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INTRODUCTION 

I 

The intense electromagnetic fields obtainable in laser beams can 

induce multiphoton transitions in atoms and molecules with significant 
* 

probabilities.  A variety of such transitions have been observed. 

Also, a number of theoretical studies of these processes have been 

published.  The simplest of these are essentially dimensional analyses3 

and are very crude, but do provide useful scaling relations in the weak 

field limit. 

The most straightforward of the calculations of multiphoton tran- 

sitions use perturbation theory.4  These calculations are, unfortunately, 

of great numerical complexity and are consequently ordinarily carried out 

with such gross approximations that the results are probably not much 

more accurate than are those of the above-mentioned dimensional analyses. 

The perturbation calculations, of course, fail to describe transitions 

.in very strong fields. 

A somewhat intuitive and partly phenomenological calculation by 

Keld"sh5 takes account of distortion of the atom or molecule by the 

intense fields and also of transitions taking place through a nearly 

resonant intermediate state. Keldysh's theory is not restricted to the 

Several reviews of multiphoton processes are available in the 

literature.1"!  See also R. A. Fox ot al.2 

References are listed at the end of the report. 

^^X. ^ 



^■^^^^ 

^ 

weak field limit, as is perturlation theory, and at the same time 

provides rather simple expressions for the transition rates. 

A technique developed from first principles and not restricted to 

perturbation theory has been published by Reiss.6 

The specific process studied in this report is the detachment of 

an electron from a negative ion by multiphoton absorption.  It will be 

assumed that the photon energy hcu 1B significantly less than the detach- 

ment potential I.  Our method i.. not applicable *or evaluation of ioni- 

zation of neutral atoms or molecules unless the Coulomb potential in 

2 
the final state is screened at distances less than (hio/e ).  jli.dy of 

the failure of our theory for ionization processes demonstrates what 

appear to be significant inaccuracies in the theories of both Kelaysh 

and Reiss. 

Certain approxiuations will be made.  These are: 

(1) The electromagnetic field of the laser is treated classically 

and is assumed to vary sinusoidally with the frequency ou. 

This implies that the beam Is intense enough that quantum 

fluctuations of th' E and B fields are negligible and also 

that th',- beam cohvrjnce time is long compared with that for 

the transition tu occur. 

(2) It ii assumed thnt only electric dipole transitions need be 

considered, that the photon wavelength is very large compared 

wlt'i atomic dimensions, and that relativistic corrections for 

electronic motion may be neglected. 

(3) We shall assume that only a single electron orbital is involved 

in the transition. That is, we shall treat the problem as 

thovgh it were the case of a single electron moving in a 

specified binding potential.  We thus avoid the complexity 

of many-body interactions. 

• 
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II  FORMULATION 

Let h 2 h(p,x) represpnt the Hamiltonian of the atom (or molecule). 

Here we suppress the explicit dependence on all coordinates except the 

momentum p and space coordinate x of the "active" electron.  In the 

presence of the electromagnetic field the full Hamiltonian is 

H ■ h(p - a, x) (1) 

where 
-»  e -* 
a s - A 

c 
(2) 

with A the vector potential of the electromagnetic field.  We shall 

treat the vector potential as classical, writing it in the form 

4S cos (u)t + 0 ) 
o 

(3) 

V 

where uu is  the angular frequency of   ehe  field and 0    is a censtant. 

We note   that 

-a = eE = eE    sin(u)t  + 0  ) 
o o 

A        2-» 
eE = uu a 

Here E is the electric-field intensity. 

(4) 

————— 

^^X. 
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The Hamiltonian, Eq. (1), may be written as 

H = H + A 
o 

(5) 

with 

A = p • a/m 

H = h + — 
o      2m 

(6) 

The quantity H represents the "unnerturbed" Hamiltonian, and A the part 
o 

that leads to transitions.  It would evidently not be sensible to treat 

the term a /2m as an interaction, since this C-number commutes with the 

electron variables. 

The initial state of the ion (or atom) with the active electron 

bound to it is 0 , where 
a 

h 0 = W 0 
a   a a 

The solution of the time-dependent Schrödinger equation 

H 0 = i 0 
o 

corresponding to the initial state, is then 

-iW t  -ivCt) 
0(t) = 0 e  a e 

(7) 

(8) 

(9) 

where 

v(t) = f ait')  ^mdt' (10) 

-u I  I  «Ji ^ 
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The final state, when the electron is out of range of the potential of 

f 
the residual ion (or atom), is 0 .  This satisfies the Schrodinger 

equation 

-»  -♦ 2     f   'f 
[(p - a) /2m] 0 = i0    , (ID 

or 

f   /o  -3/2  ik-x  -iv (t) 
0 = (2n)    e    e  k 

(12) 

where 
t 

Yk(t) =f   |[k - ^(t')]2^ jdt' (13) 

The complete process is described by the wave function \Kt) that satis- 

fies the full Schrodinger equation 

H\|) = iii (34) 

with the boundary condition that 

lia iKt) = 0 (t) 
t-W-oo 

(15) 

If we imagine the electromagnetic field to be turned on very slowly 

in the remote past and off very slowly in the remote future, the S-matrix 

for the transition is 

S = Xim U(t),   0(t)) 

t-*+<» 

(16) 

* 7 
See, for example, M. L. Goldberger and K. M. Watson.  Note that the 

outgoing-plane-wave boundary condition is used in Eq. (16). 

■— 
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Following standard wave-packet arguments,  we have 

00 

-i j   dt  [-1 A (M)] 

-1   /  dt  [(ii,0) - (^,10)] 

-i I  dt(ili(t),A(t)0(t)) (17) 

I 

A perhaps more useful form for the S-matrix is obtained on making 

the gauge transformation 

| = e 
ix«a 

y (18) 

This transforms Eq. (14) into the form 

(h + r>j - M (19) 

where 

F(t) = -ex . E(t) (20) 

The S-matrix in this representation is 

3 = -i 

00 

/ dt ^(t), P(t)|Ct>j (21) 

Here 

J(t) = cp e  a 
a 

v22) 

•__  
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The total rate of ionizatlon is obtained from the expression 

R-| \ 
k 

T 
2 

[ dt(i|i( A0) 

T 
2 

(23) 

or 

1 
R = ^ r -» T 

k 

I 
2 

I dt(Y, F$) (24) 

Here T is some long time interval, chosen lar.je enough that R is 

independent of T. 

The expressions (21) and (24) were used by KeldyshB in his dis- 

cussion of multiphoton ionization. 

- 
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III     THE QUASI STATIC APPROXIMATION 

In  this  section we discuss a  low-frequency  approximation,   assuming 

that 

•heu « I    =  -W 
a a 

(25) 

The condition (25) was assumed also by Reiss6 and by Keidysh.5 

The limit (25) suggests that we begin with solutions to the eigen- 

value equation 

Hx  = **. -* k -* 
k     k 

(26) 

where 
em    -3/2  ik-x 
(2IT)    e 

k 
jtimx-»ai 

(27) 

consistent with Eq. (15).  The transformation 

±   ix-a  + 
r  = e     0 (28) 

converts Eq.   (26)   into  the  form 

± ± 
h0 = W    0 

-♦ -*   -* 
K k    K 

^^ - ^mrn^J 
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The boundary condition (27) leads us to conclude that 

t. k - a 

W = K /2m = c (29) 

so the 0 satisfy the Lippmann-Schwlnger equation 

K 

h0 = e0 
t       KK 

(30) 

If a can be treated as slowly varying, one might then expect that 

-IV (t) 
^ =?; X  e  k 

^0  e-i\(t) 

(31) 

(32) 

would provide approxim re solutions to the time-dependent Schrbdinger 

equation. The conditions under which Eqs. (31) and (32) are valid 

approximations will be studied in the next section. 

If, for the moment, we assume that Eqs, (31) anu (32) are valid, 

the expression (21) takes a rather simple form.  We have 

S = 

OS 

-i     Le
i[Iat+\(t)]   (0-.e^0a) •   E     sin(u)t + 0  )   .       (33) 

o o 

X 

:v ^^ - 
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Now 
-♦ = /0   ,  ex0 \ d    U    V 

is just the dipole matrix element for the single-photon photoelectric 

process.  Thus, knowledge of this matrix element will enable one to 

evaluate the multiphoton transition rate when Eq. (32) is valid. 

For evaluation of the expression (33) the Fourier series expansion 

of Keldysh is conven ont. First we define 

2_ 

(U 

S = 
o 

- —   / dt sin(u)t + 0 )exp |i[l r + Y, (t)]| 2n j o     L  a    k   J 

(0       ,     ex0 \ • E 

U 7    0 (34) 

to obtain 

2 2 
e E 

^  6 ll  + e +  1 - +'     I 
v=-oo   \        4muü 

(35) 

Equations (34) and (35) were used by Keldysh, but with 0^ replaced 
K 

by a plane wave: 

-"    ,0 x-3/2  ^'X 0 « (2rt)    e 
K 

(36) 

10 
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IV STUDY OF THE QUASISTATIC APPROXIMATION 

In this section we study some conditions under which the quasi^tatic 

expressions (31) and (32) might be expected to be valid.  For this pur- 

pose wc write 

-IV (t) 
♦ = X e  k (37) 

and require that this be an exact solution of Eq. (14).  On noting the 

relations (4), we see that the general form of X  is 

k 

X = e    0  (x, a, E) (38) 

Indeed,   substitution  into Eq.   (14)  gives us  the  following equation for 

0   t 

h - ex-E + eE'(- V ) - e I 0 

L       V1  tl    KJ    t 

[i BL'V    0 - eE 

f t a Kj 

(39) 

First, let us consider the strong field limit and assurae that |al 

can be treated as large. Then we expect the Born approx.mation to be 
2 

valid with h replaced by p /2m. 

11 
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In this case 

,„  -3/2  iK'x 
0    ■ (2it)    e 
-» 
K 

(40) 

is an exact solution of the modifitd Eq. (39) and the adiabatic approxi- 

mation is valid.  Equation (40), substituted into Eq. (34), leads just 

to the expression used by Keldybh. 

-» 
The above argument is not rigorous, since a is /arying sinusoidally 

and must pass through zero.  It does make it plausible, however, that 

Eq. (40) can represent a fair approximation when (e£ /w)  is large.  This 

is consistent with the observation of Keldysh that .n this limit (and 

for uj-» 0) Eqs. (40) and (35) lead to Oppenhelmer' s' ?xpression (to within 

a numerical factor) for ionizatlon of a neutral atom :•  a static electric 

field. 

We next use Eq. (39) to study the adiabatic approximation in the 

weak field limit—that is, 

la| « k 

—and of course continuing to assume condition (25).  To do this we make 

an eikonal approximation for 0 , writing 

K 

0 ~ e 
t 

ir(x) 

r = K 

00 

- I    [Q(x') - K ] ds (x') (42) 

12 
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Since e « I , we take the eikonal trajectory to be a straight line 
k    a 

falling into the force center.  This we take to be a static potential 

[ -V(x)]. The quantity Q in Eq. (42) is taken to be the positive 

root of 

-*.-*.       -* -*   ,-» 2   2 
Q = K + 2mV + eE'L^x) + a-L (x) (43) 

where L and L are functions to be determined.  To ensure convergence 
1    2 -1 

of Eq. (42), it is assumed that V (x) decreases faster than x  as x-*». 

Thus, if V is a Coulomb potential, we assume it to be screened at large 

d.'JUnces.  The quasistatic approximation is valid when L and L may be 

neglected in Eq. (43).  When a = 0, Q becomes 

Q  =  |^k ' + 2mV (x)J 
1/2 

(44) 

If we let the eikonal trajectory lie along the Z-axis of a rectangular 

coordinate system, then Q = Q(Z) and Q = Q  (Z) are functions of Z only. 

Then 

Q  (Z) = kll + V (Z)/V (Zo)J 
1/2 

(45) 

where 

V(Z ) s «. 
o    k 

(46) 

13 
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lo first order In a and E we obtain 

T = T - a'x - e^ 
o 

00 

/(2Q ) 
o 

-» 
- a 

"00 

/ 
LZ 

L dZ,/(2Q ) - P 
2      o    a 

(47) 

where T    is the function f for a = E = 0 (hence, K = k) and 
o 

■ \ ] «, - 
/ 

k) dz' = k  /  (k/Q - 1) dz' = kP  .   (48) 
o a 

Substitution of Eq. (42) into Eq. (39), with the standard WKB 

approximation of neglecting gradients of Q, provides us with the coupled 

equations (valid to first order in a and E) 

cr 

. /(2m) = P  -  / L /(2Q ) dZ7 
1        * J       2 o 

L /2m = u) 
2 

00 

(2Q ) dZ7 
o 

(49) 

-»   -»    -♦   -♦ 
where L = k L , L = k L .  Use of these relations lets us re-express 

Eq. (47) as 

r = r - a-x + a'L /(2m) - eE'L /(lav ) 
o 1 2 

(50) 

14 
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The quasistatic approximation  is  seen  to be valid vhen 

L    ^ 0,   L /(2m)  2: P 
2 1 a 

(51) 

To integrate Eq. (49) we introduce the new variable; 

v(Z) = 

z 

/(k/Q )dZ//a 
o 

(52) 

Then 

— [L /(2m)l  - -aflL. 
dv  L 2    J       1 

/(2m) 

■ 

where 

±    (L /(2m)l  = —^ + a L /(2k) 
dv  I 1    J    dv    o 2 

Q H mum /k = Ha)/  2 (ek * ) 

(53) 

(54) 

The quantity (48) may be expressed in terms of v.  We first define 

Then 

P(Z) =  a v(Z) -Z 
o 

P (Z) = P(») - P(Z) 
a 

Equation (53) may be integrated in the form 

L /(2m) = P - P 
1       a 

L /(2m) = (tu/n) 

oo 

/ 
V 

m 

I 

sin [iKv' - v)]P (v^dv 
a 

1 - cos 

15 

(55) 

(56) 

[fUv' - v^jr^'Mv'   .    (57) 

/ 

A. -^ 
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Here 
d2P 

r(v) = (58) 
dv 

Alternatively,   we can express  L     as 

L /(.2m)  = fl 

00 

sinQKv'  - v)] TCv^dv' (59) 

We note from  the conditions   (51)  that  the quasistatic  approximation 

will  be valid  in  the  limit fi  -* 0  if  the  integral 

00 

/ 
P   (v^dv' 

is finite for all v and if the potential V is not more singular than the 

Coulomb potential at Z = 0. 

We first study the case of a screened Coulomb potential (that is, 

a final ion state). Let us as me that the potential is screened at a 

distance R and take [see Eq. (46)] 

Z  = e /e, 
O       k 

For Z « Z  (and « R), we obtain 
o 

(60) 

16 i 
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L (Z)/(2ni) = L (0)/(2m) + Z + . . 

L (Z)/(2mu)) = L (0)/(2mu)) 
2 ^ 

- - (Z/a )3/2 (a /Z )1/2 fl L (0)/(2in) 
3D      O O       1 

+ . . . (61) 

The linear Z-term in J. corresponds to the Reiss factor exp(i a'x). 

The L (0) and L (0) terms (independent of the space coordinate) arise 

in satisfying the boundary condition at |x| = «.  These are time-dependent, 

so they will contribute to S  [Eq. (34)].  Indeed, since Ll(0)/2m » ao, 

we see no reason to neglect these terms. 

When the screening radius is R « Z  (but »a ), we can evaluate 

the relative error in the quasistatic approximation from 

■■>-\h (0)/(2m) - P (0)| /P (0) 
a  J   a 

« (R/a )3(WRy)2/(12)   .  (62) 

When this quantity is sufficiently small compared to unity, we expect 

the quasistatic approximation to be valid. 

For R » E the quasistatic approximation does not appear to be 
o 

valid. Numeri'-al evaluation of Eq. (62) gave values of gi and 

g = II (0)/[2mu) P (0)]| 
2   I 2 a   I 

(63) 

to be about unity for a wide range of parameters.  Furthermore, an 

estimate of the second-order terms in a and E, omitted from Eq. (50), 

indicated a contribution comparable to the first-order terms when So 

[Eq. (34)] is evaluated. 

17 
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We conclude, then, that for a final ionic state, with rcreening 

distance R » Z , we are not able to evaluate multiphoton ionization 
o 

rates.  Since we have found what appear to be large corrections in "he 

expressions used by Keldysh5 and Reiss,6 our confidence is not great 

in tie accuracy of their results. 

We are able to draw a more optimistic conclusion for detachment 

of an electron from a negative ion when the residual molecule does not 

have P. significant permanent electric dipole moment.  In this  ase the 

potential in the final state has the asymptotic form 

-V(r) = a e / 
P / 

2 /   4 
(2r ) (64) 

r -> oD 

where 0 is the polarizability. 
P 

3 
For photodetachment of 0 wr h.ive a    <** 5.29 and I  = 1.46 eV. r p ft 

Equation (67) should be numerically evaluated for a potential with the 

asymptotic term (64) and for small r modified to remove the singularity 

at r = 0.  The error functions g and g are shown in Figure 1.  The 

curves are labeled by N, the )east number of photons required for 

detachment, and are given as functions of e = N lur - I . As anti- 

cipated, we see that for large N, and an e not too snail, both g^^ and 

g become small, as required for the validity of the quaslstatic 

approximation. 

18 
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V DETACHMENT OF 0 

We now use the expression (34) to eval..ate the m"ltipho1on detach- 

ment rate of 0 in the weak field limit. The single photon detachment 

rate has been studied experimentally by Branscomb et al.9  Theoretica1 

studies have been made by Brueckner and Klein10 and by Gillespie.11 

Since the attached electron is in a p-orbital state the transition will 

take place to a state of zero angular momentum if the electron energy 

is sufficiently low. We thus use condition (25) to write11 

Al" , e x 0 ^ E ft f'VlO 
\t 7   0 CE (65) 

where C  is a constarc and f  is  the Jost  funrtio'      ,hich we write  in  the 

effective-range approximation as 

f"  (-K)  =   (K  +  ia)/(K +  ib) (66) 

Here a and b are constants related to the scattering length and effective 

range lor plectron scattering by a neutral oxygen atom. 

See, for example, Ref. 7, p. 540. 

T. F. O'Malley et al.la have shown that for a potential having the 

asymptotic form (64) the effective range expansion is modified.  For 

the very low electron energies of interest to us this modification 

is not significant. 
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Following Keldysh,5   we  take 0    = — and  introduce  the  variable 
o  2 

u= sin jut in Eq. (34).  We shall assume that the electromagnetic field 

is weak in the sense that 

(eE Au) « k 
o 

(67) 

We  rewrite   (34)   in  the form 

S    =  -  (2Tt) 
o 

-1 /du iQ(k,u) L/H^T  e J CE (68) 

Here the cloi.  contour encloses the points u = -1, 1 and lies within 
iO 

any other singularities of e /f. 

in the weak field limit we can deform the contour so that every- 

where on it |u| » 1. An elementary evaluation gives us, then, 

iQ       JJ       2       r   -* -* 2 T —N 
e  = (i/2) exp(- ßu /4) exp[-ek'E u/(müü )Ju  , |u| » 1  .   (69) 

Here 

"[.. 2 2    2 
•i- ek + e Eo/(1.iuj )|  (tn ) )1 /(hüü) 

is,  according  to Eq.   (35),   the number of  photons required  to detach 
f 2       2 2 1 

the excess electron,  and  0 =  Ie    E    /(muu  )|   /(-hu)). 

As Keldysh observed,5   Eq.   (69)  has   two  saddle poiitts at  the  roots 

I     + — K    = 0 
a       2m (70) 
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These correspond to 

u fe tiv 
s ■ ^"yp^r /(eE ) (71) 

As also observed by Keldysh, the expression (65) has poles at the 

positions defined by (70). The quantity C. in Bq. (65). which is 

really K-dependent, has poles at the same positions 
ii 

Keldysh used the Born approximation, so in his expressions, f - 1. 

He was thus able to evaluate (68) keeping only the contribution from 

the saddle points at u 3r tiV. 

-1 
We cannot use  the Keldysh approximation because f     (-K) has  branch 

points at 

u    = u)(-k||   ±ikx)/(eE  ) (72) 

where k,, is the component of k parallel to |, and ^ is the component 

of iT perpendicular to t^     Since |«J « juj our integral (68) will 

receive its principal contribution from the vicinity of the branch 

points.  The contour of integration used is shown in Figure 2. 

Evaluation of (68) is straightforward when N is large.  The rate 

of detachment is, final!:, in the limit of large N: 

R = 2« f\b(l     + e  + e2E 2/(4mu)2) - Nhu)) |s 
J    \ a   k     o / 

2T 3 
2QN Ry 

X U(2e /hiu)   eE /(2ku)) I eE /(2ku)) 

2N 
(73) 

Equation (71) would be exact if ^ were zero. For nonvanishing k the 

actual saddle pcints are displaced slightly from the position ± i Y. 
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FIGURE 2      CONTOUR OF  INTEGRATION  FOR THE 
INTEGRAL (68), SHOWING THE TWO 
BRANCH  POINTS ub AND THE TWO 
SADDLE POINTS us.    Branch lines are 
Indicated between u = -1 and +1 and 
from ±ub to ±us. 

In tie lower version of   this equation,  k  Is evaluated when  the 

argument of  the 6-function vanishes,   or Is the fine-structure constant, 

and R Is  the Rydberg constant.     We have expressed R  In terms of  the 

cross  section a(k)  for detachment  by a  single photon of energy 

•hu)    =  I     +  e   .    Finally, 
1 a        k 

V(x) = 

x. 
2n xcos  6 2Ä    „ 

sin 9 dG (74) 
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The  ionlzation rate  (73)   is  illustrated  in Figure 3 as  a  function 
2 

of  laser power density  [expressed  in watts/cm  ] for several  values of 

the  photon energy Iwu using  the experimental   values of a     from Ref.  9. 

We  note   that our  result   (73)   is   substantially  different   than  that which 

would  be obtained  from  the Keldysh  evaluation using  the Born approxima- 

tion. 

POWER FLUX—W/cnT 

FIGURE 3     THE DETACHMENT RATE (73) FOR 0" SHOWN AS 
A FUNCTION OF THE LASER-BEAM POWER FLUX. 
The curves are labeled by the photon energy in electron 
volts. 
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I 

It is interesting to observe that for large photon numbers the 

cross section (73) is considerably enhanced for electrons near threshold, 

Our weak field approximation (67) fails for very low electron energies, 

however, and the apparent divergence of Eq. (73) at k = 0 is due to the 

failure of this approximation. 
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VI  DETACHMENT OF 0 

Cross sections for photodetachment of 0 have been published by 

Burch et al.13  The detachment energy is I  = 0.44 eV and the electronic 
a 

2 
configuration is a    state. An electric-dipole transition cannot 

g 2 

take place to a final S-state for the H  state.  Geltmann14 has dis- 
g 

cussed the implications of this for the near-threshold dependence of 

the single-photon detachment cross section. 

A theory of final-state enhancement does not seem to have been 

given for nonspherical potentials.  Until such a theory is available, 

we shall use Eq. (73) with an appropriate shift of parameters.  For 

a (k) we shall take the experimental value of Burch et al.1  This is 

admittedly not a rigorous theory.  If, however, the dipole matrix 

element has the branch points (72) as closest to the origin in the 

fi-plane, the ionization rate is rather insensitive to other details 

of the matrix element. 

The resulting ionization rate as a function of laser power is 

shown in Figure 4 for 10.6-am radiation. 
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POWER FLUX — \Nlcw 

KT 10' 
2 

FIGURE 4 THE DETACHMENT RATE FOR Oj SHOWN 
AS A FUNCTION OF LASER-BEAM POWER 
FOR WAVELENGTHS OF  10.6 AND 5.5 ßw 
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