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This report describes some studies made on the application of pat-

tern recognition techniques to the Space Object Identification (so1)
problem using passive photometric signature data. Both simulated and
measured passive photometric data (primarily, the latter) on satellite
objects were compared using a variety of techniques in both the time and
frequency domains. Different sample spaces with dimensionalities rang-
ing from 14 to 50 were tusted, with Principal Components Analysis being
used in an effort to reduce the effective number of dimensions to a small
subset with minimal loss of information. The GRC Mode Determination
algorithm was then applied to the sample points in the reduced subsets
to compare data from the different satzllite/observer pairs in order to
ascertain the extent to which this type of data processing is able to
separate objects which are different and group together those which are

in fact similar.

Results indicate that 50-point samples in the frequency domain give
best performance. Deflning a statistical similarity-dissimilarity index,
it was found that in most cases objects known to be similar were indi-
cated to be so, and objects believed to be dissimilar were so specified.
However, the results in some cases appear to be sensitive to the precise
form of data processing and/or the dimensionality of the sample space
used; this suggests that an optimal processing technique has not yet

been found.
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1 INTRODUCTION

Orbiting satellites can be observed by ground-based photometers and
histories of their photovisual magnitude recorded. There is a distinct
possibility that such histories, either alone or in conjunction with
other data and intelligence, can provide a basis for significant infer-
ences about the external characteristics (size, shape, materiais) and
body motions of satellites. If so, similarities and dissimilarities
between satellites could be recognized, and a basis would exist for asso-
ciating satellites into groups with a common mission. It might also be
possible to link external characteristics and motion to the naiure of a
satellite payload, thereby h:lping to identify what its mission 1is.

Thus it is important to establish what can be learned from photometric
histories, both in connection with concealment or disguise of our own

satellites, and mission identification for Soviet satellites.

The present study is an effort to develop semi-automated methods
for analysis of such photometric data. The data with which we are con-
cerned are time histories of the radiant intensities of the targets as
unresolved point sources under solar illumination, measured passively.
The study is primarily oriented toward the use of portions of the existing
GRC DISCRIMATON computer program to separate the photometric data from
different targets into distinguishable object-class clusters in some
appropriate multi-dimensional state-space. The selection of suitable
state-spaces which most conveniently facilitate this separation was one

of the major goals of the study.

As the first step, a small library of simulated photometric data
(signature/time histories) for Agena tanks in representative orbits was
generated using other existing GRC computer programs. These synthetic
data were used to test the ability of DISCRIMATON to distinguish between
the satellites and expended, tumbling rocket tanks. Following the suc-

cess of this test, the remainder of the study was concentrated on deter-

mining similarities and differences among those satellites for which
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actual measured data were available, using various sorts of state spaces.
A logical future extension would be to simulate the signatures of typi-
cal satellites in representative orbits and then, using DISCRIMATON, com-

pare the state-space points derived from the analysis of given observa-

tional data with state-space groups derived from the simulated data in an

attempt to determine the (known) simulated object(s) with which the ob-

served data can best be associated.




2 SUMMARY AND DISCUSSION OF RESULTS

This section states the principal results of the study and discusses
factors which bear on their validity. One such factor is the extent of
the data base, which limited the number of sanples analyzed to an exteat
where we can not be certain about the statistical significance of the
degree of dissimilarity found between data sets. If certain of the re-
sults are in fact valid, we conclude that classification methods similar
to those used here can be successful if a means is developed for inferring
photometric signatures in other orbits from an observed signature in a

given orbit.

2.1 DATA SOURCES

The study concertrated on comparison of actual photometric data on
three satellites. In addition, the photometric signatures of threz tumb-
ling Agenas were simulated based on a simplified engineering drawing and
using orbits and tumble rates typical of actual spent Agenas. These were
compared with the satellite signatures early in the study as a first test
of the efficacy of the DISCRIMATON pattern-recognition program. The
sources ard nature of all the data analyzed during the study are listed
in Table 2.1.

The satellites were all observed at long range (~37,000 km). The
4630 data was taken at three different sites on the same day, with con-
siderable overlap in the observation times. It was therefore reasonable
to expect a priori that these three data sets would be quite similar.
We learned from SAMSO after our analysis was completed that 5851 and 4630
are sister satellites in different orbits. Apart from the preceding, we
have only a very small amount of information on the orbits of the satel-

lites, and none whatever on the relation between 5587 and the others.

2.2 PERIODICITIES
Periodicity of the observed data was evident from inspection; 4630

and 5851 were each found to have a pericd of 10.0 seconds, while that of
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TABLE 2.1
DATA SOURCES AND ASSOCiATED CODE NUMBERS

Object/Observation Site Sigﬁzzzidogata Cocde Number
Agena (Orbit 1)/Sulphur Grove Simulated 1
Agena (Orbit 2)/Sulphur Grove Simulated 2
Agena (Orbit 3)/Sulphur Grove Simulated 3
5851/Cloudcroft Actual 4
4630/Cloudcroft Actual 5
4630/AMOS Actual 6
4630/RML Actual 7
5587/Cloudcroft Actual 8

5587 was 1.2 seconds. The simulated Agena data had input periodicities.
However, while periodicity greatly simplified data sampling, we delib-

erately normalized all periods to unity before applying our classifica-
tion algorithms, thereby preventing period length from playing any part

as a discriminant between the data sets.

2.3 MEASURE OF SIMILARITY BETWEEN DATA SETS

Samples from different data sets were processed together through
selected subroutines from an already-existing GRC computer program to
assign them into groups. Both the number of groups and the assignment

of samples were determined by the program.

A given data set can be (and usually i8) represented in more than
one class. Since a data set is for a single object (under specified
viewing geometry), we are led to substitute the word "feature" for
".lass." We have not determined what actual physical characteristics are
mainly responsible for these "features," but for reasons given below our
view is that such correlations must be established if analysis based pri-

marily on pattern-recognition is to progress further.




The overall similarity of two data sets depends not only on what
"features" they have in common, but also on how frequently these features
cccur. A simple measure of similarity which takes into account both these

factors is

N N
v min _15 " _JL
1 Z S
S(i,j) = ;‘ =
r=1 Nir ijJ
o 3

where 1,j refer to the respective data sets, and

N, = number of samples from data set 1
N, = number of samples from data set j
v = number of "features' distinguished (i.e., number of
“~ groups)

N, = number of samples from the ith data set which exhibit

the rth feature (r = 1, 2, ... , v)

er = number of samples frem the jth data set which exhibit

the rth feature (r = 1, 2, ... , V)
We call S(i,j) the "Similarity Index" between the two data sets. It
has a maximum value of unity when both data sets exhibit the same fea-

tures the same percentage of the time, and a minimum value of zero when

the sets have no feature in common.

2.4 RESULTS

2.4.1 Calibration of the Similarity Index

Measurement ''noise' may appreciably reduce the similarity index

from the value it would have if the noise could be completely removed.

An indication of how much reduction occurs in actual data when it is




reasonable (for reasons given earlier; to suppose that the index for the
corresponding noise-free measurements would be at least fairly close %o
unity, can be obtained by comparing code 5, 6, and 7 data. Graded by
visual inspection code 5 data appears to be of good quality (low "noise"
level), code 6 data to be fairly good, and code 7 data to be poor. The
similarity indexes between these sets, based on the frequency spectrum

of samples, are given in Table 2.2.

These results suggest to us that:

10 Data should be o? at least fairly good quality, as assessed
by visual inspection, to be used in classificetion analysis
by our methods. Use of poor quality data is liable %o give

rise to misleading results.

2 A similarity index of about 0.5 or higher is indicative of
considerable physical similarity between the observed
object:.

2.4.2 Comparison of Data Sets for Different Sateilites

Similarity indexes between the data sets for different satellites
are glven in Table 2.3. All these measurements were taken at Cloudcroft,
and were visually judged to be of good quality. On the basis of our
above crude calibration of the similarity index, our qualitative inter-

pretation of these results is that:

TABLE 2.2
SIMILARITY INDEXES FOR 4630 DATA

Data Sets Similarity Index
1,1 s(1,3)
5,6 0.560

5,7 0.076




TABLE 2.3 \
SIMILARITY INDEXES FOR DIFFERENT SATELLITES

Data Sets Satellite Identification Similarity Index t
(1,1) Numbers s(4,3)

4,5 5851, 4630 0.0
4,8 5851, 5587 0.033
5,8 4630, 5587 0.28

° There 1s little or no evidence of physical similarity be-
tween 5851 and 4630, or between 5851 and 5587.

° There is evidence of some physical similarity between 4630
and 5587.

2.5 r/fNTORS AFFECTING VALIDITY OF THE RESULTS

All the above results are subject to a caveat about sample size.
Sample sizes were limited by the amount of data available. The number
of samples in the frequency domain taken from each data set is given in
Table 2.4. Each sample was an ordered set of 50 numbers, represented

geometrically as a point in a 50-dimensional Cartesian space. It is

TABLE 2.4
SAMPLE SIZES

Data Set Number of Samples

24
33
30
25
30

0 ~N O U B~




elmai i - ni e L SR T T e — e g L -
Y N

|

.I

known that classification schemes in which class boundaries are estimated

on the basis of the available samples alone are liable to give mislead-

ingly low error rates when the ratio of the number of samples to the {
dimensionality of tte samples is less than about 3, as is apparently true |
in all the comparisons discussed above. This implies that the similarity

indexes obtained are liable to be too low. In other words, our results {

are biased (perhaps heavily) toward indications of dissimilarity.

However, we believe that the problem is not as severe as appears
at first sight. The reason is that in all cases we found that of the 50

principal axes of the correlation ellipsoid (calculated for the pooled

samples), at most 12 were more than one-fifth as long as the major axis,

and at most 19 more than one-tenth as long. In other words, the spread

of the data is relatively small in at least 31 dimensions. This sug- i
gests to us that the minimum number of samples needed may well be a lot
closer to 50 than 150. In fact, we did compare codes 4 and 5 data in
the time dimension (where more samples could be taken) using 55 code 4
samples and 117 code 5 samples. The finding was again that the two sets
were dissimilar.

We must also point out, on the other hand, that our methods may be
inadequate to recognize dissimilarities which in fact exist; and that
our grouping algorithm is heuristic, without any claim to "optimality."
Nevertheless, our methods have worked well in previous applications where
results could be compared with what would be found by a classifier with
complete a priori knowledge of population statistics. This is the

rationale for their application in the present context.

2.6 REQUIREMENTS FOR A "SIGNATURE TRANSFER" TECHNIQUE

If the sample size caveat could be removed from the present find-
ing that code 4 data (5851/Cloudcroft) and code 5 data (4630/Cloudcroft)
sets are dissimilar, an important conclusion could be drawn about how

photo-metric signatures should bte compared. We were told by SAMSO (after




our results had been presentwed) that satellites 5851 and 4630 have the
same externalities and body motion, but are in different orbits. The
conclusion is that a finding of strong dissimilarity in observed data

for satellites in different orbits cannot in gen:ral be regarded as :

implying that the satellites are dissimilar. !

In our view, this shows that a requirement for successiul classi-
fication of satellites is a means for inferring photometric signatures {
in other orbits from an observed signature in a given orbit. This might
be accomplished by using our meth~4s to correlate the signatures of vari-
ous external features, calculated at the same ranges and phase angles

as the observed satellites with the observed data. In effect, this would

amount to the progressive build-up of a reference data base. A major
obstacle is the long running time of programs that generate synthetic
photometric data, coupled with the very substantial number of externali-
ties, body orientations, ind motions that would probably need to be
tried. On the other hand, the degree of succciss inherent in the approach
would be indicated by comparing the synthetic signature of a given satel-
lite, derived from engineering drawings, with actual observation of the

same satellite. This could be done at reasonable cost.




3 ORGANIZATION OF THE REPORT

Our data processing schemes are described in Sec. 4. The descrip-
tion encompasses the various forms of data preprocessing utilized and the

pattern recognition algorithm itself. An outline of the capabilities of

our computer program for generating synthetic photometric histories is

also given.

The sources and extent of the satellite histories that became avail-

able during the study are listed in Sec. 5. Some excerpts from this data

are shown in Sec. 6, together with some from the simulated histories

of the tumbling Agenas.

Section 6 also provides specific details of how the data was sampled

and preprocessed before input to the pattern recognition algorithm for

both the time and frequency domains.

Finally, Sec. 7 describes and discusses the findings of our pat-
tern recognition algorithm. It compares the results of classification
in the time domain with those in the frequency domain, and shows the
effect on classification of such parameters as the dimensionality of
samples, various types of sample normalization, and choice of what con-
stitutes a "sample point." Some practical questions about the validity

and scope of the algorithms are answered in the appendix.

10
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4 DESCRIPTION OF BASIC PROGRAMS AND TECHNIQUES \

The algorithms and major computational capabilitles required by the |
study are embodied in three computer programs. Two> of these, PHOTARG and
FACTRY, were devised by General Research Corporaticn and are described
below. The other is a readily-~available Fast Fourier Transform routine
written by IBM and used to obtain the frequency spectra of selected time-

intervals of recorded satellite histories.

The problem of estimating classification error probabilities is

also discussed.

4.1  GENERATION OF SIMULATED HISTORIES~~PROGRAM PHOTARG

Program PHOTARG computes the radiant intensity of an object illumi~
nated by the sun and seen from an observing photometer. This is con-
verted to units of absolute satellite magnitude (defined to be the appar-
ent photovisual magnitude of the object evaluated at a standard reference
range of 1000 km from the sensor). Because of the long -unning time of
program PHOTARG, and because the primary emphasis of this study was in-
tended to be on the analysis of measured photometric data from real satel-
lites, the program was actually used only to generate representative

histories of tumbling Agenas.

The program requires that the target be decomposable into a combi-
nation of certain shapes in known geometrical relationships and orienta-
tions with respect to one another and a target-centered coordinate sys-
tem. The list of permissible stapes is broad enough to allow simulation

of many targets of interest; the shapes are:

115 Spheres and segﬁents of spheres

2 Cones, conic frustra, and segments of either
3. Cylinders and cylindrical segments

4. Rectangular plates

5l Discs and segments

6. Ogives and segments

7. Prolate spheroids and segments




In addition, thte program requires a table giving the (measured) bidirec-

tioral reflectance of the material of which each shape 1is composed.l

4.2  THE PATTERN RECOGNITION ALGORITHM--PROGRAM FACTRY

rrozram FACTRY consists of two main subprograms: FACTOR, which
periorms a process called "Principal Component Analysis" on the input
data samples, and LERNMOD, which embodies the essential pattern recogni-
tion procedures. Both are subroutines from a more comprehensive program,
DISCRIMATON, developed by GRC in 1968 for use in reentry vehicle/decoy
discrimination work for SAMSO/Aerospace.

The LERNMOD grouping algorithm is heuristic, and cannot claim
"optimality" in any sense, though in previous applications it has often
performed better than the human eye. It was developed by experimenta-
tion with samples from normal distributions, primarily in up to ten
dimensions. Consequently, before reaching LERNMOD, the input samples,
whose dimensionality here is usually 50, are preprocessed through FACTOR
to assess the minimum dimensionality of the space in which they can rea-

sonably be considered to lie.

Deciding what dimensions ca:.» be discarded after FACTOR has been
applied involves the risk that important classification information is
being rejected. A simple illustration of this is given in Sec. 4.2.1
below.

4.2.1 Principal Component Analysis-~Subprogram FACTOR

The steps in Principal C.mponent Analysis (PCA) are:

1. Calculate the correlation matrix of all the samples to be

process2d.

25 Find the eigenvalues of the matrix (i.e., "diagonalize'" the
matrix); discard those eigenvalues which are small by compari-

son with the largest.

12




8k Find the eigenvectors corresponding to the retained eigen- \
values and project the sample points into the subspace

defined by these eigenvectors.

The rationale for this procedure is as follows. Each member of the sam-
ple set is initially represented as an N-dimensional vector. Let us now {
suppose that each of these vectors 1s actually a linear combination of M I
specified vectors, where M < N ; ii other words, all the samples lie in

an M-dimensional subspace of the original N-dimensional space. Then it

can be shown that the sample covariance matrix has rank M , and the eigen-
vectors corresponding to the non-zero eigenvalues are a set of basis vec-
tors defining the M-dimensional subspace containing all the sample vec-

tors. Thus, if we have a situation where some eigenvalues, though not

zero, are small by comparison with the largest, we can reasonably (but
not always correctly) disregard the dimensions defined by the correspond-
ing eigenvectors, and thereafter use the projections of the samples into
the space defined by the retained eigenvectors instead of the samples

themselves.

In Principal Component Analysis, the initial samples are first sub-
jected to a change of scale in each dimension so that the standard devia-
tion in each dimension is unity. This removes any dependence on units,
and (what 1is most important in the context of the present study) has the
k3 effect of assigning equal importance to the same percentage fluctuation -
in each dimension rather than to the same magnitude fluctuation. This
I change of scale transforms the initial sample covariance matrix into the

*
corresponding correlation matrix.

) *The process known as Factor Analysis omits the step described in this
paragraph, and diagonalizes the covariance matrix. It therefore attaches
equal weight to the same magnitude fluctuation in each dimension. 1In

the cases treated here there is no fundamental objection to using Factor
Analysis rather than Principal Component Analysis, and we show some

I results for both in Sec. 7.
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In discarding diﬁensions in rhe way described above, we ran some
risk of discarding important infcrmation for discrimination. Essentially,
application of PCA inherently assumes that separation between different
data classes 1s likely to be greatest in those directions where the spread
of the projected sample points 1s greatest. Though this is often the
case, it need not be, as Fig. 4.1 i1llustrates. Here, the maximum spread
is in the direction x' (the eigenvector corresponding to the larger
eigenv. '42), while the spread in the y' direction (the eigenvector cor-
responding to the smaller eigenvalue) is comparatively small. But dis-
carding the y' dimension would clearly result in elimination of all

useful discrimination information.

We cannot be sure that (less easily perceived) errors >f this kind
have not been made in the present study. However, this could only have
occurred in one case, where near-simultaneous observations from two dif-
ferent ground stations on the same distant satellite were compared. In

the other cases, where data on different satellites was being compared,

AN-41776

Figure 4.1. Illustration of Potential Rejection of Important Classification

Information Following Principal Components Analysis




we found perfect or near-perfect separation of the data sets; the dis-
carded information could therefore have at most a small effect on these

results.

4.2.2 The Sample Grouping Algorithm--Subprogram LERNMOD

The technique used here is based on an algorithm used oreviously
by Specht and Sebestyen to generate a smooth estimate for a probability
density function when a number of samples is given. The structure of the
grouping algorithm is based on the knowledge that clusters of points are
likely to correspond to local maxima in the estimated density function.

However, processing the data requires several additional steps.

These steps, which are described below, determine by an iterative
procedure the locations of concentration centers in the data space, and
then assign each point to one of those modes on the basis of maximum
probability. The iteration continues until all points are accounted for.
The algorithm can decide for itself how many groups are present; this

need not be an input to the program by the user.

The algorithm begins with evaluation of a few basic parameters.

The first of these is the standard deviation Tt of the smoothing normal
distribution used to evaluate the approximate overall density funct’on.
When the standard deviation is used for a distribution known to repre-
sent a single type, a value for Tt derived from the second-order sta-
tistics is reasonable. In the present circumstance, however, the samples
may conceivably be derived from several such widely separated distribu-
tions that an equivalent formula would yield a value of T that is too
large. This could, in turn, shift or even eliminate the peaks corres-
ponding to local maxima. A parameter that is less sensitive to the
placement of individual unimodal distributions is the nearest neighbor

distance averaged over the population and denoted am However, to

in °
avoid completely losing touch with the second-order statistics, the
geometric mean of the eigenvalues of the correlation matrix (g) is also

evaluated; the chosen parameter, after a number of trials, was
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T = min(d

2Vg//N) (4.1)

win’®

where N 1is the number of samples to be clustered. Two additional param-
eters, whose use is explained below, are given in terms of the same quan-

tities plus the dimension n of the space by
by = min3/g, max [0.15n(N)1/n Em, /E/Al% (4.2)

1/2n
p, w0:3088. (4 ’ 10-3) gnnz

(4.3)
The iterative process can now begin. Its progress at various stages
will be illustrated by what it does to the samples shown in Fig. 4.2,

The main steps in the iteration are as follows.
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Figure 4.2. A Typical Se& of Twenty Random Samples (arrow indicates point
at which p(x) is maximum on the first iteration) in a Two-
Dimensional Sample Space




Step 1. The '"probability" p(;i) is evaluated at each of the un-

assigned samples points, ;i(i =1, 2, ... , N') , using the formula

v

1]
gl ] 3 -I;-;iIZIZTZ
p (%) =N—.Ze (4.4)
i=1

N' 18 equal to N on the first iteration.

Step 2. The unassigned samples are ordered according to decreas-

ing probability, as given by Eq. 4.4.

Step 3. If the maximum probability is less than PT , the ite:a-
tion is terminated. This criterion eliminates considering isolated

points for the following steps.

Step 4. The unassigned sample with highest probability (and not
previously rejected by Step 5) is considered to be the center of a hyper-
sphere of radius po . For five times, recompute the center as the
average of the samples lying within it and form a new hypersphere with
a radius increased by 10 percent of the original radius. Thus the radius
of the final hypersphere is 1.5po . The result for the samples in Fig.
4,2 1s shown in Fig. 4.3.

During the five recomputations of the iteration a new sphere cen-
| ter 18 evaluated by averaging any of the original set of samples that
lie within the previous sphere, whether or not they have been assigned
) to modes. This has a two-fold effect: first, it tends to reduce the
dependence of the entire process on the size of 1 , the smoothing
standard deviation; second, after the first mode has been found, if the
sample selected for the starting center is on the slope of the probabi-
lity density function, the hypersphere iteration tends to move the cen-

ter toward the peak--the circle is thus less likely to be rejected as a

spurious mode by one of the following tests.




AN-41739

Figure 4.3. The Circle (hypersphere) Found Around the Point of Maximum
Probability with Radius 1.59o (The center is denoted by +.)

Step 5. The final hypersphere found in the current iteration is
examined for the number of samples contained. If this numbter is less
than 5 percent of the total number of samples, the hypersphere center

is rejected. In this case, the process returns to Step 4.

Step 6. The hypersphere is compared with any that may have been
found previously. If the distance between its center and the center of
any earlier hypersphere is less than 2.25po » the hypersphere and its
initial sample are rejected and control returns to Step 4. If the dis-
tance to every earlier center is greater than 3.0po , control passes

to Step 8, otherwise to Step 7.

Step 7. If control passes to this step, the current hypersphere
intersects one or more of the previously found hyperspheres (though not
r to such an extent as to be rejected). ¢re such an intersection takes

place, the point ;(m) lying midway between the centers is examined.

18




If ;i is the sample that acted as the original center for the current

hypersphere, then the current hypersphere is rejected if
> >
p(xm) > pGx)) (4.5)

If this inequality (4.5) does not hold, then the samples lying within
the previously determined hyperspheres are examined to see if they also
lie within the current one. If they do, they become unassigned--but
with a special flag to show that they are not to be reconsidered as

potential hypersphere centers.

Step 8. The samples lying only within the current sphere are con-=
sidered as initially defining a mode and assigned accordingly. The num-
ber of the current hypersphere becomes the number of the mode. The
associated samples are now effectively removed from the major iteration
as control passes back to Step 1. Thus, in the example, the iteration

would start again, faced with the function sample points of Fig. 4.4,

. 2
° (i
2
)
°
/
acy | e
°
)
] [ ] [ ]
° ° *
» L
°
r Figure 4.4, Samples Remaining After the Samples Initially Assigned to the

First Mode are Removed (The arrow again indicates the point of
maximum probability.)




When the iteration stops, all allowable modes have been found,
being represented by the samples assigned to them. For this example,
only two modes are predicted at this point, and these are represented
by the points within the circles of Fig. 4,5, It remains only to assign
those points as yet unidentified with a particular mcde (these points
may include those that were lying within two or more of the hyperspheres
during the iteration). To accomplish this, the unassigned samples are
first ordered on the basis of increasing distance to the closest clus-
ter mean. Starting with the one closest to some mean, the probability
pi(;) defined by the ith cluster is evaluated at the sample x with

the formula

N
1 L|%=x, |%/2:2
— N z : 3
pi(X) N, e (4.6)

i=1

AN-41741

Figure 4.5. The Two Circles Found by Iteration Over the Samples
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where the sum runs over the samples already assigned to the mode. The
sample ; is then assigied to the mode for which pi(;) is a maximum,
and the process is repeated until all samples are assigned. For the

sample, the samples are assigned according to the groups indicated in

Fig. 4.6.

4.2.3 The Problem of Classification
Samples from the photometric history of a particular satellite,

either in their original form or preprocessed in some way, may fall into
one or several clusters. We can think in terms of each of these clus-
ters representing a "feature'" of the sitellite's signature. Ultimately,
we would like to be able to establish correlations between these "fea-
tures"” and the external characteristics and motion of the satellite,

but this has not yet been attempted.

7+

AN-41

Figure 4.6. Clustering of the Samples of Fig. 4.1




Indeed, for our approach to be fully successful, such correlations
would have to exist. The photometric signature of a given satellite
with given body dynamics and orientation can generally be expected to
depend strongly on its orbital parameters, and therefore there is a dis-
tinct possibility that two satellites of the same type in substantially
different orbits will not exhibit any common features, even though we
can determine (for example) that they have the same rotation period.
Since such cases may well exist, we are likely to need a technique for
"transferring' a satellite signature from one orbit to another. It pre-
sently seems that we would have to do this via correlation of features
in one orbit with underlying externalities, then simulate the combined
signature of these externalities in the other crbit. Obviously, however,
this should be no different from comparing the externalities inferred
from one signature with those inferred from the other. We can take one
approach or the other depending on how extensive a library of signatures

is azvailahle at the time.

Suppose now that we have transformed the signatures of various
satellites to a common basis as best we can. We can then go through

the grouping algorithm and emerge with a number of clusters. Let

k = number of satellite (or satellite/observation site)

data sets

Ni = number of samples for the ith satellite (i = 1, 2,
eE k)

v = number of clusters found

Nir = number of samples for the ith satellite which fall

in the rth cluster (1 =1, ... , ks r =1, ... , V)

Now if two satellites are identical, then for observations taken
under the same conditions we would expect that they would have equal

representation in the same cluster. On the other hand, if they were
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quite dissimilar, they would not be represented in the same cluster.

This suggests defining a "similarity index" S(i,j) between the ith
*
and jth satellites by the equation )

N {
L «_
3 1 . e
S(isJ) = ;Z—--‘TN '-N 3 (i’j %=1, 2, +os 5 k) )
r=1 max _i}; _.J£

=
-4

Obviously,
0<8(1,j) <1

S(1,j) = 0 implies complete dissimilarity, while S(i,j) = 1 implies
identity.

*
If Nir and er are both zero, the rth term in the sum is defined
to be unity.




5 DATA BASE

Nearly all the data used in this study are recordings of actual
observations of satellites by telescopes and associated equipment. Simu-
lated data was prepared only for tumbling Agenas. Some excerpts from

the data are shown in Sec. 6.

5.1 OBSERVED DATA

Observed photometric data, calibrated, digitized, and reduced to
a data tape format compatible with our CDC 6400 computer, was traasmitied
to us via KMS Technology Center. Because GRC's software differs some-
what from most other systems, creation of a compatible data tape (called
"REDDI-TAPE" by KMS) and reading it out correctly required a fair amount
of effort.

The sources and quality of the data that became available to GRC
in the appropriate format during the course of the study are listed in
Table 5.1. If it was used in the study, data from a given source and
recorded at a given site on a specified date was assigned a "code number"

for identification, as shown in the table.

All the data used exhibited clear periodicity. In view of the
1imited time remaining after we received it, we did not use the 31
October 1973 data from Cloudcroft for 5851 and 6991; visually, they
appeared similar to 4630. 5587 data was also received late, but appeared
different enough to warrant inclusion (there 1s little enough variety
in the list); both SAMSO and we were interested to see how this daia
would group relative to the groupings already found for 4630 and 5851.

5560 data was not used since it appeared to be aperiodic and

vastly different from any of the other data available. There was nothing

else of a similar type to compare it with.
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3

The apparent quality of the data, as indicated by a visual appraisal
of its noisiness, varied from usually good (at Clouderoft) to fair (at
AMOS) to poor (at RML). There is always a real question as to whether
data of very doubtful quality should actually be used. We dic use it
here because the study is exploratory in nature, and we wanted to see

what our patteru recognition process would make of it.

A particular item to be noticed is that the first three data tapes
on the 1ist were taken on the same object on the same day, but from three
different sites; in fact, the data intervals actually overlap to some
extent. Since this satellite is at verv high altitude, we would expect

strong similarities to be found by the grouping algorithm.

On all data tapes received the variable recorded is Absolute Satel-
lite Magnitude (MS). By definition, MS is the apparent photovisual
magnitude of the target referred to a standard range of 1000 km from the

sensor.

5.2 SIMULATED DATA

Photometric signatures were generated for tumbling Agenas in two
different orbits. The first was that of 5560 (inclination = 92.64 deg,
mean altitude = 680 km, period = 100.58 min), and the second that of Agena
1963-27A (inclination = 82.33 deg, mean altitude = 480 km, period = 93.92
min). The observing site was at the location of Sulphur Grove in all

cases.

For the second orbit, two histories were generated, one with the
Agena between the observer and the sun, and the other in the more usual

position opposite the solar direction.

In all the cases, the Agena motion was pure tumble. The tumble
axis was chosen at random in each case, but once chosen, remained fixed

in inertial space. Tumble periods were selected roughly in accordance
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(Ref. 2); the periods used were 5.0, 7.6, and 12.27 seconds.

The Agena body was approximated as shown in Fig. 5.1, with dimen-
eions taken from an engineering drawing. The body surfaces were assumed i
to have the bicdirectional reflectance properties of aluminum, generally |
in accordance with the data for "aluminm trim tape"” in Ref. 1, but with '
modifications to incorporate some broadening of specular peaks in the {

reflectance curves which could occur due to small-scale undulations of

the body surface. This model is evidently rather crude, but was felt to

N \ = < N A — st - T — -
< h

I

f

;

h

with data on typical observed flash periods of actual orbiting Agenas \

be satisfactory in the context of its intended use.
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6 DATA PREPROCESSING AND SAMPLING

As described in Sec. 5, the photometric data was received by us in
digitized form on "REDDI-TAPES," recording Absolute Satellite Magnitude
(Ms) as a function f time. These tapes were accompanied by graphical
plots of the recorded data. Sim'lar data was synthesized by us for the
three tumbling Agenas described in Sec. 5.

Data samples were picked from the REDDI-TAPES for eventual input
to the pattern recognition process. In most cases they were first sub-
jected to some transformation--for example, some form of normalization,
or transference from the time domain to the frequency domain by means of
the Fourier transform. The sampling and preprocessing methods actually

used are described below.
6.1 THE TIME DOMAIN

6.1.1 Excerpts from Data Plots

Excerpts from the plots of M, versus time furnished by KMS

S
IndustriesB-7 for Satellites 5851, 4630 and 5587 are shown in Figs. 6.1

through 6.7. All this data exhibits very evident periodicity.

5851 and 4630 have definite quarter-periods of ~2.50 seconds. The
period of 5587 is ~1.20 seconds.

The plots shown for 4630 are of observations taken at three dif-
ferent sites on the same day. The variation in the apparent quality of

the data is quite striking.

Some of the simulated data for the three Agenas is shown in Figs.
6.8 through 6.10. The differen:es in range of the absolute satellite
magnitudes in the three cases should be noted since it affected our
choice of preprocessing prior to pattern recognition analysis on Agena,
5851, and 4630 data samples.
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6.1.2 Sampling and Preprocessing
Agena, 5851, and 4630 data were sampled in the time domain. 5587

data was not, since it did not become available until well after our
interest had become focused on the frequency domain in which we were

getting better classification results.

As stated earlier, 5851 and 4630 had the same period, while the
Agena data was periodic by construction, with the periods chosen by our-
selves. Thus to distinguish between Agenas and satellites on the basis
of period would have been spurious. The satellite data generally
exhibited one major peak per quarter period, while the Agena data gene-
rally peaked every half period. If we had merely normalized period to
unity, we would still have been left with the very obvious discriminant
of the number of major peaks per cycle. Taking still greater precau-
tions to avoid possibly spurious discriminants, we chose the sample in-
tervals to be one quarter period for the satellites and one half period
for the Agenas, so that each generally contained just one peak, and nor-

malized these sample intervals to unity.

Each data sample consisted of 50 values of Ms , represented as a
point in a Cartesian space of 50 dimensions. Here and elsewhere, 50-
dimensional samples were used because that is the greatest number cur-

rently allowed by the program.

There are significant differences in peak magnitudes between the
three Agena cases which are probably due to aspect-angle-dependent dif-
ferences in the degree to which the speculars were approached in each
case; these are not, therefore, likely to be descriptive of a general

observed Agena. Accordingly, when comparing Agenas and satellites, we

chose also to normalize the fluctuation of MS over the sample interval

to a fixed value. This was done only in comparisons involving Agenas.
It is not necessary (and indeed might obscure important classification
features) where thers is high confidence in the meaningfulness of the

amplitude swings--as should be the case for the recorded satellite

observations.
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6.2 THE FREQUENCY DOMAIN v

An obvious alternative to the sampling procedure just described is
to take a finer "net" in the time dimension, approximate the Fourier
transform on the basis of this net, and take the amplitudes at selected

frequencies to be the components of a sample vector.

Two major questions arise:

1. What should be the length of a time interval on which a

Fouriler transform is computed?

2 What function of Ms do we wish to transform? '

Our choices are defined and discussed below, together with a description

of inputs to and outputs from the Fast Fourier Transform (FFT) routine.

6.2.1 Choice of Time Intervals

For each satellite, two primary considerations dictated the length

of each time interval T on which an FFT was computed.

First, T had to be short enough that the available data contained
more than a few intervals of length T . Second, T clearly had to be
at least a single period of satellite rotation, and probably longer, to
reduce the effect of any occasionally occurring disturbances in the data.
We found that taking T equal to about twice the satellite period was
a very good compromise. The precise value of T in each case was
determined by the digitizing rate for the taped data, the choice of 210
(= 1024) equispaced points in T as the basic net for computation of
the FFT, and a constraint (introduced for a reason given in 3ec. 6.2.4
below) that the ratio of T to the satellite period should be the same
in all cases. Specifically,

P For 5581 and 4630, T = 20.48 s
° For 5587, T = 2.42 s

With these choices, we were able to use on the order of 30 intervals for

each satellite/observation site pair.
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6.2.2 Choice of Time-Function to be Transformed

The choice of what function of M_. to transform is, of course,

S
somewhat arbitrary. MS itself is a logarithmic unit, and we felt intui- {
tively that it might be preferable to work with a more '"natural" quantity
such as Luminosity, 1I. {

MS and I are related as follows. The Apparent Photovisual Mag-
nitude (m) of a source having the spectral distribution of the sun is re-
lated to its total Irradiance (E) just outside earth's atmosphere by the

equation8
m= -2,5 log(E) - 28.72

where E 1s measured in W/cmz. This equation is, of course, only an
approximation, especially so since no correction is made for atmospheric
effects, but Lt 1s felt to be adequate for present purposes. The Radiant

Intensity of an object at range r , when there is no attenuation, is

given by8

I = £°x x 1070

where I 1s in watts per steradian and r is in km. Hence the relation

between m and I 1is

Since MS is defined to be the value of m at a range of 1000 km, it

follows at once that

Mg = ~2.5 log(I) + 11.28




or
-004M
I =3.251 x 10” <10 S>

In the frequency domain we could use the spectrum of I or of any
function of I . After some experimentation, we finally decided to take
the spectrum of Vi » largely to reduce somewhat the great spread in the
values in the spectrum of I itself. The use of this function should
have negligible effect on the results, while improving the visual dis-

play and examination of the re:sulting spectra.

6.2.3 Computation of the Fast Fourier Transform and Exemplar Plots

The FFT of VI was computed using IBM subroutine HARM. This re-
quires that the number of sample points in the time domain over time
interval T be an integral power of 2. After trying several different
values we finally settled on using 210 points for our Fourier Transforms;
this is small enough to avoid excessive computation time yet long enough
to provide good transform data. The time-domain points must be equispaced
over the interval T , requiring interpolation whenever the data digitiz-
ing interval is irregular (Object 7) or incommensurate (Object 8). For
Objects 4, 5, and 6, where the received data digitizing rate was 100 per
second, we used only every second point, reducing the effective digitiz-
ing rate to 50 per second, in order to accommodate over two full periods

(tr = 10 8) in each time-domain sample of 1024 points.

The spectrum of YI consists of modulus and phase as functions of
frequency f . In principle there is information concerning the target
object in both the modulus and the phase functions. However, the limita-
tion to maximum 50-point samples made it impractical to use both func-
tions in the DISCRIMATON, and we had to make an initial selection.
Various considerations suggested that there would probably be more usable
information in the modulus function than in the phase function, so we

decided to use the modulus of the Fourier Transform of VI as our sanple
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data in the frequency domain. In doing this we were aware that some
possibly significant information was being lost; it was hoped that we
could include the phase function later, but ran out of time before this

could be done.

The discr2te spectral modulus produced by the FFT over 210 points
in the time domain has 29 + 1 independent points in the frequency

domain: these are the equispaced points at frequencies
9
fr-=oiQ) IARS2ATES SIS e it 2TAE

where

Af

1/T
The values of T used for the various objects were quoted in Sec. 6.2.1.

Of course, we could not use all of these data points: the DISCRIMA-
TON can deal with 50-point samples at most, and furthermore the transform
is likely to be distorted at the higher frequenciles when interpolations
have to be made. The samples were selected from among the 513 spectral

modull points in several ways as described below in Secs. 6.2.4 and 7.1.

Exemplar plots of the spectral modulus |S(f)| of YI as a func-
tion of f(= nAf) for various satellite/observation site pairs are
shown in Figs. 6.11 through 6.16. Two of these figures are for the same
satellite/site pair to illustrate the degree of difference that can occur
from one time interval to another. In all cases, note that |S(0)|
appears at the top of the ordinate axis, and that there is a great dif-
ference between |S(0)| and the average value of |S(f)| over the range
shown for f > 0 . Also, the fluctuations in the value of |S(f)| for
f > 0 are sizable. These differences would be much greater 1if the

spectral modulus of I had been used.

43




(33030pNoT)) TS8S 103 I JO SNINPON Teajdads ieydwaxy

*IT°9 2an3T4

zg - (3) XOrzndadd

P Y Y T T S e T Y T Y Y P P PP Y Y R T T Y R L Y Y R LR T LR L L L Bt

ececepecscegfecscnccacasssasaana==]X

®
®
£ d
L]
—

2SL1IY-NY

A

A

ol
1
1
1
1
1
1
i
1
H
1
1
1
1
1
i
1
1
1
i
i
1
i
1
i
i
1
1
1
1
1
!
1
1
1
1
1

A

si2o*

Stu0°ut

Sletcve

slu2*ve

sl92°0*

([(3)s|) sn1ngor Tva1oEdS

44



f

(33015pnoTD) 0€9% 103 I, 3O SNINPOK Tea3oads aerdwexy °z1°9 2anl1g

ZH - (3) XONANOTHA

0000°s 0000°y 0000°¢ uovore vovu*t U
+ * + . + -
D N ol T T T T L gy ppppe e L LI OPe LI YT PeT Y LI PR Il Il Il dl I T Ll it L Al Bl Al Lol Skt S Snindababbnbab bbbt 1<
. - oee e o ee o eee . @ .o . o . o . ® enouo,
. - - * ow - e o @ oeoe es e :
- - - 4
. oo L] . . i
L 1
e :
i
{
o oo !
i <
. Iy
i
{
s
- i
Y
3
i«
i
.
4
4
1
1
H
L
1 <
i
1
i
1
i
i
i
i
i
1<

9uine

uised®s

oaovul

virel®sl

wve6°J2

(|3 s]) sn1naow Tvaidaas

45




—

(SOWV) 0£9y 103 .m\ Jo sninpol TeB1319adg aerdwoxy

ZH - (3) AONINDTYA

"€1°9 2an8t4

0000°g 0000°w 0noo°g 00u0°e onvo°t 009dutu
- . v + - .
lllll lllu00.ll.l....l-ll..0.l|.c00cl‘l.l‘lllllllllllllllllllllllOIIIIIOIOIIIOIIIIIIIIOI|00l:00lll0l.00llll.lll—A hecd0®
LI oo - . ® S0 GeP258 GOSSER  sed b e @wee evs ] (XY s o o e 1
- on ® o o o (XY 3 - ol
. - . . . 1
LX) 3 LY
- L] . - 1
W L 2 L J\
.hr . [
5 1
w 1
St 1€ ewsEcul
. 1
1
: wn
4 d
1 =
o Q
o =]
1
1
1
1< senvcuz B
1 o
(=1
L =
A [=]
w
)
1 ~
IS w
h ”~~
lay)
{ ~
. =3
1€ ac?V®t
'y
1
1
1
.
i
1
i
H
1< [vur® Ly

46



e —— - = — — - - T —— - — — ———
[}
}
}
1
¢
(SOWV) 0€£9% 103 I, 3O sninpol Teildadg ierdwaxy °41°9 21n314 i~
2H - (3) XONANbIUL
09ud°g 0000°%y 0000°¢ 0000°2 uduue ey 2 O
* +* - +* > -
lllllllll B T Tl Lt T D et D P e L S A X §
e ® o9 oesees oo ®oee ® ® 900 o . o * . . @ .dﬁ.vn
e - - * oo * seee - e o @ . i
- . . e o . soeo @ = L 1
® * L] o o " -
- - a .
- i
~ * * i
» ) - i
i
- 1< E%iv°e
1Y
'y
8 v
L] - s o
t a
- 1 ]
- . m
- i
> i
- 1< wrtgcel W
~ 4 m
3 ; a
Uy r wn
wy o i
. =
s wn
i -
'Y S’
i =
1€ %rubtad
i
1
i i
1
| 1
s
_ 1
i
i
s < s 590 %E
8
- j
1
i - . -— il e —— i r - - e L




(Wd) 0€9% 01 I, 3o snnpoy Tea3dads ieydwexy °GT°9 2andTg

ZH - (3) XONdndbTda

0009°g 0000y 0000°¢ 0000°2 vaone g pnoYe )
+ & + * v -
L L Ll T Y T e T T T Ll L o L L Y Y e e S ninindeddet ittt S S
o . e e oo » ®e® oo svsce & 8 o e ® o e ® eee oo .o es & i
- . - s % e o LY «® @ ees e o 1
- . e ® 1
. - . I
w - . i
L - i
w 4
~ - 1
[
o - - i
o i<
i
]
:
4
1
1y
i
4
i
i<
i
4
t
4
i
i
i
1<
1
1
i
1
1
1
i
1
l
i<

Vrs0° !

HbElwd

v lten

2082° S

(|(3)8]) sn1naow TviLoads



AUMONUUQOHUV Nwmm I03 M-\ JO sSnInpol HMHUUUQ% NMHQEU”N .OH.O U.Hﬁw..ﬂr.m “a [
, ZH - (3) XONZNOTIA
0000 vy 00007 ¢2¢ 0000°¢2 0000°9Y 0000°g 0000°0
* * * +
lll..lllll...lll.‘.l.l@.d..l.l‘l...l.l...l.!....lll..l.lll.llllll..llllll..l........lt‘..lIHIIIIIOIOOOIIIOIIOIOMA ﬂo.NQﬂb'.n g
sew *e @ @ LK ] ® %0 ® o ee * o - (1] oese L

LSL LY -Ny

« €Llv'e

608y

(|(3)s]) SNTINAOR TvaLDEdS

< otie°d \M
:

*

Ot Omt St Bt Gnd 5o8 Gmt o0 =t Gut =t Pt Gt Gmt Bt $ug Pug Gud =g Gug Bl Gug Suf Sof $ut Gug Gt Gut Gut Omd G=t Bt B0 Pu0 Gug b Gmg Gud Do Bt
A




6.2.4 Sampling and "Normalization" of the Transformed Data

E:ch time interval of length T for which an FFT is calculated
gives rise to a sample "vector" (or "point") in a Cartesian space of N
dimensions, where N can, in principle, take any value from 1 to
(29 + 1) as desired. In practice we usually took N = 50 , the largest
value that the Principal Components Analysis program can currently accept.

In these cases a sample vector is of the form

(|S(n1Af)|, |S(n2Af)|, i |S(n50Af)|>

where the values Nys Mgy eee sy n50 are the same for all samples of

this mode. Thus the specific value of Af , which can vary from one

object to another, does not influence classification.* The choice of
Myy Myy vee s n50 may affect classification, since no choice of 50

dimensions may contain all the significant information. However, we
have no strong reason to believe that 50 dimensions was inadequate in

the cases analyzed here.

In addition to using "unnormalized" sample vectors of ihe above

fora, we used two types of derived "normalized' vectors.

For the first type, the normalization was carried out by dividing
each component of the vector by the corresponding value of |S(0)| .  In
particular, in cases where n1 = 0 , this amounts to rejecting the first
component of each vector for ciassification purposes, as well as scaling

other components to multiples of the "DC" component level.

For the second type of normalization, we calculated the mean value
(|§T67|) of |S(0)| over all the samples for a given satellite/

observation point pair and divided each component of the sample vectors

*
Since T = 1/Af was taken proportional to satellite period in all
cases, this implies that period per se was not used to distinguish be-
tween satellites; in effect it was "normalized out."




for this pair by |§?37| . Note that if T 1is such that the change in
the angle subtended at the source between the sun and the observer is
negligibly small, this kind of normalization should ideally be redundant,
since MS is so normalized by definiticn. The actual data did not con-
form to this condition, and we are tempted to infer that instrument cali-

bration (at a particular site) sometimes drifted.

To remove any possibility that discrimination could occur because
of instrument calibration drifts or of differences in calibration from
one site to another, we also carried out the first type of normalization
described above. This may be going too far; however, in the cases studied
here, the type of normalization tended to improve classification. We do

not know why.

Finally, some cases involved samples chosen by selecting only the

first 16 peaks in the modulus function, including that at f = 0.
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PATTERN RECOGNITION ANALYSIS
This section describes and discusses the results of applying the

pattern recognition methodology of Sec. 5 to preprocessed data samples

for Agenas and Satellites 5851, 4630 (three observation sites), and 5587.

The main questions addressed are:

i Can *he Agenas be distinguished clearly from the satellites?

2 How do the various satellite samples cluster together
a. in the time domain
b. in the frequency domain

when sampling retains as much information as is feasible?

3. What are the effects of various kinds of sample
"normalization?"
4, What is the effect on classification of the amount and

nature of the information retained in sampling?

Principal Components Analysis was carried out on the data samples
in all cases. Calling the eigenvectors corresponding to the four lar-
gest eigenvalues of the correlation matrix X, Y, 2, U, respectively,
plots of the projections of the sample points on tbe XY, XZ, XU, YZ, YU,
ZU planes were printed by the computer, so that the results of the
grouping algorithm could be compared with visual impressions of how the
samples should be grouped. Several such plots are included here. In
fact, for comparisons between Agenas and Satellites we used only the
plots, since the grcuping algorithm (LERNMOD) was obviously not needed.

For comparisons between satellites, LERNMOD was certainly required, and

was always utilized.

A summary of the principal findings, together with conclusions in-

ferred from them, is given in Sec. 2.
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The reader is reminded here of the caveat that our results could be \
hiased in the direction of showing too great a dissimilarity between the !
p data sets because sample sizes are too small in relation to the dimen-

sionality of the samples (see Sec. 2).

7.1 NOMENCLATURE AND ABRREVIATIONS ]
For convenience we here give a reminder of the code numbers used
to identify object/observation site pairs (Table 5.1), and introduce a {

compact notation in connection with frequency domain samples (Sec. 6.2.4).

The code numbers are given in Table 7.1.

* For the frequency domain samples, recall that a sample point has

3 the form

(lS(nlAf)|, |S(n2Af)|, M6 |S(nkAf)|)

TABLE 7.1
CODE NUMBERS FOR OBJECT/OBSERVATION SITE PAIRS

} Code Number Object/Observation Site Actual or Simulated Data
as 1 Agena (Orbit 1)/Sulphur Grove Simulated
2 Agena (Orbit 2)/Sulphur Grove Simulated
3 Agena (Orbit 3)/Sulphur Grove Simulated
4 $9450/Cloudcroft Actual
| 5 S4630/Cloudcroft Actual
| 6 S4630/AMOS Actual
7 S4630/RML Actual
r 8 $5587/Cloudcroft Actual
" 53
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where k < 50 , and 0 = Ny <m, < e <m < 29 . We use the abbreviation \
{
F; 0y, nk, An
t
to denote a sample point {

Os(nlAf)l, |S{knl + An)Af}], |S{(nl + 2An)Af}|, k5D 5 ls{nl + (k - l)An}Afl)

where by definition, |

nk = nl + (k - 1)An

For example, F;0,98,2 denotes that the Fourier transform of data
on all selected time intervals is sampled at the fifty frequencies
0,20f,40fF,6Af,...,980f, and that each time interval gives rise to a

sample point with Cartesian coordinates

(|s(0)|, |s(2af)|, |sesaf)|, |s(6af)], ... , IS(98Af)D

7.2 COMPARISON OF TUMBLING AGENAS AND SATELLITES

This initial comparison involved objects with code numbers 1-5,
with data sampled in the time domain and preprocessed as described in
Sec. 6.1.2. The preprocessing removed any possibility that either rota-
tion period or the maximum fluctuation of MS over a sample interval

would influence classification.

The number of samples taken from each of the data sets is given in

Table 7.2.
The number of Agena samples (codes 1, 2, and 3) was small on ac-

count of usually small variation in signature from one cycle to the next.

For each Agena, enough samples were chosen to be representative of the
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TABLE 7.2
SAMPLE SIZES

Data Set Number
Code Number of Samples
7
15
18
51
119

[, I - I L S

variations seen to occur in usual plots of the entire data set. We also
chose the code 4 and code 5 samples to span the (much greater) range of

variations in the data evident to the eye.

The projections of the samples on the XY-plane (the plane defined
by the eigenvectors corresponding to the two largest eigenvalues of the
correlation matrix, and therefore the plane in which the spread of the
samples 1s greatest), as plotted by computer, are shown in Fig. 7.0
Not all the points appear on this plot, since some may be too close to
others to be distinguished separately. All the omitted Agena points
are close to plotted Agena points, and omitted satellite points to
plotted satellite points. The evident separation between Agenas and
satellites seen in Fig. 7.1 is therefore unaffected by the points omitted
from plotting.

While nominal sample size/dimensionality criteria for good classi-
fication are clearly not met in this case, we feel the figure is unlikely
to be misleading because of the way the samples were selected. It is
very probable that other samples from each data set would lie within
the spread of those from the same set, shown in the figure. The separa-

tion between the simulated tumbling Agenas on the one hand and the
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observed satellites on the other hand i1s quite obvious. When such good
separation is visually evident in the two-dimensional subspace plotted,
it 1is unnecessary to use LERNMOD to perform the discrimination. However, ¢
in future cases when this occurs we shall also invoke LERNMOD to confirm t

the visual result in a higher-dimensional subspace. (

7.3 COMPARISONS BETWEEN SATELLITES
Having verified that our methods could successfully distinguish
satellites from tumbling rocket stages, we began making comparisons be-

tween the satellites themselves.

Comparisons were begun in the time domain. We switched to the fre-
quency demain as soon as the FFT subroutine was successfully integrated

into our computer program so that an early judgment could be made as to i

where further efforts should be concentrated. Results in the frequency l
domain proved to be rather better, and therefore almost all the results

described below are for classification based on spectral analysis.

All the results in this section are based on samples having 50
dimensions (prior to Principal Components Analysis), the maximum that
can be processed in our programs in their current form. The effect on
classification of various forms of normalization of the samples is shown,
as is sensitivity to the number of dimensions retained following Princi-
pal Components Analysis. We also comment on the effect of using the

covariance matrix of the samples rather than the correlation matrix.

In the notation of Sec. 7.1, all the frequency domain results
shown here are for F;0,98,2 frequency sele:tions. Three other selec-
tions-- F;0,49,1, F;2,98,2 , and F;1,49,1 --were also tried; these gave

somewhat inferior results.

The remaining question as to the effect of reducing the initial
dimensionality of samples and cf different ways of selecting the fre-

quencies which define these dimensions is deferred to Sec. 7.4.




7.3.1 Comparisons in the Time Domain

Objects with code numbers 4 and 5 were compared, based on samples
taken directly from the REDDI-TAPES, with no preprocessing prior to
Principal Components Analysis. There are 55 code 4 samples and 117 code
5 samples, the difference in number being accounted for by the fact that
there 1s considerably more code 5 data available and it exhibited an

apparently wider variety of featurez than the code 4 data.

All the data was taken at Cloudcroft, and judged to be mostly of
good quality.

Principal Component Analysis (PCA) found that there were 10 eigen-
values within a factor of 0.04 of the largest eigenvalue, and 13 within

a factor of 0.01. Since the axes of the "error ellipsoid" are propor-

tioned to the square root of the eigenvalues, this implies that of the
50 axes, 10 were longer than one-fifth, and 13 longer than one-tenth of

the length of the major axis.

We are therefore strongly inclined to the belief that for purposes
of estimating adequacy of sample size the dimensionality of the sample
space need not be taken as 50, but could be reduced to about 13. If
this point of view is accepted, then the sample sizes are large enough
to avoid bilasing the results toward too great a dissimilarity between
the data sets.

Plots of the sample projections in the XY and XZ planes are
shown in Figs. 7.2 and 7.3. Some points are left out in plotting be-
cause they would be over-printed on others. Since the 4's fall on other

4's and the 5's on other 5's, the loss of visual detail is minor.

LZRNMOD found three groups, whose centers are indicated by X's

*
in some of the figures, labeled M1, M2, M3 , respectively. No

*Similar indications of group centers appear in some of the other figures.
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significance is to be attached to the group numbering. The number of

samples of each type in each group is given in Table 7.3.

The value of the "similarity index" $S(4,5) , as defined in Sec.
2.3, is

1| 1/55
$(4,3) = 355117 +

6/55
62/117

+ 0] = 0.082

We conclude that code 4 and code 5 data are dissimilar. However,
since their orbits are different, we cannot necessarily conclude that

the two satellites are dissimilar.

7.3.2 Comparison of Unnormalized Samples in the Frequency Domain for
Object Codes 4 and 5, and a Discussion of the Effect of Noise on

Grouping
This comparison was made on the basis of 24 code 4 samples and 33

code 5 samples, all with F;0,98,2 frequency selection.

PCA found 12 eigenvalues within a factor of 0.04 of the largest
eigenvalue, and 18 within a factor of 0.01, implying that 12 axes of the
error ellipsoid were longer than one-fifth, and 18 longer than one-tenth

of the major axis. Thus we incline to the view that sample dimensionality,

TABLE 7.3
NUMBER AND COMPOSITION OF SAMPLE GROUPS

Number of Samples in Group

Group Number Code 4 Code 5
6 62
1 55
3 48 0
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for purposes of estimating adequacy of sample size, is a lot closer to

18 than to the nominal value of 50, and could be as low as 12. Even so,
our sample sizes are not large enough to avoid the possibility of results
biased toward showing too great a dissimilarity between the data sets.
The governing sample size of 24 was limited by the length of the code 4

%
data.

Sample groupings found when two, three or four dimensions were
retained following Principal Components Analysis were identical. Three
groups were found, with compositions given in Table 7.4. The correspond-
ing value of S(4,5) 1is obviously zero, so again the conclusion is that

code 4 and code 5 data are very dissimilar.

However, if we retain more dimensions when applying LERNMOD, the
groupings change considerably, as revealed in Table 7.5. For five dimer-
sions retained, the value of §(4,5) 1is 0.14, and for six dimensions it
is 0.051. Thus we would on the whole still regard the two classes of

samples as quite different. The decreased ability to separate the data

TABLE 7.4

NUMBER AND COMPOSITION OF SAMPLE GROUPS; FOUR
DIMENSIONS RETAINED AFTER PRINCIPAL COMPONENTS ANALYSIS

Number of Samples in Group

Group Number Code 4 Code 5
1 0 16
17
3 24 0

*
A sample in the frequency domain uses up approximately eight times as
much of the data base as does a time domcin sample.




TABLE 7.5

NUMBER AND COMPOSITION OF SAMPLE GROUPS; FIVE OR
SIX DIMENSIONS RETAINED AFTER PRINCIPAL COMPONENTS ANALYSIS

Number of
Number of Samples in Group
Dimensions Retaingﬂ Group Number Code 4 _Code 5

5 1 0 16

2 24 14

3 0 3

6 1 24 5

2 17

3 8

4 3

sets indicates some deficiencies in LERNMOD, since it is evident that
separations should remain the same or improve as more dimensions are kept.
Consequently we always examine separations for various numbers of retained

dimensions, and base our conclusions on the maximum separation found.

7.3.3 Comparison of Unnorm:lized Samples in the Frequency Domain for
Object Codes 4 and 8

This comparison was made on the basis of the same 24 code 4 samples

used in the previous comparison, and 30 code 8 samples, all with F;0,98,2
frequency selection. We remind the reader vhst period is not utilized in

the comparison (see Sec. 6.2.4).

In this case, seven axes of the error ellipsoid were within a fac-
tor of one-fifth of the length of the major axis, and 11 within a factor
of one-tenth. Projections of the samples in the XY-plane are shown in

Fig. 7.6. The two sample sets are obviously very well separated (the 8's

left out in printing fall within the group of £'s shown at X = -5 and
Y = -0.1). Separations in the XZ- and XU-planes are similar. In the

—
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YZ-plane, the 8's lie well embedded among the 4's, as shown in Fig. 7.7,
and the same is true in the ZU-plane (in the figure, the £'s left out in
printing lie within the central group of four at Y = -0.3, Z = -0.2).
The tight clustering of the 8's in all subspaces, as compared with the
far looser groupings for other object numbers, is interesting. This 1is
apparently a characteristic feature of the data for this object whose
cause can only be conjectured at this time; it should be possible to use
cluster tightness as a discriminant, but it is not yet clear how to do
this.

The sample groupings found in two, three, or four dimensions were

identical. Two groups were found; group 1 containing 29 code 8 samples,
and group 2 containing 24 code 4 samples together with one code 8 sample.
The similarity index is

S(4,8) --;- 0/29) + (1/24)| = 0.021

We conclude that code 4 and code 8 samples are highly dissimilar.
Again, this may, but doer not necessarily, imply that the two satellites

are dissimilar.

7.3.4 Comparison of Unnormalized Samples in the Frequency Domain for
Object Codes 5 and 8

This comparison is based on the 33 code 5 samples and 30 code 8

samples previously used (F;0,98,2 frequency selection).

Two axes of the error ellipsoid were within a factor of one-fifth
of the length of the major axis and 11 within a factor of one-tenth.
Figure 7.8 shows the sample projections on the XY-plane, and Fig. 7.9
the projections in the XZ-plane (once again, the 8's left out in printing
fall onto the tight clusters of printed 8's). Separation between the
two sets in the XY-plane seems quite clear-cut, but in the XZ-plane,

the distinction is not so clear.
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/.

One might therefore suspect that the LERNMOD wou'c find quite dif-

ferent groupings if only two dimensions rather than three were retained.

In fact, its groupings were almost identical, ;. indicated by Table 7.6,

When three dimensions are retained, the similarity index S(5,8)

is given by

16/33 = 1/30
29/20 ° 17/33

s(5,8) = %{ ] = 0.28

Thus there is a moderate degree of similarity between the two sample sets.

7.3.5 Comparison of Unnormalized Samples in the Frequency Domain for
Object Codes 4, 5, and 8

Having compared these objects in pairs, we felt it might be instruc-
tive to see what groupings would emerge when all three sets of samples

were treated together.

Projections of sample points in the XY, XZ and YZ planes are
shown in Figs. 7.10 through 7.12, respectively. Comparison of these

plots with thnse given previously for the data sets taken in pairs reveals

TABLE 7.6

NUMBER AND COMPOSITION OF SAMPLE GROUPS; TWO OR THREE
DIMENSIONS RETAINED AFTER PRINCIPAL COMPONENTS ANALYSIS

Number of Samples in Group

Number of Group
Dimensions Retained Number Code 5 Code 8
2 1 15 29
18 1
3 1 16 29
17 1
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that in the XY- and XZ-planes the relative location of the 4's and 8's

has changed little, but the locations of the 5's relative to the 4's and
8's has changed very substantially. In the YZ-plane, the 4's have moved
rather more to the right of the 8's than formerly, and again the relative
location of the 5's has changed substantially. Thus the 4-8 separatiou

dominates the directions of the longest axes of the error ellipsoid.

The groupings found in three and four dimensions are given in Table
7.7. The corresponding similarity indexes are shown in Table 7.8. The
similarity index values found previously, for the data sets examined in
pairs, are S(4,5) =0, S(4,8) = 0.021 , and S(5,8) = 0.28 . Compari-
son of Table 7.8 with these previous results reveals that (1) if we re-
tain three dimensions, S(4,5) and S(4,8) remain virtually unchanged,
but S(5,8) 1increases from 0.28 to 0.50; and (2) if we retain four
dimensions, S(4,8) and S(5,8) remain virtually unchanged, but S5(4,5)
changes from zero to 0.26. Thus only the value of S5(4,8) 1is insensi-
tive to the number of dimensions retained. Moreover, it is also insensi-

tive to whether the code 5 data is included.

TABLE 7.7

NUMBER AND COMPOSITION OF SAMPLE GROUPS; THREE OR FOUR
DIMENSIONS RETAINED AFTER PRINCIPAL COMPONENTS ANALYSIS

Number of Samples in Group

Number of Group
Dimensions Retained Number Code 4 Code 5 Code 8
3 1 0 16 30
2 0 17
3 24 0
4 1 0 16 29
2 24 17 1




TABLE 7.8
SIMILARITY INDEXES OF DATA SETS; THREE OR FOUR DIMENSIONS KETAINED

Similarity Index

Number of
Dimensions Retained 5(4,5) 5(4,8) 5(5,8)
0 0 0.50
0.26 0.017 0.28

Hence we draw the following conclusions concerning how our metho-

dology should be applied:

° It is best to consider data sets in pairs rather than several

at a time.

' 1f several sets of data are input together, two sets for
which the similarity index is very small will have a very
small similarity index when they are compared as a pair.
This implies that under these circumstances comparison as a

palr is unnecessary.

Taken together they imply that a reasonable approach to grouping of seve-
ral data sets is to first input all of them together, then screen out
pairs with very small similarity indexes, and finally treat all remaining

pairs separately.

7.3.6 Comparison of Unnormalized Samples in the Frequency Domain for
Object Codes 5 and 6

We now begin an examination which ultimately embraces code 5, o, 7
data. These data are for the same satellite, taken from three different
observation sites on the same day. Since the satellite is at very long

range, it seems likely that the data should be quite similar.

The comparison discussed here was made on the basis of the 33 code

5 samples praviously used, together with 30 code 6 samples, all with

F;0,98,2 frequency selection.




Eight axes of the error ellipsoid were within a factor of one-fifth
of the length of the major axis and 19 within one-tenth. Plots of sample

projections in the XY and XZ planes are shown in Figs. 7.13 and 7.14. |
Visual groupings of the points would evidently tend to be controversial ¢
(the distinguishing labels on the plots are not available to aid ‘
classification). H

The grouping algorithm gave the same results whether four or five
dimensions were retained. It found two groups, with group 1 containing
18 code 5 samples and 24 code 6 samples, while group 2 contained 15 code
5 samples and 6 code 6§ samplex. Accordingly, the similarity index
S(5,6) 1is given by

6/30
15/33

1[18/33

5(5:8) = 312730

+ = 0.56

We conclude that code 5 and code 6 samples have substantially more
in common than any of the other pairs previously considered. This is

what we felt the result probably ought to be.

7.3.7 Comparison of Unnormalized Samples in the Frequency Domain for
Object Codes 5 and 7

Twenty-seven code 7 samples with F;0,98,2 frequency selection

were taken together with the 33 code 5 samples previously used. Much of
the time-plot of code 7 data (from which these samples were derived)
looks to be of poor quality. Therefore it was difficult to predict how
the comparison would turn out. We would again expect that reasonably

good quality data would show strong similarity to the code 5 data.

as long as the major axis, and 19 within one-tenth. Projections of the
samples on the XY- and XZ-planes are shown in Figs. 7.15 and 7.16. The
data appears to separate in the XY-plane (at least with the benefit of

the labels), but not in the XZ-plane.

Ten axes of the error ellipsoid were within a factor of one-fifth
The separation apparent in Fig.
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7.15 1s so clear that it should not be necessary to go to a higher dimen-

sional subspace or invoke LERNMOD in order to see that the objects seem

to be dissimilar; a linear discriminant would probably work quite well.

However, for confirmation we did apply LERNMOD in two, three, and
four dimensions. The groupings found are given in Table 7.9. The group-
ing in two and three dimensions 1is almost the same, but that in four
dimensions is substantially different. This may be due to noise, as
discussed in Sec. 7.3.2.

The value of the similarity index iu three dimensions is

S3(5,7) = 0,22

TABLE 7.9

NUMBER AND COMPOSITION OF SAMPLE GROUPS; TWO TO FOUR
DIMENSIONS RETAINED AFTER PRINCIPAL COMPONENTS ANALYSIS

Number of Samples in Group

Number of Group
Dimensions Retained Number Codg_g_ Code 7

2 1 17 18
2 16 0

3 0
3 1 16 18
17 0

0
4 1 10 25

2 8

3 12

4 3

82




and in four dimensions it is

54(5,7) = 0.076

Thus the ilarity is much less than between code 5 and code 6 data.

7.3.8 Comparison of Unnormalized S:mples in the Frequency Domain for
Object Codes 5, 6, and 7

Finally, to confirm that there are no surprises if all the samples
for 4630 were put together, we input all the code 5, 6, and 7 samples

simultaneously into our programs.

Figures 7.17 and 7.18 show sample projections in the XY- and XZ-
planes. They appear about as anticipated. In the XY-plane, the 7's are
separated from the 5's as before, while the 5's and 6's are strongly
intermingled. In the XZ-plane, all are intermingled. Thus the code 5
and code 7 samples appear to have the strongest influence on the orien-
tation ¢f the error ellipsoid. Figure 7.17 again shows clear separation
between code 7 and the other objects at least in the two-dimensional sub-
space; in this plane a linear discriminant would say that object 7 is
definitely dissimilar from the other two. In three four, or five dimen-
sions, the same groupings were found, but these were different €rom thcse
seen in the XY-plane. Group 1 contained 22 code 5 samples, 24 code 6
samplec, and all 25 code 7 samples; group 2 contained the remaining 1l

ccde 5 samples and 6 code 6 samples.

The corresponding similarity indexes are as follows:

$(5,6) = 0.72
§(5,7) = 0.33

$(6,7) = 0.40
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The similarities S(5,6) and S(5,7) have increased somewhat over the
values previously found when the data sets were examined in pairs. This

is in accordance with what usually happens with our methods when more

data sets are added for simultaneous classification. In the present

case the effect may be due partly to the rather small number of samples
of each type. But in general, it reflects a minor deficiency of the
method itself.

7.3.9 The Effect of Two Forms of Sample "Normalization" in the Frequency
Domain, and of Using Factor Analysis Instead of Principal Compo-
nents Analysis

Primarily to obtain some results where we were more certain that
calibration errors were not present in the input data, we used two forms
of "normalization" of the F;0,98,2 samples used in the work described
above. Then for one of these we examined the effect of using the covari-
ance matrix instead of the correlation matrix of the samples--i.e., of

using Factor Analysis rather than Principal Components Analysis.

The two forms of normalization were:

N1l: Divide each sample component by the sample component corres-

ponding to f = O.

For all the samples having the same code number, find the
average value of their f = 0 components. Then divide each

sample component by this average value.

The first form has the effect of removing the mean signal level entirely
as a basis for classification, and may go too far. Hence the second was

also stored. 1

Results are shown in Table 7.10. The comparable results for unnor-
malized samples are also given. A dash (-) in the table under a parti-
cular code number indicates that samples with that code number were not
ir.cluded. The table also shows the effect of changing from the correla-
tion matrix to the covariance matrix whea the second form of normaliza-

tion (N2) is used.
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The first three cases shown in the table are for codes 4-7 samples.
In all three cases the similarity index S(4,7) 1s at most very small.
In the first two cases S(4,5) and S(4,6) are also very small, but
this is not so in the third case. Also in case 3, S(5,7) and §(6,7)
are all zero, while S(5,6) 1is unity.

The next three cases include the code 8 samples. In all these
cases S(4,8) 1is either small or zero. S(4,7) 1is zero for the unnorma-
lized samples, but is high for both types of normalization. S(5,6) 1is

sizable in all cases.

The last two cases are for N2 normalization samples; case 6 pro-
cessing used the sample correlation matrix, while case 7 used the covari-
ance macrix. The covariance matrix reflects the significance of the
actual magnitude of sample-to-sample variations in each component of the
sample vectors and has a tendency to be dominated by swings at the fre-
quencies where the average amplitude is high. On the other hand, the
correlation matrix we have adopted in our standard procedure reflects
the relative variance, and hence does not share this tendency; its poten-
tial problem is with noise at frequencies where the signal level is low.
In both these cases, S(4,8) 1is very low. S(4,7) 1s high in case 6
and zero in case 7, whercas S(7,8) 1s just the opposite. $(5,6) 1is
high in both cases. Thus the main effect of changing from the correla-
tion to the covariance matrix before entering LERNMOD is to move the

code 7 samples from one group to another.

Thus, data normalization can cause pronounced shifts in groupings.
At present, the significance of this finding is not clear, since we have

no yardstick to determine whether or not clagsification has been improved.

7.4 SENSITIVITY OF RESULTS TO THE INITIAL DIMENSIONALITY OF SAMPLES
AND THE CHOICE OF SAMPLE FREQUENCIES

All the work described earlier in this section was carried out

with 50-dimensional samples--the maximum dimensionality that our programs
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can currently handle. The question arises as to whether a subset of

these 50 dimensions contairs the bulk of the information on which group-

ing is ultimately based. ¢

Since we found that F;0,98,2 sampling led to better grouping than
F;0,49,1 , we proceeded by progressively removing more and more of the (

higher frequency information from the F;0,98,2 samples.

The results obtained when only the first N dimensions of the
F;0,98,2 samples were input to Principal Components Analysis (PCA) and
LERNMOD are given in Table 7.11.

The table shows that grouping remains stable down to N = 45 , but
changes drastically by N = 40 . This shows that it is essential to

retain the higher frequency information.

Though the above result strongly suggests that a minimum of about
40 dimensions must be retained, for satellites (4,5) we tried the effect
of using fewer dimensions, but taking each to be a harmonic of the satel-
lite quarter-period. That is, we used the values of the first 16 spec-
tral peaks as the sample data. In this case a subspace of two dimen-
sions was retained after PCA. In this subspace LEENMOD found two groups:
group 1 contained three code 4 samples and 26 code 5 samples, while
group 2 contained 21 code 4 samples and sever code 5 samples. Thus
S(4,5) = 0.20 , and some similarity is indicated. This contrasts with
the results of Table 7.4 (Sec. 7.3.2), which gives S(4,5) = 0 . Thus
the 16 spectral peaks do not appear to contain enough of the available
information to serve as a good basis for classification. This suggests
that intervening data points, though much smaller in magnitude than the
peaks, contain much significant information. One might say that the
diffuse, as well as the specular, scattering data are required in order

to properly characterize an object.
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2PPENDIX
COMMENTS ON SAMPLE SIZE AND DIMENSIONALITY 3

In classification problems where the underlying probability dis- (

tributions are unknown, classification is frequently based on class

boundaries determined by a subset of the availabl~ samples. As pointed
out in papers by Foley* and others, the classification error rate for
these samples can then be significantly lower than the rate for a much
larger population drawn from the same distributions. Foiey's results,
for the Fisher linear discriminant, indicate that the ratio of the num-
ber of samples of each class to sample dimensionality should be at least

3 if this problem is to be avoided.

The extent to which LERNMOD is affected by the sample size-to-
dimensionality ratio is not known. In previous experience, we have not
encountered the low error rate phenomenon at a ratio as low as 2,** but
we have no theoretical basis for asserting that this would always be
true. Therefore, we have cautioned the reader that our results may be

biased i1f Foley's criterion is not satisfied.

With regard to sample dimensionality we feel that it is always
safe, but sometimes extremely conservative, to apply the criterion with
the full number of sample dimensions. For example, if we have seven
sample points per class in a space of two dimensions, Foley's criterion
is satisfied. Suppose now that these points are perturbed slightly into
a third dimension. Intuitively, we feel the sample size would still be
adequate, though nominally the criterion calls for at least nine. Of

*
D.H. Foley, "Considerations of Sample and Feature Size," IEEE Trans.
on Information Theory, Vol. IT-18, No. 5, September 1972.

*k
Twenty samples in 10 dimensions.



course, the criterion is formulated to cover any displacements in the
third dimension, not merely small ones. With this in mind, we have
pointed out in the text how many principal axes of the error ellipsoid
(of the correlation matrix of the pooled samples) are within a factor
of one-tenth of the length of the major axis. We feel that three times
this number is likely to be much closer to the actual minimum sample
size requirement for each data set than the nominal requirement for 150

samples.

We should point out also that if a dimension which contains signi-
ficant discrimination information is unwittingly discarded following
Principal Components Analysis, our results will, in contrast to the

above, be biased in the direction of a high classification error rate.
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