
ESD-TR-74-138 
ESD ACCESSION LIST 
DRI Call No.J^^lS. 

Copy No.__Lof_X__cys, 

Technical Report 501 

Compensation of Multipath 
Angular Tracking Errors 

in Radar 

I.   Kupiec 

20   March   1974 

Prepared for the Office of the Chief of Research and Development, 
Department of the Army, 

under Electronic Systems Division Contract F19628-73-C-0002 by 

Lincoln Laboratory 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

LEXINGTON, MASSACHUSETTS 

ffiDl$tlod 



Approved for public release; distribution unlimited. 



MASSACHUSETTS   INSTITUTE   OF   TECHNOLOGY 

LINCOLN   LABORATORY 

COMPENSATION OF MULTIPATH 

ANGULAR TRACKING ERRORS IN RADAR 

/.  KUPIEC 

Group 34 

TECHNICAL  REPORT  501 

20 MARCH   1974 

Approved for public release; distribution unlimited. 

LEXINGTON MASSACHUSETTS 



The work reported in this document was performed at Lincoln Laboratory, 
a center for research operated by Massachusetts Institute of Technology. 
The work is sponsored by the Office of the Chief of Research and Develop- 
ment, Department of the Army; it is supported by the Advanced Ballistic 
Missile Defense Agency under Air Force Contract F19628-73-C-0002. 

This report may be reproduced to satisfy needs of U.S.Government agencies. 

Non-Lincoln Recipients 

PLEASE DO NOT RETURN 

Permission is given to destroy this document 
when it is no longer needed. 



ABSTRACT 

Multipath compensation techniques for radar applications are being 
evaluated. Three methods which comprise an extension of the con- 
ventional monopulse and a fourth that utilizes coherent samples 
taken across the antenna aperture were considered. The perform- 
ance in the presence of a single specular reflection from the ground 
is compared by means of Monte Carlo computer simulations. The 
aperture sampling technique using a minimizing search processing 
is found to outperform the other methods. 
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COMPENSATION OF  MULTIPATH  ANGULAR  TRACKING 

ERRORS IN RADAR 

INTRODUCTION 

This report  summarizes a study of multipath,   i.e.,   ground  reflection,  compensation 
techniques,  which was conducted at Lincoln Laboratory recently.     It addresses  the problem 

of elevation angle measurement in the presence of multipath interference.     The study was 
motivated by a consideration of a specific network of ground-based radars;   however,  the re- 
sults and recommendations apply equally well to other radar systems. 

In what follows,  the basic multipath problem is formulated and described.    It is also pre- 
sented as an angular resolution problem.    Subsequently,  compensation techniques are described 

and evaluated by means of Monte Carlo simulations.    Three of the techniques comprise extension 

of the conventional monopulse,   referred to here as Complex Monopulse schemes.    The fourth 
technique,   the Aperture Sampling method,   involves processing of coherent samples taken across 
the radar's antenna aperture. 

I.       STATEMENT  OF  THE  PROBLEM 

A radar system tracking a target at low elevation angles,   namely,   within one or two beam- 

widths above the horizon,   experiences serious difficulties.    These difficulties result from the 
presence of a strong ground reflection or multipath signal.    The elevation angle is the most 
strongly affected tracking parameter.    In a conventional closed-loop monopulse tracker,   tracking 
becomes erratic and in certain cases may be completely lost.    In an open-loop tracker,   such as 
would be used  with a phased-array radar,   accurate estimatii-n of the elevation angle  becomes 
difficult because of the presence of a large varying systematic (bias) error.    In both cases the 

precision of such an estimation degrades at elevation angles in which destructive interference 
due to multipath reduces the signal-to-noise ratio. 
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Fig. 1.    Amplitude monopulse. 
•Difference - D 

-An'enna 

•.•.':.*^i»fr^rO'^'.f,y^*f-.'V";"x~'J:~-yry^f^v.'j--^' t<\ .»> 

The problem can be best understood by considering the operation of the monopulse technique. 

It is assumed that the radar measures elevation angle by using an amplitude monopulse.    The 
target elevation angle off the antenna axis is denoted  A,   and the sum and difference patterns 

are denoted  S  and  D,   respectively (see Fig. 1 ).    The signals received in the sum and difference 

t The precision is proportional to the inverse of the square root of signal-to-noise ratio. 



Antenna 

Ground 
:   Diffuse 

Fig. 2.    Multipath geometry. 

<f> - Phase between direct and indirect signals 

ty - Phase between sum and difference signals 

S(B) 

Fig. 1.    Sum and difference signals phasor 
diagram in the presence of multipath. 

Beamwidth • 1° 

Beam 
Pointing 

118-3160611 

1 
0.1 0.5 10 

TARGET   ELEVATION ANGLE  (deg) 

Fig. 4.     Multipath bias error of conventional 
monopulse. 



channels are then kS(A) and kD(A). Here k is a proportionality factor that accounts for all the 

terms that enter the radar range equation. The off-axis angle is obtained from the normalized 

error signal, D/S. That is, within the sum beamwidth this ratio is proportional to the off-axis 

angle 

A      p    S(A)       ' (1) 

where l/p is a proportionality constant.    The sense of the angle with respect to the beam axis 

is related to the phase angle between D(A) and S(A).    In free space,   ideally,  D(A) and S(A) are 

either in-phase or out-of-phase depending on the sign of A.    The target elevation angle is ob- 

tained by combining the estimated A with the known beam axis pointing angle.    In normal closed- 

loop angle tracking A is small compared to beamwidth. 

In the presence of multipath,  i.e.,   reflection from the ground,  the situation is quite differ- 

ent.    The relation between the off-axis angle and the normalized error signal is not as simple, 

and the phase between the sum signal and difference signal can take any value.    Referring to 

Fig. 2,   one can easily show that in the presence of multipath the signals received by the sum 

and difference channels are given by 

D = S(A) + T exp(i<pd) D(B) (2a) 

S = S(A) + T exp(i(pd) S(B)      . (2b) 

Here   r is the complex ground reflection coefficient,   and <p, is the phase retardation due to the 

longer pathlength of the indirect signal.    B is the angle-of-arrival of the indirect return with 

respect to the beam axis.    The total phase difference between the direct and indirect signals 

is given by 

<P = <Pr j- sinE      , (3) 

where q>„ is the phase of the reflection coefficient,   \ is the wavelength,  h is the antenna's 

phase-center height above ground,   and  E is the target's elevation angle.    Equations (2a) and (2b) 

are displayed in a form of a phasor diagram in Fig. 3.    It is seen that since  <p  varies with ele- 

vation angle,   so will $,  the phase between the sum and difference signals.    The phase can be 

anywhere between 0° and 360° and not just 0° or 180°.    The usual monopulse radar is designed 

to determine the real part of D/pS and to report this quantity as the value of A = D(A)/pS(A). 

When the multipath contribution is large,  D/pS is drastically different from D(A)/pS(A),   yielding 

a large error in a conventional monopulse.    Such a condition occurs at low elevation angles when 

the multipath signal arrives through the main beam. 

Figure 4 shows a typical multipath error;  the quasi-periodic behavior stems from the fact 

that <p  can vary many multiples of Zn for moderate variations in  E.    The information presented 

in Fig. 4 was obtained by fixing the beam axis pointing angle and varying the target elevation 

(letting the target coast through the beam).    This depicts the error in an open-loop tracker.    In 

a closed-loop tracker the curve describes the erroneous pointing angle of the tracking antenna. 

It is observed that the error decreases as the elevation angle increases.    This is caused by the 

fact that for the larger elevation angles the multipath contribution is received through sidelobes. 

When the multipath enters the receiver through sidelobes,   the error is smaller by a few orders 

of magnitude (depending on the sidelobe level).    It can then be handled separately and will not 



require the amount of sophistication needed for the more serious case when both,  direct and 

indirect returns,  are received by the main beam.    Since the elevation angle in most applications 

varies with time,  the multipath error is a time-dependent bias error.    It is worthwhile to note 

at this point that the model used here assumes a flat earth and a target at infinity.    It implies 

the existence of only one distinct specular reflection and that the target return is a plane wave. 

The reflection coefficient was assumed to be —1.0.    Such a model will be used in describing the 

compensation schemes.    The effect of multiple specular reflection as well as diffuse reflection 

and curved earth effect will be discussed later. 

It is seen then that in the presence of multipath,   at low elevation angles,  a conventional 

monopulse tracking system has a large varying bias error.    In addition,   since at certain eleva- 

tion angles the interfering multipath signal may be out-of-phase with respect to the direct signal, 

the signal-to-noise ratio is substantially smaller yielding a larger angular random error.    Thus, 

any scheme which tries to alleviate the difficulties experienced by a tracking radar at low ele- 

vation angles should strive to achieve the following: 

(a) Eliminate the large multipath bias, 

(b) Obtain an angular rms error of the same magnitude as can be obtained 

by the system when it operates in free space. 

More insight can be gained byviewing the problem in a different manner.    Using a flat sur- 

face model,   the multipath can be viewed as coming from the image of the target.    If the surface 

is curved or rough the image is diffused,   and the multipath contribution is modified in strength. 

However,  for a very low elevation angle this represents a small modification.    In this case the 

target and its image occupy the same range cell and their angular separation is less than a beam- 

width.    (The range difference between the target and its image,  at low elevation angles,  is usually 

much smaller than the range resolution capability of the radar.    Very large bandwidths would be 

required to resolve the target from its image in range.)   In order to measure the elevation angle, 

one has to resolve the target from its image in elevation angle and then estimate its elevation. 

In essence this amounts to nulling the multipath contribution while the target parameters are 

estimated.    It is done by appropriate data processing and does not have to be realized in the an- 

tenna pattern.    In the absence of any a priori information concerning the number of plane waves 

arriving at the radar,  the angular resolution capability of the antenna is about one beamwidth, 

hence this technique seems impossible.    If,  however,  the number of incoming plane waves is 

known,   the angular resolving power is less than a beamwidth and is limited only by the presence 

of noise.    Since in the presence of multipath one is usually able to guess the number of incoming 

waves it should be possible to resolve the target from its image.    Most of the schemes to be 

described in this report assume one multipath component.    In such a case the presence of more 

than one multipath contribution produces errors. 

In discussing the various multipath compensation techniques the problem of illuminating the 

target in the presence of multipath will be disregarded.    This difficulty arises in radar applica- 

tions when the direct and indirect signals may arrive at the target out-of-phase.    In practice, 

perfect cancellation of signal does not occur,   rather large reduction of signal level is experi- 

enced.    Thus,   in subsequent sections,   it will be assumed that the reflected signal is strong 

enough to be detected by the radar.    Such a problem does not exist in beacon tracking. 



II.     COMPLEX   MONOPULSE 

A.     Complex Monopulse with Terrain Calibration 

As was noted in the previous section,  the normalized error signal in the presence of multi- 

path is a phasor whose phase and amplitude depend on the multipath signal.    Using coherent 

detection,  the amplitude and phase of the normalized error signal can be determined and serve 

as two independent sources of information for angle estimation.    This use of the information 

contained in the quadrature (as well as the real) component of the normalized error signal to 

facilitate the determination of the true elevation angle in the presence of multipath was proposed 

by Sherman.     He named this approach the Complex Indicated Angle to emphasize that the complex 

normalized error signal is interpreted as a complex angle.    In this report,   schemes that utilize 

the quadrature component of the difference channel are called Complex Monopulse. 

The normalized difference channel signal in the presence of one multipath component is 

given by 

D(A) i<p  D(B)   S(B) 
D. _ D(A) + re1<pD(B)   _    S(A)      re       S(B)   S(A)        p(A + rgeiyB) 
S  '   S(A) + re^SfB) 1  + re1* fgj 1  + rge1* 

where  r is the magnitude of the reflection coefficient,   <p  is the total phase difference between 

the direct and indirect paths,   and  g is the sum voltage pattern ratio S(B)/S(A).    The complex 

indicated angle is 

ID .  .        A + gre^B ... 
—  -=- = x + ly =  6 r—        . 5) 
F 1 + gre 

From a single pulse return one may retrieve two independent quantities,   x  and  y.    The number 

of unknowns on the right-hand side of Eq. (5) is five,   namely,   A,   B,   g,   r,   <p.    However,   when 

the multipath is due to a flat ground plane with zero slope,   A  and  B  are related in the following 

manner. 

A = E - E , (6a) 

B = -E - E        , (6b) o      ' 

where   E  is the true target elevation and E    is the beam-axis elevation.    If the slope is not zero 

but known,   it could be incorporated in Eq. (6b).    In addition,   <p  is related to   E  via Eq. (3).    Thus 

if one knows the reflection coefficient there is enough information in one pulse to eliminate the 

multipath and solve for the true elevation angle.    In practice,   one may choose to develop an ana- 

lytical algorithm to solve a set of four equations or use a graphical display.    Originally, Sherman 

proposed using a graphical display.    It is worthwhile to describe this method since it highlights 

the inherent difficulties of this version of Complex Monopulse.    It can be shown that when the 

beam-axis angle is fixed the complex indicated angle [Eq. (5)] describes a spiral in the complex 

plane as the target coasts through the beam (Fig. 5).    This can be seen intuitively by noting that 

Eq. (5) describes a circle in the complex plane when  <p  varies and the rest of the parameters in 

Eq. (5) remain constant.    When the elevation angle varies and the beam axis is fixed,   A  and   B 

as well as  <p  vary.    For a small variation in elevation angle the locus of points approximates 

a small circular arc.    For large variation of the elevation angle,   the locus is a collection of 

small circular arcs with variable curvature;  this yields a spiral shape.    Such a spiral with the 

true elevation angle as a parameter along the curve is shown in Fig. 5. 
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A practical implementation consists of displaying a measured spiral (calibration spiral) on 

a CRT.    The elevation angle of a target is then determined from the location of a measured point 

on the display.    However,  there is an ambiguity where the spiral crosses itself.    When the an- 
tenna center is high,  there may be many crossing points.    In the absence of noise or jitter the 

measured points fall on the calibration spiral and only the crossing points are ambiguous.    But 

in the actual radar,  errors are present,   and the measured point will not lie precisely on the 
spiral.    In such a case,   an estimate is obtained by projecting to the nearest point on the calibra- 

tion spiral.    If the measured point is in the vicinity of a crossing point,  the ambiguity causes 
large error. 

Other difficulties stem from the need to know the ground reflection coefficient.    If a display 

is used,   equivalently,   calibration spirals corresponding to different values of reflection coef- 

ficients are needed.    The characteristics of the ground surface around the radar change with 
time.    Such changes are due to moisture variations as a result of rainstorms or snowfall.    They 
may also be caused by slow variation due to natural growth of the vegetation in the vicinity of 
the radar.    These variations introduce uncertainty as to which value of reflection coefficient or 

which calibration spiral should be used.    If errors of the order of 10 to 20 percent in estimating 
the reflection coefficient occur,  the observed variations in bias errors are excessive.    Figure 6 
shows the residual elevation bias for such errors in reflection coefficient whose nominal value 
is —1.    As the uncertainty in value of the reflection coefficient increases,  the curves tend to 
resemble the error curve (see Fig. 4) with no multipath compensation.    The simulation results 
presented in Fig. 6 were derived by using an analytical algorithm.    Two cases corresponding to 
10- and 18-percent errors in estimating the magnitude of the ground reflection coefficient are 

shown.    These results apply also to a case where a displayed spiral is used and correspond to 
a situation where the calibration spiral was not changed to agree with surface condition variations. 

In a field radar system,  the displayed spirals are obtained by measurements and are stored 

in the radar.    This procedure,   in principle,   enables one to overcome problems that arise due to 
irregularities of the terrain.    This will require measurements for a number of azimuth directions 
and  possibly for many ground  conditions.     Storage of  such a  large amount  of information and 

the need to be able to change the display as the target moves or as the ground conditions change 
soon becomes a substantial load on the radar's computer resources,   rendering such an approach 
impractical.    In the presence of multiple specular reflections,   small loops are superimposed on 

the spirals.    These add ambiguities and result in additional sources of error. 
In view of the difficulties delineated above,   it is believed that this approach is not a reliable 

solution that could be implemented in a field radar for the multipath problem. 

B.     Frequency Diversity 

It was shown previously that a return from a single pulse in the presence of multipath con- 
tains two independent pieces of information,   provided the radar is instrumented to measure the 
quadrature component of the normalized error signal.    In view of the fact that the number of 

unknowns is greater than two,  the return from a single pulse is not sufficient for a unique deter- 
mination of the true elevation angle.    In order to recover the true elevation angle from a single 
return,  one needs additional information including the magnitude and phase of the reflection co- 
efficient.    To circumvent difficulties arising from uncertainties in assuming the value of the 

reflection coefficient,   a scheme that effectively measures the reflection coefficient in real time 
is needed.    This could be achieved by combining the information from two or three pulse returns. 

Such a scheme will now be described in detail. 



The target is assumed to be within one beamwidth above the horizon so that the direct and 

reflected returns are received through main beam.    A long range to the target and flat ground 

are also assumed.    This implies that in the vicinity of the antenna and the reflecting area the 

echo is a plane wave and that there exists only one specular reflection.    Under the above as- 

sumptions the normalized error signal can be expressed in the form 

ID . . A + gre1<plB 
p -g - «i + iy4 -      *   itp       . <?> v 1 + gre rl 

where the notation of the previous section is used.    The subscript 1 indicates a return from the 

first pulse.    The product gr may be considered as one variable,  u.    Thus there are four unknowns, 

A,  B,  u,   and tp. .    The phase shift,   (p.,  between the direct and indirect rays depends on a few 

parameters [Eq. (3)],  one of which is the frequency.    It can be changed by changing the frequency. 

Explicitly the phase change is given by 

A<pl  = -^ Af sinE      , (8) 

where Af and  c are the frequency increment and speed of light,   respectively.    Therefore,   sub- 

sequent transmission of a second pulse at a different frequency can provide an independent 

measurement: 

A + gre^B ... 
X2 + ^2 =    .   /     i<p? • (9) 

1 + gre    2 

It is assumed that in the short time that elapses between the pulses,   the elevation angle changes 

a negligible amount.    Also,   frequency jumps of le,ss than 20 percent are contemplated,   in which 

case changes in  g and  r are negligible.    Since (p7 is unknown there are now five unknowns,  but 

use of specific relation between A and  B for the case of specular reflection [Eq. (6a, b) ] provides 

an additional equation to enable a unique solution.    In summary,  the proposed scheme consists 

of combining the information obtained from pairs of pulses each centered at a different frequency. 

All the parameters but the phase are assumed to remain constant.    The equations relating the 

various parameters are given by: 

A + ue A + ue^lB 

1 + 118**1 

A + ue^ZB 
*2
+iy2-    '   ii2    • <10b> 1 + ue    2 

A = E - E        , (10c) o 

B = -E - EQ      . (lOd) 

Four equations relating the five unknowns are obtained from (10a, b).    A fifth equation is obtained 

by combining (10c) and (lOd). 

The equations can be solved in a simple manner if one realizes that as long as A,  B,  and u 

remain constant the locus of the points (x., y.) in the complex plane is a circle whose center is 

on the real axis (Fig. 7).    Thus,   given two points on the circle one can determine its center and 



Fig. 7.     Geometrical    interpretation 
of the frequency diversity algorithm. 

(x2,y2) 

radius.    That is,   if the center is at (C, 0) and the radius is  R,   they are related to the measured 

points by: 

2 2 2 2 
x2 ~ xi + y2 - yt 

2(x2 - Xj) 

R = [(x, -C)2 +yf)i/Z 

(Ha) 

(Hb) 

The points at which the circle intercepts the real axis are characterized by y. = 0 and correspond 

to 0 = 0°,   180°.    The  x  coordinates of these points are 

A + uB 
x0 "    1  + u 

A-uB 
x180 ""    1 - u 

The circle's center is half way between these points hence, 

A -u   B 

1-u2 

_  u(A - B) 
R = 

1 - u4, 

A  and  B  can now be expressed in terms of C,   R,   and u: 

A=E-E    = C - uR o 

B = -E -E    = C - — o u 

Eliminating  A  and  B  yields 

Ru    - 2(C + E ) u 4  R = 0 

(12a) 

(12b) 

(13a) 

(13b) 

(14a) 

(14b) 

(15) 

Since E    is known,  and  C  and  R  have been determined from measurements,  u  can be deter- 

mined.    Subtracting Eq.(14b) from Eq.(14a) yields 

E=|«l-u) (16) 
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Equation (16) yields  E,  the true elevation angle.    E and  E   determine A and B;  combining this 

information with the antenna pattern will yield g,  which in turn yields r.    <p „ can be determined 

by solving for <p, or (p. and using Eq. (3).    This shows that indeed the reflection coefficient is 

measured in real time.    Of course,  the radar is interested only in  E,  thus only the algorithm 
that determines  E would be incorporated in a practical system. 

Until now it was assumed that (x., y.) and (x?, y?) are known exactly,  disregarding the fact 
that the measurements are corrupted by noise.    The presence of noise is shown in Fig. 7 by the 

small circles around the nominal points.    The radius of these circles represents the standard 
deviation of the measurement errors.    The geometrical interpretation of the algorithm given 
above is also depicted in Fig. 7.    The first step was to determine the center of the circle given 
two points on the circle.    The center is the intersection of the perpendicular bisector of the 

chord and the real axis.    In the presence of measurement error the ends of the chord may lie 
anywhere on the plane.    Most of the time they lie inside the small circles.    The effect of the 

noise is to yield an erroneous location of the center which in turn produces an error in the esti- 
mated elevation angle.    It is intuitively clear that this error will be large if the chord length is 

of the same order of magnitude as the standard deviation of the noise.    Thus to effect a reliable 
measurement,  Acp = <p    - <p    must be made large enough to yield a large chord.    The optimum 

value is not known a priori in any specific case since it depends on the value of u.    On the other 
hand,   a large change in phase may yield a situation depicted by the pair (x,, y,) and (x,, y~).    In 
this case the chord is almost perpendicular to the real axis.    The bisector intersects the real 
axis at a very small angle.    Small measurement errors can cause very large errors in locating 
the circle's center.    If the chord happened to be perpendicular to the real axis and there are no 
errors,  the solution becomes indeterminate.    To overcome this problem one may use three 
pulses.    In such a case one has the option of peaking the pair of points that lies on the same side 

of the real axis or determining the center by triangulation.    Both solutions yield similar results. 

The frequency-diversity method was evaluated by simulation.    Figure 8 shows a case where 
two pulses were used.    The peak error at the center is related to the difficulty described above, 
i.e.,   when the two points define a chord that is almost perpendicular to the real axis.    Figure 9 

describes errors for the same case when three pulses were used.    The peak at the center was 
eliminated.    It is seen that within a quarter of a beam on each side of the beam axis the system 
performs just like a monopulse in free space,   with a rms angle error of the order of BW/k \/SNR 
(Ref. 2).    Here,   BW is the beamwidth,  and k is a normalized error slope,   and SNR is the signal- 
to-noise ratio.    Figure 10 depicts the bias error which is the error of the mean estimate.    Com- 
parison of Figs. 10 and 4 shows that the measurement is,  for all practical applications,  biasless. 
Such measurements will enable a recursive tracking algorithm to perform at low elevation angles 

as well as at high elevation angles. 
For the sake of clarity (and expediency) only a simplified analysis was pursued thus far. 

This was done with full awareness of the various approximations used and at least some of their 
implications.    In order to complete the description of the scheme,  the limitations resulting from 

such approximations are listed below.    (Some obvious extensions needed to overcome the restric- 

tions are also described.) 
It was assumed that the direct and indirect returns enter the antenna through the main beam, 

so that the linear relation between the normalized error voltage and the off-axis angle could be 

used.    In principle the analysis could be extended to include cases where the multipath enters 
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through a sidelobe while the direct return is within the beam.    This would require the knowledge 

of the nonlinear (and probably multivalued) relation between the error voltage and the off-axis 

angle pertaining to large angular offsets.    Such an extension is very complicated and is not con- 
sidered to be practical.    Furthermore,   in these cases the method is sensitive to random noise- 

like errors.    This sensitivity stems from the fact that,  for sidelobe multipath interference,   gr 
is small,   and the circle in the complex plane is small.    Since the noise level does not change, 
it is difficult to maintain a large chord length to rms noise ratio (see Fig. 7).    Therefore,  the 
method is not useful for reduction of multipath error due to sidelobe interference. 

The analysis utilizes the knowledge of the slope of the plane of reflection.    In the examples 
a zero slope was used.    A nonzero slope could be easily accommodated by modifying Eqs. (10). 

However,  the slope of the reflection plane is rarely known precisely.    It can only be estimated. 
Any error in such an estimate translates into an error in the determination of the elevation angle. 
This is only a matter of complexity.    The ratio of power received from the two pulses can be 
used instead of the symmetry condition to provide an additional equation.    This,   however,   will 

work only if the target cross section is frequency independent in which case the power ratio is 

independent of target cross section.    If the target is dispersive,   its cross section varies from 
pulse to pulse and the' additional equation introduces a new variable,   namely,   the unknown target 

cross section.    Since a target cross section will usually depend on frequency,  this presents a 
serious difficulty.    To measure the slope of the reflection plane near the radar is as difficult 
as measuring the reflection coefficient and defeats the purpose of introducing the present method 
altogether. 

An examination of Eq. (3)  shows that changing the height of the antenna phase center is equiv- 
alent to changing the frequency as far as obtaining a phase change.    Such a change does not affect 
the target cross section,   and therefore offers a means to overcome the problem.    However,   the 

practicality of using height diversity in the context of complex monopulse is questionable.    In the 
case of a dish antenna,  it is impossible to realize this scheme easily.    In the case of phased 

array,   it could be accomplished by splitting the array and forming two or three independent mono- 
pulse beams.    That is,  by forming a sum and difference beam separately for each part of the 
array.    It turns out that while this is a reasonable approach,  there exists a simpler approach for 
phased arrays that does not require monopulse beams.    This scheme is the Aperture Sampling 
method which will be described in Section III. 
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The normalized error signal can have a quadrature component due to an additional target 

present in the range cell or due to existing phase between the sum and difference channels.    In 

order not to interpret this quadrature component as a result of multipath,  one must have knowl- 

edge of the probability of having two targets in the range cell and of the phase response of the 

antenna in a wide angular range. 

The method proposed here handles a single specular reflection.    While in principle it could 

be extended to handle more than one specular reflection,   provided one knows how many exist, 

such an extension is too complicated to be practical.    It has no capability to compensate for 

diffuse reflection from the terrain.    The presence of diffuse reflection causes an error which 

depends on the diffuse-to-specular reflection ratio. 

The analysis neglected the variations in r, g, and E that take place from pulse to pulse. 

The sensitivity of this assumption can be determined by perturbation calculations in which the 

present solution is the zero-order solution. 

The restrictions mentioned above contribute errors that may add to an unacceptable resultant 

error.    The consequences of the need to know the slope of the effective reflection plane are con- 

sidered to be the most serious difficulty with this scheme.    Use of height diversity instead of 

frequency diversity as was suggested above does not offer a simple solution to this problem, 

hence the scheme is not judged to be an acceptable solution for a field radar. 

C.     Boresight Diversity 

The most serious difficulty with the frequency-diversity version of Complex Monopulse is 

the fact that it requires knowledge of the slope of the plane of reflection.    That is,   without this 

information it becomes necessary to use the power ratio of two target returns as the fifth equa- 

tion.    This renders the scheme cross-section-dependent and therefore useful only in cases where 

the cross section does not vary substantially over the frequency band.    In order to overcome this 

difficulty,  an alternative scheme based on the Complex Monopulse was considered.    This is the 

Boresight-diversity version.'    The scheme is derived from the basic Complex Monopulse equa- 

tion [Eq. (5)J: 

ID ,  . A + uBe1^ ,,_. 
P 5" =x + ly = TT~i^r     •     u = gr    • <17> r 1  + ue 

One may easily show that as  glS(B)/S(A)] varies while  all the  other parameters   remain  con- 

stant,   Eq. (17) traces a circle in the complex plane.    For various values of tp,   a family of circles 

is obtained (see Fig. 11).    These circles are orthogonal to the circles used in the frequency- 

diversity version.    Let the unknown slope of the plane of reflection (a single specular reflection 

is assumed) be E  .    This parameter is incorporated in the analysis in order to demonstrate that 

indeed in this scheme one does not need to know it a priori.    From Eq. (17),   the explicit expres- 

sions for  x  and  y,   the real and imaginary parts of the normalized difference channel signal, 

are given by 

x=  A + BU
2
+(A + B)ucosy       ( (18fi) 

1  4 2u cos <p + u 

y=     (B -A) using (18b) 

1  + 2u cos <p + u 

t The idea evolved in discussions that were held between Lincoln Laboratory and RCA. 
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E = Target Elevation Angle 

y 

<f> - Constant 

Fig. 11.    Geometrical interpretation 
of the boresight diversity algorithm. 

Elimination of u from these equations yields 

2       2 
(x    + y ) sin cp + y(B - A) cos <p - x(B + A) sin <p + AB sin <p = 0 

Further trigonometric manipulations enable one to write (19) as follows: 

(x - A±B 2 B^A,  2  s   (B-A)2 

2 2tan<p' 4sin2? 

From Eq. (20),   the center and radius of the circle can be obtained;  namely, 

A + B 
xc "       2 

B-A 
yc 2 tan <p 

R = 
I? 

2 sin <p 

(19) 

(20) 

(21a) 

* 
(21b) 

(21c) 

Eqs. (21b, c) show that whenever <p = nit, n = 0, ±1. . ., the circle degenerates into a straight line. 

It will be seen below that this poses a problem. The intersections of such a circle with the real 

axis are given by 

x. = x   ± 1 c \J^ 
This yields,   after substituting Eqs. (21a-c), 

x,   = A = E - E 

x9 = B = 2E 2 s 

(22) 

(23a) 

(2 3b) 

Now,   E,   E ,   and E    are all referred to the radar coordinate system;  that is,  they are deter- 

mined with respect to a coordinate system that is established independently of the local terrain. 

Therefore,  the elevation angle can be determined from the upper intersection point (x. > x?) 

without the need to know E ,   since E   does not affect the value of x.  (Fig. 11). 

For a given elevation angle,  the phase between the direct and indirect return is fixed.    By 

changing g,   and provided that such a change does not change the phase,   one can determine points 

on the corresponding circle.    From three such points the circle's parameters can be determined. 
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Equation (22) can then be used to determine the upper intersection with the real axis which in 
turn yields the elevation angle via Eq. (2 3a). 

A variation of g can be obtained in various ways.    In the case of phased arrays,  three 

monopulse beams can be formed simultaneously.    They are squinted with respect to each other 
by a substantial fraction of a beamwidth so that each channel provides a point in the complex 

plane corresponding to a different value of g.    An equivalent measurement can be obtained by 
using three successive pulses,   each taken at a different beam-axis direction.    Such an arrange- 

ment is particularly suited to a dish radar. 

As was noted previously,  there exists a difficulty in this scheme whenever the phase <p is 

an integer multiple of TT.    In this case,  the circle degenerates into a .straight line and the algo- 
rithm becomes indeterminate.    In an actual measurement,   a solution is usually found because of 

measurement errors;  however,  it is characterized by extremely large angular errors.    This 

effect can be seen in Fig. 12 which presents results of simulating random measurement errors. 
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Fig. 12.    Angular rms error for boresight diversity technique. 

Large errors due to this effect are also observed at elevation angles that correspond to phase 

differences somewhat different from exactly an integer multiple of n.    This clearly indicates a 
large sensitivity to measurement errors around the particular elevation angles that yield an 
integer multiple of IT phase.    The width of the peaks is a function of signal-to-noise ratio,  as 

indicated by the simulations that were performed for two values of SNR.    The lower the phase 
center of the antenna,  the larger is the separation between such peaks.    It was felt that the 
method could be useful if there is a means to overcome the singular points (indeterminate set 

of equations).    This could be achieved by frequency changes since <f> depends on frequency.    In 
that case the elevation angle is estimated at three different frequencies,   and the final estimate 
is the one corresponding to the average of the two closest measurements.    An alternative ap- 
proach is to use the fact that each elevation angle is characterized by a distinct set of complex 
voltages measured by the three monopulse beams.    A similar approach is used extensively in 
the next section,   and is called a minimizing search.    The measured set of normalized complex 
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voltages (v., v,, v,) is compared with a lookup table that includes sets (v\, vl, v') of computed 

voltages for all possible combinations of amplitude,  phase,   and angle-of-arrival of two incoming 
3 2 

plane waves in a given range.    The set that minimizes the quantity C =    2     |v. — v! |    is taken to 

be the estimate. 

The question as to how to separate the three beams,   or alternatively,  what beam-axis point- 

ing to choose is very crucial.    From the point of view of accuracy,  it can be seen intuitively that 
one would like to spread the three points on the circle as much as possible in order to reduce 
sensitivity to errors.    (Such a situation was encountered in the frequency-diversity scheme.) 

This effect can be seen clearly in the simulation results.    The simulations were performed with 
a fixed half-a-beamwidth squinting;  that is,  the beam axes were set at zero and ±l/2 a beamwidth 
elevation.    It can be observed that at the lower elevation angles,  the errors are larger and do 
not go down between singular points to the same level as in the case of higher elevation angles. 
This is explained by the fact that for lower elevation angles the angular separation between the 

target and its image is smaller,   and for the same squint the obtained values of g are closer. 
That is,  the three points on the circle are bunched together,  and thus the algorithm is more 

sensitive to measurement errors.    There are two factors that place an upper limit on the sep- 
aration among the beams.    If the beam is squinted more than half a beamwidth,  the measurement 

is taken beyond the linear region of the difference pattern.    In such a case,  the theory developed 

here does not apply.    The method could be extended to handle such cases by incorporating the 

exact nonlinear difference channel response.    However,  this represents a large increase in the 
degree of complication and it is not considered worthwhile.    Another limitation on beam squinting 

is due to the possibility that for a large squint the target is viewed by at least two beams through 
a low pattern gain.    This implies reduction in signal-to-noise ratio for the measurement of two 
points,  which will cause larger errors.    Therefore,  a degradation of accuracy at extremely low 

elevation angles should be expected.    This is a manifestation of the fact that at lower elevation 

angles,  when the angular separation between the target and its image is smaller for a given SNR, 
the estimation error increases.    Such a behavior was derived by Sklar and Schweppe    from gen- 
eral consideration. 

An additional difficulty with the present scheme involves the question whether the phase be- 
tween the direct and indirect return is the same for all three measurements.    Such a condition ' 
is a necessary requirement,   as the three points must belong to the same circle (Fig. 11).    In the 
simulation,  a flat surface was assumed,  and the phase of the reflection coefficient was taken to 
be a constant,  i.e.,   180°.    In the case of extremely rough terrain,  the phase as well as the mag- 
nitude of the reflected wave will depend on the amount of squint.    The specular reflection origi- 
nates mostly in the first Fresnel zone.    At low elevation angles,  the Fresnel zone consists of 
an elongated ellipse.    Contributions from small elements of this surface add vectorially,   after 

being weighted by the antenna pattern.    The phase and amplitude of the resultant reflected signal 
depend on the weighting.    Since different beam pointings yield different weightings,   the three 

points thus measured actually correspond to slightly different circles.    This,  of course,   pre- 
sents an additional source of error.    This implies that for greater accuracy less squinting is 

desired. 

III.   APERTURE SAMPLING 

As was indicated in Section I,  the multipath problem in essence amounts to an angular reso- 
lution problem.    When the elevation angle is within a beamwidth above the ground,   the angular 
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separation between the target and its image may be less than a beamwidth.    At the same time 

the range difference between them is smaller than the range resolution of the radar.    Range 

resolution of the target from its image could be obtained in principle.    However,   such a capa- 

bility requires extremely wide bandwidth or alternatively a very high antenna phase center. 

Both of these are not commonly available.    For example,  a 20-percent L-band radar has about 

1  m range resolution,  it could resolve in range the target and its image at 0.2" elevation,   if its 

phase center were 143 m high.    With the lack of range resolution it becomes necessary to re- 

solve the target and its image in angle in order to measure the elevation angle of the target.    In 

searching for a solution to this problem one is faced with the following questions. 

(1) What is the angular resolving power of an antenna? 

(2) What kind of angular precision is realizable when estimating simul- 

taneously the angular parameters of two or more targets? 

(3) What is the optimum processing?    That is,  how can one use the 

information available at the antenna aperture  to obtain the best 

precision in a multiple plane-wave environment? 

All three questions received a large amount of attention in the past and at present they are 

understood fairly well.    The question of optimum processing is still an open question. 

A.     Principle and Limitations 

It is a well established fact that the angular resolution of an antenna is about a beamwidth 

when the number of plane waves incident on it is not known a priori.    This is a case when two 

targets have equal radar cross sections (RCS).    The angular resolution deteriorates when there 

exists a difference in RCS.    If,   however,   the number of incoming plane  waves is known,   then in 
4 

the absence of noise the angular resolution is not limited.     Moreover,   in the absence of noise 

it is possible to resolve plane waves no matter how close in angle-of-arrival they may be as 

long as their number does not exceed the number of half-wavelengths in the aperture.    This is 

an ideal situation and represents a theoretical limit of performance.    It also assumes that the 

phase of the incoming plane waves is not estimated.    When,   in addition,   the phases of the in- 

coming waves are estimated the number of plane waves that can be estimated is smaller.    The 

aperture yields independent samples as long as they are taken \/2 apart,    where  \  is the wave- 

length.    Since the phase and amplitude of each such sample constitute independent data,   an 

aperture of length  L* yields 4L/\ independent measurements.    These measurements can be used 

to uniquely solve for 4L/3A incoming plane waves,   since each plane wave is characterized by 

three unknown parameters,   amplitude,   phase,   and angle-of-arrival.    In most applications,   one 

is interested in a smaller number of plane waves.    In these cases fewer aperture samples, 

spaced more than X/2,   are sufficient.    However,   such a procedure narrows the unambiguous 

angular range and requires means to resolve the ambiguity.    In a phased array,   subarrays can 

be used for the sampling,   and their directivity enables one to eliminate the ambiguity. 

In the presence of noise,   or other random measurement errors,   the questions of resolution 

and precision cannot be separated.    The angular resolving power certainly degrades.    The ques- 

tion is how close in angle can two targets be before the errors in determining their angular 

T This is the spatial equivalent of the temporal sampling theorem. 

t The discussion is limited to a linear aperture for the sake of clarity. 
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position become larger than the error involved in measuring a single target.    This question was 
3 5 

addressed by Sklar and Schweppe    and Pollon and Lank    and others.    Their work shows that the 

resolving power depends on the RF phase between the signals reflected from the two targets in 

addition to the signal-to-noise ratio.    For SNR of 25 dB,  resolution of between a half and a third 

of a beamwidth is possible.    At 40 dB SNR,  two targets may be resolved as close as 0.15 of a 

beamwidth.    For multipath application,  in the case of a flat surface and 25 dB SNR,  this implies 

that acceptable measurements as low as 0.1" can be obtained by using a 0.5" beam.    It should be 

realized that this is an upper bound on resolution- that could be obtained if one would know how to 

use the aperture information in the optimal way.    One might expect that larger errors or less 

resolution would be obtained in practice.    The question of resolving more than two plane waves 

was investigated to a lesser extent.    Assuming that the above resolution could be obtained when 

more than two plane waves are present,   it is clear that for the case of 25 dB SNR the maximum 

realistic number to consider is three.    More than three incoming plane waves that could be re- 

solved would have to span an angular space wider than a beamwidth.    In the case of multipath 

this is not a cause for concern since in most cases the additional distinct specular reflections 

span a large angular sector,  in which case the theory indicates that they could be resolved. 

B.     Two Practical Methods 

It is clear then that by utilizing independent samples of the received signal in the aperture, 

one should be able to obtain sufficient resolution for multipath compensation down to an elevation 

angle which is a small fraction of a beamwidth.    Moreover,   a scheme based on this approach 

could handle more than one specular reflection.    The manner in which the aperture samples are 

processed to yield elevation angle estimates will now be described.    Two processing algorithms 

are available at present.    A closed-form solution that yields the parameters of the incoming 

plane waves was developed by Teledyne Micronetics.     An alternative approach using a minimizing 

search routine was developed by Hughes Aircraft Co.     In describing both algorithms it will be 

assumed that the number of incoming plane waves is known. 

Let the amplitude,  phase,   and angle-of-arrival of the j     plane wave be denoted by A.,   <p., 
th J       I 

and a ..    The voltage at the n     sampling element V    due to  N plane waves is given by 

N 

V    =   2J   '(° •) A. exp(i<p.) exp (iknd sin a.) (24) 

j=l 

where i(a) is the voltage pattern of the sampling element,  k is the free-space wave number, 

and d is the distance between the sampling elements.    A linear uniformly spaced array is as- 

sumed here.    An independent equation can be written for the complex conjugate of the element 

voltage 

N 

V* =    YJ   '*(«•) A. exp(—i<p.) exp(—iknd sin a.)     . (25) 

j=l 

Since coherent sampling is employed, V* is known independently.    Denoting exp (iknd sin a) as 
-1 n ^ z. and noting that z.*  = z.    ,  the sampled voltages can be expressed as 
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N 

Vn =   £   Bj exp(i^) Zj
n      ,       n = 1,2... 

3=1 

M (26a) 

N 

V*  =   71   B*  exp(-i<p.) z.~n      ,       n = l,2. 

j=l 

M (26b) 

where B. = f(a •) A..    In all there are 2M equations,  two for each of the  M  sampling elements. 

Elimination of B.e1'1] and its conjugate from Eqs. (26) yields the following set of linear equations 

V    V V vl' v2   • • • VN 

V M-N 

V * VM 

N+l 

M 

V * VM-N+1 

V * 

"N 

N+l 

M 

V * VM-N 

V* 

(27) 

The unknowns are combinations of the z.'s,  namely, 
1 " 

N 

(-DN n «, 
i-i 

(28a) 

N 

i=l 

(products   of   z-j taken i at a time 
without repetition), 

(28b) 

(28c) 

The unknowns a. are recognized to be the coefficients of a polynomial of degree N  expressed in 

terms of its roots.    Thus,  the z.'s are the roots of this polynomial.    The first step in the algo- 

rithm is to solve the system of Eq. (27).    This yields a  's.    Once the a  's are known,   the corre- 

sponding polynomial is solved for z..    The angle-of-arrival is determined from z..    To get the 

amplitude and phase,  the values of z. are substituted in Eqs. (26),  which then become a linear 

system that can be solved. 

In the minimizing search' solution use is made of Eq. (24).    The set of measurement voltages 

(V., V?, . . -V..) is compared to a set (VI, V'   . . .VLJ computed via Eq. (24) for an assumed am- 

plitude,  phase,  and angle-of-arrival combination.    The best approximation to the measured set 

is searched by varying in a systematic manner the parameters of the assumed incoming plane 

t The author has used this solution to establish the performance of the Aperture Sampling tech- 
nique.    It is essentially the same as the one used by Hughes,  but it is certainly not as efficient. 
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waves.    The trial that provides the best approximation in the mean-square sense is taken to be 
the estimate.    The best approximation is given by the set (VI, VL, . . . V'  ) that minimizes the 

quantity 

M 

C=    2      lVn-Vn!2       • (29» 
m=l 

The choice of C  was made here intuitively.    The justification is the unique relation between the 

aperture illumination and the far field within the unambiguous angular range of the sampling 

elements array.    The same criterion is obtained from general statistical arguments by forming 
a likelihood function and solving for the parameters that maximize that function. 

In both approaches the number of incoming plane waves must be known.    In practice this 

number must be estimated.    When the search routine is used this can be simply accomplished 

by adding a dimension to the search.    Starting with the largest number of plane waves that can 
be handled by the system (this depends on the number of sampling elements),   the number of as- 

sumed plane waves is varied until the best estimate is obtained.    In the closed-form solution 

approach the same procedure can be followed.    In this case if the assumed number is larger 
than the actual number of plane waves,   spurious estimates result.    They can be distinguished 
by the fact that their amplitude is small and is usually close to the noise level.    Upon detection 

of such spurious responses a solution with a reduced number of incoming waves is tried until 
all spurious signals are eliminated.    In the case of multipath,  for elevation angles below 1 °,  the 
reflected and direct returns have almost the same amplitude and both are substantially above 

the noise level.    Additional specular reflections will be resolved only if they yield signals large 
compared to the noise level.    Reflections of the same order of magnitude as the noise level could 

not be distinguished from spurious responses and would not be resolved.    Such signals would 
not cause large error and would act like noise in limiting the precision of the system.    For re- 
sponses that are above the noise but small,   the decision as to whether they are spurious responses 
or due to actual reflections should be handled statistically by setting a threshold that will corre- 
spond to a given probability of detection. 

In subsequent sections the algorithms described here will be referred to as the Aperture 

Sampling technique. 

C.     Simulation Results 

The Aperture Sampling method was evaluated by means of simulations.    In Fig. 13,   simulation 

results are presented for an aperture size of 75 wavelengths,   corresponding to a 0.76° beam- 
width.    Three sampling elements 25 wavelengths apart and symmetrically located were used. 

The solid line presents the rms error as a function of true target elevation angle for the case 
where the reflection coefficient is -1,   and only one specular reflection exists.    It was obtained 
by means of the closed-form solution.    It is seen that large errors occur in the vicinity of two 

angles.    The large errors around these angles result from a singularity in the basic system of 
equations used in this algorithm.    It can be seen by considering the specific system of equations. 
In the case of three sampling elements Eq. (27) reduces to: 

(30) 
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Fig. 13.    Angular rms error for Aperture Sampling technique,   SNR = 25 dB. 

A singular condition occurs whenever the determinant of the matrix on the left-hand side vanishes. 

For target elevation angles below 1 ° and ground reflection coefficient of -1,   one finds two angles 
(in addition to zero elevation) for which a singularity exists.    One is an elevation of 0.712°,   in 
which case V? = 0,   the other is an elevation of 0.356° in which case the two equations are linearly 

dependent.    This is in agreement with the simulations that show peak errors for these angles. 

Because of the presence of noise,  the determinant does not vanish exactly,  but is small.    The 
errors are thus finite but large.    For other elevation angles around these particular angles,  the 
errors are also large.    This indicates a sensitivity of the algorithm to perturbations in the vi- 

cinity of these angles.    The dashed curve in Fig. 13 presents rms errors for the same setup in 
the case where the reflection coefficient was assumed to be -0.5.    While under this condition, 
the singularity does not occur.    It can be seen that substantial errors persist around the singular 

angles.    This is due to the fact that the determinant is still small,   and thus the algorithm is 
sensitive to the small perturbation caused by the noise. 

It is noted that the singular conditions exist in the absence of noise.    This seems to contra- 
dict the assertion made previously,   in this section,  that in the absence of noise there should not 
be any difficulty in resolving distinct plane waves no matter how close they are.    Yet the algo- 
rithm is indeterminate for a few specific angles that correspond to a rather large angular sepa- 
ration.    It turns out that in the absence of noise these singularities do not pose a problem.    Since, 
then,  the width of the peaks observed in Fig. 13 narrows to zero.    Thus at any other angle the 
algorithm yields exact estimations with no errors.    The singular condition can be detected by 
checking the value of the determinant.    The exact angle can then be determined from the illumi- 
nation along the aperture.    For a given number of incoming plane waves within the unambiguous 
angular range,  each such singularity is characterized by a distinct illumination that could be 

determined a priori.    When the determinant vanishes,  the corresponding measured aperture 
illumination is compared with the precomputed table of singular illuminations to yield uniquely 

the elevation angle. 
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The feature of being able to distinguish between the various singularities,  which is so easily 

attained by the Aperture Sampling technique,  can be extended and applied also when noise or other 
measurement errors are present.    This is the basic idea behind the minimizing search approach. 

When noise is present,   the peaks are broadened and the determinant does not vanish exactly.    It 
is then required to perform a search to match the aperture illumination over a wider range of 

angles around the singular points.    In that case an exact estimate could not be obtained;  rather, 
a best estimate in the mean-square sense results [Eq. (29)].    The minimizing-search approach 

is to dispose with the closed-form solution and search the entire unambiguous angular range of 

the system. 
The dotted curve in Fig. 1 3 presents simulation results obtained by using the minimizing- 

search routine.    It was limited to the case of two incoming waves.    The search was performed 

over the full unambiguous angular range.    It is seen that indeed it does overcome the difficulties 

caused by the inherent singularities of the closed-form solution. 
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Fig. 14.    Angular bias error for Aperture Sampling technique,   SNR = 25 dB. 

Figure 14 presents the bias (mean) errors found in the above simulations.    The solid line 

presents the bias when the closed-form processing is used.    It is seen that the bias is large 
around elevation angles that yield singularities.    This is a serious problem and is unacceptable. 
The dashed line represents the bias obtained when the minimizing-search technique was used. 
It is seen that in general it is small.    Below 0.2° a definite increase in bias is observed.    While 
the bias is smaller than what could be obtained in a normal monopulse,   it may not be small 

enough for certain applications.    Since the errors are in part a function of the signal-to-noise 

ratio,  this means that additional radar power will be required to meet more stringent 
specifications. 
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The performance of the aperture-sampling technique is comparable to the optimum angular 

precision that one could obtain in free space (without multipath).    The optimum bound is given by 

BW *J1 
a — rms angular error. 

n N/2SNR 

For the case simulated here,  SNR = 25 dB and BW = 0.76°,   the optimum bound is a = 0.017°. 

This bound implies a biasless estimate.    However,  the simulations yield a finite bias,   and there- 

fore a strict comparison to the theoretical bound is not possible.    Observing that the bias for 

elevation angles above 0.25° is small (less than a quarter of the rms error) it seems plausible 

to combine the bias and rms errors and compare the sum to the optimum bound.    This sum varies 

between 0.019° and 0.025°.    This is clearly comparable to the theoretical value.    An elevation of 

0.25° represents an angular separation between the direct and indirect signals of 0.5° which is 

about 2/3 of a beamwidth.    This too is in good agreement with Sklar and Schweppe    as far as 

resolution in the presence of noise is concerned.    Their study shows that two components sepa- 

rated by at least 2/3 of a beamwidth could be resolved for such a SNR.    For elevation angles 

below 0.25° an increase of bias as well as rms error is observed.    The combined bias and rms 

error is about 0.034° which is about twice the theoretical bound.    While this still may be con- 

sidered as an acceptable performance it should be taken only in the context of resolving power. 

That is,   such a performance could possibly be obtained if the terrain is indeed flat.    In practice, 

this could hardly be the case.    The Fresnel zone for an elevation angle of 0.25° extends as much 

as 16 km from the antenna (for the given case).    For lower angles it extends even further.    Under 

these circumstances earth curvature and existing mountain ranges must be included in the ground 

model (roughness can be neglected).    The earth curvature reduces the magnitude of the reflection 

coefficient,   and the possibility of a mountain range beyond a distance of 16 km limits how low an 

elevation angle one should consider.    Therefore it is believed that the above simulations give an 

indication of only the resolving power below 0.25°.    How meaningful they are in terms of a real 

terrain can be judged only with reference to a specific case.    Finally,  it ought to be emphasized 

here that the error magnitudes quoted above apply to the simulations only.    In actual systems 

larger errors will be found due to the ever presence of errors other than random noise. 

D.     Multiple-Spei.ular and Diffuse Ground Reflections 

As was noted earlier the Aperture Sampling technique can be easily extended to handle more 

than just one specular reflection.    Such an extension is rather involved,   if possible at all,   in the 

techniques described in the previous sections.    The question then is how well does the Aperture 

Sampling technique perform in a multiple-specular environment.    There are two situations of 

interest in this respect.    One involves the presence of a few strong additional specular reflec- 

tions,  the other involves a number of reflections whose total energy is small compared to the 

principal specular reflection.    Both cases are representative of a rough terrain.    In the first 

case the additional specular reflections may be due to the existence of large obstructions.    The 

second case describes a rough terrain without any outstanding distinct scatterers.    A limited 

number of simulations were performed to evaluate the performance of the technique in these two 

cases.    Rather than getting involved in a complicated terrain modeling that could be correlated 

to a specific terrain (a task that might be undertaken in futurephases of the program),   it was felt 

that some indication concerning the performance of the technique can be obtained from a simpli- 

fied model of a rough terrain.    In the case of strong multiple reflections one is concerned with 
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reflected signals which by themselves are larger than the noise level so that there exists for 

each,  a high probability of detection,  given the means to do so.    The Aperture Sampling technique 

may have this capability.    To test this case,   large reflected signals with fixed angle-of-arrivals, 
amplitude,  and phase were superimposed on the previously used flat ground model.    In particular, 
two such components were used.    The angle-of-arrival of these two components was chosen to 
simulate a reflected signal from a large obstacle within the first Fresnel zone.    To accommodate 

two additional reflected signals,   six sampling elements were used.    Two typical cases of such 

simulations are given in Table I.    The indicated signal-to-noise ratio in the table is the one that 

TABLE  1 

MULTIPLE SPECULAR REFLECTIONS 

55 dB 45 dB 35 dB 25 dB 

Bias rms Bias rms Bias rms Bias rms 

0.45 0.0 0.011 -0.005 0.039 -0.072 0.211 0.344 0.804 

-0.45 0.001 0.079 -0.002 0.184 0.041 0.271 0.115 0.321 

-0.9 -0.003 0.080 0.027 0.207 0.092 0.320 0.096 0.410 

-1.5 0.8 0.028 -0.009 0.101 0.078 0.291 0.133 0.469 

0.55 0.002 0.067 0.002 0.026 0.038 0.120 0.036 0.182 

-0.55 0.395 0.397 0.418 0.348 0.483 0.350 0.442 0.385 

-0.9 0.105 0.338 0.226 0.386 0.258 0.492 0.426 0.445 

-1.5 -0.442 0.447 -0.594 0.542 -0.223 0.678 0.104 0.738 

ET — true target el evation 

would be observed by the total aperture.    The most obvious observation is that the ability to 
resolve multiple specular reflections depends on the SNR.    It is seen that for a SNR of 25 dB, 

which is probably the one of primary interest,  the performance is unacceptable.    Comparing the 
two cases one may also conclude that the SNR is not the only factor that affects the performance 
in a multiple-specular environment.    The second case,  in which the elevation angle is 0.1 * larger 
than the first case,   shows that the performance is poor even for SNR of 55 dB.    These simula- 
tions were performed using the closed-form processing.    No attempt was made at this time to 
extend the search approach to handle more than one specular.    The results shown here indicate 
that further work is needed in order to establish the performance of the Aperture Sampling tech- 
nique in the presence of more than one specular reflection. 

The presence of diffuse reflection was simulated by adding a few small reflections to the 

principal specular reflection.    At the outset it was realized that,   since the strength of each such 
component is of the same order of magnitude as the thermal noise,  there is an extremely small 
probability of detecting and resolving each one individually.    Therefore,   accuracy of the estimate 

in the presence of such small components,  when the system assumes the presence of only one 
specular reflection,  was evaluated.    Specifically,  in one case,  the specular reflection coefficient 
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was assumed -0.85 (rather than -1),  and ten components were then superimposed on it.    The 

ten components were chosen in magnitude to add to 0.15 if they turned out to be all in phase.    In 

other words,  the ratio of specular to the sum of the diffuse reflections is 1 5 dB.    The phase of 
the individual components was assumed uniformly distributed between 0° and 360° and was se- 
lected randomly.    Similarly,  their angle-of-arrival was assumed uniformly distributed between 

0° and -5".    Table II presents the results of these simulations.    The first column describes the 
performance in the absence of multiple reflections.    Comparison of these results to Fig. 13 shows 
small differences in the bias error.    This is accounted for by the fact that here R = 0.85,  and 
in this particular simulation computer time was traded for a coarser granularity in the search 

routine.    In the rest of the table various combinations of multiple reflections were added to the 
specular reflection.    The four cases shown in Table II include two diffuse-to-specular ratios, 
— 10 dB and —15 dB,   and the number of components used is 10 and 20.     In all cases the SNR 
is 25 dB. 

The results given in Table II provide some indication concerning the performance of the 
Aperture Sampling technique in the presence of diffuse reflection.    An obvious conclusion is that 
the performance degrades as the ratio of diffuse-to-specular reflections increases.    The effect 
is mainly an increase of the bias error,  though a discernable simultaneous increase of rms error 
is observed for the case of -10 dB.    The bias changes sign in an irregular manner as the eleva- 

tion angle varies.    This fact makes it difficult to suggest that some type of calibration could be 
used to eliminate it.    It ought to be remembered that the processing assumed the presence of a 
single specular reflection.    It seems that the variable bias represents an uncertainty across the 

range of elevation angles of interest here.    It may be possible to specify bounds for this uncer- 
tainty as a function of the diffuse-to-specular ratio.    In that case the radar processor could 
estimate the performance from an a priori estimate of this ratio.    At any rate,  one should real- 

ize that even the worst bias error in the presence of -10 dB diffuse reflection is 1/15 of a beam- 
width.    Such performance still surpasses the performance of a conventional monopulse in the 
presence of multipath. 

The above evaluation should be qualified by observing that the rudimentary rough surface 
model represents a possible situation and not a specific terrain.    It is based on the gross facts 
that diffuse reflection may have a random phase and arrives from a wide range of directions. 
It could not be related to the physical dimensions of the roughness or to the correlation length 
of such a surface.    It is believed that it does represent a possible realization from an ensemble 
which is specified only by means of the diffuse-to-specular ratio. 

The technique is being considered for application in a phased array.    In this case it is pos- 
tulated that the array is divided in the vertical direction (elevation) into three (or more) sub- 
arrays,   each serving as a sampling element.    In this approach the directivity in the transverse 

(azimuth) direction is maintained.    The directivity of the sampling element in the vertical plane 

(elevation) depends on the number of sampling subarrays used.    In the simulated case the total 
aperture beamwidth was 0.76°.    Therefore,   in the case of three elements,   each has a beamwidth 
of about 2.28°.    This was the motivation for limiting the range of angle-of-arrival of the diffuse 
components to 5° at most.    It was felt that for larger angles the directivity of the subarray would 

reduce the strength of the arriving signals. 
Based upon the simulations it is believed that the performance of the Aperture Sampling 

technique represents a substantial improvement over the schemes described in the previous sec- 

tion.    This is clearly demonstrated when they are compared in the presence of a single specular 
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reflection.    With regard to multiple-specular or diffuse reflections more work is needed.    How- 

ever,  the simulations indicate that it may be possible to handle strong multiple reflections and 
to obtain acceptable performance in the presence of small diffuse reflection. 

IV.   CONCLUSIONS 

The comparative evaluation of the multipath compensation techniques presented in this re- 
port is based on their performance in the presence of a single specular reflection.    It was felt 
that if a technique failed to show promise when tested under such circumstances,  there was no 
point in subjecting it to a more complicated test which could include more specular components 

or diffuse reflections.    The comparison indicates that the Aperture Sampling technique is defi- 
nitely superior to other techniques provided the minimizing-search processing is used. 

Experience has shown that in most cases,  for a variety of terrains,   at low elevation angles 

the ground effect consists of a single specular reflection,  on which other small reflections are 
superimposed.    Therefore,  the failure of the Complex Monopulse techniques to offer a solution 
in the presence of a single specular reflection is enough to disqualify them as a viable solution 
to the problem.    The simulations indicate that the Aperture Sampling technique performs well 
in the presence of a single specular reflection.    In some cases,  the ground effect includes addi- 
tional strong specular reflections.    In these cases one would like to be able to resolve the direct 
return in the presence of such strong specular reflections so that the target elevation angle 

could be estimated accurately.    The Complex Monopulse techniques do not offer such an option. 
While in principle they may be extended to handle more than two plane waves,   such an extension 

proves to be extremely difficult and complicated and therefore not practical.    The extension of 
the Aperture Sampling technique to handle more than two plane waves is simple.    However,  the 
limited number of simulations performed to assess its capability to resolve more than two plane 
waves did not yield definite positive conclusions.    It is believed that more work in this area is 
needed.    In particular,  the minimizing-search routine should be extended to handle multiple 
strong reflections and studied before final conclusions are drawn. 

The simple complex monopulse, comprising a displayed spiral or an equivalent analytical 
algorithm, suffers from inherent ambiguities. At present, no simple solution to this problem 
is in sight. In addition, seasonal and azimuthal variations in the terrain characteristics make 

it less realiable. 
The frequency-diversity version of Complex Monopulse requires either the knowledge of the 

slope of the reflecting plane or the guarantee that the target's cross section is dispersionless. 

In the case of a rough terrain the knowledge of the effective slope of the reflection plane is as 
much a problem as the knowledge of the reflection coefficient.    The assumption that the target 
cross section does not vary with frequency is not valid in most cases.    It is therefore concluded 
that this technique could not be recommended as a means to overcome the multipath problem. 
The option to use height diversity implies the use of three monopulse channels with good linear- 

ity.    This is far more complicated than the simple subdivision of the array as is suggested by 
the Aperture Sampling technique.    Therefore,  this approach is also rejected. 

Similar problems plague the boresight-diversity version of the Complex Monopulse.    The 
need,   in the case of an array,  for at least three monopulse channels with a wide linear range 

exists here too.    The uneven illumination of the ground by the various beams induces angular 

errors.    The large amount of squinting which is required for accurate estimates at low elevation 
angles results in high SNR degradation.    In addition,  no simple solution that could eliminate the 
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large errors encountered whenever the phase between the direct and indirect returns is an 

integer multiple of n is available at present.    Thus,  this approach is judged unattractive. 
In contrast to the Complex Monopulse techniques,   the Aperture Sampling technique has been 

shown to yield accurate target elevation estimates in the presence of a single specular reflection 

without a priori knowledge of the terrain characteristics.    The use of the minimizing-search 

processing eliminates the singular conditions encountered by the closed-form solution.    The 
technique was also tested in the presence of diffuse reflections whose total power is as high as 

10 dB below the specular reflection.    Under these conditions,  degradation in accuracy is observed. 

However,  the resulting errors are small. 

No definite conclusions concerning the ability of the Aperture Sampling technique to resolve 

more than two plane waves can be drawn at present.    Based on the simulation results it is be- 
lieved that this method is worth further analytical and experimental investigation.    In particular, 

experiments to test its performance in the presence of a variety of physical terrains should be 

conducted. 
In this report the signals were assumed to be narrowband.    The effect of wide bandwidth 

on the performance of the Aperture Sampling technique should also be addressed in future studies. 
In particular,  its interaction with the array's dispersive characteristics should be investigated. 

Its performance in estimating parameters other than elevation angle in the presence of multipath 

is also of interest. 
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