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subsets to compare data from the different satellite/observer pairs in order to 
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and objects believed to be dissimilar were so specified. However, the results 
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and/or the dimensionality of the sample space used* this suggests that an 
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FOREWORD 

i 

This Final Technicai Report covers work done on the Photometric 

Analysis Techniques Study (Contract No. F04701-73-C-0308) during the 

time period 1 July 1973 - 25 February 197A, and is written in accordance 

with the requirements of Item A003 of Exhibit A of the Contract. 
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ABSTRAC. 

This report describes some studies made on the application of pat- 

tern recognition techniques to the Space Object Identification (SOI) 

problem using passive photometric signature data.  Both simulated and 

measured passive photometric data (primarily, the latter) on satellite 

objects were compared using a variety of techniques in both the time and 

frequency domains. Differenc sample spaces with dimensionalities rang- 

ing from 14 to 50 were Usted, with Principal Components Analysis being 

used in an effort to reduce the effective number of dimensions to a small 

subset with minimal loss of information. The GRC Mode Determination 

algorithm was then applied to the sample points in the reduced subsets 

to compare data from the different satellite/observer pairs in order to 

ascertain the extent to which this type of data processing is able to 

separate objects which are different and group together those which are 

in fact similar. 

I 

Results indicate that 50-point samples in the frequency domain give 

best performance. Defining a statistical similarity-dissimilarity index, 

it was found that in most cases objects known to be similar were indi- 

cated to be so, and objects believed to be dissimilar were so specified. 

However, the results in some cases appear to be sensitive to the precise 

form of data processing and/or the dimensionality of the sample space 

used; this suggests that an optimal processing technique has not yet 

been found. 
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1 INTRODUCTION 

Orbiting satellites can be observed by ground-based photometers and 

histories of their photovisual magnitude recorded.    There is a distinct 

possibility that  such histories,  either alone or in conjunction with 

other data and intelligence,  can provide a basis  for significant infer- 

ences about  the external characteristics  (size,   shape, materials)  and 

body motions of satellites.    If so,  similarities and dissimilarities 

between satellites could be recognized, and a basis would exist for asso- 

ciating satellites  into groups with a common mission.    It might also be 

possible to link external characteristics and motion to the naiare of a 

satellite payload,   thereby helping to identify what its mission is. 

Thus it is important to ertablish what can be learned from photometric 

histories, both in connection with concealment or disguise of our own 

satellites,  and mission identification for Soviet satellites. 

The present study is an effort to develop semi-automated methods 

for analysis of such photometric data.    The data with which we are con- 

cerned are time histories of the radiant intensities of the targets as 

unresolved point sources under solar illumination, measured passively. 

The study is primarily oriented toward the use of portions of the existing 

CRC DISCRIMATON computer program to separate the photometric data from 

different targets into distinguishable object-class clusters in some 

appropriate multi-dimensional state-space.    The selection of suitable 

state-spaces which most conveniently facilitate  this separation was one 

of the major goals of the study. 

As the first step, a small library of simulated photometric data 

(signature/time histories)  for Agena tanks  in representative orbits was 

generated using other existing GRC computer programs.    These synthetic 

data were used to test the ability of DISCRIMATON to distinguish between 

the satellites and expended,  tumbling rocket  tanks.    Following the suc- 

cess of this test,  the remainder of the study was concentrated on deter- 

mining similarities and differences among those satellites for which 

I   i    fcifci MflH 
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actual measured data were available, using various sorts of state spaces. 

A logical future extension would be to simulate the signatures of typi- 

cal satellites in representative orbits and then, using DISCRIMATON, com- 

pare the state-space points derived from the analysis of given observa- 

tional data with state-space groups derived from the simulated data in an 

attempt to determine the (known) simulated object(s) with which the ob- 

served data can best be associated. 

J 
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2 SUMMARY AND DISCUSSION OF RESULTS 

This section states the principal results of the study and discusses 

factors which bear on their valiuity.  One such factor is the extent of 

the data base, which limited the number of saaples analyzed to an extent 

where we can not be certain about the statistical significance of the 

degree of dissimilarity found between data sets.  If certain of the re- 

sults are in fact valid, we conclude that classification methods similar 

to those used here can be successful if a means is developed for inferring 

photometric signatures in other orbits from an observed signature in a 

given orbit. 

2.1 DATA SOURCES 

The study concentrated on comparison of actual photometric data on 

three satellites.  In addition, the photometric signatures of thre3 tumb- 

ling Agenas were simulated based on a simplified engineering drawing and 

using orbits and tumble rates typical of actual spent Agenas. These were 

compared wi^h the satellite signatures early in the study as a first test 

of the efficacy of the DISCRIMATON pattern-recognition program. The 

sources and nature of all the data analyzed during the study are listed 

in Table 2.1. 

The satellites were all observed at long range (^37,000 km).  The 

4630 data was taken at three different sites on the same day, with con- 

siderable overlap in the observation times.  It was therefore reasonable 

to expect a priori that these three data sets would be quite similar. 

We learned from SAMSO after our analysis was completed that 5851 and 4630 

are sister satellites in different orbits. Apart from the preceding, we 

have only a very small amount of information on the orbits of the satel- 

lites, and none whatever on the relation between 5587 and the others. 

2.2 PERIODICITIES 

Periodicity of the observed data was evident from inspection; 4630 

and 5851 were each found to have a period of 10.0 seconds, while that o." 

^ 
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TABLE 2.1 

DATA SOURCES AND ASSOCIATED CODE NUMBERS 

Object/Observation Site 

Agena (Orbit 1)/Sulphur Grove 

Agena (Orbit 2)/Sulphur Grove 

Agena (Orbit 3)/Sulphur Grove 

5851/Cloudcroft 

4630/Cloudcroft 

A630/AMOS 

4630/RML 

5587/Cloudcroft 

Actual or 
Simulated Data Code Number 

Simulated 

Simulated 

Simulated 

Actual 

Actual 

Actual 

Actual 

Actual 

5587 was 1.2 seconds.  The simulated Agena data had input periodicities. 

However, while periodicity greatly simplified data sampling, we delib- 

erately normalized all periods to unity before applying our classifica- 

tion algorithms, thereby preventing period length from playing any part 

as a discriminant between the data sets. 

2.3  MEASURE OF SIMILARITY BETWEEN DATA SETS 

Samples from different data sets were processed together through 

selected subroutines from an already-existing GRC computer program to 

assign them into groups.  Both the number of groups and the assignment 

of samples were determined by the program. 

A given data set can be (and usually is) represented in mora than 

one class. Since a data set is for a single object (under specified 

viewing geometry), ve  are led to substitute the word "feature" for 

"class." We have not determined what actual physical characteristics are 

mainly responsible for these "features," but for reasons given below our 

view is that such correlations must be established if analysis based pri- 

marily on pattern-recognition is to progress further. 

_^.  i ^ ■ la 
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The overall similarity of two data sets depends not only ot. what 

"features" they have in common, but also on how frequently these features 

occur. A simple measure of similarity which takes into account both these 

factors is 

S(i.j) 

v min 

r" max 

N lr 

ir 

lNi 

JI 
N 
j J 

where i,j  refer to the respective data sets, and 

N. ■ number of samples from data set i 

N. - number of samples from data set j 

v = number of "features" distinguished (i.e., number of 

V groups) 

N  = number of samples from the ith data set which exhibit 
ir — 

the rth feature (r = 1, 2, ... , v) 

N  ■ number of samples from the ith data set which exhibit 
jr — 

the rth feature (r - 1, 2, .... v) 

We call S(i,j)  the "Similarity Index" between the two data sets.  It 

has a maximum value of unity when both data sets exhibit the same fea- 

tures the same percentage of the time, and a minimum value of zero when 

the sets have no feature in common. 

2.A  RESULTS 

2.4.1    Calibration of the Similarity Index 

Measurement "noise" may appreciably reduce the similarity indt x 

from the value it would have if the noise could be completely removed. 

An indication of how much reduction occurs in actual data when it is 

N 
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reasonable (for reasons given earlier) to suppose that the index for the 

corresponding noise-free measurements would be at least fairly close to 

unity, can be obtained by comparing code 5, 6, and 7 data.  Graded by 

visual Inspection code 5 data appears to be of good quality (low "noise" 

level), code 6 data to be fairly good, and code 7 data to be poor. The 

similarity Indexes between these sets, based on the frequency spectrum 

ot samples, are given in Table 2.2. 

These results suggest to us that: 

1. Data should be o? at least fairly good quality, as assessed 

by visual Inspection, to be used in classificttion analysis 

by our methods. Use of poor quality data is liable to give 

rise to misleading results. 

2. A similarity index of about 0.5 or higher is indicative of 

considerable physical similarity between the observed 

object i. 

2.4.2 Comparison of Data Sets for Different Satellites 

Similarity indexes between the data sets for different satellites 

are given in Table 2.3. All these measurements were taken at Cloudcroft, 

and were visually Judged to be of good quality.  On the basis of our 

above crude calibration of the similarity Index, our qualitative inter- 

pretation of these results is that: 

TABLE 2.2 

SIMILARITY INDEXES FOR 4630 DATA 

Data Sets 
(i.J) 

5,6 

5,7 

Similarity Index 
sq.j) 

0.560 

0.076 

- - -^ 
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TABLE 2.3 

SIMILARITY INDEXES FOR DIFFERENT SATELLITES 

Data Sets Satellite Identification Similarity Index 

(i.j) Numbers S(i,J) 

A,5 5851, 4630 0.0 

4,8 5851, 5587 0.033 

5.8 4630, 5587 0.28 

• There is little or no evidence of physical similarity be- 

tween 5851 and 4630, or between 5851 and 5587. 

• There is evidence of some physical similarity between 4630 

and 5587. 

2.5  t;/VrORS AFFECTING VALIDITY OF THE RESULTS 

All the above results are subject to a caveat about sample size. 

Sample sizes were limited by the amount of data available.  The number 

of samples in the frequency domain taken from each data set is given in 

Table 2.4.  Each sample was an ordered set of 50 numbers, represented 

geometrically as a point in a 50-dimensional Cartesian space.  It is 

TABLE 2.4 

SAMPLE SIZES 

Data Set Number of Samples 

4 24 

5 33 

6 30 

7 25 

8 30 

• ■ Mfc 
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known that classification schemes in which class boundaries are estimated 

on the basis of the available samples alone are liable to give mislead- 

ingly low error rates when the ratio of the number of samples to the 

dimensionality of the samples is less than about 3, as is apparently true 

in all the comparJ.3ons discussed above. This implies that the similarity 

indexes obtained are liable to be too low.  In other words, our results 

are biased (perhaps heavily) toward indications of dissimilarity. 

However, we believe that the problem is not as severe as appears 

at first sight.  The reason is that in all cases we found that of the 50 

principal axes of the correlation ellipsoid (calculated for the pooled 

samples), at most 12 were more than one-fifth as long as the major axis, 

and at most 19 more than one-tenth as long.  In other words, the spread 

of the data is relatively small in at least 31 dimensions.  This sug- 

gests to us that the minimum number of samples needed may well be a lot 

closer to 50 than 150.  In fact, we did compare codes 4 and 5 data in 

the time dimension (where more samples could be taken) using 55 code 4 

samples and 117 code 5 samples.  The finding was again that the two sets 

were dissimilar. 

We must also point out, on the other hand, that our methods may be 

inadequate to recognize dissimilarities which in fact exist; and that 

our grouping algorithm is heuriscic, without any claim to "optimality." 

Nevertheless, our methods have worked well in previous applications where 

results could be compared with what would be found by a classifier with 

complete a priori knowledge of population statistics. This is the 

rationale for their application in the present context. 

2.6  REQUIREMENTS FOR A "SIGNATURE TRANSFER" TECHNIQUE 

If the sample size caveat could be removed from the present find- 

ing that code 4 data (5851/Cloudcroft) and code 5 data (4630/Cloudcroft) 

sets are dissimilar, an important conclusion could be drawn about how 

photo-metric signatures should be compared. We were told by SAMSO (after 
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our results had been presented) that satellites 58SI and 4630 have the 

same externalities and body motion, but are in different orbits. The 

conclusion is that a finding of strong dissimilarity in observed data 

for satellites in different orbits cannot in general be regarded as 

implying that the satellites are dissimilar. 

In our view, this shows that a requirement for successlul classi- 

fication of satellites is a means for inferring photometric signatures 

in other orbits from an observed signature in a given orbit.  This might 

be accomplished by using our methods to correlate the signatures of vari- 

ous external features, calculated at the same ranges and phase angles 

as the observed satellites with the observed data.  In effect, this would 

amount to the progressive build-up of a reference data base. A major 

obstacle is the long running time of programs that generate synthetic 

photometric data, coupled with the very substantial number of externali- 

ties, body orientations,  nd motions that would probably need to be 

tried.  On the other hand, the degree of success inherent in the approach 

would be indicated by comparing the synthetic signature of a given satel- 

lite, derived from engineering drawings, with actual observation of the 

same satellite. This could be done at reasonable cost. 

i i »l^ 
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3    ORGANIZATION OF THE REPORT 

Our data processing schemes are described In Sec. 4. The descrip- 

tion encompasses the various forms of data preprocessing utilized and the 

pattern recognition algorithm Itself. An outline of the capabilities of 

our computer program for generating synthetic photometric histories Is 

also given. 

The sources and extent of the satellite histories that became avail- 

able during the study are listed In Sec. 5.  Some excerpts from this data 

are shown In Sec. 6j together with some from the simulated histories 

of the tumbling Agenas. 

Section 6 also provides specific details of how the data was sampled 

and preprocessed before Input to the pattern recognition algorithm for 

both the time and frequency domains. 

Finally, Sec. 7 describes and discusses the findings of our pat- 

tern recognition algorithm.  It compares the results of classification 

In the time domain with those In the frequency domain, and shows the 

effect on classification of such parameters as the dimensionality of 

samples, various types of sample normalization, and choice of what con- 

stitutes a "sample point." Some practical questions about the validity 

and scope of the algorithms are answered In the appendix. 

10 
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A    DESCRIPTION OF BASIC PROGRAMS AND TECHNIQUES 

The algorithms and major computational capabilities required by the 

study are embodied In three computer programs. TV? of these, PHOTARG and 

FACTRY, were devised by General Research Corporation and are described 

below.  The other Is a readily-available Fast Fourier Transform routine 

written by IBM and used to obtain the frequency spectra of selected time- 

Intervals of recorded satellite histories. 

The problem of estimating classification error probabilities Is 

also discussed. 

4.1  GENERATION OF SIMULATED HISTORIES—PROGRAM PHOTARG 

Program PHOTARG computes the radiant Intensity of an object Illumi- 

nated by the sun and seen from an observing photometer.  This Is con- 

verted to units of absolute satellite magnitude (defined to be the appar- 

ent photovlsual magnitude of the object evaluated at a standard reference 

range of 1000 km from the sensor).  Because of the long running time of 

program PHOTARG, and because the primary emphasis of this study was In- 

tended to be on the analysis of measured photometric data from real satel- 

lites, the program was actually used only to generate representative 

histories of tumbling Agenas. 

The program requires that the target be decomposable Into a combi- 

nation of certain shapes In known geometrical relationships and orienta- 

tions with respect to one another and a target-centered coordinate sys- 

tem.  The list of permissible stapes is broad enough to allow simulation 

of many targets of interest; the shapes are: 

1. Spheres and segments of spheres 

2. Cones, conic frustra, and segments of either 

3. Cylinders and cylindrical segments 

4. Rectangular plates 

5. Discs and segments 

6. Ogives and segments 

7. Prolate spheroids and segments 

11 
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In addition, the program requires a table giving the (measured) bidirec- 

tional reflp.otance of the material of which each shape is composed, 

4.2  THE PATTERN RECOGNITION ALGORITHM—PROGRAM FACTRY 

Program FACTRY consists of two main subprograms:  FACTOR, which 

pertorms a process called "Principal Component Analysis" on the input 

data samples, and LERNMOD, which embodies the essential pattern recogni- 

tion procedures.  Both are subroutines fron, a more comprehensive program, 

DISCRIhATON, developed by GRC in 1968 for use in reentry vehicle/decoy 

discrimination work for SAMSO/Aerospace. 

The LERNMOD grouping algorithm is heuristic, and cannot claim 

"optimality" in any sanse,  though in previous applications it has often 

performed better than the human eye.  It was developed b> experimenta- 

tion with samples from nomal distributions, primarily in up to ten 

dimensions. Consequently, before reaching LERNMOD, the input samples, 

whose dimensionality here is usually 50, are preprocepsed through FACTOR 

to assess the minimum dimensionality of the space in which tb^y can rea- 

sonably be considered to lie. 

Deciding what dimensions ca.^ be discarded after FACTOR has been 

applied involves the risk that important classification information is 

being rejected. A simple illustration of this is given in Sec. 4.2.1 

below. 

4.2.1 Principal Component Analysis—Subprogram FACTOR 

The steps in Principal Component Analysis (PCA) are: 

1. Calculate the correlation matrix of all the samples to be 

procettö^d. 

2. Find the eigenvalues of the matrix (i.e., "diagonalize" the 

matrix); discard those eigenvalues which are small by compari- 

son with t ne largest. 

12 
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3.   Find the eigenvectors corresponding to the retained eigen- 

values and project the sample points Into the subspace 

defined by these eigenvectors. 

The rationale for this procedure Is as follows.  Each member of the sam- 

ple set Is Initially represented as an N-dlmenslonal vector.  Let us now 

suppose that each of these vectors is actually a linear combination of M 

specified vectors, where M < N ; ii, other words, all the samples lie in 

an M-dimensional subspace of the original N-dimensional space.  Then it 

can be shown that the sample covariance matrix has rank M , and the eigen- 

vectors corresponding to the non-zero eigenvalues are a set of basis vec- 

tors defining the M-dimenslonal subspace containing all the sample vec- 

tors.  Thus, if we have a situation where some eigenvalues, though not 

zero, are small by comparison with the largest, we can reasonably (but 

not always correctly) disregard the dimensions defined by the correspond- 

ing eigenvectors, and thereafter use the projections of the samples into 

the space defined by the retained eigenvectors instead of the samples 

themselves. 

la Principal Component Analysis, the initial samples are first sub- 

jected to a change of scale in each dimension so that the standard devia- 

tion in each dimension is unity.  This removes any dependence on units, 

and (what is most important in the context of the present study) has the 

effect of assigning equal importance to the same percentage fluctuation 

in each dimension rather than to the same magnitude fluctuation. This 

change of scale transforms the initial sample covariance matrix into the 

corresponding correlation matrix. 

The process known as Factor Analysis omits the step described in this 
paragraph, and diagonalizes the covariance matrix.  It therefore attaches 
equal weight to the same magnitude fluctuation in each dimension.  In 
the cases treated here there is no fundamental objection to using Factor 
Analysis rather than PrincipiL Component Analysis, and we show some 
results for both in Sec. 7. 

13 
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In discarding dimensions in ^he way described above, we ran some 

risk of discarding important information for discrimination.  Essentially, 

application of PCA inherently assumes that separation between different 

data classes is likely to be greatest in those directions where the spread 

of the projected sample points is greatest.  Though this is often the 

case, it need not be, as Fig. 4.1 illustrates. Here, the maximum spread 

is in the direction x'  (the eigenvector corresponding to the larger 

eigenv je), while the spread in the y'  direction (the eigenvector cor- 

responding to the smaller eigenvalue) is comparatively small.  But dis- 

carding the y'  dimension would clearly result in elimination of all 

useful discrimination information. 

We cannot be sure that (less easily perceived) errors jf this kind 

have not been made in the present study.  However, this cojld only have 

occurred in one case, where near-simultaneous observations from two dif- 

ferent ground stations on the same distant satellite were compared.  In 

the other cases, where data on different satellites was being compared. 

Figure 4.1.  Illustration of Potential Rejection of Important Classification 
Information Following Principal Components Analysis 

14 
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we found perfect or near-perfect separation of the data sets; the dis- 

carded Information could therefore have at most a small effect on these 

results. 

4.2.2 The Sample Grouping Algorithm—Subprogram LERNMOD 

The technique used here is based on an algorithm used orevlously 

by Specht and Sebestyen to generate a smooth estimate for a probability 

density function when a number of samples is given.  The structure of the 

grouping algorithm is based on the knowledge that clusters of points are 

likely to correspond to local maxima in the estimated density function. 

However, processing the data requires several additional steps. 

These steps, which are described below, determine by an iterative 

procedure the locations of concentration centers in the data space, and 

then assign each point to one of those modes on the basis of maximum 

probability.  The iteration continues until all points are accounted for. 

The algorithm can decide for itself how many groups are present; this 

need not be an input to the program by the user. 

The algorithm begins with evaluation of a few basic parameters. 

The first of these is the standard deviation t of the smoothing normal 

distribution used to evaluate the approximate overall density functf.on. 

When the standard deviation is used for a distribution known to repre- 

sent a single type, a value for x derived from the second-order sta- 

tistics is reasonable.  In the present circumstance, however, the samples 

may conceivably be derived from several such widely separated distribu- 

tions that an equivalent formula would yield a value of T  that is too 

large.  This could, in turn, shift or even eliminate the peaks corres- 

ponding to local maxima.  A parameter that is less sensitive to the 

placement of individual unimodal distributions is the nearest neighbor 

distance averaged over the population and denoted d   . However, to 

avoid completely losing touch with the second-order statistics, the 

geometric mean of the eigenvalues of the correlation matrix (g) is also 

15 
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T - min(d . , 2/g/Jü) 
"din 

(A.l) 

where N is the number of samples to be clustered. Two additional param- 

eters, whose use Is explained below, are given In terms of the same quan- 

tities plus the dimension n of the space by 

PO = minj/g, maxfo.l5n(N)
1/n dm, ^/AU 

,t.2fSl+U. IO-' 
,l/2n 

(4.2) 

(A.3) 

The Iterative process can now begin.  Its progress at various stages 

will be Illustrated by what It does to the samples shown In Fig. A.2. 

The main steps In the Iteration are as follows. 

-r 
i 

Figure A.2.  A Typical Set of Twenty Random Samples (arrow Indicates point 
at which p(x) is maximum on the first iteration) in a Two- 
Dimensional Sample Space 
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Step 1.  The "probability" p(x )  is evaluated at each of the un- 

assigned samples points, x (i - 1, 2, ... , N') , using the formula 

N' 

P(x) N' 2-* 
-Ix-xjW 

(4.4) 

i-1 

N'  is equal to N on the first iteration. 

Step 2.  The unassigned samples are ordered according to decreas- 

ing probability, as given by Eq. 4.4. 

Step 3.  If the maximum probability is less than P_ , the ite-a- 

tion is terminated.  This criterion eliminates considering isolated 

points for the following steps. 

Step 4.  The unassigned sample with highest probability (and not 

previously rejected by Step 5) is considered to be the center of a hyper- 

sphere of radius For five times, recompute the center as the 

average of the samples lying within it and form a new hypersphere with 

a radius increased by 10 percent of the original radius.  Thus the radius 

of the final hypersphere is 1.5p 

4.2 is shown in Fig. 4.3. 

The result for the samples in Fig. 

During the five recomputations of the iteration a new sphere cen- 

ter is evaluated by averaging any of the original set of samples that 

lie within the previous sphere, whether or not they have been assigned 

to modes.  This has a two-fold effect:  first, it tends to reduce the 

dependence of the entire process on the size of T , the smoothing 

standard deviation; second, after the first mode has been found, if the 

sample selected for the starting center is on the slope of the probabi- 

lity density function, the hypersphere iteration tends to move the cen- 

ter toward the peak—the circle is thus less likely to be rejected as a 

spurious mode by one of the following tests. 

X 
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Figure 4.3.  The Circle (hypersphere) Found Around the Point of Maximum 
Probability with Radius 1.5p  (The center is denoted by +.) 

Step 5. The final hypersphere found in the current iteration is 

examined for the number of samples contained.  If this number is less 

than 5 percent of the total number of samples, the hypersphere center 

is rejected.  In this case, the process returns to Step 4. 

Step 6. The hypersphere is compared with any that may have been 

found previously.  If the distance between its center and the center of 

any earlier hypersphere is less than 2,25p  , the hypersphere and its 

Initial sample are rejected and control returns to Step 4.  If the dis- 

tance to every earlier center is greater than 3.Op  , control passes 

to Step 8, otherwise to Step 7. 

Step 7. If control passes to this step, the current hypersphere 

intersects one or more of the previously found hyperspheres (though not 

to such an extent as to be rejected). Wbtre such an intersection takes 

place, the point x(m)  lying midway between the centers is examined. 

18 
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If x  is the sample that acted as the original center for the current 

hypersphere, then the current hypersphere is rejected if 

p(x(in)) > p^) (A.5) 

If this Inequality (A.5) does not hold, then the samples lying within 

the previously determined hyperspheres are examined to see if they also 

lie within the current one.  If they do, they become unassigned—but 

with a special flag to show that they are not to be reconsidered as 

potential hypersphere centers. 

Step 8. The samples lying only within the current sphere are con- 

sidered as initially defining a mode and assigned accordingly. The num- 

ber of the current hypersphere becomes the number of the mode. The 

associated samples are now effectively removed from the major Iteration 

as control passes back to Step 1. Thus, in the example, the iteration 

would start again, faced with the function sample points of Fig. A.A. 

Figure A.A.  Samples Remaining After the Samples Initially Assigned to the 
First Mode are Removed (The arrow again indicates the point of 
maximum probability.) 
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When the iteration stops, all allowable modes have been found, 

being represented by the samples assigned to them.  For this example, 

only two modes are predicted at this point, and these are represented 

by the points within the circles of Fig. A.5.  It remains only to assign 

those points as yet unidentified with a particular mode (these points 

may include those that were lying within two or more of the hyperspheres 

during the iteration). To accomplish this, the unassigned samples are 

first ordered on the basis of increasing distance to the closest clus- 

ter mean.  Starting with the one closest to some mean, the probability 

p (x)  defined by the 1th cluster is evaluated at the sample x with 

the formula 

N, 

P^x) 

-|x-x 1 /2T 
(A.6) 

j-l 

Figure 4.5.  The Two Circles Found by Iteration Over the Samples 
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where the sum runs over the samples already assigned to the mode.  The 

sample x Is then assigned to the mode for which p^x)  is a maximum, 

and the process is repeated until all samples are assigned.  For the 

sample, the samples are assigned according to the groups indicated in 

Fig. 4.6. 

4.2.3 The Problem of Classification 

Samples from the photometric history of a particular satellite, 

either in their original form or preprocessed in some way, may fall into 

one or several clusters. We can think in terms of each of these clus- 

ters representing a "feature" of the satellite's signature. Ultimately, 

we would like to be able to establish correlations between these "fea- 

tures" and the external characteristics and motion of the satellite, 

but this has not yet been attempted. 

Figure 4.6.  Clustering of the Samples of Fig. 4.1 

x 
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Indeed, for our approach to be fully successful, such correlations 

would have to exist.  The photometric signature of a given satellite 

with tjiven body dynamics and orientation can generally be expected to 

depend strongly on its orbital parameters, and therefore there is a dis- 

tinct possibility that two satellites of the same type in substantially 

different orbits will not exhibit any common features, even though we 

can determine (for example) that they have the same rotation period. 

Since such cases may well exist, we are likely to need a technique for 

"trarsferring" a satellite signature from one orbit to another.  It pre- 

sently seems that we would have to do this via correlation of features 

in one orbit with underlying externalities, then simulate the combined 

signature of these externalities In the other crbit.  Obviously, however, 

this should be no different from comparing the externalities inferred 

from one signature with those inferred from the other. We can take one 

approach or the other depending on how extensive a library of signatures 

is callable at the time. 

Suppose now that we have transformed the signatures of various 

satellites to a common basis as best we can. We can then go through 

the grouping algorithm and emerge with a number of clusters. Let 

k ■ number of satellite (or satellite/observation site) 

data sets 

N. - number of samples for the ith satellite (i ■ 1, 2, 

. •.• , K) 

v - number of clusters found 

N  ■ number of samples for the ith satellite which fall 
ir — 

in the rth cluster (1-1  k; r - 1, ... , v) 

Now if two satellites are identical, then for observations taken 

under the same conditions we would expect that they would have equal 

representation in the same cluster.  On the other hand, if they were 

22 
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quite dissimilar, th<?y would not be represented in the same cluster. 

This suggests defining a "similarity index" S(i,j) between the ith 

and jth satellites by the equation 

S(i,j) 

v mm 

JE- 
r-1 max 

5 'v 
N,   N 
ir 

Ni ^ 

(i,j = 1, 2, ... , k) 

- 

Obviously, 

0 < S(i,j) < 1 

S(i,j) - 0 implies complete dissimilarity, while S(i,j) - 1 implies 

identity. 

If Nlr and N   are both zero, the rth term in the sum is defined 

to be unity. 

\ 
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5    DATA BASE 

Nearly all the data used in this study are recordings of actual 

observations of satellites by telescopes and associated equipment.  Simu- 

lated data was prepared only for tumbling Agenas.  Some excerpts from 

the data are shown in Sec. 6. 

5.1  OBSERVED DATA 

Observed photometric data, calibrated, digitized, and reduced to 

a data tape format compatible with our CDC 6400 computer, was transmitißd 

to us via KMS Technology Center.  Because GRC's software differs some- 

what from most other systems, creation of a compatible data tape (called 

"REDDI-TAPE" by KMS) and reading it out correctly required a fair amount 

of effort. 

The sources and quality of the data that became available to CRC 

in the appropriate format during the course of the study are listed in 

Table 5.1.  If it was used in the study, data from a given source and 

recorded at a given site on a specified date was assigned a "code number" 

for identification, as shown in the table. 

All the data used exhibited clear periodicity.  In view of the 

limited time remaining after we received it, we did not use the 31 

October 1973 data from Cloudcroft for 5851 and 6991; visually, they 

appeared similar to 4630.  5587 data was also received late, but appeared 

different enough to warrant inclusion (there is little enough variety 

in the list); both SAMSO and we were interested to see how this daL^ 

would group relative to the groupings already found for 4630 and 5851. 

5560 data was not used since it appeared to be aperiodic and 

vastly different from any of the other data available. There was nothing 

else of a similar type to compare it with. 
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The apparent quality of the data, as indicated by a visual appraisal 

of its noisiness, varied from usually good (at Cloudcroft) to fair (at 

AMOS) to poor (at RML).  There is always a real question as to whether 

data of very doubtful quality should actually be used. We di'5 use it 

here because the study is exploratory in nature, and we wanted to see 

what our pattern recognition process would make of it. 

A particular item to be noticed is that the first three data tapes 

on the list were taken on the same object on the same day, but from three 

different sites; In fact, the data intervals actually overlap to some 

extent.  Since this satellite is at very high altitude, we would expect 

strong similarities to be found by the grouping algorithm. 

On all data tapes received the variable recorded is Absolute Satel- 

lite Magnitude (M ).  By definition. M_ is the apparent photovisual 

magnitude of the target referred to a standard range of 1000 km from the 

sensor. 

5.2  SIMULATED DATA 

Photometric signatures were generated for tumbling Agenas in two 

different orbits.  The first was that of 5560 (inclination ■ 92.64 deg, 

mean altitude ■ 680 km, period ■ 100.58 min), and the second that of Agena 

1963-27A (inclination ■ 82.33 deg, mean altitude ■ 480 km, period ■ 93,92 

min).  The observing site was at the location of Sulphur Grove in all 

cases. 

For the second orbit, two histories were generated, one with the 

Agena between the observer and the sun, and the other in the more usual 

position opposite the solar direction. 

In all the cases, the Agena motion was pure tumble. The tumble 

axis was chosen at random in each case, but once chosen, remained fixed 

in inertial space.  Tumble periods were selected roughly in accordance 
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with data on typical observed flash periods of actual orbiting Agenas 

(Ref. 2); the periods used were 5.0, 7.6, and 12.27 seconds. 

The Agena body was approximated as shown in Fig. 5.1, with dimen- 

sions taken from an engineering drawing.  The body surfaces were assumed 

to have the bidirectional reflectance properties of aluminum, generally 

in accordance with the data for "aluminum trim tape" in Ref. 1, but with 

modifications to incorporate some broadening of specular peaks in the 

reflectance curves which could occur due to small-scale undulations of 

the body surface. This model is evidently rather crude, but was felt to 

be satisfactory in the context of its intended use. 

2 

DIMENSIONS: 

SURFACES: 

h ■ 3.49 m rl : ■ 0.75 m 

h ■ 0.71 ■ r? ' 0.48 m 

h ■ 1.29 m r'1 ' 
■ 0.16 m 

L4 ■ 0.83 m r4 : ■ 0.42 m 

1 CYLINDER 

2 CONE FRUSTUM 

3 CYLINDER 

4 CONE FRUSTUM 

Figure 5.1.  Simulated Agena Body 
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6    DATA PREPROCESSING AND SAMPLING 

As described ii Sec. 5, the photometric data was received by us in 

digitized form on "REDDI-TAPES," recording Absolute Satellite Magnitude 

(M ) as a function of time.  Th<ise tapes were accompanied by graphical 

plots of the recorded data.  Similar data was synthesized by us for the 

three tumbling Agenas described in Sec. 5. 

Data samples were picked from the REDDI-TAPES for eventual input 

to the pattern recognition process.  In most cases they were first sub- 

jected to some transformation—for example, some form of normalization, 

or transference from the time domain to the frequency domain by means of 

the Fourier transform. The sampling and preprocessing methods actually 

used are described below. 

6.1  THE TIME DOMAIN 

6.1.1 Excerpts from Data Plots 

Excerpts from the plots of M  versus time furnished by KMS 

Industries   for Satellites 5851, 4630 and 5587 are shown in Figs. 6.1 

through 6.7.  All this data exhibits very evident periodicity. 

5851 and 4630 have definite quarter-periods of ^2.50 seconds.  The 

period of 5587 is ^1.20 seconds. 

The plots shown for 4630 are of observations taken at three dif- 

ferent sites on the same day. The variation in the apparent quality of 

the data is quite striking. 

Some of the simulated data for the three Agenas is shown in Figs. 

6.8 through 6.10.  The differences in range of the absolute satellite 

magnitudes in the three cases should be noted since it affected our 

choice of preprocessing prior to pattern recognition analysis on Agena, 

5851, and 4630 data samples. 
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Figure 6.4.     AMOS Data,  Satellite 4630,  10 November  1972 
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6.1.2 Sampling and Preprocessing 

Agena, 5851, and 4630 data were sampled in the time domain.  5587 

data was not, since it did not become available until well after our 

interest had become focused on the frequency domain in which we were 

getting better classification results. 

As stated earlier, 5851 and A630 had the same period, while the 

Agena data was periodic by construction, with the periods chosen by our- 

selves.  Thus to distinguish between Agenas and satellites on the basis 

of period would have been spurious.  The satellite data generally 

exhibited one major peak per quarter period, while the Agena data gene- 

rally peaked every half period.  If we had merely normalized period to 

unity, we would still have been left with the very obvious discriminant 

of the number of major peaks per cycle. Taking still greater precau- 

tions to avoid possibly spurious discriminants, we chose the sample in- 

tervals to be one quarter period for the satellites and one half period 

for the Agenas, so that each generally contained just one peak, and nor- 

malized these sample intervals to unity. 

Each data sample consisted of 50 values of M , represented as a 

point in a Cartesian space of 50 dimensions. Here and elsewhere, 50- 

dimensional samples were used because that is the greatest number cur- 

rently allowed by the program. 

There are significant differences in peak magnitudes between the 

three Agena cases which are probably due to aspect-angle-dependent dif- 

ferences in the degree to which the speculars were approached in each 

case; these are not, therefore, likely to be descriptive of a general 

observed Agena. Accordingly, when comparing Agenas and satellites, we 

chose also to normalize the fluctuation of M  over the sample interval 

to a fixed value.  This was done only in comparisons involving Agenas. 

It is not necessary (and indeed might obscure important classification 

features) where there is high confidence in the meaningfulness of the 

amplitude swings—as should be the case for the recorded satellite 

observations. 
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6.2  THE FREQUENCY DOMAIN 

An obvious alternative to the sampling procedure just described Is 

to take a finer "net" in the time dimension, approximate the Fourier 

transform on the basis of this net, and take the amplitudes at selected 

frequencies to be the components of a sample vector. 

Two major questions arise: 

1. What should be the length of a time interval on which a 

Fourier transform is computed? 

2. What function of M  do we wish to transform? 

Our choices are defined and discussed below, together with a description 

of inputs to and outputs from the Fast Fourier Transform (FFT) routine. 

6.2.1 Choice of Time Intervals 

For each satellite, two primary considerations dictated the length 

of each time Interval T on which an FFT was computed. 

First, T had to be short enough that the available data contained 

more than a few intervals of length T . Second, T clearly had to be 

at least a single period of satellite rotation, and probably longer, to 

reduce the effect of any occasionally occurring disturbances in the data. 

We found that taking T equal to about twice the satellite period was 

a very good compromise. The precise value of T in each case was 

determined by the digitizing rate for the taped data, the choice of 2 

(" 102A) equispaced points in T as the basic net for computation of 

the FFT, and a constraint (introduced for a reason given in öec. 6.2.4 

below) that the ratio of T to the satellite period should be the same 

in all cases. Specifically, 

• For 5581 and 4630, T - 20.48 3 

• For 5587, T ■ 2.42 s 

With these choices, we were able to use on the order of 30 Intervals for 

each satellite/observation site pair. 
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6.2.2 Choice of Time-Function to be Transformed 

The choice of what function of M  to transform Is, of course, 

somewhat arbitrary. M,, Itself Is a logarithmic unit, and we felt Intui- 

tively that It might be preferable to work with a more "natural" quantity 

such as Luminosity,  I. 

M  and I are related as follows.  The Apparent Photovisual Mag- 

nitude (m) of a source having the spectral distribution of the sun Is re- 

lated to Its total Irradlance (E) just outside earth's atmosphere by the 
o 

equation 

m = -2.5 log(E) - 28.72 

2 
where E Is measured In W/cm .  This equation is, of course, only an 

approximation, especially so since no correction is made for atmospheric 

effects, but it is felt to be adequate for present purposes.  The Radiant 

Intensity of an object at range r , when there is no attenuation, is 

v. 8 given by 

I = r2E x 1010 

where I is in watts per steradian and r is in km.  Hence the relation 

between m and I is 

m - 2.5 log(I) + 5.0 log(r) - 3.72 

Since Mg is defined to be the value of m at a range of 1000 km. It 

follows at once that 

Mg - -2.5 log(I) + 11.28 

Al 
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or 

/ -0.4M\ 
I = 3.251 x ^10 

In the frequency domain we could use the spectrum of  I or of any 

function of I . After some experimentation, we finally decided to take 

the spectrum of /T , largely to reduce somewhat the great spread in the 

values in the spectrum of I itself.  The use of this function should 

have negligible effect on the results, while improving the visual dis- 

play and examination of the resulting spectra. 

6.2.3 Computation of the Fast Fourier Transform and Exemplar Plots 

The FFT of /l was computed using IBM subroutine HARM.  This re- 

quires that the number of sample points in the time domain over time 

interval T be an integral power of 2.  After trying several different 

values we finally settled on using 2  points for our Fourier Transforms; 

this is small enough to avoid excessive computation time yet long enough 

to provide good transform data.  The time-domain points must be equispaced 

over the interval T , requiring interpolation whenever the data digitiz- 

ing interval is irregular (Object 7) or incommensurate (Object 8). For 

Objects 4, 5, and 6, where the received data digitizing rate was 100 per 

second, we used only every second point, reducing the effective digitiz- 

ing rate to 50 per second, in order to accommodate over two full periods 

(T ■ 10 s) in each time-domain sample of 1024 points. 

The spectrum of /l consists of modulus and phase as functions of 

frequency f .  In principle there is information concerning the target 

object in both the modulus and the phase functions. However, the limita- 

tion to maximum 50-point samples made it impractical to use both func- 

tions in the DISCRIMAT0N, and we had to make an initial selection. 

Various considerations suggested that there would probably be more usable 

information in the modulus function than in the phase function, so we 

decided to use the modulus of the Fourier Trans conn of /I as our sample 
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data in the frequency domain.  In doing this we were aware that some 

possibly significant information was being lost; it was hoped that we 

could Include the phase function later, but ran out of time before this 

could be done. 

The discrete spectral modulus produced by the FFT over 2  points 
9 

in the time domain has 2+1 independent points in the frequency 

domain:  these are the equispaced points at frequencies 

f - 0, Af, 2Af, 3Af 29Af 

where 

Af =  1/T 

The values of T used for the various objects were quoted in Sec. 6.2.1. 

Of course, we could not use all of these data points:  the DISCRIMA- 

TON can deal with 50-point samples at most, and furthermore the transform 

is likely to be distorted at the higher frequencies when interpolations 

have to be made.  The samples were selected from among the 513 spectral 

moduli points in several ways as described below in Sees. 6.2.4 and 7.1. 

Exemplar plots of the spectral modulus  |S(f)|  of /l as a func- 

tion of f(- nAf)  for various satellite/observation site pairs are 

shown in Figs. 6.11 through 6.16.  Two of these figures are for the same 

satellite/site pair to illustrate the degree of difference that can occur 

from one time interval to another.  In all cases, note that  |S(0)| 

appears at the top of the ordinate axis, and that there is a great dif- 

ference between  |S(0)|  and the average value of  |S(f)|  over the range 

shown for f > 0 . Also, the fluctuations in the value of  |S(f)|  for 

f > 0 aie sizable. These differences would be much greater if the 

spectral modulus of I had been used. 
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6.2.4 Sampling and "Normalization" of the Transformed Data 

E .ch time Interval of length T for which an FFT Is calculated 

gives rise to a sample "vector" (or "point") In a Cartesian space of N 

dimensions, where N can, In principle, take any value from 1 to 

(29 + 1) as desired.  In practice we usually took N = 50 , the largest 

value that the Principal Components Analysis program can currently accept 

In these cases a sample vector Is of the form 

(isCnjAf)!, |s(n2Af)|, ... , |S(n50Af)|j 

where the values n,, n«, '50 
are the same for all samples of 

this mode.  Thus the specific value of Af , which can vary from one 
* 

object to another, does not Influence classification.  The choice of 

tLm$   n^, n_n may affect classification, since no choice of 50 

dimensions may contain all the significant Information. However, we 

have no strong reason to bellev-» that 50 dimensions was Inadequate In 

the cases analyzed here. 

In addition to using "unnormallzed" sample vectors of ..he above 

fon, we used two types of derived "normallzef'' vectors. 

For the first type, the normalization was carried out by dividing 

each component of the vector by the corresponding value of  |S(0)| .  In 

particular, in cases where n = 0 , this amounts to rejecting the first 

component of each vector for classification purposes, as well as scaling 

other components to multiples of the "DC" component level. 

For the second type of normalization, we calculated the mean value 

(|sToT|) of  |S(0)|  over all the samples for a gJ/en satellite/ 

observation point pair and divided each component of the sample vectors 

Since T = 1/Af was taken proportional to satellite period in all 
cases, this implies that period per se was not used to distinguish be- 
tween satellites; in effect it was "normalized out." 
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for this pair by  |s(0)| . Note that if T is such that the change in 

the angle subtended at the source between the sun and the observer is 

negligibly small, this kind of normalization should ideally be redundant, 

since M  is so normalized by definition. The actual data did not con- 

form to this condition, and we are tempted to infer that instrument cali- 

bration (at a particular site) sometimes drifted. 

To remove any possibility that discrimination could occur because 

of instrument calibration drifts or of differences in calibration from 

one site to another, we also carried out the first type of normalization 

described above.  This may be going too far; however, in the cases studied 

here, the type of normalization tended to improve classification. We do 

not know why. 

Finally, some cases involved samples chosen by selecting only the 

first 16 peaks in the modulus function, xncluding that at f = 0. 
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7    PATTERN RECOGNITION ANALYSIS 

This section describes and discusses the results of applying the 

pattern recognition methodology of Sec. 5 to preprocessed data samples 

for Agenas and SatelllteR 5851, 4630 (three observation sites), and 5587. 

The main questions addressed are: 

1. Can the Agenas be distinguished clearly from the satellites? 

2. How do the various satellite samples cluster together 

a. In the time domain 

b. In the frequency domain 

when sampling retains as much Information as Is feasible? 

3. What are the effects of various kinds of sample 

"normalization?" 

4. What Is the effect on classification of the amount and 

nature of the Information retained In sampling? 

Principal Components Analysis was carried out on the data samples 

In all cases.  Calling the eigenvectors corresponding to the four lar- 

gest eigenvalues of the correlation matrix X, Y, Z, U , respectively, 

plots of the projections of the sample points on the XY, XZ, XU, YZ, YU, 

ZU planes were printed by the computer, so chat the results of the 

grouping algorithm could be compared with visual impressions of how the 

samples should be grouped.  Several such plots are included here.  In 

fact, for comparisons between Agenas and Satellites we used only the 

plots, since the grc^ping algorithm (LERNMOD) was obviously not needed. 

For comparisons between satellites, LERNMOD was certainly required, and 

was always utilized. 

A summary of the principal findings, together with conclusions in- 

ferred from them, is given in Sec. 2. 
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The reader is reminded here of the caveat that our results could be 

Mased in the direction of showing too great a dissimilarity between the 

data sets because sample sizes are too small in relation to the dimen- 

sionality of the samples (see Sec. 2). 

7.1  NOMENCLATURE AND A3BPEVT.ATI0NS 

For convenience we here give a reminder of the code numbers used 

to identify object/observation site pairs (Table 5.1), and introduce a 

compact notation in connection with frequency domain samples (Sec. 6.2.4) 

The code numbers are given in Table 7.1. 

For the frequency domain samples, recall that a sample point has 

the form 

fjlC^Af)!, |S(n2Af)| IS^AOlj 

TABLE 7.1 

CODE NUMBERS FOR OBJECT/OBSER'.ATION SITE PAIRS 

Code Number Object/Observation Si 

Agena (Orbit 1)/Sulphur 

Lte     A< :tual or Simulated Data 

Grove Simulated 

Agena (Orbit 2)/Sulphur Grove Simulated 

Agena (Orbit 3)/Sulphur Grove Simulated 

S9450/Cloudcroft Actual 

SA630/Cloudcroft Actual 

SA630/AMOS Actual 

S4630/RML Actual 

S5587/Cloudcroft Actual 

53 

■ 



'S m m m       m 

^ 

where k ^ 50 , and 0 = n < n < ... < n < 2  . We use the abbreviation 

F; n^  nk. An 

to denote a sample point 

(iS^Af)!,   Isj^ + An)Af||,   Is^rj^ + 2An)Af|| | S^ +  (k - l)AnlAf |j 

where by definition. 

n. = n. + (k - l)An 
k   1 

For example,  F;0,98,2 denotes that the Fourier transform of data 

on all selected time intervals is sampled at the fifty frequencies 

0,2Af,4Af,6Af,...,98Af,  and that each time interval gives rise to a 

sample point with Cartesian coordinates 

(|S(0)|, |S(2Af)|, |s(4Af)|, |s(6Af)| |s(98Af)l) 

7.2  COMPARISON OF TUMBLING AGENAS AND SATELLITES 

This initial comparison involved objects with code numbers 1-5, 

with data sampled in the time domain and preprocessed as described in 

Sec. 6.1.2.  The preprocessing removed any possibility that either rota- 

tion period or the maximum fluctuation of Ms over a sample interval 

would influence classification. 

The number of samples taken from each of the data sets is given in 

Table 7.2. 

The number of Agena samples (codes 1, 2, and 3) was small on ac- 

count of usually small variation in signature from one cycle to the next. 

For each Agena, enough samples were chosen to be representative of the 
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TABLE 7.2 

SAMPLE SIZES 

Data Set Number 

Code Number of Samples 

7 

15 

18 

51 

119 

variations seen to occur in usual plots of the entire data set. We also 

chose the code 4 and code 5 samples to span the (much greater) range of 

variations in the data evident to the eye. 

The projections of the samples on the XY-plane (the plane defined 

by the eigenvectors corresponding to the two largest eigenvalues of the 

correlation matrix, and therefore the plane in which the spread of the 

samples is greatest), as plotted by computer, are shown in Fig. 7.1. 

Not all the points appear on this plot, since some may be too close to 

others to be distinguished separately. All the omitted Agena points 

are close to plotted Agena points, and omitted satellite points to 

plotted satellite points.  The evident separation between Agenas and 

satellites seen in Fig. 7.1 is therefore unaffected by the points omitted 

from plotting. 

While nominal sample size/dimensionality criteria for good classi- 

fication are clearly not met in this case, we feel the figure is unlikely 

to be misleading becausi«. of the way the samples were selected.  It is 

very probable that other samples from each data set would lie within 

the spread of those from the same set, shown in the figure. The separa- 

tion between the simulated tumbling Agenas on the ore hand and the 
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observed satellites on the other hand is quite obvious. When such good 

separation is visually evident in the two-dimensional subspace plotted, 

it is unnecessary to use LERNMOD to perform the discrimination. However, 

in future cases when this occurs we shall aloo invoke LERNMOD to confirm 

the visual result in a higher-dimensional subspace. 

7.3  COMPARISONS BETWEEN SATELLITES 

Having verified that our methods could successfully distinguish 

satellites from tumbling rocket stages, we began making comparisons be- 

tween the satellites themselves. 

Comparisons were begun in the time domain. We switched to the fre- 

quency domain as soon as the FFT subroutine was successfully integrated 

into our computer program so that an early judgment could be made as to 

where further efforts should be concentrated. Results in the fuquency 

domain proved to be rather better, and therefore almost all the results 

described below are for classification based on spectral analysis. 

All the results in this section are based on samples having 50 

dimensions (prior to Principal Components Analysis), the maximum that 

can be processed in our programs in their current form. The effect on 

classification of various forms of normalization of the samples is shown, 

as is sensitivity to the number of dimensions retained following Princi- 

pal Components Analysis. We also comment on the effect of using the 

covariance matrix of the samples rather than the correlation matrix. 

In the notation of Sec. 7.1,  all the frequency domain results 

shown here are for F;0,98,2 frequency selections. Three other selec- 

tions-- F;0,49,l, F;2,98,2 , and F;l,49,l —were also tried; these gave 

somewhat inferior results. 

The renaining question as to the effect of reducing the initial 

dimensionality of samples and of different ways of selecting the fre- 

quencies which define these dimensions is deferred to Sec. 7.4. 
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7.3.1 Comparisons In the Time Domain 

Objects with code numbers 4 and 5 were compared, based on samples 

taken directly from the REDDI-TAPES, with no preprocessing prior to 

Principal Components Analysis.  There are 55 code A samples and 117 code 

5 samples, the difference in number being accounted for by the fact that 

there is considerably more code 5 data available and it exhibited an 

apparently wider variety of features than the code A c^ata. 

All the data was taken at Cloudcroft, and judged to be mostly of 

good quality. 

Principal Component Analysis (PCA) found that there were 10 eigen- 

values within a factor of 0.04 of the largest eigenvalue, and 13 within 

a factor of 0.01.  Since the axes of the "error ellipsoid" are propor- 

tioned to the square root of the eigenvalues, this implies that of the 

50 axes, 10 were longer than one-fifth, and 13 longer than one-tenth of 

the length of the major axis. 

We are therefore strongly inclined to the belief that for purposes 

of estimating adequacy of sample size the dimensionality of the sample 

space need not be taken as 50, but could be reduced to about 13.  If 

this point of view is accepted, then the sample sizes are large enough 

to avoid biasing the results toward too great a dissimilarity between 

the data sets. 

Plots of the sample projections in the XY and XZ planes are 

shown in Figs. 7.2 and 7.3.  Some points are left out in plotting be- 

cause they would be over-printed on others.  Since the A's fall on other 

4's and the 5's on other 5's, the loss of visual detail is minor. 

LliRNMOD found three groups, whose centers are indicated by X s 

in some of the figures, labeled Ml, M2, M3 , respectively.  No 

Similar indications of group centers appear in some of the other figures. 

:8 

• - ~^ 



65m-w 

2 
«I 
c ■ 

I 

X 

0) 

01 

to 

III ID ■ 
tn in    in 
IT in        in 
ji- in 

in m in ir iT' in 
in in ji in 
in JI in in    in in 

■nm 

m        in 

in in in 
■» in i/* 

■n     m n 
•# -n IT ji    in in in 
m in iT^    m     in 
* Si J'  S) 

«n    in in    in 
n 

« in 

5:    I 

-*       •» 
i  •» 

4        4 4 •» * 
4 4 

4 « 

•a 
K 0) 
in CO 
3 ca 
a 1 

u > o 
C 
a 
0) 
H 

cm 
iw 
o 
■ 
C   rt 
O   4J 

•H    (0 
W Q 
o 
(U ul 
Tl 
o -a 
£ § 

• 
CS • 
r^ 

2 
3 
00 

r 
I 
r 

59 

j^ ^ 



09Llt-W 

O 
U 

c 

O, 
I 

N 
X 

0) 2 

CO 

c^ 

A        in 

irt jt      ji ji in 
in     in 

in 
tn     m IT tn IT 
</t     m i/t     in in 

in in in .n     in in 
in 

in in        in 
ir,      ir 

in n 
in in  xi  in 

in in IT in 
in in 

in  m  in 

T3 
0) 
W 
[fl ^N 

0) c 
u •H 
o CD 
n R 
a O 
0) Q 
C 
0- 0) e 
IH •H 
O H 

N—' 

C/) 
G 03 
0 ■u 

•H <fl 
4-1 a 
O 
OJ m 
"-) 
o T3 
tJ C fi « 

1 * 

m 

h 

! i 

60 



significance Is to be attached to the group numbering.  The number of 

samples of each type In each group Is given In Table 7.3. 

The value of the "similarity Index" S(4,5) , as defined In Sec. 

2.3, Is 

S(4,5) -| JV55_        6/55 
55/117      62/117 = 0.082 

We conclude that code A and code 5 data are dissimilar. However, 

since their orbits are different, we cannot necessarily conclude that 

the two satellites are dissimilar. 

7.3.2 Comparison of Unnormallzed Samples In the Frequency Domain for 
Object Codes 4 and 5, and a Discussion of the Effect of Noise on 
Grouping 

This comparison was made on the basis of 24 code 4 samples and 33 

code 5 samples, all with F;0,98,2 frequency selection. 

PCA found 12 eigenvalues within a factor of 0.04 of the largest 

eigenvalue, and 18 within a factor of 0.01, Implying that 12 axes of the 

error ellipsoid were longer than one-fifth, and 18 longer than one-tenth 

of the major axis.  Thus we Incline to the view that sample dimensionality. 

TABLE 7.3 

NUMBER AND COMPOSITION OF SAMPLE GROUPS 

Number of Samples In Group 

Group Number Code 4 Code 5 

1 6 62 

2 1 55 

3 48 0 

61 

A. 



191 it-W 

■» 

0) 

o 
U 

c 
H 
a, 

t 

01 

u 
c 

■H 

!      ! I 

X) •H 
0) 03 (/) e 
Cfl O 
V a o 
0 ^ u o 
a. c 
0) <u 
U 3 

z~ cr 
<u 

4-1 u 
0 fi ^.^ 
tn 
d (0 
q 4-) 

•r-i tl 
4-1 a 
g 
01 LO 

•—1 
0 T3 
u c fi CO 

_ 
<t 

■ 

N 

01 
u 
a 
oo 

? 

62 

- ^    j . - >— 



Z9Llt-W 

TT 

it « 

IT' 

0) 
Q 

•       o CO ■     « tH 

•      ♦ (X 

c 
•H 

1        o tn 
1      ■■■-» 8 

H 
a 
s 
cd 

K i 
en •a -H ■ 
to 

a) (d 
« a 

Ui > to o 
tu n 

1        o 
M o t* 

1        o U    U 
1        M a c 
■   ♦    • (U   01 
•         CM M   3 

cm XT 1 
14-1    »4 
O to 

is 
•H   cd 
4J   Q 

1         c u 
•       o a) oo 
1     « ■n 
•  *■   • o -a 
1       1 

1 

b cd 

• 
• 

■ 
1        o 
1        o 1 

I I I 

63 

> t i ■ J> 



^r n 

TABLE 7.A 

NUMBER AND COMPOSITION OF SAMPLE GROUPS; FOUR 
DIMENSIONS RETAINED AFTER PRINCIPAL COMPONENTS ANALYSIS 

Number of Samples in Group 

Group Number Code 4 Code 5 

1 0 16 

2 0 17 

3 24 0 

*A sample in the frequency domain uses up approximately eight times as 
much of the data base as does a tine domain sample. 

64 
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for purposes of estimating adequacy of sample size, is a lot closer to 

18 than to the nominal value of 50, and could be as low as 12. Even so, 

our sample sizes are not large enough to avoid the possibility of results 

biased toward showing too great a dissimilarity between the data sets. 

The governing sample size of 24 was limited by the length of the code 4 

data. 

Sample groupings found when two, three or four dimensions were 

retained following Principal Components Analysis were identical. Three 

groups were found, with compositions given in Table 7.4. The correspond- 

ing value of S(4,5)  is obviously zero, so again the conclusion is that 

code 4 and code 5 data are very dissimilar. 

However, if we retain more dimensions when applying LERNMOD, the 

groupings change considerably, as revealed in Table 7.5. For five dimen- 

sions retained, the value of S(4,5)  is 0.14, and for six dimensions it 

is 0.051. Thus we would on the whole still regard the two classes of 

samples as quite different. The decreased ability to separate the data 



1 

TABLE 7.5 

NUMBER AND COMPOSITION OF SAMPLE GROUPS; FIVE OR 
SIX DIMENSIONS RETAINED AFTER PRINCIPAL COMPONENTS ANALYSIS 

of 
Retained Group Number 

Number 
Samples in 

3f 
Group 

Dimensions Code 

0 

4 Code 5 

5 16 

24 14 

0 3 

6 24 

0 

0 

0 

5 

17 

8 

3 

sets indicates some deficiencies in LERNMOD, since it is evident that 

separations should remain the same or improve as more dimensions are kept. 

Consequently we always examine separations for various numbers of retained 

dimensions, and base our conclusions on the maximum separation found. 

7.3.3 Comparison of Unnorm-lized Samples in the Frequency Domain for 
Object Codes 4 and 8 

This comparison was made on the basis of the same 24 code 4 samples 

used in the previous comparison, and 30 code 8 samples, all with F;0,98,2 

frequency selection. We remind ♦'.he reader vh^t period is not utilized in 

the comparison (see Sec. 6.2.4). 

In this case, seven axes of the error ellipsoid were within a fac- 

tor of one-fifth of the length of the major axis, and 11 within a factor 

of one-tenth. Projections of the samples in the XY-plane are shown in 

Fig. 7.6.  The two sample sets are obviously very well separated (the 8,s 

left out in printing fall within the group of fi's shown at X = -5 and 

Y ■ -0.1).  Separations in the XZ- and XU-planes are similar.  In the 
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YZ-plane, the 8*8 lie well embedded among the 4*8, as 8hown in Fig. 7.7, 

and the same 18 true in the ZU-plane (in the figure, the 8*8 left out In 

printing lie within the central group of four at Y = -0.3, Z ■ -0.2). 

The tight clustering of the 8*8 in all subspaces, as compared with the 

far looser groupings for other object numbers, is interesting.  This is 

apparently a characteristic feature of the data for this object whose 

cause can only be conjectured at this time; it should oe possible to use 

cluster tightness as a discriminant, but it is not yet clear how to do 

this. 

The sample groupings found in two, three, or four dimensions were 

identical.  Two groups were found; group 1 containing 29 code 8 samples, 

and group 2 containing 24 code 4 samples together with one code 8 sample. 

The similarity index is 

S(4,8) - YI(0/29) + (1/24) 0.021 

We conclude that code 4 and code 8 samples are highly dissimilar. 

Again, this may, but doet; not necessarily, imply that the two satellites 

are dissimilar. 

7.3.4 Comparison of Unnormalized Samples in the Frequency Domain for 
Object Codes 5 and 8 

This comparison is based on the 33 code 5 samples and 30 code 8 

samples previously used (F;0,98,2 frequency selection). 

Two axes of the error ellipsoid were within a factor of one-fifth 

of the length of the major axis and 11 within a factor of one-tenth. 

Figure 7.8 shows the sample projections on the XY-plane, and Fig. 7.9 

the projections in the XZ-plane (once again, the 8*8 left out in printing 

fall onto the tight clusters of printed 8*8).  Separation between the 

two sets in the XY-plane seems quite clear-cut, but in the XZ-plane, 

the distinction is not so clear. 
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One might therefore suspect that the LERNMOD wou'c find quite dif- 

ferent groupings if only two dimensions rather than chree were retained. 

In fact, its groupings were almost identical, ' .. indicated by Table 7.6. 

When three dimensions are retained, the similarity index S(5,8) 

is given by 

.#. RN _ l|l6/33  1/30 ] ,  28 S(5,8)  2[29/?0 + 17/33|  0.28 

Thus there is a moderate degree of similarity between the two sample sets. 

7.3.5 Comparison of Unnormaliz '1. Samples in the Frequency Domain for 
Object Codes 4, 5. and 8 

Having compared these objects in pairs, we felt it might be instruc- 

tive to see what groupings would emerge when all three sets of samples 

were treated together. 

Projections of sample points in the XY, XZ and YZ planes are 

shown in Figs. 7.10 through 7.12, respectively.  Comparison of these 

plots with those given previously for the data sets taken in pairs reveals 

TABLE 7.6 

NUMBER AND COMPOSITION OF SAMPLE GROUPS; TWO OR THREE 
DIMENSIONS RETAINED AFTER PRINCIPAL COMPONENTS ANALYSIS 

Number of Samples in Group 
Number 

Dimensions 
of 
Retained 

Group 
Number Code 5 Code 8 

2 1 15 29 

2 18 1 

3 1 16 29 

2 17 1 
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that in the XY- and XZ-planes the relative location of the A's and 8's 

has changed little, but the locations of the S's relative to the A's and 

S's has changed very substantially.  In the YZ-plane, the 4's have moved 

rather more to the right of the S's than formerly, and again the relative 

location of the S's has changed substantially. Thus the A-8 separation 

dominates the directions of the longest axes of the error ellipsoid. 

The groupings founa in three and four dimensions are given in Table 

7.7. The corresponding similarity indexes are shown in Table 7.8.  The 

similarity index values found previously, for the data sets examined in 

pairs, are S(4,5) = 0 , S(4,8) ■ 0.021 , and S(5,8) = 0.28 .  Compari- 

son of Table 7.8 with these previous results reveals that (1) if we re- 

tain three dimensions,  S(4,5)  and S(4,8) remain virtually unchanged, 

but S(5,8)  increases from 0.28 to 0.50; and (2) if we retain four 

dimensions,  S(4,8) and S(5,8)  remain virtually unchanged, but S(4,5) 

changes from zero to 0.26.  Thus only the value of S(4,8)  is insensi- 

tive to the number of dimensions retained.  Moreover, it is also insensi- 

tive to whether the code 5 data is included. 

TABLE 7.7 

NUMBER AND COMPOSITION OF SAMPLE GROUPS; THREE OR FOUR 
DIMENSIONS RETAINED AFTER PRINCIPAL COMPONENTS ANALYSIS 

Number of 
Dimensions Retained 

Group 
Number Code 4 Code 5 Code 8 

3 0 16 30 

0 17 0 

24 0 0 

4 0 16 29 

24 17 1 
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TABLE 7.8 

SIMILARITY INDEXES OF DATA SETS; THREE OR FOUR DIMENSIONS RETAINED 

Number of 
Similarity Index 

Dimensions Retained S^.S) 5(4,8) S(5,8) 

3 0 0 0.50 

4 0.26 0.017 0.28 

Hence we draw the following conclusions concerning how our metho- 

dology should be applied: 

• It is bes. to consider data sets in pairs rather than several 

at a time. 

• If several sets of data are input together, two sets for 

which the similarity index is very small will have a very 

small similarity index when they are compared as a pair. 

This implies that under these circumstances comparison as a 

pair is unnecessary. 

Taken together they imply ;.hat a reasonable approach to grouping of seve- 

ral data sets is to first input all of them together, then screen out 

pairs with very small similarity indexes, and finally treat all remaining 

pairs separately. 

7.3.6 Comparison of Unnormalized Samples in the Frequency Domain for 
Object Codes 5 and 6 

We now begin an examination which ultimately embraces code 5, o, 7 

data.  These data are for the same satellite, taken from three different 

observation sites on the same day.  Since the satellite is at very long 

range, it seems likely that the data should be quite similar. 

The comparison discussed here was made on the basis of the 33 code 

5 samples previously used, together with 30 code 6 samples, all with 

F;0,98,2 frequency selection. 
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Eight axes of the error ellipsoid were within a factor of one-fifth 

of the length of the major axis and 19 within one-tenth. Plots of sample 

projections in the XY and XZ planes are shown in Figs. 7.13 and 7.14. 

Visual groupings of the points would evidently tend to be controversial 

(the distinguishing labels on the plots are not available to aid 

classification). 

The grouping algorithm gave the same results whether four or five 

dimensions were retained.  It found two groups, with group 1 containing 

18 code 5 samples and 24 code 6 samples, while group 2 contained 15 code 

5 samples and 6 code 6 samplex.  Accordingly, the similarity index 

S(5,6)  is given by 

S(5,6) =| 
18/33  6/30 
24/30  15/33 

0.56 

We conclude that code 5 and code 6 samples have substantially more 

in connnon than any of the other pairs previously considered.  This is 

what we felt the result probably ought to be. 

7.3.7 Comparison of Unnormalized Samples in the Frequency Domain for 
Object Codes 5 and 7 

Twenty-seven code 7 samples with F;0,98,2 frequency selection 

were taken together with the 33 code 5 samples previously used. Much of 

the time-plot of code 7 data (from which these samples were derived) 

looks to be of poor quality.  Therefore it was difficult to predict how 

the comparison would turn out. We would again expect that reasonably 

good quality data would show strong similarity to the code 5 data. 

Ten axes of the error ellipsoid were within a factor of one-fifth 

as long as the major axis, and 19 within one-tenth. Projections of the 

samples on the XY- and XZ-planes are shown in Figs. 7.15 and 7.16.  The 

data appears to separate in the XY-plane (at least with the benefit of 

the labels), but not in the XZ-plane.  The separation apparent in Fig. 
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7.15 is so clear that it should not be necessary to go to a higher dimen- 

sional subspace or invoke LERNMOD in order to see that the objects seem 

to be dissimilar; a linear discriminant would probably work quite well. 

However, for confirmation we did apply LERNMOD in two, three, and 

four dimensions.  The groupings found ai e  given in Table 7.9. The group- 

ing in two and three dimensions is almost the same, but that in four 

dimensions is substantially different.  This may be due to noise, as 

discussed in Sec. 7.3.2. 

The value of the similarity index i:i three dimensions is 

S3(5,7) = 0.22 

TABLE 7.9 

NUMBER AND COMPOSITION OF SAMPLE GR01/PS; TWO TO FOUR 
DIMENSIONS RETAINED AFTER PRINCIPAL COMPONENTS ANALYSIS 

Number of Group 
(/■LCO Xll uiuu^l 

Dimensions Retained Number Code 5 Code 7 

2 17 18 

16 0 

0 7 

3 16 18 

17 0 

0 7 

4 10 25 

8 0 

12 0 

3 0 
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and In four dimensions It Is 

S4(5,7) - 0.076 

Thus the   farity is much less than between code 5 and code 6 data. 

7.3.8 Comparison of Unnormalized S mples in the Frequency Domain for 
Ob.lect Codes 5, 6, and 7 

Finally, to confirm that there are no surprises if all the samples 

for 4630 were put together, we input all the code 5, 6, and 7 samples 

simultaneously into our programs. 

Figures 7.17 and 7.18 show sample projections in the XY- and XZ- 

pl^-.nes. Ihey appear about as anticipated.  In the XY-plane, the 7^ are 

separated froj» the S's as before, while the S's and 6*8 are strongly 

interminglei.  In the X2-plane, all are intermingled. Thus the code 5 

and code 7 samples appear to have the strongest influence on the orien- 

tation cf the error ellipsoid.  Figure 7.17 again shows clear separation 

between code 7 and the other objects at least in the two-dimensional sub- 

space; in this plane a linear discrimirant would say that object 7 is 

definitely dissimilar from the other two.  In three four, or five dimen- 

sions, the same groupings were found, but these were different from thcsf, 

seen in the XY-plane.  Group 1 contained 22 code 5 samples, 24 code 6 

samplpc, and all 25 code 7 samples; group 2 contained the remaining 11 

cede 5 samples and 6 code 6 samples. 

The corresponding similarity indexes are as follows: 

S(5,6) - 0.72 

S(5,7) - 0.33 

S(6,7) - 0.40 
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The similarities S(5,6)  and S(5,7) have increased somewhat over the 

values previously found when the data sets were examined in pairs.  This 

is in accordance with what usually happens with our methods when more 

data sets are added for simultaneous classification.  In the present 

case the effect may be due partly to the rather small number of samples 

of each type.  But in general, it reflects a minor deficiency of the 

method itself. 

7.3.9 The Effect of Two Forms ot Sample "Normalization" in the Frequency 
Domain, and of Using Factor Analysis Instead of Principal Compo- 

nents Analysis 

Primarily to obtain some results where we were more certain that 

calibration errors were not present in the input data, we used two forms 

of "normalization" of the F;0,98,2 samples used in the work described 

above.  Then for one of these we examined the effect of using the covari- 

ance matrix instead of the correlation matrix of the samples—i.e., of 

using Factor Analysis rather than Principal Components Analysis. 

The two forms of normalization were: 

Nl:  Divide each sample component by the sample component corres- 

ponding to f ■ 0. 

N2:  For all the samples having the same code number, find the 

average value of their f ■ 0 components.  Then divide each 

sample component by this average value. 

The first form has the effect of removing the mean signal lev«1 entirely 

as a basis for classification, and may go too far. Hence the second was 

also stored. » 

Results are shown in Table 7.10.  The comparable results for unnor- 

malized samples are also given. A dash (-) In the table under a parti- 

cular code number indicates that samples with that code number were not 

included.  The table also shows the effect of changing from the correla- 

tion matrix to the covariance matrix when the second form of normaliza- 

tion (N2) is used. 
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The first three cases shown in the table are for codes A-7 samples. 

In all three cases the similarity index S(4,7)  is at most very small. 

In the first two cases S(A,5)  and S(A,6)  are also very small, but 

this is not so in the third case.  Also in case 3,  S(5,7)  and S(6,7) 

are all zero, while S(5,6)  is unity. 

The next three cases include the code 8 samples.  In all these 

cases S(A,8)  is either small or zero.  S(4,7)  is zero for the unnorma- 

lized samples, but is high for both types of normalization.  S(5,6)  is 

sizable in all cases. 

The last two cases are for N2 normalization samples; case 6 pro- 

cessing used the sample correlation matrix, while case 7 used the covari- 

ance macrix.  The covariance matrix reflects the significance of the 

actual magnitude of sample-to-sample variations in each component of the 

sample vectors and has a tendency to be dominated by swings at the fre- 

quencies where the average amplitude is high. On the other hand, the 

correlation matrix we have adopted in our standard procedure reflects 

the relative variance, and hence does not share this tendency; its poten- 

tial problem is with noise at frequencies where the signal level is low. 

In both these cases,  S(4,8)  is very low.  S(4,7)  is high in case 6 

and zero in case 7, whereas S(7,8)  is just the opposite.  S(5,6)  is 

high in both cases. Thus the main effect of changing from the correla- 

tion to the covariance matrix before entering LERNMOD is to move the 

code 7 samples from one group to another. 

Thus, data normalization can cause pronounced shifts in groupings. 

At present, the significance of this finding is not clear, since we have 

no yardstick to determine whether or not classification has been improved. 

7,4  SENSITIVITY OF RESULTS TO THE INITIAL DIMENSIONALITY OF SAMPLES 
AND THE CHOICE OF SAMPLE FREQUENCIES 

All the work described earlier in this section was carried out 

with 50-dimensional samples—the maximum dimensionality that our programs 

SS 
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can currently handle. The question arises as to whether a subset of 

these 50 dimensions contains the bulk of the information on which group- 

ing is ultimately based. 

Since we found that F;0,98,2 sampling led to better grouping than 

F;0,49,l , we proceeded by progressively removing more and more of the 

higher frequency information from the F;0,98,2 samples. 

The results obtained when only the first N dimensions of the 

F;0,98,2 samples were input to Principal Components Analysis (PCA) and 

LERNMOD are given in Table 7.11. 

The table shows that grouping remains stable down to N = 45 , but 

changes drastically by N = 40 .  This shows that it is essential to 

retain the higher frequency information. 

Though the above result strongly suggests that a minimum of about 

40 dimensions must be retained, for satellites (4,5) we tried the effect 

of using fewer dimensions, but taking each to be a harmonic of the satel- 

lite quarter-period. That is, we used the values of the first 16 spec- 

tral peaks as the sample data.  In this case a subspace of two dimen- 

sions was retained after PCA.  In this subspace LEFtfMOD found two groups: 

group 1 contained three code 4 samples and 26 code 5 samples, while 

group 2 contained 21 code 4 samples and seven code 5 samples.  Thus 

S(4,5) = 0.20 , and some similarity is indicated. This contrasts with 

the results of Table 7.4 (Sec. 7.3.2), which gives S(4,5) - 0 .  Thus 

the 16 spectral peaks do not appear to contain enough of the available 

information to serve ss  a good basis for classification. This suggests 

that intervening data points, though much smaller in magnitude than the 

peaks, contain much significant information.  One might say that the 

diffuse, as well as the specular, scattering data are required in order 

to properly characterize an object. 
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APPENDIX 

COMMENTS ON SAMPLE SIZE AND DIMENSIONALITY 

In classification problems where the underlying probability dis- 

tributions are unknown, classification Is frequently based on class 

boundaries determined by a subset of the avallabl' samples.  As pointed 

out In papers by Foley and others, the classification error rate for 

these samples can then be significantly lower than the rate for a much 

larger population drawn from the same distributions.  Foley's results, 

for the Fisher linear discriminant. Indicate that the ratio of the num- 

ber of samples of each class to sample dimensionality should be at least 

3 if this problem is to be avoided. 

The extent to which LERNMOD is affected by the sample size-to- 

dimensionality ratio is not known.  In previous experience, we have not 

encountered the low error rate phenomenon at a ratio as low as 2,  but 

we have no theoretical basis for asserting that this would always be 

true.  Therefore, we have cautioned the reader that our results may be 

biased if Foley's criterion is not satisfiea. 

With regard to sample dimensionality we feel that it is always 

safe, but sometimes extremely conservative, to apply the criterion with 

the full number of sample dimensions.  For example, if we have seven 

sample points per class in a space of two dimensions, Foley's criterion 

is satisfied.  Suppose now that these points are perturbed slightly into 

a third dimension.  Intuitively, we feel the sample size would still be 

adequate, though nominally the criterion calls for at least nine.  Of 

D.H. Foley, "Considerations of Sample and Feature Size," IEEE Trans. 
on Information Theory, Vol. IT-18, No. 5, September 1972. 

** 
Twenty samples in 10 dimensions. 
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course, the criterion is formulated to cover any displacements in the 

third dimension, not merely small ones. With this in mind, we have 

pointed out in the text how many principal axes of the error ellipsoid 

(of the correlation matrix of the pooled samples) are within a factor 

of one-tenth of the length of the major axis. We feel that three times 

this number is likely to be much closer to the actual minimum sample 

size requirement for each data set than the nominal requirement for 150 

samples. 

We should point out also that if a dimension which contains signi- 

ficant discrimination information is unwittingly discarded following 

Principal Components Analysis, our results will, in contrast to the 

above, be biased in the direction of a high classification error rate. 
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