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I.  Summary 

Previous reports under the project have shown that in order to make 

realistic estimates of acoustic gravity wa.es and seismic surface waves 

generated by underground events, such as explosions and earthquakes, the change 

in surface displacement field or the source parameters of the eve;" must be 

obtained.  Surface displacement data for actual events is usually limited 

and of dubious quality. 

Section II deals with the development of a systematic apprcach of 

determining the dislocation or relative displacement on the fault surface 

from a limited set of observed surface displacement data vrith their esti- 

mated errors.  The technique gives not only a best fit dislocation model but 

allows one to determine the reliability of the model and the resolving power 

of the data set.  The resulting dislocation model can then be used to extrap- 

olate the surface displace.iti.^ outside cf the data set. 

Section III deals with the applications of the inversion technique 

described in the previous section to the change in surface displacement data 

caused by deformation resulting from the 1964 Alaska earthquake. For this 

earthquake, a two-dimensional finite element numerical model is used to 

calculate surface displacements from a dislocation imposed on a fault surface 

located in a heterogeneous medium. The inversion technique is used to 

calculate a dislocation model which fits the observed data to a high degree 

of accuracy. An error analysis is carried out for the plain-strain approxi- 

mation, and the resolvabllity of the features of the calculate-! dislocation 

is examined. The results indicate that the observed deformation occurred 

•mt 
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as the result of massive underthruscing of the Alaska continental block by 

the downgoing Pacific plate. 

Sections II and III are chapters II and III of Ralph Wilson Alewine, Ill's 

Thesis (1974) titled "Application of Linear Inversion Theory Toward the 

Estimation of Seismic Source Parameters". References and details cited in 

these sections can be found in the Thesis. This thesis has been submitted 

and successfully defenaed as partial fulfillment of the requirements for the 

Degree of Doctor of Philosophy at the California Institute of Technology, 

Pasadena, California. 

J 
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Chapter 2 

Development  of the Stochastic   Inverse 
as  Applied to Static Dislocation  Problems 

2.1    Introduction. 

The  first   requisite  in the  application  of any  theory 

toward the estimation of seismic source parameters is  the 

ability to solve  the  forward problem for  the  observed 

data type  for  an  appropriate  seismic  source .     This means 

simply that  given a  certain method of physically describ- 

ing a source   (analytically, numerically,   or by  analogue) 

we  are  able  to estimate  changes  in data  for a given value, 

or change  in  value,   of particular parameters which 

describe    the  source.     Mathematically  this   is mapping 

changes in the  source model space into changes  in the 

data space.     What will be discussed  first   In this  chapter 

is  Just  this  process,  and later we will   look at  the 
i 

inverse of this  process.     By the  inverse   of this process, 

we mean that   given  some observations,  what  estimates  can 

be made  about  the  different  source parameters which 

describe  our source? 

The  inversion scheme  for static  data that we propose 

in this  chapter has  the provision for the  inclusion of 

the estimated variance of the data that  is  to be inverted. 

The inclusion of this data variance gives  rise to the 

■ 
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fact that we  cannot  now  -stlmate  the  seismic  source para- 

meters  exactly,   since  smaU perturbations  In the model 

source parameters  might  cause  changes  In the  calculated 

data values which  lie   Inside  the  estimated data error 

limits.     This   concept  gives  rise  to our wondering what 

ability that we have  to actually  resolve  any detail  of the 

various  parameters  of our fault  model.     This  resolution 

question will be  examir^d in some  detail  in this  chapter. 

V»e  will  first   consider the  problem of estimating 

source  parameters   for static data.     The procedure devel- 

oped for this  case  can then be  extended to that  of esti- 

mating dynamical  source parameters.     This  extension is 

done  in  a later  chapter.    A brief review of the  develop- 

ment of static  field solutions due to various earthquake 

sources  is in order. 

2.2    Development  of the Forward Static Problem. 

Numerous  attempts have been made  in  the  past  several 

years  to  Interpret  the  observed permanent   changes  in  the 

displacement  and  svraln fields  due  to the   occurrence of an 

earthquake.     Various  approaches to the solution of this 

problem have been proposed, each based on a slightly 

different  interpretation of the earthquake   source process 

as a whole.     In each of these  approaches,  there exists  in 

the Interior of the  elastic medium some discontinuity 

V 
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surface which we can associate with a "fault".  The diff- 

erent initial or boundary conditions that can be applied 

to this discontinuity surface give rise to the various 

approaches.  These approaches can be broken into four main 

groups:  stress pulse theory, stress relaxation theory, 

dislocation theory, and numerical analogues.  With the 

exception of the dislocation theory, which wil be treated 

in more detail, a short description of the approach of 

each of these theories will be presented.  The dislocation 

theory Is reviewed in more detail because it involves a 

parameter that is readily observable when the discontin- 

uity surface breaks the free surface — a physical offset. 

In addition, it is somewhat more straightforwardly pleas- 

ing to model static dislocations on the surface caused by 

static dislocations imposed within the medium rather than 
l 

the more obscure parameter.i — stress and strain. 

However, it will be seen that the other theoretical 

approaches can be equivalenced to ioaw dislocation repre- 

sentation in the static limit. 

Dislocation Theory.  As a mathematical model of a "fault", 

the concept and formulation of a physical dislocation has 

been extensively used.  The dislocation surface in an 

elastic medium is viewed as a surface over which there is 

a discontinuity In displacement.  One of the first efforts 

v 
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to explain the elastic displacements resulting from a 

dislocation was that done by Vvendenskaya (1956, 1958). 

Probably the most lucid explanation of the dislocation 

theory for calculating static changes that accompany 

faulting was given in a set of papers by Steketee (1958a, 

1958b).  In these papers, Steketee recognized that the 

relations for the displacement field in an infinite elas- 

tic medium strained by a dislocation over some surface as 

given earlier oy Volterra (1907) would be appropriate in 

describing the deformation that accompanies faulting. 

Steketee derived., through the use of Galerkin vectors, the 

expressions for static displacements in an infinite 

elastic solid.  These relations were given in compact form 

as integrals over the dislocation surface. 

In his papers, Steketee poses the following problem. 

A dislocation surface, X , is created with an elastic 

solid which is bounded by some surface S .  The rrv u a is 

then strained by the introduction of a certain distribu- 

tion of "nuclei of stralr" (Love, 19^) along the dislo- 

cation surface.  The nuclei were shown to exist in si;: 

basic forms corresponding broadly to a combination of a 

center of dilatation and a double force without moment, 

and secondly, two coplanar, mutually perpendicular double 

forces with moments.  For pure shear dislocations, only 

— - — 
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the latter type nuclei are applicable, whereas, for pure 

tensile dislocations, the former are applicable.  The 

displacements at a point Q, u. (Q), within the elastic 

solid can be written as 

uk(Q) Bill//     Au^P^j^QjVjdZ 

" HiTr//s Ui"ij(^)Vs   • 

(2.1) 

In this equation v^ are the direction cosines of the 

normal to the dislocation surface elements, y is the 

rigidity, and Au^P) is the dislocation function on the 

surface %,    It is seen that for an arbitrary dislocation, 

a set of six of these functions is necessary.  (1=1,2,3 

J«l,2,3 with ij=ji.) The kernels of the integrals, 

w1^(P,Q), are the displacements at the observation point 

due to a single nucleus of strain A summation over all 

nuclei is implied.  As the surface S is enlarged to in- 

finity, the displacements, u. , on S approach zero and the 

second integral vanishes. 

The formalism for this problem was extended to include 

a dislocation in a semi-infinite elastic medium by a 

 -A— 
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superposition of solutions, which together satisfy the 

required boundary conditions at the free surface.  These 

I boundary conditions require the solution to be a fairly 

I complex boundary value problem, however. It Is cleverly 

I solved by a superposition of solutions In the following 

I . manner.  The tangential stress at the free surface Is 

made to -anlsh by the addition of an Image dislocation 

"above" the free surface.  This last superposition Is 

commonly referred to as the Bousslnesq problem.  The 

strength of the Bousslnesq load Is such to cancel the 

I ' normal stress on the free surface which Is doubled by the 

J  • addUlon of the Image source.  Using the Volterra rela- 

tions, the displacement field at a point Q In a seml- 

Inflnlte medium Is then given by 

»*w = ^///UICP)WIJ(P'Q)V2- (2-2) 

Comparison  of  (2.1)   and  (2.2)  shows that  only  the  values 

of the kernels  are  changed by the Imposed boundary 

conditions.     The kernels   of  (2.2), W^,  are the  set  of 

Green's  functions  found  from the  superposition of solu- 

tions which satisfy these half-space boundary conditions 

. . -"V    - —aig  :   a  —   -    - - ■      - -~J^ ^ ^ -^—^— 
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Steketee (1958a) gives the exact form of one of these 

functions, W*  which Is all that Is necessary to approxi- 

mate a vertical strike slip fault.  Chlnnery (1961, 1963, 

1965) took the general expression (2.2) and derived an 

exact analytical form of the displacement and stress fields 

on the surface of a seml-lnflnlte medium for an Internal 

rectangularly-shaped dislocation surface modeling a verti- 

cal strike slip (transcurrent) fault.  In performing these 

calculations, Chlnnery assumed that the dislocation dis- 

continuity was constant over the entire fault, and he also 

assumed that the Lame parameters for the solid were equal 

so that the integration could be carried out exactly. 

Thus, the elastic medium for which this theory is applica- 

ble is one in which the Poisson ratio is constant at 0.25- 

Steketee (1958a) showed, however, that (2.2) is valid where 

Au1(P) takes any form (Somigllana dislocation) provided 

that the tensile forces across the dislocation surface sum 

to zero. 

Maruyama  (196^4)  has derived the  reiur.lnlng five  sets 

of Green's  functions needed in the solution of an arbi- 

trary dislocation problem.     He   further gives  explicit, 

analytic  solutions   for the displacement  field  at  the  free 

surface due to constant   finite dislocations on rectangular 

surfaces.     The dislocations considered are those only along 

^.X. ^äm MM .*_ 
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slngle primary axes.  The examples that he presents In- 

clude cases for which the dislocation surface , X, is both 

perpendicular and parallel to the free surface. 

Maruyama (1963) and Burridge and Knopoff (1964) 

showed that the displacement fields produced by a disloca- 

tion on a mathematical description of a dislocation fault 

surface is equivalent to that produced by a suitable dis- 

tribution of forces on the fault surface acting as if there 

was no fault present.  Utilisation of this fact makes 

possible the use of work in mathematical elasticity theory 

done much earlier than Steketee's (1958a) work. Notable 

in this early literature is that by Mindlin (1936) who 

treated the static problem of a single force acting in a 

homogenous half-space. Mindlin and Cheng (1950) give 

explicit expressions for the displacement and stress fields 

due to point forces and double forces acting in an elastic 

half-space.  Maruyama (1964) gives a short summary of the 

early literature in Japan and elsewhere on this subject. 

This include', work done by Sezawa (1929), Honda and Miura 

(1935), Whipple (1936), Soeda (1944) and Yamakawa (1955). 

Press (1965) showed that the kernels of (2.2) could be 

derived in a straightforward manner from the results of 

Mindlin and Cheng (1950). Press obtained the same results 

for a vertical strike slip fault as Chinnery had lone 

\ x 
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previously, and obtained the same results for a vertical 

dip slip fault as Maruyama (1961) derived.  In this paper. 

Press (19fc'5) addeu the analytic expressions for tilts and 

strains for these particular fault orientations.  Savage 

and Hastie (1966) used the theory given by Maruyama (1961) 

to calculate the vertical displacements induced by dis- 

locations on fault surfaces that could have components of 

dip other than in a direction perpendicular to the free 

surface.  This led to the ability to model more geologi- 

cally realistic faults. 

Mansinhi and Smylie (1971) completed the derivation 

of the displacement fields due to burled dislocations on 

finite rectangular surfaces. These authors give the com- 

plete closed form, indefinite integral expressions for 

the entire displacement fields, both at the free surface 

and at any depth in the elastic half-space, due to a 

rectangular dislocation surface that can be arbitrarily 

inclined. The fields are presented in such a form that 

they are readily evaluated numerically on the computer and 

involve only simple algebraic and trigonometric functions. 

However, these authors do not give the formulas for the 

strain and tilt fields arising from a dislocation across 

an arbitrarily Inclined surface. These strain and tilt 

fields can be easily obtained from differentiation of the 

- 
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dlsplacement  fields.     Appendix 1  of this  thesis  gives the 

results  of this differentiation. 

Chinnery  and Petrak   (1968)  extended the  work  of 

Chinnery   (1961)  by  considering a model of a  vertical 

strike  slip  fault on which thj  dislocation  uniformly  and 

smoothly  goes  to zero near the edges  of the  dislocation 

surface.     This  variation was   chosen so as  to remove  the 

stress  singularity  that was  occurring at  the  edge  of the 

fault  surface  in the  original work.    Except   in extreme 

cases,  the  tapering of the  dislocation near the  edges  of 

the  surface had little  effect  on the overall  displacement 

fields  calculated on the  surface. 

Ben-Menahem and Sin^h   (1963a)   and Ben-Menahem and 

Gillon   (1970)   computed the  integral expressions   for the 

displacement   field,  both  dynamic and static,   at  the   free 

surface for a model of a vertical strike slip  fault and a 

vertical dip slip   fault   for a medium which contains  a 

layer of arbitrary  thickness  over a uniform half-space. 

These  authors  point  out   that due  to the  complexity  of the 

problem,  the  use  of the  Galerkin vectors  for elastic 

problems  involving more than one  layer over a half-space 

would be extremely  difficult.     These authors  suggested the 

use of a method employing Hansen's eigenvectors  in obtain- 

ing the static repponse  of a multllayered homogenous 

1    1 1 «^ i^^^^MMtMHMHMrfMMHI^^M^M-^^M 
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half-space.    McGlnley   (1969)   and Sato  (1971)   achieved 

much  the  same  results  as  these  authors  by  the   superposi- 

tion  of several half-space   Green's   functions  solutions 

off-set  in such  a way  as  to represent  a layered half- 

space.     Braslau and  Lieber  (1968)  solved  the  static 

linearly elastic  problem of a  concentrated vertical 

Volttrra dislocation in a layer over a half-space.    They 

made  use of a special  displacement  function which they 

called a modified Galerkin vector to give   the  solution in 

a form which must be evaluated numerically.     Singh  (19 70, 

1971)  has  applied the Thornson-Haskell matrix propagation 

method  (Thomson,  1950;  Haskell,  1953)  to solve  the problem 

of static deformation in a multilayered elastic half-space. 

He  obtains  source  functions  for the  six elementary dis- 

locations  that were  given by  Steketee   (ir58a).     Explicit 

integral expressions  are  given for the  surface  displace- 

ments  for a vertical strike  slip and vertical dip  slip 

fault when these  faults  can be  represented by  concentrated 

or point  sources.     Extension to finite size  sources  is 

given as another integration involving the  dislocation 

surface.     Recently  Chinnery  and Jovanovich  (1972)  have 

calculated the displacement  field due to a vertical 

strike-slip  fault  of Infinite length  for an earth model 

consisting of two  layers of arbitrary thickness  and 

X 
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rlgldity  over a half-space.     Their expressions  are  given 

In series  form so that  no  further Integration  Is  necessary. 

On the  basis of this  model,  they  conclude   (and thus  agree 

with  McGlnley   (1969))  that  the presence  of a low  rigidity 

layer would have  a very  strong  (amplifying)  effect  on thj 

observed displacements  and strains  In the  far  field. 

Ben-Menahem and Singh   (1968b)  treated In detail  the 

problem of deformation of a uniform non-gravltatlng sphere 

due  to Internal Volterra type  dislocations  of arbitrary 

orientation and depth.     This work was  subsequently  expanded 

(Ben-Menahem e^ al_.,   1969,   1970;  Singh and Ben-Menahem, 

1969;   Ben-Menahem and Singh,  1970; Wason  and Singh,   1972) 

to Include the  computations   for the  displacement  and 

strain  fields  everywhere  on the  surface of a homogenous 

sphere  Induced by an Internal dipolar source of finite 

size.     The results  for a sphere were  shown to be  quite 

different than that expected In the  far-field half-space 

problem. 

Stress  Pulse Theory.     This  approach has  seen  limited use 

In explaining elastostatlc phenomenon.     Kasahara  (1957) 

devised this method to model the mechanism of an earth- 

quake  as  a distribution of stresses  or strains  Imposed on 

an underground plane.    When the conditions  of elastic 

equilibrium are satisfied,  the deformations  at  the  surface 

can be calculated.    He models  an Infinite strike-slip 

\. 
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faalt with a zone of constant stress extending to a given 

depth.  The faulting occurs by the liberation of this 

Initially applied shear stress. Horizontal displacements 

were calculated for various depth extensions and compari- 

sons were made to actual faults.  By examining the diminu- 

tion Of horizontal displacement with distance, the depth 

of extension of this constant stress zone Is determined. 

This mechanism Is extenced In a second paper (Kasahara, 

1959) to Include non-vertical strike-slip faults.  The 

static mechanism presented by Kasahara is analogous to 

the stress pulse problems encountered in dynamical formu- 

lations of seismic sources.  Minster (1971*) describes the 

mathematical nuances of this approach. 

Stress Relaxation Theory. A third method of determining 

the static deformation from a model of an earthquake is 

obtained through an entirely different approach to the 

theoretical problem.  The methods considered thus far are 

all based on relations in which conditions on various 

boundaries are Imposed (boundary-value problems). 

Archambeau (1964, 1968) has proposed an alternative mech- 

anism of describing the processes which accompany the 

occurrence of earthquakes — that of material failure. 

This theory is devised In the context of an initial-value 

problem in that a medium is assumed to be initially In 

some prestressed state. Deformation in the medium is 

.  ■  JV     .       -       ^       -  ^-A < ^ . ^^ ^— 
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caused by introducing some surface, or volume, within the 

medium where the material fails.  This failure is accomp- 

lished by making a significant reduction in the shear 

tractions across the failure surface. The media then 

responds by "relaxing" to a new equilibrium state by 

radiating the energy released from the local reduction in 

strain energy in the source region. This theory has been 

very successful in the dynamical regime, most notably in 

the prediction of far-field radiation patterns from earth- 

quakes and explosions accompanied by tectonic release 

(Archambeau and Sammis, 1970; Lambert et al., 1972; 

Archambeau, 1972). Because of the theoretical complexi- 

ties, this source formulation has not yet been directly 

applied to near-field static deformation problems. 

Minster (197^1) has discussed from a mathematical 

point of view in some detail the similarities and differ- 

ences between the various formulations of the earthquake 

processes.  Although his approach is mainly based on 

dynamical considerations, he shows that in the static 

limit the general representation of the stress relaxation 

and stress pulse problems reduce to the displacement field 

as given by a generalized Somigllana dislocation along a 

surface of shear displacement discontinuity. This same 

proof was attempted by McGinley (1969), but the arguments 

presented by Minster (197^) are much more complete. 

A. .M. 
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Therefore, we may express  the  source  In  terms  of a 

Somigliana dislocation without   loss  of equivalency   from 

the  other source descriptions.     An  approximation to this 

Somigliana source will be  adopted throughout  this   thesis. 

Numerical Analogue.     An altogether different  approach to 

solving the   forward problem for dislocations  In an elastic 

half-space  Is  afforded through  the  use of the   finite 

element  numerical technique.     Use  of this  technique,  which 

usually  requires  a large computing capability,  enables 

solutions  to  be  found to problems  Involving heterogenltles, 

both  later and vertical,  and anlsotropy  Just  as  easily  as 

those  Involving a uniform homogenous,  Isot/oplc half-space. 

The  mechanics  of this method have been described exten- 

sively  In the  engineering  literature   (Martin,   1966; 

Przemlenlckl,  1968;  >enklns,   1969;   Zlenklewlcz,   1971). 

In this  technique,  the elastic half-space  continuum Is 

divided Into  geometric elements  which are  Inter-connected 

only  at  a  finite number of nodal points.     It  Is  at  these 

nodal  points  that displacements,   stresses,  or forces   can 

be  Imposed on the  system.     Concurrently,  stresses   and 

displacements  at a distance  removed  from these  disturban- 

ces  can only be measured at  these nodal points.     The 

solution to the  system of simultaneous equations  generated 

by  a disturbance  Imposed on  a given node Is  constrained 

by the boundary  conditions  relevant  to the problem and is 
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solved numerically. Jungels (1973) gives a description of 

the adaptation of this method to the modeling of disloca- 

tion fault surfaces.  The reader is referred to this work 

for a summary of the intricacies of this numerical method. 

Jungels (1973) and Jungels and Prazier (1973) make a 

positive comparison between the calculated static dis- 

placement field due to a dislocation in a uniform homoge- 

nous elastic half-space calculated by the finitt element 

method and by the conventional exact Green's functions 

techniques.  Although this author had at his disposal a 

numerical code which would allow only the modeling of 

plane strain problems, i.e., faults of infinite length, 

more recent finite element numerical codes can accommodate 

problems involving finite aimensions in all directions. 

The great advantage of this method in calculating dis- 

placement and strain fields from models of earthquakes Is 

the ability to vary the elastic properties of the medium 

both over the fault surface and the source to observer 

path.  This technique can be limited, however, by the 

shear size of computer storage necessary to solve a prob- 

lem in which the continuum must be very finely sampled 

in order to accurately approximate the continuum for the 

order of the disturbance being modeled. 

• ■ -^      IIIB — '  ■  ^      ^  -   - ^ —^ __^__»_    _ ^^ ^^ 
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2.3    Application  of the  Forward Problem  coward the 
Explanation  of Observed Static  Data. 

As   Is   obvious   from the  preceding discussion,  much 

progress has  been made  toward  the  static modeling of the 

earthquake  source.     The  state-of-the-art  Is  such that  now 

an accurate  description of the  static  processes  accompany- 

ing  faulting can be Investigated.     However,  the  Inverse 

problem now  remains.     As  the  facility   for calculating the 

displacement   and strain  fields   from fault models became 

more  sophisticated,  a wider range  of cata came  under 

scrutiny in trying to infer some  information about  the 

various  parameters  which  affect the   faulting process.     The 

earliest  attempt  to extract  source  information  from static 

data was   applied to differential horizontal displacements 

measured near long vertical strike-slip  faults.     Kasahara 

(1957,   1959),  Chinnery   (196l),   and Chinnery and Petrak 

(1968)   tried to infer the  depth  and  distribution with 

depth  of dislocation  faulting by  fitting the  rate  of fall- 

off of horizontal displacements measured parallel  to the 

fault  strike  as  a function of distanw« away  from the sur- 

face  expression of the  fault.     A trls.1  and error method 

was  used to  fit  the  data and to try  to exclude possible 

faulting models.     Press   (1965)   and Press  and Jackson   (1965) 

used Press'   calculations  to model  the  close-in vertical 

movements  associated with  the  1964 Alaskan earthquake. 

"V „ ■  —, , - — —*-        - '■-- ^—— 
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These movements were modeled w^th a vertical dlp-sllp 

fault and an Indication was sought as to the depth of 

faulting.  A comparison of the calculated and observed far- 

field residual strain steps was also undertaken.  Singh and 

Ben-Menahem (1969) attempted to fit the same strain obser- 

vations using their meth  for taking into account the 

earth's curvature.  In both these studies, no attemp. was 

made to systematically vary the source parameters to 

achieve the best fit to the data. 

As displacement data for large earthquakes became more 

abundant and reliable, it became apparent that the simple 

fault models having a constant dislocation over the entire 

fault surface could not adequately represent the observa- 

tions. Stauder and Bollinger (1966) first proposed that 

differential slip on the fault surface might provide a 

more realistic model to better fit the data from the 1964 

Alaskan earthquake. They approximated the differential 

movement by allowing the displacement on the fault, Au, to 

vary piecewise along the direction of the slip. To do 

this, the total fault plane was taken to be a sum of the 

individual fault surface rectangles, each being weighted 

separately.  Unfortunately, these authors used a rather 

simple source model representation in that it uad diifer- 

entlal movement only on a horizontal fault parallel to the 

surface.  Furthermore, they gave no indication as to how 

. ^ MM *_^ 
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they arrived at their final model.  One would guess that 

they used the trial and error method. 

Savage and Hastle (1969) and Hastle and Savage (1970) 

have described a quasl-lnverslon process to be applied to 

the fitting of earthquake static displacement data using 

the dislocation models for an arbitrarily oriented finite 

fault surface imbedded in a homogenous half-space.  In 

these studies, these authors swept through predetermined 

sets of sensitive fault parameters — fault width, dip 

angle, depth, and slip — calculating the degree of fit to 

all the data for each model tested.  he model which best 

fit the data in a least-squares sense was termed the opti- 

mum model.  These calculations seem to closely coincide 

with the Monte Carlo techniques used to find acceptable 

models of the radial distributions of the elastic param- 

eters within the earth as described by Press (1968, 1970, 

1972).  In these cases a reasonaole fit to the data was 

obtained, especially in the case for the Pairview, Nevada 

earthquake.  Pitch and Scholtz (1971) later extended this 

work to some degree. However, the dislocation model used 

in these cases was highly idealized in that it was 

restricted to the Volterra type dislocation in which the 

slip was constant over the entire dislocation surface. 

———————— 
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2.N Construction of the Pseudo-Somlgllana Dislocation 
Static Model . 

Since It has been shown that the fault geometries can 

be more complicated than Just plane rectangular surfaces, 

some means must be derived to allow in our mathematical 

representation of the faulting process for these complica- 

tions.  Complications to the simple models can occur In at 

leas ■'■wo ways.  The first complication is that we wish to 

be able to allow the dislocation to take on arbitrary 

values as a function of position over the fault surface. 

Secondly, the fault surface may not be a single rectangular 

plane.  Both of these complications can easily be repre- 

sented approximately by discretizing the dislocation sur- 

face. That is, we want to approximate a curved fault 

surface by a series of planar surfaces Juxaposed in such a 

manner as to approximate the curvature of the surface to be 

matched.  Curvature, or splaying, could be thus modeled in 

any direction.  An example of matching curvabure in the 

horizontal direction could be envisioned by a model of the 

San Andreas fault which includes the region of the bend in 

srathern California.  Here a series of plane vertical rec- 

tangular surfaces could be concatenated horizontally to 

match the observed curvature.  Similarly, a dipping thrust 

fault in which the dip varies with depth could be approxi- 

mated by a series of rectangular pleets positioned verti- 

cally to make a continuous surface in which the dip could 

l 
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change  dlscontinuously between  fault  elements.    Examples  of 

modeling dipping thrust  faults  In  this  manner is  given  in 

later chapters. 

With  this  same  scheme,  the  dislocation could be 

allowed to  differ on each of the  surface  elements which 

comprise  the  total dislocation surface.     Restriction on 

the variance  of the source parameters  from one surface 

element   to the next would have  to be  imposed to keep the 

problem physical. 

2.5    Linearization of the  Forward Static Problem. 

The net  displacement or strain  field at  the surface, 

or at  any point  off the dislocation surface could be cal- 

culated separately  for each of the Individual segments 

using one  of the  forward problem formulations discussed 

earlier in this chapter.    The total elastostatic field at 

a particular observation point would be a simple sum of the 

individual contributions  from each  of the  comprising 

elements. 

We wish  to pose the problem In  such a way as  to be 

able  to write down a succint relationship between the 

values   of the  source parameters  and the  data functlonals 

which we  compute  from the  forward problem calculations. 

Suppose  that we  calculate the  values  of the elastostatic 

field at  a single point exterior to the dislocation sur- 

face of our chosen fault model system which is made up  of 

• ■ ■ > 
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N different  variously-oriented dislocation surface ele- 

ments.     Consider that  the elastostatlc  field can be 

described by  N  field variables, preferably  those  for which 

we can observe in the  field following an earthquake. 

Suppose  that  there  are  L source parameters which can be 

linearly related to the elastostatlc  field through the 

forward problem formulations.     Then  this  relationship is 

given through the system of linear equations 

L-M 

2^  k<<™<   ■  d. for 1 » 1,N. (2.3) 

In these sets  of equations d^^ are the calculated elasto- 

statlc field functional values, m.  are the values of the 

linear model source parameters, and the  coefficients A^, 

are the elastic media response of a particular data func- 

tional due to a particular fault surface element having a 

unitary  source  strength  for the  linear parameters.    These 

coefficients are in general a function of position.    If we 

treat  the  components of m. and d1  as elements  of a column 

and row vector respectively and If we put the  coefficients, 

A,,,  in standard matrix form where  the matrix has L'M 

columns and N rows, we can express   (2.3)  1« the  following 

 -— "   ——————  ——-■— 
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(2.U) 

The model components of m are contained In the vector 

,L-M space E and the  data  functional  components  are con- 

tained within the  vector space E   .     The  matrix, A ,  can be 

considered a vector operator which maps  E Into E   . 

We have been careful In this  construction to limit 

ourselves to problems where the  source parameters  In the 

space EL*M can be  linearly related to the  calculated 

elastostatlc  field functlonals In space E   .    This strictly 

linear relation Is valid for only a few source parameters 

In special Instances.    If the  forward problem Is to be 

solved by the analytic closed form Green's  function solu- 

tions,  for example equation  (2.2), then we have to Impose 

the Volterra restriction 

AUjCP)     "    constant. 

With this  restriction we can write 

"k"» " Wj//^(p>a)vJds; . 

and the problem Is now linear with respect to slip In the 
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1th direction  on the  Individual dislocation surfaces.     In 

general,  the  solution cannot be  so easily  linearized with 

respect  to other parameters which  characterize  the  dis- 

location source-fault  length,  dip  angle,   depth, position, 

etc..     An examination  of the  forward equations  given by 

Mansinha and Smylie  (1971)  is  convincing with this respect. 

Fortunately, by numerically evaluating these expressions, 

we can show that they are locally linear.    The extent of 

the  locally  linear domain varies  from source parameters  to 

source parameter and  also with the  absolute  value of the 

source parameter.     If sufficient  care  can be paid to these 

details,  the problem can be approximately linearized for 

all the source parameters  listed above.    The  linearization 

can be accomplished in the  following simple way. 

The degree of linearity or non-linearity of the 

forward problem functionals  for the  various source param- 

eters will be model dependent,  that is,  it will vary  from 

source model to source model.    If we wish to describe the 

linear domain in a field about some  chosen model,m,, we 

choose some other source model,m2,   "near"m,   such that 

the  following equation can be written 

A 4» * Ü   +   0C i2 - n^ |   ]. (2.5) 

.V M* 
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The  following definitions have been  applied; 

6m   -   m2  - m1 (2.6) 

6d    ■    d(in2)   - dO^)   • (2-7) 

ddn.)  is the elastostatic field for a particular source 

model m..     The problem is  linearized only if 6m is 

sufficiently  small  for equation   (2.5)   to hold.     The con- 

ditions   for  linearity discussed here  are  equivalent to 

requiring the  forward problem functlonals to be Frechet 

differentiable  with respect to the  source parameters. 

If we calculate the  forward problem for a source 

model description which we think will  reasonably approxi- 

mate the  observed static field functlonals,  call this 

model m ,  then  for small perturbations about this model, s 
6iiu,  an approximate  linear relationship between the two 

vector spaces  is established.    This  is to say that the 

coefficients  of A^,  are linear.    We note here that  in 

general,  the  coefficients of A^.  are not independent of 

the model HL.     Indeed, their dependence is a measure  of 

the non-linearity of the operator coefficients in the 

region of the model space being sampled by the test model 

ni . The perturbations,  6mo> must  remain sir«ill in the sense s s 
that they  are approximately linear throughout this region. 

.*• i i »\    ■■■■i      '~~- —      - —-——-^ -^ ■*-— --   - —«^—~^ 
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In our matrix notation the  forward problem Is now written 

A6ms     =     6ds   . (2-8) 

2.6 Derivation of the Stochastic Inversion Operators. 

Introduction. This section addresses the problem of ob- 

taining the best estimate of the source parameters charac- 

terizing a fault model given a suite of observations which 

can be linearly related to the faulting process. The 

problem here follows closely that encountered In the 

studies regarding the estimation of the radial distribu- 

tion of velocity and density within the earth.  In this 

area of research, much theoretical progress has been made 

In the last six years In the treatment of Inversion 

schemes to estimate these distributions. Perhaps the most 

successful and certainly the most elegant of these schemes 

falls In the general category of stochastic Inversion 

theory. This theory, which will be applied to the treat- 

ment of elastostatlc problems in this thesis, attempts to 

give the best estimate of a dlscretlzed approximation to 

the contiguous faulting process when a limited amount of 

data Is obtainable.  As pointed out by Jordan (1972), the 

Inverse problem when posed In this manner usually has no 

unique solution. However, the solution that Is obtained 

Is unique In certain respects, as will be discussed later. 

"''"'''' 
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Furthermore, the stochastic approach allows fo. the in- 

clusion of Inaccuracies In the estimation of the elastü- 

statlc field observations. How these Inaccuracies affect 

our model estimations will be fully explored In the 

chapters devoted to the application of this theory. 

The fundamentals of the theory for the solution of 

the underc on strained linear Inverse problem for data that 

contain certain amounts of "noise" have been presented by 

Backus and Gilbert (1967, 1968, 1969, 1970). Jordan and 

Minster (1971) and Jordan (1972) incorporated portions of 

the Backus-Gilbert theory with the purely stochastic 

theory of Franklin (1970) to present a quite complete 

approach to the solution of this type of problem. The 

theory as applied here to static problems is essentially 

that due to Jordan (1972), and an attempt has been made 

to follow his notation throughout this thesis. Sophisti- 

cated discussions as to the validity of this type of in- 

verse and the mapping functions of the operators are given 

in this reference. The derivation of the stochastic 

inversion operators below are given only in the context as 

to how they apply to the elastostatic problem. In the 

derivations, for reasons of simplicity the notation used 

is for a linear problem.  If applied to non-linear problems 

that have been linearized In the procedure discussed above, 

the difference vectors defined in (2.6) and (2.7) are 

—— 
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merely substituted for the true model and elastostatlc 

field vectors . 

Derivation.     Consider the problem of determining some M- 
M 

dimensional vector model, m,  contained In  the  space E   , 

given a N-dlmenslonal elastostatlc  field  vector, d,  In the 

space EN.     The  elastostatlc  field values  are  related to 

by the system of linear equations 

f>lJ«J   =  dl 1 "  ^ N   ' (2-9) 

3-1 

In matrix notation 

Am-d  , (2-10) 

where the operator A solves the forward problem for each of 

the N elastostatlc field values contained In d by mapping 

EM Into EN. Thus for every model m there exists some 

unique determination of d where 

d- d Cm) . (2.11) 

If we take the actual field observations which are measured 

following the occurrence of an earthquake to be In vector 

form, d0» and these meaeurements are made perfectly with no 

^\. ^^^^^^^^^^^__^^M^Hi 
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inaccuracies, then 

_3H. 

d0    =   d (m)   . (2.12) 

Assuming,  of course,   that  the formulation  of the  forward 

problem will exactly   determine the  elastostatic   field 

values.    However,  if there are any Inaccuracies  in the 

observed field values,  then these observed values,  d0J  can 

be written as  a combination of the projected  field values 

plus some measure  of the uncertainty in these  observations, 

d0    -    d(m)  + n    , (2.13) 

or by substitution from (2.10) 

Am«    drt + n (2.14) 

Here n is  a vector containing the components  of the "noise" 

in the observed field data.    We assume that  this noise is 

randomly distributed in a Gaussian fashion and that any 

bias to the data is  removed before the noise is estimated. 

Each component,  dn   ,  is  assumed to be the mean of a 
1 2 Gaussian random variable with variance, a^     We  can define 

a diagonal variance  operator, Cnn,  to be 

. 

.    -V    - ^^ 
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2 
'l 
.    a; .2 

0      .      . 'N 

(2.15) 

where a? Is  the estimated variance  of the 1th data value. 

In assuming this diagonal form, we are Implicitly assuming 

that there  Is no co-variance between data. 

Since the  only Information that we have about m Is 

contained In  (2.1^), we know nothing about  the  components 

of m which lie outside  the space RCEM which is  spanned by 

the vectors   {a4:i»l,N}.     It Is reasonable to require that 

our estlindte  of m,  call Iv m,  lie totally within the sub- 

space B;  then we  can assign a non-zero value to only those 

compononts  for which we have Information.     Under this 

restriction, we can write 

m A^b (2.16) 

N 
for some vector b contained In the vector data space E . 

A* In thly  last equation, we are using the notation A   to 

represent the transpose of the rrntrix A.    This  convention 

will be used throughout this thesis.    To select an optimal 

b, call this b, we wish to minimize a suitable quadratic 

N. 
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measure of the errors  involved In this  estimation.     We 

choose to minimize  some weighted sum of two measures   of 

the  errors  Involved In this  problem.     This weighted sum can 

be  parameterized by  a trade-off curve between these  two 

errors, with the position along this  curve  used as  the 

parametric  factor.    Specifically, we want to minimize 

e2(e,b)  = c2(b)  cos(e)  + »|(k)  8ln(e) (2.17) 

where 

«J(W m- A^bl (2.18) 

emd 

r2
2(b)-    l^i    , (2.19) 

The  first measure of error,  e1(b),  is the square of the 

Euclidian norm,  defined by 

M 
E S  • 
1-1 

of the difference between our estimate of the model, m, 

and the actual vector we are estimating. This quantity 

decreases as we more closely approximate m.  The second 

x 
v 
\ 
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measure of error associated with b arises from uncertainty 

In the components of d0.  This quantity decreases as our 

estimate becomes more reliable.  The parameterization 

angle, e. Is allowed to vary on ehe interval [0,TT/2], SO 

that at 6 = ir/2, e^b) Is minimized. Indicating maximum 

reliability of the model.  At 6 = 0, e^b) Is minimized, 

indicating maximum accuracy in the estimation of the model. 

We note here that these two errors are measured with 

two different norms, each in the model space. We must 

establish some common norm on each of these errors so that 

the parameterization of the sum of these errors can be 

accomplished. This normalization is performed through the 

introduction of a correlation operator, W. This correla- 

tion operator can be thought of simply in terms of a 

weighting function for the various model components.  The 

norm of this operator is fixed so that at the critical 

point on the trade-off curve between the two types of 

errors, at 9 « ir/M, the absolute value of the two errors 

are equal. 

For the present, we assumo that the correlation 

operator, W, is the idemfactor, I , so that this effect can 

be ignored in our minimization calculations.  The results 

of this minimization then will be generalized to Include 

an arbitrary correlation operator. 

^    — ^- 
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In order to minimize e2(e,b) given in equation (2.17), 

we take 6b to be a small arbitrary perturbation of b. To 

first order in 6b we can write 

6e2(e,b) - e2(e,b+ 6b) - e2(e,b)  . 

Performing this  first  order perturbation on equation  (2.17) 

we  find that 

6e2(e,b)  =  2[bAA*-m>f]6b  cos(e)  + 2 bCnn6b sin(6)   . 

In order to minimize e2(e,b), we set 6e(e,b)  =  0.     When 

this  is done, we see that  6b  truly is an arbitrary pertur- 

bation, and e2(8,b) will be stationary if and only  if 

( A A + tan(b) Cnn)b    - Am  . (2.20) 

It can be shown  (Jordan,   1972)  that this stationary point 

is  a unique minimum,  and the vector, b , which satisfies 

this  condition is our optimum vector, b. 
p 

If C      is non-singular,  that is, each o,   / 0,  and 
nn •L 

6  >  0, then the matrix  ( A A* ♦ tan(e) Cnn)  is non-singular 

sind 

b-    (AA* + tan(e) Cnn)"1Am (2.21) 
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In  this  last equation, mis  unknown but by  substituting 

from equation  (2.10)  we  get 

b=    ( AA* + tan(e) C^)"1 d0   • (2.22) 

Substituting this optimal value of b Into equation (2.16) 

we see that the optimal estimate of the model for a fixed 

value of 8 will be given by 

m = A* (AA* + tan(e) C^)"1 d0 . (2.23) 

In the above results  all components of m are  equally 

weighted with the Identity  operator.    A more general 

weighting can be  Introduced by considering a set   {W.;J=1,M} 

of non-zero positive weights   for the model components . 

Let  us define this weighting,  or correlation matrix.  In the 

following mannerj 

W 

w 1 • 
wi 

I • 
I   0   •    • w N 

\ 

** 



-no- 

Thls  leads  UP  to define  a normalized elastic media response 

operator 

A*     = AW    . (2.24) 

With this normalized definition,  equation  (2.10)   is  now 

written 

AW"1in=    d0     . (2.25) 

Following the  same procedure  as before, we  require 

m=     A'^b   , (2-26) 

and minimize 

e2(e,b)  =   Mm-   A^bHJ cos(e)  +   lfCnnb sin(e)    , 

where M "I|w is the weighted norm defined by 

zu« • z"w'lz  - ?fe) 

This weighted norm, of course, reduces to the Euclidian 

norm if W. ■ 1 for all i - 1,M. The minimization of 

E2(8,b) with respect to a variation of b precedes as before 
W 

The results are 

m- WA*(AWAt + tan(e) C^)"1 d0 . (2.2?) 

■ Jh ■..■-■■■■w* »A-  ■ - 



Now since  there  are  uncertainties  in  the  observed 

elastostatic   field,  the best  estimate  of the  model, m,   is 

some   filtered average  of the  true model, m,  given by 

m  = R m (2.28) 

This averaging operator, which contains the response ker- 

nels for the elements of mean easily be found by substi- 

tuting for d0 in equation (2.25)- Performing this substi- 

tution in equation (2.27) we obtain 

m = WA*(AWA* + tan(e) C^)"^ m , 

or by  inspection from equation  (2.28) 

R    -   WA#(AWA* + tan(e) Cnn)"1A    . (2.29) 

Individual rows of this operator contain the averaging 

of the estimated values of the individual model components 

with respect to the other model components.  This averaging 

is taking place in a sense that the estimation of the ith 

model component is actually the true value of this component 

"convolved" in the model space with the function defined on 

the model space by the components of the ith row of the 

averaging operator.  If a particular model component is 

perfectly determined, say the 1th value, that is, its value 

is perfectly resolvable, then R^ - 1 and all other R^ ■ 0. 

v 

J 
^ *m 
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In the limit of Infinite resolution on all model com- 

ponents, that Is, either e - 0 or Cnn = 0, the averaging 

operator approaches the Idemfactor, I . 

By similar substitutions, we can express equation 

(2.19) as 

«*C«,b)    ■    mV(e)m   | (2.30) 

where y<: have  defined a new operator 

V(e)  = WA*(AW A* ♦ C      tan(e))"1 Cnn( AW A* + nn nn 

Cnn tan(e))"1AW   . 
(2.31) 

This operator is termed the variance operator. Examining 

equation (2.30) we see that the bilinear product of this 

operator and the model components Is a measure of the error 

Induced from the data space, through the variance matrix 

C . Into th*» model space. Since we are assuming that the 
nn 

errors exhibited in C  are normally distributed, we can 

determine the following about the errors induced from the 

data space due to inaccuracies in the description of the 

elastostatic field into inaccuracies in the estimated 

source model parameters. Use of this operator does not 

tell us the absolute inaccuracies of our estimated model 
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per se; instead, it can only tell us whether or not a 

certain perturbscion in the model is resolvable to a cer- 

tain degree by the data.  So in practice, we have to 

prescribe a perturbation vector on our source model and test 

to see if the data can "see" this perturbation. This 

ability to distinguish model perturbations by the observed 

data will depend directly on the accuracy of the data. The 

more accurate the data, the smaller a »nodel perturbation 

these data will be able to detect.  Since we are now map- 

ping errors in the opposite direction as that defined in 

equation (2.30), clearly the inverse of this operator is 

the projection that we desire. Since the errors are 

induced in directions along the eigenvectors of V(e), then 

we choose to take the inverse of this operator as the 

generalized inverse given by 

+      J 

v(e) - £ -?«i»«i  • (2-32) 
i-1 Xi 

Here we are assuming that V(e) har  a total of J non-zero 

eigenvalues  (X?,  i«l,J)  with the associated eigenvectors  u^. 

The notation u1«u1 Indicates  an outer-product  expansion 

between the two vectors ■*  and fe.    Since V (6)   is  a 

generalized inverse of V(e), then the inner product   Df 

VO)   and V+(e)  are not necessarily the Identity  operator 

J 
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but rather some projection operator, P that is both 

idempotent CPV Pv = Pv) and symmetric (Pv = Pv). 

In particular, some vector perturbation in the model 

space, q , is resolvable to within a certain confidence 

limit, to which we can assign some confidence coefficient 

k(c), if the following inequality holds. 

* t     2/ v 
q V q > k^(c) . (2.33) 

For example, for the 95%  confidence limit, k(c) can be 

found in any good statistics reference to be 1.96. 

A two-dimensional geometrical argument will illus- 

trate the use of equation (2.33). Assume that the errors 

induced from the data space onto the model space by the 
2 

variance operator (eigenvalues of this operator) are a 

2 ? and o  .  (This variance should not be confused with the 

data variance defined in equation (2.15)).  These errors 

lie along the eigenvector directions, x, and x2 respect- 

ively. Now if a vector x has components along these 

directions then the equation 

- 

«•»♦i 

can be written out 

m. nu 
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Thls is Just the equation of an ellipse whose semi-major 

axes are ko  and ko  .  This ellipse, or hyper-elllpsold 

when this argument Is extended to higher dimensions. Is 

called the confidence ellipse.  The enclosure of this 

ellipse represents the area of unresolvable model pertur- 

bations, and the area exterior to the ellipse represents a 

model perturbation which la large enough to be resolvable 

by the data at a certain confidence limit associated with 

the axis parameter k. By making k larger, we are Increas- 

ing the confidence limit and Increasing the size of the 

confidence ellipse thus requiring larger model perturba- 

tions before they can be detected by the data at that con- 

fidence limit. In order to check the resolvablllty of a 

given model perturbation,we choose our value of k (say 

1.96) and merely test to see If this vector protrudes the 

confidence ellipse. We note here that this resolvablllty 

criterion depends only on relative perturbations to the 

source model parameters and not on the absolute configura- 

tion of the final or optimum model that we obtain from the 

Inversion process. Thus we have to propose a hypothetical 

perturbation,or a series of perturbations. Judiciously 

chosen to explain or disclaim certain features of our 

model, and expose them to this testing procedure. Only on 

this basis can we determine the limits the model source 

X 
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parameters can take and still fit the observed elt^to- 

static field.  The power of this operator becomes apparent 

when applied to actual problems as we shall see in later 

chapters. 

2.7  Discussion. 

In this chapter we have discussed the development of 

methods of obtaining an accurate representation of the 

forward elastostatic problem for a given description of 

the faulting process.  We have reviewed the early uses of 

these forward formulations in attempting to deduce source 

parameters which can characterize a given event.  A method 

was suggested by which a more complicated and arbitrary 

static dislocation function could be approximated with the 

formulations derived from simple dislocation sources.  It 

was found that by making possible a more complex static 

source description some means must be used to systemati- 

cally relate the observed elastostatic phenomena to the „ J 

media response from t ■ various source parameters.  The 

stochastic inversion scheme provided an ideal means to 

give the best estimates to the solution for the usually 

underdetermined static problem.  By use of this inversion 
■ 

scheme, we ca« benefit from the use and knowledge of the 

various operators which fall out of the derivations.  These 

operators deal with the errors in both the observations and 

those in our solutions. Quantitative appraisals of the 
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decency of a given solution to a particular static problem 

become  available  through  the  use  of these operators. 

For the  special case  of  8  =  0,  equation  (2.23)   Is 

commonly known  as  the generalized Inverse.     For this  case. 

Noble   (1969, p.  1^3) has  shown through the method of 

Lagrange multipliers that  the  generalized Inverse  also 

minimizes  the norm of m.     We  can think of this  as  physi- 

cally  giving the  longest wavelength,   or smoothest  model 

solution,   for a given set  of data.     In elastostatlc prob- 

lems,  this  property  Is especially  valuable,  since we  would 

expect the displacement on a fault surface to locally  vary 

In some   fairly smooth fashion. 

By combining all of the  formalisms discussed In this 

chapter, we should be able to take a formidable advance  In 

our understanding of the  static processes which accompany 

earthquakes.     The theory  discussed here will be  applied  to 

data  from actual earthquakes  In the  following chapters. 
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Chapter 3 

A Static Dislocation Model of the 
1964 Alaska Earthquake 

3.1 Introduction. 

The Alaska earthquake of 2 8 March 1964 which was 

centered near Prince William Sound was probably the largest 

seismic event in North America this century. The magni- 

tude of this event has been estimated to be between * 

M =8.3 to M =8.6. With the possible exception of the 
S 8 

1971 San Fernando, California earthquake, this earthquake 

has been the most Intensely studied occurrence in the 

history  of geophysics.    The regional deformation accompany- 

ing this event  involved changes in land level of unprece- 
2 dented areal extent, encompassing some 200,000 km  .     The 

residual  vertical displacements produced were measurable 

geodetically along a 400 km profile approximately perpen- 

dicular to the Gulf of Alaska and approximately  800 km 

adjacent  and parallel to the  coastline.    Yet despite  the 

Importance that this earthquake had on the tectonic 

character of the affected region and the importance  of the 

contributions that the data from this event provided toward 

an increased scientific understanding of the origin of 

earthquakes,  considerable  controversy still surrounds the 

exact  source mechanism.    It  Is hoped that  the results   from 

■  i ■X ..-^>—- - ^ . „^ -^ 4, -> : ^^*im 
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thls  chapter will help allay  some of this  controversy, 

3.2    Fault Repräsentation. 

Since the  first studies of the  196M Alaska earthquake, 

the main  focal mechanism and the accompanying sense of 

motion have remained somewhat  of a controversy primarily 

because of the ambiguity of the  fault plane solutions 

based on P-wave  first arrival data.     The two contesting 

mechanisms  are one having the geow.xry of a nearly  verti- 

cal reverse  fault,  and the other a low angle thrust  fault. 

Figure   3.1 shows a profile extending from the southeast to 

the northwest approximately bisecting the elongated area 

of deformation.    This cross section corresponds  to profile 

BB'   shown in Figure  3.2.    In Figure  3-1 we have diagrammat- 

ically represented the two possible  fault plane mechanisms 

and their relation to the hypocenter,  shown at the  inter- 

section of these two planes.    The representative geometry 

that we choose to explain in detail the static  fields 

which accompanied this earthquake must be in reasonable 

compatibility with the geometry necessary to explain the 

following observed or calculated entities: 

1) epicenter location and hypocentral depth 

2) P-wave  first motion polarities and S-wave 

polarizations 

3) aftershock distribution 

4) radiation patterns of long period Love and 

^A. ^M 
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Figure 3.1.  Schematic diagram of the two possible nodal 
planes and tne relative dislocation on each. The hypocenter 
of the main shock Is located at the Intersection of the 
two planes. 
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156- 

Figure 3.2.  Regional deformation that accompanied the 
March 28, 1964, Alaska earthquake.  Cross section used In 
this study is labeled BB*. The Patton Bay fault is 
indicated as the axis of uplift. Figure is from Plafker 
(1967). 
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Raylelgh waves 

5) geological reasoning for faulting — Island arc 

Implications 

6) near  field displacements. 

We will briefly review the geophysical literature for 

supportive arguments to favor one or the other of the pro- 

posed mechanisms.  We will then adopt a model which we 

think will best fit all of these crlterlor. 

The hypocentral depth for the main event was first 

given to be about 20 km, and in later calculations with 

the inclusion of more data the depth was restricted to 33 

km.  (This restricted depth is the standard depth assigned 

a shallow event when the depth determination algorithm 

does not converge, or else converges to a negative depth.) 

No depth sensitive phases, such as pP or sP could be 

positively identified on records of the main shock. A 

reasonable assumption would be to place the depth as lying 

between 20 km and 50 km. The hypocenter certainly was not 

deep as evidenced by the large amplitude surface waves 

generated by this earthquake.  The epicenter of the main 

shock was located by Sherbume et, s.1. (1968) and von Hake 

and Cloud (1966) to be near the north shore of the Prince 

William Sound on the small peninsula separating College 

Fiord and Unakwik Inlet. The coordinates of the epicenter 

are given as Sl.Qk0  + 0.05° north latitude and 1'47.730 

^ - 
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+ 0.07°  ^est   longitude. 

The  focal  mechanlim for the  first motion of this 

earthquake has  been studied by  a number of authors 

(Algermlssen,   1961,  1965,  1966; Harding and Algermlssen, 

1969; Berg,  1965; Stauder and Bolllnger,   1966).    These 

studies show only  one  fairly well-defined nodal plane. 

There  Is  some  slight  ambiguity In the  exact  orientation of 

this plane  due  to non-lmpulslve,  or emergent P-wave  first 

arrivals  at  a number of key  stations,  but this  Is  a second 

order effect.     The preferred orientation of this nodal 

plane  Is  given  to be  strike N 62° E,   dip  82°  S.     The  defi- 

nition of the  second nodal plane  Is  limited because of the 

almost total lack of geographlca:   control In the station 

locations.    Berg  (1965)  attempted with  limited success to 

determine  the orientation of this second nodal plane by 

observing a dilatation at one station,  Yellowknlfe,  Canada. 

The location of this station Is critical In defining this 

second nodal plane.    The orientation of this plane has been 

estimated to give a dip of 26° to the northeast.     This 

unfortunate  distribution of stations to the north of the 

epicenter precludes the  Identification of the nodal plane 

that would be present due to a low angle thrust,   although 

the plane has been restricted by the  data presented by 

Stauder and Bolllnger (1966).    These authors  conclude that 

the second nodal plane can have a dip varying from less 

X    -  
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than 25° to the northeast through 5° to the northwest  to 

less than 60°   . •  the  southeast.     S-wave polarization studies 

suffer from the  sa^e  restriction  in  the  station distribu- 

tion respect.     The  results  from the  S-wave  polarization 

angle  study  by Harding and Algermissen  (1966)   indicate  that 

for a double couple type source on a nearly vertical  fault 

the  required motion to  fit the  observed S-wave polarities 

would be  predominantly  strike-slip. 

One  suggestion that must be kept  in mind when trying 

to interpret  the  orientation of the nodal planes  from first 

motion data is  that presented by Wyss  and Brune   (1967). 

These  authors  suggested that the  faulting which occurred 

over the entire  segment involved a complex multiple rupture 

mechanism.     If this mechanism is in  fact  the way the  fault- 

ing took place,   then the initial motion  at the hypocenter 

can have  little,  if any, bearing on how the  faulting pro- 

ceeded as  a whole. 

One  clue  as  to the possibility  of deciding which  type 

faulting took place is  given by examining the spatial dis- 

tribution of aftershocks.     Algermissen et  al.   (1972)  present 

Just  such  data  for over 2,000  locatable  aftershocks. 

Special  attention was  given to a sub-set  of this  aftersh ^ck 

location data which were well located and contained posi- 

tively identifiable depth phases.     These events  showed that, 

especially  in the vicinity of Prince William Sound, the 
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aftershocks  were  shallow.     In  fact,   approximately 62$ 

were  located at  depths  less than  20 km with only 1% of the 

events  located at  depths  greater than  kO  km.     This  depth 

distribution of aftershocks suggests  that most  or all of 

the  faulting was  confined within  the   crust  and perhaps  the 

top of the  upper mantle  along the   continental margin. 

These  authors  depict  the  foci of the  aftershocks  located 

in this  area under consideration as  defining a plane which 

dips  at  a shallow angle   (40-60)  under the continental block. 

Focal mechanism studies  of the aftershock by Stauder and 

Bellinger  (1966)  delineate  a fault  plane  some  600 km in 

length and at least  200 km In width having an average dip 

of about 10°, while  the main shock had a depth of focus  of 

between 20  and 50 km and had a body wave nodal plane solu- 

tion dipping between 10° and 15°. 

The outer limits of the aftershock region appear to be 

very well defined and the region is not  confined along the 

surface  trace of the postulated steep-fault model.    The 

aftershocks  lie mainly in a bread belt  roughly paralleling 

the continental margin mostly  falling in the area of mapped 

or inferred major uplifting.    The  aftershock zone is not 

even approximately centered on the epicenter of the main 

shock. 

Surface wave  studies of this earthquake have been 

limited to  long period multiple Love and Rayleigh waves  due 

V 
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to the  tangled complexity  of the  large  amplitude  records 

at  the WWSSN   stations.    With only  few exceptions,   ehe   first 

multiples  to be   fully  recovered have  been  the R^  and G4 

wave trains.     These  signals have been  analyzed in two 

different,  but  hopefully equivalent,   ways.     Toksoz et   al. 

(1965)  and Ben Menahem et al.   (1972)   used the  spectral 

phase  and  amplitude equilization method while Kanamorl 

(1970)   used  a  time-domain ar.    ysis.     For a simple point 

double couple  source,  the  radiation patterns   for surface 

waves  for the  two contesting fault  orientations  are approx- 

imately equivalent.    However,  if the  source has  some 

finlteness  as exhibited by propagating in a given direc- 

tion then assymmetries in the Love  and Rayleigh wave ra 

diation patterns are introduced.    As pointed out by Savage 

and Hastie   (1966,  p.   ^899-1*900),   the  assyrometries between 

Love and Rayleigh wave radiation patterns will be different 

only if the  rupture propagation Is not  along the null 

axis.     If rupture does take place in a direction away  from 

this  axid  then there is a possibility  of distinguishing 

uniquely  the  two  fault orientations.     Because  of differ- 

ences in azimuthal cov  .age, Ben Menahem et al.   did not 

detect  any assymmetries in his radiation patterns while 

Kanamorl did.     Kanamorl interprets  this  asbymmetry in 

terms of a measured component of rupture propagation 

normal to the strike of the  'ault.     His  solutions  favor 
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the low-angle  thrust mechanism and his  model Is  compatible 

with  the  long period surface waves  radiation patterns  for 

a  fault  dipping at  about  20°. 

Plafker  (1965)  uses his Interpretation of a vast 

quantity  of  field observations  In the  area of deformation 

to argue  rather  forcefully  for the  low  angle  thrust mechan- 

ism.    These arguments will not be repeated here but are 

based mainly on the  large displacements  In relation to the 

focal mechanism studies and the spatial distribution of 

aftershock selsmlclty.     Plafker  (1972)   extends  much the 

same arguments  for a low angle thrust fault In the context 

of being consistent with the mechanism expected for Island 

arc tectonics   (Isacks et al.,  1968; Stauder,   1968).    He 

concludes that  the earthquake occurred as shear failure on 

a fairly  complex major low angle thrust  fault,  or mega- 

thrust, that  dips  from the vicinity  of the  offshore trench 

to beneath the  continental margin.     The  overthrustlng Is 

Interpreted In terms of elastic rebound resulting from the 

progressive  underthrustlng of the oceanic crust and mantle 

beneath the  continental margin prior to 1964.    This mech- 

anism Is consistent with Benloff's   (195^)  theory  for 

oceanic trenches and associated mountain ranges. 

On the basis of modeling the observed vertical dis- 

placements,  Press  and Jackson  (1965)  and Press  (1965) 

attempted to demonstrate that the observed uplift and 

i 
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subsldei.ce  could be  accounted for by  about  10 m of con- 

stant  dip-slip  motion on a vertical plane extending from 

a depth of about  15 km down to a depth  of 150 km or more. 

These  authors  did not  Include In their data set  all  verti- 

cal displacement    points  available.     Savage  and Hastle 

(1966)  and Hastle  and Savage   (1970)   got better results 

trying to fit  the  same data with a low angle thrust  fault 

with about  10 m of constant displacement  over the entire 

surface.     Savage  and Hastle  showed that   the  vertical re- 

verse  fault  model  geometry placed the   zone  of maximum sub- 

sidence too close  to the zone of maximum uplift, whereas 

for the  low  angle  thrust geometry,  this  observed lack of 

symmetry In the  vertical displacements  Is  approximately 

satisfied.     Stauder and Bellinger  (1966)   accomplished a 

more realistic modeling of the displacements  on a hori- 

zontal thrust  fault on which differential movement on the 

fault  surface was  allowed.     These  authors  tried to Include 

the effects  of local  or subsidiary  faulting on Montague 

Island (see  Figure  3.2).    The lecal faulting shows a 

dominance  of vertical slip and has been described by 

Plafker (1965)  and Crantz et al^ (1964a,b).    Stauder and 

Bellinger (1966)  model this secondary  fault as a constant 

dip-slip dislocation on a vertical surface directly 

beneath Montague Island. 

Additionally,  the low angle geometry is preferable in 

■ ■ ■ -   — • 
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descrlblng the behavior of the observed extensive hori- 

zontal surface deformation as reported by Parkin (1966). 

The sense of this deformation Is mainly consistent with the 

seaward overthrustlng of the continental block.  This 

direction of motion Is especially predominant In the area 

between the Kenal Mountains and the offshore Islands. 

However, we see from Figure 3.1 that we would Intuitively 

expect the horizontal displacements to be In the opposite 

direction If the steeply dipping reverse faulting mechanism 

were adopted.  Thus we have decided to adopt the low angle 

thrust geometry for our fault model In explaining the 

surface displacement data because it seems most consistent 

with the seismic, geodetic and geologic observations per- 

taining to this earthquake. 

In each of these attempts in modeling the vertical 

displacements the formulation of a dislocation in a uni- 

form elastic half-space was used  (Green's functions 

solutions).  Since this is a region where there is a large 

contrast in the Juxaposed crustal types — oceanic crust 

underthrusting continental crust — this uniform elastic 

half-space approximation may not be appropriate. This 

approximation will be Investigated later in this chapter. 

All of the above models are able to fit only the gross 

features of the zero-frequency data of this earthquake, 

not Just because the earth's crust is not a uniform eüeatic 
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half-sp'ace and the slip varies continuously along the 

fault plane, but also because the estimates of the fault 

offsets were not related to the observations In a system- 

atic fashion. 

For this earthquake we will model the tectonic en- 

vironment with a laterally heterogenous geologic model. 

The finite-element formulation will be used to compute the 

static response of a structural model of the crust to a 

unit offset imposed on a series of nodal segments repre- 

senting the fault, and the inversion technique will be 

used to invert any free-surface statical observations to 

obtain the proper linear combination of these offsets which 

will result in a computed movement of the surface which 

fits the observed data to some chosen degree of accuracy. 

Since the finite-element formulaclon used in this chapter 

is limited to solving problems involving plane strain 

elasticity, any displacement profile that is to be modeled 

correctly must be approximately free of fault end effects 

and movement due to strike slip motion.  The effect of 

assuming an infinite length fault will be discussed in a 

later portion of this chapter. 

Tne structural model chosen for this svudy is given 

in Figure 3.3. The geometry Is based upon that suggested 

by Plafker (1972) and Stanley (1966) as being the mo t 

consistent with the regional tectonic setting of the 
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earthquake,  seismic   refraction studies,  and  the earthquake 

distribution of the   area  (Tobin and Sykes ,   1966).    The 

region is  modeled by   four geologic provinces ,   and the 

elastic parameters   for these  units have been  adopted from 

the  seismic  refraction work of Shor  (1962)   and Hales  and 

Asada  (1966)   and the  microaftershock array work  of Matumoto 

and Page   (1969).     The   seismic velocities  given  in these 

studies  are essentially  those  of typical  crustal and upper 

mantle material.     The   velocities  and elastic parameters   for 

these  units  are  listed  in Table  3,1.     Superposed upon 

Figure   3.3 is  the   finite-element  grid used in modeling the 

fault and accompanying dislocations.    The  grid represents 

an area that is  800 km long and 300 km thick.     The figure 

shows the Pacific  oceanic plate underthrusting the con- 

tinental margin beneath the eastern Aleutian  arc.    The 

majority of the material modeled in this  finite element 

grid is that corresponding to the oceanic upper mantle. 

Overlying the oceanic  upper mantle is a 5 km thick zone of 

oceanic crust which also underthrusts the  continent down 

to a depth of about   44 km.    Just  under the  Alaska trench 

we have Inserted a thin layer of typical oceanic sediments. 

The  fault model which we have assumed is  at  the  contact 

between the oceanic  crust and the  continental  crust.    The 

fault starts under the trench with a dip  of about 6° and 

slowly Increases  its  dip until at a depth of 28 km the 
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fault Is dipping at 12°.  The dip continues to Increase so 

that the dip Is 15° at the hypocenter and reaches a maximum 

of 20° below the hypocenter. 

There are only two surface faults associated with this 

earthquake, both of which are exposed on Montague Island — 

the Patton Bay fault and the Hannlng Bay fault.  Geologic 

relations (Plafker, 196?) Indicate that these faults are 

not major geologic boundaries but rather they are subsidiary 

to the zone on which the primary faulting motion took place. 

These faults can be considered as minor Imbrications of the 

megathrust.  Both of these faults have been mapped to strike 

approximately parallel to the continental margin and the 

fault motion Is reverse thrust dipping fairly steeply to 

the northwest.  The Patton Bay fault has a large component 

of dip-slip motion associated with its entire length, which 

extends for possibly as much as 450 km to the southwest 

(Plafker, 1972; Malloy, 1964, 1965). Reimnitz (1966) has 

inferred that this fault zone extends to the northeast of 

Montague Island to at least Hichinbrook Island some 50 km 

away.  The striKe-sllp component is measured as being less 

than one meter on this fault so that the motion is almost 

totally dip-slip. Von Huen? et al^. (1967) carried out 

seismic and echo sounder profiles in this area between 

Montague Island and Kodlak Island. Their results indicate 

a long narrow zone of faulting with the vertical attitude 
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of the  fault plane estimated to be 60°.    By  the  observed 

deformation of the  sea  floor,   they  conclude  that  the  motion 

was  reverse  slip  along this  steeply dipping plane   that  Is 

inclined  landward.     This   fault  is  Included Into the  struc- 

tural  finite-element model  as  a reverse   fault  dipping at 

58°  toward the  continent.     This  fault  terminates  at  depth 

where  it  intersects  the  main thrust  fault  at  a depth  of 

about 25 km.     The  second subsidiary reverse  fault   observed 

on  Montague  Island,  the Manning Bay  fault, was  not  modeled 

in  this  study because  of the  short  length  (6  km)   of the 

fault.     Another high-angle   imbricate  reverse  fault  has  been 

proposed to break the surface between the Patton Bay   fault 

anf  the Aleutian trench.     This  fault has been inferred to 

explain the large vertical displacements  on Mlddleton 

Island.    However, no direct physical evidence  confirms  the 

existence  of such  a fault,  and it  is not  Included into  our 

model.     In  all,  a total of 26 nodes  in the  finite-element 

grid were  used to represent  the megathrust  and  the  Patton 

Bay  fault,  21  nodal elements  for the megathrust  and 5 nodal 

elements  for the subsidiary  fault. 

3.3    Static Data. 

As  mentioned in the  introduction to this  chapter,   the 

crustal deformation accompanying this earthquake was  very 

extensive.    Plafker  (1969)  has described in detail  the 

regional vertical and horizontal displacements.     (See 

- 
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Plates   1  and 2  in that paper  for detailed contour maps   of 

the   ground deformation and  the   location of the observation 

sites.)     The  vertical  displacements were  based on  a variety 

of methods  of measurements,   some  of which would be   reliable 

only  If the net  vertical  deformation was  large,  as   Is   the 

case   for this event.     The   great  majority  of the  measurements 

Involved measurements  of  the  movements  of the  shoreline 

which meanders  throughout   the  area of maximum deformation. 

These  measurements  Include   changes  In tide  gauge   levels, 

measuring the change In the  upper limit of barnacle   growth, 

direct  shoreline changes,  etc..     Taken Individually,   these 

measurements  cannot be  given much reliability,  however, 

when the entire mass of these  observations is  considered, 

including correlation between geodetically determined 

changes  in bench mark  levels,  the data become quite   in- 

formative.    Plafker (1969)   discusses the acquisition of 

this  data and the associated estimate of the errors  in- 

volved. 

Although the vertical   displacements measured  after 

this  earthquake were  large,   the horizontal displacements 

appear to be even larger  (Whitten,  1964, 1965).     Unfor- 

tunately, horizontal displacements  do not  lend themselves 

to the ease of facility of measurement as do the vertical 

displacements  for this case.     Parkin  (1966) has  described 

the  retriangulation network that was occupied after the 
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earthquake.     Horizontal displacements,  generally  In the 

direction of the  seaward motion  of the  continent,   of up  to 

20  m were  observed.     Pope   (1972)   used this  data to compute 

the   components  of strain on  the  surface.     The surveys   to 

determine horizontal movements  are  too poorly  controlled 

and  too easily subject to br'as  to enable a detailed quali- 

tative  Inversion of the  strains. 

In this  chapter we will  limit  our Inversion data set 

to  vertical displacements  only.     The  reason  for this   is 

that  we  consider the  vertical  displacement data to be  much 

more  accurate  tnan other features  of the  tectonic  deforma- 

tion such as horizontal shortening, horizontal displacements, 

and changes In the  local gravity  field.    The  vertical  dis- 

placement data are taken from Plafker (1965,  1969).     Since 

with this  finite-element method we  are  limited to plane- 

sv.raln problems we will have   to limit  our data set   to  points 

that  define a profile perpendicular to the strike  of the 

megathrust.    We  chose our displacement profile to  coincide 

with  profile BB'   In Flafker's  papers   (1965,  19^>,   1972). 

Only  one major surface  fault  Intersects  this profile,   the 

Patton Bay  fault  on Montague  Island.     By  choosing our  cross 

section near the  center of the   large  area of deformation, 

the  vertical displacements  ar?  due almost totally  to dip- 

slip motion on the  fault, thus  contamination of the data 

set  due  to contributions  from any strike-slip motion is 

^. Mta   
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mlnlmlaed.  By choosing the profile In this position, any 

effects due to the finite length of the fault are also 

minimized.  As noted above, only slight amounts of strike- 

slip motion was observed along this cross section with most 

of It being on the subsidiary reverse faults found on 

Montague Island.  This absence of large strike-slip motion 

over long lengths of the fault allows accurate plane- 

strain modeling of the motions Involved.  We also restricted 

the data set to those vertical displacements that could be 

confidently projected onto this profile.  Figure 3.4 shows 

this cross section and the positions of the data available 

for projection onto this profile. The maximum distance 

away from the profile of a data point was about 75 km, but 

about 90* of the available data points were within 40 km 

of the profile. A total of 47 vertical displacement data 

points were chosen along the profile which Is defined for 

400 km from Mlddleton Island to 75 km northwest of Cook 

Inlet.  Many more observations were available within the 

40 km swath on either side of the profile, however, only 

those points that were not near a curve In the contours or 

crossed a contour were acceptable to be projected onto the 

profile. The projection was done parallel to the contours 

as defined by Plafker (1969). This projection was very 

close (within 10° In most Instances) to a perpendicular 

projection onto the profile, so that the relative location 
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Figure 3.1. Location of the vertical displacement 
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TABLE 3-2 

Vertical Vertical 
Distance Displacement Distance Displacement 

(km) (m) (km) (m) 

101.0 3.36 259.0 -0.28 
102.0 3.40 285.0 -1.20 
182.0 4.56 289.0 -1.28 
181.0 4.72 291.0 -1.40 
184.5 7.32 298.0 -1.54 
185.0 10.88 300.0 -1.62 
190.0 9.16 304.0 -1.6? 
191.0 7.92 335.0 -1.72 
192.0 7.30 339.0 -1.80 
196.0 5.48 342.0 -1.75 
207.0 3.22 346.0 -1.70 
211.0 2.68 350.0 -1.64 
212.0 2.56 351.0 -1.59 
214.0 2.36 355.0 -1.52 
219-0 2.32 359.0 -1.4u 
226.0 1.88 362.0 -0.92 
229.0 1.84 373.0 -0.92 
231.0 1.72 401.0 -0.30 
232.0 1.68 409.0 -0.24 
233.0 1.56 413.0 -0.24 
235.0 1.48 418.0 -0.22 
245.0 0.44 423.0 -0.24 
247.0 0.50 454.0 0.00 
258.0 -0.30 486.0 0.44 

Table   3.2.     Observed vertical displacement  data along 

profile BB'. 
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of the  data points on this profile  can be  considered 

accurate  to within about  5  km In the most unfavorable 

cases.     The  corresponding values  of the  Individual pro- 

jected data points  on  the profile  are given In Table   3.2, 

These  values  and their respective  location  along the  pro- 

file will  appear In several  later figures  In this   chapter. 

The  origin of the profile  Is  some   100 km southeast  of 

Mlddleton Island.     For reference, the most  southeasterly 

data point  on Mlddleton Island Is  101.0 km from the  origin, 

and the profile crosses the Patton Bay  fault at a distance 

of 185.0 km from the origin   (B').     The sources  of the  In- 

dividual  data points  and their associated errors  are  dis- 

cussed elsewhere   (Plafker,   1969).     In general,  the  data are 

accurate to within + 0.3 m, and this value was  taken in the 

inversion calculations. 

3.i|    Calculated Dislocation Model. 

The media response  matrix. A,  discussed in  the pre- 

vious  chapter was   calculated by  the  finite-element  tech- 

nique   for the structural model  shown in Figure   3.3.     In 

this  technique,  the  static displacement on the nodal seg- 

ments at  the  free surface are linearly    related to offsets 

imposed on the  designated  fault nodes.     The  displacement at 

every one of the nodal segments  on the  free surface due to 

a unit offset  (1 m)  on a specified fault node was  calculated. 

This was  then repeated for each of the nodes  describing the 
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rault system. However, since the observed vertical dis- 

placement data was only near 16 of the nodal segments on 

the surface, the response matrix was limited to those 

nodes.  Thus we have defined the problem of estimating the 

static dislocation on 26 fault nodes given the permanent 

static offset of 16 nodal segments located on the free 

surface.  Th'.s is precisely the type of problem that was 

discussed in Chapter 2 for which we formulated the sto- 

chastic inversion scneme to solve. 

In this problem, the opeiator A is a M x N matrix, 

where A., is the displacement, calculated at the point on 

the surface where the ith data point is taken due to a unit 

dislocation of the Jth nodal segment of the fault.  Here 

M-?6  and N*l6  Based on experience in calculating best 

model estimates by equation C2.27)j it was found that much 

smoother, hence longer wavelength, solutions were calcu- 

lated if the starting model was some "distance" in the 

model space away from the null model. Therefore we chose 

to use Stauder and Bollinger's (1966) estimate of the fault 

dislocation as the starting point for our inversion.  This 

starting model turned out to be a good choice because the 

inversion scheme smoothly and quickly iterated convergingly 

to a final "best fit" model.  Just to make sure that the 

final model that we obtained was not wholly dependent on 

the starting model that we chose, we then repeated the 
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Inverslon using Hastle and Savage's (1970) fault disloca- 

tion estimate as the starting model.  The results were very 

similar to that obtained before.  We therefore feel that 

this final model Is not very dependent on the starting 

model. 

The upper part of Figure 3-5 shows this vertical sur- 

face displacement data plotted In profile and the calcu- 

lated displacement at the surface nodes of the finite 

element grid. The fit to the observed data Is extremely 

good with the calculated surface displacement field fitting 

the observed data used In the Inversion to within a RMS 

residual of about 3-1/2 cm, and the fit to all the points 

In the data set Is not far from this value.  For accuracy, 

only those data points which were very near a surface node 

in the finite element grid were used.  Thus, out of the set 

of '»6 data points along the profile, only 16 points could 

be actually used in the inversion.  An Increase in the 

number of surface ncdoö in the finite element grid would 

probably not add to the resolvabillty or accuracy of tne 

slip model, since the limitations in these quantities were 

the lack of r.oatial coverage of the data, not the lack of 

data used.  The slip model from the inversion process is 

shown in the lower half of Figure 3.5«  The maximum slip 

along the fauli; is 33 m at a point below Montague Island. 

A displacement of about 30 m is maintained over a fault 
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wldth of about 60 km, then decreases almost linearly at a 

rate of 0.3 m/km over the next 100 km as the fault depth 

increases.  At more shallow depths, there is a plateau in 

slip of about 17 m, which would correspond to the fault 

surface between Middleton Island and Montague Island. 

However, the two data points on Middleton Island are very 

important in this model in that their values almost com- 

pletely determine the amount of slip along the top 150 km 

of the fault.  The resolvability of this plateau will be 

discussed below. The slip on the secondary fault is not 

shown in this figure, but it averages i| m over its entire 

width with the static offset on the node at the surface 

constrained to be equal to that measured for the scarp on 

the Patton Bay Fault as reported by Plafker (196?) . The 

fault offset profile on the main fault is similar in shape 

to that proposed by Stauder and Bollinger (1966) who used 

a much simpler fault model and ignored tne effects of 

geology. 

Integrating the area under the slip versus fault 

width curve, we find that we have an average slip of 18.5* 

m over a 260 km fault width.  This slip is at least 50% 

greater than that predicted by Stauder and Bollinger (1966), 

Savage and Hastie (1966), and Hastie and Savage (1970). 

One check to see if the average dislocation is reasonable 

is to calculate the average moment and compare with that 
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obtalned  from long period seismic waves.     This  average 

moment   Is   given by 

M0     =     u L w y 

where   u Is  the  average  fault  offset   (18.5 m),  L the  lengtn 

(600 km),  W  the width  (260 km),   and y Is  the  average  rlgld- 
11 2 Ity  of the  region  around the  fault   (3-1  x 10      dyne/cm   ). 

By  using the  rigidity of the   continental  crust,   the mate- 

rial  In which most  of the  deformation takes place, we 
■an obtain  an  average moment  of 0.9  x  10       dyne-cm.     Kanamcrl 

(1970)   arrives  at  a moment of 0.75  x  lO^    dyne-cm on  the 

basis  of  long period  (300 sec)   multiple path Love  and 

Raylelgh waves.     At   chese  long periods,  the  surface waves 

are  sampling the entire  fault width  and thus  should give 

a good indication  of the  average  moment.     These  two values 

compare  very   favorably indicating that indeed thera were 

very  large  displacements  occurring along the  fault  sur- 

face.     B.   Minster  (personal  cDmrnunication,   1973),   on the 

basis  of a systematic inversion of world-wide piate  motion 

data,  atates  that the Pacific plate  and the Alaskan contin- 

ental block are moving relative  to one  another at  a rate  of 

about 6 cm/year at the location of our profile. 

The computed average slip on the  fault leads to a recur- 

rence time  of an earthquake of this magnitude in this  area 

of once  every  300 years.     However,   If the  central portion 
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of the megathrust with Its average 30 m slip Is used as 

representing the eventj this gives a recurrence time of 

500 years.  Pia leer and Rubin (196?) obtain a repeat time 

of about 850 years for major events on Mlddleton Island 

based on the radlometrlcally determined dates of a set of 

uplifted marine terraces found on that Island. However, 

Sykes (1971) has expressed great uncertainty about estima- 

tions of recurrence times for major events In this region. 

Although not Included In the data set for the Inver- 

sion, the measured hori^c^tal displacement field was ex- 

tensive.  Parkin (1966) gives these horizontal movement 

vectors which are made with a free adjustment relative to 

a fixed station (PIshook station) located about 14 km 

north of Palmer, Alaska, an area that was then considered 

to be the most stable. This fixed station is 120 km north- 

west of the epicenter of the main shock.  As in the case of 

the vertical displacements, only those horizontal displac0- 

ment vectors near the profile line were chosen.  There were 

23 of these vectors in the vicinity of our section.  These 

vectors were projected onto the profile and their component 

of motion in the direction of the profile taken.  The re- 

sulting displacements are shown in Figure 3.6. The dc.^i 

points nearest the fixed station are the most accurate, 

being first order surveys, while the data on Montague Island 

are much less accurate, being based on third order 
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observatlons,  The direction of motion for each of these 

points shown Is to the southeast. ?he  horizontal dis- 

placement In this same direction Is calculated from the 

best fit slip model discussed above and shown In the figure. 

These calculated points are translated relative to the dis- 

placement at the node on which the observed apparent zero 

isobase Is projected.  The resulting displacements form a 

smooth curve except for the Irregularity at the Patton Bay 

Fault.  This Irregularity Is not resolvable- In the data 

shown here. Even though these lateral displacements were 

not used In the Inversion scheme, because of their lack of 

accuracy, the fit Is surprisingly good.  The model predicts 

a movement of A m to the southeast at the fixed station.  A 

stable area for displacement reference is given to be at 

least 120 km farther to the northwest than the chosen fixed 

station. The consistency of the fit to both the horizontal 

and vertical displacement data seems to Indicate that the 

model geomttry that was initially assumed is reasonably 

accurate. 

Figure 3.7 shows a cor.tour plot of th^ calculated dis- 

placement field in two dimensions along this chosen section. 

The contour values are indicated on the figure and the units 

are in km.  In the upper half of this figure is displayed 

the calculated twe dimensional vertical displacement (Y 

direction in figure).  From this figure, we see that the 
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dlsplacement Is concentrated under Montague Island and 

abova the fault surface.  The presence of the Pat ton Bay 

Fault is clearly visible on this plot.  This partitioning 

of the displacement field is due to the effect of the 

nearby free surface.  In the lower p ^irt of this figure, we 

see that the horizontal displacement (labeled the X direc- 

tion in figure) is likewise concentrated immediately above 

the fault surface. 

3.5 Resolvability of Features in the Slip Model. 

Since the data used in the inversion are not perfectly 

accurate, there exist model perturbations which when added 

to our best fit slip model would still fit the observed 

surface displacement data to some chosen degree of confi- 

dence.  If we can estimate the errors ir our data, then we 

want to somehow relate these errors to errors in cu1" mcdel. 

Such a relation between the data space and the model space 

exists in the form of a variance operator (equation (2.33)) 

This operator is useful in this application in the follow- 

ing manner.  If we take some perturbation, 6ra, to the 

calculated slip, then this perturbation is resolvable by 

the data to within a certain confidence Interval if the 

following Inequality holds. 

'm   V+ 6m > k2(c) . 
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V    11  the   generalized Inverse  obtained  by   spectral decom- 

position   ?f the  variance  operator,   and k(c)   is  the  coeffi- 

cient associated with a particular  confidence  interval. 

In this  study we  have  chosen  to examine  model perturbations 

at  the  93%   confidence  level,  so  that  in  this  case  the 

coefficient   associated with this  interval  is   I.96.     Using 

this method, we   can test  chosen rertjrbations  to our cal- 

culated slip  model  and compute the maximun  perturbation 

that  can be   resolved at  the 93%  confidence  level by the 

d?ta.    We  note  that   these  tests  are   independent  of the 

values  of  the  slip  model  itself,  and only  perturbations   to 

this  model   can be  checked for resolvablllty. 

The  variance  operator, V,   for this   case  is  a 26 x  26 

matrix.     The  generalized inverse  of this  matrix is   found 

by  using the  eigenvector expansion described in equation 

(2.32).     W'    found that  there were  16  non-zero eigenvalues 

associated with this  operator.     For problems where  the 

estimated errors  are  very small, numerical problems  may be 

encountered in  calculating the generalized Inverse of this 

operator.     These  numerical problems  arise   from the  fact 

that  round-off errors  occur In the   computer  calculations 

of the eigenvalues.     For small eigenvalues,  the problem of 

distinguishing non-zero eigenvalues   from the   zero eigen- 

values  can become  serious.     Fortunately,  this is not  the 

case in this  problem.     The non-zero eigenvalues  are well 
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defjned.     We  have  empirically noted that   the number of non- 

zero eigenvalues  of the  variance  operator  Vis  equal  to 

the number of  Independent   data points   used  In the  Inver- 

sion.     The  Inner product  of the  variance  operator and  Its 

generalized Inverse  form a projection  operator.     This pro- 

jection operator Is  then  checked  for Its   Idempotent proper- 

ties  to make  sure  that  all scaling Is   correct.     This  tost 

Is done  In  the   following manner: 

(VV+)(VV+)  -  ( VV+)  < E (3-1) 

where  the   components  of E,   t..t are  taken  to be  some  small 

number relative   to the  rlze  of the  components  of V. 

The  question that we would ultimately  like  to  answer 

with a study  of this  type  Is,   "What  Is   the  maximum pertu- 

batlon that  we  can add to our   'best  fit'   slip model  and 

still satisfy  the  observed data?"    Since we  know  that  the 

size  of the  maximum perturbation that  Is  at   the  threshold 

of detection  by  the  data depends  on the  distribution of the 

perturbation,  we  choose  three oerturbatlons which will 

elucidate  the   total  resolvablllty of our slip model.    We 

first  consider how much of a slip perturbation we  can  add 

to the  dislocations  In the hypocentral  region,  so that  the 

rapid fall-off  from the  30 m plateau Is  not  so  rapid. 

Figure   ?.8a shows  this  maximum slip  perturbation.     The 
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Flgure 3.8.     Examples of the resolvablllty of the best fit 
solution. 
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stippled area on this curve Is the maximum slip vhat could 

be added in this region and still be undetected by the 

data.  It is seen from the small size perturbation In this 

figure thac the data control very closely the rate of fall- 

off of slip in th^s area of the fault.  This is due mainly 

to the fact that there is a dense network of data points 

Just above these particular nodes.  Next, we try to deter- 

mine if the data demand the existence of ♦•.he 17 m plateau 

in the shallow part of the fault.  Figure 3.8b shows the 

amount of slip that could be added In this region. We s^e 

that the slip gradient in this region could be smaller than 

that presented in our best-fit slip model, although there 

still appears to be a requirement for a sharp decay in slip 

up the fauit from the 30 m plateau.  The slight minimum in 

slip that appears in this region  " the model is not re- 

solvable by the &&*&.     In Figure 3.8c we see that there is 

almost no resolution along the upper pare of the fault. 

This is due to the paucity of data on the surface above 

this region.  In order to explain the behavior of the fault 

slip In this region we have to appeal to arguments based 

on other geophysical data than the statical displacements. 

For Instance, It can be shown that large fault offsets In 

the area of the trench would result In a significant amount 

of strain energy stored by the fault In that region. 

-V 
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3.(>    Averaging Operators. 

In Chapter  2 we  say  that  our  "best   fit"  estimate  of 

the  slip model  is  in  reality some  filtered average  of the 

true  slip model.     TUB   filtering operator is   commonly  known 

as  the  averaging operator.     Before  discussing features  of 

our  xinal model  it  is  to our advc.ntage  to know  the extent 

of the averaging that  Is  taking place  In our model.     The 

kernels  of the  averaging operator are  taken  to be indivi- 

dual  rows  of  chr  operator matrix, R,   as   defined in equation 

(2.29), with  a  single kernel being defined  for each  fault 

element  comprising the  total  fault system.     We  note here 

that  if the problem is  linear,  as  it  is  in  this  case,  that 

these kernels  do not  depend on'the   final  estimate  of the 

"best   fit"  model. 

If a particular slip model  value were perfectly well- 

known by  the  inversion then the  averaging component cen- 

tered on that   fault  element would b*  unity  and all the 

other components   of this kernel would be  zero.     However,  in 

the  general  case where we have less  than  infinite  data and 

the  data that  we  do have  are somewhat   corrupted by noise, 

the  center averaging values  are not  unity  and  the  other 

components   (off-diagonal  components  of the  matrix R)   are 

non-zero.     The  ability  to resolve  the  details  of the  actual 

dislocation  function depends  on two  features  of this 

operator.     He  is  the  size of the  kernels.     This depends 

. 
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ln a general way on the availability of data to be included 

into the inversion that are sensitive to a dislocation over 

the part of the fault model that we are testing.  As the 

value of a particular diagonal component of R becomes sub- 

stantially less than unity, our ability to even estimate 

the slip value for the corresponding model component de- 

creases.  The other facto.' is the averaging width of the 

kernels.  This averaging width is expressed by tne off- 

diagonal elements of R.  If these off-diagonal components, 

correrponding to the fault elemerts "near" the particular 

It element we are examining are substantially non-zero, 

ti.on  the estimated "best fit" value of slip that we obtain 

from the inversion Is really some linearly averaged value 

of the actual slip values in the vicinity of this fault 

element.  These ideas ar^ probably best expressed by 

examining an example of their use. 

Figures 3.9 and 3.10 show examples of the averaging 

kernels fo- the Alaska earthquake model.  The coefficients 

of the rows of the averaging operator are shown diagram- 

natically at the position of the respective fault node 

corresponding to the components -)f this row.  The height 

of the bar plotted on each node signifies the absolute 

value of the averaging coefficient for that node.  For 

absolute reference, in Figure 3.10c, the height of the 

outstanding bar is 0.997.  In Figure 3-9, we have plotted 

i 
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Flgure 3.9.  Resolving kernels for selected nodal segments 
along the megathrust.  View Is a p'jrspectlve of the rr.ega- 
thrust from the southeast (left) to the northwest (right). 
Depths and profile diatances are in km. 
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Figure  3.10.     Resolving kernels  for selected nodal 
segment? along the megathrust   (a,b^  and  subsidiary 
fault   (c,d).     View  Is a perspective of the megathrust 
from the southeast   [left)  to the ncrohwest   (right). 
Depths and profile distances are in km. 

\ 

- --   * " ^ a»- m* 



■^7 «M 

^ 

-90- 

the  averaging-  for representative nodes  along the megathrust 

presented here  In  a perspective  view.     The   arrow  In the 

figure  indicates  on which node  the  averaging is   centered. 

In  Figure   3.9a we  see  that  for the  upper part   of the mega- 

thrust,  the  averaging  values are  very small,   again showing 

our lack of resolvablllty  in this  area of the   fault.     In 

Figure  3.9b  the  kernel  values  are  larger  in  amplitude indi- 

cating our ability   LO  estimate the  slip  in  this  portion; 

however, we  see  that   there  are  large  side  xobes.     The 

negative  averaging coefficient.  Indicated by  the  bar extend- 

ing dov:nward,  means   thac  a positive  dislocation  on  the 

centsred fault node  couli be traded off with  a negative 

dislocation on this  node,  and the  daca would not be  able  to 

tell the  difference.     In Figure  3.9c  we  see   that  the  aver- 

aging over the  adjacent  nodes to either side  of the cential 

node  is   fairly severe,   and that   there  is  a  slight  amount of 

coupling to the  subsidiary   "ault.     In the bottom figure, we 

see  that  the  amplitudes  start  to become  more  peaked,  indi- 

cating better resolvablllty.    if«  also note   thai  the slip  in 

this  area is  completely  uncoupled from the  c\fp  on the  sub- 

sidiary  faulting.     This  shows how the effect   of the subsid- 

iary  fault  is   >'ery   localized with respect   to   the  megathrust, 

The examples  are   continued in Figure   3.10.     Sections  a 

and b  of this  fljure  continue  to show that  on  the   lower 

part  of the megathrust  we  are  abj.e  to determine   fairly well 

\ 
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the  "best   fit"  estimate  of the slip,  but  this  slip  is 

generally   averaged over the  one  or two adjacent nodal seg- 

ments.     Figure   3.10c  shows  the  averaging kernel   for the 

top most nodal segment  of the  representation  of the Patton 

Bay  fault       Here,   the  displacement  is  almost  exactly 

determined.     The  height  of the bar is  almost  un.Vty,  0.997» 

and thare  is  practically no spatial  averaging.     We would 

expect  this  result,  considering that  this   fault  segment 

breaks  the  surface   and the  amount  of dislocation on this 

nodal segment  is   constrained by  the  scarp  size  on Montague 

Island.     Likewise  in  Figure  3.10d,   the  dislocation at  some 

depth on  the  subsidiary   fault  i-, well  determined,  and there 

is practically no  trade-off in dislocation here  to a dis- 

location on the  megathrust. 

The  information  contained in  the  averaging operator 

can be  summarized by  defining a resolvabilxty  ratio  for 

each kernel.     This   ratio Is defined as  t'.ie  ratio of the 

value  of the diagonal  coelflcient  of R to the  averaging 

half-width.     This   averaging half-width,   though somewhat 

ambiguous  in some  instances because  a   asymmetries,  can 

usually be estimated,however.    The  averaging half-width ib 

measured  from the   central  fault node to the point where  the 

averaging  first  crosses  zero.     This   ratio is  convenient  and 

meaningful in the  sense that  it takes into account both the 

variables  involved in estimating resolvability:     the height 

*^ _tBMI 
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of the kernel and the averaging distance.  For well resolv- 

able features of our model we would expect large ratios; 

for less well resolvable features, smaller ratios.  The 

results for this particular fault model are shown in Figure 

3.11. 

In this figure, we see that for the upper 75 km of the 

megathrust, there is a total lack of resolvability, aon- 

tiolled by the lack of data which are sensitive to a dis- 

location in that area.  The resolvability is slightly 

peaked for the area of the megathrust immediately under 

Middleton Island, but again there is no resolvability in 

the area between the islands.  The resolvability decreases 

rather evenly for the lower end of ths megathrust.  This 

is thought to be due to the fact that the dislocations are 

occurring at distances farther and farther away from the 

data, thus dislocation averaging starts to become a 

problem and the resolvability is reduced. 

3-7 Stress and Strain Energy Density Change. 

In terms of understanding the focal processes of earth- 

quakes, an important parameter is the stress drop.  In 

previous studies of earthquakes, the stress drops were ob- 

tained through empirical formulas or exact derivations for 

special purpose geometry of the crack (for example, Starr, 

1928; Knopoff, 3 958; Aki, 1966). The strsss drop over some 

fault dislocation area is usually given by the following 

V 
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Ao     = 
nu M 

m 
W 

(3.2) 

where  y Is  the  rigidity,   U    Is  the maximum displacement,  W 

Is   some measure  of the  size   of the  fault,  and n  is   some 

constant  dependent upon  the   geometry  and nature  of  the 

faulting.     Use  of this   formula results  In stress   drop  values 

that  are  averaged over the  entire  fault plane.     For  In- 

stance, Brune  and  Allen   (196?)  estimate the  stress   drop   from 

the  average  offset given by  Savage  and Hastle's   (1966)  dis- 

location of the  196M  Alaska earthquake  to be  2? bars.     Tn 

this  calculation,  n Is   taken to be  1.33, W=200 km,   Um* 
1 1 2 13.3 m,  and 11*3.0  x  10       dyne/cm  .     If we were  to  use  their 

formulation with our average  dislocation, we would  obtain 

h stress  drop  of 30 bars.     Chlnnery   (1969)  and Sato   (1972) 

point  out  that  in order   to  evaluate n  the assumpLion  of an 

infinite  length  fault  is   usually made.     These  two   authors 

have  derived the expression  for the  stress  drop   for  a 

finite  rectangular fault,   and they  show that the   stress 

drops  obtained for these   faults   are  smaller them what one 

would obtain  for Infinite  length faults.     For the   Alaska 

earthquake,  Sato   (1972)   estimates n  to be  0.97 when  a 

constant displacement  over the  fault surface in an  ideal- 

ised medium is  considered.     His  resulting estimate   of the 

\ 
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stress drop using this parameter and our average disloca- 

tion would be about 22 bars.  This last value Is still an 

estimate of the stress drop averaged over the entire fault 

surface.  However, It Is obvious that If the dislocation 

is varying over the fault plane, and the geometry of the 

plane changes with distance, the stress change will not be 

a constant over the entire fault surface. Juugels (1973) 

has shown that for several earthquakes the stress drop can 

vary along the fault by as much as an order of magnitude. 

To estimate the stress drop along the width of the 

fault we can apply equation (3.2) to each cf the nodal seg- 

ments which define the fault plane, but there is always 

uncertainty in the estimate of the parameter n-  Jungels 

(1973) has shown a more direct method of caloi'lating the 

fault stress drop distribution with the finite element 

method.  This is accomplished by first imposing e  composite 

prestress field on the structural model.  This is done by 

applying a dislocation to the edges of the structural 

model.  Prom this initial state, we can compute the equi- 

librium final state that would be caused by the introduc- 

tion of our best fit dislocation mode]. Then, at every 

point of the structure, the difference between the initial 

and final stress fields defines ehe  stress change.  If AT 

is positive, then the particular model caused a stress 

drop.  If Aa is negative, then we have a stress incre?se. 
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it Is clear that for a "dislocation" model the magnitude of 

the stress change is controlled only by the magnitude of 

the fault offset and the elastic constants of the struc- 

tural model.  Thus the prestress only has importance in 

terms of the strain energy change where the sign of the 

stress drop matters.  The shear stress change approximately 

parallel to the megathrust is calculated by this method 

and is contoured throughout the cross section studied. 

(Figure 3.12).  The values contoured are exact away from 

the fault plane, but for the nodes defining the plane it- 

self, the actual stress drop is approximately twice the 

value shown.  This error arises from the fact that a linear 

behavior of displacement is assumed inside each element in 

the finite-element grid.  This error results in an under- 

estimate of the stress change on the fault surface (Jungels, 

1973).  Assuming that the error is exactly a factor of 2 in 

this problem, we see that for our best fit model the stress 

change along the fault itself varies from a stress increase 

of 86 bars to a stress drop of 215 bars.  The stress change 

over the entire width of the fault averages a stress drop 

of approximately kO  bars.  This Indicates how misleading a 

value of the average stress drop could be. 

The details of the stress change are very interesting. 

We see that both ends of the fault underwent a net increase 

in shear stress.  For the shallow portion of the megathrust. 
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this is an argument in favoi of our best fit solution with 

Its small offset in this region.  It follows that If we 

Increased the offset on the shallow end of the fault, even 

though we could not resolve this Increase with the surface 

data, the stress change would Increase In proportion and 

this In turn would make that region a prime candidate for 

aftershock activity. The fact that significant aftershocks 

were not observed here (Algermlssen et al., 1972) argues 

for our best fit solution.  On the other hand. If the off- 

set at the shallow end of the megathrust were the maximum 

amount Indicated on Figure 3.8, in all likelihood the dis- 

placements would rupture the free surface.  If this was 

the case, the stored stress would be relieved and thus 

there would he "ery little or no aftershock activity.  A 

search of the literature concerning this earthquake re- 

vealed that there seems to have been no post-earthquaki 

reconnaissance of the ocean floor in the vicinity of 

Middleton Island and further toward the Aleutian trench, 

so that the possibility of this occurring cannot be ruled 

out. A hydrographic and ocean-bottom-scanning sonar survey 

of the area to the southwest of Montague Island revealed 

fresh scarps on older en echelon faults sub-parallel to the 

extension of the Patton Bay fault (Malloy and Merrill, 1969.) 

These authors attribute these scarps to the Patton Bay 

fault system.  It is conceivable that much of the strain 

•   V 
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from the large dislocations on the very shallow end of the 

megathrust could be relieved In this fashion.  That Is, 

large displacements on the fault surface are absorbed 

through a system of high angle bifurcations of the main 

thrust sheet.  We will see in the next chapter that this is 

precisely what occurred during the 1971 San Fernando, 

California earthquake.  Unfortunately, for the Alaska 

earthquake, the data are not adequate to prove or disprove 

that this condition existed, and further speculation along 

these lines seems fruitless. 

Another area of slight stress increase on this figure 

is found in that region where the offset function in the 

best fit model goes through a local minimum between the 

30 m slip plateau and the 17 m slip plateau. We have seen 

from the above discussion, however, that this minimum is 

not resolvable, so therefore the existence of the stress 

increase in this region is not resolvable by the data. 

Most of the stress drop along the fault surface occurs 

where the fault dislocation is the greatest.  The maximum 

stress drop, 215 bars, is found along the megathrust Just 

below the intersection of the Patton Bay Fault. 

A plot of the strain energy density change in the 

media as seen in the lower half of Figure 3.12 illustrates 

that most of the energy available for seismic radiation 

would come from the central area of the megathrust in the 
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, same region where the maximum stress drop occurs.  The 

21      ^ contours In the figure are in units of 10 ergs/km.  A 

direct comparison can be made between this strain energy 

density plot and the multiple rupture characteristics that 

Wyss and Brune (196?) found for this event.  These authors 

Interpret the P-wave radiation as caused by a multiple 

event source mechanism whereby the rupture Initiating at 

the hypocenter travels up the fault plane triggering dis- 

crete seismic events larger than the Initial event.  The 

largest of these discrete events has been located on the 

megathrust 20 km southeast of Montague Island.  The pulse 

from this region was delayed from the Initial pulse by a 

time corresponding to a rupture velocity of 3-5 km/sec 

and had an amplitude significantly larger (up to 30 times 

larger) than that radiated by the Initial siiock.  This 

agrees qualitatively with our estimate of a large strain 

20 3 energy  density  change  of up to 0.28 x  10    ergs/knr  concen- 

trated below Montague  Island, while  in  the  hypocentral 

region,   the energy  density  change  is   computed to be  only 

0.02  x  1020ergs/km3. 

3.8    Accuracy  of the  Plane-Strain Approximation. 

We  would like  to somehow approximate  the errors  that 

occur by making the  plane-strain approximation  that we have 

taken In this example.     One way  of getc'.ng an estimate  of 

this error is  to approximate   the  fault model by  a series   of 

J 
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three-dlmenslonal Volterra planes  and to  use  the  static 

dislocation  theory   (Smylie  and  Mansinha,   1971;  or equation 

(2.2))   for a three-dimensional  fault  in  a homogenous  half- 

space.     Although  this model will not have  the  influences 

of the  lateral heterogenitles  included,   it will  serve  to 

estimate how good or bad the  approximaoion  is  that we have 

made.     A Volterra  approximation to the   finite-element 

structural model was  made.     This  model  consisted of 22 

individual   fault  elements,   18 to describe  the  megathrust 

and 4  to describe  the  subsidiary  faulting.     The  Volterra 

fault elements  are planar surfaces  centered on the posi- 

tion of the   finite-element  fault nodal  segments  and extend- 

ing halfway  to the  adjacent  fault nodal segments.    Only 

those fault nodal segments were modeled on which there was 

a calculated non-zero displacement.     Several of the nodal 

segments,  at  the  shallow end of the megathrust     and at  the 

very  deep end of the megathrust, had  "best  fit"  dislocation 

estimates  of  zero.     These  segments were  not  modeled with 

the Volterra approximations.     The  dislocation which is 

constant over the planar surfaces  was    taken to be equal 

to that  of the   finite-element   fault  nodal  segment at  the 

center.     The parameters  for this model  approximation are 

given in Table  3.3. 

We   first   calculated the  vertical  displacement   for a 

profile  due  to this   fault model with  the   length of each 

J X. 
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TABLE 3.3 

Dip d W <Au> 
(deg) (km) (km) (m) 

6.0 8.5 22.8 0.99 
6.0 11.0 21.4 2.93 
6.0 13.0 18.0 10.17 
6.0 15.0 16.2 16.72 
6.0 17.0 18.2 16.39 
6.0 19.0 20.1 14.66 
6.0 21.0 16.0 16.05 
6.0 22.5 13.0 24.91 
6.0 24.0 9.7 29-98 
6.0 25.0 7.1 33-22 
6.0 26.0 14.2 29.42 
6.0 27.5 20.0 28.28 
8.0 29.5 20.0 29-99 

11.5 32.5 20.4 23-91 
14.0 36.5 20.4 15-35 
15.0 41.5 20.8 11.70 
15.0 47.0 31.2 2.17 
15.0 55.5 41.6 1.03 
58.0 0.0 2.4 4.05 
58.0 2.0 4.0 3.31 
58.0 5.5 5.8 7.18 
58.0 10.5 8.0 2.83 

. 

, 

Table   3.3.     Source parameters   for the   3-dimensional 

homogenous  approximation to the   finite-element  model 

of the  Alaska earthquake,     d is  the  depth  to the  top  of 

the planar  fault  surface; W is   the  width  of the   fault 

surface measured along the dip;  and  <Au>  is  the  fault 

dislocation. 
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planar surface  taken to be  10,000 km,   or effectively  In- 

finity,  to  thus  approximate  the plane-strain  criterior.     The 

profile was  taken  to be  equi-distance   from the  ends   of the 

fault elements  and perp .ndicular to  the  strike  of the 

system.     The  vertical   displacements  in  a profile  were   then 

calculated  from this   fault  system but now the  lengths  of 

the  Individual  fault  elements were  set  to 600  km,   the 

approximate   lower limit   for the  fault   length estimated to 

be  appropriate   for this  event.     The profile was  taken,  not 

across  the   center of the   fault system,   but  at  a position 

80 km from thi  center and still perpendicular to  the  strike 

of the  fault  system.     This profile  is  220 km from one end 

of the  fault  and  380 km from the  other end.     This  is  approx- 

mately  the  maximum distance profile  BB*   In Figure   3.2  can 

be  considered from the   center of the   fault  system.     The 

estimated errors  arising from the  plane-strain  approximation 

was taken  to be the  difference between the  computed dis- 

placements   for these  two profiles.     This  difference  is  a 

function of the  distance  away  from the  origin of the   fault 

system.     The  origin of the  fault  system is   taken to be  the 

point  at which the  shallow end of the megathrust  projects 

to the surface.     The  differences  are  presented in Figure 

3.13a.     It  Is seen  from this  figure  that the  maximum dis- 

placement error expected from the  plane-strain approxima- 

tion would be  about  0.35 m for this particular model.    The 
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Figure 3.13.  Estimates of the errors to the cal- 
culated vertical displacements (top) and horizon- 
tal displacements (bottom) due to the plane-strain 
assumption as a function of distance along profile 
BB'. 
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dlfferences between these two profiles are relatively con- 

stant at about 0.25 m, and the sign of the error Is such 

that the deformation at the surface Is being underestimated, 

This Implies that the free surface displacements for a 

fault dislocation model with a finite size length are 

slightly larger than those from a model in which each fault 

component has infinite length.  Thus, we can say that the 

dlspDacements calculated for the finite-element model are 

an upper bound to that necessary to fit the data.  Consid- 

ering the finiteness of the length of the actual fault, we 

would need only sMghtly less displacement on the mega- 

thrust. 

Now the horizontal dlsplaoements are put to the same 

test.  Horizontal displacements in the direction perpendic- 

ular to the strike of the fault system from the Volterra 

dislocation model were calculated for both a profile due 

to an infinite length fault and for a profile 80 km away 

from the center of a fauZt system that has fault element 

lengths of 600 km.  Figure 3.13b shows the differences 

between the former and the latter profiles.  It is seen 

here that as the profile distance becomes greater than 

half the fault length, the errors due to the plane-strain 

approximation start to become more significant.  It is seen 

here that for the farthest distance along the profile, the 

expected error in the calculated horizontal displacements 
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is    about  0.5 m.     The  sense  of this  error Is  that   the  esti- 

mated horizontal displacements  made  under  the  plane-strain 

crlterlor are  too  large.     Thus  In  Figure  3.6 where  we 

estimated that  the  reference  station  for the  measured hori- 

zontal  displacements   (Flshook  station)   actually  moved  4 m to 

the  southeast,    we  have   to  revise  this  estimate   to be  about 

3-5  m.    The  area of horizontal  stability;   that  Is,   the  area 

where  no horizontal  movement was  expected.  Is  still   some 

75-100 km to the northwest   of the  reference  station. 

We will now briefly  examine  the  Implications   of the 

estimated error due  to  the  plane-strain approximation. 

Since  only  the  vertical  displacements were  actually  used 

in  the  inversion procedure,   only  the errors  associated with 

these  measurements will  affect  the  resolution of our model. 

Since  the estimated errors  due  to the plane-strain  assump- 

tion  affecting the data points  used in the inversion were 

about  equal to the estimated observational error  of  the 

data themselves, we  can estimate  that  at most,  the   total 

variance  of the  data  should be multiplied by  a  factor of k. 

As we  can see  from equation   (2.33),  if we want  to  recognize 

a  given perturbation to our model at  the  same  confidence 

limit  as before   (95%),   then the  size of the perturoation 

will have to be  doubled.     This  means fiat in Figure   3.8 

the  amplitude of the  stippled area will be doubled  if we 

keep  the shape of the perturbation as  before.     This   implies 
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that   the  steepness  of the  rate  of dislocation  fall-off with 

distance   from the  maximum plateau going toward  the  hypo- 

center is not  quite  as  resolvable  as before.     For the  other 

two perturbations  considered,   the  conclusions  arrived  at 

before   are  unchanged. 

3.9     Conclusions. 

A  dislocation model has  been presented  for the   1964 

Alaska earthquake.     The  surface  displacements   from this 

model  are  calculated with the   finite-element numerical 

modeling technique  in which the effects  of both the  known 

geologic heterogeneities  of the  region and the non-linearity 

of the  assumed  fault plane  are  taken into  account.     The 

dislocation model, which was  obtained using a stochastic 

inversion scheme,   fits with high precision both the  ob- 

served vertical arid horizontal  displacements.     The  calcu- 

lated static offset  along the   fault plane was   found to be 

variable and to have a maximum amplitude much  greater than 

previously imagined,  although  the  average  moment  agrees 

with  that observed  from long period surface waves.     The 

two-dimensional displacement   field was   found to be  strongly 

partitioned above  and below  the  fault surface,  with most  of 

the   displacement  occurring above  the  fault.     The  calculated 

displacement  at  the shallow  end of the   fault model was 

found to be almost non-resolvable due to the lack of sur- 

face  displacement  data, while  the  displacement near the 
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hypocen'.er was  well  constrained by  the  data.     Along with 

the  displacement  calculated along the   fault  surface,  both 

the  stress drop  and the  strain energy  density  varied widely. 

The  maximum stress  drop   found was  218 bars, while  at  both 

ends  of the  fault  the  stress   field increased as   a result  of 

the  static dislocations.     The  region  of maximum stress  drop 

and  maximum strain energy  density  change   calculated  from 

this  static  study was   found tc  correspond to  the  region of 

maximum compressional wave  radiation.     The  errors   caused 

by  the plane  strain  approximation  for this  event were 

analyzed and  found not  to  affect any  of the  above   conclu- 

sions . 
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