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0 
FOREWORD 

This collection of technical papers,   some of which are intended 

for journal publication,   comprise the final report on the magnetospheric 

modification study carried out at The Aerospace Corporation during 1973 

and 1974.    This work was undertaken following prior research on theo- 

retical aspects of artificial plasma injection into the magnetosphere.    The 

objective was to provide further support of a theoretical nature for mag- 

netospheric mc Hfication programs. 

Three specific topics were mentioned in the work statement of the 

present research.    The objectives were to study the effects of fast electrons 

in bounce resonance with amplifying ULF waves,   to study the modification 

of ULF and VLF growth rates by gradient and trapping effects in an ' 

inhomogeneous plasma,   and to study the excitation of ULF and VLF signals 

within a plasma cloud by means of a modulated ion beam.    Significant (but 

uneven) progress was made on each of these topics during the period of 

research.    Reports of progress made on related topics,  not specifically 

mentioned in the work statement,  are also included here. 

The present coUection of papers includes contributions to both the 

formal and the heuristic theory of wave-particle interactions in the 

magnetospheric plasma.     The first and eighth papers: pay special attention 

to the formulation based on the adiabatic invariants of charged-particle 

motion, while the sixth and seventh papers concentrate on the effective 

quantization of wave spectra.    The second and third papers provide a 

careful treatment of some uniform-plasma instabilities and their 

geophysical consequences,  while the fifth offers a more heuristic view 

■ 
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of the wave-particle interaction.    The fourth paper provides a precise 

evaluation of particle lifetimes in the strong-diffusion limit,  which plays 

an important role in both the formal and the heuristic aspects of wave- 

particle theory.    The last three papers  (9-11)  relate to magnetospheric 

physics as an experimental science,  in particular to the use of particle 

beams as radiators and amplifiers of wave energy. 

Certain contributions,   notably the eighth and ninth,   represent only 

rudimentary remarks on the problems in question.    However,  the first 

seven papers present research results in essentially finished form. 

Relatively few refinements on those seven topics are planned prior to 

publication. 
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CRUDE APPRDXimTIONS TO SOME ASPECTS 

OF THREE-DIMENSIONAL mGNETOSPHERIC DYNAMICS 

John M. Cornwall 

Space Physics Laboratory, The Aerospace Corporation, Los Angeles, California 

and 

Department of Physics, University of California, Los Angeles, California 

%0 

1.    INTRODUCTION 

It is qu_te well-understood in principle how to formulate and solve 

dynamical problems in a three-dimensional magnetosphere (i.e., one in which 

all three adiabatic invariants M, J, $ come into play), given the relevant 

diffusion coefficients, loss rates, and so forth (Haerendel, 1968; Lanzerotti 

and Schulz, 1973). But there are very severe practical difficulties in 

carrying out a truly uhree-<limensional calculation, and practically none exist 

in the literature. Two-dimensional calculations abound: radial diffusion 

of equatorially-mirroring (J = 0) particles, pitch-angle scattering at fixed 

L (or fixed $ ). In many cases, this is not good enough; for example, most 

data on energetic trapped alpha particles (e.g., Fennell et al., 1973) is off- 

equatorial, but theory (e.g., Cornwall, 1972) has concentrated on J = 0 

particles. 

Tne purpose of the present work is to go one small step beyond purely 

qualitative discussions of three-dimensional probLems by providing a crude, 

i iriiitiii'lriiiiiiiniiriiiini 
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semi-quantitative overview of the essential features of such problems.    This 

wric is not intended in any way to replace real three-dimensional calculations, 

but it should provide space physicists with a road nap for following the 

results of such calculations, should they be carried out.    Our nnin emphasis 

is on the change of pitch-angle anisotropy due to radial diffusion, with or 

without pitch-angle diffusion. 

In Section 2, an approxinate fbnnula for the variation of equatorial 

pitch angle with   L   duruig M- and J-conserving transport processes is given. 

The virtue of this approxüiation is that it yields a simple, WiiatGly 

iDterpretable scaling law for distribution functions which are power laws in 

energy anj pitch angle, when the transport   processes are independent of   M 

and   J .    Section 3 discusses a siirple problem vdiere M- and J-dependent 

transport processes are involved, and Section 4 discusses an approxination to 

the problem of coupled radial diffusion-pitch-angle instability.    Here radial 

diffusion tries to increase the pitch-angle anisotropy, and pitch-angle 

diffusion tries to decrease it. 

] 
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2.    APPRDXimTE KINEmTICS 

The theoretician fomulates theories in terms of the adiabatic invariants 

M, J, and $ , while experimentalists measure energy   E , equatorial pitch- 

angle   a , and   L .    In a dipole field, we nay (and do) choose    $ = L-1 , but 

the relationship betveen   L, M    and   J , are on the one hand, and   E   and 

y = sin a   on the other, is usually given numerically (e.g., Nakada, Dungey, 

and Hess, 1965).    For non-relativistic motion, y is a function of   L   only at 

fixed   M   and   J .    In the notation of Lanzerotti and Schulz (1973) the first 

invariant is 

2 
Pl    2 3 

M - 1 - EyV M " SiB " 2B- (2-1) 
o 

c 
and the second invariant is 

J = jl p. j ds = 2pLa Y(y) (2_2) 

vdiere   Y(y)    is a conplicated function of pitch-angle.    Here    pi   , p. .   , p 

are momentum variables,    m   is nas^,    E = p2/2m , B   = .31 gauss, a = one 

Earth radius.    It follows upon elimination of   p   that 

Y(v) t    = const, at fixed M, J (2-3) 

It is not hard to see that (2-3) can be written in the equivalent form 

h(L,yo) h(L ,y ) 
y      = const. = yo    

u (2-4) 

^ where the exponent   h , depending on both   L   and   y   , can be expressed in 
■4 » 

terms of the function Y/y and its inverse. (The reference value y  depends 

on L^ , and on J /M , from (2-1) and (2-2).) Equation (2-4) would be much 

ü .„j, .,-■ ■ ■ ......... 
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more useful if the dependence of   h   on   yo   oould be suppressed, at least 

approximately, for then an interesting scaling law holds for the adiabatic 

transformation of a distribution function which is the product of a power low 

in energy and in   y .   A numerical study shows that for a wide range of values 

of   yo , the exponent   h   is indeed roughly Independent of   y   .    The 

expression 

h(L) h(Lo) 

y       =y0 (2-5) 

is valid to within 3% or better in the range 0.2 < y   < 0.8 (roughly W-eO11 

in equatorial pitch angle) with   Lo = 7 , and   2 < L < 7 .    The function 

h(L)/h(Lo)    is shown in Fig. 1.    For larger or smaller values of   y    , the 
o 

approximation that   h   is independent of   yo   becones progressively worse, but 

even for 0.8 < yo < 1 ,  (2-5) is usefully accumte.    The reason is that if 

yo   is sufficiently close to   1 ,    yo
h   depends insensitively on   h ; thus 

(2-5) correctly predacts that   y = 1   if   yo = 1 , no inatter what   h   is. 

With the approximation that   h   is independent of   yo , we can extend the 

fundamental energy scaling laws of Nakada, Dungey, and Hess (1965) to pitch- 

angle scaling laws.    Let a particle, initially at   Lo , have energy   E     and 

pitch-angle variable   yo   there.    The conservation of   M   as esqjressed in the 

second form of (2-1), plus the approxirate formula (2-5), yields 

-    2(h/h )-2 
E = E (L /L)    y 0 

o   o ^ (2-6) 

^lere E and y are the transformed values after the particle has undergone 

adiabatic transport (conserving M and J ), and ho = h(L ) . Equation (2-6) 

expresses the well-known result that particles with snail pitch angles gain 

less energy than those with large pitch angles. 

. 

O 
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Let a group of particles have an initial momsntum-space distribution 

function at L = L  of the type 
o       J c 

xr _ -r, -a  b 
f = E   y 
o   o  Jo (2-7) 

and let these particles be acted upon by processes which (1) preserve M and J; 

(2) have transport coefficients independent of   M   and   J .    Then.,, according to 

the single-particle laws (2-5) and C2-6), the distribution function naps into 

a similar form 

f   + f ~ E"Vß 

o y (2-8) 

(leaving out a coefficient depending on L only) where 

3(L) = -2a + (b + 2a)(h/h ) o (2-9) 

i 

• 

Because   h/ho   increases with decreasing   L , the anisotropy   ß    increases, as 

is well-known, but what may not be so vrell-known is that nost of the increase 

in anisotropy comes from the decreasing power law in energy.    For example, the 

values a = 3, b = 1 rou^ily characterize energetic (> 50 keV) ring-current 

protons at L = 7.    At L = 4,  (2-9) yields ß = 2 and at L = 2, ß = H.    However, 

for the less-energetic protons at the peak (10-20 keV) of the ring current 

distribution at L = 7, a « 0, and ß = 1.1 at L = 4, 1.4 at L = 2.    Thus pro- 

cesses of the sort considered in this paragraph do not lead to mich increase of 

anisotropy of the particles at the flux peak, which nay very well be significant 

for the dynamical role of instabilities driven by pitch-angle anisotropy. 

In fact, no known transport processes are independent of   M   and   J , so 

the single-particle laws (2-5),  (2-6) cannot be promoted to a distribution- 

function law such as (2-8).   MDreover, no distribution function is really of 

,■^^^^l^^..^^,-.^,.^..^..)^f^il^-^^i>]i^W^^^Ui^f^fe>ft'T
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the factorizable power-law type in (2-7). Nonetheless, (2-8) and (2-9) should 

be a useful and rapid way of characterizing the zeroth-order change in the 

distribution function. In Sections 3 and 4, we go beyond the sijrple rule 

(2-9) to discuss nore-or-less realistic dynamical processes, and interpret a 

and 3 in terms of suitable moments of the distribution function. 

»t^ 
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3. QUASI-REALISTIC RADIAL DIFRKTON nvMAmnQ 

Let f ^ the phase-space distribution function averaged over cyclotron 

Phase, bounce phase, and longitude or what anounts to the sane thing, the dis- 

tribution function in M, J, and $ . Suppose that f is subject to radial 

diffusion and a loss process, as described by: 

3f _ 3 
at " a$ D  |£ 1 - Xf 

(3-1) 

(With $ = L"1 , D$$ = L"
4 D^ .) Here the diffusion itself is one-düensional, 

but if A and D^ depend on M and J , one has a non-trivial conplication 

of the sort discussed in the last Section, in converting from M and J to 

E and y . 

let us parametrize D^ and A by power laws in L , Eo , and yo whero 

Eo and yo (equivalent to M and J ) are the energy and pitch-angle vLiable 

at a reference L-value Lo (we choose Lo = 7 in what follows): 

DLL ^o^ EoS ^ » ^^EoPVo
q (3-2) 

As Haerendel (1968) has indicated, -the tüe-stationary solution of (3-1) 

linear combination of the functions 

is a 

*■ 

T-m/2 y ( .       T-m/2 x ,  . 
^ K^tz) ,    L Iv(2) (3-3) 

with 

m = a-3, n = a + ß-2, v = -m/n. 

z2 = 
i+A 

irn E P-3 y ^ o       -^o (3-4) 
o J 

■ihirtVlr.f^n^^'--^^-1^^-"^'^*'" l^Jk^jJ,^^^! ^.^t^^w^^^.,^^.^..v..^>a^.:,\^^i.*;^to^in.t^,:irriB^^^-i-^w.;H.^_1/^^^ 
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Here Kv , Iv are the usual jmdified Bessel functions. To express the soluticn 

in terrns of E and y , one uses the relations (2-5) and (2-6). 

There are two main processes for redial diffusion: magnetic ijnpulses, 

and electrostatic fluctuations. For both, we take the usual value a = 10 . 

With a fluctuation power spectrum falling like of2 (for both electric and 

magnetic variations), magnetic diffusion has s « 0, t = 2.7, while for electro- 

static diffusion, s s -2, t = 0.  Less is known about the dominant loss 

processes; for simplicity, we take p = q = ß = o, hence n = 8, v = -7/8. Other 

cases are easily wrked out. The positive power t for mgnetic diffusion 

reflects the well-known fact that nagnetic diffusion is weak at high latitudes, 

i.e., small pitch angles. 

First, we discuss electrostatic diffusion. For not-too-relativistic 

electrons and for protons, Cornwall (1972) has estimated that for electrostatic 

fluctuations Do . lo"
4 (keV)2/day. Ring-current protons have an effective 

lifetime of a day or so, thus A^1 ~ 1 day. In this case, O-U) gives 

z ~ 25 L  Eo with Eo in keV. The decrease of z with increasing L 

indicates that the dynamics are diffusion-dondnated at large L (z « 1), loss- 

dominated at snail L (z » 1). The boundary condition f « 0 at L « 1 , 

where z » 1 , requires us to use only the K, solution, with the asymptotic 

behavior 

K (z) ~ (Tr/2z)3s e"z , z » 1 (3-5) 

The full solution, satisfying the appropriate boundary condition at   L = L   , 

is: 

fCL, Eo, yo) _o 
L 

m/2 

f (Lo' Eo' V Kv(2)/Kv(zo) (3-6) 

 ■ . ..-^-.V-'- ■..iT^^(.^Asv^^.^c^^, .^■,:,..^..,v..'..^... -,:.■. ■^■■^....■.,.:.:s.J.>.^±*te^^:..^^^^^ 
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i 

\4here   z    = z(L = L ) . 
o o 

In the diffusion-dominated regims   Kv(z)/Kv(zo) ~ 1 , and the remrte of 

the last Section hold:    power^law distrihtrtion functions nap into power laws, 

according to (2-9).    Howsver, in the loss-dominated regime there are new 

effects:    power-law scaling breaks down, but the local pitch^angle anisotropy 

at fixed energy (defined in (3-10)) inc^ases over the value given in (2-9). 

The reason for the increase is that particles with hi^i energy diffuse 

electrostatically more slowly than low-energy particles, so that the energy 

spectrum becomes steeper; that is, in effect the paranEter   a   of (2-9) is not 

constant, but increasing with decreasing   L . 

With the aid of (3-5), the IOLS -dominated solution is (aside from an 

overall multiplicative function of   L ) 

,    z -z 
f ~ E "^ e 0     f (L , E , y ) 

o o     o   ■'o (3-7) 

Take the initial distribution to be of the power^law type (2-7), and apply the 

transforroation laws (2-5) and (2-6) to find 

f ~ Ea-V+r expl - .07  (|) 

where   ß   is given in (2-9), and 

-2r 
(3-8) 

r = (h/h ) - 1 o (3-9) 

Define the local pitch-angle anisotropy as 

Y = (y/f) 3f/3y (3-10) 

This definition has physical significance; the growth rate of the electro- 

magnetic cyclotron instability is essentially an integral over energy of fy 

as gxven in (3-10).    For a power^law distribution,   y   is just the power of   y 

-m 
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For the distribution function (3-8), it is easy to find 

YCE,y) = ß + r + .14r(E/L)y -2r 
(3-11) 

The anisotropy has significantly increased over the value ß derived from the 

scaling law (2-9). At L = 3,5, where from Figure 1 r = 0.2, 

Y^ß + 0,2 + 9x IO"^ and a 100-keV particle has y = ß + 1.1; at L = 2, 

Y = ß + 2.2 . This rapid increase in anisotropy vrould represent CL significant 

increase in the free energy available to drive instabilities, were it not for 

the fact that it is the loss mechanism vfaich is responsible for the anisotropy 

increase; the available free energy may be increased or decreased as a result 

of the process discussed here. 

The increase of anisotropy can be directly traced to the fact that z 

decreases with increasing y , at fixed L and E . Thus the sane phemnenon 

occurs for magnetic diffusion. The general condition for the anisotropy to 

increase above ß with decreasing L is 

2r(p - s) + (t - q) (r + 1) > 0 (3-12) 

which is satisfied for magnetic diffusion and constant A for t > 0 . Using 

a small magnetic diffusion coefficient, such as D ~ 10"10L10 , leads to 

tremendous increases in anisotropy, but far more trenendous decreases in total 

flux. An interesting balance between anisotropy increase and flux decrease can 

only be achieved when z is not much larger than, or much smaller than, one, 

that is, on the boundary of loss-dominated and diffusion-dominated transport. 

It is worth noticing that this sort of process may actually decrease the 

anisotropy (compared to that given in (2-9)) for low-energy protons. Here 

charge-exchange losses are important, and for them p is negative which works 

the wrong way for condition (3-12) to be satisfied. Moreover, for very low-energy 

■» ■ 

' 
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protons (< 10 keV at L = ■+) Cornwall (1972) has estimated that s = 0 , a = 6 

Again, this behavior of the diffusion coefficient worics the wrong way in 

(3-12). 

I 
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4.    COUPLED RADIAL DmUSION AND PTTm^GLE pTrnKTOM 

In the presence of transport processes which violette   M   and   J   as well 

as    * , equation (3-1) is extended to (the loss tem.   X   is dropped, for the 

sake of brevity): 

8f _ 3 
3t " 3$ J n 3x V    avJ J ID 3x ^     9X- 

v*iere the variables x1 , x2 are equivalent to M 

(4-1) 

and   J , and 

Q = 
3(M,J) 

3(x1,x2) (4-2) 

The presence of the Jacobian   Q   is denanded by-^ canonical nature of the 

variables   M, J, * ,    it is convenient to choose the variables   x1   to be the 

velocity components at the equator: 

J 

0 

Then one readily finds that 

Q ~ v. (1-y2)35 T(y) 

(4-3) 

(4-4) 

(a factor ^dependent of   M   and   J   is omitted), where   T(y)    is the nor^li^ed 

bounce time: 

TB = (4mLa/p) T(y) 
(4-5) 

The diffusion coefficients D1^ are averaged over bounce phase, cyclotron 

phase, and longitude; thus they differ from the usual locally defined diffusion 

coefficients of quasi-linear theory. For electromagnetic cyclotron waves 

:-:^^... .■■■.,■.Jt-..l,l.<..-.>, *IJL^±UA.I-.^^J!,.:IW^---' . 'A*,.ii*:'~ 

' ' 
->.» 
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propagating parallel to the static field, the local equivalent of the second 

term on the right of (4-1) is in the resonant approxijnation (Kernel and 

Engelmann, 1966) 

I i1 pk(vi \ v (M-6) 

\ 
Ü1 
r- - Vi ^7+ Vl9^ 1 (4-7) 

\ 

* > 

\-i 
** 

mc 
6(kv, 

\ + Ü) (4-8) 

In t^-se equations,    v^   and   V| |    refer to local oanponents, not conponents of 

the equatorial velocity.    By conparison with (4-1), it is reasonable to assure 

that the bo nce-plhase averaging process yields equations like (4-6) and (4-7), 

except that the explicit   v.    in (4-6) is replaced by   Q   (see (4-4)), and 

VJ_ » v| |    ^ taken to mean equatorial components, as in (4-3).    Furtherrore, 

1^   nust be defined as an average over the actual wave fields, so the form 

(4-8) is not really appropriate.   As the reader will soon see, the use of (4-8) 

does not invalidate the formulas below. 

The quasi-linear description is complated with the equation for wave 

energy: 

9W 
-ät + y.(yGwk) = 2Ykwk (4-9) 

where   VG   is the group velocity,    Yk   the growth rate, and the wave energy 

Wk   is given by 

[1 + n"2|j("2>] 2^.   I^l2   5h 
8w      TTg (t-10) 

hJ.^:..^ ^-..■:,-!^ _•....■ .:.-^,*Ä.i*1iJMi£Mi^r: ,■■»vi^.^.^^^. .t ::■ ^..^iMStti^AAiM&O&Ji *  --'■■('■■i^-^^^■~..;^-:.,/^.:■■ .i.i^ÜäaJiiEgfc ^OTihnfHlT^-Nu-M\nilrr/rr'aft^^'ffit'"^^^w^^^^"'^w^ia 
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Here n is the index of refraction, and v^ the phase velocity. Again, these 

equations must be interpreted as suitable averages over the bounce phase and 

longitude, v^ich amounts to replacing V'CVgVy by --(Vg/m , where I ~ La 

is a length characteristic of the field line. 

The expression for the growth rate Yk must be such that it correctly 

accounts for the transfer of energy between waves and particles. As with all 

the other fomulas here, a spatial average is carried out, so Yk is not given 

by the usual local expression. The only difference is the appearance of the 

Jaoobian Q : 

x > 

.2V 
2 

e 
G  2 
mc 

d v Q 6(kv|| - \ +  ß)^ f (4-11) 

Here, of course, the nultiplicative constant omitted in the defim^on (4-4) 

of Q matters. Since (4-11) gives the correct local growth rate if Q is set 

equal to v. with the usual velocity-space distribution function, and since 

(1-y ) T(y) is of 0(1) if y is not too close to one, this multiplicative 

constant is itself nearly one. The final value of this constant should be 

chosen on phenomenological grounds (which gp beyond the soope of this paper) 

having to do with the bounce-phase averaging, loss of resonance in the 

inhoirogeneous magnetic field of the earth, etc. For illustrative purposes, we 

take this constant to be exactly one. 

Equations (4-1) - (4-11) are a truly formdable set of non-linear partial 

differential equations in four variables, with two unknowns. It is to be hoped 

that someone will tackle these equations in their full complexity sore day with 

the help of computers, but even if this is done, the results will be as 

difficult to interpret simply as if they were experimental data. It appears 

useful to extract from these equations a simpler, approximate set of new 

equations, which are both easier to interpret and easier to oonpute. In view 

0 

B^i.j,-  I flHH^&wa&k^^UUii -/•;■:..:;-...■:.■  ,,•■.., ■..- 
■^.W**a^f...,^.^.^.L.*. :i:-^^ 
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of the fairly simple results of Sections 2 and 3, such a sinplified set of 

equations mi^rt make reference to an effective power-law in energy and in pitch- 

angle. Equivalently, one may take velocity-space monents of the quasi-linear 

particle equation (4-l)(e.g., Roux and Solomon, 1971; Hamasaki and Krall, 1973). 

Three such equatLcns suffice: for the number density, the density of total 

energy, and the density of perpendicular energy. 

Because the derivatives with respect to * (or L) in (4-1) are to be taken 

at fixed M and J , it is necessary at any given L to egress the distribu- 

tion function f in terms of M , J , and L , and then to integrate over M 

and J . It is not hard to show that 

:■ 

<±1dJ = 27TCL   Q dvidv (4-12) 

.2^ 
vtfiere   Q = vi(l-y )    T(y) , and   C   is a universal constant, independent of 

M , J ,    and   L .    By appropriate choice of units for   M   and   J , we nay 

choose   C = 1 .    Define 

N(L) = 2TT j Q dvidv..  f = L-4 | dMdJ f (4-13) 

Since       dMdJ f   is (proportional to) the total nunber of particles per unit 
2 

* , L N(L)dL   is the total number of particles between two L-shells separated 

by   dL , modulo a universal constant.    Similarly we define nomants of any 

function   G(M,J)  : 

<NG> = 2-n \ Q dvidviiG f (4-14) 

If ^LL ^ C*-!) depends on M and J , the procedure of taking moments 

of (4-1) yields more unknowns than there are equations. The only way around 

this dra&*»ack is tc assume a functional form for the distribution function f ; 

   _._._ ■ ..;-...^aL^la«Ji>l ^■■.^^■^ ^.^^ .W^Tir ^^^^^ ^ -^Ih*.^^^ ^.  ■^^^^..^^^ \.:^a^.,^tfK^rn-ir,,, ■ ■,.■ -^ ^^-^^^^^^..^v^^.-j.^.-^i.-" ^ ^^^^J^aaabtfaKlJ,. br^VL..^. i   i  ■■!■ 
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in order to make contact with Sections 2 and 3, we assume a double power-law as 

in (2-8), where both powers may depend on   L : 

f(L,E,y) = FCDE'V ,-a b 
(4-15) 

Now given a particular form of D^ (e.g., (3-2)), all nDnents are expressed 

in terms of the three quantities F,a,b  as well as the lower arc off energy 

at vhich the energy integration is terminated. To express f in term; of 

L,M,J instead of L,E,y, the adiabatic relations (2-5) and (2-6) are used. 

It is a simple matter to multiply (U-l) by 1, E, and E. and integrate to 

come to the three moment equations 

at  3$ ^ u** 3$ 

—§r " 3$ < D$$ E 3$ > " I 2YV Wv 'k "k 

(4-16) 

(4-17) 

Ü 

i 

lt<NEi>-l$<D .   E. ^i>   y 9v  f ß 1 w. (4-18) 

In deriving (4-17) and (4-18), (4-6) to (4-8), (4-9) and (4-10) were used. In 

the absence of energy transport by radial diffusion or oonvective loss of waves, 

(4-17) plus (4-9) wDuld express conservation of total energy <NE> + J W. ; it 

is for this reason that the expression (4-11) for y.  is used. 

The set of equations must be completed with some reference to the wave 

equation (4-9). The shortest tijiE scale in the problem corresponds to the 

inverse of the naximum growth rate (the maximum being taken as frequency w, 

or wave number k is varied), which we denote y .    Of course, y   no longer 

depends on k , but only on such quantities as a, b, N, etc. Because the 

wave growth time is short compared to the radial diffusion tine, (4-9) can be 

,A,.  ■•— •- • —• - ^.-.•- — - •^" -*^-^-^-^-*^-"^^-^-  
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replaced by the simpler equation 

7 = vg« 
(4-19) 

: where   Vg   is the group velocity for the wave nuniber of naximum growth, and   I 

a length characteristic of the field line.    Equation (4-19) is an algebraic 

constraint on   a, b,    and   F ; added to the three eqriations (4-16) - (4-18), 

one has a set of four equations for four unknowns   a, b, F,   W (where 7 W = 

I YkWk).    m the tiTiE-statiorary case 0/9t = 0), these equations are non- 

linear ordmary differential equations in the single variable   L , thus 

considerably siller than the original non-lW partial differential equations 

(4-1),  (4-9), and (4-11).    It is even ^ssible to make sone analytic progress 

with these simpler equations, but it would be premature to report on this work 

now. 
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ABSTRACT 

After years of investigation, the role of instabilities (notably in 

electiünagnetic cyclotron jiodes) in magnetospheric ring-cuiTent dynamics is 

not yet settled. In this paper, experimental evidence for the effects of 

these and possibly other instabilities is reviewed. It is very interesting 

that at the present time only a snail fraction of the total nuirber of protons 

known to be in the stomt-time ring current is observed to be directly 

precipitated at low altitudes, in part because of inadequate experünental 

coverage, and possibly in part because these protons lose much of their energy 

before precipitating and are thus not easily seen in nost detectors. There 

is strong evidence that ring-current dynamics occurs off the equator outside 

the plasnapause; one possible mechanism is an electrostatic instability, which 

is probably quenched insidp. the plasnapause. 
J 
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1. INTRODUCTION 

If the author had written a paper with this title a coupD > of years ago, 

he TOuld have been able to present a reasonably consistent theoretical 

picture of ring-current dynamics, with the ion electromagnetic cyclotron (HC) 

instability, occurring just inside the plasmapause, bedjig responsible [Cornwall 

^LaL, 1970, 1971a] for the observed termination of the ring current just 

inside the plasmsphere [Russell and Thome, 1970] and for the occurrence of 

mid-latitude stable auroral red (SAR) arcs at the sane place [Chappell et al., 

1971]. However, new experimental evidence acquired recently presents a mixed 

picture, some of it [Berg and StSraas, 1972; Williams et al., 1973] consistent 

with the dynamical role of DC instabilities, and some of it [Amundsen et al., 

1972; Winningham, 1972; ICLeckner and Hoch, 1973; Mizera, 1973; Shelley et al., 

1972] being rather difficult to interpret wichin the ifC instability frame- 

work. Additionally, it is a continuing embarrassment to theoreticians (or to 

experimentalists, depending on your point of view) that the requisite EMC-node 

emissions have not been observed in the ULF frequency range near the plasmapause 

at storm time. This is only an embarrassment, not a fatal objection, because 

of the lack of sufficiently sensitive experiments, and because of the theoretical 

prediction [Cornwall et al., 1971a] that these waves should be absorbed by 

antdent electrons nearly as soon as they are generated. 

The potentially damaging evidence comes solely from ireasurenents of low- 

altitude precipitation, and this in itself is a very inportant clue. Perhaps 

the cause of the precipitation is located off the equator, while the HC 

dynamics take place at the equator. We suggest such a mechanism in Section 3; 

if it, or something similar does happen, we can explain the observed pattern 

of proton .precipitation. 

    ^■.■■. ■■ .. ^—-■:,     i.,, n i i.-iiiiMM. ,if i .^ .-.»..■..-.-.-.^ ..■,.■.—, .-.., _, ..      -■   n  n ij.njMttriarjyiMhaMdiiMiiUMaMituMiMiiiJ 
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Shelley et al. [1972] have seen energetic <~ 1-10 keV) atomic oxygen ions 

at low altitudes both inside and outside the plasmapause during storras. We 

have no explanation of this very puzzling set of observations. It could be 
+ 

that 0  ions can absorb energy from the ring current throu^i a mechanism 

involving some sort of instability, but no mechanism known to the author can 

explain all the observed features, especially the fact that 0+ ions are often 

seen considerably equatoivard of the precipitating protons. We shall remain 

silent on this subject for the rest of the paper. 

S 

Uv^  ■  ..■.,.^..J».>A^rJ^J.^.......-^.^v..WJ^...^.^,^.lL... ..-„ ...:.■ .-.■.. ....;..l...:..^;;..^ ..■.-,■■;.._;- ^ . . . ..   ■■  ....- ...■■■ ^. .^^^^.,w^.^t..^^bfr*^:-^:^^ 



:. -.     ...... ....    , ..,...,:..;.. 

27 

4^ 2. OBSERVATIONS 

"IVro years agp, some observations of precipitating protons from the low- 

altitude polar orbiter 0V1-15 were reported [Cornwall et al., 1971b]. At the 

time, these data were interpreted as showing precipitation just inside the 

plasmapause, consistent with EMC-node dynamics. However, sone nore recent 

evidence throws doubt on this interpretation. Mizera [1973] has continued his 

studies of protons > 12 keV from the polar orbiters 0V1-17 and 0V1-19; a 

typical data sample is shown in Fig. 1. Note that Mizera judges the midnight 

plasnapause to be just equatorward of the precipitation, and it is seen that 

the lower the energy, the more nearly poleward the precipitation peak; both 

these features are precisely the opposite of the EMC instability predictions. 

Although not shown in the figures, the pitch-angle distributions tend toward 

i&otropy at the peak, with a mirroring distribution equatorward of the peak; 

the same feature was observed on 0V1-15, and on ESRO IB [Aimndsen et al., 1972], 

also a low-altitude polar orbiter. 

The energy spectra in the low-altitude loss cone are rather similar to 

those of equatorially trapped protons, except that they are about a factor of 

10 lower (Fig. 2). Shown are storm-tijie distributions from Williams et al. 

[1973], and quiet-tdme distributions from Pizzella and Frank [1971], The fact 

that total precipitated fluxes are only 10% of trapped fluxes rules out an 

isotropic equatorial distribution; isotropy is confined to the neighborhood of 

the equatorial loss cone, as shown schematically in Fig. 3. Mizera estinates 

thax less than 1% of the total stom-time ring-current energy is dissipated as 

precipitation of protons with E > 12 keV, although it would seem, on the basis 

of precipitated-to-trapped flux ratio, that as much as 10% of the total energy 

could be precipitated. (In this regard, note that the equatorial storm-tine 

n__ ,   ,    | m,tmm mimmammMmmnoBim^taiM■,,Jj 
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flux depicted in Fig. 2 was observed two yearns after the 0V1-17 and 0V1-19 data 

were taken.) 

Equatorward of the precipitation peak, the low-altitude pitch angle dis- 

tribution assumes a conventional mirroring form, which is very consistent, for 

protons of ~ 300 keV, with equatorially measured distributions at L ~ 2.6 as 

seen by 0V1-14 [Fennell et al., 1973]. Tne comparison is shown in Fig. 4, 

where 0V1-19 data is noirinlized to OVl-lM data (the absolute values were 

within 30% even though the measurements uere taken a year apart). Thus at 

lower L values (presumably inside the plasmasphere) the equatorial pitch-angle 

distribution is nearly empty in the loss cone. 

Generally similar phenomena are reported by Winningham [1972] for low- 

altitude protons in the 0-15 keV energy range: Isotropie fluxes poleward of 

the plasmapause, mirror distributions inside the plasmasphere. Only a few 

percent of the total trapped ring-current energy ia precipitated as protons of 

less than 15 keV. 

It is extremely unlikely that any of this precipitation can be explained 

by the EMC instability, which requires relatively high cold-plasma densities. 

Fig. 5 shows the observed proton energy at the precipitation peak vs. L, com- 

pared to the estimated energy threshold (which varies inversely with cold plasma 

density) of Thome and Kennel [1971], based on the EMC instability. Clearly, 

some other mechanism is at work; possibly the electrostatic instability dis- 

cussed in the next section. 

KLeckner and Hoch [1973] have observed that H arcs tend to occur 

simultaneously with SAR arcs, separated from the latter by about 1.6 L units 

(Fig. 6), independent of the SAR arc location. Mizera observes that the average 

12-50 keV proton precipitation peak is about 1.3 L units golevrard of the 

plasmapause. It is natural to suppose that the precipitation causes the H arcs. 
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and that the precipitation peak marks the L-value of the trapped ring-current 

peak. This suggestion is further supported by the observation that the H 

arcs can be driven by about 10% of the total available ring-current energy, 

consistent with the 10% precipitation level observed by Mizera. 

The precipitation data strongly suggests the necessity of a nechanism 

which can produce an equatorial pitch-angle distribution as shown in Fig. 3. 

There are two possibilities: (Da HEchanism operating at the equator outside 

the plasnasphere, but only on snail pitch-angle particles; (2) a HEchanism 

operating off the equator, acting on all the particles it can reach (thus 

excluding the laigß pitch-angle particles which will already have niirrored). 

The author knows of no plausible mschanisra of type (1), altliough he would be 

glad to hear of one. An off-equatorial mechanism is discussed in Section 3. 

Next, we turn to data [WillianG et al., 1073] supporting the idea of strong 

wave-particle interactions at the plasmapause. The data comes from S - A , 

launched into an elliptical equatorial orbit with apogee of L = 5.2. It is 

thoroughly instrumented to explore ring current dynamics, and much useful data 

are available. Unfortunately, a detector saturation problem makes it difficult 

to interpret some of the pitch-angle results. 

To sumrrarize the data: protons of energy < 150 keV show a sudden decrease 

in intensity in the vicinity of the plasmpause (Fig. 7), with the highest 

energies dropping out first. Protons of energy > 150 keV do not seem to be 

much influenced by the plasmapause. These facts are consistent with the con- 

ventional picture of the QC instability, according to which the protons must 

have both sufficient »aiergy and sufficient flux to go unstable. 

The energy threshold is given by 

mi 
, . 
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where    B    is the earth's magnetic field,    N   the total plasma density, and   A 

the pitch-angle anisotropy.    Ihe miniinum unstable flux is estirated to be 

~ 1 - 5 x 10     L     on     sec        (lilies drawn aji on Fig. 7); thus the high-energy 

protons, with too little flux, might be unaffected.    Furthemore, WillianB et al. 

have i^econstructed the plasma density   N   from the resonant-energy foimula and 

their data, identifying   ^   at any given   L   with the energy at which the 

sudden drop-out occurs in Fig.  7, and using the ireasured anisotropy.    The 

result of this reconstruction is shown in Fig. 8; both -the absolute density 

values and the shape of the density profile are very reasonable and consistent 

with the hypothesis of mc instability. 

But three cmcial features, which would have further verified this con- 

clusion, are missing:    (1) there is no evidence for the requisite ULF wave 

energy;  (2) it is difficult, given the detector saturation problem, to fellow 

tne prtcn-angie aistriDutions into the piasnasphere, to see it tnere is a 

marked decrease in anisotropy;   (3) there is, as we have seen, no evidence for 

strong proton precipitation just inside the plasnapause.    In all three cases, 

it could be that the experiments were not sufficiently sensitive to measure 

the sought-for effect, but it could also be that an entirely different nechanism 

is operating.    For example, the sudden drop-out of the ring current near the 

plasnapause might sijiply reflect the weakening of inward convective transport 

of protons in the vicinity of the corotation boundary appropriate to the 

various energies, these boundaries being closer to the plasmapause for lower 

energies.    The lack of precipitation would be simply explained by convective- 

drift transport to the day side, with ultimate ejection from the nagnetosphere. 

Of course, this leaves the appearance of SAR arcs at the plasnapause unexplained, 

while the EfC instability theory does yield a reasonable explanation [Cornwall 

et al.,  1971a]. 

I H 
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We close with one bit of evidence which is in favor of pitch-angle diffusion 

of protons in the energy range 100-200 keV [Berg and Sgfcaas, 1972].    These 

authors observe that protons whose mirror points dip into the atnosphere at a 

certain longitude are replenished westward of this longitude (the windshield- 

wiper effect) at a rate consistent with a pitch-angle diffusion coefficient of 
—R       —n 

the order of 10      sec    , as might be produced by ULF wave fields of 100-200 

milligaima.    Such fields produce but weak precipitation, and would be only 

marginally detectable by nany satellite-borne magnetometers. 
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I 

3. OFF-EQUATORIAL DYNAMICS 

What instabilities are there that (1) are strongest off tha equator and 

outside the plasmpause; (2) are capable of profoundly influencing both low- 

energy protons and protons of energies greater than 100 keV? Hie EMC rrode is 

not a good candidate; the growth rate is largest inside the plasnasphere and 

when the Alfven speed is smallest, i.e., at the equator. Anonnlous resistance 

produced by current-driven instabilities in or near the ionosphere iray allow 

potential drops capable of precipitating protons of a few keV [Gregory et al., 

1973], but these will not affect 100-keV protons very much. 

Let us consider the Post-Rosenbluth [Rosenbluth and Post. 1965] electro- 

static mode. This mode is convectively unstable in the presence of a 

sufficiently large anisotropy of energetic ions, just as for the ion-EMC müde, 

and has been studied for nagnetospheric conditions by Corxmlti et al. [1972] 

and Cornwall and_Schulz [1973]. Both these groups conclude that addition of 

cold ions nakes this mode less unstable, so that its priiiary effect should 

appear outside the plasnasphere. This is consistent with the previously- 

mentioned reports of strong precipitation in the same region. We ere interested 

in seeing whether there is any reason to suspect that the PR node is irost 

strongly unstable off the equator. 

This mode exists under the conditions Ü   » w. » ß. : w = w. : w » k, ,v e   1   i     i '       e 

w 

sh 
, w  are kj |/kj^. On/nN) where f^Jh are cyclotron frequencies, u.. 

plasma frequencies based on the total (hot plus cold) plasma density, and 

V vi are  characteristic velocities. Under these conditions, the electrons 

are tied to the field lines, while the anisotropic hot ions stream through 

them on essentially straight-line orbits (on the ion plasma-frequency tin« scale). 

-  - - 

.•- 
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J The result is essentially a two-stream instability.    The dispersion relation 

incorporating finite~3 effects is 

2 2        2 
n x v2r.       ci i x   «i    2 „,  N 
1 + b D 2 = —2     —2 y      (y) 

ü)       Dw w 
(1) 

where we have used the notation 

b2 = a)2/fi2    ,      D = 1 + a)2/c2k2  , e   e    ' e 
j,   

ki i/k = (cm /m. )2 ,     y = w/kv 
(2) 

2    2 
and ü)C^ , o)^  are the plasma frequencies for the cold and hot ions: 

2    2    2 
ü)C^ + tü^. = (ü. . The function F(y) is given by 

F(y) = -2       dx r d^ 
dx 1 - x 

y 

<(i(v?/v2) = TT v2 | dv,, f.(v2 , v2,) II ^1^1! 

(3) 

00 

Here   f.    is the ion di.stribution function, normalized to one, and   v   is 

chosen so that 

I 

dx <Kx) = 1 

The conplex   function   F(y)   has order of magnitude one; for   d<})/dx > 0 

(positive anisotropy) it is possible for Im F to be greater than zero when 

Im w > 0 , yielding inr ability.   Maximum growth occurs for   Re y = 1 . 
2 

In the magnetosphere,    b     is large at the equator, even outside the 
_Q / 2 

plasmasphere, if the density   N   exceeds 1 cm     .    But   b     is not necessarily 

large at noderate-to-high latitudes.    The quantity   D   reeresents a finite-3 

correction i simple iranipulations of the formulas below show that 

^'v^^^&iMiätiitM 
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D -. 1 + 3.C1 + b-2)"1 (5) 

—2 2 
where 3^ = UTTIP-I^ /B  is the ion ß . Thus D < 1 + 3. for any b . 

Because the PR mode is convective, we take the frequency as real, and 

calculate a complex ki i from the dispersion relation. In so doing, we fix 

Re ? to be of 0(1). Note that Re y F(y) is positive and of order one for 

Re y ^ 1 ; then the real part of the dispersion relation tells us that 

ü) ~ (i). (1 + b^)"35 
(6) 

modulo    a numerical coefficient of order one;  from this and from   Re y ~ 1 , 

we find 

k ~ (OK/V)  (1 + h2!))'^ (7) 

CUaingthis in the definition of   D   yields  (5).) 

Now solve the dispersion relation for   Im k. i  , taking into account the 

fact that the real part of (1) is satisfied: 

Im k       w Im 

2 
0). ih 

-i Re C - i w^ Ira y F(y) (8) 

l^t us make the estijnates   Re ? ~ 1 , Im y F(y) ~ 1/2   at   Re y ~ 1 , D ~ 1-2 . 

Using these and (7), we can estimate 

Im kn  ~ n. 

v 
a + b-2)^ ^ (9) 

0). 

modulo a numerical coefficient which nay be less than one-, but larger than, say, 

0.1. This expression reveals the dependence of Im ki i on latitude through 

its dependence on the field strength B , occurring in each of the factors. It 

N is easy to verify that, for a distribution function of the type (vf/B)    x function 

     -^. ...^J.-. ■   ..■■.-.     *  ...       ,-  .,^.-,..^-.i.......     -"nii.iii«l.ii nil -   ^^r^mvil,M(M^.,^^.^..^^.^.-.^^^^~^^Jd^ai^^^^^^^^aSi^t^ 
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of Cvj- + V| |) , the mean velocity v does not depend on B . Of course, fi. 

is linear in B , and tends to maximize    Im kj j off the equator. The factor 

(1 + b" r^ decreases off the equator, since h2    is decreasing, but if b2 

is of order 1 or larger, the change is relatively uniirportant. As for the 

remaining factor, it is often the case that, during storm times outside the 

plasmasphere, essentially all the plasna is hot, so ^/w2 ^ 1  . Under these 

circumstances, Ln k| | will indeed maximze off the equator. 

Given that b  is large, and given the pitch-angle distributiDn of the 

hot ions, it is possible to figure out where maxinum growth occurs. Let 
9       KT 

^i ~ B  , that is, the hot ions have a (sin a)2N pitch-angle distribution, 

and let wci . B   (M = 1 might be expectec in quiet times). From (9), Im k, 

depends on B as 

Im k, 
MJ.-I 

Kx ■• + x" 
r-\n\ 

where x = B/Beq and Beq is the equatorial field strength, and R > 1 is 

the ratio of hot to cold ion density at the equator. A simple calculation shows 

that (10) is maximum at 

I ^ 

x = x    = c R 1/(N+M) 
_ N + M - 1 

corresponding to an equatorial pitch angle of sin-1 x "^ .    We find 

(Im k, i) max 
Tim k. |) 

eq 

R + 1 N + M - 1 I 
N + M     Jxc 

(11) 

(12) 

The off-equatorial maximum is most pronounced when   R   is large, and when 

N + M   is close to 1 (both of which effects my be nost prominent at stonn 

time).    Since the waves do not need long distances to exponentiate several 

lW*rti**«*«tt»ftX*.W^.---  ..-.^^.^^^ ^^:^,.^..,;.... ■._... .■...^^■^.■;..^. ,..,■ ^...:......   r^-itfhiiiniMinrf^fftiim'^wir^^iT-i'rtrrti'ifirt 
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tines (Im k| | £ ~ 10 for v - 2 x io8 cm sec"1 ,«..10 rnd sec"1 gives I* 

one Earth radius, from (9)), this off-equatorial raxi-num, if it even exists, 

might lead to a fairly well-localized (in latitude) disturbance of the proton 

ring current. In this case, particles mirroring above this latitude would be 

nearly unaffected, while all particles mirroring below it would be strongly 

scattered. Thus the situation envisaged in Fig. (3) could be realized. 
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FIGUEE CAPTIONS 

Figure 1.    Precipitating proton profiles during quiet-tiros, based on 0V1-17 

data [Mizera, 1973].    The election profile shows the low-altitude 

trapping boundary. 

Figure 2.    Comparison of precipitation flux (solid lines) and equatorial 

trapped flux (dotted lines) for storm-time [Williams et al., 1973] 

and quiet-time [Pizzella and Frank, 1971] conditions.    Taken from 

Mizera [1973]. 

Figure 3.    Schematic indication of the equatorial pitch-angle distribution of 

protons outside the plasmasphere. 

Figure 4.    Precipitated energy vs. L as found by 0V1-17, conpared to the 

energy threshold for EMC instability. 

Figure 5.    L-vai:ues of H arcs and SAR arcs, March 23-24,  1969 [taken from 

KLeckner and Hoch, 1973]. 

Figure 6.    Profiles of omnidirectional proton flux at .the equator.    Also shown 

are two possible values for the nrmimum unstable flux [taken from 

Williams et al., 1973]. 

Figure 7.    Reconstruction of the cold plasma density   N   from the resonant 

energy equation for EMC instabilities [taken from Williams et al., 

1973]. 
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ABSTRACT 

Asymptotic expansions are developed for the self-consistent 

spectra of protons and electrons (with fixed anisotropy) at marginal 

stability with respect to their respective electromagnetic cyclotron 

wave modes.    The leading term is the same in each expansion,  and 

implies that   E J^E) ~ 1010 L"4 (BQ/B)
8
 cm"2sec"1, where   E   is the 

particle energy,    J,      is the limiting differential omnidirectional flux, 

s (~1) is the anisotropy,  and   B/BQ   is the ratio of local   B   to equa- 

torial   B   at fixed   L.    Higher terms in the asymptotic series suggest 

a very slow convergence,  and are essentially useless for quantitative 

purposes. 
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INTRODUCTION 

It is by now a well-known result of linear plasma theory that 

anisotropy in a pitch-angle distributior. produces instability in the 

corresponding electromagnetic cyclotron wave mode.    Kennel and 

Petschek (1966) have utilized this principle to place a rough upper bound 

on the intensity of geomagnetically trapped radiation.    There has ensued 

a great deal of discussion on the significance of such a particle-flux limit. 

In its original form,  the limit was expressed as an upper bound 

I4TT.(
E   )   on the integral omnidirectional flux of electrons having energy 

in excess of a critical energy   E"' = B /8TTN( S + 1 )2sI  where   B   is the 

magnetic-field intensity,    N   the plasma density,   and   s   the pitch-angle 

anisotropy.    This bound was estimated by Kennel and Petschek (1966) 

_ v lri10 T -4       -2       -1 
as  ^ .xiu      L.     cm    sec    ,  assuming evaluation at the geomagnetic equator. 

One can readily scale the Kennel-Petschek limit for use at off- 

equatorial locations by assuming a pitch-angle distribution proportional 

2s to   (PJ/P)     . where   p   is the particle momentum.    It would then follow 

from Liouville's theorem that 

0 

I4*(E*) ~ 7 X1010 L"4 (B0/B)S cm^sec"1. (1) 

where   BQ   is the equatorial value of   B   on the field line   (L)   in question. 

In this case the particle intensity at off-equatorial points is limited by 

waves generated in the equatorial region,  through which all such particles 

necessarily pass in the course of their adiabatic bounce motion. 

■■- ■  ■-...,—^^-"^■^—•-■ -  ^. ■■■  ■■ ■ >■•- - -..■■■.■. «.....■„.—,..*... —    .       ifikiin-iiiiimririiifrtWniKiiiiiiifi'niiiii   niiiiiilli 
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The above considerations have been criticized by Haerendel (1972) 

and others, who argue that the anisotropy s should not be specified 

a priori. Since particles that mirror too near the equator, i. e. , those 

having 1 - (B0/Bm) < E'/E, cannot interact with growing waves, there 

is no limit on the intensity of such particles. By this line of argument, 

the anisotropy of the pitch-angle distribution should grow without limit, 

and the critical energy   E'    can no longer be defined. 

It is essential to recognize,  in comparing these seemingly discrepant 

findings,  that Haerendel (1972) and Kennel-Petschek (1966) are not asking 

the same question.    In specifying the anisotropy   s   a priori,  and in 

calculating a limit on the entire omnidirectional flux,   Kennel and Petschek 

(1966) have tacitly assumed that some separate weak-diffusion process 

acts to maintain the whole pitch-angle distribution in a form approximating 

the lowest eigennode.    Haerendel (1972),   on the other hand,  assumes that 

there is no such complementary process.     The failure to specify under- 

lying assumptions has been a recurring source of needless controversy 

in the field of radiation-belt physics. 

The tacit assumption of Kennel and Petschek (1966) is not at all 

unreasonable.     Lyons et al.  (1972),  for example,  have shown that a 

parasitic Landau resonance (to =   k,,^ ) with obliquely propagating cyclo- 

tron waves can effectively scatter particle pitch angles that are untouched 

by the fundamental cyclotron resonance (to-   k^,,  =  n).    Roberts and 

Schulz (1968) have shown that resonance with compressional waves at 

the adiabatic bounce frequency can readily account for the pitch-angle 

diffusion of particles that mirror very close to the geomagnetic equator. 
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Taking the Kennel-Petschek assumption (fixed   s) as a working 

hypothesis,  it becomes relevant to ask whether the limiting particle 

intensity can be expressed in terms of a differential spectrum   J *(Ei 

rather than in terms of a single quantity   I4*(E*).    The answer turns out 

to be affirmative,   but a direct evaluation of   J^E)   in closed form proves 

to be cumbersome and generally disappointing.     The essential difficulty 

is that wave-particle interactions do not limit the differential flux itself, 

but rather a certain integral over the phase-space distribution   f,  to 

which   J4ir(E)   is simply related.    In a nonrelativistic calculation (Kennel 

and Petschek,   1966) the bounded integral is given by 

0 

! 

(c/v.,)2 (n-w)2|lnR| 

P    * ^—TT   
4TT q   La [sO- (s + 1 )u)] 

(2) 

with   f  having dimensions of  "K"3.    The integral is to be evaluated at 

fixed   v,,,    corresponding to the resonance condition   w - k^v    = Q. and 

the indicated bound holds separately on each wave frequency  W/ZTT. 

METHOD OF ANALYSIS 

From the singularity in (2) it follows that there will be no limit 

on   J4Tr(E)   for   E < E",  where   E     is the minimum particle energy 

resonant with a wave having   w/ß =  s/( s + 1 ).    The resonance condition 

w - kjjVu   = fi can be rearranged to read 

ü 

0 
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2   2.     ,  .2        . 2 
(3) 

where   n ( S  ck(|/u)   is the refractive index.    For whistler-mode waves 

well above the ion gyrofrequency.  one obtains   n2 =  u 2/w(n-w).   whereupon 

2 2 
wp w(v(|/c)      =   (n-w): 

Inserting    w =    8n/( s + 1 ),   one finds 

(4) 

E      =   (m/2)v      =   B2
/8TTN (s +l)2s, (5) 

where   u* s 4TrNq
2/m.    A similar calculation for ion-cyclotron 

for which   n    = w 2/n (n-w). 
p      e " 

waves, 

in resonance with ions yields 

and 

(W  /n )w
2(v /c)2 = (n-u)3 

E"   =   B2/8TrN(s + l)s2. 

(6) 

(7) 

It is assumed in the foregoing derivations that   n2 » 1. 

A seemingly reasonable approach to the eval nation of   J,   (E) 
4Trv   ; 

consists of expanding   J^E)   in powers of   E*/E.    This method i 

mented by taking 
s imple- 

-2 2s Upn,PL)   =   P^(Pi/p)'iS2cf(2mE*/pV> (8) 
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2        2 2 
where   p    = p()   + P   •     The omnidirectional flux in this formulation is 

given by 

J4Tr(E) = 4^"   |     f dx 

0 
i 

1 

=   41r^;Cf(2mE>7p2)i   f    ( 1 - x2 )S dx 

Q 

2Tr B ( 1 /2, s + 1 ) ^ ^ (2mEV/p2)J 

I 
(9) 

at constant   p,    where   x   is the cosine of the (equatorial) pitch angle 

and   B   denotes the beta function. 

With   f (P^.P )   given by (8),  the bounded integral in (2) is found 

to be expressible as 

I    V dpi   =   I E S(2E  /mc2)'(c/v(J)
2iB(i, s + 1 ). (10) 

Although   (9) and (10) hold in general,  it is of interest to determine that 

particular set of flux coefficients   C^ for which the bounded integral is 

equal to its maximum allowed value at each    vn.    The flux coefficients 

of this particular set (to be denoted   Cj ) are obtained by expanding the 

right hand side of (2) in powers of   (c/v,,).    This is achieved by iteratively 

substituting for   to,   as given by (4) or (6). 

For example,  the electron flux limit is evaluated by substituting 

^0 

w = v2 (n-w)3 (c/vi|)2 

=   ^p"2Cn - <2 (n-w)3 (c/v/jV/v,,)2 

(11) 

■ 

/. 
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Such an iterative approach proves to be more convenient than an exact 

algebraic solution of the cubic equation,  for the purpose of expanding 

the right-hand side of (2) in powers of   (c/v )   .    One finally obtains 

X) C*(2E*/mc2)f (c/v,,)2'B(i, s + 1) 
i 

(c/v,)2^ |ln R|    co 

,32, 
2Tr q  s La n=0 L J 

-.2.  / „ j. i \n n 1     ( s + 1 )   0) 

n^n s   £2 

=   (c/v )2 (n/2TT3q2s La) | In R | { 1 

- (s -  1) (n2/suJp
2) (c/v,,)2 

. 

+   -L (3s2 - 3s + 1 ) (n2/scop
2)2(c/vt|)

4 

-   1 (2s - 1 ) (682 - 3s + 1 ) (n2/sWp
2)3(c/v„)6 

+   •   •   • }   . (12) 

whereupon 

J4J(E)    =   (s + 1 ) (cB/2Tr2qEsLa) |ln R| B(l/2,s+ 1) { 1 

-(s-l)(s + 2)(s + l )2(E*/E) 

+   4-(3s    -3s + l)(s+3)(s + 2)(s + l )4(E"VE) 
4/T.* /T,%2 
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- 

r 

--i-(2s - 1) (bs''- 3s + l)(s+4)(s + 3) 

X (s + 2) (s + 1)6(E*/E)3 

+   .   .   .  } ;i3) 
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This asymptotic expansion of the limiting e:ectron spectrum   J*(E)   has 

the disagreeable property of being very slowly convergent.    The expan- 

sion must (of course) diverge for    E <£*,  but one might have hoped for 

rapid convergence where   E >10E*.    Instead,  the series in curly brackets 

reads    1 + (45/16)(E*/E) + (2835/512)(E*/E)2   +   .   .   .      for   s = 1/2 and 

1 + 96 (E*/E)2   -   2560 (E*/E)3   + .   .   .  for   s = 1. 

The situation is not greatly different in the case of ions resonant 

with ion-cyclotron waves,   except that the iterative substitution is 

, 

co = n [i - (w/n)]3/2 (c./vj, 
A'v|| (14) 

where    cA   is the Alfven speed.    It follows that   /   must take on half- 

integer values as well as integer values.    The limiting spectrum   J*(E) 

is found to have the asymptotic expansion : 
«* r 

•A» 

J4.<E) (s + 1 )(cB/2Tr qEsLa) | In R | B (1/2,   s + 1 )   {  1 

- 2(s -  l)(s + l)1/2[r(s +-§-)/r(s + 2)](E*/TrE)1/2 

- |   (3s2 - 3s - 2)( s + 2 )( s + 1 )(E*/E) 

+   (TT/6)(21S
3
 - 21s2 - 6s + 8) [r( s +   i- )/r( s + 2 )] 

X(s + l)3/2(E*/trE)3/2 

-   j- (lOs4 - 10s3 - 1782 + 5s - 2)(s +3) 

X(s + 2)(8 + 1)2(E*/E)2 

(15) 
-» » 
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in this case.    The series in curly brackets reads    1 +  (S/TT^IE'VE)
1/2 + 

(165/32)(E*/E)   +   .   .   .    for   s = 1/2   and   1 + 6(E*/E)   + ...  for   s = 1. 

In summary,  neither the electron case nor the proton case yields 

a rapidly convergent expansion for   J4*(E).    One may as well accept the 

leading term of each series as an indicator of the saturated spectrum.    In 

each case the leading term yields 

J4JE) ~ (s + l)(cB/2ir qEsLa)|lnR|B(l/2.   s + 1) (16) 

L 

for   E»E   .    It follows asymptotically for reasonable values of   s(s = 1/2 

or   s = 1 ) that 

.10 
EJ^E)- lO^L^cm^sec"1, (17) 

This result constitutes about the best available nonrelativistic estimate 

for the saturated particle spectrum.    The generalization to off-equatorial 

points would be that 

.10 
E J4IT(E) ~ 101U L^ (B0/B)s cm"2 sec"1. (18) 

where   BQ   is the equatorial value of   B   on the field line (L)  in question. 

The incompatibility between (18) and (1) arises from the specification of 

a spectrum steeper than   E"1   in the derivation of   I4*(E*)   by Kennel 

and Petschek (1966).    The self-consistent spectrum turns out proportional 

to   E"     in the asymptotic limit,  although relativistic effects not yet eval- 

uated may alter this result. 
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DISCUSSION 

The present attempt to evaluate   JjjE)   for fixed   s   has been 

largely unsuccessful,   in that it has yielded only a pair of slowly conver- 

gent asymptotic expansions.    One may as well invoke   (18) at all energies 

above   E   ,    since the higher terms in the two asymptotic expansions are 

practically useless in the quantitative sense.    A cut-off at some high 

energy may be in order,  both because the present calculation is nonrela- 

tivistic and because magnetospheric particle sources do not extend to 

arbitrarily large   E,    While it is true that a cut- 

reconcile (18) with (1),  this should not be a major considerati 

,, 7   * 
off energy ~e  E     would 

ion. 
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ABSTRACT 

The mean lifetime    T   of a particle distribution,   driven to isotropy 

by intense pitch-angle diffusion,   is calculated by analytical means for 

conditions applicable to the earth's magnetosphere.    The resulting alge- 

braic expressions reduce to  x « [64La/3 5vo'c
2(l-r!)]   in the limit of a 

small equatorial loss cone (half-angle    a.), where   v   is the particle 

speed,    L   is the magnetic shell parameter,    a   is the radius of the earth, 

and   x]  is the particle albedo from the atmosphere at either foot of the 

field line.    Distinction is made in the full expressions for  T between 

complete isotropy (caused by strong pitch-angle diffusion all along the 

field line) and incomplete isotropy (caused by strong diffusion that is 

localized at the magnetic equator) over the upward hemisphere in velocity 

space. 

[ V 
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INTRODUCTION 

As described by Kennel (1969),   strong diffusion is the consequence 

of having a bounce-averaged pitch-angle diffusion coefficient   D      (x = 

cosine of equatorial pitch angle) much larger than   a   n_,  where   Sl^lZ-n 

is a particle's energy-dependent bounce frequency in the geomagnetic 

field and     a    is the half-angle of the equatorial loss cone.    In this limit 

the mean lifetime of a particle against pitch-angle diffusion into the atmos- 

phere approaches a minimum value    T   that is independent of the magnitude 
2 

of   D     ,   but sensitive to the magnitude of    a   .    This is in contrast to the xx e c 
2 

weak-diffusion limit (D     « a   Q.7),  in which the particle lifetime would 

be proportional io I I'D 

2 2 
Kennel (1969) estimated the magnitude of   T   as    ir/Sl-a       for     o 

«1,   by reasoning that a particle in either loss cone (each having solid 
2 

angle     TTO      out of its respective hemisphere,   2TT) will be lost within a 

quarter bounce period after traversing the equator.    Lyons (1973) has 
2 

recently refined the calculation of   T    (at least for     a    « 1) by more 

carefully specifying the probability that a particle whose guiding center 

lies within a given magnetic field tube is actually in the loss cone.    Lyons 

2 2 
evaluated this probability as   1.1 sin a   (rather than Kennel's      a   /Z) by 

calculating the relative amounts of phase space inside and outside the 

loss cone seen by the equatorial pitch-angle distribution of particles having 

the same speed   v.    By assigning a loss time of    W^o (rather than Kennel's 

ir/ZQy)   and taking a properly weighted (by the factor   x/f22) average of 

ß-   over the equatorial pitch-angle distribution,  Lyons (1973) thus obtained 
2 

T= 2La/l.lv sin a , where   L   is the magnetic shell parameter and   a,   is 

J 
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J (. 

the radius of the earth.    The weighting factor   x/n_   enters because it is 

proportional (at constant   v   and   L ) to the Jacobian of the transformation 

from canonical phase space to the variables   v,  x,  and   L.   (e. g. ,   Roederer, 

1970).    Procedures for averaging over the trapped-particle distribution 
2 

are reasonably straightforward in the limit   D      » o   £2,,   sin<.e the effect 

of strong diffusion is to make the equatorial pitch-angle distribution Iso- 

tropie (Kennel,   1969). 

The approach adopted in the present investigation differs somewhat 

in outlook from that used by Lyons (1973).    Here the particle content of a 

magnetic field tube is calculated explicitly,  and is divided by the particle 

current through the feet of the field tube to determine the strong-diffusion 

lifetime   T .    In this case it is the unweighted local pitch-angle distribution 

which enters,   rather than the weighted equatorial pitch-angle distribution. 

The two approaches are equivalent in principle,  and yield the same result 
2 

in practice for    a    «I.    However,  the present approach leads naturally 

to certain conceptual refinements,  which are quantitatively significant for 
2 

a     ~ 1      but cannot readily be introduced in the formulation used by Lyons 

(1973). 

The most important advantage of dealing with the local pitch-angle 

distribution is the ability to identify (and thereby exclude from averages) 

those points in phase space that are unoccupied by particles.    The purely 

directional averages performed by Lyons (1973) have the effect of includ- 

ing,     at any given time, particle coordinate^ actually located beneath the 

surface of the earth.    While the contamination of such averages by un- 
2 

occupied particle coordinates is not significant for    a    «1,  the present 

^"''■'^^^■irlitiitmtffrimiir'-"'^^-'^-^ - -- I i - iüti 
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calculation imposes no such limit on     o^,  and therefore provides at least 

a modest generalization of the strong-diffusion result obtained by Lyons 

(1973). 

BASIC EQUATIONS 

Evaluation of   T   is made tractable by assuming a dipolar magnetic 

field (which,   however,  need not be centered within the earth).    Along a 

given field line (L),  the equatorial (minimum) field intensity is denoted 

BQ.     The field intensity at the northern foot (where the field line enters 

the dense atmosphere) is denoted   Bn,    and the field intensity at the 

southern foot is denoted   Bg.    The details of particle interaction with the 

dense atmosphere are thereby suppressed (a simplifying approximation). 

However,  it is permissible within the framework of the present analysis 

to allow for a specular albedo (preserving the incident isotropy) of magni- 

tude     r\ . 

The differential particle flux per unit solid angle, incident on a 

surface normal to   B^ at either foot of the field tube, is equal to (I/ZTT) 

J
2TT^'  

where   J2^E)   is the deferential flux over the entire downward 

hemisphere (Zir steradians) in velocity space.    The particle flux across 

the foot surface is therefore given by 

J^E)   =   (1-T1)J2IT(E)      cos a  d(cosa)   =  .j (l-n) J^E), 

; 

(i) 

where   a   is the local pitch angle.    If dA  is the equatorial area of the field 

- - 

/ 
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tube,  then   [(B0/Bn) + (B0/Bs)] J. (E) dA   is the rate of particle loss (per 

unit energy) from the field tube,   since the cross-sectional area of any 

magnetic field tube is inversely proportional to   B. 

It remains to calculate the particle content of the same field tube. 

There is a slight subtlety here,   related to the question of how the intense 

pitch-angle diffusion is distributed along the field line.    Ii conditions of 

strong diffusion hold all along the field line,   so that the particle flux is 

completely Isotropie (even over the upward hemisphere in velocity space), 

then the particle density is (2/v) J9   (E)   per unit energy,  and the field- 

tube content is given by 

C(E)   =   (2La/v)J27i.(E) 

es 

en 

e de dA (2) 

per unit energy,  where   s   is the coordinate of arc length along the field 

line and   6   is the colatitude measured from the northern magnetic pole. 

The particular colatitudes     6     and     6     correspond to the feet of the 

field line.     Evaluation of the integral in   (2)   yields 

C(E)   =   (2/35v)LaJ2iT(E) |[l-(B0/Bn)]1/2  [16 

+   8(B0/Bn) + 6(B0/Bn)2 + 5(B0/B)3] 

,1/2 +   [1.(E0/Bs)]1^[l6+8(B0/Bg) 

0'    s 
+   6(B   /B  )2 + 5(B0/B  )3]} dA. (3) 

■* r 

where   a   is the radius of the earth. 

„..„■„-„■^.■■....„^^ J....^^.t..,„ 

KKJlMlÜUMWSKaSSaj 

--•^■^^-■"-■'- i 



66 

It proves convenient to introduce the abbreviated notation   Brt/B    s 
0     n 

2 2 2 2 
yn   - 1  " x

n    and   B(/Bs s ys    s 1 " xs •    The strong-diffus ion lifetime 

T    is thereupon given by 

C(E)4 [{yri
2  +  ys

2) J^EldA] 

[4La/35v(yn
2 + yg

2) (l.n)] 

Xl(l6 + 8yi; + 6yn
4 + 5vn

6)xn 

+   (l6+8y2 + 6ys
4 + 5yg

6)x8| (4) 

This expression for   T   scales,   as it should,  like 4La/v.    The bounce 

period of an individual particle is given by   ZvlU-    =   (4 La/v) T (y),  where 

y     =   B0/Bm   and   Bm   is the mirror-field intensity (attained at   6 =   6    ). 

However,   the function 
m 

T(y) s 
)[1 

(B/Bm)]"1/2(1 +3 cos2e)1/2sine de. (5) 

e. m 

which contains the explicit dependence of   ß-   on equatorial pitch angle, 

does not appear in (4) at all.    This is as it should be,  since   T   is the 

mean lifetime of a whole distribution of pitch angles.    More significantly, 

and in contrast to prior derivations of    T ,  the bounce period   2-n/n?   has 

not entered at any intermediate step between   (1)   and   (4).    Given the 

condition of pitch-angle isotropy,  which requires   D      »a   v/4Lia,  it is 

unnecessary to invoke either the bounce frequency or the "probability that 

a particle is in the loss cone, " in deriving a valid expression for     T . 
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Applied to   (4),    the limit   yn    =   ys   «1   (whence   yn
2 « a2) yields 

T« [64La/35vorc (1-TI)].    This result agrees (for n = 0) with the expression 
.   2 T - 2 La/1.1 v sin a     given by Lyons (1973). 

REFINEMENTS 

The assumption of complete pitch-angle isotropy,  invoked above in 

obtaining   (2)-(4),    seems dubious in reality (see,  however.  Koons et al. . 

1972).    It requires,  in the absence of a unit albedo   t], that pitch-angle 

diffusion low on the field line equalize the upward and downward particle 

fluxes,  i^e. ,  immediately replenish the particle trajectories depleted by 

entry into the dense atmosphere. 

It is perhaps more natural to assume that such particle trajectories 

are replenished only by the intense pitch-angle diffusion that occurs in the 

equatorial region,  idealized as the point where   B = BQ.    In this limit the 

upward hemisphere in velocity space would remain depleted along tra- 

jectories connecting the equator with the atmosphere.    The result is a 

somewhat shorter lifetime   x   than given by   (4),    since the particle density 

along the field line is somewhat smaller than the value   (2/v) J-  (E)   assumed 

in deriving   (2).    The particle content of a field tube is given instead by 

C(E)   =   (l/v)LaJ2Tr(E) { (l + n)  I      sin7e de 

r
ir/2 on 

+ (1-TI)J      [l-(B/Bn)]1/2sin7e de 

+ (1-TI) [1-(B/Bs)]1/2 8in7ede|dA. (6) 
TT/2 

■ ■:■-■   ■■■■--,: -. .yf: 
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The first integral has already been performed in obtaining   (3). 

The second inteßral in   (6),    to be denoted   Z(y ),    is evaluated by 

oljservinß   [tf.   (5)]   that 

; 

i 

or 

dZ/dBn   =   (B0/2Bn
2)T(yn). 

dZ/dy   =   -yT(y). 

(7a) 

(7b) 

An excellent approx--nation for   T(y),    accurate within 1% for all values 

of    y   between   0   and    1,    is given by the expression 

T(y) « T(0)    +   ^ [T(l) - T(0)] (y + y
l/2) (8a) 

due to Lcnchek et al.   (1961).    The end-point values are expressible in 

closed form,   viz. , 

0 

and 

T(0)   =   1 + (1/2^) In (2 +V3) » 1.380173 

T(l)   =   (TT/6) N/2 « 0.7404805 

(8b) 

(8c) 

Since (6) implies that   Z(l) = 0,    it follows from   (7b)   that 

1 

30Z(y)   =   30 yT(y) 

y 

« (4 - 15 y2 +6y5/2 + 5y3)T(0) 

+ (11  - 6y5/2 - 5y3)T(l). (9) 
-< 
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Since direct evaluation of   (6)   yields   Z(0) = 16/35 « 0.45714. it would 

be a good check on the accuracy of   (9)   to evaluate   Z(0) « (4/30) T(0) + 

(11/30) T(l).    Although this approximate expression for   Z(0)   does not 

look much like   16/35.    it reduces in fact to about 0. 45553 and therefore 

yields an error of much less than 1%. 

Thus, the strong-diffusion lifetime r under conditions of incomplete 

isotropy (D^ » o^,, for all x> but with pitch.angl(i diffusion localized 

at   B = BQ) is given by 

T   =    [2La/35v(yn^+y8
2)(i.T1)] 

X   f(l6 + 8yn
2 + 6yn

4 + 5yn
6)(l+T1)xn 

+ (l6 + 8ys
2 + 6ya

4 + 5ys
6)(l+Tl) 

+ 35(l-n)  [Z(yn) + Z(ys)] ( . 

x s 

(10) 

with   Z(yn)   and   Z(ys)   obtained from   (9).    Of course,  the strong-diffusion 

lifetime is minimized with respect to   r,  by the limit of vanishing albedo 

(11=0).  and approaches infinity in the limit of perfect reflection   (T, = 1) 

from the top of the atmosphere.    Since   Z(0) = 16/35.    the limit   y 2 = 

ys
2«l   yields T«[64La/35vac

2(l-11)]  when applied to   (10).   As^oted 

above,  the same limiting expression for   T   follo\vs from   (4). 

DISCUSSION 

The foregoing results enable the strong-diffusion lifetime   T   for a 

given field line to be computed,  directly from simple algebraic expressions. 
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in terms of the field intensities at the foot points where the field line enters 

the dense atmosphere.    Although a field line in general enters the atmos- 

phere obliquely,  the foot of the field tube (across which particle precipi- 

tation occurs) is a surface normal to   B.    The logic of this contention, 

invoked above in calculating the particle loss rate, is that the opportunity 

for precipitation is decided by the location of a particle's guiding center. 

Precipitation is inevitable (up to a factor of 1-T,) once the guiding center 

has passed a point of no return,   such that a particle will lose its energy 

through ionizing collisions within the next gyroperiod.    Thus,  the flux 

J^E)   calculated in   (1)   is really a flux of guiding centers as well as a 

flux of particles.    This last interpretation could not be made if the foot of 

the field tube were not defined as being a surface normal to   B. 

In the limit of small gyroradii there is little difference between the 

minimum altitude of a particle and the "perigee" of its guiding center.    A 

particle having appreciable magnetic rigidity, however,   can experience 

a much larger atmospheric density garaged over gyration) than its guiding 

center experiences.    On the other hand,  the gyration-averaged atmospheric 

density required for precipitation increases with particle energy,  as the 

ionization cross section decreases.    Thus,  it is not immediately obvious 

whether the guiding-center altitude that locates the foot of a field line 

(and thereby determines the parameters   Bn   and   B8) should be treated 

as a function (either increasing or decreasing) of the particle energy.    Any 

such energy dependence would be quite weak,  and its evaluation would 

exceed the intended scope of the present work. 

:  } 
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In summary,  the strong-diffusion lifetime   T   has been calculated, 

for an offset-dipole model of the geomagnetic field, under conditions of 

complete pitch-angle isotropy (strong diffusion at all values of   B/B  ) and 

incomplete isotropy (strong diffusion localized at   B/B    = 1).    The calcu- 

lation allows for an arbitrary specular albedo t]   from the foot of the field 

line (top of the atmosphere).    Conditions of incomplete isotropy and 

vanishing albedo are found to yield the minimum possible particle lifet 

under strong diffusion. 
imes 
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ABSTRACT 

C 

Properties of the steady state and transient behavior of geomagnet- 

ically   trapped radiation are analyzed by means of phenomenological 

equations that concisely summarize the operative dynamical processes. 

The equations provide for a realistic coupling between electromagnetic 

wave energy,  particle intensity,  and pitch-angle anisotropy in the con- 

text of the outer zone.    Applications include magnetospheric enforcement 

of a limit on stably trapped particle flux,  the smooth transition between 

weak pitch-angle diffusion and strong diffusion, parasitic particle preci- 

pitation by natural and man-made radio signals,  natural and artificial 

injections of trapped radiation,  and the co^equences of magnetospheric 

cold-plasma injection. 
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INTRODUCTION 

Plasma instabilities deriving their growth from non-Maxwellian 

distributions of particle momenta play an important role in magnetospheric 

physics.    Pitch-angle distributions anisotropic with respect to the ambient 

magnetic field,  for example,  are unstable to the generation of electro- 

magnetic cyclotron waves (e^.,  Cornwall,   1965; Kennel and Petschek, 

1966).    Field-aligned auroral currents,  corresponding to counterstreaming 

distributions of ions and electrons,  can give rise to a variety of electro- 

static (Kindel and Kenne. ,   1971) and hydromagnetic (Forslund,   1970; 

Hasegawa,   1970a, b) instabilities.    Moreover,   electrojet currents trans- 

verse to a magnetic field are unstable to ion-acoustic wave generation at 

remarkably low thresholds in the counterstreaming velocity (Farley,   1963). 

There is no major objection to evaluating the linear growth rate of 

a momentum-space instability for uniform plasma geometry, provided that 

the magnetosphere is homogeneous on a scale much larger than the wave- 

length.    However,  the quasilinear theory of a homogeneous plasma 

instability,   such as might be formulated by following historial precedent 

(e^. ,  Vedenov et_al. ,   1962; Rowlands et al. ,   1966) can fail in many 

important respects to account for the post-linear evolution of a magneto- 

spheric plasma instability. 

Instabilities involving resonant particles (Kennel,   1969),  for example, 

ultimately impel the particle distribution function to form a "plateau" in 

momentum space,  according to the quasilinear theory of a uniform plasma 

(e^. .  Rowlands et_al. .   1966).    Such a plateau assures a vanishing growth 

rate  Y for waves resonant with particle momenta lying on the plateau. 

u 

-   \ 
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The quasilinear wave spectrum is thereupon calculated by requiring a 

detailed energy balance between the redistributed particles and the wave 

vectors ^ with which they are resonant.    In other words,  the idealization 

of an infinite uniform plasma leads to a simplifying conservation law 

whereby neither waves nor particles nor energy can enter or leave the 

system through its boundaries. 

Recognition of the magnetospheric plasma as an inhomogeneous 

medium complicates the quasilinear problem beyond belief.    It is natural 

in this field geometry to express the particle distribution as a function of 

the three adiabatic invariants.    However,  the inhomogeneity of the plasma 

and magnetic field cause a particle to lose resonance with its wave in the 

course of adiabatic charged-particle motion (e.g. ,  Schulz,   1972).    Thus, 

a particle resonates in turn with a continuously varying succession of 

wave frequencies in the course of its adiabatic motion.    Conversely,  an 

individual wave resonates with a continuously varying set of adiabatic 

invariants as the wave propagates through the medium.    The concept of 

plateau formation and detailed energy balance seems to be rendered almost 

meaningless by th.s complication.    In any event,  there is no longer a con- 

servation law that prevents waves, particles,  and energy from crossing 

the boundaries of the plasma.    Moreover,  the usual Fourier decomposition 

(u. kj of a waveform fails because of internal refraction and reflection; a 

partial solution to this last difficulty is provided by tracing rays (e.g. , 

Thorne and Kennel,   1967) in analogy with the methods of geometrical 

optics.    Even if all the problems involved in formulating the quasilinear 

theory of inhomogeneous plasmas were cleverly solved from first principles. 

r 
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however,  it is hard to imagine the results being expressed in a form concise 

enough to be useful for practical applications. 

The purpose of the present note is to fabricate instead some heuristic 

equations that simulate the magnetospheric quasi linear problem in a 

phenomenologically satisfying way.    The electromagnetic cyclotron insta- 

bilities (e^. ,  Cornwall,   1965; Kennel and Petschek.   1966) are chosen in 

order to make the application definite.    The proposed equations are simple 

in form,  relate wave growth to the anisotropy and intensity of the resonant- 

particle distribution,  accour!: for the imperfect internal reflection of wave 

energy,  and recognize the gradual transition from weak pitch-angle diffusion 

to strong diffusion (e.g. ,  Kennel,   1969) as the scattering time varies relative 

to the particle bounce period.    The equations are directly applicable to a 

variety of magnetospheric phenomena involving the cyclotron-resonance 

instabilities,  and they lead to simple predictions that can readily be com- 

pared with the rudimentary observations normally available. 

On the other hand,  the equations are not necessarily "true, " according 

to the standards usually recognized in the axiomatic formulation of physical 

theory.    They are instead heuristic phenomenological equations,  to be 

viewed as a prototype of the structure that a properly formulated theory 

should ultimately reveal.    By design,   such equations gloss over subtleties 

of mathematical definition,  and the terms therein represent somewhat 

nebulous averages of ideal physical quantities.    However,  the observational 

data themselves often represent somewhat nebulous averages of the real 

physical quantities. 

; 

' 
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BASIC EQUATIONS 

According to Kennel and Petschek (1966),  there is a limiting value 

I   that the integral omnidirectional flux I (of magnetospherically trapped 

particles above a certain energy threshold) cannot exceed without provoking 

instability.    In a recent review by Schulz and Lanzerotti (1973),  equatorial 

evaluation of the relevant parameters is found to yield I*~ lO11!,-4 cm"2sec"1. 

For fixed anisotropy of the particle distribution in pitch angle, the linear 

growth rate  Y for the amplitude of an electromagnetic cyclotron wave, is 

proportional to I/I  .     The growth rate for the wave energy (squared ampli- 

tude) is 2Y.    An incipient wave undergoes partial reflection (coefficient R) 

upon traveling a distance   ~ La, wher. L is the magnetic shell parameter 

and   a   is the radius of the earth.    The remaining fraction  1 - R of the 

wave intensity is lost.    The time interval between reflections is estimated 

as  Wvg.  where vg (=|dw/dk|) is the group velocity.    Thus, the condition 

for marginal stability (Kennel and Petschek,   1966) is 

R exp (2YLa/v )   =   1 

or 

(la) 

Y   =   (v  /2La)|lnR| = Y'v 
(lb) 

If 2 ever exceeds I  . J^,  if  Y ever exceeds    Y*.  the consequence is a 

net growth of wave energy and of particle-loss (precipitation) rate. 

However,   since the absorbing atmosphere is distant from the site of the 

wave-particle interaction,  the actual loss rate can never exceed  1/T, 

where   T is the strong-diffusion lifetime realized for a particle distribution 

driven to pitch-angle isotropy by the wave-particle interaction (Kennel and 

Petschek,   I967;. 
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The foregoing considerations suggest an equation of the form U 

dl 

dt 

XI 

1   +X.T 
i   S (2) 

to describe the evolution of particle intensity   I   in the presence of a 

particle source S.    The parameter  \ is essentially the pitch-angle 

diffusion coefficient,   modified by appropriate numerical factors so as to 

make a reciprocal lifetime (Roberts,   1969).    In weak diffusion the particle 

intensity decays as   - \I per unit time.    In the transition to strong diffusion, 

the decay rate remains between  X. and  1/T. 

The factor l/( I + \T) is a rough measure of the residual anisotropy 

in the pitch-angle distribution.    In weak diffusion (\T «1) the particles 

assume a natural anisotropy of order unity.    The anisotropy is substantially 

reduced for   \T >1,   and this leads to a reduction of the growth rate from 

that applicable in weak diffusion.    Following the above reasoning,  it is 

convenient to estimate that 

-«..* 

1    d\    _   2Y   (I/I  ) 

X   dt 1 + \T dk 

InR 

La 

W 
(3) 

in the presence of an external wave source having strength W.    The wave 

intensity derived from   W  leads to "parasitic'1 pitch-angle diffusion of 

the particles (e. g. ,  Kennel and Petschek,   1969).    The factor   1   + \T 

reduces the growth rate  Y from the value  {I/l'^y* that would hold for 

the natural (weak-diffusion) anisotropy of order unity.    The growth rate 0 
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Ü 

i 

approaches     Y      for I = I    and  \T « 1.    The leading factor of 2 enters 

because   \   is proportional to the wave intensity (squared amplitude). 

Choice of the divisor   1 + \T   is   somewhat arbitrary in (3).    A divisor 

of the form ( 1 + \T)
0

' would seem equally reasonable,  where   a   is any 

number lying roughly between 1/2 and 4.    The choice of  o = 1   in (3) is 

motivated by algebraic convenience and justified on the grounds that 

alternative choices for   a   would lead to very similar "physical" conse- 

quences. 

The idealized equations (2) and (3) represent a bounce-averaged 

treatment of the wave-particle interaction,  in that both wave growth and 

wave reflection are treated as continuous (unmodulated) rather than inter- 

mittent processes.    The equations cannot be expected to generate a bounce- 

modulated wave intensity under any circumstances.    Similarly,   equations 

of this form cannot be expected to yield bounce-modulated particle phenomena 

such as electron microbursts (e. g. ,   Lampton,   1967). 

Of the various algebraic terms appearing in (2) and (3),  the term 

containing  InR   would seem  to require further justification.    A simple 

limiting case should suffice.    Thus,  in the absence of rt-sonant particles 

(1 = 0) and waves of exvernal origin ( W = 0 ),  the wave intensity initially 

present at   t = 0  can be sustained only by internal reflection.    Since inter- 

nal reflection is only partial (0<R<1 ),  the intensity decays with time. 
It follows from (3) that 

Mt)   =    K(o)Rldw/dkl<t/La) (4) 

under these conditions.    This is the desired result,   since  v  /La  represents 
g 
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the number of reflections per unit time.    Each internal reflection preserves 

a fraction R of the incident wave energy.    Equation (3) formulates this 

effect as if it arose from a continuous process. 

0 

STEADY STATE 

The foregoing remarks serve to justify (2) and (3) as a credible set 

of equations to summarize radiation-belt evolution.    It remains to illus- 

trate the consequences of (2) and (3) in situations of magnetosphenc interest. 

The steady state (dl/dt = 0,  dX/dt = 0) is perhaps the simplest case fi 

which useful information can be extracted.    The algebraic solutions for 

*      and   I    in this case are given by 

trom 

and 

I   = 

X   =   (S/l  )    +    (W/ZY515) 

[1 +(Wr/2Y*S)]-1I*   +TS, 

(5a) 

(5b) 

I  I 

respectively.   In the limit    TW/2Y* « TS/I*« 1,  it follows that  \ * S/l* 
So 

and I s; I  .    This limit corresponds to the situation envisioned by Kennel 

and Petschek (1966),  in which the particle precipitation is neither parasitic 

nor derived from strong diffusion. 

The significance of l'   as a limiting flux holds only in weak diffusion 

caused by internally generated waves,  but the underlying equations admit 

a far wider range of parameters.    A meaningful presentation of the wider 

range is given in Figure 1, where the dimensionless quantities   \.T   (dashed 

— .......-.■ .-..^-.w— —-■iiiiiinfiiiiMir--   ■■ --^--——■--"- ■ ■ 
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^J* curves) and I/I    (solid curves) are plotted as functions of the dimension- 
* >■- 

less parameter    TS/I     for fixed values of    TW/ZY"".    Evidently strong 

diffusion (X.T »   1) always accompanies the condition   I » I    in the steady 

state. 

If waves from the external source produce only weak diffusion,  i. e. , 

if    TW/ZV" « 1,   then it follows from (5a) and (2) that 

1 + XT   w    1   +   (TS/I"") 

«    1   + [W(l + \T)] (1/1*) (6) 

in the steady state.    This is a quadratic equation having the "physical' 

solution 

1 
1/(1 +\T) « Min (I  /I,   1) (7) 

- 

for the factor    1/(1+ >.T) that roughly characterizes the anisotropy of the 

pitch-angle distribution (see above). 

A somewhat subjective confirmation of (7) is contained in the data 

on precipitating protons compiltd by Cornwall et al.   (1971).    There the 

qualitative anisotropy of the pitch-angle distribution was found to depend 

(at each L value) solely on the particle intensity.    The transition band 

between clearly anisotropic and virtually isotropic fluxes covered only a 

factor   ~4 in to'al flux,   and paralleled a critical (maximum anisotropic) 

flux value proportional to L"   ,   as expected.    According to (7),  the con- 

dition   I  > 41      should correspond to an observationally negligible anisot- 

ropy    <  1/4. 
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IMPULSIVE SOURCE 

It is instructive to consider the case in which the steady state is 

abruptly perturbed by an injection of particles at time   t = 0.    This case 

is realized when the source terms are such that   W = 0   and 

u 

s(t) = s0e(-t) + i^ct). (8) 

The constant conditions S = SQ and W = 0 existing prior to   t = 0 (i. e. , 

ever since   t = - m) lead to steady-state values   X. = X    and   I = I    + TS 

given by (5) for the wave and particle intensities.     The impulsive source 

described by (8) thereupon yields an "initial-value" problem such that 

>r + \;o }   =  \0 = (S0/I ) 

1(0")    =1     +TS0   + lv 

(9a) 

(9b) i 

Subsequent evolution of   X(t)   and I (t)   is determined by (2) and (3), v/ith 

S(t) EE 0   for   t >0. 

It is natural to assume    X.T « 0. 1,  2Y T J; 10,  and   I, > 41' in 

order to make the initial-value problem "physically" significant.    In this 

case the problem separates conceptually into two parts:   the growth of 'ihe 

wave intensity and the decay of the particle flux.    In the strictly dichoto- 

mous picture,  the parameter   XT grows from    XQT   to   ~1 on a time scale 

t ~ (I'/2Y'l1)|ln X0T|  while _I   remains virtually static.    Thereupon,  in 

the presence of strong diffusion (XT > 1), the excess particle intensity 

decays away with a characteristic lifetime ~T.    The problem is made 

n 
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complicated (and interesting) by the fact that wave growth and particle decay 

overlap somewhat in time. 

It can be shown from (2) and (3), however,  that 

din    [«(I/I*) - (1 + \T)]/dt 

= - 2Y*W(i +\T) (10) 

for   t > 0, where  <  = 2Y'V(2Y
V

T - 1) > 1.    Thus,  the parameter  Xr   seeks 

the time-varying asymptote    * , L/l*) - 1   on a characteristic time scale 

~ ( 1 + \r)/Zy  \r, which is   < 1/Y    for  \T > 1.    As soon as the asymptotic 

approximation \r « £ (I/I^) . 1 becomes valid,  it follows from (2) that 

.* 
din   [«(I/I  ) -  l] /dt « - 1/T. 

(11) 

4> 

This means that   I   decays exponentially toward the constant asymptotic 

value   I  ft, while \T — 0 with the same lifetime (T). 

The case of an impulsive source thus leads to an "overshoot" of the 

particle intensity   I toward a final value less than   I*.    The overshoot is 

only moderate (since   Y^»!).  but is conceptually important as an essential 

consequence of the manner in which equations (2) and (3) are coupled.    It is 

interesting in contrast that,  according to the quasilinear theory of a uniform 

plasma (e^.,  Rowlands et al. ,   1966),  the particle distribution diffuses 

directly (without overshoot) toward a momentum-space configuration that 

corresponds to marginal stability.    Moreover,  the final state of marginal 

stability in a uniform (and unbounded) plasma is accompanied by a nonvanishing 

quasilinear spectrum of wave energy.    The x resent results for a bounded 

■ ^■.-..^..■.„-.—,—..^.^..^-^ _....J^^^^^. -  —    - •" ■ ■■"—■"   
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plasma illvstrate some of the rethinking that must be done in order to evaluate 

the magnetospheric manifestations of a familiar momentum-space instability. 

APPLICATIONS 

The foregoing results have both practical and conceptual applications. 

At the practical level,   one may reasonably wish to estimate the transient 

response of the earth's magnetosphere to natural and artificial injections 

of geomagnetically trapped radiation.    The present formalism is most likely 

to apply in the outer radiation zone,  where the medium already approaches 

saturation   (I~l') in its natural state (e. g. , Kennel and Petschek,   1966). 

If   N   is the density of cold plasma, the relevant energy threshold   E 

for evaluating   I   and   I      is given by   E'   ~ B   /8ITN.    It follows that   E' ~ 
_3 

40 keV at L = 6 if   N~l cm      there.    This energy corresponds (for electrons) 

to a bounce period   ~ 1 sec and a strong-diffusion lifetime T ~100 sec at L = 6. 

5 
A weak-diffusion lifetime    l/^-n  ~ 10    sec appears reasonable,  from which 

follows the estimate   X.nT ~10" The whistler-mode waves that resonate 

with 40-keV electrons at L = 6 have a transit time   La/v    ~ 1 sec between 
g 

reflections reasonably characterized by taking In R = - 3.    In this case it 

happens that 2Y T ~ 30,   and the condition   I ~10l'' leads to wave amplifi- 

cation   ~ 10 dB/transit.    The use of these numerical parameters in (8)-(ll) 

should reasonably simulate the consequences of energetic particle injection 

atL = 6,  where   l''"~8XlO    cm"   sec"   . 

Direct particle injection at energies    S E   is not the only means of 

effectively enhancing   I.    As Brice (1971) has pointed out,  the artificial 

■ 
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r 
injection of substantial densities of cold plasma (E ~1 eV) outside the 

plasmasphere would have the effect of reducing   E'    (by increasing   N).    For 

a steeply falling spectrum of energetic particles,  evaluation of  I   at a sub- 

stantially reduced   E     can easily imply a very large enhancement of the 

relevant integral flux.    For example,  if the differential energy spectrum is 

proportional to   E"p,  the value of  I(E"')   is proportional to   N15"1.    If  p = 5, 

a mere doubling of the cold-plasma density multiplies   I(E*)   by a factor of 

16.    It would appear eminently reasonable to employ the present equations 

in this context,   to estimate the magnetosphere's transient behavior following 

the sudden injection of an artificial cold plasma. 

At the conceptual level,  it is clear that the present approach might be 

taken as th° basis for a more general treatment of wave-particle interactions. 

There can be Ir        doubt that the present formulation is only a prototype of 

the more genera,       -atment.    Rather than attempt to characterize the entire 

wave spectrum by a single intensity parameter    X ,  for example,  one might 

reasonably assign a separate intensity to each eigenfunction of the medium. 

Rather than summarize the entire particle distribution by an intensity   !(£") 

and an anisotropy   l/( 1 + \T),   one might reasonably specify the phase-space 

distribution of particles as a function of the three adiabatic invariants and 

(perhaps) their conjugate phases (e.g. ,  Schulz and Lanzerotti,   1973).    For 

the present purposes,  however,   such formal elaboration would largely 

defeat the analytical simplicity that emerges from a purely heuristic formu- 

lation. 

A more feasible offshoot of the present work would be the phenomeno- 

logical description oi anomalous resistivity in a bounded plasma.    Kindel 

and Kennel (1971),  for example,  have identified several electrostatic 

■„..W.^..,  ■■--■-.---^-^^^*^:u...^,M|^VnV^1,.^J^^,^..;. 
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instabilities of field-aligned currents in the topside ionosphere.    There is 

only a tenuous dynamical similarity between such counter streaming insta- 

bilities and those driven by anisotropies.    However,  there is a certain 

heuristic analogy between the particle flux   (I)   and the counter streaming 

velocity   (u)   on the one hand,  and between the diffusion coefficient   (\)   and 

effective "collision" rate   {v)   on the other. 

It is quite natural,   in pursuit of the analogy,  to specify an equation of 

the form 

J 

du/dt    =    (q/m) E., - vu (12) 

where    v   is proportional to the electrostatic wave intensity,    E     is the 

strength of an imposed electric field,  and   q/m   is the electronic charge-to- 

mass ratio.    The wave intensity would reasonably be determined by an 

equation of the form 

5^ fcl* 

dv/dt   =   2(Y   /u  ) (u - u")v   +   W (13) 

where   W   is a weak source term.    The steady-state solutions of (12) and 

(13) are given by 

and 

v =   (qE   /mu"")   +  (W/2Y"S) 

u [l + (mu*W/2Y*qE J]"1 u*. 

(14a) 

(14b) 

. .    ■. 
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The latter reduces to    u «u*   in the limit   W/2Y*«  qE^mu*.    The parameters 

u     and      Y'    can be identified as the instability threshold (u*) and the damping 

rate for   u = 0   (Y''),   respectively.    Since the descrip. xon of anomalous resis- 

tance actually lies beyond the intended scope of the present work,  further 

analysis of (12) and (13) is omitted.    Moreover,   a very incisive treatment of 

anomalous resistance has recently been given by Coppi and Mazzucato (1971). 

HISTORICAL PERSPECTIVE 

The present work is not the first to have treated wave-particle nonline- 

arities heuristically.    Practical techniques for solving the mode-coupling 

equations of weak plasma turbulence have been summarized by Kadomtsev 

(1965).    The phenomenon of resonance broadening by strong plasma turbu- 

lence has been analyzed by Dupree (1966) and applied heuristically by Dum 

and Dupree (1970) to an electrostatic instability in momentum space.    In 

general,  the analogies between wave-particle interactions and particle- 

particle collisions are quite well established. 

However,   attempts to apply traditional methods of nonlinear plasma 

physics to the more complicated magnetospherir problem have been auite 

few in number.    An early description of the mutual coupling between elec- 

tromagnetic wave growth and pitch-angle diffusion was given by Cornwall 

(1968).  who proposed a phenomenological.   but analytically transcendental, 

equation of the form 

dl/dt   =   S - (I/T) exp (- I*/I) (15) 

■ ■ ■ 
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to describe the onset of particle saturation in the earth's magnetosphere. 

This equation,  as subsequently applied by Cornwall etal.   (1970) to the 

precipitation of ring-current protons,  rather concisely summarizes the 

results of all previous thought on the nonlinear magnetospheric problem 

addressed in the present work. 

According to (15),  the steady-state relationship between intensity and 

source i«: given by 

^t > 

TS/I*   =   (I/I*) exp (-!*/!) 

«   (I/I*) - 1 +.   .  . (16) 

This agrees very well with (5b) for TS/I   » 1 »TW/ZV*.    Moreover, the 

condition for   I < 0. 1 l'',  according to (x6), is that TS/I* <   5 XlO-6 (a 

rather extreme condition,  in view of the previous estimate that   K.T ~10"3 

at L. = 6).    Furthermore,  expansion of the exponential in (15) for   S = 0 and 

I »I     leads to the equation 

* 
dl/dt   «   (I    - I)/T (17) 

which agrees with (11) for    Y'T  »1.    Thus,  simple predictions based on 

(15) do not differ drastically from those based on (2) and (3). 

What,  then,  are the advantages of a formulation summarized by (2) 

and (3),  over the formulation previously existing?   In the author's judgment, 

there are several reasons for preferring the new formulation proposed here. 

For one, the conceptual foundations of (2) and (3) are more logical than 

41» 
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those underlying (15).    After all,  it is the growth rate of the wave Intensity 

(and not the instantaneous value of  \ itself) that really depends upv n the 

particle distribution function.    It follows that (15) could apply in a time- 

dependent problem only after the wave intensity has evolved to saturation. 

To describe the transient period,  during which the wave intensity grows 

from a negligible level ( \0) to its saturated value,  one absolutely requires 

a differentially coupled equation such as (3).    At the very least,  then, it 

can be claimed that (2) and (3) offer coverage that is continuous in time, 

whereas (15) offers coverage that is necessarily interrupted by wave transients. 

It is evident also that (15) cannot easily be modified to include para- 

sitic pitch-angle diffusion,  which is already included in (2) and (3) by virtue 

of the extrinsic wave source   W.    It would be wrong simply to add a second 

(parasitic) loss term to (15),   since nothing would then prevent the total 

particle loss rate from exceeding the strong-diffusion rate ( 1/T) when I »I*. 

Since   W   appears explicitly in (3),  the new model seems especially suited 

to the description of controlled experiments involving the artificial trans- 

mission of wave energy into the magnetosphere for the purpose of causing 

particle precipitation. 

Finally,  it should be noted that (2) and (3) are analytically more con- 

venient than (15).    The exponential in (15),  for example,  prevents one from 

expressing   I/I     as an elementary function of   rS/f   in the steady state. 

Algebraic manipulation is made cumbersome as a result,  and almost every 

interesting case requires extensive numerical analysis.    The new model, 

as given by (2) and (3),  may also require numerical analysis for some appli- 

cations,  but the relative simplicity of these basic equations allows consider- 

ably more information to be extracted by purely algebraic means. 
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FIGURE CAPTION 

Figure 1.      Normardzed steady-state particle and wave intensities (I/I* and 

XT.   respectively) as functions of normalized particle-source strength 

(rS/1  ) for discrete values of normalized *. wave-source strength (TW/2Y") 
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., TRAPPING OF PARTICLES B/ WAVES 

IN A NON-UNIFORM PLASMA 

l 

Michael Schul/ 
Space Physics Laboratory 
The Aerospace Corporation 

El Segundo,   California 90245 

ABSTRACT 

The intrinsic bandwidth    W2TT   of equatorial cyclotron resonance, 

between VLF waves and geomagnetically trapped electrons,  is found to 

exceed the discreteness    AU*/2TT   imposed on the underlying wave spectrum 

by the boundaries of the magnetospheric plasma.     Thus,   the relevant 

bandwidth for particle-trapping phenomena (triggered VLF emissions, 

nonlinear saturation.   etc_ ) is   AW/ZTT   rather than  AcZ/Zir.     The inhomo- 

geneity of the medium permits the attainment of a larger wave intensity 

at nonlinear saturation than would occur in a uniform plasma having the 

same equatorial parameters 
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INTRODUCTION 

The exchange of energy between particles in a plabma and an 

electromagnetic wave propagating parallel to   B   is understood to be 

inhibited on the scale of the trapping time 

,, 

T   =   (TT/ZXmc/qbj^k^) =   TT/2W , (1) 

where   b     is the amplitude of the wave's magnetic field and   v     is the 

magnitude of    | vxB |    for the typical resonant particle.     Thus,   a mono- 

chromatic wave whose linear growth rate is   Y   tends to saturate at an 

amplitude such that   CJ ~ Y   . 

The saturation of a growing sigral at   üj ~ Y    is clearly at variance 

with the quasilinear theory of unstable plasma waves (e. g. ,   Rowlands 

et al. ,   1966),  but very apparent in numerical simulations of plasma- 

dynamical phenomena (e. g. ,  Ossakow etal. ,   1972).    The failure of quasi- 

linear theory in such computer experiments has been traced by Ossakow 

et al.   (1972) to the discretization of the wave spectrum in   k   -pace.    The 
""—-^ KM« 

bothersome quantization of   k     corresponds to the use of periodic boundary 

conditions in the numerical model.     The monochromatic limit thus corres- 

ponds to the concentration of wave energy in one or a few values of   k   , 

whereas the quasilinear limit corresponds to the incoherent superposition 

of wave energy over a broad spectrum of   k    values. 

Ossakow et al.  (1972) derived from the cyclotron-resonance condition 

;. 

VH = n (2) 
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Av(|   =   (l/k^-VAk, (3) 
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between particles satisfying (?.) for adjacent wave numbers in the discrete 

spectrum.    The velocity bandwidth of cyclotron resonance in a uniform, 

weakly turbulent plasma, i      ^^u ; thus,  the criterion for full participation 

of the velocity distribution in resonant diffusion (as required by quasilinear 

theory) is 

Y   ^k^, V VAkir (4) 

where   Zir/Ak..   is the spatial periodicity imposed on the system.    The 

particle velocity   v     and group velocity   v   ( ■ dw/dk ) are opposite in sign,  and 

so their difference     v   - v. 1   g       II 
is larger than either      v      or     v..    .    Moreover, e> i    g i -|| 

the condition   Y » (v   - v.iAk..     assures that many waves in the spectrum 
g       I I 

resonate with mutual incoherence on a single particle velocity   v   .    This 

condition can be important if the resonant particles are to avoid being 

trapped in the waveform of a discrete signal. 

INTRINSIC BANDWIDTH 

In a plasma that is non-uniform,  cyclotron resonance as defined by 

(2) is a local and transient phenomenon.    In this case,   however,  the 

Heisenberg uncertainty principle leads to a nonvanishing bandwidth    AW/2TT 

* » 
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for the resonant wave frequer   y.    A particle interacting for time   t   cannot 

distinguish the carrier frequency of a wave packet to an accuracy better 

than 

., 

AW/2TT «  Ci-V^)]-1. (5) 

since the interacting length of wave packet is   t [l - (v /v )]    in time,   or 

(vg - v,,)*   in space (cf.   Roberts,   1968).    On the other hand,  from the 

viewpoint of a resonant particle,  the ideal value of   w   for resonance 

changes as    wt   or    w(t   /8)   over the interaction time interval (Schulz, 

1972). 

By equating Aw   with    wt   one obtains the (minimum) intrinsic band- 

width for particle cyclotron resonance with a wave spectrum well off the 

equator.    The result is 

Au 2^|1/2  [1  -(v,,^)] 1/2 
(6) 

.J 

This expression fails to apply near the equator, where   w = 0.    For equa- 

torial cyclotron resonance one takes Aw =   w(t   /8),  whereupon 

Ah)     S (A/2)|1/3  [1  -   (v/v)]"273. 
■    g' (7) 

Expressions for   w   and   öi   are given (Schulz,   1972) by 

--   --—      



■^Wi mn^mmmmmmmm* ' 1  
  

w    =    (3c/w La)w1/2 (1 + 3 co82e)"3/2 (3 + 5 cos2e) 

X  [(2 - v) Q -f   (v + 1) w  +   (n-w) sec a] 

x (n + Zu,)-1 (n-w)37 esc 6   cos 9 (8) 
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ana 

w =    [(2 - v)Q + (v + l)w +   (n-oo) sec a] 

X  (3c/(- Laf (fi + Zw)-1 (i2-W)P (9) 

for the case of electron-cyclotron resonance with a whistler-mode wave 

propagating parallel to   B .     The expression for   w   holds at arbitrary 

colatitude    6,     with local pitch angle    a .    The cold plasma density is taken 

as proportional to     B   .    The expression for   oi  applies only at the equator 

(6=  TT/Z). 

It is inteiesting to consider the   L = 3   field line,   on which    fi/Zir = 

34 kHz  at   G = Tr/2.    Estimates for the   intrinsic bandwidth AW/2TT  are given 

in Table 1,  with cold-plasma densities assumed proportional to   B   (so that 

-3 3 "^ 
v   = 1).    Equatorial densities of 500 cm    ,   1000 cm    ,  and 2000 cm"    are 

regarded as spanning the typical range,   and wave frequencies from 3. 4 kHz 

to 30. 6 kHz are taken as representative.    An equatorial pitch angle of 30 

is assumed. 

■ UBMM*MMaM -^MMB-HMM, 
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Table 1.     Intrinsic Bandwidths (in Hz) of 

Equatorial Cyclotron Resonance at L = 3 

Frequency 

of Carrier 

3. 4 kHz 

6. 8 kHz 

10.2 kHz 

13. 6 kHz 

17.0 kHz 

20. 4 kHz 

23. 8 kHz 

27. 2 kHz 

3 0.6 kHz 

Density = 

500 cm -3 
Density 

22, 31 

27. 23 

27. 57 

25. 66 

22. 52 

18. 65 

14. 33 

9. 71 

4. 92 

1000 cm" 

17 71 

21 61 

21. 88 

20. 37 

17. 88 

14. 80 

11. 37 

7. 71 

3. 90 

-3 
Density = 

2000 cm"3 

14. 06 

17. 16 

17.37 

16. 17 

14. 19 

11. 75 

9.02 

6. 12 

3. 10 

0 

.._      — ■- ■    ■-- ■■- -- iii       i ^MMMMMH 
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APPLICATION 

The existence of an intrinsic bandwidth has been invoked previously 

in the context of triggered VLF emissions (Schulz,   1972).    It is of interest 

here to explore the effect of an intrinsic bandwidth on the maximum attain- 

able value of    Ü3.    Since the effect of   Aw is to impede the trapping of 

particles by waves,   it seems reasonable that   Aw    will enable     w      to 

exceed    Y  .    The amount of excess ought to be a Galilean invariant,  which 

Aw   is not.    Thus,   it is natural to conjecture that 

CO Y   +    [l -   (v /v )]  AW (10) 

at monochromatic saturation.    This expression defines the maximum 

amplitude   b     to which a sinusoidal signal could grow,  viz. , 

hi   <   (mc/qk^HY   +   [1  -    (v /v)]Au,} 
II    g' (11) 

The corresponding limit in a uniform plasma is obtained from (11) by 

setting Aw = 0. 

The generalization of (11) to a quasi-continuous spectrum   ^{(W/ZTT) 

is relatively straightforward.    One ought to make the identification 

b^/2    =     (l/2Tr)^(W/2ir) Max (Aoo, Aw*), (12) 

where   Awv is the effective discreteness imposed on   w   by the boundary 

conditions.    This interpretation is roughly compatible with Ossakow et al.  (1972) 

in the limit   Aw  = 0. 

^ >■ 
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The value of   Aw:;: in the earth's field can be estimated from the 

line integral of     1/v   .    The expectation that 

Aco" 2TTT i (1/v ) ds 
g 

(13) 

u 

follows from quantization ox the phase integral (circuit integral of   k   ds) 

in steps of   2IT,    where   s   is the coordinate of arc length along a field 

line.    For whistler-mode waves in a dipole field one obtains 

xr     _   , lo     3/21/2., 
v     -   2 ((] -w)        w (c/i n) 

? 
(14) 

and 

A«*  =    (irc/l*Q0)(Qv/«2)1/2w1/2 

1 
nA (1+? cos2 6)0"^d (cos 6) 

(n-oo)3/z(i cos e) 
(15) 

where      Q^   is the equatorial gyrofrequency and   A  is the invariant latitude 

of the field line.    The factor     fi /w       is a constant,   since the density is 

taken as proportfcnal to   Bv.    Numerical integration of (15) is straight- 

forv-ard,  but unnecessary in this instance.    It is evident from (15) that 

ACO*/2TT  <   (c/2Laiyu77u, V72 W
1/2 

sin A 

•I (i+3 cos2e)n(v'3)/2 d(cose) 
 z—r (i - cosher 

(16) 
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for w >0.    Setting    v   = 1   and   L = 3   (whence   sin2A = 2/3),   one obtains 
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ACJ* (nc/w  La)0(3u)/n0)1/2 

2Tr 3 + In (N/2   + \f3) 
(17) 

C 

Since u < nQ,  the right-hand side of (17) cannot exceed 1. 12 Hz for a 

-3 7. 
density of 500 cm    ,  nor 0. 56 Hz for a density of 2000 cm    .    It follows 

that Aw > Aw*   under conditions of interest,   at least in this region of the 

magnetosphere.     Resonant particles sample an essentially continuous wave 

spectrum,   since the minimum bandwidth resolvable by a particle exceeds 

the discretenecs of the spectrum.    A similar conclusion by Ossakow et al. 

(1972) was based on the estimate that V » (v   - v )Ak   .    The present 

result is stronger,  in that it does not depend on the magnitude of   V   . 

DISCUSSION 

The significance of   Aw* would disappear if a wave introduced at 

one foot of the field line were totally absorbed at the other.    At least a 

partial reflection is required in order to make the wave spectrum discrete 

by virtue of boundary conditions.    In the event of partial reflection of the 

wave intensity   ( 0 < R < 1 ), there arises the possibility of overall marginal 

st ibility (Keiuiel and Petschek,   1966) if the wave has a local growth rate 

Y     such that 

:; 

sinA 

In R Lai (Y/v )(1 + 3 cos28)1/2 d (cos 6). (18) 
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A smaller mean value of     Y/v    would lead to eventual wave attenuatior 
g 

(after perhaps many "hops" along the field line),  while a larger mean 

value of    Y/v    would lead to the spontaneous generation of a finite-amplitude 

wave signal out of infinitesimal random noise. 

The wave spectrum is strictly discrete only at marginal stability. 

Otherwise the spectrum is characterized by interference "resonances" 

separated by   AW*/2TT  but ' aving definite bandwidths 

0 

sinA 

(Y/v )(1 + 3 cos2e)1/2 d (cosO) 

In R Au> ' 
 T (19) 

extending to each side of the "resonant" frequencies    u*/Ztr .    Such 

"resonances" as defined by (13) are not wave-particle interactions,  but 

are closely related to the transmission "resonances" encountered in 

quantum mechanics (e. g. ,   Merzbacher,   1961).    In case   |r| Z Aw* ,  there 

is considerable overlap of the "resonances",   i. e. ,   an essentially continuous 

spectrum. 

As arguments in the previous section have demonstrated,  however, 

considerations on the discreteness of the underlying wave spectrum are 

substantially overridden in the case of magnetospheric   /LF waves by the 

intrinsic bandwidth of cyclocron resonance between such waves and geo- 

magnetically trapped electrons.    Since the intrinsic bandwidth   Aw   exceeds 

the mukrlying discreteness      Aw*  ,  it matters little whether the underlying 

O 
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w spectrum is essentially discrete   (|rl« Aw*)   or essentially continuous 

(ir| ^ Aw   ).     The spectrum appears essentially continuous to a resonant 

par;icle in either case. 
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PHASE-INTEGRAL APPROXIMATION 

OF   Pc-4   EIGENFREQUENCIES 

Michael Schulz 
Space Physics Laboratory 
The Aerospace Corporation 

El Segundo,   California 90245 

ABSTRACT 

r 

The spacing    Aw/Z-rr  between consecutive toroidal eigenfrequcncies 

w  /2T     of magnetospheric field lines is correctly given (within 2% at   L = 

6. 6) by the reciprocal of   ffl   (l/cA)ds,    where   c.    is the local Alfven speed 

and   s   is the coordinate of arc length along the field line.    The eigenfre- 

qucncies themselves are accurately given by the formula    w    =   (n -6)Aw, 

where   n = 1, 2,3,   ...  and     5   is a number that depends upon the distri- 

bution of plasma density   (p)   along the field line.    With   p   proportional 

to   r       (r = radial coordinate),  the value of   6   at   L = 6. 6   is given by the 

empirical formula    6   = 0. 44 { 1 - exp [(m - 6)/3] } for   0<mS6. 

 ■■-  ■■■ -    ,  ■ ■MIMMHMMm 
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The purpose of this note is to investigate the accuracy of a. certain 

phase-integral approximation for the characteristic frequencies of oscil- 

lating magnetospheric field lines.    Hydromagnetic (MHD) resonances of 

this type are believed responsible (e.g. ,  Jacobs,   1970) for the   Pc-4 

band of geomagnetic micropulsations.    A full numerical solution of the 

eigenvalue problem at   L = 6,6   (Cummings et al. ,   1969) makes it possible 

to check the present formula of approximation against the true eigenfre- 

quencies for a reasonable class of plasma-density models. 

In the phase-integral approximation of   Pc-4   eigenfrequencies,   it 

is assumed that the oscillation propagates as a noncompressional Alfven 

wave   (w= c^kj,)   along the magnetic field line   (r = La sin2e)   and suffers 

perfect reflection at the surface of a perfectly conducting earth   (r = a). 

Following the spirit of Bohr theory,  it is further assumed that the wave 

action (accumulated over a full bounce period) is quantized in steps of 

Planrk's constant.     The classical statement of this principle takes on the 

form 

J 

f  Hi/t:A)ds   =   2l^n "6)■ (1) 

where   n   is a positive integer,    6   is a constant less than unity,  and   s 

is the coordinate that measures arc length along the field line. 

In the geomagnetic dipole field, the intensity of   B   varies with co- 

latitude   6   in accordance with the relation 

B   =   Bn (1 +3 cos2e)1/2csc6e (2) 

■  - ■   
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at fixed   L.    The equatorial field   B-   is estimated,  for the purpose of 

comparison with Cummings et al.  (1969).  as 0. 312L"3 gauss.    The plasma 

density   p   -s assumed proportional to   (a/r)™,    where   a   is the radius of 

the earth and   m   is a constant index.    In terms of the equatorial density 

PQ,    it follows that 

p     =    P0 esc       6 (3) 

at fixed   L.     The local Aifven speed   c.    is given by   c 2 = B2/4TTp. 

The integral in (1) has a fourfold symmetry.    The representation 

of   c.    based on (2) and (3) yields 

C 
^/Zn   =   (B0

2/64„p0L
2aV/2(n -6) 

sinA 

I ,, 2.3-(m/2)J (1 - x   )     v 'dx (4) 

where   A   is the invariant latitude (defined by the identity   L cos2A ■ 1). 

Evaluation of (4) in closed form is straightforward whenever   m   is an 

integer (see Appendix). 

The eigenfrequencies    u>JZ-n   computed by Cummings et al.   (1969) 

correspond to a unit equatorial plasma density (i. e. ,  to the case    prt/m     = 
  0      p 

-3 
1cm    ,    where   m     is the proton mass) at   L = 6. 6 (A * 67. 1°).    In agree- 

ment with (4) the toroidal eigenfrequencies determined by Cummings et al. 

(1969) are about equally spaced.    The mean difference frequency   AW/2TT 

among the first six harmonics is given for each density model (m = 0,   1, 

■ ■ - —  • ■ ■■ —  I 
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Table 1.     Summary of Empirical Data on 

Toroidal Eigenfrequencies at   L = 6. 6 

,, 

Index 
m 

Predicted 
WZTT.HZ 

Gumming s 
AW/2TT, HZ 

Cummings 
1 - (wj/Aw) 

0 0.0308 0.0312 0.386 
1 0.0287 0.0290 0.355 
2 0.0266 0.0268 0.320 
3 0.0240 0.0242 0.271 
4 0.0213 0.0216 0.214 
5 0.0184 0.0186 0. 127 
6 0.0153 0.0154 0.006 

o 

—  
- - -■   I - - -  - -     ■MMMMM 



k 

^> 

MM 

HI 

2,   .   .   . ,  6) in Table 1.    The true values of   Au/Z-rr  are thus   ~1% larger 

than the diiferences 

AW/ZTT   =   (BQ/S^LV)
1
^ 

sinA 

1" n        2.3-(m/2)   . (1 - x  ) ' dx (5) 

predicted by (4).     Thus,  the phase-integral method yields an excellent 

approximation for   Au)/2tT. 

The ratio of the lowest eigenfrequency    W./ZTT  to the mean difference 

AW/2TT  provides an empirical determination of   1 - 5 within the framework 

of Cummings et al.   (1969).    The value of    6   thus determined from the 

published period of each lowest eigenmode is given in Table 1 along with 

the data described above.    The empirical values of     6   decrease systemati- 

cally with   m.    Quantitative interpretation of this trend is complicated by 

a substantial round-off error ( ~ 0. 01) in the evaluation of   Ö .    The resonance 

frequencies   u   /2TT  found by Cummings et al.   (1969) in the   m = 6 model,   for 

example,  are consistent with the formula   w  /ZTT = 0.01529n   Hz, with   5=0. 

The empirical values of  6 = 1 - (w  /Aw) given in Table 1,  along with 

the theoretical values of the trigonometric integral appearing in (4) and (5), 

are plotted in Figure 1.    The empirical formula 

6    =   0. 44   { 1 - exp [(m - 6)/3] } (6) 

is found to hold within the round-off error inherent in Cummings et al.   (1969). 

MMä^lMMU Mi  -      -  ^^.^^^^^.^^^^.^^j, 
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Figure 1.     Values of trigonometric integral (theoretical) and delta 
parameter (empirical) at   L = 6. 6 
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The proper generalization of (6) to field lines other than   L = 6. 6   is not 

evident.    However,  the trigonometric integral is easily evaluated as a 

function of   L   for integer values of   m   (see Appendix). 

In summary,   the phase-integral method accurately predicts (within 

27i) the spacing   AW/2TT   between consecutive toroidal eigenfrequencies 

w /ZTT     of magnetospheric field lines.    The eigenfrequencies themselves 

are accurately given by the formula    w    =   (n -6)ACJ,  and the value of 

at   L = 6. 6   is empirically given by (6).    The generalization of (6) to other 

L   values is not known,   but it is reasonably certain that    6   = 0   at all   L 

values for the   m = 6   plasma-density model. 
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APPENDIX:     TRIGONOMETRIC INTEGRALS 

For the reader's convenience,  the integral that appears in (4) is 

here explicitly evaluated for integer values of   m ( = 0. 1. 2 9). 

One obtains 

sinA 

J (1 - x2)3-^/2) dx   s 

(1/35L3)(16L3 + 8L2 + 6L + 5) sinA. m = 0; 

(1/48) [ISA + L-5/2 (15L2 + 10L + 8) sinA] .  m = 1; 

(1/15L2)(8L2 + 4L+ DsinA,   m = 2; 

(l/8)[3A + L-3/2(3L + 2)sinA] .  m = 3; 

(1/3L)(2L + 1) sinA,  m = 4; 

(l/2)(A+L-1/2sinA). m = 5; 

sinA.  m = 6; A,  m = 7; 
(Al) 

-1 
tanh'* (sinA),  m = 8; (L - 1)1/2, m = 9; 

where   sin2A . 1 . (,/L).    The re8ult8 arc plotted ^   L r 6 6 .„ ^^ ^ 

.1 

. 
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NECESSARY CONDITIONS FOR 

BOUNCE-RESONANT WAVE AMPLIFICATION 

Michael Schulz 
Space Physics Laboratory 

The Aerospace Corporation 
El Segundo,   California   90245 

In speculating on the origin of a compressional   Pc-4   micropul- 

sation oscillating \n the magnetosonic mode at synchronous altitude, 

Barfield et al.   (1971) suggested a bounce-resonant diffusion of energy 

to the wave from the population of ring-current protons.    Since the first 

invariant   M   is conserved during bounce resonance,  a wave-amplifying 

diffusion of energy would require either an off-equatorial maximum in 

the mirror-point distribution,  or an inward gradient in the L-profile, 

of particles having in common their value of   M.     More precisely,  the 

phase-space distribution   f   must be 5 ach that either   (9f/9J)w      > 0   or 
M,* 

(9f/9*)j M > 0   for at least some values of   M,   J,   and   *   (the three adia- 

batic invariants,   all being positive quantities). 

It would be useful to have these two amplification criteria expressed 

in terms of directly measured physical quantities.    It is convenient in 

this context to introduce the kinetic energy   (E),   the Mcllwain parameter 

(L),  the sine of the equatorial pitch angle   (y),  the cosine of the equatorial 

pitch angle   (x),  the scalar momentum   (p),  and the differential unidirec- 

tional flux   (Ji),  evaluated at the particle mirror point (i. e. ,  at B/Bn =    1/y  ). 

      —— MM« 
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Since   x2 + y2 = 1,    it follows from the Jacobian chain rule that 

., 

and 

(-) 

d{u, f. *)   a(E. x, L)    x 

a(E.  y,  L)     8(M,  J. *)      y 

a(M, J, f)     d(E, x,  L)     x 

d(E,  y,  L)     9(M,  J, *)     y 

(1) 

(2) 

where    a(M.  J, »)/a(E,  x.  L) = - 8TTYpL2a3xT(y).    In this expression 

(Schulz and Lanzerotti,   1974) the symbol   a   denotes the radius of the 

earth,    V   is the ratio of relativistic mass (m) to rest mass {m^),  and 

T(y) M 1.3802 - 0.3198 (y + y       ) is the ratio of   p/4mLa to the particle 

bounce frequency.    It follows that - (x/y)[a(E.x, L)/a(M, J.*)]   is a positive- 

definite Jacobian. 

Wave amplification therefore requires at least that   a(M, f,«)/9(E, y, L) > 0 

or    8(M, J.Ö/a^E.y.L) >0,  where   f = ^/p    (e.g. .  Schulz and Lanzerotti, 

1974).    In other words, wave growth requires that either 

:, 

(81n J^/dlny^ L +   2 

[(Y+ 1)/V] (Sin J^dlnE)^,   < 0 (3) 

or 

4 01nJ1/ainL)E>yT(y)   -   O In 1^8 In y)E> L Y(y) 

+  [6T(y) - Y(y)] { 2 - [(V+ 1)/V] (8 In J^B In E)^L} < 0   (4) 

— — -   --        * -—— - - --     -      " 
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for some values of   E,   y,   and L.    The function   Y(v)   is defined by the 

relation 

1 

| 

y 

i 

[   u-2T{u) 

It varies from   Y(l) = 0   to   Y(0) = 2T(0). 

There is no expectation that either condition (3) or condition (4) is 

sufficient for wave amplification.    Even if one or both of these conditions 

are satisfied for some values of (E,  y,  L),   a properly weighted average 

over the entire particle distribution is needed for defining the local growth 

rate (whether positive or negative).    Moreover,   even if the local growth 

rate were everywhere positive,   spontaneous wave generation would be 

contingent on adequate internal reflection of the wave energy. 

In general the weighted average would involve a linear combination 

of   ((Jf/SJ).. _    and   {di/d$)~,   _   with the relative weights determined by 

wave polarization.    However,   limiting cases can be identified which involve 

only an unstable pitch-angle diffusion   (9f/9J > 0)   or an unstable rodial 

diffusion   (9f/9* > 0) of the bounce-resonant particles.    There is no radial 

diffusion if the azimuthal component of the wave's electric field is uniform 

in longitude,  and there is no pitch-angle diffusion if the wave is non- 

compressiom;!. 

The case without radial diffusion is interesting in that it represents 

the geophysical analogue of a two-stream instability if   (9 In J /9 In E)        < 

2Y/(Y + 1).    In this case (e. g. ,  for a particle spectrum that decreases with 

increasing energy),  the necessary condition for wave growth is that   J 

----"--■■ --^ -—■"-"-—■--' -..-•--.■- ■»■-.. ■ * - - ■'  --- -       " .^MMMMIM 
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have a sufficiently pronounced off-equatorial maximum at   B/B    = (y*)-2. 

The equatorial distribution of pitch angles in this case has a relative minimum 

at V00 and absolute maxima at   sin"1 y*   and 180° - sin"1 y*.    An electro- 

static instability of this type has been described by Hasegawa and Nishihara 

(1972).     The damping of MHD waves by a distribution failing to satisfy (3) 

was indicated qualitatively by Roberts and Schulz (1968). 

-, 
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ELECTROMAGNETIC RADIATION FROM A 

HELICALLY PHASED PARTICLE BEAM 

Michael Schulz 
Space Physics Laboratory 

The Aerospace Corporation 
El Segundo,  California   90245 

The purpose of this note is to examine the concept of a helical 

beam of particles as an emitter    f ULF or VLF waves,    t  insider a 

beam of particles,  all naving speed   v   and pitch angle   a   with respect 

to a uniform magnetic field   B.     The particles (and also the beam) pro- 

gress along the field at velocity   v|| =   v cos a,  thereby covering a distance 

Zirv^fi    along ^B   during each gyration around the central field line.    If 

the particle beam is injected at a fixed phase angle    <P0   from a stationary 

source at    z =  z0   along the field,  the result is a time-independent helix 

defined by the equation 

fMz.t) = (ß/v^z     +   ^'O.D). (!) 

Unless the particle distribution along the helix is modulated in some way 

(e-g- '  in Particle density),  the stationary helix will not constitute an 

antenna in the usual sense.    However,  a medium containing such a helically 

phased velocity distribution can behave as an amplifier of ULF or VLF 

waves (Sudan and Ott,   1971). 

If the current   I ( ZQ. t)   of emitted beam particles is modulated in 

time,  the result is a traveling current pattern that radiates in the usual 
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r.    If the modulation is sinusoidal at    z = zn,  viz.,    I(zn, t)   -   In   + manne 

I.  sin (wt   +   </',),  one obtains 

I(z,t) = I0 +IJ sin  [(w/v^z   -   wt +   *l - (w/v^  z0]. (2) 

This leads to a current density having an oscillatory component of the 

form 

J(p,y, z;t) = 

(I^p) sin   [(w/v|t) » -   wt +   ^ - (u>/v()  z0] 

X 6 ( p -   (v^O)) 6 ( f-  (Q/v^ z   - y (0. 0)) 

(3) 

in cylindrical coordinates   (p, ^, z).    The radiated wave intensity is com- 

puted by evaluating the spatial and temporal moments of the waveform 

with respect to   ^(p,^, z;t). 

If the emitted beam is not modulated,  a wave source can still be 

created by giving the emitter a constant velocity   ZQ   along   B,  or by 

allowing the gyrophase angle    <fQ   of the beam to vary at a constant rate 

^p.   at the time of injection,  or both.    In this case one obtains a non- 

stationary helix defined by the equation 

J 

(p(Ztt) =  2. z + -2J 2_ t + ^(o,o). 
V    -   z 0 VN-   Z0 

(4) 

:; 
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which constitutes a wave source unless    fl =  ^     or    ^   v    =    z   f2.    In 

the latter degenerate case one obtains only a stationary helix analogous 

to (1),   and wave generation is possible only through instabilities of the 

beam-plasma system. 

The evaluation of growth rates for such plasma instabilities can be 

greatly simplified by making the problem homogeneous with respect to  p 

This situation corresponds to an infinite array of phased beam emitters, 

distributed uniformly in a plane perpendicular to   B.    The experimental 

unreality of such a configuration need not be of concern if the waves in 

question are well guided along   B,   i. e. ,  if   ( B X V   u | «   | B . V, w I throughout 

the intf -ostinfe region of   k   space.    In this case,   or if the waves are ducted 

along  JB   by field-aligned plasma inhomogeneities,  the approximation of a 

transversely homogeneous plasma will normally yield about the same 

growth rates and wave amplitudes as the fundamentally more valid wave- 

packet formulation. 

:: 
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i. 

COMPUTER SIMULATION 

OF AN ION  BEAM ANTENNA 

D.   C.  Pridmore-Brown and R.  X.   Meyer 

Space  Physics  Laboratory 
The Aerospace  Corporation 

El Segundo,   California   90245 

ABSTRACT 

c 

The feasibility  of using  a modulated beam   of ions  as  an antenna 

in the magnetosphere is   discussed briefly.     A   computer   simulation of 

an ion beam  in a plasma  is  presented in which the  motion of the  ions 

ic  prescribed while the  electrons  in the   surrounding  plasma  are   repre- 

sented by concentric   charged  shells,   each of which moves  in the   self- 

consistent field  set up by the beam and *he  other   shells.      By following 

the  motion of the   shells   on a  computer,    an attempt is  made to esti- 

mate  the  sheath current that is  induced in the  plasma  by the beam. 

--..   ..■..- ..^. ..-^--J^--^J——^ ..J 1.^. ,.._. . .  -- ■   '- —^-^—-■■     



mum 

124 

Introduction 

It is known that ULF and VLF waves can propagate readily in the 

upper ionosphere because of an amplifying mechanism based on an 

electromagnetic cyclotron instability that is now well understood. 

However,   for communication purposes,   it is not clear how such waves 

can be most effectively generated.    One possible scheme that has been 

suggested is to create an antenna consisting of a beam of ions launched 
2 

from a satellite. 

Radiation from an ion beam can be obtained,   at least in principle, 

by any one of the following methods:   modulation of (a) ion energy, 

(b) ion linear dens ty in the beam,   (c) drift velocity of the electrons 

along the beam,   and (d) electron linear density in the beam.    Alternative 

(c) is probably the most readily achieved.    In alternative (c) an ion-beam 

source maintains a constant ion current.    The beam is space-charge 

neutralized at all times by electrons injected into the beam.    The voltage 

required to modulate the  electron current is then much smaller (by the 

square root of the mass ratio) than that which would be required for the 

ions. 

A possible configuration for the ion-beam source would consist of 

a Penning discharge and extraction of the ions through acceleration/decel- 

eration grids,   similar to the electron-bombardment ion source developed 

by NASA for spacecraft electric propulsion.    However,  in contrast to 

these sources,  a much smaller beam divergence is needed in the present 

L 

^ » 
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( 

«k 

i 
:: 

application.    This can be achieved by relaxing the requirement of high 

current density (and therefore high efficiency) imposed on electric 

propulsion ion-sources.    Electrons are injected into the ion beam in 

such a way that the electron current can be modulated,   although the average 

current is equal to the ion current.    Typical requirements might be a 50 mA 

ion current of 5 keV Hg ions and a 20% modulation amplitude of the neutraliz- 

ing electron current. 

An understanding of the dynamics,   sheathing,   stability,   and radiation 

from such a beam through theoretical efforts and experimental measure- 

ments is required to verify that a beam is a viable complement or alterna- 

tive to a conventional mechanical antenna. 

To illustrate the typical range of the physical parameters involved, 

we have considered two cases--an ion beam antenna on a spacecraft 

(a) inside the plasmapause,   for a magnetic shell parameter L = 3. 0,  and 

(b) outside the plasmapause,   at L = 5.0.    The results are summarized 

in Table I. 

The effective length of the ion beam antenna has been computed by 

estimating the divergence of the beam and by assuming that the beam 

effectively terminates at the point where the beam particle density has 

become equal to the ambient charged-particle density.    This omits any 

consideration of beam/plasma instabilities that,   if present,   may result 

in an effective length smaller than the one assumed here.    Details of 

the calculation of beam divergence are summarized in Appendix I. 

As is seen from the Table,  the cyclotron radius of the beam ions 

is much larger than the effective antenna length; therefore,  the effect of 

 ^- —- I ■ ■   -"—■*—  — -- ■       ■ ■        -     ■■ 
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the ambient magnetic field on the beam ions can be neglected. 

The phase refractive index for longitudinal propagation in the 

ambient plasma has been computed on the basis of the cold-plasma 

approximation.    From this,   and from the assumed signal frequency, 

the wavelength in the plasma can be estimated and compared witn the 

effective antenna length.    For the stated values of the parameters, 

the effective antenna length is found to be roughly equal to one quarter 

wavelength,   which satisfies one of the essential conditio is for efficient 

radiation. 

Apart irom spreading and possible instability,   the efficiency of 

the beam as an antenna is affected by the electric-current distribution 

that it induces in the ambient plasma.    In this report we shall concentrate 

on this question only and try to estimate the sheath current around a 

perfectly collimated beam of infinite length. 

In principle a perfectly neutralized stationary beam could exist 

in a cold plasma without any sheath current being formed.    However, 

modulation of the beam current will cause the electrons to experience 

an induction force due to the changing magnetic field,   and hence to move 

in such a way as to oppose the modulation.    On the other hand,   charge 

modulation will cause the electrons to move in a complicated way through 

the magnetic field in response to the electrostatic forces.    We consider 

this case first.   Since the response of the electrons will be very fast 

compared to the modulation period,   we are probably then justified in 

considering a stationary beam that is incompletely neutralized.    Then 

the electric and magnetic fields surrounding it will cause a plasma electron 

., 
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released in its vicinity to move in such a way as to produce 3 current 

opposing the beam current.    Trajtctories of single electrons released 

from rest in the neighborhood of a charged beam are shown in Figure I. 

The V X B force which they experience causes them to move in the 

direction of the beam ions thus shielding the beam current.    The more 

realistic picture of a beam immersed in a plasma is,  of course,  much 

more complicated than this single-particle picture suggests,   since 

then each electron must move in the self-consistent field set up by all 

the other electrons as well as the beam.    To treat this problem in 

general even in a cold plasma would require integrating a set of partial 

differential equations in 4 dimensions.    Instead,  to keep the computa- 

tion tractable,   we choose a simplified model in which the beam consists 

of a circular cylinder of charge moving axially,  the earth's magnetic 

field is excluded,  and the plasma is represented by a series of concentric 

cylindrical shells carrying negative charge,  which are free to move both 

axially and radially through i* uniform background of fixed positive charge. 

Later we shall briefly consider the effect of current modulation of an 

uncharged beam. 

Each electron shell is then acted on by 4 sets of forces,  namely 

those due to the beam, the other shells,  the ion background and,  finally, 

its own self force.    Initially,  under the influence of the beam's electro- 

static attraction,  the shells fall inwards,  that is their radii diminish. 

We assume that the shells can pass freely through the beam and through 

each other.    As time progresses the inner shells collapse down to the 

point that the electrostatic repulsion due to their self force causes them 

., 

<* r 
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to reverse their motion and move away from the beam; note that this 

behavior is different from that of the individual electrons in that the 

letter pass through the axis of the beam.    The radial motion of the shells, 

either inwards or outwards,  in the presence of the beam's magnetic 

field induces an axial motion of the shells and hence an axial current 

surrounding the beam.    The current in any particular shell is always 

such as to oppose the beam's current initially when the shell is moving 

in,  but after the shell bounces and moves outward passing through other 

incoming shells on its way,  it may acquire a sufficiently large positive 

radial motion that its axial motion is reversed,   and it then carries a 

beam reinforcing current.    Eventually the outward radial motion is 

itself arrested and the shell falls in again.    This complicated turbulent 

motion is confined to the inner shells.    The outer shells see the beam's 

electrostatic field to be very quickly neutralized,  and as a result they 

move very little.    We define the sheath current to be the total integrated 

current in all the shells. 

Although this model is clearly too complicated to treat except 

numerically,   it already represents an extreme simplification of the actual 

situation.    One of its most serious shortcomings is probably the absence 

of an external magnetic field,   since in fact the earth's field is not expected 

to be small compared to the beam field.    However,  this assumption may 

be a conservative one in the sense that an external field would probably 

reduce the shielding currents induced in the plasma.    If this is true, 

then the currents calculated on this model should be pessimistically 

large.    Another defect is the absence of any axial variation.    We discuss 

this point later. 

-     - M^MüMMMMMtOM MMMM 
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The Model 

We now define the model explicitly as follows.    The beam consists 

of a circular cylinder of radius a carrying a uniform distribution of 

positive charge of density Zen   moving axially with a velocity w  .    The 

beam is immersed in a plasma consisting of a uniform ion background 

of charge density en and infinite mass together with a series of shells 

concentric with the beam and located initially at radii r. = iAr and carrying 

charge q. = -en 2-irr. Ar and mass M. = mn Zur. Ar,  where the subscript 

refers to the i"1 shell.    Using z fo-r the axial coordinate,   we can write 

the radial equation of motion of the ith shell as follows 

-    ■ 

—    [(E   )     -   B.B.I m    l;    r'i        i    ij (1) 

where the radial electric field 

(E^j = {Er).{h) + (E^.W + (E,)^ (2) 

is made up of the electric fields due to the beam,  the ions and the elec- 

trons. 

For the beam we have 

(Er)i
(b) =  -tu   f(ri/a) (3) 

s 
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where f(x) = x H(l - x) + (1/x) H(x - 1),   H(x) being the step function. 

For the ion background 

(Er) (i). V r 

2«o     * 
(4) 

and for the electron shells 

'^'i'" = " ^ ^P'j' (5) 

where 

—   J      {j: r.<r. C    x 
(6) 

:; 

We put q. = (n_/n)j for j < N- and q. = j for j > N_ where N_, is the num- 
J D J £) JÖ 

ber of shells inside the beam,   NR = a./Ar.    Taking n    >n allows for 
i 

neutralizing electrons to be ejected with the beam.    The form ofj^q.) 

expresses the fact that the electric field at the i**1 shell is made up of 

a sum of contributions from just those shells that lie beneath it plus a 

part coming from the electrostatic forces of the shell on itself. 

Similarly,  the axial equation of motion has the form 

i. = - ~ \{E   ). + r.B.l i m  Lx    Z'I        i    ij 
(7) 

■ — ' ---■■■ ■      ■ ,.^MMM—f"  ■ —:   -   ■ ^ 
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:th 
Here B. represents the azimuthal magnetic field at the i     shell due to 

the beam current and the electron-shell currents. 

—  2   i 
Bi^onea[7 TV^-^EVJ)] (8) 

Finally,  the axial electric field is related to the magnetic field by Faraday's 

law 

37 (E  ). v    z i 
B. 

i 
(9) 

If one attempts to solve these equations in a medium of infinite 

radial extent,   one finds an unbounded time varying flux^B dr due to the 

shells,  which in turn leads to infinite induction forces t.irough Eqs.  (9) 

and (7).    To get around this difficulty we assume that the beam current 

is returned at a large but finite distance r,,,.    Fortunately,  the results 

turn out to be rather insensitive to the value chosen for r,,,.    In practice, 

the beam length is also finite,  and one would expect r^ to be comparable 

to it. 

To eliminate radial derivatives it is convenient to introduce a 

new dependent variable 

,: 

<!>. =    f   B(r) dl 
ri 

(10) 

:: 
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representing the flux per unit length of beam between r. and r^.    Sub' 

stituting (8) i.ito (10),   we find for 4>- 

<J>. = u.   nea    c 
i      'o 

[,     n.     w,       ,r.        ,.   . L J° z.        r  •} 
(ID 

Here g(r/a) =    /   f(r/a) dr/a and r.. = max(r.,   r.).    Note that in this 
«/ J J 
ri 

expression the summation is over all the shells.    We next differentiate 

(11) to find <j>.,   the time derivative of (j). 

<|>. = p.   nea    c ^HWI^A^-^)]} 
(12) 

Here 

i     J      (J: r
r-ri} 

(13) 

enters because only the radial motion of shells above the i"1 contributes 

to the induction.    In terms of <(). Eq.   (7) takes the form 

z. = (A.  - r. B.) (14) 
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When we substitute for <j>. and B. from Eqs.  (12) and (8) into Eq. 

(14) we find the summations involving z. can be combined,   and we have 
» r 

2 21.     n     w 
e   n    a   )1       +      + "+ W

+  ri 
m t       c o 

n      c     °i     2     n    c    a  fi 

Z  ^ r    z.        r f..    i.~\ \ 

j=iLJ ij        ij     J; 
(15) 

Here r.. = f. H(r.  - r.) + r. H(r. - r.). 
ij       i       i        J J       J       i 

ables 

We now simplify the notation by introducing dimensionless vari- 

r = a r 

t = « "  T 
P 

r = u    a u 

z = VCJ    aw 
P 

n   /n = N^ 

v/±/c  = W± 

Ar/a = 6 

,1 

2        2 
where w     = e   n/«   m is the square of the electron plasma frequency and 

v = w    a/c.    Thus lengths are measured in units of the beam radius and 

times in units of the plasma period.    Notice that the radial and axial 

velocity components are scaled differently.    In terms of these quantities 

(and dropping the bars) we have 

:; 
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r. = u. 
i        i 

u. 

w i+ «E^ij V v ^Ci. Wj 

(16) 

(17) 

(18) 

where 

', 

A.. = q. In (r   /r..) 

C.. = q. u../ r.. 

Fi = Pg1  -ßu.f. 

ß = 2 W+ N+ 

€ =(v 6)' 

and the dot now represents differentiation with respect to u t     The r  B 
P i    i 

term occurring in (7) is excluded in (17) by the assumptions v2 W   «1 and 

v   « 1. 

■* * 
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Equations (16) - (18) represent a set of SN- coupled differential 

equations,   where N_ is the number of shells which we should like to 

take as large as possible.    This task is clearly impractical,  even on 

a high-speed computer.    Note that in matrix notation (18) reads 

vJ 

(I +«A)w = F +   « Cw (19) 

where I,   A and C are square matrices with I the unit matrix and F and 

w column symbols.     We shall now make the assumption that t llA||« 1 

2 
and t   « 1. (In the numerical work we shall take 6 = Ar/a = 0. Z and 

v = 0.01,  which makes   € = 4 X 10     .    This value of v corresponds for 

7 -1 
example in the case of a 10 cm beam to w    = 3.10    sec      .)  Finally,  the 

elements of A are bounded roughly by N^, In N„.    Accordingly,  we pre- 

multiply Eq.  (19) b,   (I +   i A)     " I -   € A to obtain ,1 

w. = F. +€y;(c..w. - A..F.) 
i   i  Y ij J   y y 

(20) 

Unlike (19),   these equations are now uncoupled.    We shall be 

particularly interested in calculating the total current in the plasma and 

relating it to the current in the beam.    In particular we shall attempt to 

compute the following quantity 

.^ 
JS-JE 

JI-JE 

(21) 

s 
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where Jj and JE are the total ion and electron currents in the beam 

initially and Jg is the total current carried by all the shells and hence 

includes J^,.    With this normalization^? = 0 corresponds to no sheath 

current induced in the plasma and i#= I corresponds to perfect shielding. 

We have 

T 2 
Jj = TT a en    w 

-2 NB 

JE = ZTrAr  en ^^w. 
i=l 

-2        NS 

Js = 2TrAr  en £ q. w. (22) 

i=l 

In terms of the dimensionless quantities JT = N   V  ,  !„ = N V    and 
; 1 T     +        E -     - 

Jg = 2e2j(q. w.) we can write 

*    JS"7E 
&== =- (23) 

JI " JE 

Numerical Computation 

Equations (16),   (17) and (18) have been programmed for numerical 

computation.    In all cases the number of shells Ns was arbitrarily set 

at 200 with Ng = 5 shells inside the beam so Ar/a = 0.2,    The results 

of a particular run are shown in Figures 2-4.    For this case the beam 

was assumed to be steady ((3=0) and the beam ions to be traveling at 

!% the speed of light (W+ = .01),  corresponding for example to 50 kV 

■ ■ - ■ — 
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protons.    The beam is unneutralized with the ion densli./ equal to 4 times 

the background density (N+ = 4,   N_ = 1).    Figure 2    is a computer plot of 

the radial motion of the first 50 shells as a function of time.    Figure 2b 

is a similar plot of every 4th shell from the 4th to the 200th.    It is clear 

that bouncing is confined to the inner shells while the outer shells merely 

pulsate at roughly the plasma frequency.    The current ratio d»? is plotted 

in Figure 3.    Here the five curves represent the total electron current 

(normalized to the beam current) under fixed radial distances,   namely 

8,   16,  24,   32 and 40 beam radii.    These curves are labeled 1 to 5,   res- 

pectively.    The fact that they are quite close together indicates that the 

sheath current is largely confined to the vicinity of the beam.    It exhibits 

a pulsation in step with the motion of the shells,   but after a few plasma 

periods phase mixing sets in and the sheath current is reduced.    In 

Figs. 2 and 3 the beam current has been made to return at the initial 

position of the 200th shell,   i.e..   at 40 beam radii,   r« = 40.    Figure 4 is 

similar to Fig.   3 but with r^ = 400,  the region between r = 40 and r = 400 

being vacuum.    The total sheath current and it3 distribution is seen to be 

only slightly affected by the position of the return current. 

The beam currents considered so far are,   of course,   much smaller 

than those that would be of practical interest,  but they reveal the quali- 

tative response of the plasma.    We next raise the beam current by increas- 

ing N+ to 42.    At the same time we maintain partial neutralization by 

taking N_ = 35.    (Note that,  because of the discretisation error,  perfect 

neutralization would require taking N    = 1 + [N-./fN^ + lflN ,   which is 

36 in our case).    Again the sheath current shown in Fig.   5 is qualitatively 

similar to that in the previous case except that the oscillation is now at 

■ ■-'   •a. ■  -■ 
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^ * a higher frequency corresponding to the fact that the density within the 

beam is higher.    Also the total sheath current is now e\en smaller than 

before as a result of the smaller excess charge on the beam. 

So far the electron shells within the beam have been assumed to 

be initially at rest,   W_ = 0.    Of more practical interest is the case where 

they are given an initial velocity W_ > 0 and at the same time a high 

density N_ »1.    Then it is found that in the absence of perfect neutrali- 

zation the beam is effectively unstable since these inner shells promptly 

leave the beam taking a large part of the current with them.    Of course 

these shells are just as promptly replaced by others from the surrounding 

plasma to preserve neutrality.    We conclude that in any practical situa- 

tion where a portion of the beam current (perhaps a major portion) will 

be carried by the electrons it is important that as high a degree of 

neutrality as possible exist in the beam initially as it is ejected to prevent 

its being broken up by electrostatic forces.    In any cases sheath currents 

due to charge effects of the kind we have considered here are quite negligible. 

Up to now we have always assumed the beam current to be steady, 

i.e., we have taken ß = 0 in Eq.  (18).    In practice we are interested in 

the case where the beam current is modulated,   albeit   .t a very slow rate 

compared to the plasma frequency.    Hovever,   because of its mathematical 

simplicity we look next at the opposite extreme,   namely a beam that is 

turned on abruptly at time t = 0.    Then ß in Eq.   (18) becomes a step func- 

tion and p a delta function.    The axial velocity distribution at time t = 0+ 

becomes 

vi = W+N+(gi - «J>..g.) (24) 
j     J   J 
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The resulting initial current distribution throughout the plasma is shown 

in Fig.  6.    It is clearly no longer confined to a sheath in the vicinity of 

the beam,  and it now depends strongly on r^,   the position of the return 

currents.    Furtiermore,   it is a significant fraction of the beam current. 

These curves remain effectively constant in time since current arising 

from radial shell motion superimposes only a small ripple. 

In practice the beam would be turned on very slowly with a build- 

up time long compared to a plasma period.    However,   such a slow build-up 

is not expected to change the final results significantly on the basis of the 

present model.    Rather,   these results point up an inadequacy of the model 

arising from the neglect of an axial variation and of displacement current. 

Both of these effects are taken into account in an accompanying paper^ 

which includes a full-wave treatment of the antenna,  but at the cost of 

linearizing the problem.    If the perturbation of the plasma by the beam 

is in fact small,  as we believe it is,  then the sheath current should be 

adequately accounted for in the near field of the solution given in Ref. 3. 
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The effective length of the ion beam as an antenna is limited by 

a number of effects.    Collisions with the ambient plasma and finite ion 

Larmor radius effects are negligible under the assumed conditions, but 

effects such as beam spreading due to imperfections in the ion-optics of 

the source,   ion and electron temperature effects,  beam-plasma insta- 

bilities,  and electrostatic repulsion in the beam (for incompletely space- 

charge neutralized beams) all may play a role. 

We briefly consider here the effect of the ion temperature on the 

bpam spreading.    The best collima'don (beam half-angle ß) that can be 

achieved is of the order of 

:: 

w 

ß  N 
th+ 

w 

/kT   \1/2 

(i) 

wh ere w+ and wth+ are the axial and thermal velocities    respectively of 

the beam iors,   V+ the accelerating potential of the ion source,  and T 

the ion temperature in the source.    T+ depends on the details of the ion 

source design,  but it can be estimated from the sheath potential.    Based 

on current ion-source technology,  kT    = 5 eV is assumed. 

The ion beam current is I+= e n+(z) w+ A(z), where n  (z) is the 

beam ion density as a function of distance z from the source, 

1/2 
w+ = (2eV+/m+)     " the ion axial velocity and A(z) the cross-sectional area 

of the beam.    For a circular aperture,  at sufficient distance from the source 

(A » area of aperture). 

A(z) = TT(ßZ)' (2) 

L 
■ - ^•^MMB 
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We take as the effective termination of the beam the point 

where 

,, 

n  U) = n (3) 

(n = electron/ion density of the ambient plasma).    This condition leads 

to the expression 

-^W'^vV1'4,-' (4) 

for the effective beam length JL.    Numerical estimates for i are contained 

in Table I. 

It is also of interest to note that the beam length depends only 

weakly on the accelerating potential of the ion source (X~ V for 

-1/2 
constant T+,  i. e. ,   ß ~ V+ ) and also only weakly on the ion mass 

(i~ m+
1/4). 

;. 

:; 
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FIGURE CAPTIONS 

Fig.  1        Single-particle    trajectories for electrons released from rest 

at 2 and 5 beam radii for beams of charge-density ratio N   = 4 

and 42. 

Fig.  2        Shell motion surrounding a beam of beam/background charge- 

density ratio N+ = 4.    a) first 50 shells; b) every 4th shell 

from 4 to 200.    Initially the shells are evenly spaced with the 

beam extending over the first 5. 

Fig. 3 Shell current normalized to beam current for the case N   = 4, 

N_ = 1,  W+ = . 01,   W_ = 0,   v = . 01,  r^ = 40.    Curves 1 to 5 

refer to total shell current under 8,  16,  24,   32,  and 40 beam 

radii,   respectively. 

Fig. 4        Similar to Fig.   3,    but for r    = 400. 

Fig. 5        Shell current normalized to beam current for the case N   = 42, 

N_ = 35,   W+ = . 01,   W_ = 0, w = . 01,   r,,, = 400. 

Fig.  6        Initial shell-to-beam current ratio for a beam turned on abruptly 

at time t = 0 for different values of r  .    Other parameters are 

the same as in Fig.  4. 

;     I 

:; 
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RADIATION FROM  A LINE  SOURCE 

CARRYING A  TRAVELING  WAVE  IN A MAGNETOPLASMA 

D.   C.   Pridmore-Brown 

Space   Physics.   Laboratory 
The  Aerospace  Co-poration 

El  Segundo,    Califcnia     90245 

Many papers have been written on radiation in the ionosphere from 

dipoles or finite antennas carrying a prescribed standing-wave current 

distribution.       For some applications it is of interest to calculate the 

radiation from a line antenna of infinite length carrying a current distri- 

bution that is traveling along it at a prescribed speed.    A possible appli- 

cation would be to an antenna in the form of a modulated beam of charged 

particles,   which has been proposed in a scheme for transmitting signals 

through the upper ionosphere.    This case is somewhat different from the 

one usually treated in that now not all portions of the wave-number surface 

can contribute to the radiation,  but only those which intersect the plane 

representing the prescribed wave number of the moving current pattern 

on the antenna.    We shall derive formal expressions for the far-field 

radiation pattern of such an antenna immersed in a uniform plasma and 

making an arbitrary angle with a uniform magnetic field.    These express:ons 

have been programmed for numerical evaluation on an on-line system,   and 

plots of computed patterns for representative cases will be given in a later 

report. 

We start from 

curKK"1 curl H)- k2 H = curKK-1 J) (1) 
st - o   ~ as       ~ 
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where K is the dimensionless permittivity,  which is assumed to have the 

form 

(2) 

with €, T!,  g real as is the case for a cold plasma with the magnetostatic 

field in the z (3rd) direction.    In these equations a time factor exp(-iwt) 

has been suppressed. 

We choose the coordinate system so the antenna lies in the xz 

plane and makes an angle  6^ with the z axis.    We also introduce a primed 

coordinate system with z' along the antenna and y' = y.    We take the 

source term J in Eq.  (1),   representing the current on the antenna,  to 

have the form 

J = Io^   (Wd2)   exp(-p2/d2)   exp(ikonoz') (3) 

Here Io is the total current on the antenna,   p = (x|2 + y'2)1^2 is the 

distance from its axis,  d is a scale length representing its thickness, 

no i8 the P1"680"1»««1 wave number along it and'a' is a unit vector.    In 

conjunction with the time factor exp(-iu)t) this current distribution has 

the form of a traveling wave. 

Taking the Fourier transform of (1) we find 

(kXK-lkX   +k2I)Hk=.ikXK-1
JIk (4) 

I 
where H^,  J^ are Fourier transforms and I is the unit operator.    We 

now put 

 *-- ■■ 
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kxK^kx = k2y;x. p.-, i =y"p. 
~        as        ~ oV    1  »1      »    i-r'ta\ (5) 

where \. are the eigenvalues and P. the corresponding projection operators 

of the symmetric operator k X K     k X,   which are related to its normalized 

eigenvectors u by P = |u^ ^u'|.    If we introduce a spherical coordinate 

system k,   |,   X in wave-number space with the polar angle ^ measured 

from the magnetic field,   then we can write the projection operators as 

0 0 0 \ /10     0 

0     Pi + a sin2!     -2i X g cos^ ) i     P0 = ( 0     0     0   j (6) 

0    2 i X g cos ^      Pi-asin2^   / \o     0     0 

/ x        2 . 2    .  4.      ^^2    2        2^,1/2      „, 
where a - «(< - r\)  - g    and p± = ±(o    sin | + 4X    g    cos |)       .    The 

projection operator P    projects out the component along the wave-normal 

direction k,  while P.   project out the two left and right elliptically polarized 

components.    The corresponding eigenvalues are 

n2 2 
X±= 2 T   (2 « n + ösin I  "  P±) (7) 

2^(6     - g  ) 

\    = 0 
o 

2        l,2/!,2 
where n    = k  /k  . 

o 

Substituting (5) into (4) we find 

T{\. + 1) k2 P. H,   = -ik X K"1 J. Lr'     \ oa!i~k -      »      ~k 
i 

- ■ ——^——^—"——— 
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Here i runs over the indices +,   - and 0.    We now multiply this equation 

on the left by P..    Then,   since pf = P.,   P.. = 0,  i* j,  we find .- 

% =ESi 9K =Z^T^ 
P. k XK"   J. ~k 

i k^ (X. + 1) 
(8) 

This approach is equivalent,   for example,  to that of Deschamps and 

Kessler. 

We now put 

P. k XK"1 z = k    F. ■i ~ o ~i 

Jk = z I0 Q 6{kt - ko no) 

Carrying out the computations using Eqs.  (2),  (3) and (6) we find 

F^ = !L££ii / [(n2 . €) C08 x + ig 8inXj gine 
p± <P± " a) n l C 

(9) 

n 

2Liiatco.fol[.ibt+(p4.^] 
2p±r] I 

(10) 

Q = (4Tr2)"1exp(-  1  kf d2) (ID 

-** 

 ^ 1  ————-——*- 
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^ Here a = asin^,  b = Zr\g cos^ and k^  k,, refer to components perpendicular 

2        2        2 and parallel to the antenna,  k    = kj^ + k... 

The solution of Eqs.   (1) and (3) is given by the inverse Fourier 

transform of (8).    After substituting (9),   (10) and (11) into (8) and perform- 

ing the integration over k.. we find 

F. Q 
H(r) =: (iko) -1 loff ^ ^^ exp (i k • r) d2k (12) 

where the integral is now ever the surface k-z = k   n  .    The summation is 
~ o   o 

only over the two non-zero eigenvalues \.  since clearly F    = 0.    The far- 
x y   -o 

field evaluation of (12) can now be carried out in two steps following a 

3) method of Lighthill.        In the first the integral is evaluated as a sum of 

its residues on the two curves formed by the intersection of the plane 

k- z = kono wvth the two-sheeted wave-number surface \. = -1.    Thus (12) 

becomes the sum of two line integrals taken along these curves,   which we 

call C+ and C_.    In the second step these line integrals are evaluated by 

the method of stationary phase.    If we introduce polar coordinates k,, 

ijjfor the wave number k and p.  (p for the field point r in the plane 

k • z = ko no,  then we see that the phase k • r = k   p cos ( V - i|>) is stationary 

at values of i|/ satisfying 

1     d ki 
l* (13) 

These are the points on C± at which the normal to C± is in the direction 

of the field point, that is, in the direction (p.    The result is 

._        » ■ - ——-■ —. - ■ ■  
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H(£) = I0(iko)"l2wi Z{^^t/\^(\p)1,2 (vx)"1 QF expd^ pcos^-40 +   i iTrsgn^) 

(14) 

where K is the curvature of the curve C+ or C_ and V\ is the gradient of 

X.  both in the plane k • z = k^.    The summation is now over all station- 

ary phase points on both curves.    All quantities appearing in the above 

expression,   viz.    k.  \,     Q,  F. I|I are to be evaluated at each stationary 

phase point. 

Since *     = ds/d^where s is arc length along C,  it is clear that 

K'   = kj^ (d^/d<^ sec((p - ty) (15) 

Also 

VX=^ 3^   sec(^-^) 

1       ^     9^ 1*    ,i TT  T  "^   ■•c(^-*) 

0 

2ki 
-j-   sec(^-^) 
k2 (16) 

Here we have us  d (7) together with the fact that ^ = -1 on C±.    Substi- 

tuting (15) and (16) into (14) we obtain finally 

H(p, „, .  i iZ^Z^jL.   Jt co.{<p.^
n
iQ 

X exp[ikipcoi((p-4/) +    |- i^sgnir] (17) 
' 1 

 - ■ - ■ 1   



• 

 ""-'" ■ ■ ■'■ 

159 

;; 

where the summation is over all points of C. satisfying (13).    Note 

that sgn K = sgn 3^/3^ = +1 if the curve C is concave to the antenna and 

-1 otherwise. 

It does not seem possible to express the quantities k,   kj^ dty/dV, 

\\i,   F,   Q appearing in (17) explicitly as functions of (p.    Instead we express 

these quantities including (ß itself as functions of |,  the angle between k 

and the magnetic field.    From these expressions the required relations 

can be obtained numerically. 

The x,   y and z components of the vector relation k = k. + k,., 

where [kj = k^ n^,  are 
o   o' 

( 

k sin £ cos X = k,   cos  8    cos 4> + k,, sin 6 ■ i- o " o 

k sin ^ sin X = k^ sin^ 

k cos i = -k,   sin 0    cos »i' + k,, cos 6 
i o H o 

From these equations together with (13) we can find  k(^),   ki(4), ^(|), 

X(|), (P(i) as explicit functions of |. 

(18) 

2^ (c2 - g2) k^e) = k 
Zer, + a sin^ ^ - p 

^(e) = (k(e)2 -k2)1/2 

— - — -    --- ---—>-^—^-~ —       _    — 
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tyii) = cos 
-1 k, cos 6    - k(4) cos4 

kL{i) sin eo 

X(^) = tan' 
k^i) einty 

k* sin eo + k|(4) C08 ^o C0*^ 

(P(i) = Mt) - tan 

The symbol p appearing in the first equation above is defined after 

Eq.  (6) and should bear the subscript ± referring to the curves C±. 

Thus all the other quantities k,  k^ \\i, X, <P should bear this subscript 

whenever they appear in these equations,  but for simplicity we have 

omitted it.    By successive approximation these equationb can be solved 

for |(<p).    Since £((/?) is multiple-valued,   we write   i^   ((p),  ^.(V)   to 

denote the set of values of | on C. and C_ for which the outward normal 

(in the k   = k   n    plane) lies in the direction^.    Then the summation in ■       o   o 

(17) becomes a summation over these two sets of 4-    These equations 

have been programmed for numerical evaluation on an on-line system 

and plots of computed radiation patterns for representative cases will 

be included in a later report. 

., 

" 
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