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THEORY 

Principal component analysis has been proposed by 

several authors as a tool for separating multiple sig- 

nals (Goodman 1967, Choi 1967, Barnard 1968, Booker and 

Ong 1972).  The technique is based on the observation 

that eigenvectors of the spectral matrix of signals 

recorder1 at an array are often found to be similar to 

signal delay vectors and that the eigenvalues of the 

matrix are proportional to the relative power of the 

various signal components.  The signal delay vector is 

defined in equation 2 below, it is a complex vector 

such that the phase of each component is the phase shift 

of the signal at the corresponding array element.  The 

absolute value of each component is ^he same.  In the 

presence of random noise each eigenvector is still 

proportional to a signal delay vector but the eigen- 

value loses its proportionality to the total signal 

powers,  "ihis report is a critical evaluation of the 

method as applied to the separation of plane wave 

signals. 

Strictly speaking the method as applied to seismic 

arrays with a small number of elements (less thin ten) 

stands on a very shaky foundation. Assuming that the signal 

observed consists of a superposition of r plane waves, 

where n ^ m, ra being the number of array elements, the 

spectral matrix can be written (dependence of the 

quantities on frequency is implied) as the weighted 

outer product of the eigenvectors ^ 

n ^  **  K 

I 

♦ -  I P^.V.  + P1 
i-1 1 1 1 

CD 
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assuming that the waveforms are uncorrelated between 

signals, where p. is the power level of the i'th signal, 

p is the random noise level, and V. is the column vector 

C~ above symbols denote complex vectors in the notation 

used.). 

V. = - col[e 
i  m   l 

ikix1 ik.x_ 
i 2 

»• • •» 

ik.x 
e  1 m] (2) 

where k. is the wavenumber vector of the i'th signal, 
i 

x. is the position vector of the i'th array element 

and the star denotes conjugate transpose.  The same 

spectral matrix can also be written 

m  ~ ~ 
* - y X.E.E.* (3) .••ill ial 

where A. and E. are the i'th eigenvalue and corresponding 

eigenvector of ♦.  It is obvious that the two represen- 
tations are not identical even if we put p = 0 and 

X. = 0 for i > n, since 

but in general 

F *E bi t. 6. 
ij 

V.*V. ^ 6.• 

(4a) 

(4b) 

thus only in special cases do the two representations 

coincide.  The performance of the method improves if 

the number of array elements increases and the power 

levels of the various signals differ.  In fact it has 

been s;iown that in the limiting case m -•- » :he signals 

separate on the eigenvectors (Grenander and Szego). 

Further discuss' ,-. of the theory can be found in the 

Appendix.  The mathematical background for the discussion 

can be found in any basic text on matrix theory, e.g. 

(Ayres, 1 ;2}. 
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Booker and Ong (1972) showed that the signals can 

be separated successfully with a 20-element linear array 

ev<jn if their amplitudes differ by several orders of magni- 

tude.  They also showed that the method is relatively 

stable with respect to variations in the sample and 

random noise level.  In this report we re-examine the 

problem using a smaller array which is of greater 

practical interest than a linear 20-element array, and 

we also include cases when several signals of comparable 

magnitude are present. 

The results are shown in the form of f-k plots. 

The eigenvectors can be beamed, treating the eigenvector 

components as signal Fourier delay values at each fre- 

quency to obtain the f-k plot of 

S(k1 = |E*B; (5) 

where B is the beamsteer vector of the form identical 

to V. with k instead of k.. 

Alternatively some kind of high resolution f-k 

spectra can be computed (Capon 1967, Lintz 1968, McCowan 

and Lintz 1968) .  To compute the commonly used maximum 

likelihood f-k spectra, e pseudo spectral matrix of 

the j'th eigenvector can be formed 

$ « E.E.* + yl 
i i   ' 

and the maxirum likelihood f-k spectrum 

J 
^m 
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S(k) = 

B*$  B 

(6) 

computed. 

Since O"1 does not exist if Y=0, a small amount 

of independent random noise has^to be added by adding 

yl to the diagonal elements of ♦, where I is the unit 

matrix. 

In this report the latter representation is used 

as a matter of convenience, since the maximum likeli- 

hood f-k spectrum is less dependent on the array re- 

sponse, and thus the sidelobes present in tne k response 

function of small arrays are less confusing (Barnard 

1968). 
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EXPERIMENTS ON SYNTHETIC SPECTRAL MATRICES 

The numerical experiments described below were 

performed on hypothetical L-shaped five-element array. 

This configuration was chosen as an example for its 

simplicity, and no particular advantage for this array 

is claimed.  The array configuration is shown in 

Figure 1.  Plane wave signals were superposed using 

equations (1) and (2), and 2% random noise power was 

added to the diagonal elements. 

The results from the first example are shown in 

Figure 2. The signal power levels and azimuths are 

given in Table la.  The f-k plots of the various eigen- 

vectors in the order of decreasing eigenvalues (i.e. 

decreasing power levels) are denoted by letters A-E. 

The figures show that the first three signal components 

are clearly discernible on the f-k plots although the 

power levels of the flfSt and third signals differ by 

two orders of magnitude, the fourth and fifth signal 

are, however, not resolved. The signals were assumed 

to have a phase velocity of 3.8 km/sec and a period of 

20 seconds.  The circle in the figure denotes the 

3.8 km/sec velocity and the solid line from the center 

gives the azimuth of the successive signal components. 

Tho figures show that the first three signals are fairly 

well separated by the eigeuvector-oxgenvalue analysis. 

Figure 3 -further illustrate' what is happening. 

This figure shows the polar representations of signal 

delay vectors and spectral eigenvectors in the complex 

plane. The first signal and the first eigenvector are 

5- 
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Figure 1.  L shaped array assumed in synthesizing 

spectral matrices 
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TABLE I 

Power Levels and Azimuths of Signals used in Simulation 

(aj 

Azimuth 
Signal Power (Degrees) Figure 

1. 270. 2A 
.1 210. 2B 
.01 150. 2C 
.001 90. 2D 
.0001 30. 

(b) 

Azimuth 

2E 

Signal Power (Degrees) Figure 

1. 270. 4A 
.1 240. 4B 
.01 210. 4C 
.001 180. 4D 
.0001 150. 4E 

Signal Power 

1. 
1. 

.5 

.5 

.2 

(c) 
Azimuth 

(Degrees) 

270. 
210. 
150. 
90. 
30. 

Figure 

5A 
SB 
5C 
5D 
5E 
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SIGNAL DELAY VECTORS 

A 1.3& 

SPECTRAL EIGENVECTORS 

4 lit 

i 

SCALE: 

r 
423 

10 
SCALE: 

Figure 3.  Comparison of the complex eigenvectors and signal delay 
vectors for the synthetic example with parameters given in Table la. 
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very similar (disregarding the rotation which corresponds 

to a simple phase shift).  As the order of eigenvectors 

increases (in order of decreasing eigenvalues) the 

eigenvectors and signal vectors lose their resemblanceo 

The eigenvectors corresponding to components which could 

not be resolved do not resemble any signal components 

at all.  This did not result from any li accuracies in 

the eigenvalue analysis routines; the o iginal spectral 

matrix could be reconstructed in every c^se, but it is 

caused by the basic inadequacy of the method as outlined 

in the appendix.  It is interesting that eigenvector #3 

is already considerably different from the signal delay 

vector, yet it still produces a fair f-k spectra. 

Figure 4 shows a similar example with signals 

spaced at 30° intervals in azimuth.  In this case too, 

three signals are resolved. The parameters of signals 

are given in Table lb. 

Figure 5 shows an example where the power levels 

of two pairs of signals, including the strongest, are 

comparable (Table 1c).  The f-k plots show that the 

method fails completely: no signals could be resolved. 

The polar represöntations of eigenvectors do not re- 

semble any of the signal'.  The resulting eigenvectors 

cannot even be recognized as linear combinations of 

signal vectors (see Appendix); this can be due to the 

random noise added to stabilize the calculations. 

Summarizing, if the signal levels are different, 

the first eigenvector tends to line up on the most 

< 

-10- 
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powerful signal, the following eigenvectors on the 

iignals following, in decreasing magnitude (if only 

one signal is present it will be, in fact, identical 

to the first eigenvector).  This is expected, theoreti- 

cally.  The eigenvectors resemble the signals less and 

less as ^heir relative power level decreases, because 

the first eigenvector lines up on the first signal, 

and the following eigenvector» have to be orthogonal 

to the previous ones.  The second eigenvector, for 

example, must be similar to a projection of the -.econd 

signal to a plane perpendicular to the vector E^. 

Increasing the dimensionality of the problem (the 

number of array elements) helps because a projection 

can be more easily found which resembles the second 

signal if more dimension.' are available.  This intui- 

tively explains why the method works better for large 

arrays, like the 20 el3ment array used by Booker and 

Ong (1972). The failure of the method for signals of 

equal amplitude can be explained by the fact that the 

first eigenvector does not line up on any of the sig- 

nals. Consideration of equations (4a,b) also explains 

why it did not work for the vertical arrays. 

Although 

V.*V. ~ 6.. 

if many sensors are used along the vertical and the 

noise is composed of a superposition of normal modes, 

it is not necessarily true of a vertical array con- 

sisting of only a few elements.  Further discussion of 

the theory is given in the Appendix. 

13- 
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EXPERIMENTS ON REAL  DATA 

For these experiments segments  of composited 

seismograms constructed for another report   (Lambert 

and De-,   1973) were  used.    These seismograms were 

obtained by adding  long-period recordings  of seismic 

surface waves  from two events recorded at LASA channel 
by channel   with predetermined amplitude  ratios.     Two 

consecutive segments,   each 128 seconds  long,   of the 

data were Fourier transformed,  all the cross products 
of the transfovnis  calculated,  and the products   for the 

two segments  added to obtain a spectral matrix.     For 

stability in the  following calculations  the  diagonal 
elements were increased about 2% by adding a multiple 

of the unit tiritrix.     The above procedure was  used for 

computing maximum likelihood f-k spectra in the report 
mentioned.    A window of 256 seconds was used as  a 

standard for computations with FKCOMB,  since  it was 

found optimum for detecting dispersed surface wave 

signals.    The resulting spectral matrix,  in general, 
differs  greatly from the  idealized spectral macrices 

derived by using equation  (1).    Because of the shortness 

of the window used,   the spectral matrix has  a consider- 

able sample variance,   and the two signals  cannot be 
regarded as completely uncorrelated.    The effects of 

cross-correlation terms  in the spectral matrix have 

been considered by Woods  and Lintz  (1973).     The epi- 
central data for the  events used are  given in Table 2. 

Because it is hard to evaluate all these effects 

theoretically, an experiment is necessary to establish 

-14- 
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the usefulness of the technique for this non-ideal case. 

A five-element array consisting of the D ring and the 

center element of LASA was used.  Figure 6a and b show 

the f-k spectra associated with the first two eigen- 

vectors of the spectral matrix compos?d of the recordings 

of two superposed events, one of which occurred in the 

New Britain area with the other in the Philippines.  The 

first eiyeiivector yields a direction appropriate to the 

first event and the second indicates the presence of 

the second event.  The amplitude ratio of the 

two events is approximately 3:1. Lambert and Der (1973) 

showed that this case was not resolved by maximum 

likelihood spectra or by stripping using the FKCOMB 

method (Smart and Flinn, 1971, Mack and Smart, 1972). 

Figures 7a and b show the same technique applied 

to a superposition of an event from the New Hebrides 

region and the previously mentioned Philippine event, 

and Figures 8a and b show the decomposition of a seis- 

mogram made up of one event from Baja, California and 

one from Guatanala. The relative amplitude ratio is 

around 3:1 in all cases.  In the last case the 

decomposition is ambiguous, just as is the case of 

FKPLOT and maximum likelihood f-k spectra (Lambert and 

Der, 1973).  Figures 9 and 10 show the application of 

the method to the first two combinations of events 

analyzed above but with noise superposed such that the 

amplitude level of noise is one half that of the larger 

event (this puts the smaller event below the noise 

level). The Tinise sample used is the same one used in 

16- 
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Figure 6.  Decomposition of the composite of New Britain (A) 
and Philippines (B) events with amplitude ratio 3:1. 
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Figure  7.    Decomposition of the composite of New Hebrides   (A) 
and Philippines  (B)  events with amplitude ratio 3:1. 
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Figure 8.  Decomposition of the composite of Baja California (A) 
and Guatamala (B) events with amplitude ratio 3:1. 
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Fgiure 9.  Decomposition of the composite of New Britain (A) 
and Philippines (B) events.  S/N ratio of larger event is 
approximately 2:1. 
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Figure  10.     Decomposition of the  composite of New Hebrides   (A) 
and Philippines  (B)  events.     S/N ratio of larger event is 
approximately 2:1, 
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the report by Lambert and Der (1974).  The figures show 

that both events are well resolved.  Application of the 

two segment maximum likelihood and FKCOMB methods re- 

sulted in no resolution or doubtful resolution respec- 

tively for the same combinations.  In spite of the basic 

inadequacies of the method as outlined in the Appendix, 

the method can be used in practice for the separation 

of signals with unequal amplitudes, and seems to be 

superior in this case to both two-segment maximum 

likelihood and FKCOMB with stripping. 
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SUMMARY 

In the strict theoretical sense the principal 

component decomposition dbes not yield components which 

are meaningful in terms of plane waves.  In practice, 

however, it gives plausible looking f-k spectra if the 

power levels of the signals differ considerably.  In 

this case of great practical interest the method works 

and is superior to two segment maximum likelihood and 

to FKCOMB. 

The method does not yield useful results if 

several signals of comparable amplitudes are present, 

unless the delay vectors of the two signals are ortho- 

gonal.  However, simple stripping or maximum likelihood 

f-k spectra work well in these cases, and could be 

used in parallel. 

Principal component decomposition would appear to 

be the method of choice for routinely solving the masking 

problem at small arrays.  Once detection is accomplished 

the interactive mixed signal processor of Blandford 

et al. (1973), or some other maximum likelihood approach 

may be used for signal estimation.  These methods may, 

of course, be used initially if the direction of approach 

is known, e.g. LR from know epicenters, or looking for 

a test at a known test site in the coda of a large 

earthquake. 

The next step would appear to be routine analysis 

of many naturally mixed or masked events by the methods 

discussed above in order to see how they perform in 

routine operation. 
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APPENDIX 

Eigenvectors and eigenvalues of array spectral 

matrices generated by multiple plane waves. 

The spectral matrix of the signals observed at 

various array elements, can be written as the outer 

product 

n „ - 
• -  I V.V.* (Al) 

L»l 1 1 

where the complex signal vectors are of the form (and 

the star denotes complex conjugate) 

V. = — col[e 
i  m 

ikix1 ik. x. 
i 2 

ik.x 
00e 

1 m] (A2) 

' 

where m is the number of array elements, a. is the 

amplitude of the i'th signal, x. is the position vector 

of the j'th array element and k. is the wavenumber 

vector of the i'th signal.  It is assumed in the above 

representation of the spectral matrix that the signals 

do not correlate and thus the cross spectra of various 

signals are zero. This temporal independence of signals 

should not be confused with the independence of the 

delay vectors V. in the following discussion, which is 

related to the spatial characteristics of the array. 

The matrix in the above form is singular for the 

case k<ra; for the case m>n it is not singular but in 

this case the signals cannot be separated. 
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For simplicity let us consider the two-signal case. 

Denoting the two signal vectors by U and V 

$ = VV* + UU* (A3) 

eigenvectors of this matrix must  satisfy  the equation 

*E  =   XE. (A4) 

Vectors which are orthogonal to both U and V are eigen- 

vectors of * and the corresponding eigenvalues are 

zero.  There are m-2 such vectors which are mutually 

orthogonal.  The remaining two eigenvectors are linear 

combinations of the vectors U and V and the corresponding 

eigenvalues are nonzero.  This can be seen by rewriting 

(A4) as 

(VV* + ÜU*) E = XE 

VV*E + UU*E = XE 

but V*E  and U*E are complex scalars  and assuming that 

X  is nonzero 

E  = X^ v + ^S U  -  aV +   SU. 

Substituting this, the linear combination back into (A4) 

(VV* + UU*) (aV + 0U) - A(aV ♦ ßU) 

= aVV*^ + aUÖ*V + ßVV*Ö + ßÖÜ*0 

- V (aV*V + ßV*U) ♦ U (aU*V + ßU*U) - AE. 
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So 

or 

Aa = aV*V + ßV*U 

Aß = aU*V + ßU*rj 

a(V*V-A) + ßV*U = 0 

aU*V + ß(U*U-A) = 0. (A5) 

Nontrivial solutions a and ß exist only if 

V*V-A  V*U 

U*V    U*U-A 
= 0 (A6) 

The roots of this equation are the eigenvalues. 

Substituting back into the various equations yields 

the ratios of a and ß.  An additional constraint on E is 

that 

E*E = 1. 

Clearly if U*V = 0 

"1 

and 

V*V 

A2 * U*U 

and the two eigenvectors become 

E. - ßU and E2 » aV 

ll *   0 al ^ 0 
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if U*V is small relatively to U*U and V*V the eigen- 

vectors are still approximately lined up with the 

component signal vectors.  The same is true if 

V*V >> U*U or U*U >> V*V even if U*V is not small. 

This can be easily proven from the characteristic 

equation 

A2-A (V*V + U*U) + V*V U*U - V*U U*V = 0 

assuming the extreme case |U| |V|= |U*V| 

A2-A(V*V + U*U) = 0 

if 
V*V >> U*U. 

One of the eigenvalues becomes Ai % V*V substituting 

into (A5) from which follows that |a| ?« 0 ß-0 Ei-aV. 

The products of the complex vectors U and V can 

be written as 

m ik x. -ik x. 
li il til    ,.    \!    \ * "   ' - -   - r« , iüLilL f e u S ^ v i 

m2 1=1 

, lul |v| ■ t^i(VV 
m^ i-1 

. ill |vl f ,i5t*i 
m  i-1 

- F(Ak)|U| |V| 
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where F is the array response, in this case with the 

argument AK.  If AK is such that F(AK) = 0 that is, 

the array response is at a zero, the various components 

separate.  If, on the other hand, F(AK) t  0, especially 

if F(AK) % 1, (one signal is in a large ^idelobe of the 

array response when the array is beamed at the other 

signal) the separation cannot be achieved unless the 

various signals are considerably different in magnitude 

making |U||V| small relative  to the squared amplitude 

of the larger signal. 

The discussion above clearly indicates that prin- 

cipal value analysis is not suitable for the separation 

of plane wave signals in general, and it works only if 

some very restrictive conditions are met. 

Obviously the same theory applies to separation 

of signals at tapered (weighted) arrays or deep well 

arrays.  For the weighted array case the exponentials 

in (A2) are multiplied by the sensor weights; in the 

deep well array case, assuming that the signal consists 

a superposition of normal surface wave modes V^ the 

absolute values of elements in vector V^^ are the rela- 

tive amplitudes of a certain surface wave mode at the 

various sensors and the phase is either 0 or it depending 

on the phase reversals of that mode with depth.  In 

general V.*V. ^ 0 unless a large number of sensors is 

used to successfully approximate / Vi(Z)«V.(Z)dZ ■ 0, 
where V.(Z) and V.(Z) are the amplitudes of various 

modes as functions of depth Z, which indeed are ortho- 

gonal in the sense given by the integral. Separation 
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can be achieved with a few sensors only if their posi- 

tions or weights are carefully chosen (as functions of 

frequency) knowing the particle motion-depth relation- 

ships of all the modes present, to make Vi*V. +  0 for 

all mode combinations and periods. 

In the case of correlated signals, that is, if 

the cross power spectra of the signals are not zero, 

the spectral matrix of the array takes the form (Woods 

and Lintz 1973) in the two signal case: 

$ = v*V + U*U + p  (U*V + V*U) 

where p  is the coherence between the two plane waves. 

It is easy, following steps similar to those described 

above to derive equations for eigenvalues and eigen- 

vectors.  As shown above, the eigenvectors corresponding 

to nonzero eigenvalues will be linear combinations of 

the vectors U and V, which are not plane waves in the 

general case. 

The finite sample length used to derive the spec- 

tral matrices poses the same problems as outlined by 

Woods and Lintz (1973) and Smart (1971).  First of all 

the cross spectral terms of signals are never zero, if 

they are reduced by smoothing the spectra, leakage of 

energy leads to erroneous phase velocities and destroys 

the plane wave character of the signals. 

The above discussion can be easily extended to the 

case of many signals. 
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Addition of noise to the signals also changes the 

results.  Assuming that the noise is independent of 

the signals, the spectral matrix of the array inputs 

become 

<D = VV* + UU*+ ... +N 

Signals        Noise 

The noise spectral matrix is, like all properly 

derived spectral matrices, positive definite and 

Hermitian.  A Hermitian matrix is unitarily similar 

to a diagonal real matrix.  That is, 

N = T I T* 

where T is a unitary matrix and J  is the diagonal 

matrix containing the eigenvalues of N in the diagonal 

elements.  Putting 

M = I1/2T 

N becomes 

N = MM*. 

But this also can be written as 

N = (M^ M^.^MJ A^A = M^ * + M-M * + ... + MM* 2   2 mm 
M2* 

VI 
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where M*  are  column matrices  of M.     Thus 
m 

d)  =  W*  +  UU*  +   ...   +   J  M.M.*. 
1     1   1 

The M.   behave  exactly as  coherent  signals  and 
there are,   in  general,  m of them.     The  derivations 

for the  spectral  eigenvectors  are similar  to  those  in 
the earlier part of  this Appendix.     The  eigenvectors 

will be sums  of the signal vectors  vectors  U,  V,  and 
the noise vectors  M. ,  but  there  can be no  more  than m 
nonzero eigenvalues   (and independent  eigenvectors)   of 
*.    Besides,   the m vectors M.   span  the whole  dimen- 

sional  complex  space,   thus  depending  on  the noise; 

the eigenvectors  of the  total spectral matrix can 
assume almost  any direction. 
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