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An analysis of unsteady trailing-edge stall of a two-dimensional airfoil 
was carried out, the objectives being to develop tools for analysis of the 
general dymmic stall problem and to gain further understanding of the 
underlying mechanisms of the unsteady stall process. The problem 
was first íormukited to take direct account of the interactions of the 
viscous and inviecid flows, but an acceptable matching of the potential- 
flow and viscous-flow solutions could not be obtained. A different approach 
was then taken, whereby the effects of the viscous flow were introduced 
through imposition of a bound/ ry condition on pressure along a surface in 
the separated flow region./ A satisfactory solution was obtained for steady 
separated flow, but numerical difficulties prevented a solution in the un¬ 
steady case. While it would appear possible to obtain a solution to the 
general nonlinear problem by further development of the second approach, 
it is recommsnded, instead, that d linearised formulation be systematically 
refined to account for nonlinear effects. 
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1.0 INTRODUCTION 

Helicopter operation at high forward speed requires that the retreating 
blade of the rotor achieve a high lift coefficient. As a result, under con¬ 
ditions of maximum performance, the flow periodically separates from 
and reattaches to portions of each blade, giving rise to severe control 
loads, increased vibration levels and, at times, a dangerously large re¬ 
sponse in ,he fundamental blade torsional mode (Ref. 1). An understanding 
of the mechanisms of stall onset in unsteady flow and the effect of blade 
section parameters and flight conditions on dynamic stall and the associated 
loading would clearly benefit future designs. The helicopter stall problem 
provided the primary motivation for the study reported here. 

Dynamic stall is involved in continuing problems in other areas as well. 
Notable examples are rotating stall in axial-flow compressors (Ref. 2) 
and stall flutter of propellers and compressor blading (Ref. 3). 

Early experimental studies of unsteady stall, such as those reported in 
References 4 and 5, were concerned primarily with the stall flutter problem. 
From this work, the stall flutter mechanism of negative damping, or 
moment variation to extract energy from the flow, was deduced. More 
recently extensive tests on two-dimensional airfoils sinusoidally pitching 
or plunging through stall were carried out (Ref. 6) which make evident 
the complexity of the unsteady stall process. Both lift overshoot, or lift 
in excess of the maximum static value, and unstable moment variation 
were found to be strong functions of frequency, amplitude, mean incidence 

and Mach number. 

Other tests, of more limited scope but employing specialized instrumentation 
and flow visualization techniques, have revealed a number of important 
aspects of the problem. The formation of a leading-edge bubble, normally 
associated with airfoils subject to leading-edge stall, was detected in 
te.’ts on model rotor blades (Refs. 7 and 8). Details of the stall onset 
process during leading edge stall, wherein a region of highly rotational 
flow forms at the leading edge and grows progressively from the leading 
to the trailing edge, was described in Reference 1 and was later observed 
in tests on a model rotor blade (Ref. 9) and on a two-dimensional airfoil 

(Ref. 10). 

Analytical studies of various aspects of the stall problem as it relates to 
helicopter rotor blades have been carried out. Patay (Ref. 11) analyzed 
the unsteady boundary layer on a pitching Joukowski airfoil, and concluded 
that the flow in the boundary layer is essentially quasi-steady for dimension¬ 
less pitch rate ¿ b/U as large as . 05, where b is semichord and U is 



's 

free stream speed. Analyses of the unsteady laminar boundary layer on a 
rotating blade (Ref. 8) similarly showed that the chordwise pressure 
gradient dominates over both unsteady and rotational effects. The un¬ 
steady load on an oscillating stalled airfoil, for prescribed separation 
point location, was derived by Woods (Ref. 12), using classical unsteady 
thin-airfoil theory as a basis. 

A number of analyses of unsteady stall of two-dimensional airfoils .md 
rotors have been performed with viscous effects taken into account 
empirically. Ham (Ref. 13) analyzed a two-dimensional model consisting 
of discrete vortices shed from both the leading and trailing odges. 
Ericsson and Reding (Ref. 14) employed a quasi-steady approach which 
uses measured static airfoil characteristics. Carta and Niebanck (Ref, 15) 
utilized data from tests of two-dimensional oscillating airfoils and energy 
considerations to analyze stall flutter of a rotor blade. Rotor control 
loads due to stall are predicted by Tarzanin (Ref. 16) using an empirical 
model, again derived frem data taken on oscillating airfoils, from which 
instantaneous loading during stall is computed. These methods generally 
yield good correlations with test data. 

In the analyses cf dynamic stall reported in Refs. 17 .nd 18, viscous- 
inviscid interactions are taken into account analytics ly, in order to gain 
better insight into the underlying mechanisms of the unsteady stall process. 
A number of approximations were employed in the representations of the 
individual flow elements, in order to make the problem tractable, which 
caused rather large discrepancies between the theory and test results. 
Nonetheless, quite good qualitative agreement with measured loading was 
obtained, with both lift overshoot and accompanying large nose-down moment 
in evidence in the computed results for transient pitching through stall. 

The study reported Ik re was undertaken as a complement to those of Refs. 
17 and 18. A specific type of unsteady st^ll, namely trailing-edge stall, 
which has clearly defined flow elements and stall mechanisms, was 
analyzed in detail. The objectives were to obtain a measure of what 
approximations can reasonably be employed in analyzing the more general 
problem, by providing a rigorous solution for comparison, and, hopefully, 
to gain further knowledge of the unsteady stall process. 

Unfortunately, the primary objectives of the study were not realized. 
Viscous and inviscid solutions could not be matched to an acceptable degree, 
using either of two different approaches to the problem. Some positive 
results were obtained. The method used to compute the unsteady potential 
flow, v/hich is based primarily on the method developed by Giesing (Ref. 19) 
but with a continuous wake representation, proved to be both readily 
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implemented and accurate. Also, a quite general formulation of the 
unsteady turbulent mixing and reattachment processes has been 

generated. 

The specific problem analyzed is delineated in the next section. The 
formulations of the individual flow elements are then presented, and 
the two different methods used to account for viscous-inviscid interaction 
are outlined. The results obtained and the probable causes for the failure 
to obtain solutions in the general casa are discussed in the last section. 
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2. 0 STALL MECHANISMS -- PROBLEM DEFINITION 

The specific system analyzed consists of an airfoil of infinite span subjected 
to an incompressible, uniform free stream. The airfoil incidence relative 
to the free stream is varying due to pitching motion about some point along 
the chord, translational or plunging motion, and changes in the magnitude 
of the free stream. When the flow is attached, a thin boundary layer of 
adhering fluid surrounds the airfoil, outside of which is a continuous, 
irrotational flow. Because the load on the airfoil is changing with time, 
implying a rate of change of circulation about the airfoil, a thin vortical 
wake is shed from the trailing edge (Point T in Figure la), to conserve 
total circulation. This distribution of vorticity is convected downstream 
at nearly the free-stream velocity. 

As the effective incidence increases, an adverse pressure gradient builds 
up until, by one of several mechanisms to be discussed subsequently, the 
flow separates from some point S on the airfoil surface, leaving a zone 
of more or less stagnant fluid attached to the airfoil, as indicated in 
Figure lb. It is assumed, based on what occurs in steady flow, that 
the trapped-air region consists of a zone which is at nearly a constant 
pressure, somewhat below free-stream static pressure, out to point R, 
downstream of which is a region of mixing with the free stream and pres¬ 
sure recovery. The load on the airfoil is again changing with time, so a 
sheet of vortical fluid is convected from the trailing f ige. Since the point 
S is also a terminus of the wake, vorticity is shed l.-cm that point as well 
when the airfoil is stalled. 

The mechanism of stall onset is extremely complex and depends on many 
parameters, including Reynolds number, leading-edge radius, airfoil 
thickness, camber, sweep, Mach number, and the pressures imposed by 
unsteady motion. It is generally accepted, though, that a given airfoil 
stalls in one of three ways, as first discussed in Ref. ZO. The three 
types of stall are termed, respectively, trailing-edge stall, leading-edge 
stall and thin-airfoil stall. 

Trailing-edge stall is the most easily identified of the three types, being 
due to the separation of the turbulent boundary layer near the trailing edge. 
Increasing incidence moves the point of separation progressively forward 
along the airfoil, resulting in a gradual decrease in lift and increase in 
drag, as indicated in Figure 2a. This type of stall generally occurs on 
relatively thick airfoils at high Reynolds numbers. 
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b FLOW WHEN AIRFOIL IS STALLED 
VOPTICAL WAKE 

Figure 1 FLOW ELEMENTS DURING DYNAMIC STALL 
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a TRAIUNG-rOGE STALL 

b LEADING-EDGE STA'-L 

c THIN-AIRFOIL STALL 

Figure 2 THE THREE TYPES OF AIRFOIL STALL 

-6- 



Leading-edge stall is related to the formation of a small separation bubble 
near the leading edge. At a fairly low incidence, laminar separation occurs 
near the point of minimum pressure at the leading edge. The flow reattaches 
a short distance dov/nstream of the separation point due to transition from 
laminar to turbulent flow in the free shear layer wUh subsequent turbulent 
mixing and reattachment. As angle of attack increases, the bubble is 
seen to move closer to the leading edge, grow slightly shorter and some¬ 
what thicker. The bubble has almost no effect on integrated loads, since 
it is never more than a few percent of chord in length. At some angle of 
attack, the bubble bursts and the flow separates from the entire upper 
surface of the airfoil, resulting in a sudden loss in lift, as indicated in 
Figure 2b. The precise reason for the bursting of the laminar bubble has 
been the subject of considerable controversy. There have been correlations 
attempted with bubble length and with boundary-layer momentum thickness 
at the point of laminar separation, with little success. There is a strong 
indication, though, that there is some maximum amount of pressure 
recovery which can occur in the turbulent mixing zone and still allow re- 
attachment, and at some incidence the required recovery exceeds this 
maximum, causing sudden separation. A thorough and well-ordered dis¬ 
cussion of the various theories and evidence related to leading-edge stall 
is given in Ref. 21. 

Thin-airfoil stall is characterized by the appearance of a laminar bubble 
springing from the leading edge at a relatively low incidence. Unlike the 
bubble formed prior to leading-edge stall, its point of separation remains 
fixed with increasing incidence while the bubble grows progressively 
larger. The processes of bubble formation and reattachment are not well 
understood (Reí. 21). The resulting lift curve is as sketched in Figure 2c. 

Clearly, a rigorous modelling of the flow processes involved in airfoil 
stall, even under steady conditions, would be extremely difficult. The 
problem is compounded in the unsteady case by the present uncertainties 
concerning the mechanisms of stall onset and subsequent development of 
the trapped-air region. However, if consideration is limited to trailing- 
edge stall, the primary flow elements and the stall onset process can be 
clearly defined. In light of the previously stated objectives, then, this 
study was concerned with the particular case of trailing-edge stall, and 
hence with the interactions of the boundary layer, the potential flow, and 
the turbulent mixing and reattachment regions, with the progression of 
stall determined by the location of the separation point of the turbulent 
boundary layer. 



3.0 FLOW ELEMENT REPRESENTATIONS 

3. I POTENTIAL FLOW 

While two different approaches to the interaction problem were attempted, 
the same basic potential-flow model was used for both, the formulations 
of the boundary conditions being basically of the same form, i. e. , a flow 
direction requirement on the wetted surface and a flow magnitude require¬ 
ment in the region of separated flow. The problem is formulated in terms 
of coordinates (x, y) fixed to the airfoil, which has unit chord length, as 
shown in Figure 3. The fluid velocity q, relative to an inertial frame, is 
taken to be the gradient of a potential 0. If the airfoil has a translational 
velocity V and angular velocity Co_, the fluid velocity relative to the airfoil 
q-r, at a point located by vector £, is given by 

= S7d - (V + GJ x r) 

The boundary condition on the wetted surface is 

ax * 2. = 0 

n being the unit vector normal to the surface, and in the separated-flow 
region, 

ar * L = ^v 

where qv is a function obtained from the viscous-flow analysis and t_ is 
the unit vector tangent to the surface. 

The pressure coefficient Cp is computed from the following relation, once 
a solution has been obtained (Ref. 19): 

cp = - |^q2 + 2 - 2 (V_ + CJ x r) • 1 
U0 

U0 being the reference speed. 

The potential has been formulated in terms of finite elements, using an 
approach similar to that of Ref. 19. It would not be practical, for this 
problem, to divide the potential into separate circulatory and noncirdilatory 
parts, so a somewhat more direct procedure was used. The surface on 
which the boundary conditions are imposed is divided into finite rectilinear 
elements, Ng- in number, with the source strength assumed to be constant 
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Figure 3 COORDINATE SYSTEM FOR POTENTIAL FLOW 



(at a given instant) over each element. Bound vorticity of prescribed 
analytical form is distributed on the x-axis between the leading and 
trailing edges. The shed vortex wake is assumed to consist of rectilinear 
elements with --ortex strength varying linearly between end points. Wake 
displacement is determined by computing the flow at element end points. 
The bound vorticity strength Yb is of the following form: 

ïb = 6 x(! - x) T + x(3x - 2) 

+ x(l - x)(l - 2x) tfSi + 16 x(l - x) ¡Jx (1 - x) - l]Xs2 

It can be verified that, with Xb in this form, 

^b (x. t) dx = f’(t) 
J0 

where P (t) is the instantaneous circulation about the airfoil. It should 
be noted, too, that Vb been constructed such that 

Vb (1. t) = Vi (t) 

where V j is the wake strength at the trailing edge, insuring continuity 
of the vortex strength at that point. The terms with coefficients ^81 
and $ s2 are included only when the airfoil is stalled, being needed to 
impose conditions of continuity at the separation point. The two added 
conditions are that the fluid velocity at the first element downstream of 
the separation point be tangent to the element and that it be equal in 
magnitude to that at the adjacent element upstream of the separation 
point. The vortex strength at the trailing edge, being proportional to the 
time rate of change of p , is expressed by the following finite difference 
approximation: 

(t| 1 ' ¡¡“TTT P5 no - * r <t - ao +. s r « - z aoJ (1) 

where qte is the magnitude of at the trailing edge, obtained by linear 
extrapolation in time. 



A solution is obtained at a given instant by imposing the appropriate 
boundary condition at the midpoint of each of the surface elements, 
together with flow continuity conditions and solving the resulting set 
of linear algebraic equations. The specific procedure derives from the 
expressions for the components u and v of ^ at the midpoint of the i 

element (coordinates x^, yj) which are: 

r No- 

Nw 

where V* and VT are the componente of V_ and xp is the pitch-axis location. 
The various functions appearing in Eqs. (2) and (3) are defined in the 
Appendix. The unknowns appearing explicitly in Eqs. (2) and (3) are 
the source strength. Cj, the circulation T and the added bound vortex 
contribution. ^ andJ * From Eq. (1) it is seen that »! depend, 
on P (t). The term. uwik and vwik are the contributions of wake 
vortex element k (element 1 i. attached to the trailing edge) to the flow 
at element i; they depend linearly on the wake strength at the end points 
of that element. and '¿k+i. Thu., uwil and vw^ contain term, mu - 

plying "tf 1» and hence 'T' (t). 
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In the general case of separated flow, there are Nj- + 3 unknowns. 
Imposition of '.he boundary conditions at the midpoints of the surface 
elements yifids No* linear algebraic equations. The Kut*a condition 
and the two continuity conditions at the separation poirt provide the 
other three relations needed. In the formulation of those equations, 
all the various terms multiplying P (t) are combined into a single matrix 
element. The equations are solved by successive elimination of unknowns. 

In the course of the study, it was thought that the source of the difficulty 
in obtaining a match between inviscid and viscous flow solutions might 
be the formulation of the Kutta condition, so two different forms were 
used. One of these required that the magnitude of the fluid velocity on 
the upper and lower elements at the trailing edge be equal, and the other 
required that v be zero at the point on the x-axis between the midpoints 
of those two elements. Both formulations give satisfactory results for 

attached flow. 

Once a solution is obtained, the pressure coefficient is computed from the 

following relation: 

2 

2 _ 2 _ _ 
- u {x^ yi) - v (xj, yi) 

- 2 i ix., y.) 

where UQ is reference speed and, with second-order differences approximat¬ 

ing time derivatives, 

k=l 
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The functions etc., are defined in the Appendix. Coordinates 
;xk> ÿk) locate the midpoint of the kth wake element. Force and moment 

coefficients are obtained by direct integration of cp. 

3. 2 BOUNDARY LAYER 

The boundary layer analysis concerns the laminar boundary layer extend¬ 
ing from the forward stagnation point on the airfoil over the leading edge, 
and the turbulent boundary layer which forms downstream of the transition 
point or downstream of the leading edge bubble, if laminar separation 

precedes transition. 

Both the laminar and the turbulent boundary layers are analyzed by the 
method of finite differences for unsteady flow. The detailed formulations 
used are given in Ref. 17. The Smith-Cebeci eddy-viscosity model is 
employed to represent turbulent shear. The method uses variable step 
size in both the streamwise and normal directions, the error in each 
finite-difference approximation being of the order of the square of step size. 
The solution at each streamwise step is obtained by iteration, using wall 
shear as the convergence criterion, with nonlinear terms estimated from 
extrapolation formulas during the first iteration. In order to minimize 
computer storage requirements associated with evaluation of time deriva¬ 
tives, provision is made for expanding the mesh in the normal direction, 
keeping the number of mesh points constant, when the boundary layer thick¬ 

ness exceeds a prescribed limit. 

The initial profile for the laminar boundary layer is taken from the Heimenz 
stagnation point solution (Ref, 22). It was assumed, for this study, that 
transition occurs at the point of minimum pressure near the leading edge, 
precluding laminar separation and subsequent formation of a le-din¿ edge 
bubble. The analysis proceeds continuously from the laminar to the turbu¬ 
lent boundary layer by introducing turbulent shear gradually over a small 
but finite distance. The separation point of the turbulent boundary layer 
was taken to be the point of vanishing wall shear even though the two are 
not generally coincident in unsteady flow (Ref. 23). There is some evidence, 
however, as reported in Ref. 18, that this approximation is a reasonable 
one in most circumstances of practical interest. 

3. 3 SEPARATED FLOW REGION 

The analysis cf the separated flow region assumes that the flow has the 
same basic components as ere found in steady separated flows. As indi¬ 
cated in Figure 4, there are two layers of turbulent shear flow, one of 
which originates at the separation point S and the other from the lower 
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surface boundary layer at the trailing edge. Both layers have a mixing 
region, which is at nearly constant pressure in steady flow, and a 
pressure-recovery or compression region, terminated at a common 
stagnation point R. A wake region extends downstream of point R. 

The formulations were developed as a generalization of the ones employed 
in Ref. 17, by including time derivatives in the controlling differential 
equations and solving those equations numerically rather than by approxi¬ 
mate analytical means. As in Ref. 17, it is assumed that the flow has a 
wake-like character, and that the equilibrium wall layer usually present 
in attached turbulent flows can be ignored. Also, the wall shear stress 
is assumed to be negligible compared to the properly normalized rate of 
change of momentum thickness and the streamwise pressure gradient. 

The specific formulations employed are developed as follows. With 
negligible wall shear, the momentum integral and first moment equations 
for the turbulent shear layer can be written in the form 

30 
W 

Sue 
w 

(2 + 
& *, aue 

TT 0 (4) 

2 
3 0* , 3 0* 9ue 1 9<f* 1 3e 0 3Ue 

ue âf + ue 31 + ue &t + u ^ öt 
G 

D (5) 

where ue is the magnitude of the fluid velocity in the external inviscid flow, 
£ is the coordinate in the streamwise direction, and 

in which ^ is the coordinate normal to £ , <i is layer thickness, Uy is 
the magnitude of the fluid velocity and T is the shear stress. 



The assumption that the flow is wake-like leads to the selection of a 
set cf velocity profile parameters which are assumed to be functions 
of a single parameter a, where 

(uv = o) 
a 

Those parameters are denoted H, J, R and Kq, and are defined by 

H = 0/J*. J = 0*M*, 

D 

where € is eddy viscosity and € m the maximum of €. . Expressed 
in terms of these parameters, Eqs. (4) and (5) become 

(7) 

where X = (2 H + 1)/J 

For the mixing and reattachment regions, the functional dependence of the 
profile parameters on a were taken from Ref. 24, which gives the solu¬ 
tion for a laminar, and hence constant-viscosity, shear flow. Specifically, 
these parameters are computed from 
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'V 

H 

k = O 

k 
a 

dJ 
dH 

6 

k = O 

Kq = .05 - . 030769H(a) 

The coefficients of the above polynomials are listed in Table I. 

Similarly, downstream of the recovery point, the laminar wake solution 
of Ref. 25 was used to provide the functiona) dependence of the profile 
parameters. The expressions used are. 

H = . 429 + . 59631 a, J = . 654 + . 97446 a + . 35316 a2, 

dJ/dH = 1.63415 + 1. 18448 a, K0 = .0368, 

R = . 4634 - 1. 2668 a + . 8797 a2 

Equations (6) and (7) are solved for the dependent variables ue and S by 
numerical integration, the key assumption being that the parameter z is 
a universal function of a suitably normalized streamwise coordinate x . 
Different functions and definitions for x are used for the mixing region 
and the pressure recovery and wake regions. 

In the mixing region, x is defined according to 

X - <5 - 

where subscript s denotes the conditions at separation, 
a with x is assumed to be that which results in the case 
With steady flew, Eq. (6) reduces to 

The variation of 
of steady flow. 

KjI^R 

-17- 



TABLE I 

Polynomial Coefficients 

.429 

43501 

74672 

.24826 

74078 

-18.8515 

67. 2597 

-54.1810 

_jk_ 

. 654 

-. 75002 

. 57812 

-9. 0153 

18. 5434 

-10. 1803 

0. 0 

0.0 

dk 

1.51233 

-. 84718 

3. 35038 

-13. 9779 

5. 5206 

30.4187 

0. 0 

0.0 

rk_ 

. 463 

.40126 

2. 58307 

-12. 4697 

72. 4300 

-136.9234 

89. 9296 
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since, for steady flow in the mixing region, due/d5 = 0 and £ * H is a 

constant. Whence 

d = H. (¿L - i) -^i 
dH H' n IT 

and X = Hs 
rH 
\ (Ëi - il (dH/da) 
J dH H 2 — 

da 

H Kft H R 

Evaluation of the above integral provides the universal function applicable 
to the mixing region. The result of that integration is shown graphically 

in Figure 5. 

To obtain the universal function for the pressure recovery and wake regions, 
an exact solution of a supersonic viscous-inviscid interaction was obtained 
numerically, with shear layer parameters suitably transformed in the 
solution to lemove their dependence on Mach number. The results are 
shown in Figure 6, where parameter a and the ratio of o * to a reference 
displacement thickness Oq* are plotted against the ratio of streamwise 
coordinate % to 6q*. In the pressure recovery and wake regions, the 

normalized streamwise coordinate is defined by 

X = (ï - ^ ^)/ 

where subscript b denotes the conditions at the beginning of the pressure 
recovery region. Now, with a^j known, the function plotted in Figure 6 
provides the values of ( § /¿o*)b and (<S*/^0*)b (the lower branch of the 
a-curve applies to the pressure recovery region). Then, for a given value 
of X , a is obtained by computing S/O0*from 

+ (- 
■¡^b 

which in turn prescribes a from the variation of a with > 8*ven 
in Figure 6. Integration proceeds continuously from the pressure recovery 
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region into the wake region, using the upper branch of the a-curve in 
the wake region. The point where a = 0 is the recovery point. 

In the two approaches to the viscous-inviscid interaction problem, the 
formulations of the viscous flow were applied differently. The details 
of their application are discussed in the next section. 
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4. 0 ANALYSIS PROCEDURES 

In the fixât of the two approaches to the problem, a diiect matching of 
inviscid and viscous flow solutions was attempted. Analyses of the 
boundary layer and viscous shear layers provided displacement thickness 
over the airfoil surface and in the separated region, which results were 
used to define a surface enclosing the airfoil and the separated region. 
The potential flow determined by the requirement of no flow through that 
boundary was then obtained, the immediate goal being to match the result¬ 
ing distribution of pressure external to the separated flow region with the 
solution for ue obtained from the shear layer analyses. Location of the 
separation point was to be obtained by an overall iteration, varying a 
free parameter in the viscous flow formulation. 

Assuming that the airfoil motions are initiated such that the flow is 
attached, the first step in the direct matching analysis is to compute a 
potential flow, imposing the appropriate boundary conditions on the airfoil 
surface. The boundary layer is then analyzed to obtain a first estimate of 
the separation point location and the displacement thickness and fluid 
velocity at that point. The upper layer of the separated region is then 
analyzed by selecting, somewhat arbitrarily, a value for a^, which is 
one of the free parameters of the formulation. The integration of Eqs. (6) 
and (7) determines the variations of ue and <S * for the upper layer and 
the location of the recovery point R. Next, the lower layer is analyzed, 
starting from the trailing edge, iteratively varying the initial value of the 
displacement thickness until ue at the recovery point matches the corres¬ 
ponding value of ue for the upper layer. The equivalent surface external 
to the boundary layer and separated region is then defined. This requires 
specification of the location in terms of airfoil coordinates (x, y), of the 
surface ^=0 dividing the upper and lewer shear layers (see Figure 4). 
The following function was used to prescribe the ordinate of that curve, 
in terms of the streamwise distance from the trailing edge, S - !t: 

y = yt 
S- (sinoC - A) c t 

+ A S + --,-- (~) 

where 3=1-^, # is a free parameter, «C is airfoil angle of attack 
and Se is the value of S at the end of the wake region (the wake is arbi¬ 
trarily truncated several displacement thicknesses downstream of R). The 
value of A is assigned to make the slope of the boundary of the lower layer 
continuous at the trailing edge. Note that yt is the difference between the 
initial displacement thickness for the lower layer, determined iteratively 



to match Ug at R, and the displacement thickness of the lower surface 
boundary layer at the trailing edge. Upstream of the trailing edge, the 
surface dividing the two shear layers is taken to be a curve passing 
through the separation point, tangent to the airfoil, and through the 
point y = yt at the trailing edge, matching the slope of the curve downstream 
of the trailing edge. This formulation leaves two free parameters in 
defining the separated region, and ab. The intent was to use one of 
these to match the viscous and inviscid flow solutions and the other to 
obtain convergence of the separation point location. However, as is dis¬ 
cussed in the next section, the variation of ue as computed from the 
viscous flow analysis could not be satisfactorily matched with the potential 
flow solution, so the specific iterative procedures involving and a^, 
were not developed. b 

The other approach taken is an extension to the nonlinear case of the one 
used in Ref. 17 to treat the linearized problem. Specifically, the streamwise 
distribution of pressure as determined by the separated flow analysis is 
imposed as a boundary condition of the potential flow analysis. The pressure 
condition is applied on the surface of the airfoil, from the separation point 
to the trailing edge, and along the surface defined by the shed vortex wake 
downstream of the trailing edge. There is no need, then, for a direct 
matching of both flow direction and magnitude; the primary iteration between 
viscous and inviscid flows is one which locates the separation point. The 
overall procedure is similar to the one described for direct matching, 
except that only the upper shear layer need be analyzed. The variation 

ue obtained from that analysis is applied directly as a boundary condition 
of the potential flow. The main difficulty with this approach in a nonlinear 
formulation is that the boundary condition on pressure (or more specifically 
on the magnitude of the fluid velocity) on the airfoil surface is nonlinear, 
since the direction of the flow is not known a priori in that region. Therefore, 
it is necessary to perform an iteration to match assumed and computed flow 
directions along the airfoil surface between the separation point and the 
t ra.ling edge. This difficulty is not encountered in the linearized problem 
since to first order the pressure perturbation is simply proportional to 
the perturbation to the x-component of fluid velocity. This formulation 
was a definite improvement over the direct matcning procedure, since a 
reasonable potential flow solution could be obtained for steady separated 
flow. However, as is discussed in the next section, results were unsp ':is- 
factory when unsteady effects were included. 



5. 0 DISCUSSION OF RESULTS 

Initial calculations were performed for an unstalled airfoil to verify that 
the potential flow representation functioned properly. Figure 7 shows 
the computed chordwise variation of pressure coefficient on a 9% thickness 
ratio symmetric Joukowski airfoil in steady flow at 8 degrees angle of 
attack. The corresponding theoretical variation of cp did not differ from 
the numerical result sufficiently to distinguish between the two curves 
using the scale of Figure 7. The loading on an NACA 633-OI8 airfoil 
pitching sinusoidally about its quarter-chord point at a reduced frequency 
(frequency times semichord divided by forward speed) of . 1 and a pitch 
implitude of . 1 rad. was also calculated, assuming steady flow for initial 
conditions. The airfoil was represented by 42 source elements. Twenty- 
four time steps were taken per cycle. The variations of lift coefficient 
and pitch angle 8 with time are shown in Figure 8. Note that periodic 
loading variation is established after only about one cycle of oscillation. 
The variation of Cj predicted by unsteady thin airfoil theory is also shown 
in Figure 8 for comparison. The nonlinear effects of thickness are seen 
to increase the lag in the loading with respect to the pitching motion, as 
was found in Ref. 19. 

In the attempts to obtain a solution for separated flow’ by direct matching 
of viscous and inviscid flows, only the steady problem was considered, 
it being necessary to establish the method for that case before attempting 
the more general one. All calculations were performed for an NACA 633-OI8 
airfoil at a cnordal Reynolds number of 5. 8 x 10^. 

The procedure described in Section 4 was in fact evolved from a series of 
different ones formed by successive modifications of an original, consider¬ 
ably more simple procedure. The modifications primarily ccncerned the 
prescription of the location of the surface dividing the upper and lower 
shear layers to obtain a physically realistic boundary of the separated flow 
region. The formulation given in Section 4 did provide a fairly good result 
in that respect. However, neither of the two free parameters ( T and a^), 
when varied over the entire range permitted by mathematical limitations, 
was capable of producing ar. acceptable matching of inviscid and viscous 
flow solutions. One of the better results is shown in Figures 9, 10, and 11, 
where the magnitudes of the fluid velocity are compared and the boundaries 
of the inviscid flow are plotted for = 2 and ab = . 41. The airfoil was 
at an angle of attack of . 25 rad and the separation point was at x = . 75. 
The potential solution is seen to take large excursions in the vicinity of the 
trailing edge, and the potential flow and viscous flow solutions differ by 
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as much as 10% in the pressure recovery and wake regions. While it is 
not possible to definitely affix the blame for the failure of this approach 
without an actual solution available for comparison, it would appear, in 
retrospect, that the basic premise under which the surface enclosing 
the separated region was defined is not valid. While displacement thick¬ 
ness does provide a reasonable measure of the effect of a boundary layer 
on the external flow, the use of that parameter directly, in this problem, 
to account for the lateral extent of a region with a substantial amount of 
reversed flow is definitely open to question. 

As noted in Section 4, a reasonable solution for steady flow was obtained 
by imposing a boundary condition on pressure along the upper surface be¬ 
tween the separation point and the trailing edge and along the streamline 
emanating from the trailing edge. The chordwise pressure distribution 
obtained, for an angle of attack of . 2 rad. , with the separation point at 
X = .85 (no iteration on separation point location was performed) is shown 
in Figure 12. The iteration on flow direction between x = . 85 and x = 1 

converged in five steps. 

When the method was applied to a case of transient pitching through stall, 
the iteration on flow direction diverged. The problem appeared to be 
centered at the trailing edge so the Kutta condition was modified as des¬ 
cribed in Section 4. No improvement in the situation was obtained by that 
change. The number of source elements in the vicinity of the trailing edge 
was then substantially increased. Convergence of the iteration on flow 
direction was then obtained for the separation point located at x = . 85. 
However, on the next iceration, with the separation point at x = . 9, the 
iteration on flow direction again diverged. 

It does appear that a valid solution could eventually be obtained. However, 
a great deal of effort would be required to overcome the severe numerical 
difficulties encountered. On the other hand, imposition of a linearized 
pressure condition was found, in Ref. 18, to give quite reasonable results 
from a qualitative standpoint for both leading edge and trailing edge stall. 
A more tractable means of achieving the original objectives of the study 
would seem, then, to be through systematic refinement of the linearized 
formulation, rather than by a direct attack on the complete nonlinear 
problem. Specifically, it is recommended that second-order terms be 
derived through Taylor series expansions of the potential and the boundary 
conditions, paralleling the approach taken by Lighthill in Ref. 26 for the 

problem of steady attached flow. 



r 

^-569 Figure 12 CHORDWISE PRESSURE DISTRIBUTION OBTAINED WITH 
BOUNDARY CONDITION ON PRESSURE - SEPARATION 

AT X - 0.85 
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APPENDIX 

TJ 

Functions Defining Contributions to 
Flow Components and Potential at Element i 

uij = CP j " qy 8A j 

Vij = qyC«j + 5!t30j 

*ij = (1j ' **ln rB2 + *ln rA2 + 2v ^ 

where, with the coordinates of the end points of element i denoted 

(Xi, Yi) and (x^, yi+i). 

X. 
i 

1. 
J 

s 

2 (xi+l + xi^ ’ " 2 + 

[«Vi - */ + «yj+i - 

= (yj+1 - yjl/ij. '..j = (ltJ+i - xi>'1] 

X = (x. - Xj) c^i j + (y. - Yj) *(}. 

r = (7i- Yj> 'dj - <*i - -j' ‘/»j 

A 2 
X 

A 2 
+ y . 

f A . .2 
(X - lj) 

A 2 
y 

ip = tan -1 
A 

tan 

A 
X 

(- 

A i /rA\ In (-) , 
rB 

A 

= ^ 
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u Pi = - 6 Yi + 3 Yi (1 - 2 xi) fL 

+ 6 îjq (1 - X.) + ÿ^2j fA 

VPÍ 
= 3 - 6 X. + 3 (1 - Xj) + yi2j fL - 6 Yi (1 - 2 Xj) fA 

= 2 yi (1 - 2 xj + Yi |_3 xi (1 - xi) + Yi2J fL 

+ r^ (3 - 2 X.) - 3 7J2 (1 - 2 jqH fA 

where 

fL = In 
d -xi)2 + yi2 

i ^i2 + Yi2 

fA = tan"1 (—) - tan"1 (** " ■*■) 
7: n 

while 

= 3 y. + yi (3 X. - 1) fL + [x. (3 XJ - 2) - 3 yi2j fA 

v Vi 

0 Vi 

= 3 x. - i + (3 5¾ - 2) - 3 y.2] fL - 2 Yi (3 Xi - 1) fA 

_ n _21 
IL (4 x. - 1)+ Lsr. (3 X. - 2) - yi j fL 
2 2 

r 7 _ _2 
+ j Yi¿ Ü - 3 x.) - Xi (1 - Xj) 
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T* 

u ÏSj = 2 Yi (2 Xi - !) + ü - 2 i xi (! - Xi) + Yi2 i1 

1 _ 
ï n 6 34 (1 - ^) - 1 + 2 yj2 ! fL 

—2,. _ r - - 2 
v *81 = 6 ' 2 ^ + 2 (xi - Yi ) + Yi L_6 xi - xi) - 1 + 2 Yi J fA 

+ 1(1 - 2 X.) ijc. (1 - xi) + 3 Yj2 

= ilFi 
2 L3 

3 X. (1 - X.) - Yi2 

+ Í ïii_ (1 - x^2 + y.2 [3 X. (1 - X.) - I (1 - y.2) L 

U 

+ (1 - 2 Xi)^!2 + Xi (1 - Xj) j f 

= 4 yi [l5 G2 - 20 y.2 - 13/3-] 

+ Bi fA - S2 fL 

V Ï8 = 10 G3 - 120 G ÿj2 - 26 G/3 
2* 

+ 2 82 fA + 2 S1 fL 

0 ^82 = yi G (8 G2 - 20/à - 32 ÿj2) 

+ 2 [^(1 - G2 + 4 yi2)2 + 16 ÿ.2 (1 - 2 zj2 + 4 ÿ.2)^] fÀ 

(1 - G¿ + 4 ÿ/) - 4 G2 (1 - G4 + 8 ÿ i2Ü 
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IMMiiNNniMMi 

where 

G = 2 X. - 1 

a1 = 4 ÿ. G (3 - 5 G2 + 20 ÿ^2) 

s2 = (1 - G2 + 4 ÿ.2) (1 - 5 G2 + 20 ÿj2) - 80 ÿj2 G2 

If wake element k has end points (x^, y^) and an<^ 
strengths and Yk+i* respectively, at those end points, then: 

Svijç = qxw c/3 k ‘ qyw 8 ß k 

vwik = qyw C a k + qxw Bfi k 

where 

qxw = \ <4+1 ‘ *k> L + ^k + < «‘k+l • ^k> £ V 

^k+1 "^k + 2 ll^k+< ^k+1 " ^k^ 'Yw 

- 7^“ < ^k+1 ~ Vv) V 
Ik 

in which L = In (- 
«P rA 

while other quantities are as defined previously. 
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