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steel tube. The approximate steady-state stress-time profiles showed thet LYD,
{n{t{ated by pressure in the range 3.6-16 kbar, propsgsted at 1.87-1.99 ma/Vsec
with peak pressures in the raunge 6-10 kbar.
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INTRODUCTION

—

The iong r@nge«pbjgbtive of the research presented in-thiglgépﬁrt

was to déveldp a basic undérstanding of low velocity detonatiqﬂ*(ivﬁf anst

tﬁ*d;fefﬁiae conditions for ijg;inf%rgtipn and propagation, .Such knowladge
is required for predicting the LVD behavidr ot -energetic materials uséd‘

in propulsion systems. It is important to the Air Force because Ehe
possibility of initiating LVD with pressures below 10 kbars conséitutives
a major hazard in the efficient use and manufacture of liquid monopropel-
lants and energetic plasticizer compounds. Events that must bé -ifeguarded
against are the malfunction of rocket motors caused by LVD in the fuel
container or fuel feed system, and serious accidents caused by'Lynxﬁuripg

the preparation and transportation of large quantities of such materials.,

Shock wave studiééuquihg the last decade—;l-6 extending the édrlier
work discussed by, Taylor,7 kave -estphlished that most liquid propellants
‘and explosives exhibit two mcdes 0f self-sustaining detonation. These
modes have distinct velocities of propagation and have been characterized
accordingly as high-velocity detonstion {(HVD) and low~velocity: detonation
(LVD). HVD propagates at approximately 6 mm/lUsec with a préssure in the
100-kilobar region and can be initiated by a shock with a peal. pressure
of about 60 kilobars, LVD propagates with a slightly higher velocity
than ambient sound speed, at approximately 2 mm/psec with a pressure in
‘the 10-kilobar region, und can be ‘initiated by a shock with a peak
pressure of about 4 kilcbars., iln .some cases, however, LVD has been

observed to transform into HVD.
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Since explosives are required Ig behdve reproducibly and produce
pressures in fhe 100-kilobar regioﬁ~1n‘moét prdctical applications,
detonation sfudi%s heve concerntrated on HVD rather than on LVD. Con-
séquently, conditions for inftiathn and propggation of LVD are not as
@eillééﬁqhiishdd as those for HVD, and our understanding of LVD is not
45«¢§m§ié§§\gs ¢hat40f HVD:, This ﬁituatidn is furfﬁer accentuated by
the,dlépafity 115 the tﬁeoreticéljtréatm§pts,of HTD»agiiEVD. The hydro-
théfﬁdﬁyhamic tiheory of detonatiog_is satizfactory for modeling the
initiation and propagation of HVD and ﬁofsgglcurgﬁingzﬂvgvdahonation

parameters with; the Chapmapaﬁouguet (C-J} hypothesis y@ehgthe equation

of state of thésdetdnaxipnbpréﬁucts is gépwn, buﬁ thefe is- no comparable

theory fok LVD. - o f ..
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BACKGROUND AND APPROACH

Previous research on LVD in Poulter Laboratory at Stgnfgrd Research
Institute (SRI) was supported by AFOSR under Contraci F44620-69-C=C079 and
is documehted in the final report written for this éontrac't.8 This
research included both theoretical and experimental studies, Computer
éalculations were performed in the theoretical study to test the cavita-
tion model of LVD,5 and ytterbium stress -gages were used in the experi-
mental study to determine the states attained in LVD waves, A brief
discussion of this work is given ‘below as background for the present

project,

In the cavitation model, LVD is treated as a reactive shock ‘propa-

gating in a cavitated liquid. The liquid is first cavitated by inter-

.actions with the container wall, and reaction is then initiated by

bubble collapse in the compressed cavitction field., Computer studies

were performed. to. investigate the cavitation process and to determine

the amount of reaction required to support LVD., Two-dimensional computer
calculations of a shock propagating in a liquid contained in a cylindrical
steel tube showed that precursor wall waves produce regions of tension
sufficient to cavitate the liquid before it is compressed by the main
shock, Simulation of hot~spot-initiated reaction in the calculations by
addition of energy behind the shock led to the conclusion that only part
of the chemical energy is required to support the wave, Methods of calcu-
lating LVD parameters were formulated with the hydrothermodynamics of

the cavitation model, and a complete equation of state for nitromethane

was introduced into the TIGER éode so that detomation calculatione could

3
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be made for incomplete reacticn. The calculations showed that only about
20 percent of the iiquid is required to react to support LVD and that LVD
parameters are insensitive to the initial degree of cavitation. The

results of this thecretical study are signiftcggt because they place the
cavitation model on- a firm foundation and justify its use as.a basis for

further studies to .zvelop a satisfactory treatment o' LVD.

Yiterbium gages were used to 'study LVD in ethyl nitrate and in FEFO,

'LVD propagation vélocities were found to be about 2 mm/psec in ethyl

nitrate arnd 3 mm/usec in FEFO; peak pressures were recorded from 4 to 7

kbars,

The present work on LVD was & logical continuation of that discussed
above., Theoretical and experimental studies were continued to determine
conditions for the onset and terminaticdn of reaction in the compressed
cavitation field and conditions for the initiation of LVD and its: transition

into HVD.

Two approcches were taken in the theoretical study. The first approach
was g numerical study of bubble dynamics with heat and mass transfer and
chémical reaction, The idea was to try to establish conditions for the
onset and termination of reaction in a single bubble, .and then to try to ]
apply these conditions to the cavitation field to determine the amount
of reaction supporting LVD, The computer calculations on a single bubble

were performed by J. Levine and D, C. Wooten at Ultrasystems, Inc., and

- o 7

an account of this work is given in the Appendix, The second approach,

nore empirical than the first, was to study reactive shock discontinuities.
Reactive Hugoniot curves were constructed in the pressure-volume (p-v)
plane to account for the initiation and propagation of LVD and for its
transition into HVD, Thése approaches will lead to a satisfactory model
for LVD when the parameters used in the treatment of reactive shock |
discontinuities can be evaluated with the resuvlts of the computeru

calculations, and these parameters agree with experimental values,
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A new method for placing multiple stress gages in a liquid was

A -

devised in the experimental study. This new method of gage emplacement

1A
©
-

allows the gages to move with the flow and récord a more accurate and
quantitative description or the states attained  in LVD., Experiments
using multiple ytterbium stress gages were performed on mixtures of

nitromethane and tetranitromethaae,
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THEORETICAL STUDY OF LVD

4 LVD Treated -as a Reacting Shock Discontinuity

Although a complete treatment of LVD must account for liquid-
container wall interactions and- the dynamics and thermodynamics of a
cavitation field with heat transfer, mass transfer, and chemical reaction,
the present work is based on the assumption that a detailed account of
these processes is not required to model the initiation and propagation
of LVD and its transition into HVD, ‘This approach is motivdted by the
.one-dimensional CJ model for gaseous detonation, which is satisfactory
for calculating the average velocity of HVD without treating the complex

system of interacting transverse waves necessary for its propagation.

Detonation will be considered as a reactive shock discontinuity and
the flow behind it as one dimensional, The time scale for compression
and reaction suppcrting the shock is therefore assumed to be very small
compared with the time scale for the subsequent pressure release in the
wave, Consequently, HVD is represented as a shock discontinuity with
complete reaction, and LYD as a shock discontinuity with incomplete

reaction. Let P, v, p, and e denote density, specific volume,

pressure, and specific internal energy, and let the subscripts H and
o denote quantities immediately behind and in front of a shock dis~
continuity. Then the Rankige-Hugoniot jump conditions expressing the
conservation of mass, momentum, and energy across a shock discontinuity

propagating into stationary material can be written as

= - = )
pHvH (u qH)uH Vi UuH/vO
2(ey - e) = pylv o -v) = ufi (2)
7
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where U derntes the shock velocity, u denotes the particle velocity,
and the initial pressure po hias been neglecteid. Let t and r dencte
time and distance; then the equatiofis expressing the conservation of mass,

momentum, :and energy in the flow behind the shock can be written as

dp du )
at * P or 0 3
du dp
P at o T 0 ) s
de dv
it * Pg =0 (%)

‘where d/dt = 9/3t + ud/Or and the sutscripts on thc partial derivatives

have been omitted for notational convenience. Wken the flow is supported
by an exothermic reaction described by a reaction coordinate A, combina-

tioih of Eq. (5) and the e = e(p, v, A) equation of state leads ‘to the

equation
d dp I _dX
dt dt v ~ dt

vhere c = (dp/op)

3 denotes the sound speed, 5 denotes the specific

8,A ,
entropy, /v = (Bp/be)v Y is the Gruneisen parameter, and Q = -(agxax)p
A ]

.

]
denotes: the specific heat of reaction.

To eliminate equation~of-state problems it is :assumed that the

PR

explosive mixture behaves as a polytropic medium described by an e(p,v,A)
equation of state of the form f

o pv
e = e - AQ + iy . (7

o
where K denotes the polytropic index and ex denotes the heat of
formation of the explosive., Ccmbination of Eqs. (1) and (2) with Eq. (7)
leads to the following equations for a strong reactive shock discontinuity

in a polytropic medium,




Let Ub denote the detonation velocity of the CJ discontinuity,
and let the subscript CJ denote the Chapman-Jouguet state. Then,
substituting )bJu 1 and the CJ condition written as UD = (K + l)uC

J
into Egqs. (8) and (9) yields the following well-known expressions for
9
HVD,
u; = 2(K* - 1)Q (10)
= 2(K -1 11
Pes ( )QPo (11)

The equations for a nonreactive shock discontinuity are obitained by
setting AH =0 1in Egqs. (8) and (9). It follows from Egs. (8) and (9)
that the release of chemical energy in a shock discontinuity lowers the
values .of shock pressure and particle velocity with respect to the values
across a nonreactive discontinuity propagating at the same velocity.,

In other words, the reactive Hugoniot curve lies above trhe nonreactive

Hugoniot in the (p-u) plane,

The differeﬁtial equation governing the propagation of a shock dis-
continuity will now be dérived. The assumption will also be .made that
the flow behind the shock is nonreactive. Let D( )H/Dt = o( )/atH +
Ud( )/brH denote the directional time derivative along the shock path;

then the shock pressure and particle velocity satisfy the following

identities
Dp
H dp dp
— = = (U -u ) (12)
t dt )
D H H rH
and
Du
H du du
—_— = = & (U~-u) = (13)
dt 0
Dt u H rH




s

The combination of Eqs. (12) and (13) with Eqs. (3) and (4), and Bg. (8)
subject to the condition dX/dtH = 0, gives the required equation along

the shock path as

Dp Du
_1 _H ( _ 9_2)2
pt *PVpe = P \U-u) -y o (1)

At this stage the subscript H will be omitted for notational simplicity
because we will be dealing only with quantities evaluated at the top of

the shock discontinuity.

Our consideration of reactive shock propagation, based on Eq. (14),
is an extension of some ideas developed for Ballistic Research Labora-
tories under Contract No. DA—04-200-AMC-2469(X).10 The particle velocity
gradient at the shock front is always assumed to be positive because this
condition is satisfied in most initiation experiments. Reactive dis-
continuities satisfy the conditions A <0 if U< UD, and A=1 if
U2 UD; DMdt > 0 for accelerating shocks, DA/Dt < 0 for decelerating
shocks, and DM/dt = 0 for shock propagating at constant velocity., It
is evident on physical grounds ‘that shocks satisfy the condition Dp/Du > O,
Consequently, Dp/Dt°> 0 and Du/Dt > 0 for accelerating shocks,
Dp/Dt < 0 and Du/Dt < O for decelerating shocks, Dp/Dt = Du/Dt = 0
for constant velocity shocks, and reactive ‘Hugoniot curves satisfy the
conditiona Dp/DA > 0 and Du/bx > 0 since p and u are functions !
of A. Combination of these conditions with Eq. (14) leads to the

2>0 for accelerating.sﬁocks, v - u)2 - '

2

conclusions that (U - u)2 -cC
¢® <0 for decaying shocks, and that (U - u)2 - ¢ =0 for constant
velocity shocks., With the notation introduced early, for example, the :
u__ o+ ¢
ca " g 5
for HVD. It is also convenient to denote the propagation of LVD by U;.

sonic condition expressed by the last equatlon becomes UD =

10
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Conditions 2t a sonic point are readily obtained by rewriting the
term in brackets on the right-hand side of Eq. (14) as
u
K+ 1laf./cly 7

2k LA\ u ) IJ s5)

[w-w?-c2] =

Equation (15) gives l(uCJ/u)2 =1 as the condition for a constant
velocity reactive shock discontinuity., Since (U ~ u)a -c*=0 ata
point where a Rayleigh line is tangent to a Hugoniot curve. )(lch/u)2 =1
is also the condition for a Rayieigh line to be taneint to a frozen
Hugoniot curve in the (p-u) plane. In other words, k(uCJ/u)2 =1
defines the locus of sonic states in the (p-u) plane. The locus of

sonic states in the (p-v) plane is readily found to be v = [Kv /(X + 1].
[o]

It follows from Jouguet's Ruie11 that accelerating shocks satisfy
the condition vH > [Kvo/(K + 1] and that decelerating shocks satisfy
the reverse inequality VH < [Kvo/(K+-1]. Consequently, in the (p-v)
plane, accelerating shocks are represented by points that lie to the
right of the sonic locus, decelerating shocks are represented by points
that lie to the left of the sonic locus, and constant velocity shocks are

represented by points lying on the sonic locus,

We are now in a position to consider initiation of detonation when

the initial particle velocity ui < UD , and the initial pressure

p. < pCJ' Since weak shocks do not promote detonation, it is assumed

i
that shocks are unreactive until a critical pressure pi* is attained.

So A =0 for pi <p *, and shocks with initial pressures pi < pi* ‘

lie on the unreactive Hugoniot curve., Let vi* denote the volume on !

the unreactive Hugoniot when p,6 =p * , and consider the locus of initial ‘

i i

*
i i .
N is increased from pi to pCJ As pi

the initial states must lie to the right of the sonic locus in the

states when p approaches

pCJ’
(p~v) plane because shocks with pi < pCJ promote detonation, Moreover .

11 -
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x
as pi approaches p , the initial states must lie to the left of

i
the sonic locus because (pi*,vi*) lies on the unreacted Hugoniot curve.
It follows from these observations that the initial states lie on a curve
connecting (pi*,vi*) tc (pCJ’vCJ) and that this curve must intersect
the locus of sonic points, let p* ‘denote the pressure at this point

of intersection and let A* denote the corresponding value of the
reaction coordinate., Then reactive shocks with initial pressures in

the range pi* < p* will decay, and shocks with initial pressures in

the range p* < P, < Poy will build up to HVD. Furthermore, it is

possible that shocks initiated with p, = p* will propagate at con-

i
stant velocity and that the sonic point will represent LVD, But the
stability of such shocks must be considered before it can be concluded

that this is indeed the case,

. 10
Conditions for the initiation of HVD with pi = pCJ lead to the
conclusion that a sonic point will be stable and represent LVD when
initial shock pressures greater than this sonic pressure do not promote

further reaction. Shocks with initial pressures higher than the sonic

;pressure are therefore represented by points on the frozen Hugoniot curve

passing through the sonic point. .Shocks with pressures lower than the

sonic pressure are represented by points on .a reactive Hugoniot curve.

Consider the case when there is only one sonic point, say
(p:, [Kvo/(K-}l)], and let Xf b¢ the corresponding value of the
reaction coordinate, Then the Hugoniot curve exhibits two branches:
the lower branch with 0 < A < A\Y and pI < Py < p: has a positive
slope; the upper frozen branch with X = A} and pi 2 pf has a negative
slope. LVD is represented by the sohic point (pf, Af). Consequently,

shocks with pi in the range pI sp, < pf decay, shocks initiated

i
with pi> pf decay to LVD, and thogse initiated with pi = pf propagate

unchanged as LVD with a velocity Ug.

12
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Now consider the cas2 when the Hugoniot curve has a similar shape,
a positively sloped lower branch aad a négatively sloped upper branch,
but intersezts the sonic locus in two points (p7, l:) and {(p3, D)
with pg > pf and A; > Af. In this case the upper sonic point repre-
sents ILVD. Shocks with pi in the range ﬁ: < pi < pf cecay, snocks
with pi > pd decay to LVD, shocks with pi in the range pf < pi < p;
build up to LVD, and shocks with pi = p§ propagate at constant velocity
as LVD.,

As indicated by the computer studies, of bubbles, such a situation
would occur in the cavitatior model when the reaction initiated by
bubble collapse is terminated by bubble expansion and does not go to
completion. Relationships for Hugoniots ezhibiting these two branches
were formulated because a Hugoniot of this type was observed by Evans
et a1.12 in a shock initiation study of low density pressings of ammonium

perchlorate sponsored by AFOSR under Contract AF49(€38)-1124,

The transition of LVD into HVD is accountéd for by assuming that

there is 'another c¢ritical pressure pi' for the :onset of bulk reaction.

In this case reaction initiated by bubble collapse at the pressure pil
is not terminated at-later times, Bulk reaction, therefore occurs at

! ! .
the pressure pi on the frozen Hugoniot curve jassing through the sonic

point representing LVD. The locus of shocked states with pi in the

- ———— . -

/
range pi s pirS P forms a curve that again inversects the sonic

cJ
locus and has a positive slope in the neighborhood oi pil and a nega-

tive slope in the neighborhood of péJ. While shocks wyth initial

pressure higher than the pressure at this sonic point build up to HVD,

shocks with lower nressures decay to LVD. In most cases; however, HVD i
propagating in the cavitated liquid will eventually become:x HVD propa- {
gating in virgin liquid. HVD in cavitated liquid will usually produce |
HVD in virgin liquid because it outruns the cavitation field and broduces

a shock in virgin liquid that is strong enough to produce HVD,
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Construction of Hugoniot Curves for the Initiation and Propagation of LVD

Relationships for Hugoniot curves with a positively sloped lower
branch and a negatively sloped upper branch were formulated to account
for the initiation and propagation of LVD. The condition for a Hugoniot
to have a positive slope will be derived first, however, because Hugouniot
.«curves are usuglly found to have a negative slope. The equation for the
slone of a Hugoniot is readily cbtained as

= [G)

dA” - de .
”-5<"o-">-°@=~aip+(s:) J e

P,

by eliminating de from the diiferential forms obtained by differen-
tiating Eq. (2) and the e = e(p,v,\) equation of 'state. Since we are
considering a case in which (ae/bpkw 2 >0, (Be/av%h A >0, and
2(3e/3p%} > (vo - v), it follows from Eq. (16) that the slope of a
reactive Hugoniot is positive only when the reaction term Q d\/dp is
large enough to make the term in brackets oun the right-hand: side of

Eq. (16) negative,

The equation for a reactive Hugoniot curve for our 'polytropic

material is readily obtained as

Y
(K + 1) N _ pCJvOI
&-1 " Yol T KA = K - 1) (a7

by eliminating e from Eqs. (2) and (7), and making use -of Eq. (11).
Setting A = 0 1in Eq. (17) gives v = (K - 1)/(K «+ l)vo for a strong
nonreactive shock, and setting A =1 in Eq. (17) gives the equation
for the fully reacted Hugoniot curve, The condition pCJA*/p* =1

for a sonic point on a Hugoniot curve is readily cbtained by setting
v = tKvo/(K4-1)]ixlnq. (17), It is convenient for computational

purposes éo set K = 3, and rewrite Eq. (17) as

14
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Equation (18) gives the equation for the slope of this Hugoniot as

v
ey o Ay
av \¥ 72 QE) = -P (19

and it follows from Eq. (18) that the Hugoniot has a positive or a nega-

tive slope depending on whether v < (v°/2 + QdM/dp) or v > (vo/2 + QdA/dp).

It follows from Eq. (18) that the specification of either a v = v())
relationship or a p = p(A) relationship defines a reactive Hugoniot
curve. In the present work, however, A = A(p) relationships «ere
formulated to generate Hugoniots with the properties required to account
for the initiation and propagation of LVD and for its transition into
HVD, For notational simplicity, vo and péJ were used to denote tﬁe
initial specific volume of the cavitated liquid and its CJ pressure,
and vo' and péJ were used to denote these quantities for virgin
liquid. Values for the initial volumes of virgin and cavitated liquid,
the "HVD propagation velocity, and the critical pressure for the onset of
reaction were chosen; respectively, as vo' = 1 cc/gm, v, = 1.25 cc/gm,

U_ £ 6 mm/psec, and p¥ = 2 kbar, The CJ condition gives c¢__ = 4.5 mm/psec

D i cJ

and u03 = 1,5 mm/psec, and Eq., (11) gives péJ = 90 kbar and pCJ =
72 kbar for the CJ pressure atiained in virgin and cavitated liquid,

respectively.

The unreacted and fully reacted Hugoniot curves for cavitated liquid
obtained by setting A =0 and A =1 in Eq. (18) are shown in Figure 1.
The unreacted curve v/vo = G,5 1is shown as NR, and the fully reacted
curve as ECD. The point N represents the criticality condition for
onsét of reaction in the cavitation fiéld, and the: point C represents
the CJ point for HVD, The sonic locus v/v° = 0,75 1s also shown in
Figure 1 as!SC.

15
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anétd1£§§§é?€istingg: inﬂ) shows ir ' he labter condition is satisfied

wheti n >’1.; Dl -er@nt*atzon of'tnc equatxpn *u'/v = {p = lb jfz)‘obﬁainéd

By comblﬁzng qu. (2) and {18) gﬁwes n <2l -~ Pi/p ) = 1.944 as the

conaztion~;hav ~n musﬁrsgﬁmsfy to_enaure thgg DufDA 0 at N.

Values of n > 4&1 - pf/p ) give Dp Du <@ at W, andthe value
n =2(% = B /pcg’- glves a Hugcn*ot in»fh& (p—u) plane with an infinite
slope at p = \pi‘ The additional conditions on the derivatives at C

and N therefore restrict tge values of n to tke range 1 <n <1,944,

Equations (18) and (20} were usedxto calculate reactive (p-v)
Hugoniots for different values of n; the results are given 1n<fab1e I,
The limiting vdlues n =1 and n = 1,844 were uged tc determine the
domain ¢f the (p-v) plane covered by the family of reactive Hugoniots
defined by Eq. (20). The Hugoniot curves calculated with n =1, 1.3,
and 1,944 are shown in Figure 1, Examination of Figure 1 shows that

while the curve with- n = 1 doeg not have a sonic point below ¢, the

17

- o S . R e

PR &
Blgee X =0 when p =y,
. : - by
X(PY telationshid
L
zne.pavamet n are réstricted,

PPN

RPN SO

AN IR

s

it f T g st

S

o keas -



Table I

-

—\f‘ff:; ?—m

REACTIVE HUGONIOT CURVES FOR CAVITATED LIQUID

=1 n=1.,3 n=1,5 n = 1,944
P v A v A v A v 1A
(kbar) |cc/gm’ cc/gm) {ce/gm) cc/gm) X
3 0.732 | 0,014 0.764 | 0,019 0.786 | 0,021 0.832 | 0,028
4 0.785 | 0,029 0.833 | 6,037 0.864 | 0,042 0,932 | 0,055
6 0.839 | 0,057 0,901 | 0,074 0.942 | 0,084 1,030 | 0,108
8 0.866 | 0.086 0,934 | 0,110 0.979 | 0.126 1,075 | 0,160
19 0.882 | 0.114 0.954 | 0.146 0,100 | 0,167 1,098 | 0,210
30 0.925 | 0.400 0.989 | 0.485 1.026 | 0,535 1,097 | 0.630
50 0.9336| 0.686 | 0,975 | 0,778 | 0.996 | 0.824 1,028 | 0.895
70 0.937 | 0,971 0.943 | 0,990 0.9245 | 0,995 0,946 | 0,999
18
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curve with n = 1,3 has a sonic point I at a pressure of = 8 kbar,
and the curve with »n = 1.944 has a sonic point II at a pressure of

~ 4.5 kbar, Since LVD pressures il< i., <u€ 6 to 9 kbar range, values of
n in the range 1 < n <1.944 can be used to model LVD. The sonic

point I (p = 8.3 kbar, A = 0.115) on the reactive Hugonict with n = 1.3

e dee 3
§"w*‘r‘?‘“§ "
DAL PR

N

was chosen to represent LVD because this state is attained in a shock

“aTM

propagating at a velocity of 2.1 mm/lisec and the typical propagation

velocity of LVD is U; = 2 mm/psec,

We are now in -a position to construct Hugoniot curves with either
*
one sonic point (p¥, M) or with two sonic points (pi, M) and (p3, A5 ,
which were proposed earlier in this report to account for LVD. The case

when a Hugoniot has one sonic point will be considered first,

In the first case, pf = 8,3 kbar and Xf = 0,115 since I was
choser to represent LVD. The lower, reactive branch of the Hugoniot with a
positive slope is determined by Eﬁs. (18) and (20), with n = 1.3 and with
p- and ) subjéct to the conditions (p¥ = 2 kbar) < p < (p¥ = 8.3 kbar)
and 0 £ X < 0,115. The upper, nonreactive branch of the Hugoniot with
a negative slope is.qetermined'by Eq., (18) with p =2 pI = 8,3 kbar and
X = AT = 0.115. The Hugoniot curve calculated according to this pre-
scription is shown as NIF in Figure 2 where the Rayleigh lincs

representing LVD- and HVD are shown respectively as OI and OC

In the second case, pg = 8,3 kbar and Ag = 0,115. A reactive

Hugoniot that connects N and I and has two points of intersection

with the sonic locus SC will now be constructed. It is clear from the

reactivé Hugoniot curves shown in Figure 1 that a A = A(p) relationship
producing Hugoniot curves with the desired .properties can be obtained by
scaling Ed. (20%. A A = A(p) relationship for reactive Hugoniot curves

with two sonic points was therefore formulated by setting

19




=

PRESSURE —- kbar

T 1 T T U 17 r 7 1 T 1T 1
100 |— -
R
90 — _J
]
A=0” F
80 -~ —
20— -
60— —
/k = 0115
\ A=1
w b
/ .
40 [ f, N -_(l
[
‘ e ,
30 ’ H.V.b. —
: UD = 6 mm/usec .
2 - -
10°f- . LVD. A -
UD = 2.1 mm/usec
A T O T °| |
0 01 02 03 04 05 05 07 08 09 10 11 1.2 1.3 14 15
VOLUME — em®/gm
MA-2383-7
FIGURE 2 HUGONIOT CURVES! TO ACCOUNT FOR THE INITIATION AND

PROPAGATION OF |iVD

20

e e b .

o -




_ (1-p/pE N
=% [1 (1 - p, /pz J 2

Application of an argument similar to the one used previously for curves
with one sonic point, however, shows that n in this case is restricted
to the range 1 <nu < 21 - p;/pz) = 1,52, The lower reactive branch
of the Hugoniot curve with two>sonic points is determined for these val-
ues of n by Eq. (18) and (21), with p and A subject to the condi-
tions (p; = 2 kbar) Sp < (p; = 8,3 kbar) and 0 < ) < 0,115. The
upper frozen branch of the Hugoniot is determined, as before, by Eq. (18)
with p 2 pi = 8,3 kbar and A = Ag = 0,115, Reactive Hugoniot curves
connecting N and I were cdlculated, and the results of the calcula-
tions performed for n = 1.3 and 1.5 are shown in Table II. The reac-
tive curve calculated with n = 1.5 1is shown in Figure 2 as NTI, and
the corresponding Hugoniot constructed to account for the initiation and
propagation of LVD is shown as NTIF. The lower sonic point is located

at the point T with a pressure pY ~ 4.5 kbar.

Since pT ~ 4,5 kbar and p; = 8,3 kbar, LVD modelled with NTIF
will exhibit the following properties, ‘Shocks with initial pressures
P, <~ 4,5 kbar will decay, shocks with initial pressures in the range
8.3 > p, >~ 4.5 kbar will build up te LVD, and shocks with p, > 8.3
but less than the critical pressure for onset of bulk reaction will

deca\' to LVD,

Although the! transition of LVD into HVD will not be considered
further in this report, it is clear that A = A(p) reiationships,
producing curves similar to the reactive Hugoniots shown in Figure 1,

can easily be formulated to account for this type of behavior,

21
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Table II
REACTIVE HUGONIOT CURVES FOR LVD

n=13 n=1.,5
® v ) A
(kbar) (cc/gm) (ce/gm) )
2 0.625 | 0.0 0.625 0.0
3 0.799 °| 0.023 0.823 0.026
4 0.879 0.045 0.907 0.050
K 5 0.920 | 0.066: 0,947 0.072
{ 6 0.940 0.084 0.963 0.090
7 0.948 | 0.100 0,961 0,105
8 0.943 0.113 0,946 '0.114 '
rf 8.3 0.938 0.115. | 0,938 0.115
"1
% |
l
L }
)
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EXPERIMENTAL STUDY OF LVD

The objective of the experimental phase -0of the program was to obtain
a more accurate and quantitative description of ILVD. Shock wave experi-
ments using multiple ytterbium stress gages were designed and performed
to achieve this objective. A new method of gage emplacement was developed
to allow the gages to move with the flow so that the experiments would
provide stress histories at different Lagrangian positions in a liquid

undergoing LVD,

The new method of gage emplacement is a definite improvement over
the previous method,12 which was developed for AFOSR under Contract
F44620-69-~C~0070 and used to study LVD in ethyl nitrate and FEFO, In
these previous experiments, the ytterbium gages were placed in the
direction of the flow. The gage records were suitable for measuring
shock arrival time and for determining propagation velocity, but later
interpretation was difficult because it was not known whether the gages
recorded predominantiy Lagrangian or Eulerian stress histories., Further-
more, placement of gages in the direction of the flow caused their
response time to be large (>°250 nsec). Consequently in the current
program, the gages were placed perpendicular to the direction of the

flow so that they would move with the liquid and record Lagrangian stress

histories with a smaller response time,

Six experiments were performed in the SRI explosives vault facility
using a mixture of tetranitromethane (4 parts by weight) and nitro-
methane (5 parts by weight) in .a steel tube into which several ytterbium

stress gages had been emplaced to record Lagrangian stress histories,

23




A schematic diagram of the experiments is shown in Figure 3. A cylindrical
seamless cold-rolled steel tube was used to contain the liquid. The tube
was 14-in. long, had an inside diameter of 3/4 in., a wall thickness of
1/8 in., and was filled with liquid to within an inch of its'top. The
explosive donor system consisted of a bridgewire detonator, a tetryl
booster pellet, a 2-in,-diameter by 2-in.-thick tetryl explosive pad,

and a 3-in,-diameter Homalite* attenuator, The detonation in the tetryl
pad was initiated by the exploding bridgewire and the tetryl pellet, and
the thickness of the attenuator was chosen to produce the desired shock

pressure entering the liquid..

Two to four stress gayes were positioned from 2 to 8 inches above
the bottom of the tube., A typical four-terminal ytterbium foil grid gage
element is shown in Figure 3, This element was attached to a thin layer
of Homalite-impregnated fiberglass and covered with a thin layer of
Homalite to form a total 'gage package with a thickness of a~~ 6 mils, The
gage package was cut to fit snugly into the steel tube, with two segments
removed as shown in Figure 3 so that the tube could be filled with liquid,
and was supported by a thin layer of glue, A 1/8-in. hole was drilled
through the tube approximately an inch above each gage package location,
and the leads from each gage were brought out through this hole, This

method of emplacement ensured that the gage would survive long enough to

Tecord the LVD pulse. Had .he gage leads been brought straight out at
the same level as the gage package, they would have sheared off as the

liquid flowed along the inside wall of the tube,

An additional ytterbium stress gage was placed at or near the
Homalite attenuator-liquid interface to record the stress pulse entering

the liquid,

*rrade name, Homalite Corporation.
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The gage records were calibrated using the formula given by
13
Ginsberg  for calibration of ytterbium foil for the region from 0 to

10 kbar,

Of the six experiments attempted, all but one yielded satisfactory
data, The one that failed was shot 2, using a 2-in.-thick Homalite
attenuator, Post-shot recovery of the tube fragments indicated that shot
2 experienced a high-velocity detonation (HVD). Two other shots in this
series used the same attenuator thickness and therefore had nearly the
same s;ress pulse magnitude enter the liquid; these two shots exhibited

LvVD.

The relevant parameters for the five successful shots are shown in
Table III, along with the peak stresses recorded by the various gages
and the velocity of the compressional part of the LVD wave. The five
experiments span a range of peak stress incident upon the liquid from

3.6 to 16 kbar,

The oscillographs from the stress gages in shot 3 are shown in
Figure 4, Three gages recorded in the liquid at 2, 4, and 6 inches
above the liquid~Homalite interface, and a fourth gage recorded just
below the interface. The fourth gage, Figure 4(d), shows a peak stress
equal to the stress in the Homalite and then a decrease to the stress
entering the liquid (the liqgid has a ‘lower shock impedance than the

Homalite, hence the difference).

All the in-liquid stress histories recorded for all five shots show
features similar to those shown in Figure 4 (a), (b), and (c). These
include a rapid rise or shock to a p=ak pressure of from 6.0 to 9.1 kbar,
a shock velocity between successive ‘gages of from 1,87 to 1,99 mm/psec,

and a decay to nearly zero stress of several microseconds duration, There

‘18 no noticeable variation (to within the statistics of these experiments)
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Table III
EXPERIMENTAL PARAMETERS AND RESULTS FOR LVD SHOTS
Shot No. 1 3 .4 S 6
Attenuator . - .
thickness (in.} 2 . 3-1/32  3-3/32  2-1/32  5-1/32
Peak stress entering '
iiquid? (kobar) 7 16 61 . - 8.4 b 3.6
First in-liquid gages ) L
Height in tubé (in.¥ - 2 2. T 2 2 2
Recordsd peak stress. ) R
'(kbar)'/> s C T 725 T4 - 8.5 7.2 7.25
Jeeond 1h—1iqaid gage, P )
Pezght :[n tubg:,(in ) 5 T - .4 . A 4 4
Pecoxded peak streqs ‘ i uﬁ_l;"?il f," c
(kbar) - L 8,157 8.6 7.5 6,0 10.3
. ensnrsd vei&cityd*.,‘y<:_”;f;\j5;:?‘3:</ )
(m/ysec) o ,'—;; ~TT 15960 785 7 1.96 1.99 1.96
h* ra”’@ndiqgi,d gage’ /5/; = T o . )
deight in: ‘ube [n,y - == - 6 ., 6 - 6
‘Recorded peak’ stress~ ST T -
(kbar) -~ - L e @1 - 8425 - 8.6
Megsured. velocmty ST s :
(nim// pisec ‘_ S e= 0 IL93 1,87 - - 1.92
Fourth in-liquigd gage°~ ) i ) o .
Height in ‘tube. {in.) ’j -~ 8 .- 8 - e 8
Recordad peak stress~ T L
(kbar) L e L b 7.8 - 8.15
' Measured‘Velbciiy ) T .
(mm/ Usec) ) i 182 - xS .o 1.89
Average pouk stress for e
in-liquid gages (kbar} W7 - M7 T L840 6.6. 8.0
Average measured- velocity, o .
(mm/ Usec) 196 193 - SE9)k - 1.29° 1,92

T A, As mgagured by gage ai'nomglixanliqéid inteéxrface,
b, Data of insufficlent guaiity Lo analyze.
€. Questiongble data, ndt uged: in averages,
d. Measuredsvelocity is thau ot the midboint of the ¢ompressive
shock bétween this and - the previous gage location,
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in pezk pressure or shock velocity as a function of incident stress into
the liquid. In other words the LVD wave attains the same approximate
peak pressure and shock velocity regardless of the magnitude of the
initiating shock. Furthermore this approximately steady wave is nearly
attained within the first two inches of the liquid, as shown by the
closeness of the average peak stress measured at the 2-in. location

(7.4 kbar) compared with the overall average peak stress (7,6 kbar) and
the similarity of the average shock velocity measured between the 2-in,
and the next gage location (1.96 mm/psec) to the overall average

(1.93 mm/ysec).

Figure 5 is a plot of the arrival times of the midpoint of the LVD
shock, in microseconds from the time the shock enters the liquid, as a
function of the Lagrangian positioa or initial location of the gage plane
in the liquid. The lines for all five shots are very straight and nearly
parallel, indicating constant velocity. The only difference is in their
vertical position on the graph., For example, the LVD wave for shot 6
arrives 3 Wsec later than that for shot 1., Since the stress entering
the liquid in shot 1 is 16 kbar, while that in shot 6 is only 3.6 kbar,
the difference in arrival times is caused by a combination of the fol-
lowing two factors: (1) The shock velocity of the unreacted liquid
before LVD initiation is higher at higher stresses because of the con-
cave upward nature of the liquid Hugoniot. (2) The LVD might take
longer to initiate at lower stresses. Further experimentation is
necessary, however, to determine which of these factors is more

important.

The in-liquid stress gage records for shots 3 and 6 were digitized
and plotted together in Figures 6(a) and 6(b), respectively. The hori-
zontal or‘fime axis was shifted so that th{ first motion or the foot of

the compressional shock for all three gages coincided at zero time,
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If LVD were precisely steady state throughout the region of measurement,
each point in the wave would travel at the same velocity, and as a

consequence the recorded stress histories would be exactly congruent,

The actual results are fairly congruent in each case except in two
regions--near the peak and at the final third of unloading. The peak
stress of the first gage is significantly lower than that of the onther
two for both shots 3 and 6, indicating that perhaps the LVD has not yet
reached its maximum or ‘steady~state stress level in the first two inches
of liquid. The unloading is slower for gages farther up the tuhe, which
indicates that the release wave velocity is less than that ‘of tlie com-
pressional wave, The lower velocity of the release wave 1s quite likely
because the liquid is in a heated state following detonat:ion; however,
the difference is very small., In shot 3, the release velociity at 4 kbar
is only 1% lower than the shock velocity, and from there: the difference
increases to a maximum of 8% at 1 kbar., For shot 6, th: differences are

even smaller,

In conclusion, we have succesf;fully obtained Lagrangian stress
higtories in a liquid‘undergoimg JVD. Thé records iridicate that the
compressional part of the LVD: wayre propagates at very ncarly constant
peak stress. and velocity, while the release portion: of thi LVD wave,
although initially nearly Qteady state, 'begins to diveige (i.e., propa-
gate at slightly lower 'velocities) as the stress lecays to zero. This
technique can now be used with a high degree of certainty of success to

study in detail the initiation:and propagation of LVD.
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CONCLUSIONS

Considerable progress has been made in a basic understanding of LVD

and in determining conditions for its initiation and propagation.

The treatment of reactive shocks formulated in the theoretical study
provides for the first time a simple model to account for the initiation
and’ propugation of LVD. Shocked states are described by Hugoniot curves
that exhibit two sonic ‘points in tke region of 2 to 10 kbar. The sonic
point with the higher pressure p: represents LVD, and the sonic point
with the lower pressure pI defines the initial pressure needed for
shocks with a\pbsitive particle velocity gradient to build up to LVD.

1f pi denotes the initial shock pressure, then shocks decay when

p, <pf, build up to LVD when Py S p, <pi, and decay to LVD when

P, > pi.

The developmént of multiple ytterbium gages to determine Lagrangian
stress histories in shocked liquids provides a means of obtaining a more
accurate and quantitative description of the states attained during the
initiation and propagation of LVD. The stress histories recorded by

the ytterbium gages in a tet}anitromethane—nitromethane mixture lead to
the following conclusions about LVD in this liquid. The compressional
part of the LVD wave propagates at. constant velocity with a constant
peak pressure; the flow in the release part of the wave is steady state
as the pressure falls to one-half .Or one-third of the peak pressure and

then becomes unsteady.

The 'results of the experiments show that LVD in the tetranitromethane-

nitromethane mixture is initiated by shocks with initial pressures *.. the
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3.6 to 16 kbar range, and the reactive Hugoniot curves constructed in
the the theoretical study lead to the conclusion that shocks will build
up to LVD when their initial pressures are greater than ~ 4.5 kbar, and

will decay to LVD when their initial pressures are greater than ~ 8,5 kbar.

Additional work is required, however, to develop a more fundamental
treatment of LVD because the work on reactive shock discontinuities is
semiempirical, and because the computer calculations on burning bubbles
did not provide a conditizii Tor calculating the degree of incomplete
reaction in the compressed cavitation field. To be more specific, LVD
pressure is a parameter that must be known, and the critical pressure
for onset of reaction in the cavitation field and the relationship for
the reactive Hugoniot curve were chosen rather than calculated from first
principles, The calculations on burning bubbles did not provide condi-
tions for evaluating these quantities because the calculations were
performed for a contracting bubble in an incompressible liquid, and the
reaction is probably extinguished during bubble expansion when compressi-
bility factors cannot be ignored. It is therefore necessary to formulate
a satisfactpry model for determining the amount of reaction in the com-
pressed: cavitation field as a function of pressure so that all these
quantities -can be calculated, A study of reactive bubbles in a compress-
ible liquid undergoing contraction and expansion should be continued to
develop such a model, A study of reactive shock propagation including
divergence and reaction behind the shock should also be undertaken to

test the assumption that LVD can be treated .as a cne-dimensional wave,
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Appendix

CALCULATION OF THE COLLAPSE OF A VAPOR BUBBLE
LEADING TO 'HOT-SPOT INITIATION

Introduction

The important role of bubble hot-spot ignition in the initiation and pro-
pagation of low velocity detonation (LVD) was discussed in a previous report, and
equations were derived that govern the collapse of a spherical vapor bubble.1 Of
interest here is the collapse of a bubble leading to high interior temperatures caus-
ing local initiation.of reaction which may ultimately ignite the bulk material lead-
ing to explosion,

Theoretical studies of hot-spot initiation that are related to the adiabatic

compression of a bubble have been carried out by Zlnnz, Rnlg:,3 and Glll.4 These

" are computations of ignition delay time which are applicable to a bubble with a sta-

tionary radius and with no mass transfer at the bubble wall, In {i:e present compu-
tations, however, we are interested in the temperature rise and the onset of reaction
or ignition in a collapsing vapcr bubble, We include here the effects of both heat
and mass transfer (vaporization) at the bubble wall, and formulate the problem in

Lagrangian coordinates that move with the bubble wall during collapse. It is assumed

that both the vapor and liquid are nonviscous and, prior to collapse, they have the
same temperature T 0° The interior of the vapor bubble is assumed to be uniform,
an assumption that is justified provided that the thermal diffusivity of the vapor is
much greater than that of the liquid and that the speed of the bubble wall motion
is much less than the sound speed in the vagor. The first condition is certainly
true for most substances for, although the thermal conductivity of the liquid is a-
bout ten times greater than that of the vapor, the thermal diffusivity of the vapor is
still much greater than that of the liquid. The second condition has been discussed
by chkllng5 in connection with the collapse of a bubble of inert gas in a liquid.
Hickling found that the sound speed in the gas was indeed much highar than the
velocity of the bubble wall for initial bubble radii of R = 10" t0 1073 cm. and
overpressures of about 4 atm. Under such conditions, the pressure in the vapor
bubble remains approximately uniform because the effects of disturbances at the
wall will have time to be propagated throughout the bubble interior. It is clear
that during the early stages of collapse the assumption of uniform bubble interior
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will certainly be valid in the present calculation, Further, to keep the problem
tractable, a spherical bubble will be assumed even though shock compression in
general produces asymmetric collapse and, in addition, it s known that spherical
bubbles are generally unstable during the latter stages of collapse.

| The formulation of the equations to be solved is given in the following
section, followed by a discussion of the numericil methods used to solve the
equations. Tho results of several example solutions are then discussed.
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Formulation of the Problem

A very general formulation of the equations governing the motion of a
bubble in a liquid was given by Hsieh,6 as well as simplified equations for a
spherical bubble with a uniform interior. With the above assumptions and the ad-
ditional assumptions that:

(1) No body force is present,

(2) There is no translational motion of the bubble relative to the liquid;,

(3) Viscosity coefficients are zero throughout;

(4) The liquid is incompressible;

(5) The equation for the temperature in the liquid T, (r, t) can be written as

AT a:r:z 33T dT

) _ s, 2%
st TVedr T \5 Y T (1)

where r is the radial coordinate from the bubble center and o P is the thermal dif-
fusivity of the liquid, which will be assumed constant. Since the liquid is treated
as incompressible, and-‘the density of the vapor Py is generally much less than that
of the.diquid, from the continuity requirement the liquid velocity may be directly
related to the bubble radius R(t) as follows:

VL=R—}R— . (2)

That is, the contribution of mass transfer (vaporization) at the bubble surface to R
is neglected. Note that the assumption of uniform bubble interior requires that the
quantities inside the bubble Py Tv' PV are functions of time only. The initial con-
dition will be that at.t=0 a bubble of radius Ro is at rest, with the vapor inside at
initial density and pressure of Puo respectively., The assumption of uniform
initial temperature T o for the system requires that

T,0 = 1,60 = T . (3)
Further, the boundary condition at the bubble wall requires that

T, ) = T,0,t) (4)
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and
RC dT .

L L d Py™Vy
X!’? (0,t) = e at (—-—‘n'Rsp ) +—3 dt +PVR 5
5

) o ] enfom)

when L is the latent heat per unit mass, CV is the specific heat at constant volume
of the vapor, and A . is the thermal conductivity of the liquid. The quantities >‘!,'
L, and Gv are assumed constant, as are Q, Z, and E which denote, respectively,

the specific heat of reaction, the frequency factor, and the activation energy. The
last term in Eq. (5) is the heat release in the bubble due to gas phase reaction which
is generally negligible until Tv reaches the order of ER .,

Since the ‘(uniform) temperature in the vapor bubble is determined by the
temperature of the liquld at the bubble wall, it tollows that the (uniform) pressure
in the bubble Pv is given by the vapor pressure of the liquid at the wall or bubble
temperature. We will therefore make the additional assumption that the vapor pres-
sure is the equilibrium vapor pressure at the bubble wall and that the bubble con-
tains pure vapor. Thus, the possibility that absorbed gas in ths liquid inay con-
tribute to the interior pregaire of the bubble is excluded, and the results will be
applicable to a pure liquid or to cases in which the partial pressure of absorbed
gases is negligible in comparison with the vapor pressure., The equilibrium vapor
pressure requirement is certainly valid in the early stages of coliapse until the
rate of change of the pressure in the bubble becomes comparable to the kinetic
rate of vaporization, To enable us to treat the problem analytically, we will relate
the vapor pressure of the liquid, and hence the pressure in the bubble, to the
temperature at the bubble surface by use of the Calsuis-Clapeyron equation

T
r, pyom (b= (1)}, 0
o 3\ v

where R {s the ideal gas constant and P {s the vapor pressure at the initial temp-
erature T , 0° Fuxther, the thermodynamlc quantities in the vapor phase will be re-
lated by the ideal gas equation of state
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The additionai equation required to complete the formulation of the
problem is the differential equation for the motion of the bubble wall26

(®,- P)
Py

RR + 5 (P = -

. t>0, (8)

where P , assumed constant, is the initial pressure in the bulk liquid and corres-
ponds to the pressure at large distance from the bubble during coliapse. The in-
itial conditions for Eq, (8) are taken as

"
-}

R(0)
and 9)

R(0) = 0

Equations (1), (2), (6), (7), and (8) now form a set for the dependent
variables V,(r,t), T,(r,t), P_(t), and p,t), subject to the conditions of (3), (4),
(5), and (9).

Introduce the dimensionless variables

x = v @-F @)
o
/\
t = tr,
N\
R = R(t)/Ro (10)
8 = L%
v To
T,-T
g = L0
——
o
and the parameters
n = L/RTO
= 1/2
Tc (PLR?S/ Po) (11)
™ = R/
T, = RT /Qz,
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where 7 c is the characteristic time for bubble collapse,‘rh is the characteristic
time for heat transfer to the bubble wall, and T, is the dimensionless frequency
factor for the reaction term in Eq. (5).

Equation {1) can now be written as

4/3

a9 T\ 2 3x 36
= 1+== =— (12)
at (Th> 3x K ° > ax ]
and the conditions (3), (4), and (5) become respectively,
9,0) = 6(x,0) = 0, x=0 (13)
6,0 =00 , T=0 (14)

and

Vo) N r -]
'Q-<—U—+1)+-B-<1)de" 1] N/ NS S
& \THE, 3 \T%8, ) 3 +8, ) TTHE, 41

.

S T |
R/ 1 E 1 E
5 (T8, )(%)(exp [' AT, (1‘—+e )‘e"P [‘WD (15)
v r : 0o v/l o
where v 1s the ratio at specific heats of the vapor phase and Pvo is the initial den-
sity in the vapor phase.

The bubble equation (8) can be written as

2
ﬁ daﬁ‘ +_3_ ) dﬁ = PQ-PV (16)
ar 2 d’t\‘ - —'15;—'
with the initial conditions
Rio) = 1 Coan
and A
dR
=0 =0 . (18)
dt




Eguations To Be Numerically Integrated

The nondimensional heat conduction equation (12) in the liquid may be
written as

@ _ T A 1/3 A 30
a,t\ = -‘F];- (R3+3X) [(%4‘3)() by + 4'-a—x—] (19)

Two boundary conditions, an initial condition, and an equation for the bubble
radius must be given to complete the specification of the problem, Far away from
the bubble surface, the liquid temperature is assumed to be constant, hence,

B +@) =0 (20)

At the bubble surface the energy balance {15) can be written,
PR, Fa 12 | P

20, _Tolo [fa, aR
axlx=o‘uo o /\aP (“T%‘”)

B 2 [ - o+ —T] e

-3 Tﬁ; T‘I‘;— exp |= ?ET;" ITBT - eXp |- ?ﬁ;—
where thé pressure ratio PI/P is given by

76,
T— exp [T (- T_)] = exp [-1—3-;] (22)

and where the subscript 1 refers to conditions at the bubble wall, The initial
condition for equation (19) s

§E=0 =0 (23)

The equation for the motion of the bubble wall ‘i3

a2 gt R at A
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where,

RE=0)=1 RE=0=0

Transformed Equations

(25)

The temperature gradient is greatest at the bubble surface and decays
rapidly with distance into the liquid, For this reason it is desirable to transform
to a coordinate system in which constant increments in the transformed plane
correspond to very small increments near the surface and ever larger ones as the
distance from the surface Increases. Also, the boundary condition (20) need not
be applied at. x ==, since during the very rapid bubble collapse, the heat trans-
ferred from th2 .bubble interior can only propagate a short distance into the liquid.
There are s possible coordinate transformations possessing the desired char-

acteristics, the one.selected for use in the current analysis is-given by,

AX

T [1 NP n]
a [o]

a

AX
x=—2- [eaZ/AZ -1]
e -1

This transformation maps the region

x=0~+x
‘max

into

Z2=0-+1

where,

= Axo (ea/AZ - 1)

X =
max (ea - 1)
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The step size in the transformed piane, AZ, is constant. In the physical plane
the first mesh point is a distance Axo from the bubble surface. The Ax intervals
then grow in an exponential manner as one proceeds away from the surface. The
derivatives of the transformation are also required.

Ax
Let: “= _°1) B= 7 (29)
then,
_gxé =2 = %-lg'_z (30)
g—lf =Z" = - e;zpz =-2'8 (31)

The following relations can then be used to transform the heat conduction equa~-
tion (19).

L TR V4
- . (32)
—ogn 9 s 9
WVt
The transformed equation becomes,
i T 1/3.
28 e @+ [(nusx) z +4z'] @+ 3022 38 (33)
at n x X
The transformed boundary conditions are:
#=0atZ=1 (34)
1
‘z=o Zr0) 3x Ix—o : (38)

The bubble equations (24) and (25) are not affected by the transformation,
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Finite Difference Solution

Equation (33) subject to the boundary conditions £34) and -(35), and the
| initial condition (23),is solved using the Crank-Nicolson implicit finite difference
scheme. A network of mesh points is created as shown in Figure 1.

t
-l
\ Az @® Known Point
Z n L a3 O ‘ O Unknown Point
. . X Equation Evaluated
A
n+l L % _:r _

m m+1l

L Figure 1, Finite Difference Mesh

With the Crank-Nicholson method the derivatives and coefficients in the differential
equation are evaluated: at the midpoint m+1/2, n+1/2. The resulting solutions

are accurate to second order. For nonlinear problems the difference equations

are normally linearized, enabling a solution to be achieved by solving a coupleu
set of linear, rather than nonlinear, algebraic equations, In such cases, one
iterstion must be performed to regain second order accuracy. The following repre-
swntations of the derivatives are used:

30, [Gmont1” Onnel) L @l ontl” Cmtlon-1
A v e YA : (36)
¥6 _ 1/2 .(em,-n+1" 28, n* em,n—l) +
Y.< | V4 :
(37)
(em+l , n+l” 29m+1, n+ 6m+1Ln—1)
S——— A‘zz
a . -0
a‘i = m+1,nA m,n (38)
2%t A
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After replacing all of the derivatives in equation (33) by their central difference
analogs, (36) to (38), the following set of difference equations is obtained,

A1'1 errf-!-l,n-l B 9m-i'l n + Cn Bm+1;n+1 = Dn
(39)
n=2,3,...N-1 = surface
N = far boundary
where
A = (bn - en) B =1+ Zen @)
c=-(b +e) D=8 +b @ +e By
n ‘m,n n Zm'n n sz'n
6 =8 -9 _
Zm,n m,n+1 m,n-1
(41)
= - +
OZZm'n 6m,n+1 26m,n Qm,n—l
and. T“C (R:V + 3xn)1/3 R® ”" '
b =4t . TV ( aV+3xn) zh+4zn
(42)

: 1/3
TC (R;V + 3xn)
n T Iy

(Rgv + 3xn) YA

Once the boundary conditions have been applied, (39) ylelds a set of N-2, tridia-
gonal, linear algebraic equations, which may be efficiently solved using a simple
Gausslian elimination algorithm. %o reduce equations (39) to tridiagonal form the
boundary conditions at Z=0 and Z=1 must be used to evaluate the terms

B Om+1,1 304 Opey Oy (43)

The far boundary condition (34) glven 6 m#l, N—-O. The surface boundary condition
is nonlinear and may be treated in numerous ways. The method currently being
used Iteratively selects values for 8 m#l,1 until the derivative at the surface given
by (35) is equal to the calculated derlvatlve, to within a specified tolerance, The

calculated surface derivative is evaluated usmg a four-point formula
A-13
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~96 47 5 +20

38 116,141,1*188 41,2 m+1, 4 (44)

azlz-o 6AZ

The method of solution, as given, assumes that the instantaneous bubble radius

is known. In reality, however, the bubble radius is a function of pressure, and,
hence, by(22), a function of surface temperature. In order-t6 avoid a simultaneous,
iterative, solution of the heat conduction equation and the bubble equation (24),the
calculation of the bubble:radius is done in an uncoupled manner. This procedure
for uncoupling the bubble radius calculation appears to work satisfactorily, and

is described below,

The second order bubble differential equation (24)is rewritten as a set of
two first order equations,

hd P
A dR 333, M 1
RE + 2R2 4+ —--R=-(1-~15-—) (45)
d’i? 2 R ®
Vay
dR _;
dt

R?*'A?— R/f*l' th\At (47)
aArl P
5 At 1 3., M 2
Ra =R/\ 2t ll1-==+-=R4+-R (48)
Brat t ﬁ? P“ 2 -ﬁ ?

When calculated in this manner, the bubble radius and velocity at 't\+A’t\ depend only
on. previously known values at time =%. The bubble parameters given by (47) and
(48) are then used in evaluating the term R - in (42), and the surface hLeat transfer
rate (21),
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Table 1, Input Values for Calculations

N

2R p

1, .0icm

306°K

1.13 gm/cm®

107, 10° dynes/cm?®

.45 cal/gm°K = 1.9 x 107 erg/gm°K
135 cal/gm = 5,65 x 10° erg/gm

61 g/g-mole

.0062 gm/cm sec (poise)

2,15 x 10* erg/cm sec’K

2,25 x 10*® erg/mole, or 1.125 x 10 erg/mole
3.69 x 10 * erg/gm, or 1,845 x 10" erg/gm
3,98 x 10 sec

4.6 x 10* erg/gm, or 0.0

1.2

8.317 x 107 ergs/g-mole°C
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Example Calculations and Results

The equations tor the collapsing spherical vapor butble were numerically
integrated for two values of initial bubble radius and two overpressures, using the
values of the parameter shown in Table 1, Test cases were integrated for an adiaba-
tically collapsing bubble and were compared to other investigator's results to pro-
vide an initial check of the integration technique. To serve as a basis for comparison,
in each case the collapse of a vapor Lubble was computed with no heat release in
the vapor phase and shown as the Q=0.curve in Figures 1 through 4. The curves
of pressure and temperature histories in the bubbles during collapse are plotted as
functions of the bubble radius which varies in time very nearly like the radius of
a collapsing adiabatic bubble, As shown in Figures 1 and 2, the temperature (and
pressure) in the bubble during collapse follow the non-reacting case until a critical
temperature is reached where a rapid increase in temperature(pressure)or ignition
takes place, Figure 3 shows the effect of different overpressures; the rate of temp-
erature increase at the higher overpressure is greater because less heat is lost to
the liquid during the more rapid collapse, Ignition at both values of overpressure,
as would be expected, occurs at about the same temperature. The effects of chang-
ing initial bubble radius is shown in Figure 4. The larger bubble ignites at an
earller stage of collapse, probably because there is a lower rate of heat transfer
per urfit mass of vapor in-the larger bubble due to the smaller surface to volume ratio
of the larger bubble, Thus, in general, larger bubbles and higher overpressure lead
to earlier ignition (in terms of bubble radius).

Orice bubble lg;utlon occurs, the integration of the governing equations
s terminated because the properties change too rapidly for the program to handle.
In interpreting these results, it should be realized that several of the assumptions
made in deriving the governing equations are not valid during the latter stages of
the bubble collapse. For example, as the bubble wall reaches a very high velocity,
the assumptions of an incompressible liquid phase and-iniform bubble interior are
not valid, Also, the assumptions of equilibrium vaporization and reaction kinetics
.are no longer appropriate. for high rates of change of the bubble properties, These
results should, therefore, be viewed as a qualitative indication of the effects noted
above, '
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The high pressures generated by the ignition process may cause a reversal
of the bubble collapse and a re-expansion of the bubble. The question then arises
as to whether the bubble expansion would extinguish the reaction or whether the
reaction would continue to drive the bubble past its original size. If the latter

occured, this could be taken as a criterion for the ignition of a bulk-cavitated
liquid containing many bubbles,

The solution of the rebounding bubble, which requires that liquid com-

pressibility and finite rate kinetics be included in the model may, therefore, lead to
an ignition criterion for LVD and other hot-spot ignition phenomena.
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Figure 1,

Figure 2,

Figure 3,

Figure 4,

Figure Captions

Collapse of vapor bubble with overpressure of 107 dynes/cm® and in-
tial radius of 0,1 and showing etfects of different activation energies
compared {o bubble collapse with no heat release or reaction (Q=0).

(a) Temperature at the bubble wall vs, bubble radius

(b) Pressure in the bubble vs, bubble radius

‘Same calculation as in Figure 1 but with a higher overpressure, 10°

dynes/cm?.,

(a) Temperature at the bubble wall vs. bubble radius

(b). Pressure in the bubble vs, bubble radius.

(@) Bubble wall temperature and

(b) pressure in the bubble during collapse compared for the two different
overpressures.,

(@) Bubble wall temperature and

(b) pressure in the bubble during collapse compared for two different

initial radit.
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P, = 10° dynes/cm®
Ro =,1 cm
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Figure 2a,

Temperatul'e At The Bubble Wall vs, Bubble Radius,

A-22

—



= 10°dynes/cn‘
=.1lcm

P-
RO

108 _

Q=90

[TYS W I S 1

'l

12482 4.8 ¢ 2 Il

TSN W W I TTE N NI A

N S |

aas 0 4 A £

10°

10°

Loy o
o -
—

e ar e ——ct e AW

1.0

A

Pressure In The Bubble vs, Bubble Radius,

.05

Figure 2k,

.01

A-23




—

_,..,'
Pl

E .
= 45
F'l‘; :
6 R°=.1cm
5 -
4
8
3 |

P_= 10° dynes/cm®

.P =107 dynes/cm®

Figure 3a.

Bubble Wall Temperature
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