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INTRODUCTION

0The long range ob.Jpctive Of the research presented in-tisxpt

was to de~re1Qp a basic uriderstanding cf low velocity detonationiiwy (I n ~I-

t-deef-iiine coridit-lons for 1ts i-ttonand propagation. Such ieiowiid~e,Lis required for predicting the LYD behavi'6r of'-energetic materials u,.&d

in- propulsion systems. It is important to the Air Force because the

possibility of initiating LVD with pressures below 10 kbars constitutives-

a major hazard in the efficient use~ and manufacture of liquid pionoprooel-

lants and energetic plasticizer compounds. Events that must be :zifeguarded

again.st are the malfunction of rocket motors caused by LVD in the .fuel

container or fuel feed system, and serious accidents caused by 'LYD during

the preparation and transportation of large quantities of such mate6rials .

If ~~~Shock wave studic 1,. d ii the last decade .1-6 ex nd g th rl r

7
work discussed by, Taylor, have -esty .b!l±shed that most liquid propellantz

'and explosives exhibit two modes of self-sustaining detonation. These

modes have distinct velocities of propagation and have beeny charact6ekized

accordingly as high-velocity detonation (HVD) and. low-velocitydetonation

(LVD). HVD propagates at approximately 6 mm/JLsec 'with a pressure in the

100-kilobar region and can be initiated by a shock with a pe"a. pressur~e

of about 60 kilobars. LVD proliagates with a slightly highor veloc'ity

than ambient sound speed, at approximately 2 mm/psec witi a; pressure 113

the lO-kilobar region,. ),=d can be-initiated by a shock with a peak

pressure of about 4 kilobars. 4n -some- cases,-however,. LVD has been

observed to transform into HVD.



Since extlosives are required ';o bePhdve reproducibly and produce

pressures in t.hae 100-kilobar region -in: most piactical applications,

detonation studies have concentrated on HV7D 'eather than on LVD. Con-

sequeitly, conditions for -Initiation and propa;gation of LND are not as

wellestblihe'as those for HVD, and our understanding of LVD is not

ascoj~e~as !Ehat of HVD. This situation is further accentuated by

-the, disparity inii he theoretical, -tre atments. of HVD_ an- ILVD. The hydro-

theriaodynamic t7,heory of detonation is satiatactory, for modeling the

initiation antd propagation of HVD and for eadculAtng.,JVP detonation

-Iparameters with the ChapeaanJouguet (C-J) -.4otliesis wwn, -the equation

of state of tie detdnation products is known,. but there is no comparable

theory for IND.
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BACKGROUND AND APPROACH

Previous research on LVD in Poulter Laboratory at Stanford Research

Institute (SRI) was supported by AFOSR under Contract. F44620-69-C-C079 and

8
is documented in the final report written f6r this contract. This

research included both theoretical and experimental studies. Computer

calculatiohs were perforied in the theoretical study to test the cavita-

5
tion model of LVD, and ytterbium stressgages were used in the experi-:1 mental study to determine the states attained in LVD waves. A brief

discussion of this work is given 'below as background for the present

,project.

In the cavitation model, LVD is treated as a reactive shock'propa-

gating in a cavitated liquid. The liquid is first cavitated by inter-

-actions with the container wall, and reaction is then initiated by

bubble collapse in the compressed cavitation field. Computer studies

were performed to. investigate the cavitation process and to determine

the amount of reaction required to support LVD. Two-dimensional computer

calculations of a shock propagating in a liquid contained in a cylindrical

* steel tube showed that precursor wall waves produce regions of tension

sufficient to cavitate the, liquid before it is compressed by the main

shock. Simulation of hot-spot-initiated reaction in the calculations by

addition of energy behind the shock led to the conclusion that only part

of the chemical energy is required to support the wave. Methods of calcu-

lating LVD parameters were formulated with the hydrothermodynamics of

the cavitation model, and a complete, equation of state for nitromethane

was introduced into the TIGER code so that detonation calculations could
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be made for in'zotplete reacticn. The calculations showed that only about

20 percent of the liquid is required to react to support LVD and that LVD

parameters are Insensitive to the initial degree of cavitation. The

results of this theoretical study ,are significant because they place the

calv:,tation model on- a firm foundation and justify its use as .a basis for

further studies to zvelop a satisfactory treatment o" LVD.

Ytterbium. gages were used to study LVD in ethyl nitrate and in FEFO.

LVD propagation velocities were found to be about 2 mm/lsec in ethyl

nitrate and 3 mm/pse% in' FEFO; peak pressures were recorded from 4 to 7

kbars.

The present work on LVD was al¢ gical continuation of that discussed

above. Theoretical and experimental soudies were continued to determine

conditions for the onset and terminatiuin of reaction in the compressed

cavitation field and conditions for thel initiation of LVD and its transition

into HVD.

Two approaches were taken in the theoretical study. The first approach

was a numerical study of bubble dynamics with heat and mass transfer and

chemical reaction. The' idea was to tory to establish conditions for the

onset and termination of reaction in a single bubble, and then to try to

apply these conditions to the cavitation field to determine the amount

of reaction supporting LVD. The computer calculations on a single bubble

were performed by J. Levine and D. C. Wooten at Ultrasystems, Inc., and

an account of this work is given in the Appendix. The second approach,

More empirical than the first, was to study reactive shock discontinuities.

Reactive Huginiot curves were constructed in the pressure-volume (p-v)

plane to account for the initiation and propagation of LVD and for its

transition into HVD. These approaches will lead to a satisfactory model

for LVD when the parameters used in- the treatment of reactive shock

discontinuities can be evaluated with the restilts of the computer

calculations, and these parameters agree with experimental values.

4



A new method for placing multiple stress gages in a liquid was

devised in the experimental study. This new method of gage emplacement

allows the gages to move with the flow and record a more accurate and

quantitative description of the )states attained' in LVD. Experiments

using multiple ytterbium stress gages were performed on mixtures of

nitromethane and tetraniromethane.

5



THEORETICAL STUDY OF LVD

LVD Treated as a Reacting Shock Discontinuity

Although a complete treatment of LVD must account for liquid-

.ontainer wall interactions and the dynamics and thermodynamics of a

cavitation field with heat transfer, mass transfer, and chemical reaction,

the present work is based onthe assumption that a detailed account of

these processes is not required to model the initiation and propagation

of LVD and its transition into HVD. This approach is motivted by the

,one-dimensional CJ model for gaseous detonation, which is satisfactory

for calculating the average velobity of HVD without treating the complex

system of interacting transverse waves necessary for its propagation.

Detonation will be considered as a reactive shock discontinuity and

the flow behind it as one dimensional. The time scale for compression

and, reaction supporting the shock is therefore assumed td be very small

compared with the time scale for the subsequent pressure release in the

wave. Consequently,'HVD is represented as a shock discontinuity with

comp ete reaction, and LVD as a shock discontinuity with incomplete

reaction. Let P, v, p, and e denote density, specific volume,

pressure, and specific internal energy, and let the subscriptp H and

o denote quantities immediately behind and inr front of a shock dis-

continuity. Then the Rankine-Hugoniot jump conditions expressing the

conservation of mass, momentum) and energy across a shock discontinuity

propagating into stationary material can be written as

pv = (U-1 U)U v UU/v ()
H H'H H H H 0

2(eH -e O ) = PH(vo -v H ) 1H  (2)

7
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where U denotes the shock velocity, u denot(-s the particle velocity,

and the initial pressure p has been neglected. Let t and r denote

time and distance; then the equations expressin the conservation of mass,

momentum,iand energy in the flow behind the shock can be ritten as

- P ar 0 '(3)

dt : rO

P du a 0 (4)

de dv

dt + Pdt = 0 (5)

where d/dt = a/at + ua/6r and the subscripts on the partial derivatives

have been omitted for notational convenience. When the flow is supported

by an exothermic reaction described by a reaction coordinate X, combinaw

tion of Eq. (5) and the e = e(p, v, X) equation of state leads 'to the

equation

dp _ 2 dP r dx
dt - c + -- Q- (6)

where c = (p/ap) denotes the sound s~sed, s deuotes the specific
SIX

entropy, 7/v = (p/e) x is the GrUneisen 'arameter, and Q = -(e/'a)p~ v

denotesthe specific heat of reaction.

/ To eliminate equation-of-state problems it is assumed that the.

explosive mixture behaves as a polytropic medium desdibed by an e(p,v,X)

equation of state of the form

e = e 0--XQ - (7)
x K

where K denotes the polytropic index and e denotes the heat of
x

formation of the explosive. Combination of Eqs. (1) and (2) with Eq. (7)

leads to the following equations for a strong reactive shock discontinuity

in a polytropic medium,

8



2^u = (CK + 1)u 2 2 2(K-l) QX (3)
H H H()

2 pv (K + 1)u2 + 2( -l) QX (9)
Ho H H()

Let U denote the detonation velocity of the CJ discontinuity,
D

and let the subscript CJ denote the Chapman-Jouguet state. Then,

substituting X CJ 1 and the CJ condition written as UD = (K + !)uci

into Eqs. (8) and (9) yields the following well-known expressions for

9
HVD,

U2 = 2(K2 - l)Q (10)
D

p = 2(K - l)Qpo (11)PcJ0

The equations for a nonreactive shock discontinuity are obtained by

settig, = 0 in Eqs. (8) and (9). It follows from Eqs. (8) and (9)

that the release of chemical energy in a shock discontinuity lowers the

values of shock pressure and particle velocity with respect to the values

across a nonreactive discontinuity propagating at the same velocity.

In other words, the reactive Hugoniot curve lies above the nonreactive

Hugoniot in the (p-u) plane.

The differential equation governing the propagation of a shock dis-

continuity will now be derived. The assumption will also be made that

the flow behind the shock is nonreactive. Let D( ) /Dt =( )/bt +
H H

U6( )/r denote the directional time derivative along the shock path;
H

then the shock pressure and particle velocity satisfy the following

identities

DPH dp p
- + (U- u ) (12)

Dt fH 6r
H H

and

DUH du au
Dt = - + (U- UH) (13)

9



The combination of Eqs. (12) and (13) with Eqs. (3) and (4), and Eq. (6)

subject to the condition dX/dt = 0, gives the required equation along
H

the shock path as

DpH DuH auH- Ho - fP ( - \H u

Dt 0 Dt - c H  6 (14)

H

At this sLage the subscript H will be omitted for notational simplicity

because we will be dealing only with quantities evaluated at the top of

the shock discontinuity.

Our consideration of reactive, shock propagation, based on Eq. (14),

is an extension of some ideas developed for Ballistic Research Labora-

tories underContract No. DA-04-200-AMC-2469(X).10 The particle velocity

gradient at the shock front is always assumed to be positive because this

condition is satisfied in most initiation experiments. Reactive dis-

continuities satisfy the conditions X 0 if U < UD, and X = 1 if

U U D; DX/dt > 0 for accelerating shocks, D/Dt < 0 for decelerating

shocks, and DX/dt = 0 for shock propagating at constant velocity. It

is evident on physical grounds that shocks satisfy the condition Dp/Du > 0.

Consequently, Dp/Dt'> 0 and Du/Dt > 0 for accelerating shocks,

Dp/Dt < 0 and Du/Dt < 6 for decelerating shocks, Dp/Dt = Du/Dt = 0

for constant velocity shocks, and reactive'Hugoniot curves satisfy the

conditions Dp/DX > 0 and Du/1A > 0 since p and u are functions

of X. Combination of these conditions with Eq. (14) leads to the

conclusions that (1 . u)2 - c2 > 0 for accelerating shocks, (U - u)2

222

c < 0 for decaying shocks, and that (U - u)2 - c = 0 for constant

velocity shocks. With the notation introduced early, for example, the

sonic condition expressed by the last equation becomes UD = uCT + cj

for HVD. It is also convenient to denote the propagation of LVD by U*.
D

10



Conditions at a sonic point are readily obtained by rewriting the

term in brackets on the right-hand side of Eq. (14) as

(U - u) -cc2] = + ij (15)

Equation (15) gives X(u lu) 2 = 1 as the condition for a constant
CJ

velocity reactive shock discontinuity. Since (U - u) - c2 = 0 at a
/2

point where a Rayleigh line is tangent to a Hugoniot curve. Y'. /u)2 = 1
" CJ-

is also the condition for a Rayleigh line to be tangent to a frozen

2
Hugoniot curve in the (p-u) plane. In other d6rds, X(Ucj /u) = 1

defines the locus of sonic states in the (p-u) plane. The locus of

sonic states in the (p-v) plane is readily found to be v = [Kv /(K + 1].
o

It follows from Jouguet's Ruie1 1 that accelerating shocks satisfy

the condition v > [Kv /(K + 13 and that decelerating shocks satisfy
H 0

the reverse inequality v < [Kv /(K+ 1]. Consequently, in the (p-v)H o

plane, accelerating shocks are represented by points that lie to the

right of the sonic locus, decelerating shocks are represented by points

that lie to the left of the sonic locus, and constant velocity shocks are

represented by points lying on the sonic locus.

We are now in a position to consider initiation of detonation when

the initial particle velocity u < U , and the initial pressureui  D

P < pCJ" Since weak shocks do not promote detonation, it is assumed
t shck

-that shocks are unreactive until a critical pressure p is attained.
*i

So X 0 for p 1 Pi, and shocks with initial pressures p p

lie on the unreactive Hugoniot curve. Let vi  denote the volume on

the unreactive Hugoniot when pi = p , and consider the locus of initial

states when pi is increased from p to PCJ As p approaches

PCJ 'the initial states must lie to the right of the sonic locus in the

(p-v) plane because shocks with pi < PCJ promote detonation. Moreover

11



m*

as pi approaches p , the initial states must lie to the left of

the sonic locus because (pi ,vi ) lies on the unreacted Hugoniot curve.

It follows from these observations that the initial states lie on a curve

connecting (pi *, i*) tc (p C,v c) and that this curve must intersect

the locus of sonic points. Let p* 'denote the pressure at this point

of intersection and let X* denote the corresponding value of the

reaction coordinate. Then reactive shocks with initial pressures in

the range pi < p* will decay, and shocks with initial pressures in
ii

the range p* < pi < p will build up to HvD. Furthermore, it is
SCi

possible that shocks initiated with pi = p will propagate at con-

stant velocity and that the sonic point will represent LVD. But the

stability of such shocks must be considered before it can be concluded

that this is indeed the case.

10
Conditions for the initiation of.HVD with pi = pC1 lead to the

conclusion that a sonic point will'be stable and represent LVD when

initial shock pressures greater than this, sonic pressure do not promote

further reaction, Shocks with initial pressures higher than the sonic

'pressure are therefore represented by points on the frozen Hugoniot curve

passing through the sonic point. ,Shocks with pressures lower than the

sonic pressure are represented by points on a reactive Hugoniot curve.

Consider the case when there is only one sonic point, say

(p*, (K, /(K+ 1)], and let be' the corresponding value of the0

reaction coordinate. Then the Hugoniot curve exhibits two branches:

the lower branch with 0 m i a id p p has a positive

slope; the upper frozen branch with X = ) and P p' has a negative

slope. LVD is represented by ,the softic point (pl, X*). Consequently,

shocks with p1  in the range p_ 1' < p  decay, shocks initiated

wth pi> pf decay to LVD, and those initiated with Pi = pi propagate

unchanged as LVD with a velocity UI.

12



Now consider the case when the Hugoniot curve has a similar shape,

a positively sloped lower branch and a negatively sloped upper branch,

but intersects the sonic locus in two points (pl, X') and (p2, X2)
with p* > p* and * > )L. In this case the uyper sonic point repre-

sents LVD. Shocks with p. in the range pi * < p1 decay, shocks

with p > p* decay to LVD, shocks with p. in the range pf :5 p <p2
i 2 i

build up to LVD, and shocks with pi = p2 propagate at constant velocity

as LVD.

As indicated by the computer studies, of bubbles, such a situation

would occur in the cavitation model when the reaction initiated by

bubble collapse is terminated by bubble expansion and does not go to

completion. Relationships for Hugoniots exhibiting these two branches

were formulated because a Hugoniot of this type was observed by Evans
12

et al. in a shock initiation sttidy of low density pressings of ammonium

perchlorate sponsored by AFOSR under Contract AF49(638)-1124.

The transition of LVD into HVD is accounted for by assuming that
/

there is 'another critical pressure pi for the onset of bulk reaction.

In this case reaction initiated by bubble collapse at the pressure i

is not terminated at'later times. Bulk reactionctherefore occurs at

the pressure pl ,on the frozen Hugoniot curve;,passing through the sonic

point representing LVD. The locus of shocked st\tes with p. in the
1 , -

range pi p' P CJ forms a curve that again inversects the sonic

locus and has a positive slope in the neighborhood o pi and a nega-

tive slope in the neighborhood of p6,. While shocks whth initial 4

pressure higher than the pressure at this sonic point bukld up to HVD,

shocks with lower pressures decay to LVD. In most casesi, however, HVD

propagating in the cavitated liquid will eventually becomes HVD propa-

gating in virgin liquid. HVD in cavitated liquid will usually produce

HVD in virgin liquid because it outruns the cavitation field and produces

a shock in virgin liquid that is strong enough to produce HVD.

13



Construction of Hugoniot Curves for the Initiation and Propagation of LVD

Relationships for Hugoniot curves with a positively sloped lower

branch and a negatively sloped upper branch were formulated to account

for the initiation and propagation of LVD. The condition for a Hugoniot

to have a positive slope will be derived first, however, because Hugoniot

curves are usually found to have a negative slope. The equation for the

slope of a Hugoniot is readily obtained as

LV! -- _dLpX'( (16)dv p dpJ )

by eliminatiJag de from the differential forms obtained by differen-

tiating Eq. (2) and the e = e(p,v,X) equation of state. Since we are

considering a case in which (e/P)v, > 0, (ae/bv) > 0, and

2(ae/bp) > (Vo - v), it follows from Eq. (16) that the slope of a

reactive Hugoniot is positive only when the reaction term Q. d)/dp is

large enough to make the term in brackets on the right-hand side of

Eqt (16) negative.

The equation for a reactive Hugoniot curve for our polytropic

material is readily obtained as

(K + 1) "soX (17)P(K - 1) -Voj "- 2QX - (K- )(7

by eliminating e from Eqs. (2) and (7), and making use-of Eq. (11).

Setting X = 0 4ii.¢ Eq. -(17) gives v = (K - l)/(K + l)v for a strong
0

nonreactive shock, and setting X = 1 in Eq. (17) gi ves the equation

for the fully reacted Hugoniot curve. The condition pc X*/p* = 1

for a sonic point on a Hugoniot curve is readily obtained by setting

v = [Kv 0/(K+ 1)] in Eq. (17). It is convenient for computational

purposes to set K = 3, and rewrite Eq., (17) as

14



V PCJ (18)
v 4 p0

Equation (18) gives the equation for the slope of this Hugoniot as

V
d- = -p 

(1)

and it follows from Eq. (19) that the Hugoniot has a positive or a nega-

tive slope depending on whether v < (V /2 + QdX/dp) or v > (V /2 + QdX/dp).

0 0

It follows from Eq. (18) that the specificationi of either a v = v(X)

relationship or a p = p(X) relationship defines a reactive Hugoniot

curve. In the present work, however, X = X(p) relationships dere

formulated to generate Hugoniots with the properties required to account

for the initiation and propagation of LVD and for its transition into

HVD. For notational simplicity, v and p. were used to denote the
0 CJ

initial specific volume of the cavitated liquid and its CJ pressure,

and v and pC were used to denote these quantities for virgin
0 C

liquid. Values for the initial volumes of virgin and cavitated liquid,

the HVD propagation velocity, and the critical pressure for the onset of
I

reaction were chosen- respectively, as v = 1 .cc/gm, v = 1.25 cc/gm,
O 0

U D = 6 mni/jsec, and p 2 kbar. The CJ condition gives c = 4.5 mm/psecUD 6m/san Pi = C

and uc = 1.5 mm/psec, and Eq. (11) gives PJ = 90 kbar andPC

72 kbar for the CJpressure attained in virgin and cavitated liquid,

respectively.

The unreacted and fully reacted Hugoniot curves for cavitated liquid

obtained by setting X 0 and X = 1 in Eq. (18) are shown in Figure 1.

The unreacted curve v/v = 0.5 is shown as NR, and the fully reacted0

curve as ECD. The point N represents the criticality condition for

onset of reaction in the cavitation field, and thepoint C represents

the CJ point for HVD. The sonic locus v/v = 0.75 is also shown in
0

Figure 1 as'SC.
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FIGURE 1 REACTIVE HUGONIOT CURVES FOR CAVITATED LIQUID
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Table I

RMACTIVE HUGONIOT CURVES FOR CAVITATmD LIQUID

'n = n = 1.3 n = 1.5 n 1.944

p v v v v
(kbar) (cc/gn), (cc/gm) (cc/gm) _c/g)

-3 0.732 0.014 0,764 0.019 (.786 0.021 0,832 0,028

4 0.785 0.029 0.833 0.037 0.864 0.042 0,932 0.055

6 0.839 0.057 0.901 0.074 0.942 0.084 1.030 0,108

8 0.866 0.086 0.934 0.110 0.979 0.126 1.075 0.160

10 0.882 0.114 0.954 0.146 0.100 0.167 1.098 0.210

30 0.925 0.400 0.989 0.485 1.026 0.535 1.097 0.630

50 0.9336 0.686 0.975 0.778 0.996 0.824 1.028 0.895

70 0.937 0.971 0.943 0.990 0 ./345 0.995 0.946 0.999
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curve with n = 1.3 has a sonic point I at a pressure of t8 kbtr,
/

and the curve with n = 1.944 has a sonic point, I at a pressure of

z4.5 kbar. Since LVD pressurf o5 .. Zie 6 to 9 kbar range, values of

n in the range 1 < n < 1.944 can be used to model LVD. The sonic

point I (p = 8.3 kbar, X = 0.115) on the reactive Hugoniot with n = 1.3

was chosen to represent LVD because this state is attained in a shock

propagating at a velocity of 2.1 mm/sec and the typical propagation

velocity of LVD is U* ; 2 rm/psec.

We are now in -a position to construct Hugoiiot curves with either

one sonic point (pa, Xj) or with two sonic points (pl, 12 ) and (p2, )2)

which were proposed earlier in this report to account for LVD. The case

when a Hugoniot has one sonic point will be considered first.

In the first case, pi = 8.3 kbar and X1 = 0.115 since I was

chosen to represont LVD. The lower, reactive branch of the Hugoniot with a

positive slope is determined-by Eqs. (18) and (20), with n 1.3 and with

p- and subject to the conditions (pi = 2 kbar) p (pa = 8.3 kbar)

and 0 X ! 0.1i5. The upper, nonreactive branch of the Hugoniot with
*

a negative slope is determined by Eq. (18) with p Pi = 8.3 kbar and

S= X = 0.115. The Hugoniot curve calculated according to this pre-

scription is shown as NIF in Figure 2 where the Rayleigh lines

representing LVDb and HVD are shown respectively as 01 and OC

in the second case, p2 = 8.3 kbar and X* = 0.115. A reactive

Hugoniot that connects N and I and has two points of intersection

with the sonic locus SC will now be constructed. It is clear from the

reactiveHugoniot curves shown in Figure 1 that a X = X(p) relationship

producing Hkigoniot curves With the desiredproperties can be obtained by

scaling Eq. (20) . A ' = X(p) relationship for reactive Hugoniot curves

with two sonic points was therefore formulated by setting

19
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' * n

2 *) J(21)
1

Application of an argument similar to the one used previously for curves

with one sonic point, however, shows that n in this case is restricted

to the range I < i, < 2(1 - P./P2) = 1.52. The lower reactive branch

of the Hugoniot curve with two sonic points is determined for these val-

ues of n by Eq. (18) and (21), with p and X subject to the condi-

tions (p.* = 2 kbar) p : (p* = 8.3 kbar) and 0 0.115. The1

upper frozen branch of the Hugoniot is determined, as before, by Eq. (18)

with p ; pi = 8.3 kbar and X = 0.115. Reactive Hugoniot curves

connecting N and I were calculated, and the results of the calcula-

tions performed for n = 1.3 and 1.5 are shown in Table II. The reac-

tive curve calculated with fi = 1.5, is shown in Figure 2 as NTI, and

the corresponding Hugoniot constructed to account for the initiation and

propagation of LVD is shown as NTIF. The lower sonic point is located

at the point T with a pressure p, - 4.5 kbar.

Since pf - 4.5 kbar and p2 = 8.3 kbar, LVD modelled with NTIF

will exhibit the following properties. Shocks with initial pressures

p1 < - 4.5 kbar will decay, shocks with initial pressures in the range

8.3 > p > - 4.5 Vbar will build up to LVD, and shocks with p > 8.3

but less than the critical pressure for onset of bulk reaction will

deca, to LVD.

Although the transition of LVD into HVD will not be considered

further in this report, it is clear that X = X(p) relationships,

producing curves similar to the reactive Hugoniots shown in Figure 1,

can easily be formulated to account for this type of behavior.
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Table I I

REACTIVE HUGONIOT CURVES FOR LVD

n =1.3 n -- 1.5

p V V
(kbar) (cc/gm) (cc/gm)

2 0.625 0.0 0.625 0.0

3 0.799 0.023 0.823 0.026

4 0.879 0.045 0.907 0.050

5 0.920 0.066, 0.947 0.072

6 0.940 0.084 0.963 0.090

7 0.948 0.100 0.-961 !0.105

8 0.943 0,113 0.946 '0.114

-8.3 0.9s8 0.115 0.938 0.115
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EXPERIMENTAL STUDY OF LVD

The objective of the experimental phase-of the program was to obtain

a more accurate and quantitative description of LVD. Shock wave experi-

ments Uc'n i multiple ytterbium stress gages were designed and performed

to achieve this objective. A new method of gage emplacement was developed

to allow the gages to move with the flow so that the experiments would

provide stress histories at different Lagrangian positions in a liquid

undergoing LVD.

The new method ofgage emplacement is a definite improvement over

12
the previous method, which was developed for AFOSR under Contract

F44620-69-C-0070 and used to study LVD in ethyl nitrate and FEFO. In

these previous experiments, the ytterbium gages were placed in the

direction of the flow. The gage records were suitable for measuring

shock arrival time and for determining propagation velocity, but later

interpretation was difficult because it was not known whether the gages

recorded predominantly Lagrangian or Eulerian stress histories. Further-

more, placement of gages in the direction of the flow caused their

response time to be large (>,250 nsec). Consequently in the current

program, the gages were placed perpendicular to the direction of the

flow so that they would move with the liquid and record Lagrangian stress

histories with a smaller response time.

Six experiments were performed in the SRI explosives vault facility

using a mixture of tetranitromethane (4 parts by weight) and nitro-

methane (5 parts by weight) in a steel tube into which several ytterbium

stress gages had been emplaced to record Lagrangian stress histories.
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A schematic diagram of the experiments is shown in Figure 3. A cylindrical

seamless cold-rolled steel tube was used to contain the liquid. The tube

was 14-in. long, had an inside diameter of 3/4 in., a wall thickness of

1/8 in., and was filled with liquid to within an inch of its top. The

explosive donor system consisted of a bridgewire detonator, a tetryl

booster pellet, a 2-in.-diameter by 2-in.-thick tetryl explosive pad,

and a 3-in.-diameter Homalite attenuator. The detonation in the tetryl

pad was initiated by the exploding bridgewire and the tetryl pellet, and

the thickness of the attenuator was chosen to produce the desired shock

pressure entering the liquid.

Two to four stress gages were positioned from 2 to 8 inches above

the bottom of the tube. A typical four-terminal ytterbium foil grid gage

element is shown in Figure 3. This element was attached to a thin layer

of Homalite-impregnated fiberglass and covered with a thin layer of

Homalite to form a total gage package with a thickness of - 6 mils. The

gage package was cut to fit snugly into the steel tube, with two segments

removed as shown in Figure 3'so that the tube could be filled with liquid,

and was supported by a thin layer of glue. A 1/8-in. hole was drilled

through the tube approximately an inch above each gage package location,

and the leads from each gage were brought out through this hole. This

method of emplacement ensured that the gage would survive long enough to

* 'record the LVD pulse. Had .he gage leads been brought straight out at

the same level as the gage package, they would have sheared off as the

liquid flowed along the inside wall of the tube.

An additional ytterbium stress gage was placed at or near the

Homalite attenuator-liquid interface to record the stress pulse entering

the liquid.

*Trade name, Homalite Corporation.
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The gage records were calibrated using the formula given by

Ginsberg 13for calibration af ytterbium foil for the region from 0 to

10 kbar.

Of the six experiments attempted, all but one yielded satisfactory

data. The one that failed was shot2, using a 2-in.-thick Homalite

attenuator. Post-shot recovery of the tube fragments indicated that shot

2 experienced a high-velocity detonation (HVD). Two other shots in this

series used the same attenuator thickness and therefore had nearly the

same stress pulse magnitude enter the liquid; these two shots exhibited

LVD.

The relevant parameters for the five successful shots are shown in

Table III, along with the peak stresses recorded by the various gages

and the velocity of the compressional part of the LVD wave. The five

experiments span a range of peak stress incident upon the liquid from

3.6 to 16 kbar.

The oscillographs from the stress gages in shot 3 are shown in

Figure 4. Three gages recorded in the liquid at 2, 4, and 6 inches

above the liquid-Homalite interface, and a fourth gage recorded just

below the interface. The fourth gage, Figure 4(d), shows a peak stress

equal to the stress in the Homalite and then a decrease to the stress

entering the liquid (the liquid has a lower shock impedance than the

Homalite, hence the difference).

All the in-liquid stress histories recorded for all five shots show

features similar to those shown in Figure 4 (a), (b), and (c). These

include a rapid rise or shock to a peak pressure of from 6.0 to 9.1 kbar,

a shock velocity between successive gages of from 1.87 to 1.99 mm/psec,

and a decay to nearly zero stress of several microseconds duration. There

-is no noticeable variation (to within the statistics of these experiments)
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Table III

EXPERIMENTAL PARAMETERS ANiD RESULTS FO'TL LVD SHOTS

Shot No. 1 3 4 5 6

Attenuator
thickness (in..) 2 -~2 3-1/32 2-1/32 5-1/32

Peak stress entering
aliquid (kbar) 16 6d -. 8.,4 b 3.6

First ifi-11VUI 0 gage;-
P-oigh t -in tubb c(-in'.) 222 2 2
Record-,d-pe4 str-ess9
(kb&0)- 7.2 7.4 _8.15 7.2 7.25

Second- Tn-liquid gage .9 ~ 9

(hbar) 10.3

:Height, inubd-(.T~i.6 6 - 6

Reporded peak -tress.
(kbar) . & ~ - 8.6

(~L.~c 193, -1.,87 - - 1.92

Fourth- in-liquid
Height -in tube _ (iii)"-8 8

Recorded, Oeak stre.s -

(kbar) b, 1. 8 8.15

Measured velocity
(mm/,(Iec) 1.2 l.~) ~1.89

Average pea*k stress for
lfi-liquid, gage~s (kbar) ' 7' 7.7 & 6.6, 8.0

Average meastored-veloci-ty,
(mm/jsec) J;,6 1 ~-:-97- 1.29 1.92

a. As measured by, igo at iloalite.'1quid inl4rf ace.
b. IMata q:( ihsuf ficient quc~.ity to6 analyze4
c, Qvestionable datap. Adl w 0 it, twerages
d, Measured, velocityrr is thw' 64. the mnidpoint of the compressive

shOck between this and -the' previous gage location.
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in peak pressure or shock velocity as a function of incident stress into

the liquid. In other words the LVD wave attains the same approximate

peak pressure and shock velocity regardless of the magnitude of the

initiating shock. Furthermore this approximately steady wave is nearly

rattained within the -first two inches of the liquid, as shown by the

closeness of the average peak stress measured at the 2-in. location

(7.4 kbar) compared with the overall average peak stress (7.6 kbar) and

the similarity of the average shock velocity measured between the 2-in.

and the next gage location (1.96 nm/I.sec) to the overall average1(.93 mm/sec).

Figure 5 is a plot of the arrival times of the midpoint of the LVD

shock, in microseconds from the time the shock enters the liquid, as a

function of the Lagrangian positioa or initial location of the gage plane

in the liquid. The lines for all five shots are very straight and nearly

parallel, indicating constant velocity. The only difference is in their

vertical position on the graph. For example, the LVD wave for shot 6

arrives 3 Psec later than that for shot 1. Since the stress entering

the liquid in shot 1 is 16 kbar, while that in shot 6 is only 3.6 kbar,

the difference in arrival times is caused by a combination of the fol-

lowing two factors: (1) The shock velocity of the unreacted liquid

before LVD initiation is higher at higher stresses because of the con-

/J cave upward nature of the liquid Hugoniot. (2) The LVD might take

longer to initiate at lower' stresses. Further experimentation is

necessary, however, to determine which of these factors is more

important.

The in-liquid stress gage records for shots 3 and 6 were digitized

and plotted together in Figures 6(a) and 6(b), respectively. The hori-

zontal or time axis was shifted so that thk first motion or the foot of

the compressional shock for all three gages coincided at zero time.
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If LVD were precisely steatdy state throughout the region of measurement,

each point in the wave would travel at the same velocity, and as a

consequence the recorded stress histories would be exactly congruent.

The actual results are fairly congruent in each case except in two

regions--near the peak and at the final third of unloading. The peak

stress of the first gage is significantly lower than that of the other

two for both shots 3 and 6, indicating that perhaps the LVD has Dot yet

reached its maximum or 'steady-state stress level in the first two inches

of liquid. The unloading is slower for gages farther up the tube, which

indicates that the release wave velocity is less than that lof tlie com-

pressional wave. The lower velocity of the release wave is qite likely

because the liquid is in a heated state following detonation,; however,

the difference is very small. In shot 3, the release ve/ocJJty; at 4 kbar

is only 1% lower than the shock velocity, and from there the difference

increases to a maximum of 8% at 1 kbar. For .shot 6, th,& differences are.

even smaller.

In conclusion, we have succesifully obtained Lagi.angia, stress

histories in a liquid undergoing Y.D,. The records inidicats that the

compressional part of the LVDI waye jropagates at verty n,ariy constant

peak stress and velocity, whvle the, release portion, of thi LVD wave,

although initially nearly steae,y state, begins to idivecgfj (i.e., propa-

gate at slightly lower 'velocities7i as the stress decayis to zero. This

technique can now be used with a high degree of certainty of success to

study in detail the initiation and propagation of lVD.
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CONCLUSIONS

Considerable progress has been made in a basic understanding of LVD

and in determining conditibns for its initiation and propagation.

Tie treatment of reactive shocks formulated in the theoretical study

providem for the first time a simple model to account for the initiation

and propigation of LVD. Shocked states are described by Hugoniot curves

that exhilbit two sonic points in the region of 2 to 10 kbar. The sonic

point with \the higher pressure p2 represents LVD, &d the sonic point

with the lovier pressure p, defines the initial pressure needed for

shocks with a'\positive particle velocity gradient to build up to LVD.

If pi denotes the initial shock pressure, then shocks decay when

<pr, build lp to LVD when Pl P < p2 and decay to LVD when

p> p.

The development of multiple ytterbium gages to determine Lagrangian

stress histories in shocked liquids provides a means of obtaining a more

accurate and quantitative description of the states attained during the

initiation and propagation of LVD. The stress histories recorded by

the ytterbium gages in a tetranitromethane-nitromethane mixture lead to

the following conclusions about LVD in this liquid. The compressional

part of the LVD wave propagates at, constant velocity with a constant

peak pressure; the flow in the release part of the wave is steady state

as the pressure falls to one-half,6r one-third of the peak pressure and

then becomes unsteady.

The results of the experiments show that LVD in the tetranitromethane-

nitromethane mixture is initiated by shocks with initial pressures t.. the
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3.6 to 16 kbar range, and the reactive Hugoniot curves constructed in

the the theoretical study lead to the conclusion that shocks will build

up to LVD when their initial pressures are greater than - 4.5 kbar, and

will decay to LVD when their initial pressures are greater than 8.5 kbar.

Additional work is required, however, to develop a more fundamental

treatment of LVD because the work on reactive shock discontinuities is

semiempirical, and because the computer calculations on burning bubbles

did not provide a conditJi-zifor calculating the degree of incomplete

reaction in the compressed cavitation field. To be more specific, LVD

pressure is a parameter that must be known, and the critical pressure

for onset of reaction in the cavitation field and the relationship for

the reactive Hugoniot curve were chosen rather than calculated from first

principles. The. calculations on burning bubbles did not provide condi-

tions for evaluating these quantities because the calculations were

performed for a contracting bubble in an incompressible liquid, and the

reaction is probably extinguished during bubble expansion when compressi-

bility factors cannot be ignored. It is therefore necessary to formulate

a satisfactory model for determining the amount of reaction in the com-

pressed, cav itation field as a function of pressure so that all these

quantities can'be calculated. A study of reactive bubbles in a compress-

ible liquid undergoing contraction and expansion should be continued to

develop such a model. A study of reactive shock propagation including

divergence and reaction behind the shock should also be undertaken to

test the assumption that LVD can be treated -as a one-dimensional wave.
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Appendix

CALCULATION OF THE COLLAPSE OF A VAPOR BUBBLE
V LEADING TO'HOT-SPOT INITIATION

Introduction

The important role of bubble hot-spot ignition in the initiation and pro-

pagation of low velocity detonation (LV) was discussed in a previous report, and
equations were derived that govern the collapse of a spherical vapor bubble. 1 Of
interest here is the collapse of a bubble leading to high interior temperatures caus-
ing local Initiationof reaction which may ultimately ignite the bulk material lead-
ing to explosion.

Theoretical studies of hot-spot initiation that are related to the adiabatic
2 3 4

compression of a bubble have been carried out by Zinn, Enig- and Gill. These

are computations of ignition delay time which are applicable to a bubble with a sta-

tionary radius and with no mass transfer at the bubble wall. In the present compu-

tations, however, we are interested in the temperature rise and the onset of reaction

or ignition in a collapsing vapcr bubble. We include here the effects of both heat
and mass transfer (vaporization) at the bubble wall, and formulate the problem in
Lagrangian coordinates that move with the bubble wall during collapse. It is assumed
that both the vapor and liquid are nonviscous and, prior to coll!'pse, they have the
same temperature T .0 The interior of the vapor bubble is assumed to be uniform,
an assumption that is Justified provided that the thermal diffusivity of the vapor is

much greater than that of the liquid and that the speed of the bubble wall motion
is much less than the sound speed in the vapor. The first condition is certainly
true for most substances for, although the thermal conductivity of the liquid is a-
bout ten times greater than that of the vapor, the thermal diffusivity of the vapor is
still much greater than that of the liquid. The second condition has been discussed

by Hickling 5 in connection with the collapse of a bubble of inert gas in a liquid.
Hfickling found that the sound speed in the gas was indeed much higher thian the
velocity of the bubble wall for initial bubble radii of R = 10- to 10. 3 cm. and
overpressures of about 4 atm. Under such conditions, the pressure In the vapor
bubble remains approximately uniform because the effects of disturbances at the

wall will have time to be propagated throughout the bubble interior. It is clear
that during the early stages of collapse the assumption of uniform bubble interior
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will certainly be valid in the present calculation. Further, to keep the problem

tractable, a spherical bubble will be assumed even though shock compression In
general produces asymmetric collapse and, in addition, It s known that spherical

bubbles are generally unstable during the latter stages of collapse.

The formulation of the equations to be solved is given in the following
section, followed by a discussion of the numerical methods used to solve the

equations. TV,,- results of several example solutions are then discussed.
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Formulation of the Problem

A very general formulation of the equations governing the motion of a
bubble in a liquid was given by Hsieh, 6 as well as simplified equations for a
spherical bubble with a uniform interior. With the above assumptions and the ad-

ditional assumptions that:

(1) No body force is present,

(2) There is no translational motion of the bubble relative to the liquid;
(3) Viscosity coefficients are zero throughout;

.(4) The liquid is incompressible;
(5) The equation for the temperature in the liquid T, (r, t) can be written as

+~ r + rTY (1)

where r is the radial coordinate from the bubble center and is the thermal dif-

fusivity of the liquid, which will be assumed constant. Since the liquid is treated

as incompressible, and;,the density of the vapor p is generally much less than that
of theliquid, from the continuity requirement the liquid velocity may be directly
related to the bubble radius R(t) as follows:

= - .(2)

That is, the contribution of mass transfer (vaporization) at the bubble surface to R
is neglected. Note that the assumption of uniform bubble interior requires that the

quantities inside the bubble Pv' Tv' Pv are functions of time only. The initial con-
dition will be that at~t=-O a bubble of radius R is at rest, with the vapor inside at
initial density and pressure of pvo, respectively. The assumption of uniform

initial temperature T0 for the system requires that

Tv (0) = T,(r,0) = T0  (3)

Further, the boundary condition at the bubble wall requires that

Tv(t)= Tj(0,t) (4)
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and

LT -0 ,t) = Ld \3 P 3 dt + v

(4 QZ (ex [_ EAT - exp E/T]

when L is the latent heat per unit mass, Cv is the specific heat at constant volume

of the vapor, and X is the thermal conductivity of the liquid. The quantities XIt

L, and Cv are assumed constant, as are Q, Z, and E which denote, respectively,

the specific heat of reaction, the frequency factor, and the activation energy. The

last term in Eq. (5) is the heat release In the bubble due to gas phase reaction which

is generally negligible until TV reaches the order of EA.

Since the '(uniform) temperature in the vapor bubble is determined by the

temperature of the liquid at the bubble wall, it tollows that the (uniform) pressure

in the bubble Pv is given by the vapor pressure of the liquid at the wall or bubble

temperature. We will therefore make the additional assumption that the vapor pres-

sure is the equilibrium vapor pressure at the bubble wall and that the bubble con-

tains pure vapor. Thus, the possibility that absorbed gas in tho liquid i.ay con-

tribute to the interior pressure of the bubble is excluded, and the results will be

applicable to a pure liquid or to cases in wh'ich the partial pressure of absorbed

gases is negligible in comparison with the vapor pressure. The equilibrium vapor

pressure, requirement is certainly valid in the early stages of collapse until the

rate of change of the pressure in the bubble becomes comparable to the kinetic

rate of vaporization. To enable us to treat the problem analytically, we will relate

the vapor pressure of the liquid, Ind hence the pressure in the bubble, to the

temperature at the bubble surface by use of the Calsuis-Clapeyron equation

P P exIL (1_T (6)

where 9 is the ideal gas constant and P0 is the vapor pressure at the initial temp-

erature To  Further, the thermodynamic quantities in the vapor phase will be re-

lated by the ideal gas equation of state

Pv =RPT7)

A-6



The additional equation required to complete the formulation of the
problem is the differential equation for the motion of the bubble wall2 6

RR 3 + ((R2  
- ___2 gt>o, (8)

where P,, assumed constant, is the initial pressure in the bulk liquid and corres-

ponds to the pressure at large distance from the bubble during collapse. The in-

itial conditions for Eq. (8) are taken as

R(O) R0

and (9)

R(O) = 0

Equations (1), (2), (6), (7), and (8) now form a set for the dependent

variables V,(r,t), T,(r,t), Pv(t), and pv(t), subject to the conditions of (3), (4),

(5), and, (9)L.

Introduce the dimensionless variables

0

t = 'rc
R R(t)/R o  40)

0'T -

,,
v To

T, -To
o o

and the parameters

= L/AT o

't -(Pil/W. 1/2
o_ lo a (11)

r -h oA
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where Tc Is the characteristic time for bubble collapseTh Is the characteristic

time for heat transfer to the bubble wall, and Tr is the dimensionless frequency

factor for the reaction term in Eq. (5).

Equation (I) can now be written as

7 I1.\ 4/3-£-= L + A T (12)

and the conditions (3), (4), and (5) become respectively,

9v(0) = (x,o) = o, x o (13)

v(t) =9(0) , t 0 (14)

and

(0,t) = y1) "-41 PJ exp
Ix I+1

d 7 + 1)+ i i d [~ j - + ~+

R 1( .chfexp -E-exp (15)

where yis the ratio at specific heats of the vaporphase and pvo is the initial den-

sity in the vapor phase.

The bubble equation (8) can be written as

(4)?_ + 2 V (16)

with the Initial conditions

R(0) = 1 (17)

and ^
dR (0)= 0 . (18)
dt
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Eauations To Be Numerically Integrated

The nondimensional heat conduction equation (12) in the liquid may be

written as

T + x)'L/3 +3x) 2P 4j.+ 4 (19)

Two boundary conditions, an initial condition, and an equation for the bubble
radius must be given to complete the specification of the problem. Far away from

the bubble surface, the liquid temperature is assumed to be constant, hence,

O(x -) = 0 (20)

At the bubble surface the energy balance (15) can be written,

121 P1 dR

A t d R1 r 2
.=0-d~ 2- + 1

Ao1 1 1)

- R I QQZr E) ~EI

Where the pressure ratio PI/Po is giveri by

SU(22),

and where the subscript 1 refers to conditions at the bubble wall, The initial

condition for equation (19) is

e6'= 0) 0 0 (23)

The equation for the motion of the bubble wall Ua

^d R 3 dR - A
R- + 2 7)' +P24

A-L-| .,..
dT Rd



where,

0) 1 LR. 0). (25)
dt

Transformed Equations

The temperature gradient is greatest at the bubble surface and decays
rapidly with distance into the liquid. For this reason it is desirable to transform
to a coordinate system in which constant increments in the transformed plane
correspond to very small increments near the surface and ever larger ones as the

distance from the surface increases. Also, the boundary condition (20) need not

be applied atx = , since during the very rapid bubble collapse, the heat trans-
ferred from the-bubble interior can only propagate a short distance into the liquid.

There are nu.-.4possible coordinate transformations possessing the desired char-

acteristics, the one-selected for use in the current analysis is--given by,

S= In 1 + --E- (ea -)

a [ Ax0 '~ '
or, (26)

AX [ 1X =  eZ

e

This transformation maps the region

X= 0 xmax
into (27)

Z=-0 1

where,

xax o (a (ea/Az- 1) (28)
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The step size in the transformed pllane, AZ, is constant. Irf the physical plane

the first mesh point Is a distance Ax from the bubble surface. The Ax intervals
~then grow in an exponential manner as one proceeds away from the surface. The

derivatives of the transformation are also required.

Let: a X = o a (29)
,- (ea -1

then,

dZ ZO =eaO (30)

d Z = o= - z"2 (31)

The following relations can then be used to transform the heat conduction equa-

tion (19).

=Zg

(32)

The transformed equation becomes,

_e = (1 + 3x) + 3x) Z,, + 4z,1 + (R, (33

The transformed boundary conditions are:

e= Oat Z =1 (34)

= 1 TR=0 (35)

The bubble equations (24) and (25) are not affected by the transformation.
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Finite Difference Solution

Equation (33) subject to the boundary conditions (34) and (35). and the

initial condition (23),is solved using the Crank-Nicolson implicit finite difference

scheme. A network of mesh points is created as shown in Figure 1.

t

n- 1
n17 - Known Point

0 Unknown Point

X Equation Evaluated

n+1

m m+l

Figure 1. Finite Difference Mesh

With the Crank-Nicholson method the derivatives and coefficients in the differential

equation are evaluated, at the (midpoint m+1/2, n+1/2. The resulting solutions

are accurate to second order. For nonlinear problems the difference equations

are normally linearized, enabling a solution to be achieved by solving a coupleu

set of linear, rather than nonlinear, algebraic equations. In such cases, one

iterait!on must be performed to regain second order accuracy. The following repre-

~ s/:ntations of the derivatives are used:

e em,1/2 F(m n+l - ,h-1)  (6m+1,n+ l - 8m+l,n - ) 1
57 122 Mr -  + 2AZ (36)

Se1/2 [(e m +l- 26m n+ 8mn-l) +

(37)

(em+1, n+1- 2 0m+l ,n+ 8m+l n-1)

68 .m+l,n 6m,n (38)

at
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After replacing all of the derivatives in equation (33) by their central difference
analogs, (36) to (38), the following set of difference equations Is obtained,

A6 +B+ =D
A n em+l,n-I B m+l,n Cn 0m+ljn+1 n

(39)
n = 2,3, ... N-1 I = surface

N = far-boundary

where
A n  (bn - e n )  B n 1+2e

)n n (40)
Cn= (bn + en )  Dn= % n+bne I +e nOWm,n -m, n

eZ mn 9m,n+1 - am,n_1

(41)

=6 - 26 +6zz m,n m,n+l m,n mn-1

and, rc A I + 3x n)/3r
3av (lav + 3x) Z +4Z1bn=Zitrn 4AZ a n)n n]

+3)l/3 (42)
a.(11v +3n) (1/3  +x)

en =A t Tn 2A:7 (1av + 3xn) Z 2
nn

Once the boundary conditions have been applied, (39) yields a set of N-2, tridia-
gonal, linear algebraic equations, which may be efficiently solved using a simple

Gaussian elimination algorithm. 1b reduce equations (39) to tridiagonal form the
boundary conditions at Z=O and Z= must be used to evaluatethe terms

A2 em+l, 1 and CNl 0m+l,N

The far boundary condition (34) given 0 m+l,N=0 . The surface boundary condition
is nonlinear and may be treated hi numerous ways. The method currently being
used iteratively selects Values for 8m+6 , 1 until the derivative at the surface given
by (35) is equal to the calculated derivative, to within a specified tolerance. The
calculated surface derivative is evaluated using a four-point formula
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(-lielm+l,1 + 188m+1,2.- 90 m+l,3 + 20m+l, 4)  (44)
6AZ

The method of solution, as given, assumes that the instantaneous bubble radius

is known.. In reality, however, the bubble radius is a function of pressure, and,

hence, by(22), a function of surface temperature. In order-t6 avoid a simultaneous,

iterative, solution of the-heat conduction equation and the bubble equation (24),the

calculation of the bubble radius is done in an uncoupled manner. This procedure

for uncoupling the bubble radius calculation appears to work satisfactorily, and

is described below.

The second order bubble differential eauation (24)is rewritten as a set of

two first order equations,

0 P^dR . M P1
R-- + l' +  -( - (45)

2 R

A=d (46)
dt

a simple Euler integration of (45) and (46) Is then carried out.

A = (47)

t+ ~tt t t 2 ] (8

t t

When calculated in this manner, the bubble radius and velocity at 't+At depend only

on. previously known values at time = t. The bubble parameters given by (47) and

(48) are then used in evaluating the term Rav in (42), and the surface heat transfer

rate (21).
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Table 1. Input Values for Calculations

1= ,, .0. cm

T = 3000K

pt = 1. 13 gm/cm3

10 7 , 109 dynes/cm2

c .45 cal/gmK = 1.9 x 107 erg/gm°K

N 135 cal/gm = 5.65 x 10g erg/gm

M =61 g/g-mole

=s .0062 gm/cm sec (poise)

= 2.15 x 10' erg/cm seceK

E = 2.25 x 1012 erg/mole, or 1.125 x 1012 erg/mole

- 3.69 x 10 11 erg/gm, or 1.845 x 101 erg/gm

Z = 3.98 x 1014 sec- 1

Q = 4.6 x 1010 erg/gm, or 0.0

y = 1.2

P =8.317 x 107 ergs/g-mole°C
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Example Calculations and Results

The equations tor the collapsing spherical vapor bubble were numerically

integrated for two values of initial bubble radius and two overpressures, using the

values of the parameter shown in Table 1. Test cases were integrated for an adiaba-

tically collapsing bubble and were compared to other investigator's results to pro-

vide an Initial check of the integration technique. To serve as a basis for comparison,

in each case the collapse of a vapor bubble was computed with no heat release in

the vapor phase and shown as the Q=Ocurve in Figures 1 through 4. The curves

of pressure and temperature histories in the bubbles during collapse are plotted as

functions of the bubble radius which varies in time vcry nearly like the radius of

a collapsing adiabatic bubble. As shown in Figures I and 2, the temperature (and

pressure) in the bubble during collapse follow the non-reacting case until a critical

temperature is reached where a rapid increase in temperature(pressure)or ignition

takes place. Figure 3 shows the effect of different overpressures; the rate of temp-

erature increase at the higher overpressure is greater because less heat is lost to

the liquid during the more rapid collapse. Ignition at both values of overpressure,

as would be expected, occurs at about the same temperature. The effects of chang-

ing initial bubble radius is shown in Figure 4. The larger bubble ignites at an

earlier stage of collapse, probably because there is a lower rate of heat transfer

per uAit mass of vapor In-the larger bubble due to the smaller surface to volume ratio

of the larger bubble. Thus, in general, larger bubbles and higher overpressure lead

to earlier ignition (in terms of bubble radius).

Once bubble ignition occurs, the integration of the governing equations

is terminated because the properties change too rapidly for the program to handle.

In interpreting these results, it should be realized that several of the assumptions

made in deriving the governing equations are not valid during the latter stages of

the bubble collapse. For example, as the bubble wall reaches a very high velocity,

the assumptions of an incompressible liquid phase and-uniform bubble interior are

not valid. Also, the assumptions of equilibrium vaporization and reaction kinetics

are no longer appropriate,for high rates of change of the bubble properties. These

results should, therefore,, be viewed as a qualitative indication of the affects noted

above.
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The high pressures generated by the ignition process may cause a reversal
of the bubble collapse and a re-expansion of the bubble. The question then arises

as to whether the bubble expansion would extinguish the reaction or whether the
reaction would continue to drive the bubble past its original size. If the latter
occured, this could be taken as a criterion for the ignition of a bulk-cavitated

liquid containing many bubbles.

The solution of the rebounding bubble., which requires that liquid com-
pressibility and finite rate kinetics be included in the model may, therefore, lead to
an ignition criterion for LVD and other hot-spot ignition phenomena.

A1
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Figure Captions

Figure 1. Collapse of vapor bubble with overpressure of 10 7 dynes/cm2 and in-
tial radius of .0,1 and showing effects of different activation energies
compared to bubble collapse with no heat release or reaction (Q=O).
(a) Temperature at the bubble wall vs. bubble radius
(b). Pressure in the bubble vs. bubble radius

Figure 2. 'Same calculation as in Figure 1 but with a higher overpressure, 109

dynes/cm2 .
(a) Temperature at the bubble wall vs. bubble radius
(b). Pressure in the bubble vs. bubble radius.

Figure 3. (a) Bubble wall temperature and
(b) pressure in the bubble during collapse compared for the two different

overpressureso

Figure 4. (a) Bubble wall temperature and
(b) pressure in the bubble during collapse compared for two different

initial radii.
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Figure 2b, Pressure In The Bubble vs. Bubble Radius.
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