplier can be adjusted as part of the 

optimization, to the value required to fulfill the expectation value 

condition. 

24 

-  - -   -  



' vm Mm HnijR "■■"•'" vmmim* 

•^^ 

3.   OPTIMIZATION CRITERIA 

The optimization function used in MAZE 2 is designed to 

produce regular, positive spectral images, with minimal alteration 

of the true widths of Gaussian peaks.   MAZE3 is similar in that 

sense.   In this section we describe the specific form of this function. 

An NC-dimensional energy grid structure is assumed in which 

th2 width of the J-th energy bin is AE(J), for J=l,. .. ,NC. This 

structure is specified by an (NC+1)-dimensional bin-edge vector, 

E(J), J=l,..., (NC+1). The quantities that are estimated are the 

probabilities of occurrence of flux in the J-th energy channel, an 

NC-dimensional vector, Q(J). This vector is related to the image 

spectrum,  fß (E), of the previous chapter by the equation 

E(J+1) 
Q(J) = f (p(E) dE 

E(J) 
(3.1) 

The probability,  Q(J) is an integral quantity, roughly proportional 

to the width of me J-th energy bin, while the image spectrum,  tp (E), 

is a differential quantity, indeperdent of the energy grid structure. 

Actually,  Q(J) is a 2*NC -dimensional vector where the indices 

J=l,... ,NC refer to the continuum (Q ) and indices J=NC+1,... ,2*NC 

refer to the discrete (QD) portion of the spectrum.   The subscripts 

C and D will be explic: tly indicated wherever needed, otherwise it 
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will be assumed that Q refers to both the continuum and the discrete 

elements of the probability vector of dimension 2*NC.   Then Qp.0) 

is actually Q(NC+J). 

There is an MR-dimensional data vector,  C(I), foi' I I,... ,NR. 

It is assumed to be linearly related to the spectral estimate    Q, 

by the response matrix,  A, in the folding equation 

C(I) + 6C(I) = i;A(I,J) * (Q(J) + 6Q(J)) 
J 

(3.2) 

The symbol 6c represents statistical fluctuations of the data vector. 

In Section 3.1, in which the basic optimization function is described, 

C is assumed to have been obtained by a simple counting process 

so that 6C is distributed according to the multinomial distribution. 

The assumption is not generally valid, but it is generally possible 

to transform the problem to a form in which the multinomial 

assumption yields good solutions.   This is the equivalent count 

form, which is discussed in Section 3.3.   Also part of the equivalent 

count form is the condition 

NC 

J 
E {QC(J) + QD(J)h i (3.3) 

representing the assumption that all flux of interest passes through 

the defined energy grid structure.   The problem is worked under 

condition (3.3) and restored upon completion to the normalization 

specified by condition (3.1).   This is discussed in mathematical detail 

in this section.   The symbol ÖQ represents error in the image 

spectrum relative to the object spectrum. 

26 

 —.^.-^»—^^—..^—it-^.^^ -^ ..- —*— — 
-- -■ 
 —-■"-'-—*•-'•'■-—****** 



F 11^—^-^p» 'I       II —^»w—i^^^j 

■ 

The W-criterion is dependent on the arguments (Q;C, A, E,NR,NC) 

and has the form discussed in Section 2.   A restatement of the 

variable information function in terms of these arguments, has 

the form 

W(Q;C,ArE,NR,NC) = W^QiC, A,NR, NC) 

+ TCW2(QC;E,NC) 

+ TDW2(QD;E,NC) 

where W,  is the a posteriori and W« the a priori information.   T'iese 

will be treated in detail in the following subsections. 

3.1   THE A POSTERIORI INFORMATION 

The form of the a posteriori information Wj was derived from 

multinomial statistics.   According to multinomial statistics the 

probability for C counts distributed in NR channels is: 

• where 

PROB = 
NR pmC(I) 

jCOUNTSÜ   E   %!- 

NC 
P(D =   E   A(I,J) * {QC(J) + QD(J)J (3.1.1) 
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The construction of an information function as the negative logarithm 

of a probability distribution was discussed in Section 2, whereupon 
it follows that 

NR 
Wl = - E  C(I)  * tn P(I)  - K (3.1.2) 

The constant,  K, which does not affect Wj as a function of Q, has 
the form 

NR 
K = -to (COUNTS!) -  £   In C(I)     . 

1=1 

Using Stirling's approximation 

tn(XI) = X ^n X - X 

it can be brought to the form 

NR 
K = E  C(I) * j-tn (COUNTS) - In C(I)|      . 

1=1 

Substituting this back into Wj in Equation 3.1.2 and combining log 
terms, we find 

NR 
W (Q;C,A,NR,NR) = - £   C(I)  * In CQUNTfP(I) 

1=1 CW 
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The form of the multinomial distribution assumes that the 

NR-dimensional vector P is the probability for all possible channels 

of detection.   Otherwise there would effectively be an (NR+l)-th data 

channel for events not received by the first NR channels.   This can 

be stated mathematically as the condition 

NR 
1 = E p(i) 

1=1 
(3.1.3) 

It has the same form as the previously mentioned condition (3.3), 

and is directly related to it.   Combining Equations 3.1.1 and 3.1.3, 

we get 

NR NR  NC 
1 = E   P(I) =  E   E   A(I,J) * (Qr(J) + Qn(J)i 

1=1 1=1 J=l [ L       D   ' 

Then, reversing the order of summation, this becomes 

NC NR 
1 = E   QC(J) + QD(J)[ E A(I,J) 

J=l ' u       "   ' 1=1 
(3.1.4) 

In Section 3.3 it will be shown that in the equivalent count form the 

summation of A over I, a summation of the columns of the response 

matrix, gives the result 

NR 
E  A(I,J) = 1     . 
1=1 

Therefore Equation 3.1.4 reduces to condition 3. 3. 
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Condition 3. 3 constitutes a one-dimensional constraint on 

the domain of optimization, leaving Q^ and QD with (NC-1) degrees 

of freedom.   In this constraint region the calculus of variations 

provides an expression for the minimum of W..   Taking the variation 

of W1 with respect to P gives 

m ÖWi  ._        ??C(I) ÖW1=ii:Fp(f)6P(I) =  -^iW6P(I) (3.1.5) 

The variation of the constraint Equation 3.1.3 gives 

NR NR 
6 E  P(I) = E   6P(I) = o     . 

1=1 1=1 
(3.1.6) 

Using the method of Lagrange multipliers, the minimum is described 

by 

NR 
6W1   + X 6  X;   P(I) = 0      , 

1=1 

where the Lagrange multiplier \ is to be determined.   Substituting 

3.1.5 and 3.1.6 into this equation, it becomes 

|{.C^+x[Äp(I)=0 

Because the 6 P(I) are independent, we set each coefficient to zero 

independently, and find 
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P(I)=^     , (3.1.7) 

the   Lagrange multiplier being evaluated by summing over I. 

Performing this summation, 

f PO) = 1 = £ SB = COUNTS    > 
1=1 1=1  A A 

from which X= COUNTS, and 

w-As ■ (3-1-8' 
This agrees with the notion that P(I) is the probability for a count 

in channel I.   Substituting this P(I) back into W., the minimum 

value of W1 is found to be zero. 

A form of W1 in which constraint 3.1.3 is implicit is useful 

for the accelerated steepest descent technique used in MAZE.   It 

may be derived by considering an (NR+l)-th dummy channel, channel 0, 

with P(0)~1 so that 

NR 
Z   P(I) « 1     • 
1=1 

Then,   Pd) for I ^ 0 is far removed from the effect of the constraint 

condition and can vary freely.   The minimum of W. with respect to 
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NR 
E p(i) 
1=1 

is controlled by the choice of C(0).   To preserve the magnitude of 

P(I), the probability of a count in chan el I can be defined as aP(l), 

where a-0.   Omitting the constant term from Equation 3.1.2, 
W- becomes 

NR 
Wj = - C(0) * in P(0) - Z C(I) * ^n aP(I)     . 

1=1 

The count total becomes C(0) + COUNTS, and constraint 3.1. 3 
becomes 

NR 
P(0) + a E  P(I) = 1     . (3.1.9) 

1=1 

According to Equation 3.1. 7 obtained by calculus of variations, the 

minimum of W.  occurs at the P values 

P(Q) =        c(Q) K ' ' c(o) + COUNTS    » 

aP(I) = um + COUNfS     • 

The latter expression must agree with the original minimum 3.1.8, 
so C (0) must be set to 
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C(0) = ^  * COUNTS 

Using this expressiou for C(0) and the constraint condition, 

Equation 3.1.9, the a posteriori information W. becomes 

Wl = 
l-q 
a COUNTS * to   1 - a 

NR | 
Z Pd) 
1=1     I 

NR 
£  C(I) ♦ -tn aP(I) 
1=1 

In the limit a-0 the first -tn term is well approximated by a first 

order expansion 

1 m        1 !l -a £   P(I)   - 
I 1=1 1 

NR 
- « E Pd) 

1=1 

Substituting this back into the equation for W., replacing ocP(J.) by 

its original form,   P(I), and taking the limit as a^O,  Wj becomes 

NR NR 
Wj = COUNTS *  £   P(I)  - £  C(I) * in P(I)     . 

1=1 1=1 

This is the implicit constraint form of W,.   With this form the 

minimum of Wj occurs at the equation given by 3.1.8 without 

Lagrange multipliers. 

3.2   THE A PRIORI INFORMATION 

The a priori information W2 is designed to suppress oscillations 

but not Gaussian peaks.   Since oscillations are accompanied by 
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lar^e derivative terms, the reduction of almost any low order 

derivative function will reduce oücillations.   Gaussian peaks also 

contribute certain large derivative terms, and a careless choice of 

Wg will cause Gaussian peaks to be smeared.   Since a compromise 

is affected between smoothing and conformity to the data, the 

practical result of using a bad W« is oscillations near Gaussian 

peaks appearing as subsidiary peaks and possible negative fluxes, and 

smearing of the true peak.   For this reason, care must be exercised 

to construct a derivative expression that leaves Gaussian peaks 
intact. 

The a priori information functions have the form 

2 
NC 

W (Q   ;E,NC) = i E 
1    C J=l 

d^noc(EJ) 

dE 

NC 
W2(Q   ;E,NC) = * E 

J=l 

d^mp^Ej) 

^  
dE 

for the continuum and discrete spectra respectively.   The derivative 

foi ms are approximately independent of the properties of the 

Ga> ssian peaks.   Thus, minimization results in regularization 

without alteration of the peaks.   The E, is an energy representative 

of the J-th energy bin and the derivatives are in terms of channels. 

It is assumed that energy is linear as a function of channel which 

is a good approximation for germanium detectors. 
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These forms may be written approximately as 

NC ( NC )2 
W2 = 4 L     E   D  (J,K) ♦ log PHI(K) 
'      J=I|K=I   

a ) 

where a is to be replaced by C or D for the continuum or the 

discrete parts respectively.   Also,  <o (£„) has been replaced by 

PHI(K).   D_ and D_ are matrices as will be shown below. 

Another form of this equation is: 

NC   NC 
W9 = i Z    E   log PHI(J) * D  D  (J,K) * log PHI(K) 

J=l K=l a   a 

where 

D   D^CJ.K) =   E   D   (LfJ) *D   (L,K) = D1 * D 

and, again,   a is to be replaced by C or D. 

The matrix Da is independent of PHI and can be calculated 

once and for all.   For the first derivative we have the following: 
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0 -1 0 0 

0 1 -1 0 

0 0 1 -1 
T 

Dc,Dc = 
0 0 0 1 

1 

0 

0 

-1 

1 

0 

0 

-1 

1 

0 

0 

-1 

- 
0 0 0 1 

0 0 0 0 

-1 1 0 0 

0 -1 1 0 

♦ 0 0 -1 1 
• 

1 

-1 

0 

0 

1 

-1 

0 

0 

1 

0 

0 

0 

- 0 0 -1 1 

1 -1 0 0 

-1 2 -1 0 

0 -1 2 -1 

0 0 -1 2 
= * 

2 

-1 

0 

0 

-1 

2 

-1 

0 

0 

-1 

2 

-1 

0 

0 

-1 

1 
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which turns out to be an approximation to the second derivative. 

The other off-diagonal elements are zero. 

Similarly, for the second derivative: 

-1 0 0 0 

1 -2 1 0 

0 1 -2 1 

DS*DD = 
0 0 1 -2 

-2 1 0 0 

1 -2 1 0 

0 1 -2 1 

0 0 1 -1 

~-l 1 0 0 
- 

1 -2 1 0 

0 1 -2 1 

0 0 1 -2 
♦ • -2 

1 

0 

0 

1 

-2 

1 

0 

0 

1 

-2 

1 

0 

0 

1 

-1 

2 -3 1 0 
- 

-3 6 -2 1 

1 -4 6 -2 

0 1 -4 6 
• 6 

-4 

1 

0 

-4 

6 

-4 

1 

1 

-4 

6 

-3 

0 

1 

-3 

2 
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which is an approximation to the fourth derivative.   Because the D 

matrices are highly redundant, they need not be stored explicitly. 

3. 3  TRANSFORMATION TO EQUIVALENT COUNTS 

The multinomial distribution has the desirable property of 
distributing 0(1) among positive values 

0 s C(I) 

in accordance with assumptions that are reasonable for a simple 

event-counting process.   The standard deviation of the I-th channel 

data may be deduced from the multinomial distribution, and has 
the form 

fr(D = VCOUNTS * P(l) * (I-  - Pd))' 

For multichannel data ?(!) is usually sufficiently smaller than 1., 
to make the approximation 

(7(1) = yCOUNTS * p^y 

or, w;hat is the same 

a(I) = J7cö)y   , 

where <C(I)> denotes the expectation of Cd).   Therefore, the 
fractional error in 0(1) is 

/my 
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or, approximately, 

1 
yen) 

Generally, data D(l) is inputed with error sigma (I) such that 

the fractional error 

SIGMA(I) m 
is not equal to the multinomial value 

1 
yony 

However, if a pseudocount vector C(I) is constructed from D(I) and 

SIGMA (I) according to the prescription 

C(I) = D(I) 
SIGMA(I) 

then the pseudocount vector will have the desired fractional error. 

■ 

Now let us consider the ramifications Ct the pseudocount 

definition.   Suppose V is a vector that folds to D: 

NC 
D(I) =   E  A(I,J) * V(J)     . 

J=l 

If a new response matrix is defined by the transformation 

A(I, J) -* A(I, J) = g|jj A(I, J) (3.3.1) 
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then V will fold to C: 

NC 
C(I) =   E  A(I,J)  * V(J) 

J=l 

If A is again redefined by the transformation 

A(I, J) - A(I, J) = ^iliil 

E  A(I,J) 
1=1 

and V by the inverse transformation 

(3.3.2) 

(NR | 
V(J) - V(J) =   E  Ad, J)   V(J)     , 

(1=1 I 
(3.3.3) 

then the new A will have the property that 

NR 
E  A(I,J) 
1=1 

= 1     . 

Upon input to the program, pseudocount vector C is calculated, 

and A is converted to the equivalent count form defined by (3.3.1) 

and (3.3.2).   The spectral estimate therefore contains the vector 

multiplier seen on the right side of (3.3.3).   Upon conclusion of the 

calculation, this multiplier is divided out and A is restored to its 

original form. 
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4.   IMPLEMENTATION OF THE OPTIMIZATION 

The minimization of W is accomplished by an accelerated 

steepest descent moving in the space of InQ.   To understaid this, 

consider first the simple steepest descent, an iterational technique 

. tha. which generates a sequence of points Q^,   $(2\ ... ,Q^m^ 

approaches the minimum of W.   The method is known by knowing 

the starting point,   Q(1), and a rule for the transition Q(m)-Q(m+1). 

The starting point is taken to be that Q for which the image 

spectrum is constant or flat.   This choice assures that any structure 

that appears in Q^      comes only from the form of W and not from 

the choice of Q( '.   The rule for the transition Q(mL Q(rn+1) takes 

the form 

<nQ<™)(J) -. tnQ^W , InQ^'(J) + ^«"(J) a 

or, equivalently, 

Q{™\j)^Q{™+%) 
(^      t ^(m)(J) 

(4.1) 

where a has the same interpretation as in the previous section.   The 

direction of the transition A{   ; is the direction of steepest descent. 

The gradient of W with respect to -tnQ  (J) is 

A(m)(J) = 
5 lnQ{J) 
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The gradient of W.  in the implicit constraint form is 

|Qc(J) + QD(J)j   *S    jc(I)-Aa,J)* §|j[  .    (4.2] 
aw1 t ,     NR 

^nQ(J) 

The gradient of W2, from Section 3.2 is 

öW2 NC 

at SQJj)   =   «a"'  .giDaDa
(J'K)*tnPHI(K)> 

where 

2 
S-tnQ  (J) ö-tn PHKJT 

because Q-,(J) differs from PHT(J) by only a constant multiplier. 

Since A    ' is a direction, it may be multiplied by any constant, 

and we take 

(m)m 1        (    ÖW1 T 
9W2 aW2 

(m) 

COUNTS ) b tn Q(J)       'C   ä-LnQr(J)    + TD   ö^nQ^CJ) 

This choice keeps tho components of AKl11' closer to the value one 

Expanding W in a second order Taylor expansion in Q   (J) 

about Qa     (J) gives a quadratic dependence with t    in the 

direction A(m).   We let Q(m)(J) become Q(m+1)(J) by the process 

(4.1) and the deviation in Q   (J) is 

42 

■     - — -     -        ■    ■-      ■ IIIIM111II--     ^—-^—..^ . ..,-   .   -  -.-      . .. .   . .^  ^^^^*m^u*^,  



Qa(-l)(J) . Qa(m)(J) =   %(m)w . j MMW _ i j 

Since t^A      (J) is assumed to be small, we expand the exponential 

to the first order, and find, approximately, 

Qimtl)(J) - Qim)(J) = Q^J) • t^^j)    . (4.3) 

Therefore, the second order Taylor expansion of W becomes 

w(Q<,m+1)(J)) = W(Q^)(J)) 

NC 
+ tQjE ^ «<"•>(j, aC»)(J) 

+ ^s i M^L^^^ ^wf'-w^ 
(4.4) 

(m), 

meaning as a 
The derivatives are evaluated at Qa

(m,(J) and ß has the same 

The minimum of approximation 4. 4 occurs where 

öta      U     * (4.5) 

Since W is approximated by 4. 4 as quadratic in t   , 4. 5 is a linear 
0! 

equation in t^, which can be solved to obtain t  , the appropriate 
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step length for the (m) —(m+1) iteration.   However, approximation 

4.3 holds only if taAv   ;(J) is small with respect to the value 1. 

Otherwise, the argument leading to 4. 5 breaks down.   To prevent 

this, we modify 4. 5 to the following: 

5? 
J=I 

r) 
t   A(m)(J) 

(4.6) 

(m), The additional term is a chi-squared expression with t   A^^J) 

having a mean of zero and a standard deviation of 0. 5 about zero. 

Therefore, 4. 6 contains both a tendency to minimize W and, in 

balance, a tendency to hold approximation 4. 3 within its range of 

validity. 

To obtain the step length,  t  , we combine 4.4 and 4. 6.   Then, 

1    y,     A(ni)r . Q(m) 6W 
D'c""tj,K=i

A    ()Qa (J)*5^S 
:   icj ^ri (K) Qß

m (K) 

NC 
+ E 

J=I 

.-i 
,   *     ,2)*     (NC 

(J) 1 E ^ Q<.m) A(m)(J). 

NC 1 

(4.7) 

where the first term in brackets is a 2 x 2 matrix and the second term 

is a vector.   The first derivative has already been expressed in 

Equation 4.2.   The second derivative has the form 
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^(J)öQ^K) = 2 P(ip^ A(I'J) W'K) + T
a O^(J)Q^K)     (4-8) 

where a and ^ take on values C and D in turn.   The two bracketed 

terms of 4. 7 are obtained from the derivative expressions by 

performing the summations indicated in 4.7, a straightforward 

algebraic manipulation.   When the first term of the second derivative 

4. 8 containing an I-summation is combined with the J, K-summation 

in 4. 7, a triple summation results: 

NC NR 
j Z i A(m)(J) Q^J)  E  p^Cj A(I] j, A(I) K) Ä(m)(K) Q(m)(K) 

This would be a time-consuming operation, but fortunately it can be 

reduced to a double summation 

NR ( NC \* 
E   Pp^    2  A(I,J) |QC(J) + QD(J)| A(m)(J) , 

with a consequent saving in computation time. 

The preceding description of the iteration step is based upon 

the calculation of a direction,   A(m), according to the gradient of 

W, and of a path length,  ta, according to a modified quadratic 

approximation of W.   These quantities are then used to transform 

the m-th spectral estimate by transition rule 4.1: 
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An acceleration process is applied to the simple gradient sequence 

described thus far.   In the accelerated steepest descent,   A^ 

alternates between the gradient form and the difference form 

Ä(m)(j) = Wm)(j) - Wm-3)(j) 

in the sequence gradient, gradient, gradient, difference, gradient, 

difference, gradient, difference ...; that is, gradient form on odd 

steps, difference form on even steps, except the second, which is 

gradient.   This speeds the calculation significantly.   It decouples 

the gradient of W fiom direct control of the iterational sequence, 

and, in effect, allows the iterational sequence to build up momentum. 

In Section 2, we discussed the need for adjusting the Lagrange 

multiplier, called T^ in Section 3, to obtain agreement between the 

value of the a posteriori information Wj and its expectation value. 

This is called the outer iteration of W. as distinguished from the 

inner iteration of W that has been discussed in this section so far. 

A complete linear iterational sequence is executed at each stage 

of the outer iteration associated with a given value of r  . 

First, let us consider the expectation value of W-.   Since W1 

is a function of the random variable C, it is itself a random 

variable.   Expanding Wj in C about the minimum point 

C(I) = COUNTS * P(I)     , 
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Wj becomes 

NR öW. 
Wjicd) + 6C(D) -w^cd)) + E äcffi 6C(I) 

NR   NR       ö  W 

+ S?1 L?1  &^ 6^ 6C(I) 6C(L) (4.9) 

At the minimum point 

WjlCd)) = 0 

The fhat derivative of the explicit constraint form of W is 

C(I)=COUNTS*P(I) CO) 

.    COUNTS *P(I)     , ln —crn—+ 1 = i 
C(I)=COUNTS*P(I) 

(4.10) 

The second derivative of the explicit constraint form is 

öWj 

öC(I) bC(L) 
C(I)=COUNTS*P(I) 

| COUNTS*P(I) 

I 0 

I=L 

,    I^L     .      (4.11) 

Substituting 4.10 and 4.11 in 4. 9,  W. becomes 
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NR NR      tgcml2 
w, = l »cm + * g cHhro • 

The randomness of Wj arises from the randomness of öc(I).   If the 

expectation of C(I) is approximated as COUNTS*?(I), the expectation 

of 6C(I) is zero.   The expectation of |6C(I)}2 is COUNTS*P(I), so 

the expectation of W. is 

(Wj) = i NR     . 

The condition 

WJQ) = expectation  W- 

can be taken as a test of the consistency of Q with the data.   Several 

iterational sequences are executed until r   has a value such that 

expectation W.  <W1 <1.3 * expectation Wj 

This is the value which determines the adjustment of T^ . 

This adjustment process is the iterational sequence associated 

with the outer iteration. After each inner iterational sequence, T^ 

is adjusted according to the transition rule 

T^ra-wr   ' 
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T    getting larger if a small W. indicates regularization is too weak, 

or smaller if a large W. indicates regularization is too strong. 

If, at any point in the outer sequence, the consistency is good 

enough to permit the condition 

(W,><W1 <1.3 (Wj) 

to be obeyed, the outer iteration is terminated. 
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5.   RESPONSE FUNCTION PARAMETERIZATION 

The complete Ge(Li) spectrum unfolding turns out to be 

mechanically very tedious since a great deal of laboratory work 

has to be done in order to obtain the spectrometer response. 

Consequently, the potential users of the code that were contacted 

expressed minimal interest in a code that would fully unfold Ge(Li) 

spectra.   However, a great deal of interest was expressed 

regarding a code that would superresolve peaks, since the detector 

measurements necessary are concerned only with line width 

information. 

Another consideration along these lines is that the response 

matrix for the unfolding of Gaussian spectral lines is "nearly" 

diagonal.   That is, the non-zero values are concentrated near the 

diagonal elements of the matrix.   This means that a spectrum that 

ha3 many channels can be sectioned into smaller, more reasonable 

pieces without taxing the storage capacity of most serial computers. 

Minimal storage capacity was not a prime requirement for the 14 

system, however any actual checks on the performance of the code 

on actual data were of necessity limited to cases for which detector 

response data could be readily obtained. 

One of the difficulties in Ge(Li) unfolding is the representation 

of the response matrix.   If the unfolding problem has many channels 

then the matrix is very large and cannot be core contained.   This 
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means that only parts of the matrix can be in the computer memory 

and the rest shuffled in and out as needed.   This problem has to be 

dealt with in any case but for Ge(Li) detectors there is a way to 

parameterize the matrix in terms of certain parameters.   Figure 1 

is an example of a 2 MeV Ge(Li) line shape but without the Gaussian 

blurring on the peaks.   The mathematical details of the parameteriza- 

tion have been worked out but will not be presented here in great 

detail,  only conceptually. 

As detailed in Chapters 1 and 2, the information function can 

be represented as two parts: the a posteriori and a priori as follows. 

W = *![%,\ißlA,<y,Eo)]+W2{ßl,X,o,Eo)    ,    1=1,...,5 

where the parameters are only the ones important in the parameteriza- 

tion.   The arguments are as follows: 

where A^E^ is the response specifying the contribution to channel i 

from energy Eo.   The ß^s are the amplitude weight factors for 

the full energy peak, single escape peak, double escape peak, 

Compton continuum, and Compton edge corresponding to -£- = 1,2,3,4,5 

respectively.  X is the logarithmic slope of the Compton edge and 

o is the variance of the Gaussian distribution of the peaks.   It is 

assumed that the variance is the same for all of (he peaks.   5 is 

the response data at energy E . 
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Figure 1.   Ge(Li) line shape at 2 MeV. 
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The object of the parameterization is to minimize W with 

respect to ß^, X , and a for a given energy E    and response A.(E ). 

The minimization is an iterative process.   Let y be a parameter: 

^ ,  A. or cr.   Then the Taylor expansion about the n-th estimate 
,n 

of y,  y , to determine the (n+l)-th estimate is: 

W(yn+1) = W(yn) +  *W 
ö y 

/  n+1       n. 
(y     - y ) 

y=y 
n 

+ 4 ö2W 

^7 
,  n+1       n. 
(y      - y ) 

v='y 

To minimize W(ynf ), set 

bW 
öy 

= 0 
n+1 

y=y 

and we get 

bW(yn+1) .   ÖW 
n+1           öy 

öy 
y= 

b2W 

yn       öy 

Therefore, 

yn+l n        öl 
~ y   - -T n /. 

by 
2 

/  n+1       n, 
(y      - y ) 

y=y 

ö  W/öy' 
y=y 

n 
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Substituting the original parameters: 

• 1 

^+1 = ßn ö2W öW 

ö/JW bß n 

where the term in parentheses represents a matrix whose (^,m)-th 

element is  (Ö W)/(öi3°öjS"), and (5)3n) represents the vector 

(öW)/(b^), and ß represents the vector ß. coefficients. 

Also, collecting the X and v formulae: 

xn+1 = xn n öW/öX 

b2W/ö(Xn)2 

a        = a 
n 5W/öa 

t>2V//b{on)2 

>■ 

The expressions for the derivatives of W are fairly complicated 

and will not be presented here.   Starting with a set: £ °   X0,   a0, 

each one is iterated in turn independently until W is minimized. 

This is accomplished for each E    and it may even be possible to 

parameterize the resulting parameters as a function of energy. 
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6.   EXAMPLES 

Typically, an energy distribution of gamma-rays or x-rays is 

viewed by a spectrometer which produces a data set.   This data 

vector or set has passed through a complex detection process and 

generally suffers from loss of resolution from the detection process 

and generally suffers from loss of resolution from the detection 

process and from statistical noise.   It is the purpose of the MAZE 

program to remove degradation imposed by the detector, to minimize 

the effects of statistical fluctuations and to construct an image 

spectrum that corresponds as closely as possible to the spectrum 

impinging on the detector (the object spectrum). 

• 
6.1   EXAMPLE 1, SIMULATED DATA 

To test the performance of the MAZE program, it is desirable 

to use a data set for which the object spectrum and the detector 

response are precisely known.   This was most conveniently done by 

manufacturing a data set.   An object spectrum composed of three 
-Bx delta functions on an exponential continuum,  Ae"    ,  was acted upon 

with Gaussian smearing to simulate a detector response function. 

The full width at half maximum,   FWHM, of the Gaussian function 

was kept constant across the spectrum.   Appropriate statistics 

were introuvced by using a Monte Carlo type code to accumulate 

750, 000 counts, distributed over sixty channels, into the data 

spectrum. 
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The resulting data spectrum, Figure 2, contains a single, well 

resolved peak, two moderately overlapping peaks and a continuum. 

The correct parameters of the peaks and the exponential continuum 
are listed in Table 1. 

TABLE 1 

Peak        Central 
No.       Channel No. 

Area 
(Counts) 

FWHM 
(Channels) 

1 12.0 161108+401 5.7 
2 36.0 161108+401 5.7 
3 46.0 120831+348 5.7 

Exponential Continuum 7533e"0-013585x 
(x in channels) 

The spectrum was submitted to MAZE for unfolding and the 

resulting image spectrum is shown in Figure 3.   The image spectrum 

closely approximates the object spectrum used to generate the data 

set.   The enhanced peaks approach delta functions and the background 

is an exponential with only minor deviations.   Parameters of these 

features are given in Table 2.   The statistical fluctuations presented 

in the data set have been substantially reduced in the image spectrum. 
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Figure 2.   Simulated x-ray data. 
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Figure 3.   Image spectrum (enhanced spectrum). 
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TABLE 2 

■ 

Peak 
No. 

Central 
Channel No. 

Peak Channel 
(Counts) 

Percent of 
Area 

Three Channels 
(Counts) 

Percent of 
Area 

FWHM 
(Channels) 

1 12.0 139892 87% 158653 98+% 1.01 

2 36.0 144906 90% 160566 99+% 0.97 

3 46.0 103405 86% 118540 98% 1.03 

Exponential Continuum 7584e"0-01404x 

The application of the detector response matrix on the calculated 

image spectrum should, if the image spectrum is correct, reproduce 

the inputed data set within statistical limits.   MAZE performs the 

calculations and obtains these statistical deviations channel by 

channel (Figure 4).   In this example the deviations are random and 

indicate that the calculated image spectrum reproduces the data 

set quite well across the entire spectrum. 

An attempt is made by MAZE during the unfolding process to 

distinguish between the discrete and continuum portions of the 

spectrum and to provide separate outputs for the discrete portion, 

Figure 5, and for the continuum portion. Figure 6.   The separation 

is only partially successful.   In Figure 5 the peaks are seen riding 

on top of a continuum that amounts to about 10 percent of the 

exponential background and in Figure 6 the continuum is, of course, 

aoout 10 percent low but it also has bothersome oscillations.   There 
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Figure 4.   Deviations. 
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Figure 5.   Discrete spectrum. 
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Figure 6.   Continuum. 
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is no inherent reason that these shortcomings cannot be eliminated 

and, ir fact, a more recent version of the code has nearly completely 

eliminated these effects. 

6.2   EXAMPLE 2, SIMULATED DATA 

A second spectrum was manufaciured to provide a more exacting 

test of the MAZE code performance.   The starting point was an 

object spectrum composed of five delta functions on an exponential 

continuum.   Detector smearing and the introduction of statistics 

were accomplished as for example number 1 above. 
■ 

The resulting data spectrum, Figure 7, contains a single well 

resolved peak, four highly overlapping peaks and a continuum.   The 

parameters of the peaks and the exponential making up of the data 

spectrum are listed in Table 3. 

TABLE 3 

Peak           Central Area FWHM 
No.          Channel No. (Counts) (Channels) 

1                 12.0 152229+390 5.7 

2                 31.0 15223+ 123 5.7 

3                 36.0 152229+390 5.7 

4                  41.0 76114+276 5.7 

5                  46.0 114172+338 5.7 

Exponential Continuum 7022e"0-013585x (x in channels) 
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Figure 7.   Simulated x-ray data. 
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The spectrum was submitted to MAZE for unfolding and the 

resulting spectrum is shown in Figure 8.   The image spectrum shows 

considerable enhancement, the multiplet, while not resolved into 

four separate and distinct delta functions, is clearly made up of 

four peaks.   Parameters of the spectral feature are given in Table 4. 

TABLE 4 

Peak Central Estimated FWHM Fractional Error 
No. Channel No. Peak Area (Channels) in Peak Area 

1 12.0 151974 1.07 -0.17% 

2 30.7 16677 5.61 +9.5% 

3 36.0 150138 1.50 -1.4% 

4 41.0 80304 3.29 4 5. 5% 

5 46.0 112712 1.41 -1.3% 

This version of MAZE tends to concentrate on the major features 

of the spectrum while ignoring to a large extent the minor features. 

A second undesirable characteristic is the tendency to add structure 

to the spectrum wherever there are substantial statistical fluctuations. 

In this example a small artificial peak was added centered at channel 

20.   Both of the above characteristics have been eliminated in a 

recent reformulation of MAZE (see Section 6. 4). 

6.3  EXAMPLE 3, Si (Li) X-RAY DATA 

X-ray fluorescence data is an example of data which is very 

difficult to analyze by conventional techniques.   The energy resolution 

67 

 -  -- - - 



mi mmmmmmm* m^^^mmmmmmmmmm^mm^mm^m 

10 

10' 

10 

10' 

Channel Number 

Figure 8.   Image spectrum (enhanced spectrum). 
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afforded by state-of-the-art detectors is not sufficient to always 

resolve the many X-ray lines often produced in the irradiation of 

materials.   An example of such data is sho vn in Figure 9.   In this 

example there are at least ten Gaussian shaped peaks superimposed 

on a Bremsstrahlung continuum.   Because of the overlapping nature 

of the peaks, the shape and intensity of the continuum is not clear. 

However, this information is vital in determining the area of intensity 

of each of the discrete lines. 

The result of applying the spectral enhancement capabilities of 

MAZE are shown in Figure 10.   Peaks 1 through 7 become clearly 

resolved lines and a small peak is indicated just above peak 7.   In 

addition to confirming the suspicion that peak 9 was a doublet, MAZE 

suggests that peak 8 is also complex.   A reasonable Bremsstrahlung 

continuum (see Figure 10) can be deduced from the image spectrum 

for use in determining line intensities.   The effective energy 

resolution (FWHM) of the prominent peaks in the image spectrum 

is of the order of 41 eV (1.46 channels) as compared to 170 eV 

(6. 0 channels) in the data spectrum. 

6.4   EXAMPLE 4, Ge(Li) GAMMA RAY DATA 

The statistics in the previous example were excellent, each of 

several of the peaks in the data spectrum contained hundreds of 

thousands of counts.   We are not always so forunate, often we must 

analyze data having poor statistics.   An example of such a spectrum 

is shown in Figure 11.   This data was i;akc!n with a Ge(Li) gamma-ray 

spectrometer and was obtained from W. L. Imhof of the Lockheed 
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Figure 9.   X-ray fluorescence data. 
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Figure 10.   Enhanced x-ray fluorescence spectrum. 
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Figure 11.   Ge(Li) gamma-ray datu. 
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Space Sciences Laboratory.   A visual examination of Figure 11 

suggests that peaks 1 through 8 are real lines while peaks 3A, 3A, 

and 8A may only be statistical fluctuations. 

In applying MAZE to this data it was assumed, as it was in 

the previous examples, that the detector response was pure Gaussian 

in nature.   The resulting image spectrum is shown in Figure 12. 

The energy resolution was enhanced considerably but unfortunately 

the code also enhanced and amplified the statistical fluctuations 

thereby introducing many spurious peaks.   Therefore, we must 

conclude that this version of MAZE is limited to applications 

involving data with good statistics. 

Previously it was stated that a recently improved version of 

MAZE has been developed that handled statistical fluctuations in a 

more reasonable manner.   The improved MAZE code was applied to 

the identical Figure 11 data set.   The resulting image spectrum is 

shown in Figure 12.   Not only is the energy resolution substantially 

enhanced but the statistical noise is greatly suppressed.   All spurious 

peaks are eliminated.   The only questionable peak that remains in 

the image spectrum is 5A. 

73 

--— ■ • • ■ — ■ -   ■ 



IH 

0) 

0 u 

i3 

Channel Number 

Figure 12.   Enhanced gamma-ray spectrum. 
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Figure 13.   Improved enhanced gamma-ray spectrum. 
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7.   CONCLUSION 

The program for Illiac IV has been written in Glypnir(5) and 

arrangements are currently being made to run MAZE on 14.   This 

has been delayed purposely so that the 14 system being tried is as 

up-to-date as possible.   Consequently, there are no run-time 

comparisons that can be quoted; however, as previously stated, serial 

computers can only tackle relatively small (150-200 channels) 

problems because of memory limitations.   The memory of 14 is also 

limited, nonetheless because of the improved representation of the 

response matrix it may be possible to run a problem with 256 

channels on 14 that is core contained.   For higher number of channels 

the matrix will be sectioned and buffered in and out of PE memory. 

The response matrix is assumed to be nearly diagonal (see 

Section 5) and only the first 64 non-zero values of each row are 

kept.   This allows the inclusion of structure into the matrix that 

is not strictly Gaussian.   It also allows change of resolution as a 
function of energy. 

There is an index associated with each row which indicates the 

column number of the first non-zero element.   Each PE contains one 

element of the row and thus a whole row is available for computation. 

Experience indicates that 64 is a high enough number of non-zero 

elements to keep in the response matrix for most foreseeable 

applications.   That number was obviously selected because of the 
nature of 14. 
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