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FOREWORD

This collection of technical papers, some of which are intended
for journal publication, comprise the final report on the magnetospheric
modification study carried out at The Aerospace Corporation during 1973
anc 1974. This work was undertaken following prior research on theo-
retical aspects of artificial plasma injection into the maguretosphere. The

objective was to provide further support of a theoretical nature for mag-

netospheric morlification programs.

Three specific topics were mentioned in the work statement of the
present research. The objectives were to study the effects of fast electrons
in bounce resonance with amplifying ULF waves, to study the modification

of ULF and VLF growth rates by gradient and trapping effects in an '

ool B el O S

inhomogeneous plasma, and to study the excitation of ULF and VLF signals

within a plasma cloud by means of a modulated ion beam. Significant (but

E
uneven) progress was made on each of these topics during the period of 1

]
research. Reports of progress made on related topics, not specifically E

mentioned in the work statement, are also included here.

The present ccllection of papers includes contributions to both the 4
formal and the heuristic theory of wave-particle interactions in the -

magnetospheric plasma. The first and eighth papers Day special attention %

to the formulation based on the adiabatic invariants of cha rged-particle
motion, while the sixth and seventh papers concentrate on the effective I
quantization of wave spectra. The second and third papers provide a I
careful treatment of some uniform-plasma instabilities and their :

geophysical consequences, while the fifth offers a more heuristic view
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of the wave-particle interaction. The fourth paper provides a precise
evaluation of particie lifetimes in the strong-diffusion limit, which plays
an important role in both the formal and the heuristic aspects of wave-
particle theory, The last three papers (9-11) relate to magnetospheric
physics as an experimental science, in particular to the use of particle
beams as radiators and amplifiers of wave ene rgy.

Certain contributions, notably the eighth and ninth, represent only
rudimentary remarks on the problems in question. However, the first
seven papers present research results in essentially finished form.

Relatively few refinements on those seven topics are planned prior to

publication.
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CRUDE APPROXIMATIONS TO SOME ASPECTS

OF THREE-DIMENSIONAL MAGNETOSPHERIC DYNAMICS

John M. Cormwall
Space Physics Laboratory, The Aervspace Corporation, Los Angeles, California
and

Department of Physics, University of California, Los Angeles, Calif~vnia

1. INTRODUCTION

It is qu.te well-understood in principle how to formulate and solve
dynamical problems in a three-dimensional magnetosphere (i.e., one in which
all three adiabatic invariants M, J, & come into play), given the relevant
diffusion coefficients, loss rates, and so forth (Haerendel, 1968; Lanzerotti
and Schulz, 1973). But there are very severe practical difficulties in
carrying out a truly “hree-dimensional calculation, and practically none exist
in the literature. Two-dimensional calculations abound: radial diffusion
of equatorially-mirroring (J = 0) particles, pitch-angle scattei:ing at fixed
L (or fixed ¢ ). In many cases, this is not good enough; for example, most
data on energetic trapped alpha perticles (e.g., Fennell et al., 1973) is off-
equatorial, but theory (e.g., Cornwall, 1972) has concentrated on J = 0
particles.

The purpose of the present work is to go one small step beyond purely

qualitative discussions of three-dimensional probleme by providing a crude,
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semi-quantitative overview of the essentizl features of such problems. This
work is not intended in any way to replace real three-dimensional calculations,
but it should pfovide space physicists with a road map for following the
results of such calculations, should they be carried out. Our main enphasis
is on the change of pitch-angle anisotropy due to radial diffusion, with or
without pitch-angle diffusion.

In Section 2, an approximate formula for the variation of equatorial
pitch angle with L during M- and J-conserving transport processes is given.
The virtue of this approximation is that it yields a simple, immediaialy
interpretable scaling law for distsibution functions which are power laws in
energy anl pitch angle, when the transport processes are independent of M
and J . Section 3 discusses a simple problem where M- and J-dependent
transport processes are inwolved, and Section U discusses an approximation to
the problem of coupled radial diffusion-pitch-angle instapility. Here radial

diffusion tries to increase the pitch-angle anisotropy, and pitch-angle

diffusion tries to decrease it.




2. APPROXIMATE KINEMATICS

The theoretician formulates theories in terms of the adiabatic invariants

A
s
]
A
é.
3
3

M, J, and ¢ , while experimentalists measure energy E , equatorial pitch-
angle a , and L . In a dipole field, we my (and do) choose & = L—l » but
the relationship between L, M and J » are on the one hand, and E and

Yy = sin a on the other, is usually given mmerically (e.g., Nakada, Dungey,

and Hess, 1965). For non-relativistic motion, y is a function of L only at

fixed M and J . In the notation of Lanzerotti and Schulz (1973) the first

invariant is

2
Pl 2.3
3 - By L
"7 omECm s

and the second invariant is
J = §p|| ds = 2pla Y(Y) (2-2)

where Y(y) is a complicated function of pitch-angle. Here p | p” » P
are momentum variables, m is mass, E = p2/2m A Bo = .31 gauss, a = one

Earth radius. It follows upon elimination of p that

Y—(% = const. at fixed M, J (2-3)
L

It is not hard to see that (2-3) can be written in the equivalent form

h(L,y ) h(L_,y ) : !
y © = const. = s e (2-4) '

where the exponent h , depending on both L and Y, » can be expressed in

terms of the function Y/y and its inverse. (The reference value Yo depends

on L , and on J2/M » from (2-1) and (2-2).) Equation (2-4) would be much

KONl L R R S
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more useful if the dependence of h on Y5 could be suppressed, at least
approximately, for then an interesting scaling law holds for the adiabatic
transformation of a distribution function which is the product of a power low
in energy and in y . A numerical study shows that for a wide range of values

of Y, » the exponent h is indeed roughly independent of Y, + The

expression

yh(L) - yoh(Lo) (2-5)
is valid to within 3% or better in the range 0.2 < Y, £ 0.8 (roughly 10°-60°
in equatorial pitch angle) with Lo®7sand 2 <L<7. The function
h(L)/h(LO) is shown in Fig. 1. For larger or smaller values of Y, » the
approximation that h is independent of Yo becomes progressively worse, but
even for 0.8 <y_ <1, (2-5) is usefully accurate. The reason is that if

Vs is sufficiently close to 1 , yoh

(2-5) correctly predicts that y =1 if NG 1 , no matter what h is.

depends insensitively on h ; thus

With the approximation that h is independent of Y, » We can extend the
fundamental energy scaling laws of Nakada, Dungey, and Hess (1965) to pitch-
angle scaling laws. Let a particle, initially at L, » have energy EO and
pitch-angle variable ¥s there. The conservation of M as exprassed in the
second form of (2-1), plus the approximate formula (2-5), yields

3 2(h/ho)-2
= (] =

E=E(L /L)y (2-6)
where E and y are the transformed values after the particle has undergone
adiabatic transport (ccnserving M and J ), and h, Eh(L)) . Equation (2-6)

expresses the well-known result that particles with small pitch angles gain
less energy than those with large pitch angles.

R T
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Let a group of particles have an initial momentum-space distribution

function at L = Lo of the type

(2-7)

and let these particles be acted upon by processes which (1) preserve M and J;
(2) have trensport coefficients independent of M and J . Then, according to
the single-particle laws (2-5) and (2-6), the distribution function maps into

a similar form

£+ 1. E%yP (2-8)
(leaving out a coefficient depending on L only) vwhere

B(L) = -2a + (b + 2a)(h/ho) (2-9)

Because h/ho increases with decreasing L , the anisotropy B increases, as
is well-known, but what may not be so well-known is that most of the increase
in anisotropy comes from the decreasing power law in energy. For example, the
values a = 3, b = 1 roughly characterize energetic (> 50 keV) ring-current
protons at L = 7. At L =4, (2-9) yields B = 2 andat L = 2, B = 4. However,
for the less-energetic protons at the peak (10-20 keV) of the ring current
distribution at L= 7, a~ 0, and 8 = 1.1 at L = 4, 1.4 at L = 2. Thus pro-
cesses of the sort considered in this paragraph do not lead to much increase of
anisotropy of the particles at the flux peak, which may very well be significant
for the dynamical role of instabilities driven by pitch-angle anisotropy.

In fact, no known transport processes are independent of M and J , so
the single-particle laws (2-5), (2-6) cannot be promoted to a distribution-

function law such as (2-8). Moreover, no distribution function is really of




the factorizable power-law type in (2-7). Nonetheless, (2-8) and (2-9) should
be a useful and rapid way of characterizing the zeroth-order change in the
distribution fuﬁction. In Sections 3 and 4, we go beyond the simple rule
(2-9) to discuss more-or-less realistic dynamical processes, and interpret a

and B in terms of suitable moments of the distribution function.
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3. QUASTI-REALISTIC RADIAL DIFFUSION DYNAMICS

Let f be the phase~space distribution function averaged over cyclotron

Phase, bounce phase, and longitude or what amounts to the same thing, the dis-

tribution function in M, J, and ¢ . Suppose that f is subject to radial

diffusion and a loss process, as described by:

of . 9 )
s [ Dpo 53 ] Af (3-1)

Withe =11 ,p =%

50 = DLL .) Here the diffusion itself is one-dimensional ,

but if A and DLL depend on M and J , one has a non-trivial complication

of the sort discussed in the last Section, in converting from M and J to

E and y.

Let us parametrize DLL and A by power laws in L , Eo » and A where

Eo and Yo (equivalent to Mand J ) are the energy and pitch-angle variable

at a reference L-value Lo (we choose LO = 7 1in what follows):

Dy =D ESy Y, 1= A LP EPyd (3-2)

As Haerendel (1968) has indicated, ‘the time-stationary solution of (3-1) is a

linear combination of the functions

L2k 2y, L2 1y (3-3)

Vv Vv
with

m=a-3,n=a+8-2,\)=-m/n,
4

22 = [ - } I MgPsyat (3-4)

(0] (0]

n Do

|
3
]
;
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Here K b IV are 'the. usual modified Bessel functions. To express the solution ) }
in terms of E and y , one uses the relations (2-5) and (2-6).

There are ‘two main processes for radial diffusion: magnetic impulses,
and electrostatic fluctuations. For both, we take the usual value o = 10 .
With a fluctuation power spectrum falling like i (for both electric and
magnetic variations), magnetic diffusion has s « 0, t = 2.7, while for electro-
static diffusion, s = -2, t * 0. Less is known about the dominant loss
processes; for simplicity, we take p = qQ=8B=0, hencen = 8, v =-7/8. Other
cases are easily worked out. The positive power t for magnetic diffusion

reflects the well-known fact that magnetic diffusion is weak at high latitudes,
i.e., smll pitch angles.

TR e e U e e e e bt g T ek

First, we discuss electrostatic diffusion. Forp not-too-relativistic

electrons and for protons, Cornwall (1972) has estimated that for electrostatic )
fluctuations Do - 10_l1t (.keV)?‘/ day. Ring-current protons have an effective
lifetime of a day or so, thus Ao-l ~ 1 day. In this case, (3-4) gives

z ~ 25 L_u EO with Eo in keV. The decrease of z with increasing L
indicates that the dynamics are diffusion-dominated at large L (z << 1), loss-
dominated at smll L (z > 1). The boundary condition f =0 at L =1 ,

where z >> 1, requires us to use only the K g solution, with the asymptotic
behavior

K(2) ~ (/2% eZ, 2 > 1 (3-5)

The full solution, satisfying the appropriate boundary condition at L = L, »

is:

w2
= o v N
(L, Eos yo) = ['—“J f (LO’ EO’ yo) K\)(Z)/K\)(ZO) (3-6) "




where z =z(L=1L).
o o

In the diffusion-dominated regime K\)(Z)/ Kv(zo) ¥ 1, and the remarks of
: the last Se‘ction hold: power-law distribution functions map into power laws,
according to (2-9). However, in the loss-daminated regime there are new
effects: power-law scaling breaks down, but the local pitch-angle anisotropy
at fixed energy (defined in (3-10)) incveases over the value given in (2-9).
The reason for the in¢rease is that particles with high energy diffuse

electrostatically more slowly than low-energy particles, so that the energy

spectrum becomes steeper; that is, in effect the parameter a of (2-9) is not

constant, but increasing with decreasing L .

With the aid of (3-5), the lots -dominated solution is (aside from an

overall miltiplicative function of L )

f- EO e f(LO, EO’ yo) (3-7)

Take the initial distribution to be of the power-law type (2-7), and apply the

transformation laws (2-5) and (2-6) to find

£ . g2 BT exp{ - .07 { %) y'21°] (3-8)

where B is given in (2-9), and

r= (h/ho) -1 (3-9)

Define the local pitch-angle anisotropy as

Y = (y/f) 3f/3y (3-10)

This definition has physical significance; the growth rate of the electro-

magnetic cyclotron instability is essentially an integral over energy of fy

as given in (3-10). For a power-law distribution, y 1is just the power of y .

SRR BMANBICEY SR A
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For the distribution function (3-8), it is easy to find

Y(E,y) = 8 + p + .Wp(E/L)y ¥ (3-11)

The anisotropy has significantly increased over the value B derived from the
scaling law (2-9). At L = 3,5, where from Figure 1 r = 0.2,

4

Y=B+02+9x10 anda 100-keV particle has y = 8 + 1.1; at L = 2,

1X]

Yy = 8*2.2. This rapid increase in anisotropy would represent & significant
increase in the free energy available to drive instabilities, were it not for
the fact that it is the loss mechanism which is responsible for the anisotropy
increase; the available free energy may be increased or decreased as a result
of the process discussed here.

The increase of anisotropy can be directly traced to the fact that z
decreases with increasing y , at fixed L and E . Thus the same phenomenon

occurs for magnetic diffusion. The general condition for the anisotropy to

increase above B with decreasing L is

2r(p-8s)+(t-q (r+1)>0 (3-12)

which is satisfied for magnetic diffusion and constant A for + > 0 . Using
a small magnetic diffusion coefficient, such as D ~ 10 20.10 , leads to
tremendous increases in anisotropy, but far more tremendous decreases in total
flux. An interesting balance between anisotropy increase and flux decrease can
only be achieved when z is not much larger than, or much smaller than, one,
that is, on the boundary of loss-dominated and diffusion-dominated transport.
It is worth noticing that this sort of process may actually decrease the
anisotropy (compared to that given in (2-9)) for low-energy protons. Here

charge-exchange losses are important, and for them P is negative which works

the wrong way for condition (3-12) to be satisfied. Moreover, for very low-energy

&

o
- b
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protons (< 10 keV at L = 4) Cornwall (1972) has estimated that s 20, a=6
1 - .

Again, this behavior of the diffusion coefficient works the wrong way in
(3-12).
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4. RADIAL DIFFUSION AND PTTCH-ANGLE DIFFUS

Lk S

In the presence of transport processes which violate M and J as well

as ¢ , equation (3-1) is extended to (the loss term A is dropped, for the
sake of brevity):

f _ 3 [ af] -1 ) [ ij of ]
] 3 355 | Pos 55 | Q- ] =5 | @ptd 9L, (4-1)
T ) b i3 ot 3%

where the variables xl 5 x2 are equivalent to M and J , and

a(M,J)
Qe oadh (4-2)
8(xl,x2)

The presence of the Jacobian Q is demanded by ‘i canonical nature of the

varigbles M, J, & . It is convenient to choose the variables xT to be the

pr—
velocity components at the equator:

m

% L
(x1,%x?) = SUOIILE v = [?%) v, V| = [ 2E} (1-y2)* (4-3)
Then one readily finds that
Q~ l(l—y2);5 T(y) (4-4)

(a factor independent of M and J is omitted), where T(y) is the normalized

bounce time:
Tp = (4mla/p) T(y) (4-5)

The diffusion coefficients D™ are averaged over bounce phase, cyclotron

Phase, and longitude; thus they differ from the usual locally defined diffusion %

coefficients of quasi-linear theory. For electromagnetic cyclotron waves

S RIS R s i M AP it Rt
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propegating parallel to the static field, the local equivalent of the second

term on the right of (4-1) is in the resonant approximation (Kennel and

Engelmann, 1966)

}z vll Gk(vl D G D) (4-6)

~tw 9 d
G‘k-lj(-—vll]ﬁ-“‘vlm (14-—7)

2

Dy

mc

ST |

Dk

d(kv” - luk + Q) (14-8)

In th=se equations, vl and v” refer to local components, not components of
the equatorial velocity. By comparison with (4-1), it is reasonable to assume
L that the bo nce-phase averaging process yields equations like (4-6) and (4-7),
except that the explicit vl in (4-6) is replaced by Q (see (4-4)), and
vl 5 vH are taken to mean equatorial components, as in (4-3). Furthermore,
Dk must be defined as an average over the actual wave fields, so the form
(4-8) is not really appropriate. As the reader will soon see, the use of (4-8)
does not invalidate the formlas below.
The quasi-linear description is completed with the equation for wave

energy:

>3tV (Y_ka) = 2kak (4-9)

where YG is the group velocity, Yy the growth rate, and the wave energy

W is given by

2 2
<r lbkl 3 lbkl 2,
2 + =20 2 -
W = —5 llkn aw(wn)]- o _Vm

G
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il b e o e il
L I LT T U YOI o R WL N L




16

Here n is the index of refraction, and v h the phase velocity. Again, these
equations must be interpreted as suitable averages over the bounce phase and
longitude, which amounts to replacing Y- (YGWk) by m(VG/i)wk s where £ . La
is a length characteristic of the field line.

The expression for the growth rate Yy ™ust be such that it correctly
; accounts for the transfer of energy between waves and particles. As with all g
4 the other formulas here, a spatial average is carried out, so Yy is not given
by the usual local expression. The only difference is the appearance of the
Jacobian Q :

2 2

Y, = 7, —ez-j av g Slkv| - w + WG £ (4-11)
mc

. ey 5

Here, of course, the miltiplicative constant omitted in the defim czon (4-y4)

of Q matters. Since (4-11) gives the correct local growth rate if Q is set -
equal to v (i with the usual velocity-space distribution function, and since

(l—yz);5 T(y) is of 0(1) if y is not too close to one, this multiplicative

constant is itself nearly one. The final value of this constant should be

chosen on Phenomenological grounds (which go beyond the scope of this paper)

having to do with the bounce-phase averaging, loss of resonance in the

inhomogeneous magnetic field of the earth, etc. For illustrative purposes, we

take this constant to be exactly one.

Equations (4-1) - (4-11) are a truly formidable set of non-linear partial
differential equations in four variables, with two unknowns. It is to be hoped
that someone will tackle these equations in their full complexity some day with
] the help of computers, but even if this is done, the results will be as

difficult to interpret simply as if they were experimental data. It appears -

useful to extract from these equations a simpler, approximate set of new E

equations, which are both easier to interpret and easier to compute. In view

T g fin s e s ok ) et e e NSO LDy ety R e T Pa
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of the fairly simple results of Sections 2 and 3, such a simplified set of
equations might make reference to an effective power-law in energy and in pitch-
angle. Equivalently, one may take velocity-space moments of the quasi-linear
particle equation (4-1)(e.g., Roux and Solomon, 1971; Hamasaki and Krall, 1973).
Three such equations suffice: for the number density, the density of total

energy, and the density of perpendicular energy. 1
Because the derivatives with respect to & (or L) in (4-1) are to be taken

at fixed M and J , it is necessary at any given L to express the distribu-

tion function f interms of M, J, and L, and then to integrate over M
and J . It is not hard to show that

E
ki
3
.
A
B
4
#
A
£
4
k!

47 = 2mcL® Q avjdv)) (4-12)

where Q = V_L(l—yz)25 T(y) , and C is a universal constant, independent of
M,J, and L . By appropriate choice of units for M and J , we my
choose C = 1. Define

PTRp

N(L)

21rJdeldv” f=L"*JdeJf (4-13) ia

Since J dMdJ £ 1is (proportional to) the total number of particles per unit ! f

%, L2N(L)dL is the total number of particles between two L-shells separated

by dL , modulo a universal constant. Similarly we define moments of any

function G(M,J) :

<NG> = 2% I Q dv_l_dv”G f (4-14)

If DLL in (4-1) depends on M and J , the procedure of taking moments

A .
ay of (4-1) yields more unknowns than there are equations. The only way around

this drawback is tc assume a functional form for the distribution function f 3

v ] O Vo UL F N o A e
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in order to make contact with Sections 2 and 3. we assume a double power-law as

in (2-8), where both powers may depend on L :

£(L,E,y) = FLIEYP (4-15)

Now given a particular form of Dy (e.g., (3-2)), all moments are expressed

in terms of the three quantities F,a,b as well as the lower cu:-off energy

at which the energy integration is terminated. To express f in terms of

L,M,J instead of L,E,y, the adiabatic relations (2-5) and (2-6) are used.

It is a simple matter to multiply (4-1) by 1, E, and E.L and integrate to

come to the three moment equations

oN _ 3 oN
ﬁ- - ﬁ < DQ@ a_Q > ("I’-J.S)

3 =

In deriving (4-17) and (4-18), (4-6) to (4-8), (4-9) and (4-10) were used. In

the absence of energy transport by radial diffusion or convective loss of waves,

(4-17) plus (4-9) would express conservation of total energy <NE> + Z Wk 3 it

is for this reason that the expression (4-11) for Yy is used.

The set of equations must be completed with some reference to the wave

equation (4-9). The shortest time scale in the problem corresponds to the

inverse of the maximum growth rate (the masximum being taken as frequency W

or wave number k is varied), which we demote Y . Of course, Y no longer

depends on k , but only on such quantities as a, b, N, etc. Because the

wave growth time 1s short compared to the radial diffusion time, (4-9) can be




9
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replaced by the simpler equation :

e e e A T

y=V 4-19
Y Vg/£ ( )

gol sl b ol g Lot b

where Vg is the group velocity for the wave number of maximm growth, and £

a length characteristic of the field line. Equation (4-19) is an algebraic

constraint on a, b, and F ; added to the three equations (4-16) - (4-18),

one has a set of four equations for four unknowns a, by F, W (where Y W =
) kak)' In the time-statiorary case (3/5t = 0), these equations are non-

linear ordinary differential equations in the single variable L , thus

1 considerably simpler than the original non-linear partial differential equations

(4-1), (4-9), and (4-11). It is even possible to make some analytic progress

with these simpler equations, but it would be pbremature to report on this work

3
o now. -‘
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ABSTRACT

After years of investigation, the role of instaﬁilities (notably in
electromagnetic cyclotron modes) in magnetospheric ring-cwrent dynamics is
not yet settled. In this paper, experimental evidence for the effects of
these and possibly other instabilities is reviewed. Tt is very interesting
that at the present time only a small fraction of the total nurber of protons
known to be in the storm-time ring current is observed to be directly
precipitated at low altitudes, in part because of inadequate experimental
coverage, and possibly in part becal.;se these protons lose much of their energy
before precipitating and are thus not easily seen in most detectors. There

is strong evidence that ring-current dynamics occurs off the equator outside

the plasmapause; one possible mechanism is an electrostatic instability, which

is probably quenched inside the plasmapause.

2
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1. INTRODUCTION

If the author had written a paper with this title a coupl » of years ago,
he would have been able to present a reascnably consistent theoretical
picture of ring-current dynamics, with the ion electromagnetic cyclotron (EMZ)
instability, occurring just inside the Plasmapause, being responsible [Cornwall

et al., 1970, 1971a] for the observed termination of the ring current just

inside the plasmasphere [Russell and Thorme, 1970] and for the occurrence of ’

mid-latitude stable auroral red (SAR) arcs at the same Place [Chappell et al.

b

1971]. However, new experimental evidence acquired recently presents a mixed

picture, some of it [Berg and Séraas, 19725 Williams et al., 1973] consistent

with the dynamical role of EMC instabilities, and some of it [Amundsen et al.,

1972, Winnin@a_m, 1972; 1Jeckner and Hoch, 3973; Mizera, 1973; Shelley et al.,

1972] being rather difficult to interpret within the cii instability frame-

e S L e o et Lat i

work. Additionally, it is a continuing enbarrassment to theoreticians (or to ;
experimentalists, depending on your point of view)_ that the requisite EMC-mode
emissions have not been observed in the ULF frequency range near the plasmapause

at storm time. This is only an embarrassment, not a fatal objection, because

of the lack of éufficiently sensitive experiments, and because of the theoretical

prediction [Cormwall et al., 1971a] that these waves should be absorbed by

ambient electrons nearly as soon as they ave generated.

The potentially damaging evidence comes solely from measurements of low-
altitude precipitation, and this in itself is a very important clue. Perhaps
the cause of the precipitation is l;ocated off the equator, while the EMC
dynamics take place at the equator. We suggest such a mechanism in Section 3;
if it, or something similar does happen, we can explain the lobserved pattern

of proton precipitation.




ot

26

Lty S 8 Sl s e e

shelley et al. [1972] have seen energetic (~ 1-10 keV) atomic oxygen ions

at low altitudes both inside and outside the plasmapause during storms. We

have no explanation of this very puzzling set of observations. It could be

+ . : . .
that O ions can absorb energy from the ring current through a mechanism

¢

involving some sort of instability, but no mechanism known to the author can

" +
explain all the observed features, especially the fact that O ions are often

seen considerably equatorward of the precipitating protons. We shall remain

silent on this subject for the rest of the paper.
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Two years ago, some observations of precipitating protons from the low-

altitude polar orbiter OV1-15 were reported [Cormwall et al., 1971b]. At the g

time, these data were interpreted as showing precipitation just inside the
plasmapause, consistent with EMC-mode dynamics. However, some more recent

evidence throws doubt on this interpretation. Mizera [1973] has continued his

studies of protons > 12 keV from the polar orbiters OV1-17 and 0vVl-19; a
typical data sample is shown in Fig. 1. Note that Mizera judges the midnight
plasmapause to be just equatorward of the precipitation, and it is seen that
the lower the energy, the more nearly poleward the precipitation peak; both ;
these features are precisely the opposite of the EMC instability predictions. f
‘though not shown in the figures, the pitch-angle distributions tend toward 3
isotropy at the peak, with a mirroring -distribution equatorward of the peak;

the same feature was observed on OV1-15, and on ESRO IB [Amundsen et al., 1972], 4

also a low-altitude polar orbiter.
The energy spectra in the low-altitude loss cone are rather similar to

those of equatorially trapped protons, except that they are about a factor of

10 lower (Fig. 2). Shown are storm-time distributions from Williams et al.

[1972], and quiet-time distributions from Pizzella and Frank [1971]. The fact

- that total precipitated fluxes are only 10% of trapped fluxes rules out an
isotropic equatorial distribution; isotropy is confined to the neighbortood of

the equatorial loss cone, as shown schematically in Fig. 3. Mizera estimates
1 that less than 1% of the total stor'_m—tine ring-current energy is dissipated as
1 precipitation of protons with E > 12 keV, although it would seem, on the basis g

. of precipitated-to-trapped flux ratio, that as much as 10% of the total energy
e

could be precipitated. (In this regard, note that the equatorial storm-time

. o - ke
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flux depicted in Fig. 2 was observed two vears after the OV1-17 a.d OV1-19 data
were taken.)

Equatorward of the precipitation peak, the low-altitude pitch angle dis-
tribution assumes a conventioral mirroring form, which is very consistent, for
protons of ~ 300 keV, with equatorially measured distributions at L ~ 2.6 as

seen by OV1-14 [Fennell et al., 1373]. The comparison is shown in Fig. 4,

where OV1-19 data is normalized tc OV1-14 data (the absolute values were
within 30% even though the measurements were taken a year apart). Thus at
lower L values (presumably inside the plasmasphere) ths equatorial pitch-angle
distribution is nearly empty in the loss cone.
Generally similar phenomena are reporteci by Winningham [1372] for low-
titude protons in the 0-15 keV energy range: isotropic fluxes poleward of
the plasmapause, mirror distributions inside the plasmasphere. Only a few
perce:ﬂ: of the total trapped ring-current emergy is precipitated as protons of
less than 15 keV. ~
It is extremely unlikely that any of this precipitation can be explained
by the EMC instability, which requires relatively high cold-plasma densities.
Fig. 5 shows the observed proton energy at the precipitation peak vs. L, com-
pared to the estimated energy threshold (which varies inversely with cold plasma

density) of Thorne and Xennel [1971], based on the EMC instability. Clearly,

‘some other mechanism is at work; possibly the electrostatic instability dis-
cussed in the next section.

Kleckner and Hoch [1973] have observed that H arcs tend to occur

simultaneously with SAR arcs, separated from the latter by about 1.6 L units

(Fig. 6), independent of the SAR arc location. Mizera observes that the average .

12-50 keV proton precipitaticn peak is about 1.2 L units gpolevard of the

plasmepause. It is natural to suppose that the precipitation causes the H arcs,

g sk i iR el e i e i e e L e e Sl bl e B L Lt DR e e 2
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and that the precipitation peak marks the L-value of the trapped ring-current
peak. This suggestion is further supported by the observation that the H

arcs ¢zn be driven by about 10% of the total available ring-current energy,

consistent with the 10% precipitation level observed by Mizera.

The precipitation data strongly suggests the necessity of a mechanism
which can produce an equatorial pitch-angle distribution as shown in Fig. 3.
There are two possibilities: (1) a mechanism operating at the equator outside
the plasmasphere, but only on small pitch-angle particles; (2) a mechanism
operating off the equator, acting on all the particles it can reach (thus
excluding the large pitch-angle particles which will already have mirrored).
The author knows of no plausible mechanism of type (1), although he would be
glad to hear of one. An off-equatorial mechanism is discussed in Section 3.

073] supporting the idca of strong

wave-particle interactions at the plasmapause. The data cames from 83 -A,
launched into an elliptical equatorial orbit with apogee of L = 5:2. It is
thoroughly instrumented to explore ring current dynamics, and much useful data
are available. Unfortunately, a detector satiration problem makes it difficult
to interpret some of the pitch-angle results.

To sumrarize the data: protons of erergy < 150 keV show a sudden Idecrease

in intensity in the vicinity of the plasmapause (Fig. T), with the highest

energies dropping out first. Protons of éne_r'gy > 150 keV do not seem to be

T

much influenced by the plasmapause. These facts are consistent with the con-

CEehm

ventional picture of the EMC instability, according to which the protons must

have both sufficient energy and sufficient flux to go unstable.

The energy threshold is given by

"2
- _B -2 -1
E2Bp=gmd Q+4




where B is the earth's magnetic field, N the total plasma density, and A

the pitch-angle anisotropy. The minimum unstable flux is estimated to be

~1-5x1200 1 en? gecl (lines drawn in on Fig. 7); thus the high-energy

protons, with too little flux, might be unaffected. Furthermore, Williams et al.

—— e ——

have reconstructed the plasma density N from the resonant-energy formula and
their data, identifying I'.R at any given L with the energy at which the
sudden drop-out cccurs in Fig. 7, and using the measured anisotropy. The
result of this reconstruction is shown in Fig. 8; both the absolute density
values and the shape of the density profile are very reasonable and consistent
with the hypothesis of EMC instability.

But three crucial features, which would have further verified this con-
clusion, are missing: (1) there is no evidence for the requisite ULF wave
enerers (2) it ic difficult

.
miven tha detectowr catimatiAn vkl am +n FA1 A
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the pitch-angle distributions into the plasmasphere, to see 1t there 1s a

marked decrease in anisotropy; (3) there is, as we have seen, no evidence for

strong proton precipitation just inside the plasnapauéé. In all three cases,

it could be that the experiments were not sufficiently sensitive to measure

the sought-for effect, but it could also be that an entirely different mechanism
is operating. For example, the sudden drop-out of the ring current near the

Plasmapause might simply reflect the weakening of inward convective transport

of protons in the vicinity of the corotation boundary appropriate to the

various energies, these boundaries being closer to the plasrhapause for lower
energies. The lack of precipitation would be simply explained by convective-
drift transport to the day side, with ultimate ejection from the magnetosphere.

Of course, this leaves the appearance of SAR arce at the plasmapause unexplained,

while the EMC instability theory does yield a reasonable explanation [Cornwall
et al., 1971a).

?
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. We close with one bit of evidence which is in favor of pitch-angle diffusion
of protons in the energy range 100-200 keV [Berg and Sdraas, 1972]. These
authors observe that protons whose mirror points dip into the atmosphere at 2
certain longitude are mplenished westward of this longitude (the windshielc- :
wiper effect) at a rate consistent with a pitch-angle diffusion coefficient of |
the order of 10_6 sec—l, as might be produced by ULF wave fields of 100-200 :
milligamma. Such fields produce but weak precipitation, and would be only .
marginally detectable by many satellite-borne magnetometers.
{ {
o f
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3. OFF-EQUATORTAL DYNAMICS

What instabilities are there that (1) are strongest off the equator and
outside the plasmapause; (2) are capable of profoundly influencing both low-
energy protons and protons of energies greater than 100 keV? The IMC mode is
not a good candidate; the growth rate is largest inside the plasmasphere and
when the Alfven speed is smallest, i.e., at the equator. Anomalous resistanca

produced by current-driven instabilities in or near the ionosphere may allcw

potential drops capable of precipitating protons of a few keV [Gregory et al.,

19731, but these will not affect 100-keV protons very much.

Let us consider the Post-Rosenbluth [Rosenbluth and Post, 1865] electro-

static mode. This mode is convectively unstable in the presence of a

sufficiently large anisotropy of energetic ions, just as for the ion-EMC mude,

and hes bheen studied for magnetospheric conditicns by Coroniti et al. [1972]

-,
%

and Cornwall and Schulz [1973]. Both these groups conclude that addition of =

cold ions nekes this mode less unstable, so that rts prmaxy effect should
appear outside the plasmasphere. This is consistent with the previously-
mentioned reports of strong precipitation in the same region. We are interested
in seeing whether there is any reason to suspect that the PR mpde is most

1
strongly unstable off the equator. |

This mode exists under the conditions Q >> w; >> Q w2 W, 3w >> k| |V

e 4

: I/k_l_ ~ (m /m )'i where Q Q are cyclotron ﬁequenc:.es, W,y W, are
3 )
plasma frequencies based on the total (hot plus cold) plasma density, and :

<l

» V. are characteristic velocities. Under these conditions, the electrons 1

e 1

are tied to the field lines, while the anisctropic hot ions stream through

them on essentially straight-line orbits (on the ion plasma~frequency time scale). 1

-,

«
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The result is essentially a two-stream instability. The dispersicn relation

incorporating finite-B effects is

2 2 2
W LW G

1+ b2D - c; = é + = y2 F(y) (1)
w Dw w

where we have used the notation

2 _ 2,~2 - 2,22
b —we/Qe 5 D-1+we/ck 3

(2)

Ky |/ = (Cme/mi)]/z .y =z WY

ard w(zzi s mﬁi are the plasma frequencies for the cold and hot ions:

2 2 2 3 ; :
Wos * wy; = w . The function F(y) is given by

¥

F(y)=-2rdx—g—il[1-§-2-] (3)
o i Yy o

¢ch2_/vz> = 32 f av)| fi(sz_ , vﬁ) W)

Here f, is the jon distribution function, normalized to one, and v is

chosen so that

r& ¢(x) =1
0

The complex function F(y) has order of magnitude one; for d¢/dx > 0
(positive anisotropy) it is possible for Im T to be greater than zero when

Imw > 0 , yielding inc“ability. Maximum growth occurs for Re y = 1.

2

In the magnetosphere, b is large at the equator, even outside the

/
plasmasphere, if the density N exceeds 1 em 3. But b° is not necessarily
large at moderate-to-high latitudes. The quantity D represents a finite-8

correctioﬁ; simple manipulations of the formulas below show that

L b




D~ 1+B,(1+ b,"z)":L (5)

where Bi = unIMiVZ/BZ is the ion B . Thus D <1 + Bi for any b .
Because the PR mode is convective, we take the frequency as real, and

calculate a complex k” from the dispersion relation. In so doing, we fix

Re £ to be of 0(1). Note that Re y2F(y) is positive and of order one for

Re y = 1 ; then the real part of the dispersion relation tells us that
W~ wy (1 +b%D)72 (6)

modulo a numerical coefficient of order one; from this and from Re J= By

we find
ko~ (g /9) @+ b)) <D

(Using this in the definition of D yields (5).)
Now soive the dispersion relation for Im kl K taking into account the

fact that the real part of (1) is satisfied:

1

R g [ 2 20 |
Imk=—Im —DRec-imI_h._ImyF(y) (8)

Let us make the estimates Re 7 ~ 1., Im y2F(y) ~1/2 at Rey~1,D-. 1-2.

Using these and (7), we can estimate

2
Q. .
v wi

modulo a numerical coefficient which may be less than one, but larger than, s
0.1. This expressmn reveals the dependence of Im k” on-latitude through

its eependence on 'the field strength B , occurring in each of the factors.

ays

It

is easy to verify that, for a distribution function of the type (V-L/B) x function
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of (V_ZL + v|2|) » the mean velocity v does not depend on B . Of course, Q.

-

«r
is linear in B, and tends to maximize Im k ” off the equator. The factor

(1+b 2) decreases off the equator, since b is decreasing, but if b2
is of order 1 or larger, the change is relatively unimportant. As for the
remaining facter, it is often the case that, during storm times outside the
Plasmaspher=s, essentially all the plasma is hot, so méi/wi ~ 1 . Under these
circumstances, Im kH will indeed maximize off the equator.

Given that b2 is large, and given ‘the pitch-angle distribution of the
hot ions, it is possible to figure out where maxiimm growth occurs. Let

. méi = B-N , that is, the hot ions have a (sin oz)2N pitch-angle distribution,

and let wgi . g™ (M = 1 might be expectec in quiet times). From (9), Im kH

) depends on B as

”~
L3
[en]
~

where x = B/ Beq and qu is the equatorial field strength, and R > 1 is

the ratio of hot to cold ion density at the equator. A simple calculation shows

that (10) is maximm at

ALY -

1/ (N+M)
N+M-1 ]

‘corresponding to an equatorial pitch angle of sin~t xc-;5 . We find

(Im k)
me' R+1 N+M"1x (12)
Thnkllseq B R N+M e}

The off-equatorial maximm is most promounced when R is large, and when

s N +M is close to 1 (both of which effects my be most prominent at storm

A . . . ' .
" tire). Since the waves do not need long distances to exponentiate several
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times (Im kl | £~ 10 for V- 2 x 10% cm sec™d > 2 ~ 10 rad sec™l gives £5
one Earth radius, from (9)), this off-equatorial maximum, if it even exists, ~7
might lead to a fairly well-localized (in latitude) disturbance of the proton
ring current. In this case, particles mirroring above this latitude would be
nearly unaffected, while all particles mirroring below it would be strongly
scattered. Thus the situation envisaged in Fig. (3) could be realized.
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FIGURE CAPTIONS

Precipitating proton profiles during quiet-times, based on OV1-17
data [Mizera, 1973]. The electron profile shows the low-altitude
trapping boundary.

Comparison of precipitation flux (solid lines) and equatorial

trapped flux (dotted lines) for storm-time [Williams et al., 1973]

and quiet-time [Pizzella and Frank, 1971] conditions. Taken from

Mizera [1973].
Schematic indication of the equatorial pitch-angle distribution of
protons outside the plasmasphere.

Precipitated energy vs. L as found by OV1-17, compared to the
energy threshold for EMC instability.

L-vaiues of H arcs and SAR arcs, March 23-24, 1963 [taken i

Hh
]
0
2

Kleckner and Hoch, 1973].

Profiles of omidirectional proton flux at .the equator. Also shown

are two possible values for the minimumm unstable flux [taken from

Williams et al., 1973].

Reconstruction of the cold plasma density N from the resonant

energy equation for EMC instabilities [taken from Williams et al. 3
1973].
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EVALUATION OF LIMIT

ON STABLY TRAPPED PARTICLE FLUX

Michael Schulz
Space Physics Laboratory
The Aerospace Corporation
El Segundo, California 90245

ABSTRACT

Asymptotic expansions are developed for the self-consistent
spectra of protons and electrons (with fixed anisotropy) at marginal
stability with respect to their respective electromagnetic cyclotron
wave modes. The leading term is the same in each expansion, and

10

implies that EJ4:(E) = 1oLl 4 (BO/B)S cm_zsec-l, where E is the

particle energy, J4Tr is the limiting differential omnidirectional flux,
s (~1) is the anisotropy, and B/B0 is the ratio of local B to equa-
torial B at fixed L. Higher terms in the asymptotic series suggest

a very slow convergence, and are essentially useless for quantitative

purposes.
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INTRODUCTION

It is by now a well-known result of linear plasma theory that
anisotropy in a pitch-angle distributior. produces instability in the
corresponding electromagnetic cyclotron wave mode. Kennel and
Petschek (1966) have utilized this principle to place a rough upper bound

on the intensity of geomagnetically trapped radiation. There has ensued

a great deal of discussion on the significance of such a particle-flux )i mit.

In its original form, the limit was expressed as an upper bound
I4=T:<T(E*) on the integral omnidirectional flux of electrons having energy
in excess of a critical energy E’ = B2/81rN( s +1 )Zs, where B is the
magnetic-field intensity, N the plasma density, and s the pitch-angle
anisotropy. This bound was estimated by Kennel and Petschek (1966)
as 7x1010 174 cm-zsec'l, assuming evaluation at the geomagnetic equator.

One can readily scale the Kennel-Petschek limit for use at off- 4 :
equatorial locations by assuming a pitch-angle distribution proportional
to (pl/p)zs, where p is the particle momentum. It would then follow

from Liouville's theorem that

IAE") ~ 7 x1010 14 (B,/B)° e (1)

i a0 2ol T T e i ekttt o S 2

where B0 is the equatorial value of B on the firld line (L) in question.
In this case the particle intensity at off-equatorial points is limited by

waves generated in the equatorial region, through which all such particles

necessarily pass in the course of their adiabatic bounce motion.




£
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¥ The above considerations have been criticized by Haerendel (1972)

and others, who argue that the anisotropy s should not be specified
a priori. Since particles that mirror too near the equator, i, those
having 1 - (BO/Bm) < E* /E, cannot interact with growing waves, there
is no limit on the intensity of such particles. By this line of argument,
the anisotropy of the pitch-angle distribution should grow without limit,
and the critical energy E can no longer be defined.
It is essential to recognize, in comparing these seemingly discrepant
findings, that Haerendel (1972) and Kennel-Petschek (1966) are not asking

the same question. In specifying the anisotropy s a priori, and in

calculating a limit on the entire omnidirectional flux, Kennel and Petschek

(1966) have tacitly assumed that some separate weak-diffusion process

acts to maintain the whole pitch-angle distribution in a form approximating
L the lowest eigenmode. Haerendel (1972), on the other hand, assumes that

there is no such complementary process. The failure to specify under-

lying assumptions has been a recurring source of needless controversy

in the field of radiation-belt physics.

The tacit assumption of Kennel and Petschek (1966) is not at all
unreasonable. Lyons et al. (1972), for example, have shown that a

parasitic Landau resonance {(w= k"v") with obliquely propagating cyclo-

tron waves can effectively scatter particle pitch angles that are untouched

by the fundamental cyclotron resonance (w - k"v'I = Q). Roberts and

Schulz (1968) have shown that resonance with compressional waves at

A . s s e

the adiabatic bounce frequency can readily account for the pitch-angle

diffusion of particles that mirror very close to the geomagnetic equator.

-
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Taking the Kennel-Petschek assumption (fixed s) as a working
hypothesis, it becomes relevant to ask whether the limiting particle
intensity can be expressed in terms of a differential spectrum J4:::(E)

t rather than in terms of a single quantity 14::(E*). The answer turns out
. to be affirmative, but a direct evaluation of J'4::(E) in closed form proves
to be cumbersome and generally disappointing. The essential difficulty
is that wave-particle interactions do not limit the differential flux itself,

but rather a certain integral over the phase-space distribution f, to

which J4"(E) is simply related. In a nonrelativistic calculation (Kennel

and Petschek, 1966) the bounded integral is given by

[e+]

s‘ _ (c/vll )2 (Q -w)zlln RI
P
0

. f dp = : (2)
1 wita® b [s@-(s+1)w]

with f having dimensions of 'h-3. The integral is to be evaluated at

fixed Vy: corresponding to the resonance condition w- k.v. = 2, and

the indicated bound holds separately on each wave frequency w/2w,

METHOD OF ANALYSIS

From the singularity in (2) it follows that there will be no limit
on J4"(E) for E<E", where E" i the minimum particle energy

resonant with a wave having w/92= s/(s + 1). The resonance condition

w - k"v” =l can be rearranged to read




T e e =

1 i nzwz(v"/c)2 = (Q-w)z, (3)
where n (= ck"/w) is the refractive index. For whistler-mode waves
well above the ion gyrofrequency, one obtains n2 = wpz/w(Q ~w), whereupon

wyetv /e = (@-u). (4)
Inserting w = sQ/(s +1 ), one finds

%
E° = (m/2)v® = BZ/8xN (s +1)%s, (5)
where w 2 = 41qu2/m. A similar calculation for ion-cyclotron waves,

for which n2 = pr/Qe(Q-w), in resonance with ions yields

2 2 2 _ 3
(wp /Qe)w (VII /e)® = (2-w) (6)
and

E* = B%/8xN(s +1)s2, (7)

It is assumed in the foregoing derivations that n2 > 1,

A seemingly reasonable approach to the evaluation of J41r(E)

, consists of expanding J'l(E) in powers of E" /E. This method is imple- S

mented by taking :

= <42 2s ¥4 20
f(p, = 2mE ) 8
(p»p) = p (p, /p) Zf: C, (2mE" /p®) (8)
-
Ly




where p2 = p"2 + plz. The omnidirectional flux in this formulation is

given by

1
2 -
Iy (E) = 4np j fdx
0

1
4r Y Cy2mE" /p?) j (1-x%)° dx
£
0

2rn B(1/2,s+1) Z Cl (ZmE*/pZ)I (9)
{ .

at constant p, where x is the cosine of the (equatorial) pitch angle
and B denotes the beta function.

With f (pll'pl) given by (8), the bounded integral in (2) is found
to be expressible as

[e¢]

: o1 PN 21

j plf dpl 5 ;CI(ZE /mc*} (c/v") B({, s +1). (10)
0

Although (9) and (10) hold in general, it is of interest to determine that

particular set of flux coefficients C, for which the bounded integral is

equal to its maximum allowed value at each v The flux coefficients

e
of this particular set (to be denoted Cf) are obtained by expanding the
right hand side of (2) in powers of (c/v“). This is achieved by iteratively

substituting for w, as given by (4) or (6).

For example, the electron flux limit is evaluated by substituting

‘*’p_z (9-w)3 (c/v")2
o5 (2 0% @0 (e/v)?)P (e /v )P
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Such an iterative approach proves to be more convenient than an exact
algebraic solution of the cubic equation, for the purpose of expanding

the right-hand side of (2) in powers of (c/v“)z. One finally obtains

> ¢ RE /mey (e/v)? Big, s + 1)
7

(c/v“)2$'2|1n R| o [ w]z (s + 1)
Q

B el = st

(c/v“)2 (Q/2n3q2s La)|1n R| {1
-(s -1) (Qz/swpz) (c/v“)2

+ L (3s% - 3s +1) (Qzlswpz)z(c/v“)4

- +(2s - 1) (6% - 35 + 1) (2%/50 %) (c/v,)®
P I
...}, (12)
whereupon
J4:(E) = (s+1)(cB/2r’qEsLa) |In R B(1/2,5+1) (1

S (s-1)(s+2)(s +1)4E"/E)
+ -;-(3s2-3s+1)(s+3)(s+2)(s+1)4(E*/E)2
-1 (2s - 1) (6s%-3s + 1) (s +4)(s+3)

X (s+2)(s+1)°0E/E)>

+ ...}, (13)

i Baciibe St = i o s NS e e g ez s . Bl




This asymptotic expansion of the limiting electron spectrum J‘;;(E) has ,
the disagreeable property of being very slowly convergent. The expan-

sion must (of course) diverge for E SE*, but one might have hoped for

rapid convergence where E 210 E*. Instead, the series in curly brackets

reads 1+ (45/16)(E" /E) + (2835/512(E*/E)% + . . . for s =1/2 and
1+96 (E'/E)® - 2560 (B /E)® +. . . for s

1.
The situation is not greatly different in the case of ions resonant

with ion-cyclotron waves, except that the iterative substitution is

3/2 (

w= Q1 - (u/a) cp /vy (14)

where p is the Alfvén speed. It follows that / must take on half-

integer values as well as integer values. The limiting spectrum J‘;(E)

is found to have the asymptotic expansion
J4:(E) = (s + 1)(cB/21rqusLa)|1n R|B(1/2, s +1) {1
- 2(s - 1)(s + 1)V2[r(s + )T (s + 2))(E* jE)} /2
- 1 (3s% 235 - 2)(s +2)(s + 1)EF/E)
+ (n/6)(21s> - 2152 - 6s + 8) [(s + Z)r(s + 2]

3/2

x (s + 1) /4E* pE)3/2

- L (10s* - 106% - 1752 4 55 - 2)(s + 3)

x (s +2)(s+ 1)4E*/E)?
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&4

o
in this case. The series in curly brackets reads 1 + (8/Tr»\/3)(E'</E)1/2 +

(165/32)(E*/E) + ... for s =1/2 and 1 + 6(E*/E) t. .. for s =1.

In summary,

Gk Sk ST B M P LT N s

neither the electron case nor the proton case yields

%
a rapidly convergent expansion for 'I41r(E)' One may as well accept the

leading term of each series as an indicator of the saturated spectrum. In

each case the leading term vyields

ﬁ TE) ~ (5 + 1)cB/2r*qE s La) |In R|B(1/2, s +1) (16)

for E>>E='<. It follows asymptotically for reasonable values of s (s =1/2

or s = 1) that

EJ, (E) ~ 1010 7% ;2 gec!, (17)

This result constitutes about the best available nonrelativistic estimate

for the saturated particle spectrum. The generalization to off-equatorial

points would be that

b3 i - - ,
E J, (E) ~ 1010 174 (By/B)® cm? sec’!, (18) :

# where BO is the equatorial value of B on the field line (L) in question,

The incompatibility between (18) and (1) arises from the specification of

a spectrum steeper than E! in the derivation of 14::(E>'=) by Kennel

and Petschek (1966). The self-consistent spectrum turns out proportional

to E'1 in the asymptotic limit, although relativistic effects not yet eval-

£ uated may alter this result.
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DISCUSSION

The present attempt to evaluate .]'4:(E) for fixed s has been
& largely unsuccessful, in that it has yielded only a pair of slowly conver-

gent asymptotic expansions. One may as well invoke (18) at all energies

o e L

above E*, since the higher terms in the two asymptotic expansions are
practically useless in the quantitative sense. A cut-off at some high
energy may be in order, both because the present calculation is nonrela-
tivistic and because magnetospheric particle sources do not extend to

arbitrarily large E. While it is true that a cut-off energy ~e7E* would

reconcile (18) with (1), this should not be a major consideration.
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PARTICLE LIFETIMES
IN STRONG DIFFUSION

Michael Schulz

Space Physics Laboratory
The Aerospace Corporation
El Segundo, California 90245

ABSTRACT

The mean lifetime T of a particle distribution, driven to isotropy
by intense pitch-angle diffusion, is calculated by analyticiil means for
conditions applicable to the earth's magnetosphere. The resulting alge-
braic expressions reduce to T =~ [64 La/35vac2(1 -n)] in the limit of a
small equatorial loss cone (half-angle ac), where v is the particle
speed, L is the magnetic shell parameter, a is the radius of the earth,
and n is the particle albedo from the atmosphere at either foot of the
field line. Distinction is made in the full expressions for T between

complete isotropy (caused by strong pitch-angle diffusion all along the

field line) and incomplete isotropy (caused by strong diffusion that is

localized at the magnetic equator) over the upward hemisphere in velocity

space.
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INTRODUCTION

As described by Kennel (1969), strong diffusion is the consequence

of having a bounce-averaged pitch-angle diffusion coefficient Dxx (x
cosine of equatorial pitch angle) much larger than aCZQZ, where 92/2n
is a particle's energy-dependent bounce frequency in the geomagnetic
field and a, is the half-angle of the equatorial loss cone. In this limit
the mean lifetime of a particle against pitch-angle diffusion into the atmos-
phere approaches a minimum value 7t that is independent of the magnitude
of Dxx’ but sensitive to the magnitude of afcz. This is in contrast to the
weak-diffusion limit (Dxx <« aCZQZ), in which the particle lifetime would
be proportional to l/Dxx.

Kennel (1969) estimated the magnitude of T as Tr/Q2 acz for acz
« 1, by reasoning that a particle in either loss cone (each having solid
angle Tracz out of its respective hemisphere, 2w) will be lost within a
quarte'r bounce period after traversing the equator. Lyons (1973) has
recently refined the calculation of T (at least for acz « 1) by more
carefully specifying the probability that a particle whose guiding center
lies within a given magnetic field tube is actually in the loss cone. Lyons
evaluated this probability as 1.1 sinzac (rather than Kennel's aCZ/Z) by
calculating the relative amounts of phase space inside and outside the
loss cone seen by the equatorial pitch-angle distribution of particles having
the same speed v. By assigning a loss time of TT/QZ (rather than Kennel's
Tr/ZQZ) and taking a properly weighted (by the factor x/QZ) average of
92 over the equatorial pitch-angle distribution, Lyons (1973) thus obtained

t=2La/l.lv sinzac, where L is the magnetic shell parameter and a is
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the radius of the earth. The weighting factor x/Q2 enters because it is
proportional (at constant v and L) to the Jacobian of the transformation
from canonical phase space to the variables v, x, and L (e_.g_. , Roederer,
1970). Procedures for averaging over the trapped-particle distribution
are reasonably straightforward in the limit Dxx > aCZQZ, since the effect
of strong diffusion is to make the equatorial pitch-angle distribution iso-
tropic (Kennel, 1969).

The approach adopted in the present investigation differs somewhat
in outlook from that used by Lyons (1973). Here the particle content of a
magnetic field tube is calculated explicitly, and is divided by the particle
current through the feet of the field tube to determine the strong-diffusion
lifetime 7. In this case it is the unweighted local pitch-angle distribution
which enters, rather than the weighted equatorial pitch-angle distribution.
The two approaches are equivalent in principle, and yield the same result
in practice for acz «< 1. However, the present approach ieads naturally
to certain conceptual refinements, which are quantitatively significant for

2

@’ ~ 1 but cannot readily be introduced in the formulation used by Lyons

(1973).

The most important advantage of dealing with the local pitch-angle
distribution is the ability to identify (and thereby exclude from averages)
those points in phase space that are unoccupied by particles. The purely
directional averages performed by Lyons (1973) have the effect of includ-
ing, at any given time, particle coordinates actually located beneath the
surface of the earth. While the contamination of such averages by un-

occupied particle coordinates is not significant for acz « 1, the present

R A S———




calculation imposes no such limit on @, and therefore provides at least

a modest generalization of the strong-diffusion result obtained by Lyons

(1973).

g T L LT T R

; BASIC EQUATIONS

Evaluation of T is made tractable by as suming a dipolar magnetic
field (which, however, need not be centered within the earth). Along a
L given field line (L), the equatorial (minimum) field intensity is denoted
B

0 The field intensity at the northern foot (where the field line enters

the dense atmosphere) is denoted Bn’ and the field intensity at the

southern foot is denoted Bs' The details of particle interaction with the

dense atmosphere are thereby suppressed (a simplifying approximation). -
However, it is permissible within the framework of the present analysis
to allow for a specular albedo (preserving the incident isotropy) of magni-
3 tude n .

The differential particle flux per unit solid angle, incident on a
surface normal to ‘E\ at either foot of the field tube, is equal to (1/2m)
JZn(E)’ where JZn(E) is the differential flux over the entire downward

hemisphere (27 steradians) in velocity space. The particle flux across

the foot surface is therefore given by

1
Jl(E) = (l-n)Jzﬂ(E)J cos a d{cosa) = %(l-n)Jzn(E), (1)
0

where a is the local pitch angle. If dA is the equatorial area of the field




tube, then [(BO/Bn) + (BO/BB)] .]'l (E) dA is the rate of particle loss (per
unit energy) from the field tube, since the cross-sectional area of any
magnetic field tube is inversely proportional to B.

It remains to calculate the particle content of the same field tube.
There is a slight subtlety here, related to the question of how the intense

pitch-angle diffusion is distributed along the field line. If conditions of

strong diffusion hold all along the field line, so that the particle flux is
& completely isotropic (even over the upward hemisphere in velocity space),
r then the particle density is (Z/V)JZ_"(E) per unit energy, and the field-

tube content is given by

0
3 S
4 C(E) = (ZLa/v)JZTr(E)I sin'® d6 dA (2)

e1'1

! per unit energy, where s is the coordinate of arc length along the field

line and 6 is the colatitude measured from the northern magnetic pole.
g 3 The particular colatitudes Gn and Gs correspond to the feet of the

field line. Evaluation of the integral in (2) yields

C(E) = (2/35v)Lal, (E) {[1-(130/1311)]1/2 [16

+ 8(BO/Bn) + 6(BO/Bn)2 + 5(BO/B)3]

+ [1-(By/B,)) /% (16 +8(B,/B,)

+ 6(B,/B,)* +5(B,/B_)°]} dA, (3) :

where a is the radius of the earth.
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It proves convenient to introduce the abbreviated notation BO/Bn =

y 2 =1 - xn2 and BO/Bs = ysz =1- xsz. The strong-diffusion lifetime

T is thereupon given by

4
1l

; C(E)+ [ly,” + y)) 3, (E) da)

[4La/35v (yn2 + YSZ) (1-1'])]

x{(16+8y 246yt rsy b

2 4
+ (16+8ys +6ys +5ys6) xs}. (4)

This expressibn for t scales, as it should, like 4La/v. The bounce
period of an individual particle is given by er/Q2 = (4La/v) T (y), where
2 _ . . g . . . o
y BO/Bm and Bm is the mirror-field intensity (attained at @ Bm).
However, the function
m/2
T(y)= | [1 -(B/Bm)]'1/2(1+3 cosza)llzsina de, (5)

em

which contains the explicit dependence of 3’22 on equatorial pitch angle,
does not appear in (4) at all. This is as it should be, since T is the
mean lifetime of a whole distribution of pitch angles. More significantly,
and in contrast to prior derivations of T, the bounce period 211’/&'22 has
not entered at any intermediate step between (1) and (4). Given the
condition of pitch-angle isotropy, which requires Dxx > aézv/4 La, it is
unnecessary to invoke either the bounce frequency or the '"probability that

a particle is in the loss cone,' in deriving a valid expression for .
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Applied to (4), the limit yz =y 2<<1 (whence y2 =~ az) ields
P n 8 n c !V

TR [64 La/35v acz(l-'q)] - This result agrees (for n = 0) with the expression

T=2Lal/l.lv sinzac given by Lyons (1973),

REFINEMENTS

The assumption of complete pitch-angle isotropy, invoked above in
obtaining (2)-(4), seems dubious in reality (see, however, Koons et al.,
1972). It requires, in the absence of a unit albedo n, that pitch-angle
diffusion low on the field line equalize the upward and downward particle
fluxes, i.e., immediately replenish the particle trajectories depleted by
entry into the dense atmosphere.

It is perhaps more natural to assume that such particle trajectories
are replenished only by the intense pitch-angle diffusion that occurs in the
equatorial region, idealized as the point where B = BO' In this limit the
upward hemisphere in velocity space would remain depleted along tra-
jectories connecting the equator with the atmosphere. The result is a
somewhat shorter lifetime T than given by (4), since the particle density
along the field line is somewhat smaller than the value (2/v) JZn(E) assumed
in deriving (2). The particle content of a field tube is given i.nstead by

65
C(E) = (1/v)LaT, (E){ (1+n)j sin'0 de
/2 n
o (l-q)j [1-(B/Bn)]1/2 sin'® de
6n 6

+ (1-n) [1-(8/B,)]'/2 sin’6 a6} aa. (6)

/2




The first integral has already been performed in obtaining (3).

Q=/
The second integral in (6), to be denoted Z(yn), is evaluated by
observing [cf. (5)] that
2
dZ/dB = (By/2B %) T(y ), (7a)
or
dZ./dy = -y T(y). (7b)
An excellent approximnation for T(y), accurate within 1% for all values
of y between 0 and 1, is given by the expression
1 1/2
T(y) = T(0) + » [T(1) - T(0)] (y +y /2, (8a)
due to Lenchek et al. (1961). The end-point values are expressible in i
closed form, viz,,
T(0) = 1+ (1/2A3)1n (2 +~3) = 1.380173 (8b)
and
T(1) = (n/6) NZ = 0.7404805 (8c)
Since (6) implics that Z(1) = 0, it follows from (7b) that
1
30Z(y) = 30 J y T(y)
y
% (4 - 15y +6y%/2 4 543 1(0)
+(11 - 69572 _ 53311y, (9) =




Since direct evaluation of (6) vyields Z(0) =16/35 =~ 0. 45714, it would
be a good check on the accuracy of (9) to evaluate Z(0) & (4/30) T(0) +
(11/30) T(1). Although this approximate expression for Z(0) does not
look much like 16/35, it reduces in fact to about 0. 45553 and therefore
yields an error of much less than 1%.

Thus, the strong-diffusion lifetime T under conditions of incomplete
isotropy (Dxx > %292 for all x, but with pitch-angle diffusion localized

at B = Bo) is given by

2 2
T = [2La/3sviyS +y %) (1-q))
2
X {1648y 6y +5y 0 (14n)x
+ (16 + 8ys2 + 6ys4+5ys6) (1 +n) X

+35 (1-m) [2(y) + 2ty )]}, (10)

with Z(yn) and Z(ys) obtained from (9). Of course, the strong-diffusion
lifetime is minimized with respect to mn by the limit of vanishing albedo
(n=0), and approaches infinity in the limit of perfect reflection (n=1)

from the top of the atmosphere. Since Z(0) = 16/35, the limit ynz =

ys2 « 1 yields T~ [64 La/,35vo«c2(l —'q)] when applied to (10). As noted

above, the same limiting expression for T follows from (4).

DISCUSSION

The foregoing results enable the strong-diffusion lifetime T for a

given field line to be computed, directly from simple algebraic expressions,




in terms of the field intensities at the foot points where the field line enters

the dense atmosphere. Although a field line in general enters the atmos- =

phere obliquely, the foot of the field tube (across which particle precipi-

tation occurs) is a surface normal to E’ The logic of this contention,

invoked above in calculating the particle loss rate, is that the opportunity i

for precipitation is decided by the location of a particle's guiding center.

Precipitation is inevitable (up to a factor of 1-n) once the guiding center

has passed a point of no return, such that a particle will lose its energy

through ionizing collisions within the next gyroperiod. Thus, the flux

J‘ (E) calculatedin (1) is really a flux of guiding centers as well as a

flux of particles. This last interpretation could not be made if the foot of

the field tube were not defined as being a surface normal to E‘ H
In the limit of small gyroradii there is little difference between the

minimum altitude of a particle and the "perigee" of its guiding center, A =

particle having appreciable magnetic rigidity, however, can experience i

a much larger atmospheric density {~~eraged over gyration) than its guiding

center experiences. On the other hand, the gyration-averaged atmospheric

density required for precipitation increases with particle energy, as the i

ionization cross section decreases. Thus, it is not immediately obvious

whether the guiding-center altitude that locates the foot of a field line

(and thereby determines the parameters Bn and Bs) should be treated

as a function (either increasing or decreasing) of the particle energy. Any

such energy dependence would be quite weak, and its evaluation would

exceed the intended scope of the pPresen! work,

ey e e




- In summary, the strong-diffusion lifetime T has been calculated,

for an offset-dipole model of the geomagnetic field, under conditions of
complete pitch-angle isotropy (strong diffusion at all values of B/BO) and

incomplete isotropy (strong diffusion localized at B/BO = 1),

lation allows for an arbitrary specular albedo n from the foot of the field

The calcu-

line (top of the atmosphere). Conditions of incomplete isotropy and

E vanishing albedo are found to yield the minimum possible particle lifetimes

under strong diffusion,
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PARTICLE SATURATION OF THE OUTER ZONE:

A NONLINEAR MODEL

Michael Schulz
Space Physics Laboratory
The Aerospace Corporation
El Segundo, Californis 90245

ABSTRACT

Properties of the steady state and transient behavior of geomagnet-
ically trapped radiation are analyzed by means of phenomenological
equations that concisely summarize the operative dynamical processes.
The equations provide for a realistic coupling between electromagnetic
wave energy, particle intensity, and pitch-angle anisotropy in the con-
text of the outer zone. Applications include magnetospheric enforcement
of a limit on stably trapped particle flux, the smooth transition between

weak pitch-angle diffusion and strong diffusion, parasitic particle preci-

pitation by natural and man-made radio signals, natural and artificial

injections of trapped radiation, and the Sluisequences of magnetospheric

cold-plasma injection.
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INTRODUCTION

Plasma instabilities deriving their growth from non-Maxwellian
distributions of particle momenta play an important role in magnetospheric
physics.  Pitch-angle distributions anisotropic with respect to the ambient
magnetic field, for example, are unstable to the generation of electro-
magnetic cyclotron waves (e_.g. » Cornwall, 1965; Kennel ana Petschek,
1966). Field-aligned auroral currents, corresponding to counterstreaming
distributions of ions and electrons, can give rise to a variety of electro-
static (Kindel and Kenne. 1971) and hydromagnetic (Forslund, 1970;
Hasegawa, 1970a, b) instabilities. Moreover, electrojet currents trans-
verse to a magnetic field are unstable to ion-acoustic wave generation at
remarkably low thresholds in the Counterstreaming velocity (Farley, 1963).

There is no major objection to evaluating the linear growth rate of
a momentum-space instability for uniform plasma geometry, provided that
the magnetosphere is homogeneous on a scale much larger than the wave-
length, However, the quasilinear theory of a homogeneous plasma
instability, such as might be formulated by following historial precedent
(&_g_. » Vedenov et al., 1962; Rowlands et al., 1966) can fail in many
important respects to account for the post-linear evolution of a magneto-
spheric plasma instability,

Instabilities involving resonant particles (Kennel, 1969), for exarnple,
ultimately impel the particle distribution function to form a '"plateau' in
momentum space, according to the quasilinear theory of a uniform plasma
(e.g., Rowlands et al., 1966). Such a plateau assures a vanishing growth

rate Y for waves resonant with particle momenta lying on the plateau.
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The quasilinear wave spectrum is thereupon calculated by requiring a
detailed energy balance between the redistributed particles and the wave
vectors MI& with which they are resonant. In other words, the idealization
of an infinite uniform plasma leads to a simplifying conservation law
whereby neither waves nor particles nor energy can enter or leave the
system through its boundaries.

Recognition of the magnetospheric plasma as an inhomogeneous
medium complicates the quasilinear problem beyond belief. It is natural
in this field geometry to express the particle distribution as a function of ;
the three adiabatic invariants, However, the inhomogeneity of the plasma
and magnetic field cause a particle to lose resonance with its wave in the
course of adiabatic charged-particle motion (e_.&. » Schulz, 1972), Thus,

a particle resonates in turn with a continuously varying succession of

wave frequencies in the course of its adiabatic motion. Conversely, an
individual wave resonates with a continuously varying set of adiabatic
invariants as the wave y,ropagates through the medium. The concept of
plateau formation and detailed energy balance seems to be rendered almost
meaningless by th.s complication. In any event, there is no longer a con- ‘A
servation law that prevents waves, particles, and energy from crossing
the boundaries of the plasma. Moreover, the usual Fourier decomposition
(w’}&) of a waveform fails because of internal refraction and reflection; a a
partial solution to thic last difficulty is provided by tracing rays (e.g.,
Thorne and Kennel, 1967) in analogy with the ‘methods of geometrical
optics, Even if all the problems involved in formulating the quasilinear

theory of inhomogeneous plasmas were cleverly solved from first principles,
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however, it is hard to imagine the results being expressed in a form concise

enough to be useful for practical applications.

< T i
b

1 The purpose of the present note is to fabricate instead some heuristic
equations that simulate the magnetospheric quasilinear problem in a
phenomenologically satisfying way. The electromagnetic cyclotron insta-
bilities (e. g., Cornwall, 1965; Kennel and Petschek, 1966) are chosen in
order to make the application definite. The proposed equations are simple
in form, relate wave growth to the anisotropy and intensity of the resonant-
particle distribution, accour: for the imperfect internal reflection of wave
energy, and recognize the gradual transition from weak pitch-angle diffusion

to strong diffusion (e.g., Kennel, 1969) as the scattering time varies relative

to the particle bounce period. The equations are directly applicable to a
variety of magnetospheric phenomena involving the cyclotron-resonance
instabilities, and they lead to simple predictions that can readily be com-
pared with the rudimentary observations normally available.

On the other hand, the equations are not necessarily "true, " according
to the standards usually recognized in the axiomatic formulation of physical
theory. They are instead heuristic phenomenological equations, to be
viewed as a prototype of the structure that a properly formulated theory
should ultimately reveal. By design, such equations gloss over subtleties
of mathematical definition, and the terms therein represent somewhat
nebulous averages of ideal physical quantities. However, the observational

data themselves often represent somewhat nebulous averages of the real

physical quantities,

a»
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BASIC EQUATIONS

According to Kennel and Petschek (1966), there is a limiting value
I* that the integral omnidirectional flux I (of magnetospherically trapped
particles above a certain energy threshold) cannot exceed without provoking
instability. In a recent review by Schulz and Lanzerotti (1973), equatorial
evaluation of the relevant parameters is found to yield I~ 101,74 em " 2sec
For fixed anisotropy of the particle distribution in pitch angle, the linear
growth rate Y for the amplitude of an electromagnetic cyclotron wave is
proportional to I/I*. The growth rate for the wave eunergy (squared ampli-
tude) is 2Y. An incipient wave undergoes partial reflection (coefficient R)
upon traveling a distance ~La, wher. L. is the magnetic shell parameter
and a is the radius of the earth. The remaining fraction 1-R of the
wave intensity is lost., The time interval between reflections is estimated
as La/vg, where vg (=|dw/dk|) is the group velocity. Thus, the condition

for marginal stability (Kennel and Petschek, 1966) is

R exp (ZYLa/vg) =1 (1a)

or

K

Y = (vg/ZLa)Iln R| = v*. (1b)

Ifl ever exceeds I*, _i_._g._, if Y ever exceeds Y*, the consequence is a
net growth of wave energy and of particle-loss (precipitation) rate.
However, since the absorbing atmosphere is distant from the site of the
wave-particle interaction, the actual loss rate can never exceed 1/t,
where T is the strong-diffusion lifetirne realized for a particle distribution

driven to pitch-angle isotropy by the wave-particle interaction (Kennel and

Petschek, 196yv,.

-1
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The foregoing considerations suggest an equation of the form

i s N L P R STE RRR TTEE

al . _ _ M . g (2)
dt 1 + N\t

to describe the evolution of particle intensity I in the presence of a
] particle source S. The parameter \ is essentially the pitch-angle

diffusion coefficient, modified by appropriate numerical factors so as to

make a reciprocal lifetime (Roberts, 1969). In weak diffusion the particle
intensity decays as -\l per unit time. In the transition to strong diffusion,

the decay rate remains between \ and 1/T.

The factor 1/(1+ \7) is a rough measure of the residual anisotropy

in the pitch-angle distribution. In weak diffusion (AT <«1) the particles

assume a natural anisotropy of order unity. The anisotropy is substantially
reduced for At 21, and this leads to a reduction of the growth rate from f.l
that applicable in weak diffusion. Following the above reasoning, it is

convenient to estimate that '

d\ _ 2Y (I/1)

_1_ dw
' N dt 1+ AT

dk

InR
La

+

o (3)
A

in the presence of an external wave source having strength W. The wave

S e o
A

intensity derived from W leads to 'parasitic’ pitch-angle diffusion of
1 the particles (e. g., Kennel and Petschek, 1969). The factor 1 + At
g reduces the growth rate Y from the value (I/I')Y that would hold for £

the natural (weak-diffusion) anisotropy of order unity. The growth rate S
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approaches v for 1=1" and AT < 1. The leading factor of 2 enters
because M\ is proportional to the wave intensity (squared amplitude).

Choice of the divisor 1+ A\t is somewhat arbitrary in (3). A divisor
of the form (1+ )cr)a would seem equally reasonable, where o is any
number lying roughly between 1/2 and 4. The choice of @ = 1 in (3) is
motivated by algebraic convenience and justified on the grounds that
alternative choices for a would lead to very s rnilar '""'physical' conse-
quences,

The idealized equations (2) and (3) represent a bounce-averaged
treatment of the wave-particle interaction, in that both wave growth and
wave reflection are treated as continuonus (unmodulated) rather than inter-
mittent processes. The equations cannot be expected to generate a bounce-
modulated wave intensity under any circumstances. Similarly, equations
of this form cannot be expected to yield bounce-mcdulated particle phenomena
such as electron microhkursts (e.g., Lampton, 1967).

Of the various algebraic terms appearing in {2) and (3), the term
containing InR would seem tc require further justification. A simple
limiting case should suffice. Thus, in the absence of resonant particles
(I=0) and waves of external origin (W =0 ), the wave intensity initially
present at t = 0 can be sustained only by internal reflection. Since inter-

nal reflection is only partial (0<R <1), the intensity decays with time.
It follows from (3) that

A(t) = )\(O)R[dw/dkl(t/La) (4)

under these conditions., This is the desired result, since vg/La represents
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the number of reflections per unit time. Each internal reflection preserves
a fraction R of the incident wave energy. Equation (3) formulates this

effect as if it arose from a continuous process.

STEADY STATE

The foregoing remarks serve to justify (2) and (3) as a credible set
of equations to summarize radiation-belt evolution. It remains to illus-
trate the consequences of (2) and (3) in situations of magnetospheric interest.
The steady state (dI/dt = 0, d\/dt = 0) is perhaps the simplest case from
which useful information can be extracted. The algebraic solutions for

A and I inthis case are given by

o= (s/1) + (w/2Yh (5a)
and

I

e x -1 sk
[1+(WI /2Y's)]"" 1" + 8, (5b)

respectively. In the limit TW/2Y « +S/1 1, it follows that \ ~S/I"
and I = I*. This limit corresponds to the situation envisioned by Kennel
and Petschek (1966), in which the particle precipitation is neither paracitic
nor derived from strong diffusion.

The significance of I* as a limiting flux holds only in weak diffusion

caused by internally generated waves, but the underlying equations admit

a far wider range of parameters. A meaningful presentation of the wider

range is given in Figure 1, where the dimensionless quantities At (dashed
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o curves) and I/l (solid curves) are plotted as functions of the dimension-
less parameter TS/I" for fixed values of TW/2Y", Evidently strong

diffusion (At > 1) alwaye accompanies the condition I> 1" in the steady

state.

If waves from the external source produce only weak diffusion, i. e. ,

if TW/2Y" « 1, then it follows from (5a) and (2) that

¢

14Xt =~ 1 + (v8/17)

X

1+ [a/(1 4 am)] (/1) (6)

in the steady state. This is a quadratic equation having the "physical" E

solution

1/(1 4 \) ~ Min (I /1, 1) (7)

i A o

for the factor 1/(1 + M) that roughly characterizes the anisotropy of the
pitch-angle distribution (see above).

A somewhat subjective confirmation of (7) is contained in the data l
on precipitating protons compiled by Cornwall et al. (1971). There the 7;

qualitative anisotropy of the pitch-angle distribution was found to depend

N

P IR Y

(at each L value) solely on the particle intensity. The transition band

between clearly anisotropic and virtually isotropic fluxes covered only a

o st

factor ~4 in to*al flux, and paralleled a critical (maximum anisotropic)
flux value proportional to L-4, as expected. According to (7), the con-

dition I 2 41" should correspond to an observationally negligible anisot- i

3 )
1 ropy < 1/4. |
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IMPULSIVE SOURCE

It is instructive to consider the case in which the steady state is
abruptly perturbed by an injection of particles at time t =0, This case

is realized when the source terms are such that W = 0 and

S(t) = SOO(-t) * Ilb(t). (8)

The constant conditions S = S0 and W = 0 existing prior to t =0 (i.e.,

ever since t = - @) lead to steady-state values \ = )\0 and 1=1 + TSO

given by (5) for the wave and particle intensities. The impulsive source

described by (8) thereupon yields an "initial-value'' problem such that

+.
ot

Ao = (Sp/T) (92)

wls
e

10y = 1 +1S, + 1, (9b)

Subsequent evolution of \(t) and I(t) is determined by (2) and (3), with

S(t) = 0 for t>0.

W d
It is natural to assume A, T« 0.1, 2Y T 210, and I, 2 41, i

0 1

order to make the initial-value problem 'physically'" significant. In this

case the problem separates conceptually into two parts: the growth of the

wave intensity and the decay of the particle flux. In the strictly dichoto-
mous picture, the parameter At grows from )\O'r to ~1 on a time scale
t ~ (I*/ZY*II)Iln 7\01-, while 1 remains virtually static. Thereupon, in
the presence of strong diffusion (At 2 1), the excess particle intensity

decays away with a characteristic lifetime ~7. The problem is made
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complicated (and interesting) by the fact that wave growth and particle decay

overlap somewhat in time.

It can be shown from (2) and (3), however, that

din [e(1/17) - (1 + A7)/ dt

= - 2Y N/ (5 + A (10)

for t > 0, where € = ZY":T/(ZY*T- 1) 2 1. Thus, the parameter AT seeks
the time-varying asymptote ¢, ';/I*) -1 on a characteristic time scale
~ (14 )\-r)/Zer)\-r, which is <1/Y" for A\r 2 1. As soon as the asymptotic

approximation AT =~ ¢ (I/I*) - 1 becomes valid, it follows from (2) that

din [e(1/17) - 1] /dt = - 1/x. (11)

This means that 1 decays exponentially toward the constant asymptotic

value 1" /¢, while At — 0 with the same lifetime (r).

.: The case of an impulsive source thus leads to an "overshoot'" of the
particle intensity I toward a final value less than I*. The overshoot is
only moderate (since Y*'r >>1), but is conceptually important as an essential
consequence of the manner in which equations (2) and (3) are coupled. It is
interesting in contrast that, according to the quasilinear theory of a uniform
plasma (ei. , Rowlands Et_a_l.-, 1966), the particle distribution diffuses
directly (without overshoot) toward a momentum-space configuration that
corresponds to marginal stability. Moreover, the final state of marginal

stability in a uniform (and unbounded) plasma is accompanied by a nonvanishing

Ak

quasilinear spectrum of wave energy. The , resent results for a bounded
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plasma illvstrate some of the rethinking that must be done in order to evaluate

the magnetospheric manifestations of a familiar momentum-space instability.

APPLICATIONS

The foregoing results have both practical and conceptual applications.
At the practical level, one may reasonably wish to estimate the transient
response of the earth's magnetosphere to natural and artifi_ial injections
of geomagnetically trapped radiation. The present formalism is most likely
to apply in the outer radiation zone, where the medium already approaches
saturation (I~I*) in its natural state (e.g., Kennel and Petschek, 1966).

If N is the density of cold plasma, the relevant energy threshold E*
for evaluating I and 1" is given by E ~ B2/81rN. It follows that E.= ~

40 keV at L=6 if N~1 cm™> there. This energy corresponds (for electrons)

to a bounce period ~1 sec and a strong-diffusion lifetime T ~100 sec ot L =6,

A weak-diffusion lifetime 1/)\0 ~ 105 sec appears reasonable, from which
folliows the estimate )\OT ~ 10-3. The whistler-mode waves that resonate
with 40-keV electrons at L, =6 have a transit time La/vg ~ 1 sec between
reflections reasonably characterized by taking In R = - 3. In this case it
happens that ZY*T ~ 30, and the condition I ~IOI* leads to wave amplifi-
cation ~ 10 dB/transit. The use of these numerical parameters in (8)-(11)
should reasonably simulate the consequences of energetic particle injection

at LL =6, where S 8 X 107 cm_zsec-l.

. : A= : ® .
Direct particle injection at energies 2 E is not the only means of

effectively enhancing 1. As Brice (1971) has pointed out, the artificial

T L Ve o TR T,
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injection of substantial densities of cold plasma (E ~1 eV) outside the
plasmasphere would have the effect of reducing E* (by increasing N). For
a steeply falling spectrum of energetic particles, evaluation of I at a sub-‘
stantially reduced E* can easily imply a very large enhancement of the
relevant integral flux. For example, if the differential energy spectrum is
proportional to E"P, the value of I(E*) is proportional to Np-l. If p=5,
a mere doubling of the cold-plasma density multiplies I (E*) by a factor of
16. It would appear eminently reasonable to employ the present equations

in this context, to estimate the magnetosphere's transient behavior following
the sudden injection of an artificial cold plasma.

At the conceptual level, it is clear that the present approach might be
taken as the basis for a more general treatment of wave-particle interactions.
There can be lj- doubt that the present formulation is only a prototype of
the more genera.  _atment. Rather than attempt to characterize the entire
wave spectrum by a single intensity parameter \, for example, one might
reasonably assign a separate intensity to each eigenfunction of the medium.
Rather than summarize the entire particle distribution by an intensity I (E*)
and an anisotropy 1/(1 + A7), one might reasonably specify the phase-space
distribution of particles as a function of the three adiabatic invariants and
(perhaps) their conjugate phases (e.g., Schulz and Lanzerotti, 1973). For
the present purposes, however, such formal elaboration would largely
defeat the analytical simplicity that emerges from a purely heuristic formu-
lation.

A more feasible offshoot of the present work would be the phenomeno-
logical description oi anomalous resistivity in a bounded plasma. Kindel

and Kennel (1971), for example, have identified several electrostatic

bt A TR T L R R b i




instabilities of field-aligned currents in the topside ionosphere. There is bt
only a tenuous dynamical similarity between such counterstreaming insta-

bilities and those driven by anisotropies. However, there is a certain

i
‘ heuristic analogy between the particle flux (I) and the counterstreaming i
velocity (u) on the one hand, and between the diffusion coefficient (\) and P
1 f
f effective '"collision'" rate (v) on the other. |
It is quite natural, in pursuit of the analogy, to specify an equation of t
the form ;

du/dt = (q/m) E" - vu (12)

where v is proportional to the c¢lectrostatic wave intensity, E, isthe
strength of an imposed electric field, and q/m is the electronic charge-to-
mass ratio. The wave intensity would reasonably be determined by an

equation of the form
dv/dt = 2(Y /u ) (u-ud)v + W (13)

where W is a weak source term. The steady-state solutions of (12) and

(13) are given by

<
1}

(QE, /mu’) + (W/2v") (14a)

and

V3

H sk -1 b3
[1 +(mu"Ww/2y qE.)]™ . (14b)

c
]
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The latter reduces to uxu in the limit W/2y" « qE, /mu*. The parameters
u’:< and Y* can be identified as the instability threshcld (u*) and the damping
rate for u =0 (Y*), respectively. Since the descrip.10n of anomalous resis-
tance actually lies beyond the intended scope of the present work, further

analysis of (12) and (13) is omitted. Moreover, a very incisive treatment of

anomalous resistance has recently been given by Coppi and Mazzucato (1971).
HISTORICAL PERSPECTIVE

The present work is not the first to have treated wave-particle nonline-
arities heuristically, Practical techniques for solving the mode-coupling
equations of weak plasma turbulence have been summarized by Kadomtsev
(1965). The phencrenon of resonance broadening by strong plasma turbu-
lence has been analyzed by Dupree {1966) and applied heuristically by Dum
and Dupree (1970) to an electrostatic instability in momentum space. In
general, the analogies between wave-particle interactions and particle-
particle collisions are quite well established.

However, attempts to apply traditional methods of nonlinear plasma
physics to the more complicated magnetospheric problem have been auite
few in number. An early description of the mutual coupling between elec-
tromagnetic wave growth and pitch-angle diffusion was given by Cornwall
(1968), who proposed a phenomenological, but analytically transcendental,

equation of the form

dI/dt = S - (I/r)exp (- I'/1)
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to describe the onset of particle saturation in the earth's magnetosphere.
This equation, as subsequently applied by Cornwall et al, (1970) to the
precipitation of ring-current protons, rather concisely summarizes the
results of all previous thought on the nonlinear magnetospheric problem
addressed in the present work.

According to (15), the steady-state relationship between intensity and

source ic given by

ST = (1/1%) exp (- TV/1)

r

(1) -1+, .. (16)

This agrees very well with (5b) for TS/1° > 1> W/2Y". Moreover, the
* o -
condition for 1 £0.11, according to (16), is that -rS/I> < 5x10 6 (a

3

rather extreme condition, in view of the previous estimate that )\.OT ~10~
at L=6). Furthermore, expansion of the exponential in (15) for S=0 and

I>1 leads to the equation
di/dt = (I -1)/r (17)

%
which agrees with (11) for Y5 o> 1. Thus, simple predictions based on
(15) do not differ drastically from those based on (2) and (3).
What, then, are the advantages of a formulation summarized by (2)

and (3), over the formulation previously existing? In the author's judgment,

there are several reasons for preferring the new formulatica proposed here.

For one, the conceptual foundations of (2) and (3) are more logical than
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those uaderlying (15). After all, it is the growth rate of the wave intensity
(and not the instantaneous value of \ itself) that really depends up. n the
particle distribution function. It follows that (15) could apply in a time-
dependent problem only after the wave intensity has evolved to saturation.
To describe the transient period, during which the wave intensity grows
from a negligible level ( )‘0) to its saturated value, cone absolutely requires
a differentially coupled equation such as (3). At the very least, then, it

can be claimed that (2) and (3) offer coverage that is continuous in time,

whereas (15) offers coverage that is necessarily interrupted by wave transients.

It is evident also that (15) cannot easily be modified to include para-
sitic pitch-angle diffusion, which is already included in (2) and (3) by virtue
of the extrinsic wave source W, It would be wrong simply to add a second
(parasitic) loss term to (15), since nothing would then prevent the total
particle loss rate from exceeding the strong-diffusion rate (1/7) when I > I*.
Since W appears explicitly in (3), the new model seems especially suited
to the description of controlled experiments involving the artificial trans-
mission of wave energy into the magnetosphere for the purpose of causing
particle precipitation.

Finally, it should be noted that (2) and (3) are analytically more con-
venient than (15). The exponential in (15), for example, prevents one from
expressing I/I* as an elementary function of -rS/I* in the steady state.
Algebraic manipulation is made cumbersome as a result, and almost every
interesting case requires extensive numerical analysis. The new model,
as given by (2) and (3), may also require numerical analysis for some appli-
cations, but the relative cimplicity of these basic equations allows consider-

ably more information to be extracted by purely algebraic means,.
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3 . FIGURE CAPTiON

Figure 1. Normaiized steady-state particle and wave intensities (I/1" and

AT, respectively) as functions of normalized particle-source strength

1 (*.-S/I*) for discrete values of normalized wave-source strength (-rW/ZY:':).
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TRAPPING OF PARTICLES B ¢ WAVES

IN A NON-UNIFORM PLASMA

Michael Schulz
Space Physics Laboratory
The Aerospace Corporation
El Segundo, California 90245

ABSTRACT

The intrinsic bandwidth Aw/2r of equatorial cyclotron resonance,
between VLF waves and geomagnetically trapped electrons, is found to

exceed the discreteness Aw*/2rr imposed on the underlying wave spectrum

by the boundaries of the magnetospheric plasma. Thus, the relcvant
bandwidth for particle-trapping phenomena (triggered VLF emissions,
nonlinear saturation, &) is Aw/2r rather than Aw*/er. The inhomo-
geneity of the medium permits the attainment of a larger wave intensity

at nonlinear saturation than would occur in a uniform plasma having the

same equatorial parameters.
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INTRODUCTION

The exchange of energy between particles in a plasma and an
electromagnetic wave propagating parallel to ..Bn is understood to be
inhibited on the scale of the trapping time

T o= (Tr/Z)(mc/qblk“vl)l/2 = /2%, (1)

where b is the amplitude of the wave's magnetic field and A is the
magnitude of |LX§| for the typical resonant particle. Thus, a mono-
chromatic wave whose linear growth rate is Y tends to saturate at an
amplitude such that & ~ Y

The saturation of a growing sigral at & ~VY is clearly at variance

with the quasilinear theory of unstable plasma waves (e. g., Rowlands

et al., 1966), but very apparent in numerical simulations of plasma-

dynamical phenomena (e.g., Ossakow et al., 1972). The failure of quasi-
linear theory in such computer experiments has been traced by Ossakow

et al. (1972) to the discretization of the wave spectrum in ~1§. -pace. The

bothersome quantization of kII corresponds to the use of periodic boundary
conditions in the numerical model. The monochromatic limit thus corres-
ponds to the concentration of wave energy in one or a few values of k“,
whereas the quasilinear limit corresponds to the incoherent superposition

of wave energy over a broad spectrum of k“ values.

Ossakow et al. (1972) derived from the cyclotron-resonance condition

w - kv = Q (2)




-
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a velocity separation

avy = (l/ku)("g"'n)Akn (3)

between particles satisfying (2) for adjacent wave numbers in the discrete
spectrum. The velocity bandwidth of cyclotron resonance in a uniform,

weakly turbulent plasma i  Y/k, ; thus, the criterion for full participation

H ;
of the velocity distribution in resonant diffusion (as required by quasilinear

theory) is

2 = -
Y 2 k” Av" (vg \/ )Ak" , (4)
where 21r/AkII is the spatial periodicity imposed on the system. The

particle velocity v, and group velocity vg (= duw/d k") are opposite in sign, and

so their difference |vg -V

i is larger than eithker |vg| or |v" [ . Moreover,
the condition Y > (vg - v')Ak" assures that many waves in the spectrum
resonate with mutual incoherence on a single particle velocity v, . This
condition can be important if the resonant particles are to avoid being

trapped in the waveform of a discrete signal.

INTRINSIC BANDWIDTH

In a plasma that is non-uniform, cyclotron resonance as defined by

(2) is a local and transient phenomenon. In this case, however, the

Heisenberg uncertainty principle leads to a nonvanishing bandwidth Aw/2n




for the resonant wave frequer .y. A particle interacting for time t cannot

distinguish the carrier frequency of a wave packet to an accuracy better

than
Aw/2r = ¢ [1 - (v"/vg)] ; (5)

since the interacting length of wave packet is t[l - (v"/vé)] in time, or

(vg - v")t in space (cf. Roberts, 1968). On the other hand, from the

viewpoint of a resonant particle, the ideal value of w for resonance
changes as Wt or &(t2/8) over the interaction time interval (Schulz,
1972).

By equating Aw with 4t one obtains the (minimum) intrinsic band-

width for particle cyclotron resonance with a wave spectrum well off the

equator. The result is 1

ae = |2na 21 - (vn/vg)]'”z. (6)

This expression fails to apply near the equator, where & = 0. For equa-

. -
torial cyclotron resonance one takes Aw = &(t”/8), whereupon

aw = | (m2ar2)t3 1 - (v"/vg)]‘2/3. (7)

Expressions for & and & are given (Schulz, 1972) by
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o = (3c/pra)w1/2 (1+3 co?e)3/2 (3 + 5 cose)
X[(2-v)Q+ (v+1)w + (Q-w secza]
x (2 + 20! (2-0P % cso cos o
and
@ = [2-v)oa+ v+ Do+ (R-w) secza]

X (3c/pra,2 (2 + 20»))“1 (Q -w)3 (9)

for the case of electron-cyclotron resonance with a whistler-mode wave
propagating parallel to 'E' The expression for & holds at arbitrary
colatitude 6, with local pitch angle «. The cold plasma density is taken
as proportionalto BY. The expression for & applies only at the equator
(6= w/2).

It is interesting to consider the L =3 field line, on which /2w =
34 kHz at 6=mw/2. Estimates for the intrinsic bandwidth Aw/2r are given
in Table 1, with cold-plasma densities assumed proportional to B (so that

3, 1000 cm-3, and 2000 cm-3 are

v = 1). Equatorial densiiies of 500 cm~
regarded as spanning the typical range, and wave frequencies from 3. 4 kHz
to 30. 6 kHz are taken as representative. An equatorial pitch angle of 30°

18 assumed.




Table 1. Intrinsic Bandwidths (in Hz) of S

Equatorial Cyclotron Resonance at L = 3

Frequency Density = Density = Density =
of Carrier 500 cm™> 1000 cm™> 2000 cm>
3.4 kHz 22.31 17.71 14. 06
6.8 kHz 27.23 21.61 17. 16
10. 2 kHz 27. 57 21.88 17.37
13.6 kHz 25. 66 20.37 16.17
17.0 kHz 22,52 17.88 14. 19
20. 4 kHz 18. 65 14.80 11.75
23. 8 kHz 14.33 11.37 9.02 =
27. 2 kHz 9.71 7.71 6.12 =

30. 6 kHz 4.92 3.90 3.10
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APPLICATION

The existence of an intrinsic bandwidth has been invoked previously
in the context of triggered VLF emissions {Schulz, 1972). It is of interest
here to explore the effect of an intrinsic bandwidth on the maximum attain-
able value of &. Since the effect of Aw is to impede the trapping of
particles by waves, it seems reasonable that Aw will enable & to
exceed Y . The amount of excess ought to be a Galilean invariant, which

Aw is not. Thus, it is natural to conjecture that
&~Y + [1- (v“/vg)] Aw (10)

at monochromatic saturation. This expression defines the maximum
amplitude bl to which a sinusoidal signal could grow, viz.,

bl < (mc/qk"vl){Y + [1 - (v"/vg)] Aw}z. (11)

The corresponding limit in a uniform plasma is obtained from (11) by
setting Aw = 0.
The generalization of (11) to a quasi-continuous spectrum J(w/Zn)
is relatively straightforward. One ought to make tte identification
2

b°/2 = (1/2n) o (w/27) Max (Aw, Aw™), (12)

where Aw™ is the effective discreteness imposed on w by the boundary

conditions. This interpretation is roughly compatible with Ossakow et al. (1972)

in the limit Aw = 0.
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The value of Aw® in the earth's field can be estimated from the

line integral of l/vg . The expectation that

AW” = Zné§(l/vg) ds (13)

follows from quantization o: the phase integral (circuit integral of kl ds)
in steps of 2m, where s is the coordinate of arc length along a field

line. For whistler-mode waves in a dipole field one obtains

vg = 2(Q -w)3/2 wl /2 (C/wPQ) (14)
and
Aw* = (wc/LaQO) (Q"/wpz)l/2 wl/z
PRI I wieend )"/ ? d(cos )
= » (15)
(Q-w)3/2(l = cosz(i)3

where 90 is the equatorial gyrofrequency and A is the invariant latitude
of the field line. The factor Qv/wp2 is a constant, since the density is
taken as proporticrnal to BY. Numerical integration of (15) is straight-

forward, but unnecessary in this instance. It is evident from (15) that

Aw* /27 < (c/2La QO)(QV/wpz)l/Z wl/z

in A
fm (1+3 cos?0) 2!’ 32 4(cos0)

(16)

2 ..3
l -cos 0
2 ( )

S




Setting v =1 and L =3 (whence sinzl\ = 2/3), one obtains

Aw¥ (Qc/w_La).(3w/Q )1/2
% P 0 0

2m 34 1n (N2 ++3)

Since w < QO’ the right-hand side of (17) cannot exceed 1. 12 Hz for a
density of 500 cm-3, nor 0.56 Hz for a density of 2000 em 3. It follows
that Aw > Aw® under conditions of interest, at least in this region of the
magnetosphere. Resonant particles sample an essentially continuous wave
spectrum, since the minimum bandwidth resolvable by a particle exceeds

the discreteness of the spectrum. A similar conclusion by Ossakow et al.

(1972) was based on the estimate that Y > (vg - v")Ak" . The present

result is stronger, in that it does not depend on the magnitude of Y .

DISCUSSION

The significance of Aw™ would disappear if a wave introduced at
one foot of the field line were totally absorbed at the other. At least a
partial reflection is required in order to make the wave spectrum discrete
by virtue of boundary conditions. In the event of partial reflection of the
wave intensity (0 <R < 1), there arises the possibility of overall marginal

st.bility (Keunel and Petschek, 1966) if the wave has a local growth rate

Y such that

sinA

lInR]| = 4Laj (Y/v)(1 +3 cos?8)1/2 4 (cos o).




A smaller mean value of Y/vg would lead to eventual wave attenuatior
(after perhaps many ""hops' along the field line), while a larger mean
value of Y/vg would lead to the spontaneous generation of a finite-amplitude
wave signal out of infinitesimal random noise.

The wave spectrum is strictly discrete only at marginal stability.
Otherwise the spectrum is characterized by interference ''resonances'

separated by Aw*/2n but having definite bandwidths

sin A
X = 4La (Y/v. )1 +3 c0526)1/2 d (cos 6)
2w g
0
- |InR]| } ey (19)
47

extending to each side of the ''resonant' frequencies w*/2n. Such
""resonances'' as defined by (13) are not wave-particle interactions, but

are closely related to the transmission '""resonances'' encountered in
quantum mechanics (e.g., Merzbacher, 1961). In case |P| > Aw® , there
is considerable overlap of the '"resonances'', i.e., an essentially continuous
spectrum.,

As arguments in the previous section have demonstrated, however,
considerations on the discreteness of the underlying wave spectrum are
substantially overridden in the case of magnetospheric /LF waves by the
intrinsic bandwidth of cyclocron resonance between such waves and geo-
magnetically trapped electrons. Since the intrinsic bandwidth Aw exceeds

the und~rlying discreteness Aw* , it matters little whether the underlying
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spectrum is essentially discrete (||« Aw*) or essentially continuous

(fl‘l 2 Aw*). The spectrum appears essentially continuous to a resonant

par:icle in either case.
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U
PHASE-INTEGRAL APPROXIMATION
OF Pc-4 EIGENFREQUENCIES
|
Michael Schulz
Space Physics Laboratory
The Aerospace Corporation
El Segundo, California 90245
ABSTRACT
The spacing Aw/2n between consecutive toroidal eigenfrequencies
wn/Zw of magnetospheric field lines is correctly given (within 2% at L =
6. 6) by the reciprocal of § (1/cA)ds, where A is the local Alfvén speed
and s is the coordinate of arc length along the field line. The eigenfre-
\ quencies themselves are accurately given by the formula w, (n -6)Aw, 1
where n=1,2,3, ... and & is a number that depends upon the distri-
bution of plasma density (p) along the field line. With p proportional
to r ™ (r = radial coordinate), the value of & at L = 6.6 is given by the |
empirical formula 6 =0.44 {1 - exp [(m - 6)/3] } for 0sm=é. |
4
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The purpose of this note is to investigate the accuracy of a certain
phase-integral approximation for the characteristic frequencies of oscil-
lating magnetospheric field lines. Hydromagnetic (MHD) resonances of
this type are believed responsible (e_.g;, Jacobs, 1970) for the Pc-4
band of geomagnetic micropulsations. A full numerical solution of the
eigenvalue problem at L = 6.6 (Cummings et al,, 1969) makes it possible
to check the present formula of approximation against the true eigenfre-
quencies for a reasonable class of plasma-density models.

In the phase-integral approximation of Pc-4 eigenfrequencies, it
is assumed that the oscillation propagates as a noncompressional Alfvén
wave (w= Cp k“) along the magnetic field line (r = La sin29) and suffers
perfect reflection at the surface of a perfectly conducting earth (r = a).
Follcwing the spirit of Bohr theory, it is further assumed that the wave
action (accumulated over a full bounce period) is quantized in steps of
FPlanck's constant. The classical statement of this principle takes on the

form

§ (wn/cA)ds = 2n(n -§), (1)

where n is a positive integer, § is a constant less than unity, and s
is the coordinate that measures arc length along the field line.

In the geomagnetic dipole field, the intensity of ~B~ varies with co-
latitude @ in accordance with the relation

/2

B = B0 (1+3 cosze)1 csc69 (2)
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a at fixed L. The equatorial field BO is estimated, for the purpose of
comparison with Cummings et al. (1969), as 0. 312173 gauss. The plasma
density p ‘s assumed proportional to (a/r)m, where a is the radius of
the earth and m is a constant index. In terms of the equatorial density

Py it follows that

P = P csczme (3)

at fixed L. The local Aifvén speed A is given by CAZ = B2/41rp.

The integral in (1) has a fourfold symmetry. The representation

of a based on (2) and (3) yields

2,1/2

w_/2n = (B02/641rp0L2a) (n -8)
sinA
z I (1- x2)3-(m/2)dx (4)
0

where A is the invariant latitude (defined by the identity L cosZA =1).
Evaluation of (4) in closed form is straightforward whenever m is an
integer (see Appendix).

The eigenfrequencies wn/21r computed by Cummings et al. (1969)

correspond to a unit equatorial plasma density (i.e., to the case po/mp =
1 cm_3, where mp is the proton mass) at L = 6.6 (A ~67.1°). In agree-
ment with (4) the toroidal eigenfrequencies determined by Cummings et al.

(1969) are about equally spaced. The mean difference frequency Aw/2w

among the first six harmonics is given for each density model (m = 0, 1,

L O 4




Table 1. Summary of Empirical Data on

Toroidal Eigenfrequencies at L = 6, 6

Predicted
Aw/2wm Hz

0.0308
0.0287
0.0266
0.0240
0.0213
0.0184
0.0153

Cummings Cummings
Aw/2m Hz 1 - (wl /Aw)

0.0312 0.386
0.0290 0.355
0.0268 0.320
0.0242 0.271
0.0216 0.214
0.0186 0.127
0.0154 0.006




2, ..., 6)in Table 1. The true values of Aw/2w are thus ~1% larger

than the diiferences

2.2.1/2
a

2
Aw/2w = (B0 /64np0L

)
sinA
(1 - x2)3_(m/2) dx (5)
0
predicted by (4). Thus, the phase-integral method yields an excellent
approximation for Aw/2w.
The ratio of the lowest eigenfrequency wl/Zn to the mean difference
Aw/2m provides an empirical determination of 1 - & within the framework
of Cummings et al. (1969). The value of & thus determined from the
published period of each lowest eigenmode is given in Table 1 along with
the data described above. The empirical values of & decrease systemati-
cally with m. Quantitative interpretation of this trend is complicated by
a substantial round-off error ( ~0.01) in the evaluation of &. The resonance
frequencies wn/Zw found by Cummings et al. (1969) in the m = 6 model, for
example, are consistent with the formula wn/Zw =0.01529n Hz, with &§ = 0.
The empirical values of 6§ =1 - (wl/Aw) given in Table 1, along with
the theoretical values of the trigonometric integral appearing in (4) and (5),

are plotted in Figure 1. The empirical formula
6 = 0.44 {1 -exp [(m - 6)/3) } (6)

is found to hold within the round-off error inherent in Cummings et al. (1969).
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The proper generalization of (6) to field lines other than L = 6.6 is not
evident. However, the trigonometric integral is easily evaluated as a
function of L for integer values of m (see Appendix).

In summary, the phase-integral method accurately predicts (within
2% ) the spacing Aw/2m between consecutive toroidal eigenfrequencies
wn/Zn of magnetospheric field lines. The eigenfrequencies themselves
are accurately given by the formula w = (n -8)Aw, and the value of
at L = 6.6 is empirically given by (6). The generalization of (6) to other
L wvalues is not known, but it is reasonably certain that 6§ =0 atall L

values for the m = 6 plasma-density model.
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APPENDIX: TRIGONOMETRIC INTEGRALS
For the reader's convenience, the integral that appears in (4) is
here explicitly evaluated for integer values of m (= 0, 1,2, ...,09).

One obtains

sinA
J’ (1 - x3)3-(m/2)

0 3 3 2
(1/35L°)16L° + 8L + 6L + 5) sinA, m = 0;

(1/48) [15A + L7372 (151.2 4 191, 4 g) sinA] , m = 1;
2.2 : _

(1/15L°)8L° + 4L + 1) sinA, m = 2;

(1/8) [30 + /2 (31, + 2) sinA] , m = 3,

(1/3L}2L + 1) sinA, m = ¢4,

(1/2)(A+ L"V2 ginA), m = 5, (A1)

sinA, m = 6; A, m=7;

tanh™! (sinA), m = 8; (L - nie oo,

where sinZA =1 - (1/L). The results are plotted for L = 6.6 in Figure 1.
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NECESSARY CONDITIONS FOR

BOUNCE-RESONANT WAVE AMPLIFICATION

Michael Schulz
Space Physics Laboratory
The Aerospace Corporation
E]l Segundo, California 90245

In speculating on the origin of a comnpressional Pc-4 micropul-
sation oscillating in the magnetosonic mode at synchronous altitude,
Barfield et al. (1971) suggested a bounce-resonant diffusion of energy

to the wave from the population of ring-current protons. Since the first

invariant M is conserved during bounce resonance, a wave-amplifying
diffusion of energy would require either an off-equatorial maximum in
the mirror-point distribution, or an inward gradient in the L-profile,

of particles having in common their value of M. More precisely, the
phase-space distribution f must be cuch that either (af/aJ)M’Q >0 or
(af'/a<:>)J,M >0 for at least some values of M, J, and & (the three adia-
batic invariants, all being positive quantities).

It would be useful to have these two amplification criteria expressed
in terms of directly measured physical quantities. It is convenient in
this context to introduce the kinetic energy (E), the Mcllwain parameter
(L), the sine of the equatorial pitch angle (y), the cosine of the equatorial
pitch angle (x), the scalar momentum (p), and the differential unidirec-

tional flux (‘Il)’ evaluated at the particle mirror point (i.e., at B/Bo = l/yz).
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Since x2 + yz =1, it follows from the Jacobian chain rule that

(_gi) - _ o(M, f-’ Q) ] 3(E, x, L) X (1)
aJ M, ® a(E, vy, L) a(M, 5, @)
and
(g;) __ 8, J, f) B(E, x, L) x 2)
% N 9(E, y, L) a(M, J, @)

where 9(M, J, ®#)/3(E, x, L) = - 8waL2a3xT(y). In this expression
(Schulz and Laanzerotti, 1974) the symbol a denotes the radius of the
earth, Y is the ratio of relativistic mass (m) to rest mass (mC), and

1/2

T(y) ~ 1.3802 - 0.3198 (y + y ') is the ratio of p/4mLa to the particle

bounce frequency. It follows that - (x/y)[a(E,x, L)/a(M, J,Q)] is a positive-

definite Jacobian.
Wave amplification therefore requires at least that a(M,f,Q)/a(E, y,L)>0

or a(M,J,f)/8/E,y,L)>0, where f = ;rl/p2 (e.g., Schulz and Lanzerotti,

1974). In other words, wave growth requires that either

(3lnJ /alny)p  + 2
-[(y+1/¥])(81n 3, /3 E) . <O (3)

or

4(31nJ3,/21nL)g  Tly) - (31nJ,/8 In y)g 1 Y(y)

+ [6T(y) - Y] {2 - [(Y+1/¥)(8ln T /o E) [} <0 (4)
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o for some values of E, y, and L. The function Y(v) is defined by the

relation

1
Y(y) =2y I u-ZT(u) du. (5)
Yy

It varies from Y(1) = 0 to Y(0) = 2T(0).

There is no expectation that either condition (3) or condition (4) is

sufficient for wave amplification. Even if one or both of these conditions

are satisfied for some values of (E, y, L), a properly weighted average

over the entire particle distribution is needed for defining the local growth

rate (whether positive or negative). Morveover, even if the local growth i

rate were everywhere positive, spontaneous wave generation would be

contingent on adequate internal reflection of the wave energy.

In general the weighted average would involve a linear combination

of (aflaJ)M ® and (af/amM 3 with the relative weights determined by

wave polarization. However, limiting cases can be identified which involve

only an unstable pitch-angle diffusion (3f/8J >0) or an unstable radial

diffusion (8f/8% > 0) of the bounce-resonant particles. There is no radial

diffusion if the azimuthal component of the wave's electric field is uniform
in longitude, and there is no pitch-angle diffusion if the wave is non-

compressional.

The case without radial diffusion is interesting in that it represents
the geophysical analogue of a two-stream instability if (8 In Jl/a In E)Y LS
2Y/(Y + 1). In this case (e. g., for a particle spectrum that decreases with

increasing energy), the necessary condition for wave growth is that .Il

< »

A 4
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have a sufficiently pronounced off-equatorial maximum at B/Bo = (y*)-Z.
The equatorial distribution of pitch angles in this case has a relative minimum -

at 40° and absolute maxima at sir } v* and 180° - sin"! y*. An electro-

static instability of this type has been described by Hasegawa and Nishihara
(1972). The damping of MHD waves by a distribution failing to satisfy (3)

was indicated qualitatively by Roberts and Schulz (1968).
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ELECTROMAGNETIC RADIATION FROM A

HELICALLY PHASED PARTICLE BFAM

Michael Schulz
Space Physics Laboratory
The Aerospace Corporation
El Segundo, California 90245

The purpose of this note is to examine the concept of a helical
beam of particles as an emitter f ULF or VLF waves. ( »nsider a
beam of particles, all having speed v and pitch angle o with respect
to a uniform magnetic field R The particles (and also the Leam) pro-
gr=ss along the field at velocity vV, = v cosa, thereby covering a distance
va“ /S along 5’. during each gyration arcund the central field line. If

the particle beam is injected at a fixed phase angle ¢o from a stationary

source at z = z0 along the field, the result is a time-independent helix

defined by the equation
¢(z,t) = (@/v)z + ¢!0,0). (1)

Unless the particle distribution along the helix is modulated in some way
(e.g., in particle density), the stationary helix will not constitute an
antenna in the usual sense. However, a medium containing such a heilically
phased velocity distribution can behave as an amplifier of ULF or VLF
waves (Sudan and Ott, 1971).

If the current I(zo, t) of emitted beam particles is modulated in

time, the result is a traveling current pattern that radiates in the usual
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manner. If the modulation is sinusoidal at z = Zg» viz., I( Zg t) = 10 +
I1 sin (wt + 4’1), one obtains N
I(z,t) =1, +1, sin [(w/v")z - wt+ ¥y - (wfv) z2q]- (2)

This leads to a current density having an oscillatory component of the

form

T(p,p,2;t) =
DA
(Il/p) sin [(w/v“) z - wt+ ‘Ill - (w/vu) zo]
x6&(p- (v /a)esle- (Q/"u) z - ¢(0,0))

x [v, 2+v $1(1/v) . (3)

in cylindrical coordinates (p,¢, z). The radiated wave intensity is com-
puted by evaluating the spatial and temporal moments of the waveform
with respect to J(p, ¢, z;t).

"

If the emitted beam is not modulated, a wave source can still be
created by giving the emitter a constant velocity io along an’ or by
allowing the gyrophase angle ?o of the beam to vary at a constant rate
¢0 at the time of injection, or both. In this case one obtains a non-

stationary helix defined by the equation

Q - P v - 2,9
pla,t) = —2 2 + 200t 4 90,0, (4)
"— Zo Vu— Zo
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o which constitutes a wave source unless £ = ¢0 or éo Vi = 209. In
w . g .
the latter degenerate case one obtains only a stationary helix analogous

(i i bl ok s eabil bl i i ) b i £ g o 4

to (1), and wave generation is possible only through instabilities of the
beam-plasma system.

The evaluation of growth rates for such plasma instabilities can be
greatly simplified by making the problem homogeneous with respect to p .
This situation corresponds to an infinite array of phased beam emitters,
distributed uniformly in a plane perpendicular to a The experimental
unreality of such a configuration need not be of concern if the waves in
question are well guided along Eﬂ, i.e., if ',]3, Xka | « Ié . kaI throughout
the inte ~~sting region of Nl:. space. In this case, or if the waves are ducted
along 3 by field-aligned plasma inhomogeneities, the approximation of a
transversely homogeneous plasma will normally yield about the same
growth rates and wave amplitudes as the fundamentally more valid wave-

packet formulation.
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COMPUTER SIMULATION
OF AN ION BEAM ANTENNA

D. C. Pridmore-Brown and R. X. Meyer

Space Physics Laboratory
The Aerospace Corporation
El Segundo, California 90245

ABSTRACT

The feasibility of using a modulated beam of ions as an antenna
in the magnetosphere is discussed briefly., A computer simulation of
\ an ion beam in a plasma is presented in which the motion of the ions
ic prescribed while the electrons in the surrounding plasma are repre-
sented by concentric charged shells, each of which moves in the self-
consistent field set up by the beam and the other shells. By following
the motion of the shells on a computer, an attempt is made to esti-

mate the sheath current that is induced in the plasma by the beam.

- >
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Introduction

It is known that ULF and VLF waves can propagate readily in the
upper ionosphere because of an amplifying mechanism based on an
electromagnetic cyclotron instability that is now well unde rstood.1
However, for communication purposes, it is not clear how such waves
can be most effectively generated. One possible scheme that has been
suggested is to create an antenna consisting of a beam of ions launched
from a satellite. e

Radiation from an ion beam can be obtained, at least in principle,
by any one of the following methods: modulation of (a) ion ene rgy,

(b) ion linear density in the beam, (c) drift velocity of the electrons |
along the beam, and (d) electron linear density in the beam. Alternative ~ s

(c) is probably the most readily achieved. In alternative (c) an ion-beam

source maintains a constant ion current. The beam is space-charge

neutralized at all times by electrons injected into the beam. The voltage

required to modulate the electron current is tlien much smaller (by the

square root of the mass ratio) than that which would be required for the

ions. [:

A possible configuration for the ion-beam source would consist of f
a Penning discharge and extraction of the ions through acceleration/decel- P
eration grids, similar to the electron-bombardment ion source developed
by NASA for spacecraft electric propulsion. However, in contrast to

these sources, a much smaller beam divergence is needed in the present

L

sy




application. This can be achieved by relaxing the requirement of high

current density (and therefore high efficiency) imposed on electric
propulsion ion-sources. Electrons are injected into the ion beam in
such a way that the electron current can be modulated, although the average

current is equal to the ion current. Typical requirements might be a 50 mA

ion current of 5 keV Hg ions and a 20% modulation amplitude of the neutraliz-

ing electron current.

An understanding of the dynamics, sheathing, stability, and radiation
from such a beam through theoretical efforts and experimental measure-
ments is required to verify that a beam is a viable complement or alterna-
tive to a conventional mechanical antenna.

To illustrate the typical range of the physical parameters involved,
we have considered two cases--an ion beam antenna on a spacecraft
(a) inside the plasmapause, for a magnetic shell parameter L = 3. 0, and
(b) outside the plasmapause, at L = 5.0. The results are summarized
in Table I.

The effective length of the ion beam antenna has been computed by
estimating the divergence of the beam and by assuming that the beam
effectively terminates at the point where the beam particle density has
become equal to the ambient charged-particle density. This omits any
consideration of beam/plasma instabilities that, if present, may result
in an effective length smaller than the one assumed here. Details of
the calculation of beam divergence are summarized in Appendix I.

As is seen from the Table, the cyclotron radius of the beam ions

is much larger than the effective antenna length; therefore, the effect of
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LA

«r the ambient magnetic field on the beam ions can be neglected.

The phase refractive index for longitudinal propagation in the
ambient plasma has been computed on the basis of the cold-plasma
approximaticn. From this, and from the assumed signal frequency,
the wavelength in the plasma can be estimated and compared with the
effective antenna length. For the stated values of the parameters,
the effective antenna length is found to be roughly equal to one quarter
wavelength, which satisfies one of the essential conditiois for efficient

radiation.

Apart {rom spreading and possible instability, the efficiency of

the beam as an antenna is affected by the electric-current distribution

that it induces in the ambient plasma. In this report we shall concentrate

on this question only and try to estimate the sheath current around a

perfectly collimated beam of infinite length.

In princivle a perfectly neutralized stationary beam could exist
in a cold plasma without any sheath current being formed. However,
modulation of the beam current will cause the electrons to experience

an induction force due to the changing magnetic field, and hence to move

in such a way as to oppose the modulation. On the other hand, charge 1
modulation will cause the electrons to move in a complicated way through 1
the magnetic field in response to the electrostatic forces. We consider i
this case first. Since the response of the electrons will be ve ry fast |
compared to the modulation period, we are probably then justified in I

considering a stationary beam that is incompletely neutralized. Then

the electric and magnetic fields surrounding it will cause a plasma electron




released in its vicinity to move in such a way as to produce 2 current
opposing the beam current, Trajectories of single electrons released
from rest in the neighborhood of a charged beain are shown in Figure 1.

The V X B force which they experience causes them to move in the

direction of the beam ions thus shielding the beam current. The more
realistic picture of a beam immersed in a plasma is, of course, much
more complicated than this single-particle picture suggests, since

then each electron must move in the self-consistent field set up by all
the other electrons as well as the beam. To treat this problem in
general even in a cold plasma would require integrating a set of partial
differential equations in 4 dimensions. Instead, t» keep the computa-
tion tractable, we choose a simplified model in which the beam consists

of a circular cylinder of charge moving axially, the earth's magnetic

field is excluded, and the plasma is represented by a series of concentric
cylindrical shells carrying negative charge, which are free to move both
axially and radially through a uniform background of fixed positive charge.
Later we shall briefly consider the effect of current modulation of an
uncharged beam.

Each electron shell is then acted on by 4 sets of forces, namely
those due to the beam, the other shells, the ion background and, finally,
its own self force. Initially, under the influence of the beam's electro-
static attraction, the shells fall inwards, that is their radii diminish.

We assume that the shells can pass freely through the beam and through
each other. As time progresses the inner shells collapse down to the

point that the electrostatic repulsion due to their self force causes them

L L g T Sk e s s it S e 2 b nis P s Sl b it
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to reverse their motion and move away from the beam; note that this
behavior is different from that of the individual electrons in that the
latter pass through the axis of the beam. The radial motion of the shells,
either inwards or outwards, in the presence of the beam's magnetic
field induces an axial motion of the shells and hence an axial current
surrounding the beam. The current in any particular shell is always
such as to oppose the beam's current initially when the shell is moving
in, but after the shell bounces and moves outward passing through other
incoming shells on its way, it may acquire a sufficiently large positive
radial motion that its axial motion is reversed, and it then carries a
beam reinforcing current. Eventually the outward radial motion is
itself arrested and the shell falls in again. This complicated turbulent
motion is confined to the inner shells. The outer shells see the beam's
electrostatic field to be very quickly neutralized, and as a result they
move very little. We define the sheath current to be the total integrated
current in all the shells.

Although this model is clearly too complicated to treat except
numerically, it already represents an extreme simplification of the actual
gituation. One of its most serious shortcomings is probably the absence
of an external magnetic field, since in fact the earth's field is not expected
to be small compared to the beam field. However, this assumption may
be a conservative one in the sense that an external field would probably
reduce the shielding currents induced in the plasma. If this is true,
then the currents calculated on this model should be pessimistically

large. Another defect is the absence of any axial variation., We discuss

this point later.




The Model

We now define the model explicitly as follows., The beam consists
of a circular cylinder of radius a carrying a uniform distribution of
positive charge of density Zen+ moving axially with a velocity w, . The
beam is immersed in a plasma consisting of a uniform ion background
of charge density en and infinite mass together with a series of shells
concentric with the beam and located initially at radii r, = iAr and carrying
charge q; = -en ani Ar and mass Mi = mn 21rri Ar, where the subscript

refers to the it shell. Using z for the axial coordinate, we can write

the radial equation of motion of the ith shell as follows

e [(Er)i - 2 Bi] (1)
where the radial electric field —_
€y, = )+ ®n, D+ (&), (2)

is made up of the electric fields due to the beam, the ions and the elec-
trons.

For the beam we have

b n ea
(£, = —5— flx/a) (3)
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:; where f(x) = x H(1 - x) + (1/x) H(x - 1), H(x) being the step function.
For the ion background
. n e
+
ExD = (4
2¢,
and for the electron shells
e 5
(Er)i( . ni Ar E(q ) (5)
oli
where
1
Z(q )= 29 +3aq (6)
’ = {is r.<r}
j
We put qj = (n_/n)j for j SNB and qj =) forj >’\IB where NB is the num-
ber of shzlls inside the beam, NB = a/Ar. Taking n_>n allows for
i
neutralizing electrons to be ejected with the veam. The form on(q.)
expresses the fact that the electric field at the itP shell is made up of 1
|
a sum of contributions from just those shells that lie beneath it plus a
part coming from the electrostatic forces of the shell on itself. ’
Similarly, the axial equation of motion has the form
. e ) (7)
, %= m [(Ez)i h Bi]




Here B, represents the azimuthal magnetic field at the ith ghell due to

the beam current and the electron-shell currents.

1 ™ T Ar ’¢
B1 = p,onea [z- -; W+ f(?) - ?]-.-E Z(qJ ZJ)]

Finally, the axial electric field is related to the magnetic field by Faraday's

law

d .
gy (gl =By

If one attempts to solve these equations in a medium of infinite
radial extent, one finds an unbounded time varying fluxfB dr due to the
shells, which in turn leads to infinite induction forces tarough Egs. (9)
and (7). To get around this difficulty we assume that the beam current
is returned at a large but finite distance r,. Fortunately, the results
turn out to be rather insensitive to the value chosen for r . In practice,
the beam length is also finite, and one would expect r,to be comparable
to it.

To eliminate radial derivatives it is convenient to introduce a

new dependent variable

rQ
¢i = f B(r) dr
5




representing the flux per unit length of beam between r, and r,. Sub-

stituting (8) iato (10), we find for d)i

¢. = u nea’ L % % iy jar Zn: f.iln:'.’. (11)
i~ B hea ¢l o T g(a) (a) : qj c I.

r
Q0
Here g(r/a) = f f(r/a) dr/a and rij £ max(ri, rJ.). Note that in this
£
expression the 'summation is over all the shells. We next differentiate

(11) to find é)i’ the time derivative of ¢i

(12)

Here

f(qj) = ZqJ +,lz q; (13)
3 {i: T r.}

enters because only the radial motion of shells above the ith contributes

to the induction. In terms of d.)i Eq. (7) takes the form

(14)

. - . i N _ p
%17 "m (4 -7 By




When we substitute for (i).l and Bi from Eqs. (12) and (8) into Eq.

(14) we find the summations involving z, can be combined, and we have

=|+=
+

i
2.2 z. 5 F.. 2,
- (AL dp 2 ;N I
<a>Z|:qjc I“r‘.} 5 c]} (15)

Here rij =, H(ri - rj) + rj H(rj - ri).

We now simplify the notation by introducing dimensionless vari-

ables

r=zar ni/n=Ni

I e _

t-wp t wi/c-Wi

r=w_au Arf/a =6
Y

= vw_aw

where wpz = ezn/eom is the square of the electron plasma frequency and
v = wp a/c. Thus lengths are measured in units of the beam radius and |
times in units of the plasma period. Notice that the radial and axial

velocity components are scaled differently. In terms of these quantities

(and dropping the bars) we have

“r
<>
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W + €§Aij wj = Fi + ezj:C.ij wj

where

Ai' = qj 1n (rm/rij)

Cij = 9 vyl Ty

Fi=FReg -Buf;

@™

"
o) -

=

Z

€ = (v 6)2
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(16)

(17)

(18)

and the dot now represents differentiation with re spect to w_t. The r. Bi

term occurring in (7) is excluded in (17) by the assumptions v2 W+ « 1 and

v4<< 1.
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Equations (16) - (18) represent a set of 3NS coupled differential
equations, where NS is the number of shells whicl. we should like to
F take as large as possible. This task is clearly impractical, even on

a high-speed computer. Note that in matrix notation (18) reads
(I+eA)w = F + ¢Cw (19)

where I, A and C are square matrices with I the unit matrix and F and
w column symbols., We shall now make the assumption that ¢ [All<1
and 52 <« 1, (In the numerical work we shall take 6§ = Ar/a = 0.2 and

v = 0,01, which makes ¢ = 4 X 10-6. This value of v corresponds for

example in the case of a 10 cm beam to wp =3, 107 sec-1 .) Finally, the

elements of A are bounded roughly by NS In NS' Accordingly, we pre-

multiply Eq. (19) b, (I + e A)-1 =] - ¢ A to obtain

w, = Fi +eJZ(cij w; - Aij Fj) (20)

Unlike (19), these equations are now uncoupled. We shall be
particularly interested in calculating the total current in the plasma and

relating it to the current in the beam. In particular we shall attempt to

compute the following quantity

R=—o E (21)
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where JI and JE are the total ion and electron currents in the beam
initially and JS is the total current carried by all the shells and hence
includes JE' With this normalization & = 0 corresponds to no sheath
current induced in the plasma and # = 1 corresponds to perfect shielding.

We have

JE =2rAr en Zqiwi
i=1
-2 Ns
Jg=2rAr‘en .Zlqiwi (22)
1=

In terms of the dimensionless quantities _jI = N+ V+, JE =N_V_and
_ i
JS = ZeZ(qj \T/j) we can write
Jo - 7T
Rmete B (23)
T1-JE

Numerical Computation

Equations (16), (17) and (18) have been Programmed for numerical
computation. In all cases the number of shells NS was arbitrarily set |
at 200 with NB = 5 shells inside the beam so Ar/a = 0.2. The results
of a particular run are shown in Figures 2 - 4. For this case the beam
was assumed to be steady (fi = 0) and the beam ions to be traveling at

1% the speed of light (W+ = .0l), corresponding for example to 50 kV
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protons. The beam is unneutralized with the ion densiiy equal to 4 times 3
the background density (N+ =4, N_=1). Figure 2 is a computer plot of
the radial motion of the first 50 shells as a function of time. Figure 2b
is a similar plot of every 4th shell from the 4th to the 200th. It is clear
that bouncing is confined to the inner shells while the outer shells merely
pulsate at roughly the plasma frequency. The current ratio 4 is plotted
in Figure 3, Here the five curves represent the total electron current
(normalized to the beam current) under fixed radial distances, namely

8, 16, 24, 32 and 40 beam radii. These curves are labeled 1to 5, res-
pectively. The fact that they are quite close together indicates that the
sheath current is largely confined to the vicinity of the beam. It exhibits
a pulsation in step with the motion of the shells, but after a few plasma
periods phase mixing sets in and the sheath current is reduced. In

Figs. 2and 3 the beam current has been made to return at the initial
position of the 200th shell, d.e., at 40 beam radii, ry, = 40, Figure 4 is
similar to Fig. 3 but with r_ = 400, the region between r = 40 and r = 400
being vacuum. The total sheath current and itz distribution is seen to be
only slightly affected by the position of the return current.

The beam currents considered so far are, of course, much smaller
than those that would be of practical interest, but they reveal the quali-
tative response of the plasma. We next raise the beam current by increas-
ing N+ to 42. At the same time we maintain partial neutralization by
taking N_ = 35, (Note that, because of the discretisation error, perfect
neutralization would require taking N_ =1+ [NB/(NB+ 1)]N+, which is
36 in our case). Again the sheath current shown in Fig. 5 is qualitatively

similar to that in the previous case except that the oscillation is now at
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a higher frequency corresponding to the fact that the density within the
beam is higher. Also the total sheath current is now even smaller than
before as a result of the smaller excess charge on the beam,

So far the electron shells within the beam have been assumed to

be initially at rest, W_ = 0, Of more practical interest is the case where
they are given an initial velocity W_>0 and at the same time a high
density N_ >1. Then it is found that in the absence of perfect neutrali-
zation the beam is effectively unstable since these inner shells promptly
leave the beam taking a large part of the current with them. Of course
these shells are just as promptly replaced by others from the surrounding
plasma to preserve neutrality. We conclude that in any practical situa-
tion where a portion of the beam current (perhaps a major portion) will
be carried by the electrons it is important that as high a degree of
neutrality as possible exist in the beam initially as it is ejected to prevent
its being broken up by electrostatic forces. In any cases sheath currents
due to charge effects of the kind we have considered here are quite negligible,
Up to now we have always assumed the beam current to be steady,
i.e.,we have taken B = 0 in Eq. (18). In practice we are interested in
the case where the beam current is modulated, albeit .t a very slow rate
compared to the plasma frequency. However, because of its mathematical
simplicity we look next at the opposite extreme, namely a beam that is
turned on abruptly at time t = 0, Then B in Eq. (18) becomes a step func-
tion and f3a delta function. The axial velocity distribution at time t = ot
becomes

w, = W N (g, - eJZAij gj) (24)

e e ety P - B e g N e R
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The resulting initial current distribution throughout the plasma is shown
in Fig. 6. It is clearly no longer confined to a sheath in the vicinity of
the beam, and it now depends strongly on r,, the position of the return
currents, Furtiermore, it is a significant fraction of the beam current.
These curves remain effectively constant in time since current arising
from radial shell motion superimposes only a small ripple.

In practice the beam would be turned on very slowly with a build-
up time long compared to a plasma period. However, such a slow build-up
is not expected to change the final results significantly on the basis of the
present model. Rather, these results point up an inadequacy of the model
arising from the neglect of an axial variation and of displacement current.
Both of these effects are taken into account in an accompanying paper3
which includes a full-wave treatment of the antenna, but at the cost of
linearizing the problem. If the perturbation of the plasma by the beam
is in fact small, as we believe it is, then the sheath current should be

adequately accounted for in the near field of the solution given in Ref. 3,
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< APPENDIX I: Ion Beam Spread

The effective length of the ion beam as an antenna is limited by
a number of effects. Collisions with the ambient plasma and finite ion
Larmor radius effects are negligible under the assumed conditions, but
effects such as beam spreading due to imperfections in the ion-optics of
the source, ion and electron temperature effects, beam-plasma insta-
[ bilities, and electrostatic repulsion in the beam (for incompletely space-
charge neutralized beams) all may play a role.

We briefly consider here the effect of the ion temperature on the
beam spreading. The best collimation (beam half-angle B) that can be

achieved is of the order of

| Viht il i
PS5~ & )

+

where w, and Wipy 3Te the axial and thermal velocities respectively of
the beam iors, V+ the accelerating potential of the ion source, and T+
the ion temperature in the source. T+ depends on the details of the ion
source design, but it can be estimated from the sheath potential, Based
on current ion-source technology, kT+ =5 eV is assumed.

The ion beam current is I+= e n+(z) W, A(z), where n+(z) is the
beam ion density as a function of distance z from the source,
w, = (2eV+/m+)1/2 the ion axial velocity and A(z) the cross-sectional area

of the beam. For a circular aperture, at sufficient distance from the source

(A >> area of aperture),

- r

Alz) = m(Bz)° (2)




We take as the effective termination of the beam the point

n. (4)=n (3)

(n = =lectron/ion density of the ambient plasma). This condition leads

to the expression

m

-1/4
e 1+”2(nen)'”2<ﬁ’— v+> gt (4)
+

for the effective beam length L. Numerical estimates for £ are contained

in Table I,

It is also of interest to note that the beam length depends only

weakly on the accelerating potential of the ion source (4~ V+1/4 for
-1
constant T+, i.e., B~ V+ /2) and also only weakly on the ion mass bl

(Jl~m
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Fig. 1

Fig, 2

Fig. 3

Fig. 6

FIGURE CAPTIONS

Single-particle trajectories for electrons released from rest
at 2 and 5 beam radii for beams of charge-density ratio N+ =4

and 42,

Shell motion surrounding a beam of beam/background charge-
density ratio N+ = 4. a) first 50 shells; b) every 4th shell
from 4 to 200. Initially the shells are evenly spaced with the

beam extending over the first 5.

Shell current normalized to beam current for the case N+ = 4,
N_=1, W+=.01. w_ =0 v=.0], r,=40, Curveslto5
refer to total shell current under 8, 16, 24, 32, and 40 beam

radii, respectively.
Sirailar to Fig. 3, but for r_ =400,

Shell current normalized to beam current for the case N+ =42,

N_ = 35, W+ =.0l, W_=0,v=.,01, r = 400,
Initial shell-to-beam current ratio for a beam turned on abruptly
at time t = 0 for different values of r . Other parameters are

the same as in Fig. 4.
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Figure 2b
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RADIATION FROM A LINE SOURCE
CARRYING A TRAVELING WAVE IN A MAGNETOPLASMA

D. C. Pridmore-Brown

Space Physics Taboratory
The Aerospace Co-poration
El Segundo, California 90245

Many papers have been written on radiation in the ionosphere from
dipoles or finite antennas carrying a prescribed standing-wave current 1
distribution. L For some applications it is of interest to calculate the
radiation from a line antenna of infinite length carrying a current distri- |
bution that is traveling along it at a prescribed speed. A possible appli- 1
cation would be to an antenna in the form of a modulated beam of charged
particles, which has been proposed in a scheme for transmitting signals
through the upper ionosphere. This case is somewhat different from the
one usually treated in that now not all portions of the wave-number surface
can contribute to the radiation, but only those which intersect the plane
representing the prescribed wave number of the moving current pattern
on the antenna. We shall derive formal expressions for the far-field
radiation pattern of such an antenna immersed in a uniform plasma and
making an arbitrary angle with a uniform magnetic field. These express‘nans

have been programmed for numerical evaluation on an on-line system, and

plots of computed patterns for representative cases will be given in a later
report.

We start from

2 1 ]
o]

curl(Ié-1 curl H)- k™ H = curl(K ™" J) (1)




where 15 is the dimensionless permittivity, which is assumed to have the

form
€ ig 0
E = -ig € 0 (2)
0 0 n

with €, n, g real as is the case for a cold plasma with the magnetostatic
field in the z (3rd) direction. In these equations a time factor exp(-iwt)
has been suppressed.

We choose the coordinate system so the antenna lies in the xz
Plane and makes an angle 00 with the z axis. We also introduce a primed
coordinate system with z' along the antenna and y' =y. We take the
source term J in Eq. (1), repre senting the current on the antenna, to

have the form

1=1,% (1/d%) exp(-6°/d)) explik_n_z') (3)
Here Io is the total current on the antenna, p= (x'z + y,Z)IIZ is the
distance from its axis, d is a scale length representing its thickness,
n_ is the prescribed wave number along it and 2' is a unit vector. In
conjunction with the time factor exp(-iwt) this current distribution has
the form of a traveling wave.
Taking the Fourier transform of (1) we find
-1 2
o

(kXK "kx +k I)H =-ikXK J (4)

where Ij.k. gk are Fourier transforms and l is the unit operator. We

now put
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;5121 (5)

where )‘i are the eigenvalues and lzi the corresponding projection operators
of the symmetric operator k X Ié-l k X, which are related to its normalized
. eigenvectors u by 1: = |u) (uT|. If we introduce a spherical coordinate

system k, £, X in wave-number space with the polar angle £ measured

from the magnetic field, then we can write the projection operators as

0 0 0 1 0 0
1 - .
P, = o 0 p,+ asin®¢ -2iX gcgsg ; Eo=lo o0 o (6)
0 2iXgcosg p,-asin 0 0O

where a = €(€ - 1) - g2 and p, = :!:(02 sin4§ + 4X2 g2 coszg)l/z. The
projection operator 130 projects out the component along the wave-normal
direction k, while P, project out the two left and right elliptically polarized

components. The corresponding eigenvalues are

2

Ay ——-————2— (Zen+081n§ - Pg) (7)
2n(e” - g7)

whe re n2 = kz/ki.

Substituting (5) into (4) we find

2 o
}i:("i”) ko Bi By = -tk XX

e s e .




Here i runs over the indices +, - and 0. We now multiply this equation

. 2 _ - . .
on the left by I:j. Then, since Ei = I:i’ I:ij =0, ixj, we find

(8)

This approach is equivalent, for example, to that of Deschamps and

2)

Kessler.

We now put

(9)

Carrying out the computations using Eqs. (2), (3) and (6) we find

F = _“iﬂg__{[(nz - €) cos X + ig linX] sinOo

+
Py (Pg-a)n

-2oink cop0 } [-ibE +(py - a)X] (10)
ZP;-"I
Q= (4n%) " exp(- 1 1 d¥ (11)

<
LY 4




Here a = asinzg, b = 2ng cos§ and k|, k, refer to components perpendicular
2 2

and parallel to the antenna, k2 =k, + k" .
The solution of Eqs. (1) and (3) is given by the inverse Fourier

transform of (8). After substituting (9), (10) and (11) into (8) and perform-

ing the integration over k, we find

F.Q
T | ~+ . 2
H(z) = (ik) " 1 ff Z*:TJT exp (i k- r) d°k (12)
where the integral is now over the surface 152 =k n The summation is

o o

only over the two non-zero eigenvalues A\, since clearly Eo = 0. The far-
field evaluation of (12) can now be carried out in two steps following a
method of Lighthill. 3) In the first the integral is evaluated as a sum of
its residues on the two curves formed by the intersection of the plane

k .7 = ko n_ with the two-sheeted wave-number surface A, = -1. Thus (12)
becomes the sum of two line integrals taken along these curves, which we
call C+ and C_. In the second step these line integrals are evaluated by
the method of stationary phase. If we introduce polar coordinates k),

y for the wave number k and p. ¢ for the field point r in the plane

k 2z = ko n_, then we see that the phase k. r = k+ pcos (¥ -¢) is stationary

at values of | satisfying

B T - tan (4-9) (13)

These are the points on C, at which the normal to C, is in the direction

of the field point, that is, in the direction ¢. The result is




H(p) = 1(ik ) ™! 2mi Z(2e/1x1 )2 (907! QF explitc, peos(@-¢) + L i7egnx)

4
(14)
where X is the curvature of the curve C+ or C_ and V\ is the gradient of
A\, both in the plane k.2 = k n . The summation is now over all station-
ary phase points on both curves. All quantities appearing in the above
expression, viz. K, N\, Q, F, y are to be evaluated at each stationary
phase point.
Since x-l = ds/dpwhere s is arc length along C, it is clear that
-1 .
k ~=k; (dy/d¢p) sec(y - y) (15)
Also
o\
U\ = sec(y - §)
3k, Y-y
k
I -l
= T oo sec(¥-y)
k kK o
2k,
=-—- seclg-y) (16)

Here we have us-d (7) together with the fact that Ay =-lon C,. Substi-

tuting (15) and (16) into (14) we obtain finally

2 1/2
Hlp, @) = 3 @n*/% 3K [kl—p 2L cos( - 4')] FQ
o~"1

x exp[i kl pcos(¥-4¢) +

i— im sgn «] (17)




m’-“‘

- m

W

a»
A ¥ .4

where the summation is over all points of C, satisfying (13). Note
that sgn & = sgn 9y/8¢ = +1 if the curve C is concave to the antenna and
-1 otherwise.

It does not seem possible to express the quantities k, k,, oyY/ay,
¥, E, Q appearing in (17) explicitly as functions of ¢. Instead we express
these quantities including ¢ itself as functions of £, the angle between k
and the magnetic field. From these expressions the required relations
can be obtained numerically.

The x, y and z components of the vector relation k = k, + Ky

where |k,| =k n_, are
oo

k sin § cos X = k, cos 60 cos Y + k; sin 60

k sin § sin X = k| siny

k cos § = -k, sin 8, cos Y + k, cos 0,

From these equations together with (13) we can find k(§), kl(g), y(E),

X(&), ¢(&) as explicit functions of §.

2 2
kz(g)zkz _2n(e” -g7)
2e¢n + asin? £ - p

K (g) = (k(8)? - x5/

(18)




kycos 6_ - k(€) cosg]

|
¢ (€) = cos [ k, () sin 8,

k, sin 6, + k, (§) cos 6, cosy

X(€) = tan'l[ k,(€) siny ]

dk /d¢
_ -1/ 1 1
@(&) = P(g) - tan <-1q W)

The symbol p appearing in the first equation above is defined after
Eq. (6) and should bear the subscript + referring to the curves C,.
Thus all the other quantities k, k;, y, X, ¢ shculd bear this subscript
whenever they appear in these equations, but for simplicity we have
omitted it. By successive approximation these equations can be solved

for £(¢). Since £(¢) is multiple-valued, we write §. 40 &

_() to

denote the set of values of § on C+ and C_ for which the outward normal
(in the k. = ko n, plane) lies in the direction ¢. Then the summation in
(17) becomes a summation over these two sets of §. These equations
have been programmed for numerical evaluation on an on-line system
and plots of computed radiation patterns for representative cases will

be included in a later report.
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