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Summary
Previous reports under the project have shown that in order to make

realistic estimates of acoustic gravity waves and seismic surface waves

generated by underground events, such as explosions and earthquakes, the change

in surface displacement field or the source parameters of the eveu™ must be
obtained. Surface displacement data for actual events is usually limited

and of dubious quality.

Section I1I°deals with the development of a systematic apprcach of
determining the dislocation or relative displacement on the fault surface

from a limited set of observed surface displacement data vith their esti-

mated errors. The technique gives not only a best fit dislocation model but
allows one to determine the reliability of the model and the resolving power
of the data set. The resulting dislocation model can then be used to extrap-

olate the surface displaceweuts outside cf the data set.

Section III deals with the applications of the inversion technique
described in the previous section to the change in surface displacement data
caused by deformation resulting from the 1964 Alaska earthquake. For this
earthquake, a two-dimensional finite element numerical model is used to
calculate surface displacements from a dislocation imposed on a fault surface
located in a heterogeneous medium. - The inversion technique is used to
calculate a dislocation model which fits the observed data to a high degree
of accuracy. An error analysis is carried out for the plain-strain approxi-
mation, and the resolvebility of the features of the calculated dislocation

is examined. The results indicate that the observed deformation occurred
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as the result of massive underthrusting of the Alaska continental block by

the downgoing Pacific plate.

Sections II and II1 are chapters II and III of Ralph Wilson Alewine, I11's
Thesis (1974) titled "Application of Linear Inversion Theory Toward the
Estimation of Seismic Source Parameters". References and details cited in
these sections can be found in the Thesis. This thesis has been submitted
and successfully defenued as partial fulfillment of the requirements for the
Degree of Doctor of Philosopiiyy at the California Institute of Technology,

Pasadena, California.
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Chapter 2

D2velopment of the Stochastic Inverse
as Applied to Static Dislocation Problems

2.1 Introduction.

The first requisice in the applicatiorn of any theory
toward the estimation of seismlic source parameters 1s the
abllity to solve the forward problem for the observed
data type for an appropriate seismic source. This means
simply that given a certain method of physically describ-
ing a source (analytically, numerically, or by apalogue)
we are able to estimate changes in data for a given value,
or change in valuve, of particular parameters which
describe the source. Mathematically this is mapping
changes in the source model space into changes in the
data space. What will be discussed first in this chapter
is just this process, and later we will look at the
inverse of this prccess. By the inverse of this process,
we mean that glven some observations, what estimates can
be made about the different source parameters which
describe our source?

The inversion scheme for static data that we propose
in this chapter has the provision for the inclusion of
theﬁgstimated varliance of the data that is to be inverted.

The inclusion of thls data variance gives rise to the
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fact that we cannot now ~stimate the selsmlc source para-
mevers exactly, since smalil perturbations in the model
source parameters might cause chainges in the calculated
data values which 11. inside the estimated data error
1imits. This concept gives rise to our wondering what
ability that we have to actually resolve any detall of thLe
various parameters of our fault model. Thils resolution
question will be examined in some detail in thils chapter.

We will first consider the problem of estimating
source parameters for static data. The procedure devel-
oped for this case can then be extended to that of estl-
mating dynamical source parameters. This extenslon 1s
done in a later chapter. A brief review of the develop-
ment of static field solutions due to various earthquake
sources 1is in order.

2.2 Development of the Forward Static Problem.

Numerous attempts have been made in the past several

years to interpret the observed permanent changes in the

displacement and surain fields due to the occurrence of an

earthquake. Various approaches to the solution of this
problem have been proposed, each based on a slightly
different interpretation of the earthquake source process
as a whole. In each of these approaches, there exists in

the interior of the elastic medium some discontinulty
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surface which we can assoclate with a "fault". The diff-
erent initial or boundary conditions that carn be applied
to this discontinulty surface glve rise to the various
approaches. These apprcaches can be broken into four main
groups: gstress pulse theory, stress relaxation theory,
dislocation theory, and numerical analogues. With the
exception of the dislocation theory, which wil be treated
in more detall, a short description of the approach of
each of these theorles will be presented. The dislocation
theory 1is reviewed 1n more detall because 1t involves a
rarameter that 1s readily observable when the discontlin-
ulty surface breaks the free surface -- a physical offset.
In addition, 1t 1s somewhat more straightforwardly pleas-
ing to model static dislocations on the surface caused by
static dislocations impc-sed within the medium rather than
the more obscure paramete: s -- stress and strain.

However, i1t will be seen that the other theoretical
approaches can be equivalenced to some dislocation repre-
sentation 1n the static limit.

Dislocation Theory. As a mathematical mocdel of a "fault",

the concept and formulation of a physical dislocation has
been extensively used. The dislocatlon surface in an

elastic medium 1s viewed as a surface over which there 1is

a discontinuity in displacement. One of the first efforts

— m—

e
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to explain the elastic displacements resulting from a |
dislocation was that done by Vvendenskaya (1956, 1958). |
Probably the most lucid explanation of the dislocation x

[}

theory for calculating static changes that accompany

faulting was given in a set of papers by Steketee (1958a,

1958b). In these papers, Steketee recognized that the

| reiations for the displacement field in an infinite elas-
i tic medium strained by a dislocation over some surface as
glven earlier by Volterra (1907) would be appropriate in

describing the deformation that accompanies faulting.

Steketee derived, through the use of Galerkin vectors, the
expressions for static displacements in an infinite
elastic solid. These relations were given in compact form
as integrals over the dislccation surface.
In his pabers, Steketee poses the following problem.

A dislocation surface, ¥ , is created with an-elastic
solid which is bounded by some surface S . The medla 1s

. then strained by the introduction of a certain distribu-

tion of "nuclei of strain" (Love, 1944) along the dislo-

cation surface. The nuclei were shown to exist in six
basic forms corresponding broadly to a combination of a
center of dilatation and a double force without moment,

and secondly, two coplanar, mutually perpendicular double

forces with moments. For pure shear dislocatlions, only
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the latter type nuclel are applicable, whereas, for pure
tensile dislocations, the former are applicable. The
displacements at a point Q, uk(Q), within the elastic

s0lid can be written as

5 - k
u (Q) = B"—uff2 bug (P)o¥ | (P,Q)v,az

(2.1)
1 k
- mf‘/-s uiwij(P,Q)des .

In this equation v: are the direction cosines of the
normal to the dislocation surface elements, p is the
rigidity, and Ay (P) is the dislocation function on the
surface . It is seen that for an arbitrary dislocation,
a set of six of these functions is necessary. (i=1,2,3
J=1,2,3 with 1j=ji.) The kernels of the integrals,
ng(P,Q), are the displacements at the observation point
due to a single nucleus of strair. A summation over all
nuclei is implied. As the surfac: S is enlarged to in-
finity, the displacements, u , on S approach zero and the
second integral vanishes.

The formalism for this problem was extended to include

a dislocation in a semi-infinite elastic medium by a




superposition of solutions, which together satisfy the
required boundary conditicons at the free surface. These
boundary conditlons require the solution to be a fairly
complex boundary value problem, however, it is cleverly
solved by a superpositicn of solutions in the following
mannei’. The tangential stress at the free surface 1s
made to vanish by the addition of an image dislocation
"above" the free surface. This last superposition 1is
commonly referred to as the Boussinesq problem. The
strength of the Boussinesq load is such to cancel the
normal stress on the free surface which is doubled by the
addiition of the image source. Using the Volterra rela-
tions, the displacement field at a point Q in a seml-

infinite medium 1is then glven by

1 k

Comparison of (2.1) and (2.2) shows that only the values
of the kernels are changed by the imposed boundary
conditions. The kernels of (2.2), ng, are the set of
Green's functions found from the superposition of solu-

tions which satisfy these half-space boundary conditions.
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Steketee (1958a) gives the exact form of one of these
functions, W§2, which is all that 1s necessary to approxi-
mate a vertical strike slip fault. Chinnery (1961, 1963,
1965) took the general expression (2.2) and derived an
exact analytical form of the displacement and csiress fields
on the surface of a semi-infinite medium for an internal
rectangularly-shaped dislocation surface modeling a vertl-
cal strike slip (transcurrent) fault. In performing these
calculations, Chinnery assumed that the dislocation dis-
continuity was constant over the entire fault, and he also
assumed that the Lamé parameters for the solid were equal
so that the integration could be carried out exactly.
Thus, the elastic medium for which this theory is applica-
ble is one in which the Poisson ratio is constant at 0.25.
Steketee (1958a) showed, however, that (2.2) is valid where
Aui(P) takes any form (Somigliana dislocation) provided
that the tensile forces across the dislocation surface sum
to zero.

Maruyama (1964) has derived the remalning five sets
of Green's functions nceded in the solution of an arbi-
trary dislocation problem. He further gives explicit,
analytic solutions for the displacement field at the free
surface due to constant finite dislocations on rectanéular

surfaces. The dislocaiions considered are those only along
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single primary axes. The examples thit he presents in-
clude cases for which the dislocation surface, %, is both
perpendicular and parallel to the free surface.

Maruyama (1963) and Burridge and Knopoff (1964)
showed that the displacement fields produced by a disloca-
tion on & mathematical description of a dislocation fault
surface 1s equivalent to that produced by a sultable dis-
tribution of forces on the fault surface acting as if there
was no fault present. Utilization of this fact makes
possible the use of work in mathematical elasticity theory
done much earlier than Steketee's (1958a) work. Notable
in this early literature is that by Mindlin (1936) who
treated the static problem of a single force acting in a
homogenous half-space. Mindlin and Cheng (1950) give
explicit expressions for the displacement and stress fields
due to point forces and double forces acting in an elastic
nhalf-space. Maruyama (1964) gives a short summary of the
early literature in Japan and elsewhere on this subject.
This includes work done by Sezawa (1929), Honda and Miura
(1935), Whipple (1936), Soeda (1944) and Yamakawa (1955).
Press (1965) showed that the kernels of (2.2) could be
derived in a straightforward manner from the results of
Mindlin and Cheng (1950). Press obtained the same results

for a vertical strike slip fault as Chinnery had .lone

e ———— e~ S e st
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previously, and obtained the same results for a vertical
dip slip fault as Maruyama (1964) derived. In this paper,
Press (19¢5) addeu the analytic expressions for tilts and
strains for these particular fault orientations. Savage
and Hastie (1966) used the theory given by Maruyama (1964)
to calculate the vertical displacements induced by dis-
locations on fault surfaces that could have components of
dip other than in a direction perpendicular to the free
surface. This led to the ability to model more geologi-
cally reallistic faults.

Mansinhz and Smylie (1971) completed the derivation
of the displacement flelds due to buried dislocatlions on
finite rectangular surfaces. These authors give the com-
plete closed form, indefinite integral expressions for
the entire displacement flelds, both at the free surface
and at any depth in the elastic half-space, due to a
rectangular dislocatilon surface that can be arbitrarily
inclined. The fields are presented in such a form that
they are readily evaluated numerically on the computer and
involve only simple algebraic and trigonometric functions.
HoweVer, these authors do not give the formulas for the
strain and tilt fields arising from a dislocation across
an arbitrarily inclined surface. These strain and tilt

fieids can be easily obtained from differentiation of the
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displacement fields. Appendix 1 of this thesis gives the
results of this differentlation.

Chinnery and Petrak (1968) extended the work of
Chinnery (1961) by considering a model of a vertical
strike slip fault on which the dislocation uniformly and
smoothly goes to zero near the edges of the dislocation
surface. This variation was chosen so as to remove the
stress singularity that was occurring at the edge of the
fault surface in the original work. Except 1n extreme
cases, the tgpering of the dislocation near the edges of
the surface had little effect on the overall displacement
fields calculated on the surface.

Ben-Menahem and Sinzh (1963a) and Ben-Menahem and
Gillon (1970) computed the integral expressions for the
displacement field, both dynamic and static, at the free
surface for a model of a vertical strike slip fault and a
vertical dip slip fault for a medium which contains a
layer of arbitrary thickness over a uniform half—Spacé.
These authors point out that due to the complexity of the
problem, the use of the Galerkin vectors for elastic
problems involving more than one layer over a half-space
would be extremely difficult. These authors suggested the
use of a method employing Hansen's eigenvectors in obtain-

ing vhe static response of a multilayered homogenous

e
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half-space. McGinley (1969) and Sato (1971) achieved ,
much the same results as these authors by the superposi- |
tion of several half-space Green's functions solutions
off-set in such a way as to represent a layered half-
space. Braslau and Lieber (1968) solved the static
linearly elastic problem of a concentrated vertical
Volterra dislocation in a layer over a half-space. They
made use of a special displacement function which they
called a modified Galerkin vector to give the solution in

a form which must be evaluated numerically. Singh (1970,

1971) has applied the Thomson-Haskell matrix propagation

method (Thomson, 1950; Haskell, 1953) to solve the problem

of static deformation in a multilayered elastic half-space.
He obtains source functions for the six elementary dis-
locations that were given by Steketee (1758a). Explicit
integral expressions are given for the surface displace-
ments for a vertical strike slip and vertical dip slip
fault when these faults can be represented by concentrated
or point sources. Extension to finite size sources is
given as another integration involving the dislocation
surface. Recently Chinnery and Jovanovich (1972) have
calculated the displacement field due to a vertical
strike-slip fault of infiniﬁe length for an earth model

consisting of two layers of arbitrary thickness and




=1 7=

rigidity over a half-space. Thelr expressions are glven
in series form so that no further integration is necessary.
On the basis of this model, they conclude (and thus agree
with McGinley (1969)) that the presence of a low rigidity
layer wouli have a very strong (amplifying) effect on the
observed displacements and strains in the far field.
Ben-Menahem and Singh (1968b) treated in detail the
problem of deformation of a uniform non-gravitating sphere
due to internal Volterra type dislocations of arbitrary
orientation and depth. This work was subsequently expanded
(Ben-Menahem et al., 1969, 1970; Singh and Ben-Menahem,
1969; Ben-Menahem and Singh, 1970; Wason and Singh, 1972)
to include the computations for the displacement and
straln flelds everywhere on the surface of a homogenous
sphere induced by an internal dipolar source of finite
size. The results for a sphere were shown to be gquite
different than that expected in the far-field half-space

problem.

Stress Pulse Theory. This approach has seen limited use

in explaining elastostatic phenomenon. Kasahara (1957)
devised thls method to model the mechanism of an earth-
quake as a distributlion of stresses or stralns imposed on
an underground plane.' When the conditions of elastilc
equllibrium are satisfled, the deformations at the surfece

can be calculated. He models an infinite strike-slip
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fault with a zone of constant stress extending to a given
depth. The faulting occurs by the liberation of this

initially applied shear stress. Horizontal displacements

el e i e

were calculated for various depth extensions and compari-
sons were made to actual faults. By examining the diminu-
tion of horizontal displacement with distance, the depth
of extension of this constant stress zone 1is determined.
This mechanism is extenced ih a second paper (Kasahara,
1959) to include non-vertical strike-slip faults. The

static mechanism presented by Kasahara is analogous to

the stress pulse problems encountered in dynamical formu-
lations of seismic sources. Minster (197U4) describes the

mathematical nuances of this approach.

Stress Relaxation Theory. A third method of determining

the static deformation from a model of an earthquake 1is
obtained through an entirely different approach to the

: theoretical problem. The methods considered thus far are r

all based on relations in which conditions on various

boundaries are imposed (boundary-value problems) .

Archambeau (1964, 1968) has proposed an alternative mech-

anism of describing the processes which accompany the

occurrence of earthquakes -- that of materlal failure.

This theory is devised in the context of an initial-value

problem in that a medium is assumed to be initially in

some prestressed state. Deformation in the medium is
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caused by introducing some surface, or volume, withln the
medium where the material fails. This failure 1s accomp-
lished by making a significant reduction in the shear
tractions across the fallure surface. The medla then
responds by "relaxirg" to a new equilibrium state by
radiating the energy released from the local reduction in
strain energy in the source region. This theory has been
very successful in the dynamical regime, most notably in
the prediction of far-field radiation patterns from earth-
quakes and explosions accompanied by tectonic release
(Archambeau and Sammis, 1970; Lambert et al., 1972;
Archambeau, 1972). Because of the theoretical complexi-
ties, this source formulation has not yet been directly
applied to near-fileld static deformation problems.
Minster (1974) has discussed from a mathematical
point of view in some detail the similarities and differ-
ences between the various formulations of the earthquake
processes. Although his approach is mainly based on
dynamical considerations, he shows that in tﬂe static
limit the general representation of the stress relaxation
and stress pulse problems reduce to the displacement fleld
as given by a generalized Somigliana dislocation along a
surface of shear displacement discontinuity. This same

proof was attempted by McGinley (1969), but the arguments

presented by Minster (1974) are much more comp.ete.
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Therefore, we may express the source in terms of a
Somigliana dislocation without loss of equivalency from
the other source descriptions. An approximation to this
Somigliana source will be adopted throughout this thesis.

Nume.,ical Analogue. An altogether different approach to

solving the forward problem for dislocations in an elastic
half-space 1s afforded through the use of the finlte
element numerical technique. Use of this technique, which
usually requires a large computing capabllity, enables
solutions to be found to problems involving hetercgenities,
both later and vertical, and anisotropy Just as easily as
those involving a uniform homogenous, 1isotiopic half-space.
The mechanics of this method have been dzscribed exten-
sively in the engineering literaturc (Martin, 1966;
Przemienicki, 1968; _enkins, 1969; Zienkiewicz, 1971).

In this technique, the elastic half-space continuum is
divided into geometric elements which are inter-connected
only at a finite number of nodal points. It is at these
nodal points that displacements, stresses, or forces can

be imposed on the system. Concurrently, stresses and
displacements at a distance removed from these disturban-
ces can only be measured at these nodal points. The
solution to the system of simultaneous equations generated
by a disturhbance imposed on a given node 1s constrained

by the boundary conditions relevant to the problem and 1is
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solved numerically. Jungels (1973) gives a description of

the adaptation of thls method to the modeling of disloca- ‘

tion fault surfaces. The reader is referred to this work !

for a summary of the intricacies of this numerical method. ‘
Jungels (1973) and Jungels and Frazier (1973) make a

positive comparison between the calculated static dis-

placement field due to a dislocation in a uniform homoge- }

nous elastic half-space calculated by the finite element

method and by the conventional exact Green's functilons

techniques. Although this author had at his disposal a

numerical code which would allow only the modeling of

plane strain problems, i.e., faults of infinite length,
more recent finite element numerical codes can accommodate

problems involving finite aimensions in all directions.

The great advantage of this method in calculating dis-

placement and strain fields from models of earthquakes is

J . the ability to vary the elastic properties of the medium .
both over the fault surface and the source to observer

path. This technique can be limited, however, by the

shear size of computer storage necessary to solve a prob-

lem in which the continuum must be very finely sampled

in order to accurately approximate the continuum fcr the

order of the disturbance being modeled.
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2.3 Application of the Forward Problem coward the
Explanation of Observed Statlic Data.

As 1s obvious from the preceding discussion, much
progress has been made toward the static modeling of the
earthquake source. The state-of-the-art is such that now
an accurate description of the static processes accompany-
ing faulting can be investigated. However, tne inverse
problem now remains. As the facllity for calculating the
displacement and strain fields from fault models became
more sophisticated, a wider range of cCata came under
scrutiny in trying to infer some information about the
various parameters which affect the faulting process. The
earliest attempt to extract source information from static
data was appllied to differential horizcntal displacements
measured near long vertical strike-slip faults. Kasahara
(1957, 1959), Chinnery (1961), and Chinnery and Petrak
(1968) tried to infer the depth and distribution with
depth of dislocation faulting by fitting the rate of fall-
off of horizontal displacements measured parallel to the
fault strike as a function of distan.e away from the sur-
face expression of the fault. A trial and error method
was used to fit the data and to try to exclude possible
faulting models. Press (1965) and Press and Jackson (1965)
used Press' calculations to model the close-in vertical

movements associated with the 1964 Alaskan earthquake.
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These movements were modeled with a vertical dip-slip

fault and an indication was sought as to the depth of
faulting. 2 comparison of the calculated and observed far-
field residual strain steps was also undertaken. Singh and
Ben~-Menahem (1969) attempted to fit the same strain »bser-
vations using thelr met! for taking into account the
earth's curvature. In both these studies, nc attemp. was
made to systematically vary the source parameters to
achleve the best fit to the data.

As displacement data for large earthquokes became more
abur.dant and reliable, it became apparent that the simple
fault models having a constant dislocation over the entire
fault surface could not adequately represent the observa-
tions. Stauder and Bollinger (1966) first proposed that
differential slip on the fault surface might provide a
more realistlic model to better fit the data from the 1964
Alaskan earthquake. They approximated the differential
movement by allowing the displacement on the fault, Au, to
vary plecewise along the direction of the slip. To do
this, the total fault plane was taken to be a sum of the
individual fault surface rectangles, each being welghted
separately. Unfortunately, these authors used a rather
simple source model representation in that 1t aad diifer-
entlal movement only oﬁ a horizontal fault parallel to the

surface. Furthermore, they gave no indicatlion as to how
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they arrived at theilr final model. One would guess that
they used the trial and error method.

Savage an2d Hastie (1969) and Hastie and Savage (1970)
have described a quési-inversion process to be applied to
the fitting of earthquake static displacement data using
the dislocation models for an arbitrarily oriented finite
fault surface imbedded in a homogenous half-space. In
these studies, these authors swept throuyh predetermined
sets of sensitive fault parameters -- fault width, dip
angle, depth, and slip -- calculating the degree of fit to
all the data for each model tested. he model which best
fit the data in a least-squares sense was termed the opti-
mum model. These calculations seem to closely coincilde
with the Monte Carlo techniques used to find acceptable
models of the radial distributions of the elastic param-
eters within the earth as described by Press (1968, 1970,
1972). 1In these cases a reasonaole fit to the data was
obtained, especially in the case for the Fairview, Nevada
earthquake. Fitch and Scholtz (1971) later extended this
work to some degree. However, the dislocation model used
in these cases was highly idealized in that it was

restricted to the Volterra type dislocation in which the

slip was constant over the entire dislocation surface.
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2.4 Construction of the Pseudo-Somigliana Dislocation
Static Model .

Since 2t has been shown that the fault gecmetries can
be more complicated than just plane rectangular surfaces,
| some means must be derived to allow in our mathematical
| representation of the faulting process for these complica-
tions. Complications to the simple modeis can occur in at
leas® two ways. The first complication is that we wish to
be able to allow the dislocation to take on arbitrary
) values as a function of position over the fault surface.
Secondly, the fault surface may not be a single rectangular
plane. Both of these complications can easily be repre-
sented approximately by discretizing the dislopation sur-
face. That 1s, we want to approximate a curved fault
surface by a series of planar surfaces Juxaposed in such a
manner as to approximate the curvature of the surface to be
/ matched. Curvature, or splaying, could be thus modeled in
any direction. An example of matching curvature in the
horizontal direction could be envisioned by a model of the
1 San Andreas fault which includes the region of the bend in
| scuthern California. Here a series of plane vertical rec-
r ! tangular surfaces could be concatenated horizontally to

match the observed curvature. Similarly, a dipping thrust

e

r fault in wrich the dip varies with depth could be approxi-

mated by a series of rectangular steets positioned verti-

cally to make a continuous surface in which the dip could

L - el TR ST
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change discontinuously between fault elements. Examples of
modeling dipping thrust faults in this manner 1is given in
later chapters.

With this same scheme, the dislocatlon could be
allowed to differ on each of the surface elements which
comprise the total dislocation surface. Restriction on
the variance of the source parameters from one surface
element to the next would have to be imposed to keep the
problem physical.

2.5 Linearization of the Forward Static Problem.

The net displacement or strain field at the surface,
or at any point off the dislocation surface could be cal-
culated separately for each of the individual segments
using one of the forward prcblem formulations discussed
earlier in this chapter. The total elastostatic field at
a particular observation point would be a simple sum of the
individual contributions from each of the comprising
elements.

We wish to pose the problem in such a way as to be
able to write down a succint relationship between the
values of the source parameters and the data functionalis
which we compute from the forward protlem calculations.
Suppose that we calculate the values of the elastostatic
field at a single point exterior to the dislocation sur-

face cf our chosen fault model system which is made up of




X, 8

M different variously-oriented dislocation surface ele-
ments. Consider that the elastostatic field can be
described by N field variables, preferably those for which
we can observe in the field following an earthquake.
Suppose that there are L source parameters which can be
linearly related to the elastostatic field through the
forward problem formulations. Then this relationship 1is

given through the system of linear equations

1 for 1 = 1,N. (2.3)

In these sets of equations d1 are the calculated elasto-
static field functional values, m‘j are the values of the
linear model source parameters, and the coefficients A1J
are the elastic media response of a particular data func-
tional due to a particular fault surface element having a
unitary source strength for the linear parameters. These
coefficients are in general a function of position. If we
treat the components of mJ and d1 as elements of a column
and row vector respectiQely and if we put the coefficients,

Aij’ in standard matrix form where the matrix has L°'M

columns and N rows, we can express (2.3) in: the following
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matrix notation,

Am=d . (2’4)

The model components of m are contalned in the vector
space EL.M and the data functional components are con-
tained within the vector space EN. The matrix, A, can be
considered a ve:lor operator which maps EI".M into EN.

We have teen careful in this construction to 1limit
ourselves to problems where the source parameters in the

LM

space E can be linearly related to the calculated

elastostatic field functionals in space EN. This strictly
linear relation is valid for only a few source parameters
in special instances. If the forward problem 1s to be
solved by the analytic closed form Green's function solu-

tions, for example equation (2.2), then we have to lmpose

the Volterra restriction

Aui(P) = constant.

With this restriction we can write
A“if K

and the problem is now linear with respect to slip in the
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ith direction on the individual dislocation surfaces. In
general, the solution cannot be so easily linearized with
respect to other parameters which characterize the dis-
location source-fault length, dip angle, depth, position,
etc.. An examination of the forward equations given by
Mansinha and Smylie (1971) is convincing with this respect.
Fortunately, by numerically evaluating these expressions,

we can show that they are locally linear. The extent of

the locally linear domain varies from source parameters to
source parameter and also with the absolute value of the

scurce parameter. If sufficient care can be paid to these

details, the problem can be approximately linearized for

all the source parameters listed above. The linearization

can be accomplished in the following simple way.
The degree of linearity or non-linearity of the

forwérd problem functionals for the various source param-

eters will be model dependent, that is, it will vary from
source model to source model. If we wish to describe the
linear domain in a field about some chosen model,lnl, we
choose some other source model, m,, "near"lnl such that

the following equation can be written

Aém = &d + O[jm, -m|?].
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The following definitions have been applled: |

dm = m, - m; (2.6)

5d = dmy) - dm)) . (2.7)

dﬁni) is the elastostatic fileld for a particular source }
model m, . The problem is linearized only if ém 1s

B sufficiently small for equation (2.5) to hold. The con-
L ‘ ditions for linearity discussed here are equlvalent to

i - requiring the forward problem functionals to be Fréchet

differentiable with respect to the source parameters.

If we calculate the forward probiem for a source

f l model description which we think will reasonably approxi-
| ,

I mate the observed static field functionals, call this

F |

Ed model m_, then for small perturbations about this model,

f /] Gn%, an approximate linear relationship between the two <
vector spaces 1is established. This is to say that the

coefficlents of AiJ are linear. We note here that 1n

general, the coefficlents of Aij are not independent of

the model.u%. Indeed, their dependence is a measure of

the non-linearity of the operator coefficlients in the

| region of the model space being sampled by the test model

' m, . The perturbations, GH%. must remain small in the sense

that they are approximately linear throughout this region.
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In our matrix notation the forward problem 1s now written

Aﬁn% = Gds . (2.8)

2.6 Derivation of the Stochastic Inversion Operators.

Introduction. This section addresses the problem of ob-

taining the best estimate of the source parameters charac-
terizing a fault model given a suite of observations which
can be linearly related to the faulting process. The
problem here follows closely that encountered in the
studies regarding the estimutlion of the radial distribu-
tion of velocity and density within the earth. In this
area of research, much theoretical progress has been made
in the last six years in the treatment of inversion
schemes to estimate these distributions. Perhaps the most
successful and certainly the most elegant of these schemes
falls in the general category of stochastic inversion
theory. This theory, which will be applied to the treat-
ment of elastostatic problems in this thesis, attempts to
give the best estimate of a discretized approximation to
the contijuous faulting process when a limited amount of
data is obtainable. As pointed out by Jordan (1972), the
inverse problem when posed in this manner usually has no

unique solution. However, the solution that is obtained

is unique in certain respects, as will be discussed later.
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Furthermore, the stochastic approach allows fo. the in-
clusion of inaccuracies in the estimation of the elasto-
static field observations. How these inaccuracles affect
our model estimations will be fully explored in the
chapters devoted to the application of this theory.

The fundamentals of the theory for the solution of
the underconstrained linear inverse problem for data that
contain certain amounts of "noise" have been presented by
Backus and Gilbert (1967, 1968, 1969, 1970). Jordan and
Minster (1971) and Jordan (1972) incorporated portions of
the Backus-Gilbert theory with the purely stochastic
theory of Franklin (1970) to present a quite complete
approach to the solution of this type of problem. The
theory as applied here to static problems 1is essentially
that due to Jordan (1972), and an attempt has been made

to follow his notation throughout this thesis. Sophisti-
cated discussions as to the validity of this type of in-
verse and the mapping functiocns of the operators are given
in this reference. The derivation of the stochastic
inversion operétdrs below are given only in the context as
to how they apply to the elastostatic problem. In the
derivations, for reasons of simplicity the notation used
is for a linear problem. If applied to non-linear problems
that have been linearized in the procedure discussed above,

the difference vectors defined in (2.6) and (2.7) are

— e el oot

e e
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merely substituted for the true model and elastostatlc

field vectors.

Derivation. Consider the problem of determining some M-
dimensional vector model, m, contalned in the space EM,
glven a N-dimensional elastostatic field vector, d, in the

space EN. The elastostatic fleld values are related to

by the system of llnear equations

M
ZAIJmJ = d 1 =1, N. (2.9)
j=1

In matrix notatlion

Amad (2.10)

?

where the operator A solves the forward problem for each of
the N elastostatic field values contained in d by mapping
EM into EN. Thus for every model m there exists some

unique determination of d where

d= d(m . (2.11)

If we take the actual field observations which are measured

foilowing the occurrence of an earthquake to be in vector

form, dO’ and these measurements are made perfectly with no




inaccuracies, then

dO = d(m) . (2.12)

Assuming, of course, that the formulation of the forward

problem will exactly determine the elastostatic field

——

values. However, if there are any inaccuracies in the

e

observed field values, then these observed vaiues, do, can
be written as a combination of the projected field values

plus some measure of the uncertainty in these observations,
dO = d(m) +n , (2.13)

or by substitution from (2.10)

Ams d0+n g (2.14)

Here n is a vector containing the components of the "noise"

in the observed field data. We assume that this nolse 1s
randomly distributed in a Gaussian fashion and that any
bias to the data is removed before the noise 1s estimated.
Each component, doi, is assumed to be the mean of a
Gaussian random variable with variance, oi. We can definc

a diagonal variance operator, C ., to be
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where oi is the estimated variance of the ith data value.
In assuming this diagonal form, we are implicitly assuming
that there is no co-variance between data.

Since the only information that we have about m is
contained in (2.14), we know nothing about the componen's
of m which 1ie outside the space REEM whirh is spanned by
the vectors {ai:i-l,N}. It is reasonable to require that
our estimate of m, call ii m, lie totally within the sub-
space R; then we can assign a non-zero value to only those
components for which we have information. Under this

restriction, we can write

~

m= A'b (2.16)

for some vector b contained in the vector data space EN.
In this last equation, we are using the notation Ar to
represent the transpose of the matrix A. This convention
will be used throughout this the?is. To select an optimal

b, call this E, we wish to minimize a sultable quadratic
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measure of the errors involved in thls estimation. We
choose to minimize some welghted sum of two measures of

the errors involved in this problem. This welghted sum can
be parameterized by a trade-off curve between these two
errors, with the position along this curve used as the

parametric factor. Specifically, we want to minimize

e2(8,b) = ef(b) cos(8) + e3(b) sin(e) | (2.17)
where

e2(b) = |Im- A%b||? | (2.18)
and

e2(b) = B C_b , (2.19)

The first measure of error, ei(b), is the square of the

Euclidian norm, defined by
M
2 2
Hx 112 = 3 =5
i=]

of the difference between our estimate of the model,ﬁi,

and the actual vector we are estimating. This quantlty

decreases as we more closely approximate m. The second
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measure of error associlated with E arises from uncertalnty
in the components of dO' This quantlity decreases as our
estimate becomes more reliable. The parameterization
angle, 6, 1s allowed to vary on the interval fo,n/2], so
that at 8 = /2, €5(b) 15 minimized, indicating maximum

reliability of the model. At 6 =0, ei(b) is minimized,

indicating maximum accuracy in the estimation cf the model.

We note here that these two errors are measured with
two different norms, each in the model space. We must
establish some common norm on each of these errors so that
the parameterization of the sum of these errors can be
accomplished. This normalization is performed through the
introduction of a correlation operator, W. This correla-
tion operator can be thought of simply in terms of a
weighting function for the various model components. The
norm of this operator is fixed so that at the critical
point on the trade-off curve between the two types of
errors, at 8 = n/l4, the absolute value of the twb errors
are equal.

For the present, we assum2 that the correlation
operator, W, is the idemfactor, I , so that this effect can
be ignored in our minimization calculations. The results

~f this minimization then will be generalized to include

an arbitrary correlation operator.
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In order to minimize ez(e,b) given in equation (2.17),
I we take 6b to be a small arbitrary perturbation of b. To

first order in &b we can write

5¢2(6,b) = €2(8, b+ sb) - €2(8,b)

‘ _ Performing this first order perturbation on equation (2.17)

| we find that

5¢2(6,b) = 2[bAA- mA 16b cos(8) + 2 bC &b sin(6)

e

In order to minimize ez(e,b), we set 6e(6,b) = 0. When

this is done, we see that &b truly is an arbitrary pertur-

e,

bation, and ez(e,b) will be stationary if and only if
*
(A A + tan(6) Cnn)b = Am . (2.20)

I It can be shown (Jordan, 1972) that this statlionary point
L‘/ ’ is a unique minimum, and the vector, b, which satisfies
this condition is our optimum vector, b.
o 1r C, is non-singular, that 1is, each ci # 0, and
' @ > 0, then the matrix (AA* + tan(6) Cnn) is non-singular
i and

» b= (AA" +tan(8) C. ) 'Am - (2.21)

. T W e S T
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In this last equation, m is unknown but by substituting
from equation (2.10) we get

b= (AA +tan(e)C )7t d, - (2.22)

Substituting this optimal value of b into equation (2.16)
we see that the optimal estimate of the model for a filxed

value of 6 will be given by

m = A (AA +tan(e) C_ )14,

In the above results all components of m are equally
weighted with the identity operator. A more genefal
weighting can be introduced by considering a set {WJ;J=1,M}
of non-zero positive weights for the model components.

Let us define this welghting, or correlation matrix, in the

following manner,
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This leads ur to define a normallized elastic medla response
operator

A =AW . (2.24)

With this normalized definition, equation (2.10) 1is now

written

AW lm = d0 : (2.25)

m= A'b (2.26)

and minimize

eﬁ(e,b) = ||m- A'.bllvzJ cos(0) + lannb sin(@) ,

where ||*||, 1s the welghted norm defined by
2 . -1 2y )2
zl12 = z'wlz '21:"?

This weighted norm, of course, reduces to the Euclidian
norm if wi = 1 for all 1 = 1,M., The minimization of
es(e,b) with respect to a variation of b procedes as before.

The results are

m= WA(AWA" + tan(e) C )71 d, . (2.27)

i ettt B SV i
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Now since there are uncertainties in the observed
elastostatic field, the best estimate of the model,fﬁ, is

some filtered average of the true model, m, given by
(2.28)

This averaging operator, which contalns the response ker-
nels for the elements of mcan easily be found by substi-
tuting for d0 in equation (2.25). Performing this substi-

tution in eguation (2.27) we obtain

~

M= WACAWA + tan(e) C_ ) 'Am

or by inspection from equation (2.28)

R = WA'(AWA' + tan(e) C_)" A . (2.29)

Individual rows of this operator contain the averaging
of the estimated values of the individual model components
with respect to the other model components. This averaging
is taking place in a sense that the estimation of the ith
model component is actually the true value of this component
"econvolved" in the model space with the function deflned on
the model space by the components of the 1th row of the
averaging operator. If a particular model component is

perfectly determined, say the ith value, that is, 1its value

is perfectly resolvable, then Rii = 1 and all other RiJ = 0.
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In the 1imit of infinite resolution on all model com-
ponents, that is, elther 8 = 0 or C%n = 0, the averaging
operator approaches the 1demfactor, I.

By similar substitutions, we can express equation

(2.19) as

2

e2(o,k) = mV(e)m (2.30)

where we have defined a new operator

V(o) = WA (AW A" + C__ tan(e))™} C  (AWA +

(2.31)
C,, tan(8) AW

This opeiator is termed the variance operator. Examining
equation (2.30) we see that the bilinear product of this
operator and the model components is a measure of the error

induced from the data space, through the variance matrix

C

- into tie model space. Since we are assuming that the

errors exhibited in C%n are normally distributed, we can
determine the following about the errors induced from the
data space due to inaccuracies in the description of the
elastostatic field into inaccuracies in the estimated

source model parameters. Use of this operator does not

tell us the absolute inaccuracies of our estimated model
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per se; instead, it can only tell us whether or not a
certaln perturbation in the model 1s resolvable to a cer-
tain degree by the data. So in practice, we have to
prescribe a perturbation vector ¢n our source model and test
to see if the data can "see" this perturbation. This
ability to distinguish model perturbations by the observed
data will depend directly on the accuracy of the data. The
more accurate the data, the smaller a model perturbation
these data will be able to detec’. Since we are now map-
ping errors in the opposite direction as that defined in
equation (2.30), clearly the inverse of this operator is
the projection that we desire. Since the errors are
induced in directions along the eigenvectors of V(8), then
we choose to take the inverse of this operator as the

generalized inverse gliven by

J
Vi =Y Supen; . (2.32)
1=1 M

Here we are assuming that V(8) har a total of J non-zero
eigenvalues (Ai, 1=1,J) with the assoclated eigenvectors u,.
The notation “1'“; indicates an outer-product expansion
between the two vectors u, and u.. Since V'(e) 1s a

1
generalized inverse of V(8), then the inner product of

v(e) and V*(G) are not necessarily the identity operator
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but rather some projection operator, Iz that 1s both
*
idempotent (I; Pv = Pv) and symmetric (Pv = Pv)'
In particular, some vector perturbation in the model
space, q , 1s resolvable to within a certain confidence

1imit, to which we can assign some confidence coefficient

k(c), if the following inequallty holds.
*
q via > ki) . (2.33)

For example, for the 95% confidence 1imit, k(c) can be
found in any good statistics reference to be 1.96.

A two-dimensional geometrical argument will 1llus-
trate the use of equation (2.33). Assume that the errors

induced from the data space onto the model space by the

variance operator (eigenvalues of this operator) =zre oi

1

and o; . (This variance should not be confused with the
2

data variance defined in equation (2.15)). These errors
lie along the elgenvector directions, §1 and §2 respect-
ively. Now if a vector x has components along these

directions then the equatior

x* fo = k2

can be written out

x2 2
1 *2 2
v ey il S
Om Om

1 2
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This is just the equation of an ellipse whose semi-major
axes are koml and komz. This ellipse, or hyper-ellipsoid
when this argument 1s extended to higher dimensions, is
called the confidence ellipse. The enclosure of this
ellipse represents the area of unresolvable model pertur-
bations, and the area exterior to the ellipse represents a
model perturbation which 1s large enough to be resolvable
by the data at a certain confldence 1imit associated with
the axis parameter k. By making k larger, we are increas-
ing the confidence 1limit and increasing the size of the
confidence ellipse thus requiring larger model perturba-
tions before they can be detected by the data at that con-
fidence 1imit. In order to check the resolvability of a
glven model perturbation,we choose our value of K (say
1.96) and merely test to see 1f thls vector protrudes the
confidence ellipse. We note here that this resolvability
criterion depends only on relative perturbations to the
source model parameters and not on the absolute configura-
tion of the final or optimum model that we obtailn from the
inversion process. Thus we have to propose a hypothetical
perturbation,or a series of perturbations, judiciously
choéen to explain or disclaim certain features of our

model, and expose them to this testing procedure. Only on

this basis can we determine the limits the model source
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parameters can take and still fit the observed elasto-
static field. The power of this operator becomes apparent
when applied to actual problems as we shall see in later
chapters.

2.7 Discussion,

In this chapter we have discussed the development of
methods of obtaining an accurate representation of the
forward elastostatic problem for a given description of
the faulting process. We have reviewed the early uses of
these forward formulations in attempting to deduce source
parameters which can characterize a given event. A method
was suggested by which a more complicated and arbitrary
static dislocation function could be approximated with the
formulations derived from simple dislocation sources. It
was found that by making possible a more complex static
source description some means must be used to systemati-
cally relate the observed elastostatic phenomena to the
medla response from t ° various source parameters. The
stochastic inversion scheme provided an ideal means to
give the best estimates to the solution for the usually
underdetermined static problem. By use of this inversion
scheme, we can benefit from the use and knowledge of the
various operators which fall out of the derivations. These
operators deal with the errors in both the observations and

those in our solutions. Quantitative appraisals of the
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decency of a given solution to a particular static problem
become available through the use of these operators.

For the special case of 6 = 0, equation (2.23) is
commonly known as the generalized inverse. For thils case,
Noble (1969, p. 143) has shown through the method of
Lagrange multipliers that the generallized inverse also
minimizes the norm of M. We can think of this as physi-
cally giving the longest wavelength, or smoothest model
solution, for a given set of data. In elastostatic prob-
lems, this property is especlially valuable, since we would
expect the displacement on a fault surface to locally vary
in some fairly smooth fashion.

By combining all of the formalisms discussed in this
chapter, we should be able to take a formidable advance 1n
our understanding of the static processes which accompany
earthquakes. The theory discussed here will be applied to

data from actual earthquakes in the following chapters.
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Chapter 3

A Static Dislocation Model of the
1964 Alaska Earthquake

3.1 Introduction.

The Alaska earthquake of 28 March 1964 which was
centered near Prince William Sound was probably the largest
seismic event in North America this century. The magni-
tude of this event has been estimated to be between’

M, = 8.3 to Mg = 8.6. With the possible exception of the
1971 San Fernando, California earthquake, this earthquake
has been the most intensely studied occurrence in the
history of geophysics. The regional deformation accompany-
ing this event involved changes in land level of unprece-
dented areal extent, encompassing some 200,000 km>. The
residual vertical displacements produced were measurable
geodetically along a 490 km profile approximately perpen-
dicular to the Gulf of Alaska and approximately 800 km
adjacent and parallel to the coastline. Yet despite the
importance that this earthquake had on the tectonic
character of the affected region and the importance of the
contributions that the daté from this event provided toward
an increased scientific understanding of the origin of

earthquakes, considerable contro#ersy still surrounds the

exact source mechanism. It 1s hoped that the results from
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this chapter will help allay some of this controversy.

3.2 Fault Representation.

Since the first studles of the 1964 Alaska earthquake,
the main focal mechanism and the accompanying sense of
motion have remeined somewhat of a controversy primarily
pbecause of the ambiguity of the fault plane solutions
based on P-wave first arrival data. The two contesting
mechanisms are one having the geomciry of a nearly vertl-
cal reverse fault, and the other a low angle thrust fault.
Figure 3.1 shows a profile extending from the southeast to
the northwest approximately bisecting the elongated area
of deformation. This cross section corresponds to profile
BB' shown in Figure 3.2. In Figure 3.1 we have diagrammat-
ically represented the two possible fault plane mechanlsms
and their relation to the hypocenter, shown at the inter-
section of these two planes. The representative geometry
that we choose to explain in detail the static flelds
which accompanied this earthguake must be 1in reasonable
compatibility with the geometry necessary o explaln the
following observed or calculated entities:

1) epicenter location and hypocentral depth

2) P-wave first motion polarities and S-wave
polarizations

3) aftershock distribution

4) radiation patterns of long pericd Love and

N >
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Figure 3.1. Schematic diagram of the two possible nodal

planes and the relative dislocation on each. The hypocenter
of the main shock is located at the intersection of the
two planes.
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Figure 3.2. Regilonal deformation that accompanied the
March 28, 1964, Alaska earthquake. Cross section used in
this study 1s labeled BB'. The Patton Bay fault is
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1967).




Rayleigh waves
5) geological reasoning for faulting -- island arc
impliéations
6) near field displacements.
We wiil briefly review the geophysical literature for
supportive arguments to favor one or the other of the pro-
posed mechanisms. We will then adopt a model which we
think will best fit all of these criterior.

y The hypocentral depth for the main event was first
given to be about 20 km, and in later calculations with
the incluzion of more data the depth was restricted to 33
km. (This restricted depth is the standard depth assigned
a shallow event when the depth determination algorithm
does not converge, or else converges to a negative depth.)
No depth sensitive phases, such as pP or sP could be
positively identified on records of the maln shock. A
reasonable assumﬁtion would be to place the depth as lying
between 20 km and 50 km. Thelhypocenter certainly was not
deep as evidenced by the large amplitude surface waves
generated by this earthquake. The epicenter of the main
shock was located by Sherburne et £l1. (1968) and von Hake
and Cloud (1966) to be near the north shore of the Prince
William Sound on the small peninsula separating College
Fiord and Unakwilk Iﬁlet. The coordinates of the epicenter
are given as 61.04° + 0.05° north latitude and 147.73°




{

+ 0.07° West longiltude.

The focal mechanism for the first motion of this
rarthquake has been studiled by a number of authors
(Algermissen, 1964, 1965, 1966; Harding and Algermlssen,
1969; Berg, 1965; Stauder and Bollinger, 1966). These
studies show only one fairly well-defined nodal plane.
There is some slight ambiguity in the exact orientation of
this plane due to non-impulsive, or emergent P-wave first
arrivals at a number of key stations, but this is a second
order effect. The preferred orientation of this nodal
plane is glven to be strike N 62° E, dip 82° S. The defi-
nition of the second nodal plane is limited because of the
almost total lack of geographica  control in the station
locations. Berg (1965) attempted with iimited success to
determine the orientation of this second nodal plane by
observing a dilatation at one station, Yellowknife, Canada.
The location of this station 1s critical in defining this
second nodal plane. The orientation of this plane has been
estimated to give a dip of 26° to the northeast. This
unfortunate distribution of stations to the north of the
epicenter precludes the identification of the nodal plane
that would be present due to a low angle thrust, although
the plane has been restricted by the data presented by
Stauder and Bollinger (1966). These authors conclude that

the second nodal plane can have a dip varying from less

i g
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than 25° to the northeast through 5° to the northwest to '
less than 60° . the southeast. S-wave polarization studies
suffer from the same restriction in the station distribu- ‘
tion respect. The results from the S-wave polarization ‘

angle study by Harding and Algermissen (1966) indicate that

for a double couple type source on a nearly vertical fault
the required motion to fit the observed S-wave polarities

would be predominantly strike-slip.

et s

One suggestion that must be kept in mind when trying
to interpret the orientation of the nodal planes from first
motion data 1s that presented by Wyss and Brune (1967).
These authors suggested that the faulting which occurred

over the entire segment involved a complex multiple rupt.ure

mechanism. If thils mechanism is in fact the way the fault-

ing took place, then the initial motion at the hypocenter

can have 1ittle, if any, bearing on how the faulting pro- N
ceeded as a whole,

One clue as to the possibility of deciding which type
faulting took place 1s given by examining the spatial dis-
tribution of aftershocks. Algermissen et al. (1972) present
Just such data for over 2,000 locatable aftershocks.

Special attention was given to a sut-set of this aftershock
location data which were well located and contained posi-
tively identifiable depth phases. These events showed that,

especially in the vicinity of Prince William Sound, the
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aftershocks were shallow. In fact, apprcximately 62%

were lccated at depths less than 20 km with only 1% or the
events located at depths greater than 40 km. This depth
distribution of aftershocks suggests that most or all of
the faulting was confined within the crust and perhaps the
top of the upper mantle along the continental margin.
These authors deplct the foci of the aftershocks located

in this area under consideration as defining a plane which

dips at a shallow angle (4°-6°) under the continental block.

Focal mechanism studies of the aftershock by Stauder and
Bollinger (1966) delineate a fault plane some 600 km in
length and at least 200 km in width having an average dip
of about 10°, while the main shock had a depth of focus of
between 20 and 50 km and had a body wave nodal plane solu-
tion dipping between 10° and 15°.

The outer limits of the aftershock region appear to be
very well defined and the region is not confined along the
surface trace of the postulated steep-fault model. The
aftershocks lie mainly in a brcad belt roughly paralleling
the continental margin mostly falling in the area of mapped
or inferred major uplifting. The aftershock zone is not
even approximately centered on the epilcenter of the main
shock.

Surface wave studies of this earthquake have been

limited to long ﬁeriod multiple Love and Rayleigh waves due
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to the tangled complexity of the large amplitude records

at the WWSSN stations. With only few exceptions, che first
multiples to be fully recovered have been the R4 and Gi
wave trains. These signals have been analyzed in two
different, but hopefully equivalent, ways. Toksoz et al.
(1965) and Ben Menahem et al. (1972) used the spectral
phase and amplitude equilization method while Kanamori
(1970) used a time-domain ar.’ ysis. For a simple point
double couple source, the radiation patterns for surface
waves for the two contesting fault orientations are approx-
imately equivalent. However, if the source has some
finiteness as exhibited by propagating in a given direc-
tion then assymmetries in the Love and Rayleigh wave ra
diation patterns are introduced. As polnted out by Savage
and Hastie (1966, p. 4899-4900), the assymmetries between
Love and Rayleigh wave radiation patterns will be different
only 1f the rupture propagation is not along the null

axis. If rupture does take place in a direction away from

this axis then there 1s a possibility of distinguishing

unigquely the two fault orientations. Because of differ-
ences in azimuthal cov:.age, Ben Menahem et al. did not
detect any assymmetries in his radiaticn patterns while
Kanamori did. Kanamori interprets thils assymmetry in

terms of a measured component of rupture propagation

normal to the strike of the ©ault. His solutions favor
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the low-angle thrust mechanlsm and his model is compatible
with the long period surface waves radiation patterns for
a fault dipping at about 20°.

Plafker (1965) uses his interpretation of a vast
quantity of field observations in the area of deformation
to argue rather forcefully for the low angle thrust mechan-
ism. These arguments will not he repeated here but are
based mainly on the large displacements in relation to the
focal mechanism studies and the spatial distribution of
aftershock seismicity. Plafker (1972) extends much the
same arguments for a low angle thrust fault.in the context
of being consistent with the mechanism expected for island
arc tectonics (Isacks et al., 1968; Stauder, 1968). He
concludes that the earthquake occurred as shear failure on
a fairly complex major low angle thrust fault, or mega-
thrust, that dips from the vicinity of the offshore trench
to beneath the continental margin. The overthrusting is
interpreted in terms of elastic rebound resulting from the
progressive underthrusting of the oceanic crust and mantle
beneath the continental margin prior to 1964. This mech-
anism is consistent with Benioff's (1954) theory for
oceanlc trenches and associated mountain ranges.

On the basis of modeiing the observed vertical dis-
placements, Press and Jackson (1965) and Pres§ (1965)

attempted to demonstrate that the observed uplift and
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subsideiice could be accounted for by about 10 m of con-
stant dip-slip motlon on a vertical plane extending from
a depth of about 15 km down to a depth of 150 km or more.
These authors did not include in their data set all verti-
cal displacement points available. Savage and Hastie
(1966) and Hastie and Savage (1970) got better results
trying to fit the same data with a low angle thrust fault
with about 10 m of constant displacement over the entire
surface. Savage and Hastlie showed that the vertical re-
verse fault model geometry placed the zone of maximum sub-
sidence too close to the zone of maximum uplift, whereas
for the low angle thrust geometry, this observed lack of
symmetry in the vertical displacements 1s approximately
satisfied. Stauder and Bollinger (1966) accomplished a
more reallstic modeling of the displacements on a hori-
zontal thrust fault on which differential movement on the
fault surface was allowed. These authors tried to include
the effects of local or subsidiary faulting on Montague
Island (see Figure 3.2). The lccal faulting shows a
dominance of vertical slip and has been described by
Plafker (1965) and Grantz et al. (1964a,b). Stauder and
Bollinger (1966) modei this secondary fault as a constant
dip-slip dislocation on a vertical surface directly

beneath Montague Island.

fAdditionally, the low angle geometry 1s preferable in
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describing the behavior of the observed extensive hori-
zontal surface deformation as reported by Parkin (1966).
The sense of thls deformation 1s mainly consistent with the
seaward overthrusting of the continental block. This
directicn of motlion is especially predominant in the area
between the Kenai Mountalns and the offshore islands.
However, we see from Figure 3.1 that we would intuitively
expect the horizontal displacements to be in the opposite
direction 1f the steeply dipping reverse faulting mechanism
were adopted. Thus we have decided to adopt the low angle
thrust geometry for our fault model in explaining the
surface displacement data because 1t seems most consistent
with the seismic, geodetic and geologlic observations per-
taining to this earthquake.

In each of these attempts in modeling the vertical
displacements the formulation of a dislocation in a uni-
form elastic half-space was used (Green's functions
solutions). Since this is a region where there is a large
contrast in the Juxaposed crustal types -- oceanic crust
underthrusting continental crust -- this uniform elastic
half-space approximation may not be appropriate. This
approximation will be investigated later in this chapter.
All of the above modeis are able to fit only the gross

features of the zero-frequency data of this earthquake,

not just because the earth's crust 1s not a uniform elsstic
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half-space and the slip varies continuously along the
fault plane, but also because the estimates of the fault
offsets were not related to the observations in a system-
atlc fashion.

For this earthquake we will model the tectonic en-
vironment with a laterally heterogenous geologic model.
The finite-element formulation will be used to compute the
static response of a structural model of the crust to a
unit offset imposed on a serles of nodal segments repre-
senting the fault, and the inversion technique will be
used to invert any free-surface statical observatlions to
obtain the proper linear combination of these offsets which
will result in a computed movement of the surface which
fits the observed data to some chosen degree of accuracy.
Since the finite-element formulation used in this chapter
is 1imited to solving problems involving plane strain
elasticity, any displiacement profile that is to be modeled
correctly must be approximately free of fault end effects
and movement due to strike slip motion. The effect of
assuming an infinite length fault will be discussed 1in a
later portion of this chapter.

The structural model chosen for this svudy is gilven
in Figure 3.3. The geometry is based upon that suggested
by Plarker (1972) and Stanley (1966) as belng the mc. t

consistent with the regional tectonic setting of the
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earthquake, selsmic refraction studies, and the earthquake
distribution of the area (Tobin and Sykes, 1966). The
region 1s modeled by four geologic provinces, and the
elastic parameters for these units have been adopted from
the seismic refraction work of Shor (1962) and Hales and
Asada (1966) and the microaftershock array work of Matumoto
and Page (1969). The seismic velocities given in these
studies are essentially those of typical crustal and upper
mantle material. The velocitlies and elastic parameters for
these units are listed in Table 3.1. Superposed upon
Figure 3.3 1s the finite-element grid used in modeling the
fault and accompanyling dislocations. Tne grid represents
an area that 1s 800 km long and 300 km thick. The figure
shows the Paciflic oceanic plate underthrusting the con-
tinental margin beneath the eastern Aleutlian arc. The
majority of the material modeled in this finite element
grid is that corresponding to the oceanic upper mantle.
Overlying the oceanic upper mantle 1s a 5 km thick zone of
oceanlc crust which also underthrusts the continent down
to a depth of about 44 km. Just under the Alaska trench
we have 1lnserted a thin layer of typlcal oceanlic sediments.
The fault model which we have assumed is at the contact
between the oceanlc crust and the continental crust. The
fault starts under the trench with a dip of about 6° and

slowly increases its dip until at a depth of 28 km the
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fault 1s dipping at 12°. The dip continues to lncrease so
that the dip 1s 15° at the hypocenter and reaches a maxlimum ‘
of 20° below the hypocenter. !

There are only two surface faults assoclated with this ;
earthquake, both of which are exposed on Montague Island -- I
the Patton Bay fault and the Hanning Bay fault. Geologic
relations (Plafker, 1967) indicate that these faults are

not major geologic boundaries but rather they are subsldlary

to the zone on which the primary faulting motion took place.

L These faults can be considered as minor imbrications of the ]

megathrust. Both of these faults have been mapped to strike

approximately parallel to the continental margin and the
fi . fault motion is reverse thrust dipping fairly steeply to
the northwest. The Patton Bay fault has a large component
of dip-slip motion associated with its entire length, which
extends for possibly as much as 450 km to the southwest
(Plafker, 1672; Malloy, 1964, 1965). Reimnitz (1966) has
inferred that this fault zone extends to the northeast of
Montague Island to at least Hichinbrook Island some 50 km
away. The strike-slip component is measured as being 1less
than one meter on this fault so that the motion 1s &lmost
totally dip-slip. Von Huene et al. (1967) carrled out

seismic and echo sounder prcfiles in this area between

Ehp bt ol oRal o -'-4— K pan Sy

Montague Island and Kodiak Island. Their results indicate

i a long narrow zone of faulting with the vertical attitude
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{

of the fault plane estimated to be 60°. By the observed |

) deformation of the sea floor, they conclude that the motion ‘
l

was reverse slip along thils steeply dipping plane that 1is ‘
inclined landward. This fault 1s included into the struc- ‘

tural finite-element model as a reverse fault dipping at

l 58° toward the continent. This fault terminates at depth !
where it in*ersects the main thrust fault at a depth of |

about 25 km. The second suosidiary reverse fault observed

on Montague Island, the Hanning Bay fault, was not modeled

‘ in this study because of the short length (6 km) of the

-

fault. Another high-angle imbricate reverse fault has been
proposed to break the surface between the Patton Bay fault
and the Aleutian trench. This fault has been inferred to
explain the large vertical displacements on Middleton
Island. However, no direct physical evidence confirms the
existence of such a fault, and it is not included into our
’g : model. In all, a total of 26 nodes in the finite-element

grid were used to represent the megathrust and the Patton

Bay fault, 21 nodal elements for the megathrust and 5 nodal
elements for the subsidiary fault.

3.3 Static Data.

»

} As mentioned in the introduction to this chapter, the
} crustal deformation accompanying this earthquake was very
}
r

extensive. Plafker (1969) has described in detail the

regional vertical and horizontal displacements. (See
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Plates 1 and 2 in that paper for detailed contour maps of
the ground deformation and the location of the observation
sites.) The vertical displacements were based on a variety
of methods of measurements, some of which would be reliable
only if the net vertical deformation was large, as 1s the
case for this event. The great majority of the measurements
involved measurements of the movements of the shoreline
which meanders throughout the area of maximum deformation.
These measurements include changes in tide gauge levels,
measuring the change in the upper 1limlt of barnacle growth,
direct shoreline changes, etc.. Taken individually, these
measurements cannot be given much rcliability, however,
when the entire mass of these observations is considered,
ineluding correlation between geodetically determined
changes 1n bench mark levels, the data become quite in-
formative. Plafker (1969) discusses the acquisition of
this data and the assoclated estimate of the errors in-
volved.

Although the vertical displacements measured after
this earthquake were large, the horizontal displacements
appear to be even larper (Whitten, 1964, 1965). Unfor-
tunately, horizontal displacements do not lend themselves
to the ease of facllity of measurement as do the vertical

displacements for this case. Parkin (1966) has described

the retriangulation network that was occupied after the
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earthquake. Horizontal displacements, generally in the
direction of the seaward motlon of the continent, of up to
20 m were observed. Pope (1972) used this data to compute
the components of strain on the surface. The surveys to
determine horlizontal movements are too poorly controlled
and too easlily subject to blas to enable a detailed quali-
tative inversion of the strains.

In this chapter we will limit our inversion data set
to vertical displacements only. The reason for this is
that we consider the vertical displacement data to be much
more accurate than other features of the tectonic deforma-
tion such as horizontal shortening, horizontal displacements,
and changes in the local gravity field. The vertical dis-
placement data are taken from Plafker (1965, 1969). Since
with this finite-element method we are limited to plane-
strain problems we will have to limit our data set to points
that define a profile perpendicular to the strike of the
mepgathrust. We chose our displacement profile to coincide
with profile BB' in Plafker's papers (1965, 19F2, 1972).
Only one major surface fault intersects this profile, the
Patton Bay fault on Montague Island. By choosing our cross
section near the center of the large area of deformation,
the vertical displacements ars due almost totally to dip-
slip motion on the fault, thus contamination of the data

set due to ccntributions from any strike-slip motion is
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minimized. By choosing the profile in thils position, any
effects due to the finite length of the fault are also
minimized. As noted above, only slight amounts of st;ike-
slip motion was observed along thils cross section with most
of it being on the subsidiary reverse faults found on
Montague Island. This absence of large strike-slip motilon
over long lengths of the fault allows accurate plane-
strain modeling of the motions involved. We also restricted
the data set to those vertical displacements that could be
confidently projected onto this profile. Figure 3.4 shows
this cross section and the positions of the data avallable
for projection onto this profile. The maximum distance
away from the profile of a data point was about 75 km, but
about 90% of the avallable data points were within 40 km
of the profile. A total of U7 vertical displacement data
points were chosen along the profile which 1s defined for
400 km from Middleton Island to 75 km northwest of Cook
Inlet. Many more observations were avallable within the
40 km swath on either side of the profile, however, only
those points that were not near a curve in the contours or
crossed a contour were acceptable to be projected onto the
profile. The projection was done parallel to the contours
as defined by Plafker (1969). This projection was very

close (within 10° in most instances; to a perpendicular

projection onto the profile, so that the relative location
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Distance

(km)

101.
102.
182.
184.
184.
185.
190.
191.
192.
196.
207.
211.
2l2.
214,
219.
226.
229.
231.
232.
233.
235.
245.
247.
258.

Table 3.2.
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Vertical
Displacement

(m)

.36
.40
.56
af2
.32
.88
.16
.92
.30
.48
.22
.68
-56
.36
.32
.88
.84
.72
.68
.56
.48
Ay
.50
.30
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TABLE 3.2

Distance

(km)

259.
285.
289.
291.
298.
300.
304.
335.
339.
342.
346.
350.
351.
355.
359.
362.
373.
4o1.
409.
413.
418.
423.
454,
486.

oleoReololeolololooNoNolooloNoNoloNooo oo o)

Vertical

Displacement

(m)

-0
-1
-1
-1

-1.
.62
.62

-1
]

-1.
-1.
-1.
-1.
-1.
.59
5
-1.
.92
.92
.30
.24

-1
-1

-0
-0
-0
-0

-Oa
.22

-0

-Oa
.00

0

0.

.28
.20
.28
.40

54

72
80
75
70
64

4o

24
24
uy

Observed vertical displacement data along
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of the data points on this profile can be considered !
accurate to within about 5 km in the most unfavorable :
cases. The corresponding values of the individual pro- |
Jected data points on the profile are glven in Table 3.2. ‘
These values and their respective location along the pro-
file will appear in several later figures in this chapter.
The origin of the profile is some 100 km southcast of
Middleton Island. For reference, the most southeasterly
data point on Middleton Island is 101.0 km from the origin,
and the profile crosses the Patton Bay fault at a distance
of 185.0 km from the origin (B'). The sources of the in-
dividual data points and their assoclated errors are dis-

cussed elsewhere (Plafker, 1969). In general, the data are

accurate to within + 0.3 m, and this value was taken 1n the
inversion calculations.

3.4 Calculated Dislocation Model.

The media response matrix, A, discussed in the pre-
vious chapter was calculated by the finite-element tech-
nique for the structural model shown in Figure 3.3. 1In
this technique, the static displacement on the nodal seg-
ments at the free surface are linearly related to offsets
imposed on the designated fault nodes. The displacement at
every one of the nodal segments on the free surface due to
a unit offset (1 m) on a specified fault node was calculated.

This was then repeated for each of the nodes describing the
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fault system. However, since the observed vertical dis-
placement data was only near 16 of the nodal segments on
the surface, the response matrix was limited to those
nodes. Thus we have defined the problem of estimating the
static dislocation on 26 fault nodes given the permanent
static offset of 16 nodal segments located on the free
surface. This 1s precisely the type of problem that was
discussed in Chapter 2 for which we formulated the sto-
chastic inversion scneme to solve.

In this problem, the operator A is a M x N matrix,
where AiJ is the displacement, calculated at the point on
the surface where the ith data point is taken due to a unit
dislocation of the jth nodal segment of the fault. Here
M=26 and N=16. Based on experience in calculating best
model e=timates by equation (2.27), it was found that much
smoother, hence longer wavelength, solutions were calcu-
lated if the starting model was some "distance" in the
model space away from the null model. Therefore we choce
to use Stauder and Bollinger's (1966) estimate of the fault
dislocation as the starting point for our inversion. This
starting model turned out to be a good chcice because the
inversion sclLeme smoothly and quickly iterated convergingly
to a final "best fit" model. Just to make sure that the

final model that we obtained was not wholly dependent on

the starting model that we chose, we then repeated the

SE———
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inversion using Hastle and Savage's (197G) fault disloca-
tion estimate as the starting model. The results were very
simiiar to that obtained before. We therefore feel that
this final model is not very dependent on the starting
model.

The upper part of Figure 3.5 shows this vertical sur-
face displacement data plotted in profile and the calcu-
lated displacement at the surface nodes of the fiﬁite
element grid. The fit to the observed data 1s extremely
good with the calculated surface displacement field fitting
the observed data used in the inversion to within a RMS
residual of about 3-1/2 cm, and the fit to all the points
in the data set is not far from this value. For accuracy,
only those data points which were very near a surface node
in the finite element grid were used. Thus, out of the set
of 46 data points along the profile, only 16 points could
be actually used in the invereion. An increase 1in the
number of surface nciés in the finite element grid would
probably not add to the resolvability or accuracy of tne
slip model, since the limitations in these quantitles were
the lack of spatial coverage of the data, not fhe lack of
data used. The slip model from the inversion process 1is
shown 1n the louwer half of Figure 3.5. The maximum slip
along the faul{ i1s 33 m at a point below Montague Island.

A displacement of about 30 m 1s maintained over a fault
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width of about 60 km, then decreases almost linearly at a '

rate of 0.3 m/km over the next 100 km as the fault depth

increases. At more shallow depths, there is a plateau in !
slip of about 17 m, which would correspond to the fault ‘
surface between Middleton Island and Montague Island. !
However, the two data points on Middleton Island are very
important in this model in that their values almost com- !
pletely determine the amount of slip along the top 150 km
of the fault. The resolvability of this plateau will be

discussed below. The slip on the secondary fault 1is not

shown in this figure, but it averages 4 m over its entire
width with the static offset on the node at the surface
constrained to be equal to that measured for the scarp on
the Patton Bay Fault as reported by Plafker (1967). T'The
fault offset profile on the main fault is similar in shape
to that proposed by Stauder and Bollinger (1966) who used
a much simpler fault model and ignored the effects cf
geology.

Integrating the area under the slip versus fault
wldth curve, we find that we have an average slip of 18.5.
m over a 260 km fault width. This slip is at least 50%
greater than that predicted by Stauder and Bollinger (1966),
Savage and Hastie (1966), and Hastie and Savage (1970).

One check to see if the average dislocation is reasonable

is to calculate the average moment and compare with that
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obtained from long period seismic waves. This average

moment 1is given by
MO = ulwuy

where u is the average fault offset (18.5 m), L the lengtn
(600 km), W the width (260 km), and u is the average rigid-

11 dyne/cm2).

ity of the region around the fault (3.1 x 10
By using the rigidity of the continental crust, the mate-
rial in which most of the deformation takes place, we
obtain an avercge moment of 0.G x 1030 dyne-cm. Kanamcri
(1970) arrives at a moment of 0.75 x 1030 dvne-cm on the
basls of long period (300 sec) multiple path Love and
Rayleigh waves. At these long perlods, the surface waves
are sampling the entire fault width and thus should give

a good indication of the average moment. These two values
compare very favorably indicating that indeed there were
very large displacements occurring along the fault sur-
face. B. Minster (personal communication, 1973), on the
basls of a systematic inverslon of world-wide pliate motion
data, 3tates that the Pacific plate and the Alaskan contin-
ental block are moving relative to one another at a rate of
about 6 cm/year at the location of our profile.

The computed average slip on the fault leads to a recur-

rence time of an earthquake of thls magnitude in this area

of once every 300 years. However, if the central portion
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of the megathrust with its average 30 m slip 1s used as

¢ representing the event, this glves a recurrenge time of

500 years. Pla“ker and Rubin (1967) obtain a repeat time
of about B850 years for major events on Middleton Island

based on the radiometrically determined dates of a set of

| uplifted marine terraces found on that island. However,
Sykes (1971) has expressed great uncertainty about estima-
tions of re-~urrence times foi major events in this region.

Although not included in the data set for the inver-

b sion, the measured horiscntal displacement field was ex-
tensive. Parkin (1966) gives these horizontal movement
vectors which are made with a free adjustment relative to
a fixed station (Fishook station) located about 14 km

l
|
- north of Palmer, Alaska, an area that was then considered
i & to be the most stable. This fixed station is 120 km north-

west of the eplicenter of the main shock. As in the case of

the vertical displacements, only those horizontal displace-

~1 ment vectors near the profile line were chosen. There were
' 23 of these vectors in the vicinity of our section. These

] ‘ vectors were projected onto the profile and their component

L of motion in the direction of the profile taken. The re-

k _ sulting displacements are shown in Figure 3.6. The dat3

points nearest the fixed station are the most accurate,

being first order surveys, while the data on Montague Island

are much less accurate, being based on third order
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observations The direction of motion for each of these
points shown is to the southeast. The horlzontal dis-
placement in this same direction 1s calculated from the
best fit slip model discussed above and shown in the figure.
These calculated points are translated relative to the dis-
placement at the node on which the observed apparent zero
isobase is projected. The resulting displacements form a
smooth curve except for the irregul. ity at the Patton Bay
Fault. This irregularity is not resolvablc in the data
shown here. Even though these lateral displacements were
not used in the inversion scheme, because of thelr lack of
accuracy, the fit 1s surprisingly good. The model predicts
a movement of 4 m to the southeast at the fixed station. A
stable area for displacement reference 1s‘given to be at
least 120 km farther to the northwest than the chosen flxed
station. The consistency of the fit to both the horizontal
and vertical displacement data seems to indicate that the
model geometry that was initially assumed is reasonably
accurate.

Figure 3.7 shows a cortour plot of the calculated dis-
placement field in two dimensions along this chosen sectlon.
The contour values are indicated on the filgure and the units
are in km. In the upper half of this figure is displayed
the calculatea twc dimensional vertical displacement (Y

direction in figure). From this figure, we sce that the
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Figure 3.7.

Contour plots through the cross section of

relatlve displacement caused by the best fit dislocation
solution.

figure 1is a plot of the vertical displacements and the
lower figure 1s a plot of the horizontal displacements.

The contour values have units of km.

The upper
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displacement 1s concentrated under Montague Island and
above the fault surface. The presence of the Patton Bay
Fault is clearly visible on this plot. This partitioning
of the displacement field is due to the effect of the
rearby free surface. In the lower part of this figure, we
see that the horizontal displacement (labeled the X direc-
tion in figure) is likewise concentrated immediately above
the fault surface.

3.5 Resolvability of Features in the Slip Model.

Since the data used in the inversion are not perfectly
accurate, there exist model perturbations which when added
to our best fit slip model would still fit the observed
surface displacement data to some chosen degree of confi-
dence. If we can estimate the errors in our data, then we
want to somehow relate these errors to errors in cur mcdel.
Such a relation between the data space and the model space
exists in the form of a variance operator (cquation (2.33)).
This operator is useful in this application in the follow-
ing manner. If we take some perturbation, éw, to the
calculated slip, then this perturbation is resolvable by
the data to within a certain confidence interval if the

following inequality holds,

6nf V* dm > k2(c),
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V+ le the generalized inverse obtained by spectral decom-

position ~f the variance operator, and k(c) 1s the coeffi-
clent associated with a particular confidence interval.

In this study we have chosen to examine model perturbations
at the 95% confidence level, so that in this case the
coefficient associated with this interval is 1.96. Using
this method, we can test chosen rerturbations to our cal-
culated slip model and compute the maximunm perturbation
that can be resolved at the 95% confidence level by the
deta. We note that these tests are independent of the
values of the 51ip model itself, and only perturbations to
this model can be checked for resolvability.

The variance operator, V, for this case 1s a 26 x 26
matrix. The generalized inverse of this matrix is found
by using the elgenvector expansion described in equation
(2.32). W found that there were 16 non-zero eigenvalues
assoclated with this operator. For problems where the
estimated errors are very small, numerical problems may be
encountered ir. calculating the generalized inverse of this
operator. These numerical problems arise from the fact
that round-off errors occur in the computer calculations
of the eigenvalues. For small eigenvalues, the problem of
diétinguishing non-zero eigenvalues from the zero eigen-
values can become serious. Fortunately, this 1s not the

case in this prcblem. The non-zero eigenvalues are well
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defined. We have empirically noted that the number of non-
zero elgenvalues of the variance operator V is ~qual to

the number of 1ndependent data points used in the inver-
slon. The inner product of the variance operator and its
generallized inverse form a projection operator. This pro-
Jectlion operator is then checked for its idempotent proper-
ties to make sure that all scaling is correct. This test

1s done in the following manner:
(vvhiovvh - (vvh < E (3.1)

where the components of E, eij’ are taken to be some small
number relative to the i"ize of the components of V.

The question that we would ultimately like to answer
with a study of this type is, "What is the maximum pertu-
bation that we can add to our 'best fit' slip model and
still satisfy the observed data?" Since we know that the
size of trke maximum perturbation that is at the threshold
of detectlon by the data depends on the distribution of the
perturbation, we choose three perturbations which will
elucidate the total resolvability of our slip model. We
first consider how much of a slip perturbation we can add
to the dislocations in the hypocentral region, so that the

rapld fall-off from the 30 m plateau 1s not so rapid.

Figure 3.8a shows this maximum slip perturbation. The
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stippled area on this curve 1s the maximum slip that could
be added in this region and still be undetected by the '

data. It 1is seen frow the small size perturbation in this

filgure that the data control very closely the rate of fall- ‘
off of slip in this area of the fault. This is due mainly

to the fact that there is a dense network of data points

Just above these particular nodes. Next, we try to deter-

mine 1f the data demand the existence of *he 17 m plateau

et s

in the shallow part of the fault. Figure 3.8b shows the
amount of slip that could be added in this region. We sre
that the slip gradient in this region could be smaller than
that presented in our best-fit slip model, although there
stlll appears to be a requirement for a sharp decay in slip
up the favit from the 30 m plateau. The slight minimum in
slip that appears in this region -~ the model is not re-
solv~ble by the data. 1In Figure 3.8c we see that there is

; . almost no resolution along the upper parc of the fault.

ke This 1s due to the pauclity of data on the surface above
this region. In order to explain the behavior of the fault
slip in this reglon we have to appeal to arguments based
on other geophyslcal data than the statical displacemenis.
For instance, 1t can be shown that large fault offsets in
the area of the trench would result in a significanu amount

of strain energy stored by the fault in that region.




3.6 Averaging Operators.

In Chapter 2 we say that our '"best fit" estimate of
the slip model 1s in reality some filtered average of the
true slip model. Tris filtering operator 1s commonly known
a2s the averseging operator. Before iiscussing features of
our sinal model 1t 1s to our adventage to know the extent
of the averaging that is taking place in our model. The
kernels of the avzraging operator are taken to be indivi-
dual rows of the orerator ratrix, R, as defined in equatilon
(2.29), with & single kernel teing defined for each fault
element comprising the total fault system. Ve note here
that 1f the problem is linear, as it 1s in this case, that
these kernels do not depend on'the final estimate of the
"best fit" model.

If a particular slip model value were perfectly well-
known by the inversion then the averagling component cen-
tered on that fault element would b= unity and all the
other components of this kernel would be 2zero. However, in
the general case where we have less than infinits data and
the data that we do have are somewhat corrupted by noise,
the center averaging velues are not unity and the other
components (off-diagonal compunents of the matrix R) are
non-zero. The ability to resolve the detalls of the actual

dislocation function depends on two features of this

operator. “ue 1s the size of the kernels. This depends

—— e ——
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in a general way on the availablility of deta to be included
into the inversion that are sensitive to a dislocation ove:
the part of the fault model that we are testing. As the
value of a particular diagonal component of R becomes sub-
stantially less than unity, our aovility to even estimate
the slip value for the corresponding model component de-
creases. The other factor is the averaging width of the
kernels. This averaging width is expressed by the off-
diagonal elements of R. If these off-diagonal componentc,
correcponding to the fauit elemerts "near" the particular

1t element we are exaulning are substantially non-zero,
t,..en the estimated "best fit" value of slip that we obtain
from the inversion 1s really some linearly averaged value
of the actual slip values in the vicinity of this fault
element. These ideas are¢ probarly best expressed by
examining an example of their use.

Figures 3.9 and 3.10 show examples of the averaging
kernels fo» the Alaska earthquake model. The coefficients
of the rows of the averaging operator are shown diagram-
matically at the position of the respective fault node
sorresponding to the components »f this row. The height
of the bar plotted on each node signifies the absolute
value of the averaging ccefficient for that node. For
absolute reterence, in Figure 3.10c, the height of the

outstanding bar is 0.997. In Figure 3.2, we have plotted
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Figure 3.9. Resolving kernels for selected nodal segments
along the megathrust. View is a purspective of the mega-
thrust from the scutheast (left) to the northwest (vight).
Depths and profile distances are in km.
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Figure 3.10. Resolving kernels for selected nodal
segmentz along the megathrust (a,b) and subsidiary
fault (c,d). View 1s a perspective of the megathrust
from the southeast (left) to the ncrchwest (right).
Depths and orofile distances are in km.
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the averaging for representative nodes along the megathrust
presented here in a perspective view. The arrow in the
figure indicates on which node tlie averaging 1is centered.
In Figure 3.9a we see that for the upper part of the mecga-
thrust, the averaging values are very small, again showing
our lack of resolvability in this area of the fault. In
Figure 3.9b the kernel values are larger in amplitude indi-
cating our abil'ty Lo estimate the slip in this portion;
however, we see that there are large side iobes. The
negative averaging coefficient, indicated by the bar extend-
ing downward, means that a positive dislocation on the
centzred fault node could be traded off with a negative
dislocation on this node, and the data would not be aktle to
tell the difference. In Flgure 2.9c we see that the aver-
aging over the adjacent nodes to elther side of the cent:al
node is fairly severe, and that there 1s a slight amount of
coupling to the subsidiary fault. In the bottom figure, we
see that the emplitudes start to become more peaked, indi-
cating vetter resolvability. We also note thati the slip in
this area 1s completely uncoupled from the £~ .*p on the sub-
sidlary faulting. This shows how the effect of the subsid-
lary fault is very localized with respect to the megathrust.

The examples are continued in Figure 3.10. Sections a
and b of this fijure continue to show that on the lower

part of the megathrust we are ab.e to determine fairly well
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the "best fit" estimate of the slip, but this slip is
generally averaged over the one or two adjacent nodal seg-
ments. Figure 3.10c¢ shows the averaging kernel for th2
top most nodal segment of the representation of the Patton
Bay fault Here, the displacement 1is almos*® exactly
determined. The height of the bar is almost unlty, 0.997,
and th2re 1is practically no spatial averaging. We would
expect this resuit, considering that this fault segment
treaks the surface and the amount of dislocation on this
nodal segment is constralned by the scarp size on Montague

Island. Likewise in Figure 3.10d, the dislocation at some

depth on the subsidiary fault i well determined, and there

is practically no trade-off in dislocation here to a dis-
location on the megathrust. |

The information contained in the averaging operator
can be summarized by defining a resolvability ratio for
each kernel. This ratio is defined as the ratio of the
value of the diagonal coetficient of R tc the averaging
ralf-width. This averaging half-width, though somewhat
ambigucus in some instances because ¢« asymmetries; can

usually be estimated,however. The averaging half-width 1is

measured from the ca2ntral fault node to the point where the
averaging first crosses zero. r[his ratio is convenient and
meaningful in the sense that it takes into account both the

variables javolved in estimating resolvability: the height

.

1
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of the kernel and the aveiraging distance. For well resolv-

able features of our model we would expect large ratios;
for less well resolvable features, smaller ratics. The
results for this particular fault model are shown in Figure
3.1,

In this figure, we see that for the upper 75 km of the
megathrust, there is a total lack of resolvabillity, con-
tiolled by the lack of data which are sensitive to a dis-
location 1in that area. The resolvability is slightly
peaked for the area of the megathrust immediately under
Middleton Island, but again there is no resolvability in
the area between the islands. The resolvability decreases
rather evenly for the lower end of the megathrust. This
is thought to be due to the fact that the dislocations are
occurring at distances tarther and farther away from the
data, thus disiocation averaging starts to become a
protlem and the resolvability is reduced.

3.7 Stress and Strain Energy Density Change.

In terms of understanding the focal processes of earth-
quakes, an imrortant parameter 1s the stress drop. In
previous studies of earthquakes, the stress drops were ob-
tained through empirical formulas or exaci derivations for
speclal purpose geometry of the crack (for example, Starr,
1928; Knopoff, 1958; Aki, 1966). The stress drop over some

fault dislocation area is usuvally given by the following
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type relation,

Ao = ———m (3-2)

where uy i1s the rigidity, Um 15 the maximum displacement, W

is some measure of the size of the fault, and n is some

constant dependent upon the geometry and nature of the
faulting. Use of this formula results in stress drop values

that are averaged over the entire fault plane. For in-

e e e e

stance, Brune and Allen (1967) estimate the stress drop from
the average offset given by Savage and Hastie's (1966) dis-
location of the 1964 Alaska earthquaks to he 27 bars. Tn
this calculation, n 1s taken to be 1.23, W=200 xm, Um=

.
= dyne/cm2. 1f we were to use their

13.3 m, and u=3.0 x 10
formulation with our average dislocation, we would obtain

| 2 stress drop of 30 bars. Chinnery (1969) and Sato (1972)

- point out that in order to evaluate n the assumption of an
E ' infinite length fault 1s usually made. These two authors
g have derived the expression for the stress drop for a

L finite rectangular fault, and they show that the stress

i drops obtained for these faults are smaller than what cne
| would obtain for infinite length faults. For the Alaska
r

earthquake, Sato (1972) estimates n to be 0.97 when a
constant displacement over the fault surface in an ideal-

by ized medium is considered. His resulting estimate of the

i A Tl L Al b il g ;\_._...._.k-‘"—"\ e W
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stress drop using this parameter and our average disloca-
tion would be about 22 bars. This last value 1s still an
estimate of the stress drop averaged over the entire fault
surface. However, i1t 1s obvious that if the dislocation
is varying over the fault plane, and the geometry of the
plare changes with distance, the stress change will not be
a constant over the ertire fault surface. Jungels (1973)
has shown that for several earthquakes the stress drop can
vary along the fault by as much as an order of magnitude.

To estimate the stress drop along the width of the
fault we can apply equation (3.2) to each cf the nodal seg-
ments which define the fault plane, buf there 1s always
uncertainty in the estimate of the parameter n. Jungels
(1973) has shown a more direct method of calculating the
fault stress drop distribution with the finite element
method. This 1s accomplished by first imposing e composite
prestress fleld on the structural modgl. This is done by
applying a dislocation to the edges of the structural
model. From this initial state, we can compute the equi-
librium final state that would be caused by the introduc-
tion of our best fit dislocation model. Then, at every
point of the structure, the Adifference between the initial
and final stress flelds defines the stress change. If A7
is positive, then the particular model caused a stress

drop. If Ao 1s negative, then we have a stress increese.
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It is clear that for a "dislocation" model the magnitude of
the stress change 1s controlled cnly by the magnitude of
the fault offset and the elastic constants of the struc-
tural model. Thus the prestress only has importance in
terms of the strain energy chenge where the sign of the
stress drop matters. The shear stress change approximately
parallel to the megathrust i1s calculated by this method
and i1s contoured throughout the cross section studied.
(Figure 3.12). The values contoured are exact away from
the fault plane, but for the nodes defining the plane 1t-
self, the actual stress drop is approximately twice the
value shown. This error arises from the fact that a linear
behavior of displacement 1s assumed inside each element in
the finite-element grid. This error results in an under-
estimate of the stress change on the fault surface (Jungels,
1973). Assuming that the error is exactly a factor of 2 in
this problem, we see that for our best fit model the stress
change along the fault itself varies from a stress increase
of 86 bars to a stress drop of 215 bars. The stress change
over the entire width of the fault averages a stress drop
of approximately 40 bars. This indicates how misleading a
value of the average stress drop could be.

The details of the stress change are very interesting.

We see that both ends of the fault underwent a net increase

in shear stress. For the shallow portion of the megathrust .




O e ta e

K=
K=
K=
K=
K=
Kz
K=
K=
K=
K=

CONTOUR VRLUES

1 2C= -.6000€ 02
2 2C= -.400OE 02
3 2C= -.2000€ 02
4 2C= 0.0

S 2C= 0.2000€ 02
6 2C= 0.4000E 02
7 2C= 0.6000€ 02
8 2C: 0.8000E 02
9 2C= 0.1000€ 03
10 2C= 0.1200€ 03

IMIN= -4 ,3225E O1 ZmAX=

CONIOUR PLOT OF STRESS OROP  PARALLEL TO FAUL

1.0787€ 02 DEL2= 2. al

x x x

== x

x
[ R DR TR T}

CONTOUR VALUES

= 1= 0.0

2 2C= 0.S000€-02
3 2C= 0.1000€-01
4 2C= 0.1500€-01
€ 2= 0.2000€-01
6 2C= 0.2500€-01
7 2C= 0.3000¢-01

IHINS

1.6500€-07 ZmAX= 2,8001¢-02 DEL2:= S.0000E-03
CONTOUR PLOT OF STRAIN ENERGY DENSITY CHANGE

Figure 3.12.

Stress change and strain energy released

around the fault surface for an average prestress
level equal to the average stress drop. Positive
contour values of stress chansi represent sgress
drops. .

Units are bars and 10

ergs per km




-98- }

this 1s an argument in favor of our best fit solution with '
its small offset in thils region. It follows that if we
increased the offset on the shallow end of the fault, even q
though we could not resolve this increase with the surface
data, the stress change would incr:ase in proportion and
this in turn would make that region a prime candidate for
aftershock activity. The fact that significant aftershocks
were not observed here (Algermissen et al., 1972) argues

for our best fit solution. On the other hand, if the off-

e e e

set at the shallow end of the megathrust were the maximum
amount indicated on Figure 3.8, in all likelihood the dis-
placements would rupture the free surface. I{ this was

the case, the stored stress would be relieved and thus
there would be ‘ery little or no aftershook activity. A
search of the literature concerning this earthquake re-
vealed that there seems to have been no post-earthquak:
reconnaissance of the ocean floor in the viecinity of
Middleton Island and further toward the Aieutian trench,

so that the possibility of this occurring cannot be ruled
out. A hydrographic and ocean-bottom-scanning sonar survey
of the area to the southwest of Montague Island revealed
fresh scarps on older en echelon faults sub-parallel to the
extension of the Patton Bay fault (Malloy and Merrill, 1969.)
These authors attribute these scarps to the Patton Bay

fault system. It is conceivable that much of the strain
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from the large dislocations on the very shallow end of the
megathrust could be relieved in this fashion. That is,
large displacements on the fault surface are absorbed
through a system of high angle bifurcatioas of the main
thrust sheet. We will see in the next chapter that this is
precisely what occurred during the 1971 San Fernando,
California earthquake. Unfortunately, for the Alaska
earthquake, the data are not adequate to prove or disprove
that this condition existed, and further speculatlon along
these lines seems fruitless.

Another area of slight stress increase on this flgure
is found in that region where the offset function in the
best fit model goes through a local minimum between the
30 m slip plateau and the 17 m slip plateau. We have seen
from the above dlscussion, however, that this minimum is
not resolvable, so therefore the existence of the stress
increase in this region is not resolvable by the data.
Most of the stress drop along the fault surface occurs
where the fault dislocation is the greatest. The maximum
stress drop, 215 bars, is found along the megathrust Just
below the intersection of the Patton Bay Fault.

A plot of the strain energy density change in the
media as seen in the lower half of Figure 3.12 illustrates

that most of the energy avallable for seismic radiation

would come from the central area of the megathrust in the
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same region where the maximum stress drop occurs. The

21ergs/km3. A

contours 1in the figure are in units of 10
direct comparison can be made between this strain energy
density plot and the multiple rupture characteristics that
Wyss and Brune (1967) found for this event. These authors
interpret the P-wave radiation as caused by a multlple
event source mechanism whereby the rupture initiating at
the hypocenter travels up the fault plane triggering dils-
crete selsmic events larger than the initial event. The
largest of these discreté events has been located on the
megathrust 20 km southeast of Montague Island. The pulse
from thls region was delayed from the initial pulse by a
time corresponding fto a rupture velocity of 3.5 km/sec

and had an amplitude significantly larger (up to 30 times
larger) than that radiated by the initial snock. This
agrees qualitatively with our estimate of a large strain

20 3

energy density change of up to 0.28 x 10°““ergs/km” concen-

trated below Montague Island, while in the hypocentral

reglon, the energy density change 1s computed to be only

20 3

0.02 x 10" "ergs/km~-.

3.8 Accuracy of the Plane-Strain Approximation.

We would like to somehow approximate the errors that
occur by making the plane-strain approximation that we have
taken in this example. One way of getting an estimate of

this error 1s to approximate the fault model by a series of
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tnree—dimehsional Volterra planes and to use the static
dislocation theory (Smylie and Mansinha, 1971; or equation
{2.2)) for a three-dimensional fault in a homogenous half-
space. Although this model will not have the influences
of the lateral heterogenities included, it will serve to
estimate how good or bad the approximaiion 1s that we have
made. A Volterra approximation to the finite-element
structural model was made. This model consisted of 22
individual fault elements, 18 to describe the megathrust
oand 4 to describe the subsidiary faulting. The Volterra
fault ‘elements are planar surfaces centered on the posi-
tion of the finite-element fault nodal segments and extend-
ing halfway to the adjacent fault nodal segments. Only
those fault nodal segments were modcled on which there was
a calculated non-zero displacement. Several of the nodal
szgments, at the shallow end of the megathrust and at the
very deep end of the megathrust, had "best fit" dislocation
estimates of zero. These segments were not modeled with
the Volterra approximations. The dislocation which 1is
constant over the planar surfaces was taken to be equal
to that of the finite-element fault nodal segment at the
center. The parameters for this model approximation are
given in Table 3.3.

We first calculated the vertical displacement for a

profile due to this fault model with the length of each




TABLE 3.3
Fault Segment Dip d W <Au>
(deg) (km) (km) (m)

1 6.0 8.5 22.8 0.99
2 6.0 11.0 21.4 2.93
3 6:0 13.0 18.0 10.17

4 6.0 150 16.2 16.72
5 6.0 17.0 18.2 16.39
6 6:0 19.0 20% 1 14.66

i 6.0 21.0 16.0 16.05
8 6.0 22.5 13.0 24.91
9 6.0 24.0 9.7 29.98
10 6.0 25.0 fel 33.22
11 6.0 26.0 14.2 29.42
12 6.0 27.5 20.0 28.28
13 8.0 29.5 20.0 29.99
14 11.5 32.5 20.4 23.91
15 14.0 36.5 20.4 15:35
16 15.0 41.5 20.8 11.70
17 15.0 47.0 31.2 2.17
18 130 9.5 41.6 1.03
19 58.0 0.0 2.4 4,05
20 58.0 2.0 4.0 3.31
21 58.0 5.5 5.8 7.18
22 58.0 10.5 8.0 2.83
Table 3.3. Source parameters for the 3-dimensional

homogenous approximation to the finite-element model
of the Alaska earthquake.
the planar fault surface; W is the width of the fault

surface measured along the dip; and <Au> is the fault

dislocation.
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d is the depth to the top of
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planar surface taken to be 10,000 km, or effectively in-
finity, to thus approximate the plane-straln criterior. The
profile was taken to be equi-distance from the ends of the
fault elements and pery :ndicular to the strike of the
system. The vertical displacements in a profile were then
calculated from this fault system but now the lengths of

the individual fault elements were set to 600 km, the
approximace lower limit for the fault length estimated to

be apprcpriate for this event. The profile was taken, not
across the center of the fault system, but at a position

80 km from th: ceqter and still perpendlcular to the strike
of the fault system. This profile 1s 220 km from one end
of the fault and 380 km from the other end. This 1s approx-
mately the maximum distance profile BB' in Figure 3.2 can

be consicdered from the center of the fault system. The
estimated errors arising from the plane-strain approximation
was taken to be the difference between the computed dis-
placements for these two profiles. This difference is a
function of the distance away from the origin of the fault
system. The origin of the fault system is taken to be the
point at which the shallow end of the megéthrust projects
to the surface. The differences are presented in Figure
3.13a. It is seen from this figure that the maximum dis-
placement error expected from the plane-strain appnroxima-

tion would be about 0.35 m for thls particular model. The
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Figure 3.13. Estimates of the errors to the cal-
culated vertical displacements (top) and horizon-
[ tal displacements (bottom) due to the plane-strain

assumption as a function of distance along profile
BB',
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differences between these two profiles are relatively con-
stant at about 0.25 m, and the sign of the error 1s such
that the deformation at the surface 1is being underestimated.
Thils implies that the free surface displacements for a
fault dislocation model with a finite size length are
slightly larger than those from a model in which each fault
component has infinite length. Thus, we can say that the
displacements calculated for the finite-element model are
an upper bound tc that necessary to fit the data. Consid-
ering the finiteness of the length of the actual fault, we
would need only slightly less displacement on the mega-
thrust.

Now the horizontal dispiacements are put to the same
test. Horizontal Jdisplacements in the direction perpendilc-
ular to the strike of the fault system from the Volterra
dislocatlion model were calculated for both a profile due
to an infinite length fault and for a profile 80 km away
from the center of a fault system that has fault element
lengths of 600 km. Figure 3.13b shows the differences
between the former and the latter profiles. It is seen
here that as the profile distance becomes greater than
half the fault length, the errors due to the plane-straln
approximation start to tecome more significant. It 1s seen

here that for the farthest distance along the profile, thz

expected error in the calculated horizontal displacements
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1s about 0.5 m. The sense of this error is that the esti- J
mated horizontal displacements made under the plane-strain |

criterior are too large. Thus in Figure 3.6 where we ‘

estimated that the reference station for the measured hori-

zontal displacements (Fishook station) actually moved 4 m to {

the southeast, we have to reQise this estimate to be about ‘

3.5 m. The area of horizontal stability. that is, the area l

where no horizontal movement was expected, is still some t

75-100 km to the northwest of the reference station. !
We will now briefly examine the implications of the |

estimated error due to the plane-strain approximation.

Since only the vertical displacements were actually used

in the inversion procedure, only the errors associated with

these measurements will affect the resolution of our model.

Since the estimated errors due to the plane-strain assump-

tion affecting the data points used in the inversion were

about equal to the estimated observational error of the

data themselves, we can estimate that at most, the total

variance of the data should be multiplied by a factor of 4,

As we can see from equation (2.33), if we want to recognize

a given perturbation to our model at the same confidence

1imit as before (95%), then the size of the perturbation

will have to be doubled. This means that in Figure 3.8

the amplitude of the stippled area will Ye doubled if we

keep the shape of the perturbation'as before. This implies
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that the steepness of the rate of dislocation fall-off with
distance from the maximum plateau going toward the hypo-
center is not quite as resolvable as before. For the other
two perturbations considered, the conclusions arrived at
before are unchanged.

3.9 Conclusions.

A dislocation model has been presented for the 1964
Alaska earthquake. The surface displacements from this
model are calculated with the finite-element numerical
modeling technique in which the effects of both the known
geologic heterogeneities of the regicn and the non-linearity
of the assumed fault plane are taken into account. The
dislocation model, which was obtalned using a stochastilc
inversion scheme, fits with high precision both the ob-
served vertical and horizontal displacements. The calcu-
lated static offset along the fault plane was found to be
variable and to have a maximum amplitude much greater than
previously imagined, although the average moment agrees
with that observed from long period surface waves. The
two-dimensional displacement field was found to be strongly
partitioned above énd below the fault surface, with most of
the displacement occurring above the fault. The calculated
displacement at the shallow end of the fault model was
found to be almost non-resolvable due to the lack of sur-

face displacement data, while the displacement near the
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hypocenter was well constralned by the data. Along with

the displacement calculated along the fault surface, both

the stress drop and the strain energy density varlied widely.

The maximum stress drop found was 218 bars, while at both
ends of the fault the stress field increased as a result of
the static dislocations. The region of maximum stress drop
and maximum strain energy density change calculated from
this static study was found tc correspond to the reglon of
maximum compressional wave radiation. The errors caused

by the plane strain approximation for thls event were
analyzed and found not to affect any of the above conclu-

sions.




