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ABSTRACT

Motion of a particle in a turbulent fluid is examined.
A relaxation process is introduced to incorporate the differ-

ence in particle aad the fluid diffusivities. The effect of

the reduction in the diffusivity ratio, changes in temperature
and density of the fluid,and the presence of various size

particles are examined. It is shown that each of these

factors may limit the applicability of the LDV to low Mach

number and low frequency turbulence.
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I. INTRODUCTION

With the development of LDV, the flow of dilute gas-solid
suspension has become of considerable imﬁortance. A simple
situation of such a flcw is the motion of a single particle
in the turbulent stream. The most important question which
arises in such a situation is whether the solid particle
follows the streamlines or not. Since LDV measures the shift
from a single scatterer it is of importance to evaluate as to
how far the results of velocity as well as that of frequency
spectra of cracer particles provide the requisite information
regarding the turbulent structure of the gas.

Tchen (see Ref, 3), Hinzel, Corrsin and Lumelyz, and
Soo3 have exam:.ied this problem. Starting with Tchen's equation,
Hjelmfelt and Mockros4 have studied the importance of added
mass, history of acceleration and pressure gradient, due to
fluid acceleration in the motion of a particle. The analysis,
based on a formulation due to Tchen, 1led to the conclusion
that the particle diffusivity is the same as the Lagrangian
eddy diffusivity of turbulence. Later experiments by Soo
énd studies based on 'probability of encounter' show that these
two diffusivities are different and the particles do not

follow the fluid particles. Even for a very small particle




which is expected to follow the flow, the increase in flow

Reynolds number decreases the particle diffusivity.

In the present report, the theory of Tchen is extended to
incorporate the difference in these two diffusivities, as well
as the effect of temperature, density, and particle size distri-

bution on LDVymeasurements.
=

b

II. BASIC EQUATION

Based on the assumption, that the presence of a particle
does not modify the flow and that the relative motion gives
rise to Stokes drag on the particle, Tchen formulated the

following equation for the motion of the particle:

du du
Py - Ai ek - &y 2y -
dt 2p + dt L O
p pp p 3 axJa i
v =2 B (uu )4 plu ~u_ ) o
oto, "2a 1 °p; k"pl %
z d
e 1p ——(U--u -)
4 (2o9+ Al e (1)
p P t JE-T
P, P

where up is the vector velocity of the particle, ui is the
4 i
velocity of the gas, v the coefficient of kinematic viscosity,

u the coefficient of viscosity, p the density of the gas, p

the densiiy of the solid material and a is the radius of the

i ey s



particle. Tchen assumes that the particle radius is small and

“p
= s> 1 . (2)

axjaxj

The most restrictive assumption mady by Tchen is that during
the motion of the particle, the same fluid element remains

in its neighborhood. Thus he postulates

The consequence of this assumption is that the streamlines
and the trajectory of the particles coincide’and as such,

leads to the same diffusivities for the particles and gas.
In order to account for the decrease in diffusivity of the

particles, we introduce a relaxation process such that

dug . du
k= =k
G e S (3)

where y is determined such that the appropriate dif:usivity
is obtained in the limit of large t. Utilizing (2) and (3)

;n Eq. (1), we get

du =e=(u=u_)
=2 + yu=sdt+as(uu)+s(—)2f ————P——df (4)
P V%'T

where

a = 3y/a® and B8 = 3p/(2pp+p)




Following Chao (see Ref. 3), we define the Fourier transform

of any quantity as:

+

" (o o) .
9(w) = [ g(t)exp(-iut)at
-00
where for non-decaying turbulence the above integral is taken

to be in the sense of generalized harmonic analysis. Taking

the Fourier transform of Eq. (4) leads to

~ 3 g 3
ER=(1+ 5‘;”)+1[%+/5§]
L 3 w W 3 w
(1”'5_5*«/33)*1(?8*«/55)
or -
b Q
where ' A SRR R L ]
3 3 w
01=(1+«/5‘-:-) +(E+«/IEE)

(5)

ag

] ST \:p
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! iII., AUTO CORRELATION

The Lagrangian velocity auto correlation for the gas

.

is given as

_ <u(t)u(t+T)>
R(T) = <

where
.
@lt)u(t+n)> = lin = J u(t)u(t+1)de
T 00 -7

The spectrum density F(w) is defined as:

u*
<SP (w) = lim ;ﬁTT
T ~00
where ’ (6)
Uy = J u(t)e T¥%q¢
~T

and star denotes the complex conjugate. The Wiener-Khintchine

theorem gives a relationship between R(r) and F(w) as

JOOF(w)cosz dw

o

F(T)

(7)

F (w) ~% JOOR(t)cosum dt
o

A similar set of relationships can be introduced for the

particles. These are denoted by a subscript 'p'. Thus
u
p.T p,T

21T

<u3> = JCD lim (
p o T-o0

using Egs. (5) and (6), we get

2. _ <P {“’&.
<up>--<u>~o 0, F({w)dw




The spectrum density function for the particles is then

given by

Fo(w) = Sh2 S r ()

Equation (8) clearly shows the relationship between the
spectral density measured by LDV and the spectrum of turbulence
of the gas. It may be pointed out that the above relation is
valid for particles uf single diameter. “he presence of
various size particles in the flow further complicates the
simple relationship. If ﬁéa) is the distribution function

for particle size, then Eq. (8) is replaced by

2 <«u®> N
F () = Ja Shef S8 p(w) L. (a)da
p 2, 2> 1, N

where a, and a, are the smallest and largest particle radii

present in the flow. It is the 'w' dependence of %L and the
2

radius 'a' which limits the usefulness of LDV.

IV. DIFFUSIVITY

For homogeneous turbulence, it has been shown by

Kampe'de Feriet

g
(t) = «w?> [ R(r)dr
o]

Similarly,

a t
Dp(t) = <up> j; Rp(T)dT




utilizing Eq. (7) and interchanging the order of

integration, we get

p( ) p” U — Fp(w)dw

Thus

<u3> ‘rD51nwt F (w)dw

D
= = -5 .
3 -y rn E&EEE.F(w)dw

(9)

Substituting from Eq. (8) in Eq. (9) and taking the 1limit

t«m, we get

. D ’

lim _p _ 1

t-cc D 1+v/ag
For finite y, the last equation exhibits the desired reduction
in the diffusivity shown by experiments. As shown in Eg. (5),
it may be seen that for w=0,

N

u? ~ 1+y/ap
i.e.,the two speeds are not the same. Since at large Reynolds

number the particle diffusivity decreases (even for small

particles), the particles in such a flow may not follow the

streamlines at all.




V. RESULTS

In Figures 1-4 the expression (5) for upz’/u2 is plotted
against w for various size particles and diffusivity ratios
shown on the graphs. 1In the limit of a~0, y—=00, 8-0 with

af-~const, Eq. (5) reduces to

ul 1
G‘g‘= Zwa’p
14 (——B) *

9H

which is the expression for the motion of a particle acted

upon by Stokes drag only. The values of pp,p and v are

taken to be 2.25, .00118 and .157,respectively. If we introduce
the Cunningham correction into the coefficient of viscosity,

the above expression may be written as

u?

- = L
2

2nf
¥ l+{ e pkL }
18u(1+ —-—

(10)

where Dp=2a, w=2rf and & is the molecular mean free path and

k is the Cunningham constant which is 1.8 for air. Expression
(10) has been used by Becker, Hottel and Williams5 and many
other authors. 1In order to assess the effect of variations

in density and temperature of the medium, which enters expres-
sion (10) through u and /, isentropic relationships are used

and these variations are parameterized by introducing the Mach

number and stagnation temperature. Figure 5 shows the plot




of up/u as a function of f for a Mach number of 0.26 and

various size particles. The stagnation temperature for this

case is taken to be the atmo;pheric temperature. Figure 6 is

a similar plot for Mach number 10 and the sitagnation temperature

ratio of about 4.7. 1In Figure 7,the effect of variations in

stagnation temperature are examined for a flow of Mact number 2.
In order to investigate the effect of the presence of

various size particles, a distribution function of the following

form is used:

a-—a
£ (a) = A exp-(—=2)?2
N N JfAA

where AN is chosen such that

and M is the measure of the flatness of the disuvribution
u2
function. The integral of Eg fN(a) over 'a' for ao=1.0u,

Dp= 1.0, a;=0.5y and a_=3.5y, and for various values of /A

(shown on the figures) is shown in Figure 8. In Figure 9, the
u

argument of IAT? fN(a) as a function of w is shown. The distri--

bution function is plotted in Figures 10 and 11. From Figures 8 and

9, the fall in the response of the particles is quite clear. It may be




nentioned that DR' the ratio of the diffusivities is also a

function of the particle size. Although a relationship
giving the particle size dependence and Reynolds number is
yet to be established, but its influence on the particle
motion when various size particles are present can be clearly

deduced from Figures 1-11,

VI. CONCLUSION

Motion of a particle in a turbulent flow has been
examined. It is found that the frequency spectral density of
the particle motion depends upon many factors; notably the
particle size, ratio of particle to fluid diffusi rity and
the Mach number of the flow. Increase in particle size and/or
Mach number and decrease in particle diffusivities leads to
a smaller value of frequency of turbulence to which particle
will follow the flow field, This fact restricts the applica-
bility of LDV to low frequency and low speed turbulent flows,
assuming that a single particle is present in the scattearing
volume. The uncertainty in the size distribution of the
naturally present particulates in a flow, coupled with the

uncertainty in the distribution of the artificially introduced

scatterers, their coagulation properties, their diffusivities,




etc., limit the field of applicability of the LDV, in particular

to turbulent measurements., This sugcests that for a more

meaningful interpretation of the LDV measurements, a monitoring

of the sizes of the particulates should be carried out and
¢
incorporated in the data reduction process.

A preliminary assessment of the presence of high tempera-

tures and changes in density and temperatures has been presented

in Figures 5, 6, and 7. Radiometric forces due to the presence
of temperature gradients and radiation transfer should also

be included in Eq. (1). The later forces couple the motion
of the particle to the temperature fluctuations in the gas.
Although these are higher order effects, they may further limit

the applicability of the LDV.
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