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SUMMARY

During the firct six monthe of the subJeet econtract, the putposes of
the recearch propram wore to 1 nvestipate propertics of an earthuake source,
to provide a phycical basis for diserimination between aifferent types of
seismic events., The two main approaches used were:

1. To compute theorctieal selsmograms which it observed ground motica
in the near-source region of an carthqunlke,

2 My investigate shear dislocations in the context of crack theory,
requiring that @ sociated shear stresses on the moving fault swrface be
dynamically satisfactory in terms of the mechanics of shear failure.

Research o the first of these approiches is heavily concerned with
computational methods, The required theoretical selemograms involve y-ab
cach station, and at.ea,ch time, a triple integration. Very considerable
savings in computational cffort can be made, 1f maximal efficiency 1s attained.
By carefully arranging the sequence of integrations, and by using a variable
number of points for each integration, we have achicved a tenfold improvement
in the speed of these computations. We have also been able to extensively
gereralize the types of source motions for which resulting nca_r'—fie;td ground
motions may be computed. Present computations of this type are still limited
by the assumption that the carthquake 1s taking place within an infinite elastic
medium, rather than near the free surface of an elastic half space, Our pr'e:sé;:t;
efforts are divected towards dropping this assumption, thus allowing the effect
of the free surfcce to be computed.  We bhave shown that this will be dmportant,

because we have found that elastie surface waves do contribute significantly to

the strong ground-motion in the near rield of an ecarthquake.
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. One of the lewt well known paramcters of an e&rthquake s its stress
drop. 'Theorvetieal conelde; ticns indieate thal this quantity is proportional
to the particle velocity at the source, and the constant of proportionality

§ hag been given 1n the lteratmre as a complicated formula involving the rup-

{ ture veloci {,y for the earthqualke, as well as the elasi ic paramsters of the

t surrounding medium. We have succeeded in evaluating this relationship far

l; & variety cf rapture veloclties.

i e puiding prineiple Lehind our second mjor research approanrh, the

? theoretical study of shear diclocations which are compatable with the mechanices
; of shear failure, 1= as follows. 'The lmiwledge of the physles of failure on a
i fault surface givea us Insight into the state of stress, and 1tz time hi tory

! during rupture, in the cource region. lowever, to calculate local ~round

motions, we must firet infer the dislocations on the fault surface which

arise Irom the state of stress. This deduction, of the dislocations froam the

=

stress, is a mathematlical problem in the fiela of simgul~:i- integral equations.

It is a subject about which, for three dimensional rroblems, little is known.
Although the actual elasticity problem we here #.¢k to solve is one which
involves vectors, we have fortunately found an analog scalar problem which
well Illustrates the essence of difficulties In the theory. Our naln research
effort here has been directed towards finding what sub-region of the fault
surface is controlling, via itue stress history, the dislocation at cach point
on the fault., Althowgh cur main results to date are analytic, there is every
indication that. the problem will be amenable to a joint computational-analytic

approach, Certainly, it appears that conputers of the present. generat.ion are

movhere near big cnourh, forr Lthis problem o be solved by munerdcal studles alone.




Reportys on Computational Procedwe:s, Por Conerating Theoretical Sodsmopraes

fvan a prlven Fault Surfoce on which Disloestion in Mready Spocified ag a

Funct ion of Pouition and 1'hme

In this scction, we present the tmprovaments in recent programing. This
worl: stem:s fl"om the elastodynamic repres: tation theoren in the form glven
by de Hoop (1958). A form of this theorem appropriate for the representation
i - of a faulting source in an infinite honogeneous medium 1o disecussed in detail
by Igs‘r 211 (1969). The source 1is deceribed in terms of a shear dislocation

propagaling over the fault surface, This diglosation can be elther an edge

dislocaton, or a screw disiocaticn, and either of these two types will of

: course generate a throe—component vector dtsplacenent at every point vithin
the mediwn. Thus, six possible scalar equations must be consicdered, to include
all possiole displacements from either of the possible dislocations. An example

of these formilae would be the rollowing:

pl r/8
a0 z0) = (22/4m) F’Y Gy, * = l)r‘”{‘ D. (6. ;5. 4% =& Jb @b
y o~ ‘US3‘~ 1 By O AR

+

2(6y 2 - 1) (ar)™2D (§_,£ ,t - r/a)
1 1 2

3y 2 = 1) (8r)72D (€ L& ,t - 1/8)
1 N 2
+ 2y 2 (aBr)-D (£ ,& ,t - r/a)
1 70 2

[ 4
- (2y 2 - 1) (8*)7ID (¢ ,6 ,b - r/B)iS di .
] D N 2 e (1)
In this equation,
S = Fault planc arca,

u = (u , u, u ) = Cartesian componentss of digplacement measured from the
1 2 3

initial state.
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= Cnrtesian coordinmtes of point atl which u In to be evaluated,

b

£ =(E , ¢ , &)= Cuteclim coordinates of point of integration on 8.
n 1 2 3

p = donsity.

a = P=viave velocity.

B = S-wave veloclty.

n=(n,n,n)>ult nomal on S,

a7 1 2 3

D=(D, D, D) = digplacenent discontinmiity across S.
e S 28

The superzcript (‘\, on the displacement calculated by equation (1), indicates
that the as: wiea dislocation on S is an edge dislocation, for which 1) = (D1 5. O
0) only.

Equation (1), togc'ft}rm with the fiv: other similar eguations for the other
displacements component. three with the screw dislecation), has been very
widely uced for computations. It has almost always been ascumed that B has the
form of a rarp function, the disleccation at any point of the fault surface thus
growins steadily with time (after the rupture front has arrived), until the final
fault offset is reached, at which time the faull is assumed to lock. With this
speclial ascsumption for the time history of the dislocatlon, the basic computing '
formulae may be further reduced from the form (1), beconing even more amenable
to programning. However, eguation (1) does contain the gererality permiting use
of pozeibly more realistic dislocations. It will Le noted that two of the terms &
In this basic equation contains the time derivative of the dislocation. Differentia-
tion is an operation which, when done numerically, is liable to be performed 1n-
accurately. Indeed, for some of the dislocations oncldered below, the time deri-
vative actunlly contains singularitles (which, however, are intepgrable). ‘he

numerical work requircs that the reculiing derivative be Integrated over the




fault area, and Lthis ean be reguded ns a siwoothing process,  However, we

have preatly Improsed the stability of our carputations by roversing the order

of the differentiation uand integiation, A relevant term in equation (1) is

thus treated as

constant “imes 3 (\ 2y 2 (&3)-1D (¢, ,t - r/u)dc dt ()
1 1 -2 W 2

ot U

vl
.

The weversal of operations, as cet out in eguatior 2, has yielded fowrfold
Improvement over conventional programming of equation 1. 'That is, only one
fourth the number of points on 3 are needed, to give answers with similar
accuracy. More importantly, this order ol numeri-al procedur s (integration
first, then differentiation) docs permit the use of dislocations with more
realistic time histories, and for which there may nurerically be a singularity

in the particle velocity of the fault swlace,

In the conventional programming of eguation 1 (sea, for example, Anderson;
1974), a fized number of polnts @ ¢ taken ii the !;1 and &2 directions on the fauit
surfaces, For long, thin faults, perhaps ac fow as four points are taken in tle
5;2 dircetion. Since the basic computations (.i nvolving a total of 3 invegrals:
see equation 1) have to be performed for each moment in time, it would clearly
be advantagecus to allow a different spacing to bo used for the points on the
fault, for the calculation at each moment of time at the recelving position.

To accorplish this, we now use Ronberg jntcr,r*a’c.i.on for each of the three integrals,
(Rombery integration uscs suceesslve doubling of the nuber of intervals used in a
piven integration problem, The result for each choice of intervals is stored, As

the nunber of Intervals 1s inereased, a sequence of approximations to the desired




0.

- Integration is fourd, OfF courve, the desired result would be cbtalned in

- the limit as interval size terds to 0. [Fron the sequence of approximations
to a desired integral, the algorithm predicts the limit to which the approxi-
mations are tending.)

The improvements reculting from use of triple Romberg integration, together
with the sequence of operations stated in equetion 2, have resulted in a tenfold
improvement in computation time for a given preblem (at a stated level of accuracy).
Such a saving is highly signifleant, sinee, once a program of this tyne has

| succe:sfully been debugged, it may well be used for problems reguiring major
|
:

anounts of camputing time.

/

A severe check on the accuracy ef our present program iv afforded by compari-
son with a partlicular problem already described by Richards (1973a, b). These

. papers describe a special method for finding theorelcal seismograms which result

from a growing plane eliiptical sh2ar crack.Our new, and mich more general, method
[ for doing these computations docs successfully duplicate the wave shapes previously

obtained by the speclalized procedure.

The main weakn ss of our present computational method is ite underlying
assumnption that the fi . lting occurs in an inflinlte he nogeneous elastic medium.

This rules U any effects due to the Farth's free swrface. For example, surface

4

waves are excluded, and P=SV coupling (in body waves).is also excluded, In fact,
the energy radiated from a rupturing fault may well couple =fficlently 1into

surface waves., Ve Justify this speculation as follows:
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Coneider the situal’on depleted in Mpure L, Thic shows paurametors for
a propagabing source within an elastie medium, and pencerating sweface waves,
The displacerient reaponse al the receiver may be regarded simply as a super-
position of all frequency components, and all positions oceuplied by the propa-—

gating source. 'Thus,
u(x, t) = J\ ACE, %, cos0, w)el? dedw (3)
o

in which'the phase factor ¢ is

£
¢ = w/ U = dn \ - l{X(E, 2 ()
\ g V)

Note that thesc equations permit a ruptwre velocity V which may very

Y

along the path of faulting. In evaluating ti:e double intesral of eguation

3, it may be expec 2¢ that the major cuntribution will cone from the point
of stationary phase, obtained for each time t by equating partial derivatives
of ¢ (with respect to £ and w) to 0. Thus, the major contribution is from

values of w and § such that

£
t—§ " (5)
c Wﬂ) U
and w =V() F (g, x, cos0) ©)
k )
1.
where F = - X = /1 + x%5in%0  \ ", 5

£ \ (Xcoi 0=t )2

and Y is group veloclty.
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The function I has value  approximately equal to 1 1f the angle 0
is anall., PFor distant receivers, F tergds to the value cose,

Fquation 5 states thot surface waves arrive at a time glven by the
time to rupture to position £, plus the time taken to travel distance X
with group velocity U. Faguatlion 6 states that the frequency of such surface
waves is that for which the phuse velocity equals rupture velocity times the
function I*, which has a value between 0 and 1. These results can be sumarized
by sayiné; that coupling into surface waves will be efficient if rupture velocity
is sonewlat greater than the surface wave phase velocity. Present estimates
of the rupture velocity of faulting, abc t 2 or 3 kilometers per second, are

indeed about the same as values for surface wave phase velocities.

/ -~




P sle Theory for Fhndin- Dislocations on a Fault Surface which are

Comsistent with a given Time Mistory of Stress

' The most comnonly used dislocation in earthquake sowrce theory probably
is that due to Haskell (1969),the "ranp function" described in the section
& above. However, this time history probably would result in unncceptable

stress singularities on the moving fault surface itself. A dislocation

4 function is lncerr, for which the associated stresses are constant on the
; moving part of the fault, and this function has been described by Kostrov
:

(19€4), and Richards (19732, b). However, this dislocation is relevant only
] to che beginning rupture motions, and does not describe the way in which fault

motions ceas2. Ag described in the origimal proposal for ihe present contract,

~

-~

one of the least wndercstood aspects of earthquake source theory is the vay

in which fault motions ceasec. A fully numeric:’ approach to this research
problem is unlikely to be successful, since three spatial dimensions and one
time dimension must be studied, and this total of four dimc: ilons imposes
enormous memory requirenents for retaining the grid on whicin finite elements

or finite difference computations are base’s. Frazier, in a paper presented

at the 1974 Annual Meeting of the Ameri-~an Geopliysical Union, indicates that
even the computer ILLIAC # is inadequate. "‘fhus, combined numerical ard analytic
‘ methods provide the best chance {or a successful approach.

Our analytic research, into the relationship between stress in an eartl-

quake source reglon, and the resulting dislocation across the faull surface,
has been advanced by finding an amlog proble 1 of relative simplicity. This

analog problem lnvolves a scalar field,rather than the vector 'displacemcnt fleld

of elasticity. 'The role of tractlon is played by a directional derivative of

the scalar. Ve turn next to a banie exposition of {his analog problem:




Suppose that ¢ = ¢(§, L) 1s sone senlar function of space and time which
L4

satisfies the basic wave equation

within a region V, and ¢ (x) is the Initial (t.:0) static value of ¢. At

— e ey e W

time t = 0, ¢ begins Lo experience a growing dislocation across an internal

| surface I, which nioy be reguded as the faule surface, and is contained in V.
However, althourh ¢ is discontinuous across Z, 3¢ 1s kept continuous (in
anaology with the requirement of continuity of o traction across a fault

{ surface). The problem is, first, to find the resulting ¢ (x, t) throughout

'

V in terms of the discontimiity, in ¢ on Z. The later problem will be, to

i =~ speclly the value of 3¢ on I, and to deduce an associated discontinuity in

| ¢. (This second probign is the anulogue of specifying the history of trac ion

on a rupturing fault surface, and finding the related discontinuity in dis-

placement. )

An Important rcle in these problems is of course played by Green's function

G(x, t; £ 1), wvhich in V & isfies

VG = 1 22

0

>

1 + 8 (x=£)6(t=1), (9)
v2 > :

%ﬂ

the &8's being Dirac delta functions. The "infinite space" Greén's furetion

satisfying (9) is

G=-1 6 (t-t-R) : (10)
IaR v

vhere R is the distance

%=L,




We have Found the solution Lo the £ L problem in thece different Fapms ,

each of which has wor't, They are

-

\’\. v
¢ (x,L) = f(‘ co:s0 g}.} v (&, 1"‘2{‘ L [(p(g, t-!’{.))l ) dz
yJ iR (vie © v R - v J
fa 1 )|
= -1 jeoso 3 >g_ P e(E, t-R) an
lTnJ:; MK L ° v
% 17
= 1 fj‘ (l_,(}_ ¢ (6, t-g)i bodn (11)
mr Jn R ~ v

in which [ ] denote the discontimity taken acr 5 % in the direction of n,
the latter being the'unit normal, and 0, R, X L arc as choun in Figure 2,
Virtually all the practical prculens contained in the el Licity problem
are present 2lso in the uses of equations (11), but these analogue fo.ms do
not have the algebraic complexity of the vector problems. A list “bf thesec
problems, now belng actively pursued, include the following:
(1) To sludy the sinaularities in (11), as the receliver position X is'.takcn
ever closer to the fault surface §. The problem here is that the quantity R
tends to 0 for soane part of the swriuce int;cg,ration. Since the integrand
contains terms like R™2, this Implies non-inteprable singularities. In this
connection, it is important to note thut if the term in square brackets, in the
last of cquations 11, is a constant, then the resulting integral is nothing but
the solid angle subtended by I at 2. 'Ihis, of course, is simply ory 1f X 1is
on the fault surfacc.
(i1) To study the roglon of faull curface actually contributing to the integrals
at a specified time. The poimt-<r+w 15 thnt all the integrarnds in equations 11

(and in Ihskell's equation (1) above),are evilusted for retorded time, This

e —




retarded time, i€ R is large enough, can then be so early, that for the

point £ of intepration, the rupture front has not yet arrived, and the
n

dislocation is uero. 'Thus, a iarge purt of the faull surface may not
actually be contributing to the integration, The parts of ¥ which contribute

to the intepration are defined by & valu s satisfying the inequality

t - R2~1(£) (12)
- :

vhere 1 :is the time at which the rupture avrives at ’5 . Ve have examinad the
case of earthiuake motions initiated on the fault surface & by a dislocation
which begins at a point, and grows behind a circular rupture front, which
expands with rupturce velocity c<v., The sub-region of I which influences
traction at a partic;dar point on I can then be founi analytically, by solving

ecuation (12) for (al,Ez).
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Figure 1: Paramcters for a propurating point source, generating surface waves

at the receliver position,
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Figure 2: Parmmeters for a fault surface &, with area element d¥ at £.
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