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ABSTRACT

An improved reliability analysis of fatigue-sensitive circraft
structures is presented which accounts for the effects of realistic
operational loading inputs, inspection frequency and damaged part
renewal on the subsequent probability of first failure in a fleet
of aircraft. Furthermore, the analysis provides an approach to
conducting trade-offs between given fleet reliability levels and
the associated costs of the necessary inspection and maintenance
procedures.

The analysis is based on the application of random vibration
theory. Operational service loads, composed cf ground loads, ground-
air-ground loads and gust loads, are all random in nature. The
fatigue process involved here consists of crack initiation, crack
propagation and strength degradation. The time to crack initiation
and the ultimate strength are also random variables. After a fatigue
crack is initiated, fracture mechanics is applied to predict crack
propagation.linder random loading. While the fatigue crack is
propagating, the residual strength of the structure decreases
progressively, thus increasing the failure rate with time. The
aircraft structure is subjected to periodic inspection in service.
When a fatigue crack is detected during inspection, the implicated
component is either repaired or replaced, so that both the static
and the fatigue strength are renewed. Such a renewal process is
taken into account in the present analysis. The detection of an
existing fatigue crack during inspection is also a random variable
which depends on the resolution capability of the particular
technique employed, the thoroughness of the inspection and the size
of the existing crack. Taking into account all the random variables
as well as all the random loadings, the solution for the probability
of first failure in a fleet of aircraft is derived. Further, an
inspection frequency optimization is formulated based on the concept
of cost of failure. Finally, vndmerical examples are given to
demonstrate the effect of indpection on the fleet reliability.
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I

INTRODUCTION

Fatigue has been a problem in the design of many structures

in mechanical engineering , e.g., turbine blades, propeller shafts;

in aeronautical engineering, e.g., aircraft structures, and in

civil engineering, e.g., buildings, highway and railroad bridges,

etc. The problem of fatigue is further complicated by the fact

that most of the loading inputs to these structures in service

are random in nature [e.g., Refs. 1-6]. Typical examples are gust

and maneuver loads on aircraft, [e.g. Refs. 7-131, wind and

earthquake forces on buildings, traffic loading to bridges, etc.,

to mention just a few.

Fatigue damage is revealed in a structure by the initiation

of a visible crack. It has been a practice, e.g., on railroad

bridges and aircraft structures, to periodically inspect fatigue-

sen;itive structures in order to detect such cracks and to repair

or replace the cracked components [e.g., Refs. 14-17]. inspection

is an important procedure to increase the reliability of fatigue-

critical structures. Hence, reliability analysis of fatigue-

sensitive structures, under random loading and periodic inspection,

is of practical importance, and is the primary concern of this study.

In addition, an inspection frequency optimization is formulated,

based on minimization of the expected cost of failure. Although

the application of reliability analysis to aircraft structures is

emphasized, the approach discussed in this report is equally
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applicable to other fatigue-aensitive structures, e.g., ciyil

and mechanical engineering structures, under random loading.

The specific type of random loading considered herein is a

flight-by-flight loading to transport-type aircraft (bombers,

tankers, etc.). It consists of ground loads, ground-air-ground

loads and gust loads, which are all random in nature. Tb

ultiinate strength of the structure is also a random variable with

certain statistical variability le.g. Refs. 18-191. Failure

occurs as soon as the strength, either the ultimate strength or

the residual strength after crack initiation, is exceeded by the

random load level. This is referred to as the first-passage or

first-excursion failure in random vibration [e.g. Refs. 20-23].

The fatigue process considered consists of (i) crack

initiation, (ii) crack propagation and (iii) strength degradation.

The time to crack initiation is a rando. variable and is assumed to

have a two-parameter Weibull distribution [Refs. 24-25]. After the

fatigue crack is initiated, fracture mechanics is applied to estimate

crack propagation under random loading, where the statistics of

rise and fall of random loading plays an important role [Refs.26-29].

While the crack is propagating, the ultimate strength is reduced

pxogressively. As a rfsult, the res'dual strength of a cracked

structure decreases, thus increasing the failure rate (or risk

function) in time [Ref. 30].

2



The residual strength after crack initietion is related either

to the ultimate strength and the crack size through the Griffith-

Irwin equation for non redunant structures [e.g. Refs. 31-32] or is

determined by te3ting and analysis for redundant structures [e.g.,

Refs. 14,15,33-36]. With the concept of fail-safe design, fatigue

crack propagation will be arrested by the "crack stopper"; thus the

fail-safe crack size defines the maximum crack allowabie in the structure.

The inspection is performed at periodic intervals in order

to detect the fatigue crack if it exists. When a crack

is detected, the cracked component is repaired or replaced so that

both the residual strength and the fatigue strength of the

component are renewed. This renewal process is taken into account

in the present reliability analysis. During inspe( ion, however,

the fatigue crack may not be detected. The detection

of an existing crack is also a random variable, which depends

on the re3olution capability of a particular method or technique

employed for inspection. The probability of crack detection, in

general, is an increasing function of the existing crack size [Refs.32,37].

Taking into account all the random variables ane random

loadings described above, the solution for tt_ probabilii

of failure is derived through application of the conditional

probability theory. Then, an inspection frequency optimization is

formulated on the basis of the expected-cost-of failure concept [Refs.38,391.

The optimum inspection frequency is determined, to minimize the

expected cost of failure, while the constraint on the structural

reliability is satisfied.
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II

RANDOM LOADING

Consider a designed flight-by-flight random loading history

(see Fig. 1), where each flight has three different characteristics:

(1) ground loads S (t), (2) gust loads S(t) and (3) ground-air-g

ground loads Z. This specific type of random loading has been

used for the design of transport-type aircraft (bombers, logistic

aircraft, etc.).

The ground loads S (t), resulting from landing and take-off,g

have been modeled as a random process (see Ref. 1). They produce

compressive stresses in the fatigue critical component, and have some

effect on the fatigue life. It has been observed in fatigue

experim.ents, that when the general loading range of a specimen is

in tension, the introduction of occasional high level loads results

in a prolongation of the fatigue life due to the effect of beneficial

residual stresses. This beneficial effect, however, is eliminated

when compressive stressess are introduced in the loading history.

Hence, the existence of the ground loads S gt) eliminates the

possible beneficial effect due to occasional high gust loads.

In each flight, there is one cycle of ground-air-ground load Z,

which is also a random variable over the life of the aircraft.

The magnitude or range of this load cycle is so large that it

has a profound effect on the fatigue life of the aircraft structure.

4



The c4tastrophic failure of the structure is essentially due

to gust loading, since failure occurs when the ultimate strength

(or the residual strength after crack initiation) is exceeded.

The gust loading S(t), modeled as a stationary composite Gaussian

process [Refs. 7-13], will be adQpted herein and is described briefly

in the following:

The gust loading S(t) consists of a series of turbulence

patches modeled as stationary Gaussian random processes S(t,i),

i=1,2,..., where ai is the standard deviation. The power spectral

densities Gi( o for S(t,ai), i=1,2... are identical when

normalized with respect to a2, i.e., Gi(w)/a2 is invariant for all

i=i,2, ...

The expected number of upcrossings (or upcrossing rate) per load

cycle v +(R0 , i ) acrnss a threshold R0 , the ultimate strength,

by S(t,a i) is well-known,[e.g. Ref. 1],

(R a.) = exp -(R 0 -X0 ) /2o i  (1)

where X0 is the average value of S(t,ai), which is equal to

the stress associated with one g loading [see Fig. l). The

standard deviations ai, i=1,2... are assumed to be statistically

independent and identically distributed random variables with

an half-normal distribution [e.g., Refs 12-13]

2'' / 221/2x2 /2P (2/-x /2 c I
+ P2(2/ 2 e c2 (2)

1 2
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where f ax) is the density function of ai l P1 and P2 xeprer-nt the

fractions of nonstorm turbulence (clear air) ard the thunderstorm

turbulence, respectively, with associated intensities acl and c2.

Hence, P1 + P2 = 1. Parameters PIP2,acl/B and ac2/B are referred

to as turbnlence field parameters and are specified in Ref. 7 for

various altitudes, where B represents the structural characteristics

[see Ref. 121. A unified approach for the determination of these

parameters from the measured turbulence data has recently been

proposed in Refs. 12-13.

Therefore, the average number of upcrossings per cycle (one cycle

is defined as one upcrossing of the mean, X0 ) by the S(t) process)

is obtained as

+ (R0 ) =V+ (R0 ,x)f (x) dx

= P1 e-(R0 X0 )/acl +P2 e-(R0-X 0 )/c 2  (3)

Thus the upcrossing rate of a threshold R0 is an exponential

function. This has been verified by extensive turbulence field

data [Refs. 7-13], and Eq. 3 has been used in the curren.t U.S. Air

Force specification [Ref. '/] for aircraft structural design for

atmospheric turbulence IRefs. 12-13]. The gust process S(t)

thus de fined is referred to as a composite Gaussian process.

It should be mentioned that the first term in Eq. 3 represents

the contribution from clear-air turbulence and Pl>>P2 ,ac2 >Ocl "

6



Therefore, it is primarily responsible for the fatigue initiation

and crack propagation. In the current practice in random fatigue

testing, the second term is usually disregarded [e.g. Refs. 15,39].

The second term, representing the contribution from storm turbulence

with large intensity a c2 is primarily responsible for the excursion

or exceedance of the ultimate strength or the residual strength

of the structure. Eq. 3 will be used later for computing the

failure rate (or risk function) in order to estimate the structural

reiiability.

We digress here to comment that the fact that this turbulence

model results in an exponential exceedance (Eq. 3), does nct imply

that it is the only feasible model. This is very important, since

other models of random processes may elso produce an exponential

exceedance such as Eq. 3. The model is employed herein for

expediency in view of the fact that no simpler model for gust loading

for the purpose of implimentation in design, exists in the literature.

An exploratory nonstationary model for gust loading, recently

proposed by Lin [Refs. 2-3], should be mentioned.

7
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Ill

MATERIALS/STRUCTURAL PERFORMANCE AND INSPECTION

3.1 Fatigue Crack Initiation

When a structure is subjected to cyclic loading for some time,

a fatigue crack will be ir2.tiated first. This initiated crack will

propagate progressively until a critical crack size is reached and

fracture occurs. It is well-known that the fatigue process

consists of czack initation, crack propagation and final fracture.

It has been sh:wn that the statistical distribution of the time T

to fatigue crack initiation for the critical components of aircraft

structures can be represented by a two-parameter Weibull distribution

[e.g., Refs. 15,24].

~t- -e(t/8 (4)

where a is the shape parameter and 0 the scale parameter. These

parameters should be estimated from the test results of both the

coupon specimens and the full scale structure under flight-by-

flight loading shown in Fig. 1 [see Refs. 15,40-42]. If the result

of the full-scale test is not available, an alternate approach is

to estimate the parameter 0 by use of the cumulative damage hypo-

thesis and the S-N curve.

3.2 Crack Propagation Under Random Loading

Once the fatigue crack is initiated and has a detectable size,

say 0.02", fracture mechanics can be applied to predict the crack



propagation under random loading. The applicability of fracture

mechanics requires that the crack size should he large compared

to the plastic zone at the crack tip. For most materials, such as

aluminum, this requirement is satisfied fox a detectable crack

size, say 0.02"[see Ref. 32). Therefore, the power law of crack propagation

under Gaussian random loading, which has been verified experinentally

Isee Refs. 26-28], will be used,

-- b
dv/dn = c AK (5)

where a is the crack size, da/dn is the rate of crack propagation

per cycle, AK is the range of stress intensity factor, and b and

c are material constants. A2 is the average of the bth power of

the stress intensity factor range. For aluminum under random

loading, b=4 seems to be appropriate (Refs. 27-28]. For the sake

of simplicity of presentation, we shall set b=4, realizing that when

b is different from 4 for other materials, the approach discussed

herein remains valid and it does not involve any difficulty to account

for it. Hence,

AK4 = S4 a2  (6)

where S4 is the average of the fourth power of the rise and fall

of the composite Gaussian process S(t). Approximate methods for

estimating S4 from the power spectral density are available in

9



Refs. 26-29, and are summaxized in the Appendix.

Thus,

42
da/dn= c a (7)

Integrating Eq. 7 from the initial crack size a0 to the crack

size a (t), after t flight hours, one obtains,

a(t) = a0/ 1-ta0cQ] (8)

Q = N0 [S4 + Z4/Na]

in which N is the number of gust load cycles per flight hour and Z
4

is the average of the fourth power of the gtound-air-ground cycle.
Na is the number of gust load cycles per flight. In Eq. 8, the

contribution to the crack propagation from both the gust load

S(t) and the ground-air-ground cycle Z have been taken into account.

The ground oad S (t), producing a compressive stress, (Fig.l)g

seems not to make a significant contribution to the c:ack

propagation, except that it eliminates the beneficial effect resulting

from the occasional high loads S(t), and hence it is omitted in

Eq. 8 [see Section VIII for discussion].

3.3 Residual Strength

After a fatigue crack is initiated in the structure, the

ultimate strength decreases due to'the presence of the crack.

10
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Based on fracture mechanics, the relationship between the residual

strength R of a structure cont4ining a crack, and the crack size a

is given by the Griffith-Irwin equation,

Kc =R V (9)

in which Kc is the critical stress intensity factor (fracture

toughness), which is a material conbtant. The relationship, Eq.

9, holds up to the point A (see Fig. 2) where R is equal to the

ultimate strength R0. Thus, the strength (residual) of the

critical component of the structure follows the curve A-B-C

as shown in Fig. 2. As a result, there is a critical crack size

ac (point B) beyond which the strength Ro starts to decrease

following Eq. 9. This critical crack size ac is a very important

parameter in selecting or comparing candidate materials for a

particular structure [see Ref. 32].

Let tc be the time (flight hours)required to reach ac after

crack initiation. Then, it follows from Eq. 8 that

tc = [I- %a./acI]/caOQ (10)

Let R(t m ) be the residual strength at tm flight hours after+tafe cak niitin

a c , i.e., the residual strength at t=tc+t m after crack initiation.

Then, integrating Eq. 7 from a to a (t ) that is the crack size

associated with the residual strength R(tm), and using Eq. 9,one

1]



obtains

R(tm) = R0 [l-a_ c Q tm ] l/2 (1)

in which R0 is the ultimate strength (see Fig. 2).

In order to prevent the crack from propagating to a catastrophic

size, it has been a design practice to provide crack-stoppers in

the structure, which will arrest the crack. This practice is called

fail-safe design. If as denotes the distance between adjacent

fail-safe stoppers, then it is the maximum crack size allowable in

the structure, and the minimum residual strength at this crack

size can be obtained from Eq. 9 (see Fig. 2).

Thus far, the residual strength of a cracked structure is

obtained from the Griffith-Irwin equation (Eq. 9). It applies to

nonredundant structures [e.g., Ref. 30]. Many structures, however,

are designed with high redundancy. Under this 'ircumstance,

the residual strength of the cracked structure no longer follows

Eq. 9, but depends on the particular design and has to be obtained

by analysis and testing [e.g. Refs.,14,15,33-36]. As a result, it is

not possible to discuss the residual strength of a highly redundant

cracked structure in general. However, the general trend is for

the residual strength to be a monotonically decreasing function

of the flight hours or the crack size.

Let R t b, the residual strength at the fail-safe crack size

12



a which is determined from analysis and tdsting. In view of

the form of Eqs. 9 and i as well as the test results [e.g., Refs.

14-15, 33-36], a possible model for the residual strength

R(t n ) at tn flight hours after crack initiation is suggested as

follows;

(a (tn) - ao 1/ 2

R( t n R 0 1 - (l- a)(n a (12)

where a(tn) is the crack size at tnand is computed from Eq. 8.

3.4 Periodic Inspection and Crack Detection

In the preceding section, the fatigue damage is expressed

in terms of the fatigue crack size a(tn) (Eq. 8), which increases

monotonically with respect to flight hours tn, and hence the residual

strength R(t n ) (Eq. 12) decreases. The purpose of the periodic

inspection is to detect the fatigue cracks. If a fatigue crack

is detected, it is repaired and the strength of the component is

renewed, thus increasing the structural reliability.

The probability of detecting a fatigue crack in the critical

component depends on (i) the probability of inspecting the cracked

detail (correct location) in the component and (ii) the resolution

capability of the crack detection method used for the inspection,

[Refs. 32,36,37]. Let U1 be the probability of inspecting the

cracked detail and U2 (a) be the probability of detecting an ex-

isting crack of length a when the cracked detail is inspected.

U1 depends on the thoroughness of inspecting :11 the details and

3.3
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U2 (a) depends on the resolution capability of a particular

detection method used for inspection as well as the existing crack

size a. A typical example for the detection probability U2 (a)

is given by Fig. 3 where the method of dye penetrant is employed

[Ref. 32]. In general, U2 (a) is a monotonically increasing function

of the crack size a. It is reasonable to assume a minimum crack

size aI below which the crack cannot be detected and a maximum

crack size a2 beyond which it can certainly be detected. Hence,

a possible model for U2 (a) is:

U2 (a) =0 a < a

= [(a-a 1 )/(a2-a!)] m  a1 < a < a2  (13)

=1 a2< a

where m is a dimensionless parameter. It can be observed from Fig.

3 that m=-, a1=0.02" and a2=0.3" for the dye penetrant method..

Consequently, when a crack of length a exists in the structure,

the probability of detecting it, denoted by F[a], is the product

of U1 and U2 (a) ,

F[a] = UIU 2 (a) (14)

*

and the probabilV.ty of not detecting the crack F [a] is equal to

1-F [a].

14



IV
CONDITIONAL FAILURE RATE (RISK FUNCTION)

As mentioned previously, catastrophic failure occurs as

soon as the ultimate strength R0 (or the residual strength after

crack initiation R(t n))is excceded by the gust load. It can be

observed from Fig. 1 that the problem is a first-passage problem

with one-sided threshold [Ref. 1,20-23]. The average failure

rate (or risk function) per load cycle for the threshold

denoted by h0 (R0 ) , is therefore [Refs. 1,22],

h 0 (R0) = v (R0)/Mc  (15)

where V +(R0 ) is the upcrossing rate given by Eq. 3, and Mc l is0 c

the average clumpsize (Refs. 1,22]. For most structures, particular-

ly for aircraft structures, the threshold R0 is very high compared

to a c2 so that the events of excursion (or exceedance) are

statistically independent, and hence Mc = 1. We shall set M = 1

realizing that such an approximation is conservative [Ref. 1].

The ultimate strength R0 for most structures is a random

variable [see Refs. 18-19]. For aircraft structures, data has been

compiled in Ref. 18 where a Weibull distribution with the shape

parameter equal to 19 has been proposed. Therefore, the failure

rate h0 per flight hour follows from Eq. 15 as

ho= N0 f+(x) fR (x)dx (16)

0
15



where (x) is the probability density of R0 and v+ (x) is given

by Eq. 3.

Following Ref. 18, that the statistical distribution of the

ultimate strength is a Weibull distribution with the shape

parameter a0 and the scale parameter 80, we obtain the failure

rate h0 , by substituting Eq. 3 into Eq. 16 and by making

appropriate transformations, as follows:

2 r x+V o 0
ho Nl-exp ] x (17)

h Of

in which

ci 0 /ci

i=1,2 (18)
voi X 0 /aci

The failure rate h0 obtained above is the conditional failure

rate, the condition being that the fatigue crack has not beeni

initiated.

Let h(t n)be the failure rate at tn flight hours after crack

initiation; at this tre, the residual strength R(t n ) is given by

Eq.12. Then, it carp easily be shown that h(t n ) can be computed

from Eq. 17 where 80 appearing in Eq. 18 should be replaced by

8OYn (see Eq. 12),

16



7n- =  
i ) -- -( 9

0-1/21-n a 0 ] (19)

When the residual strength follows Eq. 11, it is obvious that

h(tn) =h 0 for tn < tc , where tc is given by Eq. 10. For tn >

h(t n ) can also be computed from Eq. 17, where a0 appearing in
*

Eq. 18 should be replaced by a (see Eq. 11),

n  [1 - accQ(tn-tc) 1/2 (20)

If the statistical distribution of the ultimate strength R0

is assumed to be normal with a mean value p0 and a coefficient of

variation V0 (dispersion), the failure rate h(tn ) can be obtained

in a closed form as follows;

2
2 1r~i r2ne-r')/2 Ir.

h( n) =n PiN0  -erf(nil 4ri)+ 1 e l+erf( H(21i= 1 Li\

in which

ni =(YnPO0/aci) - (X0 /ci)

(22)
i = 1,2.

r = V0 0O ci

where yn i. given by Eq. 19. The failure rate h0 before crack

initiation can be computed from Eq. 21 where yn appearing in Eq. 22 is

17



1.0. ~For the case where the residual strength follows Eq. 11,

yshould be replaced by y n (see Eq. 20).
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V

PROBABILITY OF FAILURE UNDER PERIODIC INSPECTION

Having obtained the conditional failure rates h0 and h(t n),

representing the failure rate before crack initiation and the

failure rate at t n(flight hours) after crack initiation, respectively,

we are in a position to derive the probability of structural failure

under periodic inspection. Since the time to crack initiation is

a random variable, the following formula for the conditional pro-

bability will be used freqvently,

PEA] = fP[Alt] W(t)dt (23)

0.

Where P[A] is the probability of failure, W(t)dt is the

probability of crack initiation in [t,t+dt] (flight hours) and W(t)

is given by Eq. 4. P[Alt] is the probability of failure under the

condition that the crack is initiated at time t. Furthermore, if the

total failure rate within an interval of time is denoted by K, then

the probability of failure Pf in that time interva± is

-K
Pf = e (24)

Let P0 be the probability of failure within the intended service

life T(flight hours)without inspection. Then, it follows from Eq. 23

and 24 that
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T T-t

A tho-f h (t) dt}

0

+ -e Th (t) dt (25)

T

The first term is the probability of failure under the condition

that the fatigue crack is initiated at time t in [0,T]. The

second term represents the probability of failure when the fatigue

crack is initiated after the service life T, in which case the

total failure rate is Th0 '

Define H(t n ) as the summation of failure rate from the crack
n

initiation to t n flight hours after crack initiation,

t n

H(t) = Jh(t) dt (26)

0

Then, with the aid of Eq. 4, P0 can be written as

-Th0-(T/)M -f -th0-H(T-t) (27)
P0 =.l-e - (t) "e dt

0
Suppose the structure undergoes a periodic inspection at

*

each T0 flight hours [see Fig. 4]. Let P. be the probability of

failure in j service intervaIs [0,jT 0] under the condition that the

crack is initiated after j-lth inspection. Then, it follows from

Eq. 23 that
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T 0

* o-h 0 1 (j-l)T 0+t) -H (T0- tl
P. WI(j-1)T0+t] {1-e 0 + dt

f 0

+ fW(t) {.-j *ho dt

JT0

in which the first term denotes the failure probability in [O,jT 0],

when the fatigue crack is initiated in the j th service interval

[(j-l)T0,jT0],and the second term denotes the failure probability

when the fatigue crack is initiated after j T .*

With the aid of Eq. 4, P. can be simplified as follows;)

, -[(j-1)T 0/0] 1 -[JT 0/8]" -jT0h 0
P. =e -eJ

T

Wj Tt]-h 0 [(j-l)T 0+t]-H(To-t)/uWi(-lT 0 +t]e dt (28)

j=l , 2 , •.

Let P(j) be the probability of failure within j service intervals

[O,jT 0] under periodic inspection. It is obvious that the probability

of failure within the first service interval P(l) is equal to
*

* (2 9 )
P(l) P1

and the total failure rate in this time interval denoted by K,

follows from Eqs 24 and 29,
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K1 =-ln [-P(1)] (30)

The probability of failure in the first two service intervals

(0,2T0] can be written as

P(2) = P2 + f 2 (t)W(t)dt (31)

where P2 is the contribution from the event of crack initiation after

the 1st inspection given by Eq. 28, and the second term on the

right-hand side is the contribution from the event of crack

initiation in the first service interval [0,T 0]. q12 (t) is the

failure probability under tLe condition that the crack is

initiated at time t, which consists of two parts,

q12 (t) = F[a(T0-t)] C 12)(t) + F*[a(T0 -t)]V 1 2 (t) (32)
1* 1

in which a(T0-t) is the crack size at the first inspection time

T [see Fig. 4]. F[a(T0-t)] is the probability that this crack
*

is detected at T0 and F [a(T 0-t)]=l-F[a(T0-t)] is the probability

of not detecting the crack at TO . Both a(T0-t) and F[a(T0-t)]

are computed from Eqs. 8 and 14, respectively.

V12 (t) is the failure probability in [0, 2T0 ] under the

condition that the crack, initiated at time t, is not detected at

the first inopection. Hence,
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V12(t) = 1- exp [h 0t - H (2TO-tj (33)

The term C(1 (t) denotes the failure probability in [0,2T
120

under the condition that the crack, initiated at time t, is

detected at the first inspection.

12 (t) = l-exp h0t - H(T -t)-K( 134)

where h0t + H(T0-t) is the total failure rate in[O,T 0land K1

is the (renewal) total failure rate in [T0,2T0], which is the same as

the failure rate for P(L) (Eq. 30), because the crack is detected

and the renewal process for the structure occurs after the first

inspectior.

The probability of failure within (0,3T] can be written as

follows; T TO

P(3) = P3 + fq1 3 (t)W(t)dt +fq 2 3 (t)W(To+t)dt (35)

0 0

in which the second and the third terms are the failure probabilities

contributed by the events of crack initiation in the first service

interval and in the second service interval, respectively.

The failure probability q13 (t), under the condition that the

crack is initiated at time t (in the first service interval),

consists of three parts,
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q 3 (t) FLa(T 0 t)C ( ) (t) + F* [a(T 0 -t)]F[a(2T0 -t)]C(2 t)q13(t = (0-t 13 0]Ot)C13

[a(T 0 -t)]F ra(2T0 -t)]Vl 3 (t) (36)

where a(2T0 -t) is the crack size at the Fecond inspection time

2T0, when the crack is initiated at time t. Eq. 36 is self-

explanatory. The first term is the failure probability contri-

buted by the event of crack detection at the first inspection

time. The second term is contributed by the event that the crack

is not detected by the first inspection but by the second

inspection. The third term is contributed by the event that the

crack is not detected by both inspections. Hence.

V1 3 (t) = 1 - exp [-h0t - H(3T 0-t)

1 (2(t) = 1 - exp -ht - H(2T-t)-K 1

C ( t) 1- exp [-hot -HT 0-t)-K 2 ]
13 00 2

where K2 is the total renewal failure rate in IT0 j 3T0], which

is the same as tha. for P(2),

K2 = -in [ I - P(2)] (38)

The failure probability q23 (t) (Eq. 35), under the condition

that the crack is initiated at time T0 + 1, consists of two parts,
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q2 3 (t) = Fja(T 0 -t)] C2 (t) + F [a(T 0 -t)]V2 3 (t) (39)

where the first term denotes the failure probability when the crack is

detected, and the second term when the crack is not detected at the

second inspection time,

V2 3 (t) = 1 - exp [-h 0 (T 0 +t)-H(2T0-t]

(40)

C I ) (t)= 1- exp [-h 0 (T 0+t)-H(T0 -t)-KI]

In a similar fashion, the general solut.Lon for the probability

of failure within j service intervals [0,jT 0] can be obtained

recursively as follows:

P(j) = P. +  qij(t)W(i-1) o+t]dt

j=2, 3,...i=1,2, •• j-1

Cij(t) = ~a(T0-t)] (t) + H F [a(kT0 -t) V (t) (41)

0- 1] l~k=l .- )

+S-- F [a(rnT0-t)] F[a(kT0 -t)] Clk (t)
j-i-2 Ya0-0J1

k=2 (m=l
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Vij(t) = 1 - exp -h 0 [-1)T+t]-H[(j-i+1)T t4

j t) = 1 - exp -h 0 I(i-l)T0 +t] -H(kT0-t)-K j i0 0 0 -i-k+li

k=1,2,.. ,(j-i)

Kk =-In [l-P(k)] (41-a)

where 6j-i-2 = 1 if j-i-2;0, and Sj-i2 = 0 otherwise.

The probability of failure derived in Eq. 41 holds for a single

airplane. For a fleet of M airplanes, the fleet reliability is

defined as the probability of no failure at all [Refs. 24-25]. Since

the material/structural performance parameters, such as ultimate

strength, fatigue crack initiation, crack propagation; residual

strength, etc. are statistically independent for each airplane, and

since the random loads experienced by each airplane are also statis-

tically independent, the event of failure of each airplane is statis-

tically independent. Hence, the fleet reliability in j service
intervals [0,JT0] , denoted by R m(j), is RM(j) = [1-P(j)]M and

the probability of first failure in a fleet of M airplane is

Pf(J)= =-RM(j) 1 - [I-P(j)] M  (42)
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VI

NUMERICAL EXAMPLE AND COMPUTATIONAL PROCEDURE

A numerical example close to the real situation is given

herein to demonstrate the approach proposed in this study. The

parameters associated with the gust loading [Ref. 7] are as follows;

P, = 99.5%, P2 = 0.5%, ccl = 0.07g, ac2 = 0.18g, where lg = l0ksi

(see Eq. 3). This loading spectrum is plotted in Fig. 5. It is

assumed that each flight is of two hours duration and in one flight

hour the structure is subjected to 600 load cycles, i.e. No = 600,

Na = 1200 (see Eq. 8). The average fourth power of the ground-

air-ground cycle is , and the initial crack size at

crack initiation is a 0  0.04"(Eq. 8). The shape parameter for

crack initiation is a = 4 and the scale parameter 0 = 30,000 hours

(Eq. 4). The material of the critical component i. aluminum. The

mean value of the ultimate strength R0 is V0 = 5.7g and the dispersion

is V0 = 5.6% (see Eq. 21). The critical stress intensity factor

K = 75 ksi4i7. The fail-safe crack size at which the crack isKc

arrested by the crack stoppers a = 7" and the residual strength ats

a is equal to 43% of the ultimate strength, i.e., E = 0.43 (Eq. 19).5

The thresholds for crack detection are a, = 0.02", a2 = 2" and the

inspection quality m = 0.2 (see Eq. 13). Further assume that

every detail in the critical component is inspected at the inspection

time, i.e., U1 = 1.0 (Eq. 14). The crack propagation factor under

Gaussian random loading C = 0.6xl0- 7ksi inis taken from the test

result of Refs. 27-28 (see Eq. 8). The design service lifa for the

airplane is T = 15,000 flight hours. The power spectral density of

the response due to gust loads is such that A=115(Eq.A-2 and Eq.A-5).
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With all the input parameters given above, the computational

procedure is summarized as follows:

(i) Compute the crack size, a(t), after crack initiation,using

Eq. 8. Some results are shown in Fig. 6.

(ii) Compute the residual strength, R(t), after crack initiation,

using Eq. 11 or 12. Some results using Eq. 12 are plotted

in Fig. 6.

(iii) Compute the conditional failure rates h0 and h(t) using

either Eqs. 17-20 or Eqs. 21-22. Some results using

Eqs. 21-22 are plotted in Fig. 6.

(iv) Compute the cumulative failure rate H(t) using Eq. 26.

(v) Compute the detection probability F[a(t)]using Eqs. 13-14,

where a(t) has been evaluated in the procedure(i).
*

(vi) Compute P. using Eq. 28 for j=I,2,...N.

(vii) Compute the failure probability P(j) in [O,jT 0  for j=2,...N

using Eqs. 41.

Results for the first failure probability Pf(j) (Eq. 42) for a fleet

of 50 airplanes as a function of service flight hours are plotted in

Fig. 7 for different number of inspections. The entire computation

takes 2 minutes on a CDC-6600 computer.

I' is very interesting to note that the curve for the failure

probability under no inspection, N=0, consists of two segments with

completely different characteristics. The failure rate in the first

segment from 0 to 5,000 flight hours is essentially h0. This can

be visualized from the fact that even though the fatigue crack is
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initiated at the initial service time t=0, it takes approximately

4,700 hours for the crack to reacL the fail-safe crack size a ass

clearly shown in Fig. 6. The failure in this region is essentially

attributed to the exceedance of the ultimate strength R0. As a result,

inspection in this time interval 10 to 5,000 hours]has little effect

in respect to an improvement of the fleet reliability. It can be

observed from Fig. 7 that all the curves coincide in this region.

The second segment is in the region from 6,000-15,000 flight

hours. In this region, the crack initiated in the early service

hours has reached its fail-safe crack size and hence failure is

essentially attributed to the exceedance of the residual strength

ER0. Therefore, the failure rate is much higher than h0 (see Fig.

6). This is a typical characteristic of the progressive fatigue

damage effect. Because of the existence of the fatigue crack, the

inspection in this region has a significant effect on thp fleet

reliability as clearly shown in Fig. 7.

Consequently, inspection at later service times is much more

efficient than at the early service time. This, however, is only

true if we are confident of the loading, material/structural fatige

performance and the structuical analysis. Otherwise, the early service

time inspection is still desirable, because it will enable one to

discover any deficiencies in the design of the airplane, and to

detect if other uncontrollable factors, such as manufacturing
rI. variability,cocrosion etc., have a significant effect on the fatigue

crack initiation. It is the current practice to perform early
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inspection so that necessary action, e.g., redesign, can be taken

if unexpected fatigue cracks are detected in the early service life.

As mentioned previously, the purpose of inspection is to detect

the cracked detail and repair it. Therefore, the ultimate benefit

one can achieve through the inspection is to maintain the airplane

in a crack-free condition. Under the crack-free condition, the

failure rate is h0. This ultimate improvement is shown in Fig. 7

by the curve associated with 39 inspections. It can be observed

that this curve is practically the extension of the first segment

of'the curve N=O, i.e., failure results from the exceedance of the

ultimate strength R0. As a result, the number of inspections beyond

this limit results in no benefit at all. This can be observed from

Fig. 7 where the curve associated with 49 inspections practically

coincides with the curve associated with 39 inspections.

The probability of first failure Pf in the intended service

life of 15,000 flight hours for a fleet of M airplanes is plotted

in Fig. 8 as a function of the number of inspections N, for different

fleet size M. It indicates clearly the effect of both the inspection

and the fleet size on the fleet reliability or the probability of

first failure.
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VII

OPTIMUM INSPECTION

Thus far, we have observed that the nondestructive inspection has

a significant effect on the fleet reliability. In particular, the fleet

reliablility increases as the inspection frequency or the inspection

quality increases. However, the cost of inspection and maintenance

increases also as the frequency or the quality of the inspection

increases. As a result, there is a trade-off between the fleet

reliability and the cost of maintenance. In this connection, there

are a number of variables which can be adjusted in such a way that

an objective function can be optimized. These variables are, for

instance, the number of inspections N, the inspection quality (see

Eq. 13) or the safety factor v ci (see Eq. 18) for the structural

design of the component, etc. For the sake of simplicity in present-

ing the basic idea, we shall consider the trade-off for the number

of inspections only, realizing that the trade-off for other

variables can be made in a similar fashion.

The objective function to be minimized is the "expected cost"

[Refs.38,39] while, at the same time, a prescribed level of fleet

reliability is maintained. The expected cost C consists of the

expected cost of inspection and the expected cost of failure of

* airplanes,

C =NMCI + Cf M P(N) (43)

in which N is the total number of inspections; M is the fleet size;
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CI is the cost of one inspection and repair for one airplane, which

depends on a particular inspection quality given by Eqs. 13. P(N)

is the probability of'failure of one airplane in the design service

life under N inspections, and MP(N) is the expected nuimber of air-

planes to fail during the design service life. Cf is the cost

of failure of one airplane. P(N) is computed from Eq. 41. The

first term in Eq. 43 denotes the expected cost of inspection and

the second term denotes the expected coet of failure. Note that

the first term is zero if no inspection is performed (N=O). The

inspection cost increases as N increases but the cost of failure

decreases, since P(N) decreases (see Fig. 8).

Meanwhile the probability of first failure Pf (see Eq. 42)

should be lower than a prescribed level Pf.

P <(44)

f- f

Dividing Eq. 43 by MCf, one obtains

C = yN + P(N) (45)r

where Cr = C /MCf is the relative cost to be minimized and,

Y = CI / Cf (46)
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is the ratio of the cost of one inspection for one airplane to the

cost of failing one airplane during the service life. Hence, y

is the relative importance of the inspection cost compared to the cost

of failure. It is also an important parameter for the determination
*

of the optimum inspection frequency N
*

The optimum inspection frequency N is obtained by minimizing the

relative cost Cr given by Eq. 45, and meanwhile Eq. 44 is satisfied.

The techniques for obtaining the optimum solution with the constrainv

given by Eq. 44 are available in the literature and will not be

discussed herein. In Fig. 9, the cost Cr is plotted against N

for various values of y. The dashed curve, connecting all the

minima, represents the possible optimum solutions for the inspection

frequency. For instance, if the fleet size is M = 1 and Pf = 0.01

(see Fig. 8), the dashed curve in Fig. 9 represents the optimum

solution for the inspection frequency. It can be observed that

the smaller the value of y is, the hig±er will be the optimum number

of inspections.

In the optimization process, it is not necessary to estimate

the absolute values of both the cost of inspection CI and the cost

of failure Cf. All one has to estimate is y which is the relative

importance of CI to Cf. For instance, if the system is very ex-

pensive, such as the space-shuttle, or if its failure has a serious

consequence such as loss of the system and/or loss of property

and lives, y will be very small and hence the optimum frequency

N is higher.
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VIII

DISCUSSION AND CONCLUSIONS

A reliability analysis for fatigue-sensitive aircraft structures

based on the theory of random vibration has been presented. Flight

loadings encountered by iircraft are random processes. The ultimate

strength and the time to fatigue crack initiation are random variables.

After a fatigue crack is initiated, fracture mechanics is applied for

predicting the crack propagation under random loading: and

the residual strength, a random variable, decreases as the fatigue

crack propagates thus increasing the failure rate in time. The

aircraft is also subjected to periodic inspections, wherein

the detection of a fatigue crack is also a random variable that

depends on the thoroughness of the inspection as well as the

resolution capability of a particular technique used for inspection.

When a fatigue crack is detected during the inspection, the

cracked component is either repaired or replaced so that both

the fatigue strength and the residual strength are renewed. Taking

into account the renewal process, random loadings, and various random

variables, the solution for uhe first failure of a fleet of airplanes

is derived. The importance of inspection for improving the air-

craft reliability and the influence of the inspection frequency

and fleet size on the fleet reliability have been demonstrated in

detail by a numerical example.

An optimization scheme for the inspection frequency has been

formulated on the basis of the expected-cost-of-failure concept.

The optimum inspection frequency is determined by minimizing the
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expected cost while the constraint oa the structural reliability

is satisfied. It has been shown that the optimum inspection

frequency increases as the relative importance of the cost of

inspection compared to the cost of failure becomes smaller, and

vice versa.

In the development of this report, various assumptions and

restrictions have been made which can be relaxed in a more extensive

subsequent study. Nevertheless, it is believed that the results

presented herein are representative, and would not undergo

major qualitative changes if these assumptions were relaxed, although

quantitative changes would be expected. The assumptions, restrictions

and their implications are discussed below.

The first restriction is that the flight-by-flight random

loading considered is valid only for the design of transport-type

aircraft, (e.g. bombers, tankers, high altitude logistic aircraft,

etc.). For fighter aircraft, maneuver loading, in addition to gust

loading, is the major cause of fatigue damage. The occurrence of

the maneuver load is a random event and the resulting loading history

is a random process. To date, the maneuver loading has not be

characterized as a stochastic process as it should be [see Ref. 431.

Data, such as the exceedance curves or peak counts, for fighter airr

craft has been available, and it exhibits asymmetric characteristics,

rather than the symmetric characteristics of gust loading given

by Eq. 3, where the upcrossing rate is the same as the downcrossing

rate. This is a clear indication that the maneuver load is non-
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Gaussian in nature and warrants a further study for the statistical

characterization of such a random process. The stuc will also

lead to a realistic and reasonable simulation technique to generate

random sample functions (load histories) for fatigue tests. Gust

loading, modeled as a composite Gaussian random process S(t),

is employed for expendiency in this study. Although the assumption

is believed to be reasonable, there are some indications that the gust

loading may not be Gaussian in nature. As mentioned before,

further stud is needed, e.g., Refs. 2-3.

The number of load cycles N0 per flight hour and the number of

flight hours per flight, or Na, are considered as deterministic

parameters. These,in principle, should be treated as random

variables. Since, however, the average number of load cycles

per flight hour is large, the effect of their randomness on the final

reliability estimate is believed not to be significant. The ground

load S (t) has been excluded from the crack propagation prediction in

Eq. 8, on the rationale that it produces compressive stresses and

that its influence is to eliminate the beneficial effect

resulting from the occasional high gust loads. If there is any

evidence or belief that it should be taken into account in the

crack propagation equation, then it .i.s a simple matter to include

an extra term N Sg4 / Na in Eq. q, where N is the number of ground

load cycles per flight, and S is the average of the fourth

power of the rise and fall of the random ground load S (t).
3g
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In predicting the crack propagation under Gaussian random

loading, see Eq. 5, the crack propagation factor c has been

considered as a deterministic parameter, because it is believed

that its statistical dispersion can be neglected, as is indicated

by limited experimental data [Refs. 27-28]. In fact, the

variability of c reflects the statistical variability of fatigue

behavior of materials in response to the random loading. This is

because the statistics of the random loading, i.e., S4 , has been

taken into account. It has been observed from an extensive data base

that the statistical dispersion of fatigue life under spectrum

loading is much smaller than that under constant amplitude loading.

The dispersion under random loading is even less than that

under spectrum loading. Although it may be justified to neglect

the statistical dispersion of c [see Refs. 27-28], extensive data

is needed for further verification.

When c is considered a random variable, the situation can be

handled as follows: The crack length a(t ) at tn flight hoursn n

after crack initiation becomes a random variable and a(tn) appearing

in the formrlas for detection probability, Eq. 13-14,can be

approximated by the average value of a(tn), which is computed from

Eq. 8 with c replaced by its mean value. The statistical distribution

for the residual strength R(t n), given by Eq. 11 or 12 will no

longer be the same as that of the ultimate strength R0. However,

the distribution of R(tn ) can be obtained from the distribution of

R0 and c at least numerically although the numerical computation for
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the failure rate h(t ) will be very involved.n

Both the ultimate strength R0 and the residual strength R(t n )

after crack initiation have been treated as random variables as

they should be [see Ref. 18]. This fact is important and should

be emphasized, since their statistical variability is disregarded

by many. Our computational experience indicates that there is

a significant difference in failure rates, h0 and h(tn), and hence

in the failure probability, when they are treated as deterministic

quantities. The difference in the failure rates, h0 and h(tn),

ranges from one to two orders of magnitude higher for the case

where- R0 and R(t n), are considered as random variables. As a

result, failure rates are very unconservative without treating

R0 and R(t n ) as random variables.

For the sake of simplicity of the presentation, only the

failure probability under periodic inspection is derived. The

inspection may not be periodic. The solution for failure probability

under nonperiodic inspections can be derived easily in a similar

fashion as discussed, except that the total renewal failure rates

K., j = 1,2... (see Eq. 41-a) have to be evaluated separately;

since Eq. 41--a no longer holds. The evaluation of K. involves

no analyticAl difficulty.

Only a concept of optimization for inspection frequency, based

on the cost of failure is formulated in this study. There are, in

fact, a variety of problems associated with the inspection

38



optimization for aircraft structures, which have not been touched here-

in and will be reported later. For some types of military aircraft

where the critical component is integrated into the entire structure,

its replacement means the replacement of the entire wing. Therefore,

the cost of replacement is significantly higher than the cost of

inspection and both costs should be considered as different variables.

It has been indicated in the numerical example that the inspection

at the later time of the service life is much more efficient.

Consequently, it is possible to adjust or vary the lengths of

the inspection intervals, e.g., longer inspection inter~als in the

early life time and shorter inspection intervals at the later service

life, so that the maximum benefit can be achieved. The possibility

of using or combining various inspection qualities or techniques

to achieve either a maximum utility or a maximum improvement of

fleet reliability deserves further study. In all, the trade-off

between replacement, repair, inspection quality, inspection interval,

inspection frequency, retirement of aircraft, intended service life,

etc. presents a broad spectrum of very interesting problems for

further study.

Finally several statistical variables have not been accounted

for in the present study, because of the lack of statistical infor-

mation. Typical examples are (i) the statistical variability in air-

craft performance resulting from the statistical variability of

manufacturing, (ii) the statistical variability of environmental

effects such as stress-corrosion, corrosion fatigue, buffeting
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effects etc., and (iii) the probability of making errors in the

structural analysis and in loading prediction, resulting from a

lack of sufficient information. These random variables should

be taken into consideration in the reliability analysis of air-

craft structures, when their statistical background information

becomes available. This has also been pointed out by Crichlow

[Ref. 42].
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APPENDIX

STATISTICS OF RISE AND FALL OF RANDOM PROCESSES

The technique proposed in Refs. 26-27 for evaluating the

statistics of rise and fall of a stationary Gaussian random

process S(t,a i) is rather cumbersome. However, a simpler

approximation has been suggested in Ref. 29 as follows:

4~ 4S WO.~ = A Oi(A-1)

13 2~
A = 16 + 12w 2 F1 (!,-_; 1;k )

+24 2F(-1,-1;1;k2  (A-2)

where S4 (U) is the average of the fourth power of rise and fall of

the Gaussian process S(t,a i) and 2FI(.) is the hypergeometric

function,

!2 222

k = k2(T) 2 (T) + X2)(T (A-3)
0 00 oX2  I.

() =/G*(,o)cos wr dw

00c

() =JG*(w) sin w T dw (A-4)

0
T = / 0

in which w is the representative frequency of S(t), and G* 'w)

is the normalized one-sided power spectral density of S(t,a i),
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which is identical for all i = 1,2,... as described in the text.

Therefore S for the composite Gaussian process S(t) can be

obtained from Eq. A-I and Eq. 2 as follows;

4 s(x f(x) dx = 3A 4 4(A-5)
a = (PIcl + 2 c2)

where A is given by Eq. A-2.
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