

TECHNICAL REPORT 74-9-AD (II)

DEVELOPMENT OF A TOTAL TRAJECTORY SIMULATION FOR SINGLE RECOVERY PARACHUTE SYSTEMS

Volume II: Calculation Procedures and Computer Program

Robert A. Noreen and I

by

David P. Saari

University of Minnesota Minneapolis, Minnesota USA

Project reference: 1F162203AA33

Approved for public release; distribution unlimited.

UNITED STATES ARMY

NATICK LABORATORIES

Natick, Massachusetts 01760

December 1973

Airdrop Engineering Laboratory

Distribution of this document is unlimited

TECHNICAL REPORT

AD

74-9-AD (II)

DEVELOPMENT OF A TOTAL TRAJECTORY SIMULATION FOR SINGLE RECOVERY PARACHUTE SYSTEMS

> VOLUME II: Calculation Procedures and Computer Program

> > by

Robert A. Noreen David P. Saari

University of Minnesota Minneapolis, Minnesota USA

Contract No. DAAG17-72-C-0030

Project reference: 1F162203AA33

December 1973

Airdrop Engineering Laboratory U. S. Army Natick Laboratories Natick, Massachusetts 01760

an an an Araba an Ar Araba an Arab en grand all all agentications $\mathbf{x}_{1} = \begin{bmatrix} x_{1} & x_{1} & x_{2} \\ x_{2} & x_{1} & x_{2} \end{bmatrix} = \begin{bmatrix} x_{1} & x_{2} \\ x_{2} & x_{3} \end{bmatrix} = \begin{bmatrix} x_{1} & x_{2} \\ x_{3} & x_{3} \end{bmatrix} = \begin{bmatrix} x_{1} & x_{3} \\ x_{3} & x_{3} \end{bmatrix} = \begin{bmatrix}$ and the second second

ERRATA

Technical Report 74-9-AD

Development of a Total Trajectory Simulation for Single Recovery Parachute Systems, Volume II: Calculation Procedures and Computer Program by Robert A. Noreen and David P. Saari, December 1973.

(1) On page 22, Equation (4)

$$\Delta v = \frac{Pv^2 C_0 S_T}{2mre} \Delta t$$

should be $\Delta v = -\frac{\rho v^2 C_0 S_T}{2 m r_s} \Delta t$

(2) On page 35, in Eugation 47

$$+\frac{V}{m_r}$$
 ($4m_i + 4m_a$)

ib

term should be

$$-\frac{V}{m_{T}}(\Delta m_{i}+\Delta m_{a})$$

MAY 21 1974

FOREWORD

This work was performed under US Army Natick Laboratories Contract No. DAAG17-72-C-0030 during the period 15 November 1971 and 30 June 1973. The project number was 1F162203AA33 and the task number was 04 entitled "Study of Dynamic Stability Characteristics of Parachute-Load System". Mr. Edward J. Giebutowski served as Project Officer.

The objective of the effort was to produce a computerized trajectory simulation which would describe the motion of a single parachute and its cargo from the time of release from the aircraft to the time of impact.

This report is intended to serve as a user manual for the computer program developed in Volume I. It includes flow charts for the major routines, a listing of computer mnemonics and a program listing. Sample output for some trial cases is also included.

CONTENTS

I.	Introduction	age 1
II.	General Description	2
	 A. Basic Program Organization	2 4 5
III.	Description of Computer Program	17
	A. MAIN PRÓGRAM	L7
	1. Input	L7 L8 L8 L8
	B. Separation-Deployment Phase	L9
	1. Subroutine EXTRACT	L9
	a. Input b. Output c. Formal Parameters d. Common Blocks e. Method	L9 20 20 20 20 21
	 i) Static Line System	21 21 22
	2. Subroutine SNATCH	23
	a. Input b. Output	23 23 23 23 23 23
	3. Subroutine BØDIES	25
	a. Input	25 25 25

		d. Common Blocks	ge 6 6
C.	Inf	lation of the Main Parachute 2	6
	1.	Subroutine ØPENING	7
		a. Input	7 7 7 7 8
	2.	Subroutine FILLTIM	0
		<pre>a. Input</pre>	0 1 1 1
	3.	Subroutine CALC	3
		a. Input	3333
D.	Fre	e Descent; Three Degrees of Freedom 3	5
	1.	Subroutine MØTIØN	6
		a. Input	6 6 6 6 7
	2.	Subroutine INTGRAT 4	1
		a. Input4b. Output4c. Formal Parameters4d. Common Blocks4e. Methods4	1111

an Angarta	3.	Sub	proutine	FØR	MULA		•	•	•	٠	•	•	٠	•	•	•	•	Page 43
		a.	Input	• •														43
		Ь.	Output															43
		с.	Formal	Par	amet	ers	1								<u>.</u>			44
		d.	Common	Blo	cks										<u> </u>		1	44
		e.	Method	5.	• •	•	•	•	•	•		•	•	•	•	•	•	44
	4.	Sub	proutine	ЕМØ	TIØN	•	•	•	•	•	•	•	•	•	•	•	• •	45
·. · · ·		a.	Input	• •	• •		•	•	•	•	•	•	•	•	',	•	•	45
		b.	Output	• •	• •		•	•	•	•	•	•	•	•		•		45
		c.	Formal	Par	amet	ers		•	•	•	•	•	•		· • • •	•	•	45
		d.	Common	B1o	cks	•	•	•	•	•	•	•		•	•		•	46
		е.	Methods	3.	• •		•	•	•	•	•	•	•	•	•	•	•	46
	5.	Sub	routine	DYN	AMIC	•	•	•	•		•	•	, 200 2000	•	•	•	•	48
		a.	Input	• •	•	•	•	•	•		•					•		48
		Ъ.	Output	• •									•					48
		с.	Forma1	Par	amet	ers												49
		d.	Common	Blo	cks	67,5											•	49
		e.	Methods	3	• •	•			•	•	•	•	•	•	•	•		49
	6.	Sub	routine	CØE	FFTS	٠	•	٠	•	•	•	•	•	•	•	•	8	50
		a.	Input	• •	•	•	•	•	•	•		•	•	•	•	•		50
		Ь.	Output		• •	•	•		•			•			•			50
		с.	Formal	Par	amet	ers			•	•			•	•				51
		d.	Common	B10	cks	•		•	•		•		÷.	enin S∎∎is				51
		е.	Methods	•	• •	•	•	•	•	•	•	•	•	•	•	•		51
Ε.	Fre	e De	scent; S	Six	Degro	ees	c	f	Fı	:ee	edo	m	•	•	•	•	•	53
	1.	Sub	routine	МØТ	IØN	٠	•	•	•	•	•	•	•	•		•	•	54
		a.	Input										1. 1	1997 1997 - 1997		1914) 191 <u>5</u> - 1	•	54
		b.	Output											•	<u>.</u>		•	5/
		C.	Formal	Par	amete	ers					- 1944 - 1944	•	•	•		•		54
	an an Araba. An Araba	d.	Common	Blo	cks		11	•	•		•	•	•	•	•	•	. • ·	54
		e.	Methods		• •	•	•	•	•	•	•	•	•	•	•	•		54 54
	2.	Sub	routine	EMØ'	riøn	•	•	•	•	•	٠	•	•	•	•	•	•	56
		a.	Input	• •	• •	•		•	•	•	•							56
		Ъ.	Output	•	• •	•	•					•						57
		C.	Formal	Para	amete	ers											្ម័ំ	57
		d.	Common	Bloc	cks		: د 2		-			្ទី	, .	7	e The			57
		e.	Methods			-					<u> </u>							57

Sec. and

iv

o Tnnit				•	
b. Output c. Formal d. Common e. Methods	Parameters Blocks	 • •<			61 61 61 62 62
4. Subroutine	CØEFFTS .		• • •	• • •	63
a. Input b. Output c. Formal d. Common e. Methods	Parameters Blocks	• • • • • • • • • •			• • 63 • 63 • 63 • 63 • 63 • 63
DENSITY and TRA	AJEQN	• • •	• •	• • •	65
1. Subroutine	DENSITY .	• • •	• • •	• • •	65
a. Input b. Output c. Formal d. Common e. Method	Parameters Blocks				65 65 65 66 66
2. Subroutine	TRAJEQN .	•	• • •	• • •	66
a. Input b. Output c. Formal d. Common e. Method	Parameters Blocks			• • • • • • • • •	66 66 66 66 66
lling Parameters	• • • •	• • •	• • •	• • •	68
EXTRACT SNATCH BØDIES ØPENING FILLTIM CALC MØTIØN INTGRAT				 • •<	. 68 . 68 . 68 . 69 . 69 . 69 . 69 . 70 . 70
	c. Formal d. Common e. Methods 4. Subroutine a. Input b. Output c. Formal d. Common e. Methods DENSITY and TRA 1. Subroutine a. Input b. Output c. Formal d. Common e. Method 2. Subroutine a. Input b. Output c. Formal d. Common e. Method 2. Subroutine a. Input b. Output c. Formal d. Common e. Method Lling Parameters EXTRACT SNATCH BØDIES ØPENING FILLTIM CALC MØTIØN INTGRAT	<pre>c. Formal Parameters d. Common Blocks e. Methods 4. Subroutine CØEFFTS a. Input b. Output c. Formal Parameters d. Common Blocks e. Methods DENSITY and TRAJEQN 1. Subroutine DENSITY a. Input b. Output c. Formal Parameters d. Common Blocks e. Method 2. Subroutine TRAJEQN a. Input b. Output c. Formal Parameters d. Common Blocks e. Method Lling Parameters EXTRACT SNATCH BØDIES ØPENING FILLTIM CALC MØTIØN INTGRAT</pre>	 c. Formal Parameters d. Common Blocks e. Methods 4. Subroutine CØEFFTS a. Input b. Output c. Formal Parameters d. Common Blocks e. Methods DENSITY and TRAJEQN 1. Subroutine DENSITY a. Input b. Output c. Formal Parameters d. Common Blocks e. Method 2. Subroutine TRAJEQN a. Input b. Output c. Formal Parameters d. Common Blocks e. Method 2. Subroutine TRAJEQN a. Input b. Output c. Formal Parameters d. Common Blocks e. Method 3. Input b. Output c. Formal Parameters d. Common Blocks e. Method 4. Input b. Output c. Formal Parameters d. Common Blocks e. Method formal Parameters d. Common Blocks formal Parameters formal Parameters formal Parameters 	<pre>c. Formal Parameters d. Common Blocks e. Methods 4. Subroutine CØEFFTS a. Input b. Output</pre>	<pre>c. Formal Parameters d. Common Blocks e. Methods 4. Subroutine CØEFFTS a. Input b. Output c. Formal Parameters d. Common Blocks e. Methods DENSITY and TRAJEQN 1. Subroutine DENSITY a. Input b. Output c. Formal Parameters d. Common Blocks e. Method 2. Subroutine TRAJEQN a. Input b. Output c. Formal Parameters d. Common Blocks e. Method d. Common Blocks e. Method d. Common Blocks e. Method d. Common Blocks e. Method d. Common Blocks f. Commo</pre>

v

IV.

	L. CØEFFTS M. CØSINES N. DENSITY O. TRAJEQN	Page . 71 . 71 . 72 . 72
v .	Flow Charts	• 73
VI.	Computer Program Symbols	.110
VII.	Computer Program Source List	.157
VIII.	Input Data Card Format	.185
IX.	Sample Output	.198
Χ.	References	•227

ILLUSTRATIONS

Fig. No.	Title	Page
1	Determination of the Separation-Deployment System in Subroutine EXTRACT	6
2	Static Line System	8
3	Sequence of Computer Solution for Static Line System	9
4	Static Line Deployed Pilot Chute System	10
5	Sequence of Computer Solution for Static Line Deployed Pilot Chute System	11
6	Extraction Parachute System	13
7	Sequence of Computer Solution for Extraction Parachute System	14
8	Reefed Main Parachute Extraction System	15
9	Sequence of Computer Solution for Reefed Main Parachute Extraction System	16
10	MAIN PRØGRAM	74
11	Subroutine EXTRACT	77
12	Subroutine SNATCH	81
13	Subroutine BØDIES	84
14	Subroutine ØPENING	85
15	Subroutine FILLTIM	88
16	Subroutine CALC	89
17	Subroutine MØTIØN (Three Degrees of Freedom)	90
18	Subroutine INTGRAT	94
19	Subroutine FØRMULA	96

ILLUSTRATIONS (CONT.)

Fig. No.	Title	Page
20	Subroutine EMØTIØN (Three Degrees of Freedom)	. 97
21	Subroutine DYNAMIC	. 98
22	Subroutine CØEFFTS (Three Degrees of Freedom)	. 99
23	Subroutine MØTIØN (Six Degrees of Freedom)	. 100
24	Subroutine EMØTIØN (Six Degrees of Freedom)	. 104
25	Subroutine CØEFFTS (Six Degrees of Freedom)	. 105
26	Subroutine CØSINES	. 107
27	Subroutine DENSITY	. 108
28	Subroutine TRAJEQN	. 109
29	Computer Program for Three Degrees of Freedom	. 158
30	Computer Program Allowing Six Degrees of Freedom for Free Descent Phase	. 171
31	Sample Output for the T-10 Parachute with Static Line System	. 199
32	Sample Output for the G-12D Cargo Parachute with Static Line Deployed Pilot Chute System	. 204
33	Sample Output for the Unreefed G-11A Cargo Parachute with Extraction Parachute System	. 209
34	Sample Output for the Reefed G-11A Cargo Parachute with Extraction Parachute System	. 214
35	Sample Output for the G-11A Cargo Parachute with Reefed Main Parachute Extraction System	. 222

TABLES

I	Page Computer Symbols for MAIN PRØGRAM
II	Computer Symbols for Subroutine EXTRACT 116
III	Computer Symbols for Subroutine SNATCH 119
IV	Computer Symbols for Subroutine BØDIES 122
V	Computer Symbols for Subroutine ØPENING 124
VI	Computer Symbols for Subroutine FILLTIM 128
VII	Computer Symbols for Subroutine CALC 130
VIII	Computer Symbols for Subroutine MØTIØN (Three Degrees of Freedom)
IX	Computer Symbols for Subroutine INTGRAT 136
X	Computer Symbols for Subroutine FØRMULA 138
XI	Computer Symbols for Subroutine EMØTIØN (Three Degrees of Freedom)
XII	Computer Symbols for Subroutine DYNAMIC 142
XIII	Computer Symbols for Subroutine CØEFFTS (Three Degrees of Freedom)
XIV	Computer Symbols for Subroutine MØTIØN (Six Degrees of Freedom)
XV	Computer Symbols for Subroutine EMØTIØN (Six Degrees of Freedom)
XVI	Computer Symbols for Subroutine CØEFFTS (Six Degrees of Freedom) 153
XVII	Computer Symbols for Subroutine CØSINES 154
XVIII	Computer Symbols for Subroutine DENSITY 155
XIX	Computer Symbols for Subroutine TRAJEQN 156
XX	Input Data for Static Line System 186

TABLES (CONT.)

XXI	PagePageInput Data for Static Line Deployed Pilot193Chute System
XXII	Input Data for Extraction Parachute System 195
XXIII	Input Data for Reefed Main Parachute Extraction System

6.45

n Syderica S≢ring switch

SYMBOLS

- a acceleration
- ^aij component of the matrix A, ith row, jth column, Eqns (149) through (157)[±]
- A inverse of effective spring constant of suspension system, Eqn (10)
- A direction cosine matrix
- $\mathbf{B} \in \mathbf{Eqn}$ (11) where the set of the s
- c effective porosity
- C Eqn (12)

 C_{D_O} drag coefficient of parachute based on nominal area drag coefficient of parachute based on projected

- C_{D_p} drag coefficient of parachute based on projected area
- C_DS drag area
- C_{No} aerodynamic normal force coefficient of parachute
- C_{Mo} aerodynamic moment coefficient of parachute
- $C_{T_{O}}$ aerodynamic tangent force coefficient of parachute

til i patiente die ,

- d canopy inlet diameter
- D aerodynamic drag

D_o nominal diameter of parachute

D_p instantaneous projected diameter of parachute
D_{pmax} projected diameter of fully inflated parachute

- <u>F</u> Force
- <u>F</u> force due to included and apparent mass
- F_A aerodynamic force (during snatch)
- E_n allowable relative error in integration

xi

F _{max}	opening shock
<u>F</u> N	aerodynamic normal force
FØ	instantaneous opening force
g	gravitational acceleration
h	altitude; D _p /D _o
Ī	inertia tensor of parachute-load system about its mass center
k	spring constant of suspension system
L	distance between load and secondary body or load and aircraft during deployment
l 1	distance from parachute-load system center of mass to load
L 2	distance from parachute-load system center of mass to parachute center of volume
L 3	distance from parachute-load system center of mass to parachute moment center
L _R	reefing line length
L	distance load travels in aircraft; X-component of \underline{M} , body fixed
L _{Br}	length of load bridle in Z-direction
L _E	length of riser extension
L _R	length of suspension lines
L _S	length of suspension lines
^L static	length of static line
m	mass
ma	apparent mass of parachute
^m Br	mass of load bridle
^m E	mass of riser extensions

mi	mass of included air in parachute canopy
^m L	mass of suspension lines
^m pb	mass of pilot or extraction parachute and main parachute deployment bag
m _{rs}	total mass of load and packed recovery system
^m R.	mass of risers
^m ss	mass of suspension lines, risers, extensions, bridle and links
^m T	total mass = $m_{\mu} + m_{ss} + m_{p} + m_{i} + m_{a}$
^m I	mass of primary body during deployment of the suspension system = $m_{l} + \frac{1}{2} m_{ss}$
M	moment acting on parachute-load system
M	Y-component of M, body fixed
MA	aerodynamic moment due to parachute
M _I	mass of primary body at snatch = m _k + m _{ss}
M _{II}	mass of secondary body during deployment of the suspension system = $m_p + \frac{1}{2} m_{ss} + m_{pb}$
Ν	Z-component of <u>M</u> , body fixed
Ρ	X-component of w, body fixed
P _{max}	maximum snatch force
Q	Y-component of \underline{w} , body fixed; mass ratio, Eqn (15)
r	position vector
R	reefing ratio; Z-component of <u>w</u> , body fixed
S	reference distance from canopy skirt to parachute- load system center of mass in fully inflated configuration
s ₁	reference distance from canopy skirt to suspension line center of mass in fully inflated configuration
· · ·	

R B ST

- ^s2 reference distance from canopy skirt to riser center of mass in fully inflated configuration
- s₃ reference distance from canopy skirt to riser extension center of mass in fully inflated configuration
- s₄ reference distance from canopy skirt to load bridle center of mass in fully inflated configuration
- s₅ reference distance from canopy skirt to load center of mass in fully inflated configuration
- s reference distance from canopy skirt to parachute center of volume in fully inflated configuration
- S nominal area
- t time

W

t_{CD} reefing cutter delay time

- t_D time at which extraction or pilot parachute is released or main parachute is disreefed to initiate inflation
- t_{ff} final filling time; measured from end of bag strip to first attainment of hemispherical canopy volume
- t_{fR} filling time for reefed inflation period
- T dimensionless time scale; aerodynamic tangent force of parachute
- t_{RCA} time at which reefing cutters are armed
- T_R dimensionless time scale for reefed inflation periods
- U X-component of v, body fixed
- ⊻ general velocity; velocity of parachute-load system mass center
- v general velocity; magnitude of velocity of parachuteload system center of mass

v_s snatch velocity, Eqn (16)

V volume; Y-component of v, body fixed

Z-component of \underline{v} , body fixed; weight

space-fixed coordinate direction; position of х parachute-load system center of mass body-fixed coordinate X space-fixed coordinate direction; position of y parachute-load system center of mass body-fixed coordinate Y space-fixed coordinate direction; position of \mathbf{Z} parachute-load system center of mass body-fixed coordinate Ζ angle of attack in XZ-plane α trajectory angle α_{t} angle of attack in YZ-plane β angle between velocity and XZ-plane Y angle between velocity and YZ-plane δ allowable absolute error in integration η Euler angle, system angle for problems constrained θ to three degrees of freedom angle between parachute velocity and systems axis $\theta_{\mathbf{p}}$ 영제 이상 영상을 가지 않는다. integrand in Eon (30) Ň 이번 것 같이? air density ρ sea level air density Po air density ratio = ρ/ρ_{o} đ angular velocity of parachute-load system Ŵ 化试验检验 化均匀 建心建成物 Euler angle φ Euler angle V

xv

Subscripts

a apparent

B main parachute deployment bag

ex extraction parachute(s)

i included

l load

o nominal, initial

p parachute

R referring to inflation of the main parachute with reefing

T value required for instantaneous trajectory calculation

X	component in space-fixed x coordinate direction
X	component in body-fixed X coordinate direction
у	component in space-fixed y coordinate direction
Y	component in body-fixed Y coordinate direction
	component in space-fixed z coordinate direction
Z	component in body-fixed Z coordinate direction
1	referring to end of reefed inflation stage
I	primary body

II secondary body

_

indicates vector quantity

indicates matrix or tensor quantity

ABSTRACT

A method of total trajectory simulation was established which is based on the governing equations of the various phases of an airdrop or recovery system. In view of these equations, a computer program capable of predicting the performance characteristics of a parachute-load system from the instant of initiation to the moment of landing was established. Calculations were performed for a number of different aerial delivery systems. The calculated results fall well within the broad ranges of expected performance, based upon a familiarity with field test results.

In Volume I simulation methods and numerical calculation results are presented; in Volume II details of the calculation procedures and computer program are presented. The system is ready to be used for overall prediction of parachute performance characteristics and an intensive comparison of calculated and recorded field test results is highly desirable for validation and improvement of the technique of total trajectory simulation.

en gline l'égli seglég graditais en factorité présié a la complete de la complete and a new provide the transmission of the second and the second second second second second second second second

I. INTRODUCTION

In this study mechanical and mathematical models have been selected to provide a total trajectory simulation for four parachute separation-deployment systems. In Volume I of this report these simulation methods are presented, and in this volume, Volume II, the calculation procedures for obtaining numerical results are shown.

The calculations were made using a Fortran IV computer program and a Control Data Corporation 6600 computer. Thus this volume presents the software documentation required for duplication and use of the computer program, beginning with a general description of the program and progressing to more detailed information. However, the various Sections cannot be considered independent; referring to later sections of the report may add to the understanding of the early sections.

The compile time with the standard Fortran compiler is approximately 5.6 seconds for the three degree of freedom solution and 7.1 seconds for the solution allowing six degrees of freedom for the free descent phase. The running time for the various trajectory calculations averaged about 7 to 8 seconds, ranging from 3 to 4 seconds for low altitude simulations to about 13 seconds for high altitude simulations.

1

. .

II. GENERAL DESCRIPTION

The computer program for the total trajectory simulation can be considered to consist of three calculation phases organized to model four parachute separation-deployment systems. The three calculation phases correspond to the physical processes of an airdrop, and are: 1) separation and deployment, 2) inflation of the main parachute, and 3) free descent with consideration of dynamic characteristics. The first two phases have been limited to two dimensions; for free descent, the user can select two or three dimensional calculations. The program was organized with major subroutines directly related to physical processes so that calculation methods could be easily changed or improved by merely replacing a subroutine.

The user must select inputs that specify the physical characteristics of his parachute-load system and which of the four separation-deployment systems he is modeling. The separation-deployment systems are 1) static line, 2) static line deployed pilot chute, 3) extraction parachute, and 4) reefed main parachute extraction. The user also can have a range of outputs, from a nearly continuous print of trajectory data to only a few results at significant occurrences during the simulation.

A. Basic Program Organization

MAIN PRØGRAM is the first entry to the program; its basic functions are to read most of the input data, print some parameters of interest, sequence the calls to the major subroutines, and then either start the next simulation or terminate the run. Very few calculations are done in MAIN PRØGRAM itself, its major purposes are organization and sequencing. The first functional call by MAIN PRØGRAM is to Subroutine EXTRACT, which is the first major subroutine that directs calculations for the separation-deployment process. EXTRACT calculates the process of separation from the aircraft for all systems and informs MAIN PRØGRAM whether or not a call to subroutine SNATCH is required. SNATCH is the second major subroutine of the separation-deployment phase, and calls subroutine BØDIES for calculating the separation between primary and secondary bodies of the parachute-load system.

After separation-deployment, MAIN PRØGRAM directs the simulation to the inflation of the main parachute, subroutine \emptyset PENING. \emptyset PENING is primarily an organizational subroutine and calls FILLTIM for a calculation of filling time and CALC for trajectory calculations during inflation.

The last phase is free descent, and since this can be two- or three-dimensional, the appropriate integer inputs as well as the desired subroutine decks must be selected by the user. Since the required aerodynamic force coefficients for three-dimensional calculations have not yet been measured, the majority of calculations will probably be two-dimensional, and thus there is no need to compile the three-dimensional subroutines for every calculation. In both cases subroutine MØTIØN is the major subroutine, and is basically organizational. MØTIØN calls subroutine INTGRAT for integration of the equations of motion. INTGRAT requires subroutine FØRMULA for the integration and subroutine EMØTIØN for numerical evaluation of the equations of motion. EMØTIØN calls subroutine DYNAMIC to evaluate terms in the equations of motion, and subroutine CØEFFTS supplies values of the aerodynamic coefficients to EMØTIØN. Subroutines INTGRAT, FØRMULA, and DYNAMIC are identical for two or three dimensional calculations; the others have the same names in both cases but are

3

different. Subroutine CØSINES is added to evaluate the terms of the direction cosine matrix in three-dimensional calculations.

The subroutines DENSITY and TRAJEQN are called by many of the other subroutines. DENSITY calculates atmospheric density as a function of altitude and TRAJEQN evaluates the two-dimensional, point mass trajectory equations for use until the parachute is fully inflated.

B. Computer Program Outputs

The output from the computer program in all subroutines which include output statements can be divided into three categories: (1) all input data, (2) trajectory variables and other calculated information at points of interest throughout the program, and (3) continuous output of variables describing the calculated trajectory.

The first and second of these groups are always printed. All inputs are immediately printed in the main program or in the particular subroutine in which they are read. The trajectory variables at the following points during the trajectory simulation are printed immediately before exit from the following subroutines:

Subroutine EXTRACT--static line stretch and main parachute canopy unfolded or initiation of main parachute deployment; or load leaves aircraft and initiation of main parachute deployment or inflation,

Subroutine SNATCH--snatch force occurrence,

Subroutine MØTIØN--the first three instances when the parachute-load system is vertical or near vertical.

In addition, snatch force, snatch velocity, and primary and secondary body velocities at snatch are printed before exit from SNATCH. The projected diameter corresponding to the prescribed final reefing ratio, time of disreef (if applicable), filling time, and opening shock for each inflation are printed before exit from ØPENING.

The continuous output can be controlled by the program The variable NINT may be read into the program as a user. negative number, which then eliminates all continuous output. If NINT is positive, it represents the number of calculations which are to be made between successive printings of the trajectory variables in subroutines EXTRACT and SNATCH, and to some degree in ØPENING and MØTIØN. During the inflation periods in ØPENING, and if the automatically selected time increment in MØTIØN becomes too large, NINT does not affect the output of trajectory variables if it is greater than zero. The trajectory variables are time, altitude, system angle, position components, total velocity and velocity components, and total acceleration. These variables refer to the mass center of the parachute-load system until the main parachute is fully inflated, and to the load during the free descent phase in MØTIØN.

C. Separation-Deployment Systems

The values of the integer variables ISTATIC and IEXTRAC, and the variable D_{OPilot} control the selection of one of the four separation-deployment systems as shown in Fig 1. These variables are examined upon entry to EXTRACT, which then directs the simulation to the appropriate calculations. For the static line deployed pilot chute or extraction parachute systems a snatch force calculation is required and EXTRACT sets ISNATCH to -1 which then directs the MAIN PRØGRAM

5

FIG 1 Determination of the Separation-Deployment System in Subroutine EXTRACT sequence to SNATCH. For the static line and reefed main parachute extraction systems no snatch force calculation is required and EXTRACT sets ISNATCH to +1 which directs the MAIN PRØGRAM sequence directly to ØPENING.

The following Items include figures which show the separation-deployment process and the sequencing of the simulation through MAIN PRØGRAM, the values of the pertinent variables for selecting the separation-deployment system, and a list of the physical processes involved in separation and deployment with the name of the subroutine that models the process.

1. Static Line System
Figures 2 and 3
ISTATIC = -1
DPILØT = 0
ISNATCH = +1
Separation from aircraft EXTRACT
Main Canopy Unfolding EXTRACT

2. Static Line Deployed Pilot Chute System Figures 4 and 5 ISTATIC = -1 DPIL ϕ T = $D_{o_{pilot}}$ ISNATCH = -1 Separation from aircraft EXTRACT Suspension system deployment B ϕ DIES Snatch force SNATCH Main parachute unfolding B ϕ DIES

7

FIG 3 Sequence of Computer Solution for Static Line System

FIG 5 Sequence of Computer Solution for Static Line Deployed Pilot Chute System 3. Extraction Parachute System

Figures 6 and 7	
ISTATIC = +1	
IEXTRAC = 0	
ISNATCH = -1	
Separation from aircraft	EXTRACI
Suspension system deployment	BØDIES
Snatch force	SNATCH
Main parachute unfolding	BØDIES

4. Reefed Main Parachute Extraction System
Figures 8 and 9
ISTATIC = +1
IEXTRAC = +1
ISNATCH = +1
Separation from aircraft EXTRACT

FIG 7 Sequence of Computer Solution for Extraction Parachute System

FIG 9 Sequence of Computer Solution for Reefed Main Parachute Extraction System

III. DESCRIPTION OF COMPUTER PROGRAM

This section describes the computer program used for the total trajectory simulations. The format used in the following is to include, for each program or subprogram, the following information: 1) list of inputs, 2) list of outputs, 3) list of formal parameters, 4) list of common blocks, and 5) an explanation of the calculation methods. Computer mnemonics are used in the lists of inputs, outputs, parameters, and common blocks to aid later cross references with the program listing, Section VII. These and all other non-standard mnemonics are defined in Section VI. The formal parameters and common blocks appear as they are shown in the listing of the particular subroutine. For assistance in following the calculation methods, the calling parameters of all calls to each subroutine are shown in Section IV.e

A. MAIN PRØGRAM

The mnemonic symbol MAIN PRØGRAM is used in the text to describe PRØGRAM TRAJSIM, the name given by the authors to the main program for the total trajectory simulation. The name of the main program can be changed to any suitable form by the program user without affecting the functioning of the computer program. The standard files INPUT and ØUTPUT are required for the MAIN PRØGRAM.

1. Input

NSIM, C1, C2, C3, C4, C5, ALT, VO, MST, MP, MLS, MR, MRX, MBR, ML, X1, X2, X3, X4, X5, IZ, IAZO, DNØT, LSS, CDP, CDSL, Q1, Q2, VØLUME, N, NNN, DT1, DT2, DT3, NINT, ETA, PCTERR

2. Output

C1, C2, C3, C4, C5, ALT, VO, MST, ML, MP, MLS, MR, MRX, MBR, A8, B8, ALT, A9, B9, ALT, X1, X2, X3, X4, X5, A4, B4, ALT, A5, B5, ALT, A6, B6, ALT, A7, B7, ALT, DNØT, LSS, A1, B1, ALT, A2, B2, ALT, A3, B3, ALT, Q1, Q2, VØLUME, CDP, CDSL, N

3. Common Blocks

/CØNST/: ALT, PI, G, DNØT, CDSL, LSS, ML, MP, MSS, MST, NINT /VARIABL/: RHØ, T, V, THETA, X, Z, ALPHAL, ALPHAP, L1 /DYNAM/: DYDNØT, X1, X2, X3, X4, X5, MBR, DYML, MLS, DYMP, MR, MRX, IAZO, IZ, Q1, Q2, VØLUME, XNUM, XDENØM

4. Methods

MAIN PRØGRAM oversees the operation of the total trajectory simulation, providing for a specified number, NSIM, of trajectory simulations to be accomplished in one run of the computer program. For each total trajectory simulation, the operation of MAIN PRØGRAM is as follows. The title and most parachute-load system data are read and printed. The parameters

 $XNUM = m_{L_s} s_1 + m_R s_2 + m_E s_3 + m_B r s_4 + m_L s_5 - m_p s_c$ $XDENOM = m_{L_s} + m_R + m_E + m_B r + m_L + m_p$

are established for use in subroutine DYNAMIC. Note that common block DYNAM must have different names for its variables, even though some represent the same variables as are in CØNST. To bracket the variable parachute-load system dynamic characteristics to be encountered, subroutine DYNAMIC is called for mean sea level density and for release

altitude density and the results of these two calls are printed. The necessary information for calculation is transmitted via the calling parameter list and the common block DYNAM.

The first call of the actual trajectory simulation is to EXTRACT, following which MAIN PRØGRAM directs the calculations by calling SNATCH, ØPENING, and MØTIØN as detailed in Subsections IIA and IIC for the particular separation-deployment system. When control is returned to MAIN PROGRAM after the call to MØTIØN, the next trajectory simulation begins or the program is terminated if the run is complete.

B. Separation-Deployment Phase

Three subroutines perform the calculations for the physical processes in the separation-deployment phase. The major subroutine is EXTRACT, which calculates the separation from the aircraft for all systems and contains all of the remaining deployment calculations for systems that do not have a snatch force. If a snatch force is required, EXTRACT directs MAIN PRØGRAM to subroutines SNATCH and BØDIES, the other two subroutines for this phase, SNATCH calculates maximum snatch force and calls BØDIES for calculating the separation between the primary and secondary bodies of the parachute load system.

1. Subroutine EXTRACT

a. Input

All Systems: ISTATIC, IEXTRAC

Static Line System: LSTATIC, CDSBAG, CDSP, DPILØT, LSPILØT, TD, LRXBR (CDSP = 0, $DPIL\phi T = 0$, $LSPIL\phi T = 0$, TD = 0)

Static Line Deployed Pilot Chute System:

LSTATIC, CDSBAG, CDSP, DPILØT, LSPILØT, TD, LRXBR.

Extraction Parachute System:

LENGTH, CDSBAG, CDSEX, TD.

Reefed Main Parachute Extraction System: R, LENGTH, TD

b. Output

Static Line System:

- ALL NINT: LSTATIC, CDSBAG, T1, TRAJ1, X1, Z1, V1, T, TRAJANG, X, Z, V.
- NINT > 0: T, ALT-Z, TRAJANG, TRAJANG, X, Z, V, VX, VZ.

Static Line Deployed Pilot Chute System:

- ALL NINT: LSTATIC, CDSBAG, CDSP, DPILØT, LSPILØT, TD, T1, TRAJ1, X1, Z1, V1, T, TRAJANG, X, Z, V.
- NINT > 0: T, ALT-Z, TRAJANG, TRAJANG, X, Z, V, VX, VZ. Extraction Parachute System:
- ALL NINT: LENGTH, CDSBAG, CDSEX, TD, T1, X1, V1, T, TRAJANG, X, Z, V.
- NINT > 0: T, ALT-Z, TRAJANG, TRAJANG, X, Z, V, V. Reefed Main Parachute Extraction System:
- ALL NINT: LENGTH, R, H*DNØT, TD, T1, X1, V1, T, TRAJANG, X, Z, V.
- NINT > 0: T, ALT-Z, TRAJANG, TRAJANG, X, Z, V, V.

c. Formal Parameters

ISNATCH, IEXTRAC, VO, DT, TRCA

d. Common Blocks

/CØNST/: ALT, PI, G, CDP, DNØT, CDSL, LSS, ML, MP, MSS, MST, NINT. /VARIABL/: RHØ, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3.

e. Methods

i) Static Line System

The governing equations for the parachute-load system during the periods of separation and deployment of the main parachute by static line are the two-dimensional, point mass, trajectory equations, incorporated in subroutine TRAJEQN. Thus the procedure in subroutine EXTRACT is to call subroutine TRAJEQN with calling parameters representing the appropriate mass and drag area with time increments Δt between successive calls. The duration of the first calculation phase is determined by the distance between the release point in the aircraft and the recovery system mass center, given by

$$l = \sqrt{(v_0 t - x)^2 + z^2}$$
(1)

The main parachute is deployed, and control is returned to the main program, when

 $l \geq L_{static} + L_s + L_R + D_0/2 + L_E + L_{Br}$ (2)

The parameter ISNATCH is assigned the value +1 before control is returned to the main program. The value of the time at this point is the value given to the return parameter t_{RCA}, which is required if reefing will be required in the inflation phase.

ii) Static Line Deployed Pilot Chute System

The procedure for this case is the same as for static line deployment, except that the pilot parachute is being deployed rather than the main parachute. The pilot parachute is deployed when

At this point, the calling parameter for subroutine TRAJEQN representing the drag area must be increased by the drag area of the pilot parachute. The parameter ISNATCH is assigned the value -1. Successive calls to subroutine TRAJEQN are made until the time exceeds the value $t_{\rm D}$.

iii) Extraction Parachute System

ISNATCH is set equal to -1. The governing equation while the load is in the aircraft is

$$\Delta v = \frac{-\rho v^2 C_0 S_T}{2m_{rs}} \Delta t$$
 (4)

where C_DS_T is the drag area of the extraction parachute(s). The condition which indicates that the load has left the aircraft is

$$v_{o}t - x \ge L$$
 (5)

At this point, the value of $C_D S_T$ is increased by the drag area of the load and the packed main parachute, $C_D S_L + C_D S_B$, and the trajectory is simulated by successive calls to subroutine TRAJEQN with time increment Δt . Control is returned to the main program when the time exceeds t_D .

iv) Reefed Main Parachute Extraction System

ISNATCH is set to +1. The drag area of the reefed main parachute is given by

$$C_{o}S_{\tau} = C_{op} \frac{\pi h^2 D_o^2}{4} \tag{6}$$

where

$$h = \frac{4(L_{s}+L_{R})R + 2RD_{o}}{4(L_{s}+L_{R}) + \pi RD_{o}}$$
(7)

The calculation procedure is the same as for standard extraction parachutes, with the value of $C_D S_T$ from Eqn (6) used in Eqn (4). After the criterion (5) is satisfied, the value of $C_D S_T$ is increased by the drag area of the load, $C_D S_L$, and successive calls are made until t exceeds t_D . The value of t_{RCA} is set to zero.

- 10

2. Subroutine SNATCH

a. Input

MPBAG, CDS2, K, LRXBR

b. Output

ALL NINT: MPBAG, CDS2, K, LRXBR, TL, TRAJL, XL, ZL, V1L, V2L, PMAX, VF

NINT > 0: T, ALT-Z, TRAJANG, TRAJANG, X, Z, V1, V1X, V1Z

c. Formal Parameters

Common Blocks

TRCA, DT

d.

/CØNST/: ALT, PI, G, CDP, DNØT, CDSL, LSS, ML, MP, MSS, MST, NINT

/VARIABL/: RHØ, T, V, THETA, X, Z, UNUSED1, UNUSED2, UNUSED3

e. Methods The trajectories of the primary and secondary bodies and the separation $\boldsymbol{\ell}$ are calculated by calls to subroutine BØDIES for the periods before and after snatch. Subroutine BØDIES is called successively until

$$l = L_{s} + L_{R} + L_{E} + L_{B_{r}}$$
(8)

when snatch occurs. The snatch force equations are

$$P_{\max} = -B + \sqrt{B^2 - C/A}$$
(9)

$$A = \frac{1}{k}$$
(10)

$$B = F_{AI} \left[I + Q + \frac{2v_{II}Q}{v_{s} - v_{II}} \right] + F_{AII} \left[Q + \frac{2v_{II}Q}{v_{s} - v_{II}} \right]$$
(11)

$$C = M_{I} \frac{Q-I}{Q} \left[\frac{Q+I}{Q} \left(v_{s} - v_{II} \right)^{2} + 2v_{II} \left(v_{s} - v_{II} \right) \right]$$
(12)
+ $w_{p} \left[\left(v_{s} - v_{II} \right)^{2} + 2v_{II} \left(v_{s} - v_{II} \right) \right]$

$$F_{AI} = \frac{\rho C_0 S_I}{4} \left(v_I^2 + v_s^2 \right)$$
(13)

$$F_{AII} = \frac{\int C_0 S_{II}}{4} \left(v_{II}^2 + v_s^2 \right)$$
(14)

$$Q = \frac{M_{I}}{M_{I} + m_{P}}$$
(15)

$$\sigma_{s} = \frac{M_{I} v_{I} + m_{p} v_{II}}{M_{I} + m_{p}}$$
(16)

The time t_{RCA} is set to the time value at snatch. Subroutine BØDIES is then again called successively, after adjusting primary and secondary velocities to the value v_s , and changing the masses to $(m_p + m + m_{ss})$ for the primary body, and to m_{p_b} for the secondary body. This continues until

$$l = L_s + L_R + L_E + L_{B_r} + D_0/2 \qquad (17)$$

at which time control is returned to MAIN PRØGRAM.

3. Subroutine BØDIES

a. Input

None

b. Output

None

c. Formal Parameters

M1, CDS1, M2, CDS2, V1, V2, L, DT

d. Common Blocks

/CØNST/: ALT, PI, G, CDP, DNØT, CDSL, LSS, ML, MP, MSS, MST, NØUSE.

/VARIABL/: RHØ, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED 3.

e. Methods

This subroutine merely evaluates the equations

$$\Delta \theta = - \frac{g \sin \theta}{v_{\rm I}} \Delta t \qquad (18)$$

$$\Delta v_{I} = \left(g\cos\theta - \frac{\rho C_{D} S_{I} v_{I}^{2}}{2 m_{I}}\right) \Delta t$$
(19)

$$\Delta v_{\pi} = \left(g\cos\theta - \frac{\rho c_0 S_{\pi} v_{\pi}^2}{2m_{\pi}}\right) \Delta t \qquad (20)$$

$$\Delta x = v_{I} \sin \theta \Delta t$$
(21)

$$\Delta z = v_{I} \cos \Theta \Delta t \qquad (22)$$

$$\Delta \mathcal{L} = V_{\mathrm{I}} \Delta t - V_{\mathrm{I}} \Delta t \qquad (23)$$

C. Inflation of the Main Parachute

The second calculation phase is represented by subroutines ØPENING, FILLTIM, and CALC. This calculation phase is required for all of the separation-deployment systems, and is initiated by a call from MAIN PRØGRAM to ØPENING, which then calls FILLTIM and CALC. This phase represents inflation of the main parachute with provision for any number of reefed stages. The extent of the calculation phase is from the point when the main parachute is deployed in a stretched-out manner, or at the time $t = t_D$ for extraction by the reefed main parachute, until the main parachute is fully inflated.

1. Subroutine ØPENING

a. Input

No Reefing: NREEF Reefing: NREEF, RO, R1, TCD

b. Ouput

No Reefing:

ALL NINT: T, TRAJANG, X, Z, V, FO, TF

NINT > 0: ALT-Z, TRAJANG, TRAJANG, X, Z, V, VX, VZ, -FRCE/ML Reefing:

ALL NINT: R1, H1*DNØT, TCD, TDR; T, TRAJANG, X, Z, V, FO, TF, at end of each reefing stage.

NINT > 0: T, ALT-Z, TRAJANG, TRAJANG, X, Z, V, VX, VZ, -FRCE/ML

c. Formal Parameters

DQ, TRCA, N, F, VOLUMG, IEXTRAC, DTT

d. Common Blocks

/CØNST/: ALT, PI, G, CDP, DNØT, CDSL, LSS, ML, MP, MSS, MST, NINT

/VARIABL/: RHØ, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3

e. Methods

The first input to subroutine \emptyset PENING is the value NREEF, representing the number of reefing lines employed during the inflation. If the value of NREEF is zero, i.e. if the inflation is without reefing, no further inputs are made. If reefing is employed, the reefing ratios at the beginning and end of each reefed inflation and the reefing cutter delays must be read. Thus for the first reefed inflation stage, the initial value of the reefing ratio is zero and the final value is the reefing ratio corresponding to the first reefing line. For the last reefed inflation stage, the initial reefing ratio value corresponds to the final reefing line, and the final value is equal to the assumed projected diameter ratio for the fully inflated parachute, $2/\pi$.

$$h_{o} = \left(D_{P} / D_{o} \right)_{T=0} = O \tag{24}$$

$$h_{1} = (D_{p}/D_{o})_{T=1} = \frac{2}{\pi}$$
 (25)

The values of V, h_0 , and h_1 are used for determination of the final filling time t_{ff} by calling subroutine FILLTIM. The trajectory is then calculated by successive calls to subroutine CALC, and control is returned to the main program when T = 1. The opening force during the inflation is found from

$$F_{0} = m_{l} \left(g \cos \Theta - \frac{\Delta v}{t_{sf} \Delta T} \right)$$
 (26)

the opening shock being the largest value of F_0 .

For inflation from one reefed stage to another, the increase in volume is given by

$$V_{R} = \frac{\pi}{12} \left\{ D_{0}^{3} \left(h_{1}^{3} - h_{0}^{3}\right) + D_{0}^{2} \left[h_{1}^{2} \sqrt{\left(L_{s}^{+} L_{R} + D_{0}/2 - \frac{\pi h_{1} D_{0}}{4}\right)^{2}}\right] \right\}$$

$$\frac{h_{1}^{2} D_{0}^{2}}{4} - h_{0}^{2} \sqrt{\left[L_{s}+L_{R}+D_{0}/2 - \frac{\pi h_{0} D_{0}}{4}\right]^{2} - \frac{h_{0}^{2} D_{0}^{2}}{4}} (27)$$

$$- D_{0}^{2} \left[R_{1}^{2} \sqrt{\left(L_{s}+L_{R}\right)^{2} - \frac{R_{1}^{2} D_{0}^{2}}{4}} - R_{0}^{2} \sqrt{\left(L_{s}+L_{R}\right)^{2} - \frac{R_{0}^{2} D_{0}^{2}}{4}}\right] \right\}$$

The values of the projected diameter ratios are found from the reefing ratios R_0 and R_1 by

$$h_{o} = \frac{4(L_{s}+L_{R})R_{o}+2R_{o}D_{o}}{4(L_{s}+L_{R})+\pi R_{o}D_{o}}$$
(28)

$$h_{1} = \frac{4(L_{s}+L_{R})R_{1} + 2R_{1}D_{0}}{4(L_{s}+L_{R}) + \pi R_{1}D_{0}}$$
(29)

The filling time t_{fR} is then calculated by calling FILLTIM with the values of V_R , h_o , and h_1 from Eqns (27) through (29). The trajectory during a reefed inflation is calculated by successive calls to subroutine CALC until $T_R = 1$. The opening force is found from (26) with $t_{fR} \Delta T_R$ replacing $t_{ff} \Delta T$. If the parachute is not fully inflated, i.e. if another inflation stage is required, there is in general a coasting phase before the next inflation begins. The length of this phase is determined by the input of the reefing cutter delay, t_{CD}. The trajectory during the coasting phase is determined by successive calls to TRAJEQN, with the values of the parachute-load system mass and the drag area of the system in its partially inflated configuration, and time increments At, until the time exceeds $t_{RCA} + t_{CD}$. At this point, the values of R_0 , R_1 , and t_{CD} for the next inflation stage are read. If the time already exceeds $t_{RCA} + t_{CD}$ when $T_R = 1$, no coasting phase is included and these values are read immediately. If, at the point $T_p = 1$, the parachute is fully inflated, i.e. at the end of the last inflation stage, control is returned to MAIN PRØGRAM.

When the main parachute is inflated to a reefed configuration at the entry to the subroutine, i.e when the reefed main parachute extraction system is used, the number of inflation stages is equal to the number of reefing lines, NREEF. In the general case, the number of inflation stages is equal to NREEF + 1. Thus, to distinguish between the two possibilities, the process described above is performed NREEF + 1 - IEXTRAC times, the value of IEXTRAC being 1 for extraction by the reefed main parachute and 0 otherwise. The number NREEF can assume any integer value up to 9 in the present arrangement of the computer solution, the restriction being due merely to the input format for NREEF and the dimension of the array REEF.

2. Subroutine FILLTIM

a. Input None b. Output

None

c. Formal Parameters

VO, XO, ZO, THETAO, MS, HO, H1, N, VOLDØT, TF

d. Common Blocks

/CØNST/: ALT, PI, G, CDP, DNØT, CDSL, LSS, ML, MP, MSS, MST, NØUSE

/VARIABL/: RHØ, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3

e. Methods

The filling time is given by the equation

$$V \emptyset L U M E = \pi t_{fR} \int_{0}^{1} \left[v \left(1 + 2.2 c T - T \right) \frac{d^{2}}{4} - \frac{1.1 c D^{2}}{2} \right] dT_{R} (30)$$

for the general reefed case. This formula applies for the unreefed case by replacing the subscript R by f. The function of subroutine FILLTIM is to evaluate the filling time by an iterative scheme as follows.

An initial estimate for the filling time is made by FILLTIM from the formula

$$t_{fR_1} = \frac{2h_1 D_0}{V_0}$$
(31)

The estimate is based on the concept of a constant filling distance, adjusted for the projected diameter at the end of the inflation. An approximation to Eqn (30) is found by Simpson's rule with N increments, i.e. Eqn (30) is evaluated for N values of T_R . The required information is found from calls to CALC, for the values of T_R , ΔT_R , T, and ΔT ,

where

$$T = \frac{\pi^2}{4} \left[h_1^2 T_R + h_0^2 (1 - T_R) \right]$$
(32)

$$\Delta T = \frac{\pi^2}{4} (h_1^2 - h_0^2) \Delta T_R$$
 (33)

Again, in the unreefed case the values T_R and T are equal as well as the increments ΔT_R and ΔT since $h_O = 0$ and $h_1 = 2\pi$. The effective porosity c is found from (Ref 1)

$$\mathbf{c} = \mathbf{c}_{\bullet} \mathbf{\sigma}^{1/7} \tag{34}$$

where c_0 is assigned the constant value 0.05. This value was selected as representative of the parachute cloths encountered in this study, MIL-C-7020, Types I and II, MIL-C-7350, Type I, and MIL-C-4279, Type II, based on Ref 1. If v represents the quantity under the integral sign in (30), the volume increase corresponding to a given value of the filling time t_{fR} is approximately, by Simpson's rule,

$$\nabla \mathcal{D}L = \pi +_{fR_{\gamma}} \frac{\Delta T_R}{3} \left(\nu_0 + 4\nu_1 + 2\nu_2 + \dots + \nu_N \right)$$
(35)

The value of VØL from Eqn (35) is compared with the parameter VØLUME, and a new filling time approximation is given by

$$t_{fR_{n+1}} = t_{fR_n} \left(\frac{\nabla \emptyset L \cup M E}{\nabla \emptyset L} \right)$$
(36)

The above process is repeated until the value of $t_{\rm fR}$ is such that VØL from Eqn (35) satisfies the condition

$$\frac{|\nabla \emptyset L - \nabla \emptyset L U M E|}{\nabla \emptyset L U M E} \leq 10^{-5}$$
(37)

The number t_{fR} is then returned to subroutine otin PENING as the approximation to the filling time.

3. Subroutine CALC

a. Input

None

b. Output

None

c. Formal Parameters

CAPT, TF, DCAPT, DCAPTR, M, DV, DP, D

d. Common Blocks

/CØNST/: ALT, PI, G, CDP, DNØT, CDSL, LSS, ML, MP, MSS, MST, NØUSE /VARIABL/: RHØ, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3

e. Method

The function of subroutine CALC is to evaluate the following equations.

$$D_{\rm p} = \frac{2 D_{\rm o}}{\pi} T^{1/2}$$
 (38)

$$D_{P_{max}} = \frac{2D_0}{\pi}$$
(39)

$$\frac{d(D_p)}{dT} = \frac{D_o}{\pi T^{V_2}}$$
(40)

$$d = \frac{4(L_{s}+L_{R}) D_{p}}{4(L_{s}+L_{R})+2D_{o}-\pi D_{p}}$$
(41)

$$\frac{d(a)}{dT} = \frac{\left[4(L_{s}+L_{R})+2D_{o}-\pi D_{p}\right]4(L_{s}+L_{R})\frac{d(D_{p})}{dT}}{\left[4(L_{s}+L_{R})+2D_{o}-\pi D_{p}\right]^{2}}$$
(42)
+
$$\frac{4(L_{s}+L_{R})\pi D_{p} d(D_{p})/dT}{\left[4(L_{s}+L_{R})+2D_{o}-\pi D_{p}\right]^{2}}$$

$$m_{a} = \frac{\pi \rho}{32} \frac{D \rho^{5}}{(D \rho_{max})^{2}}$$
(43)

$$\Delta m_{a} = \frac{5 \pi \rho D_{p}^{4}}{32 (D_{pmax})^{2}} \frac{d(D_{p})}{dT} \Delta T \qquad (44)$$

$$m_{i} = \frac{\pi \rho}{12} \left\{ D_{p}^{3} + D_{p}^{2} \sqrt{\left(L_{s}^{+}L_{R} + \frac{D_{o}}{2} - \frac{\pi}{4} D_{p}\right)^{2}} \right\}$$

$$(45)$$

$$- \frac{D_{p}^{2}}{4} - d^{2} \sqrt{\left(L_{s}^{+}L_{R}\right)^{2} - \frac{d^{2}}{4}} \left\}$$

$$\Delta m_{i} = \frac{\pi p}{12} \left\{ 3D_{p}^{2} \frac{d(D_{p})}{dT} - D_{p}^{2} \left[\frac{\left[2(L_{s}+L_{R}) + D_{o} - \frac{\pi}{2} D_{p} \right] \frac{\pi}{4} \frac{d(D_{p})}{dT}}{2\left[(L_{s}+L_{R} + D_{o}/2 - \pi D_{P}/4)^{2} - D_{p}^{2}/4 \right]^{1/2}} \right. \\ \left. + \frac{D_{p}}{2} \frac{d(D_{p})}{dT}}{dT} \frac{d(D_{p})}{dT} + 2D_{p} \frac{d(D_{p})}{dT} \sqrt{\left(L_{s}+L_{R} + \frac{D_{o}}{2} - \frac{\pi}{4} D_{p}\right)^{2} - \frac{D_{p}^{2}}{4}}}{\left(46\right)} \right.$$

$$\left. + \frac{d^{3}}{4\left[(L_{s}+L_{R})^{2} - \frac{d^{2}}{4} \right]^{1/2}} - 2d \frac{d(d)}{dT} \sqrt{\left(L_{s}+L_{R})^{2} - \frac{d^{2}}{4} \right]} \right\} \Delta T$$

$$\left. + \frac{d^{3}}{4\left[(L_{s}+L_{R})^{2} - \frac{d^{2}}{4} \right]^{1/2}} \right] = 2d \frac{d(d)}{dT} \sqrt{\left(L_{s}+L_{R})^{2} - \frac{d^{2}}{4} \right]} \left. + 2D_{p} \frac{d(d)}{dT} \sqrt{\left(L_{s}+L_{R})^{2} - \frac{d^{2}}{4} \right]} \right\} \Delta T$$

$$\Delta v = \left[\left(\frac{m_{f} + m_{ss} + m_{p}}{m_{T}} \right) g \cos \theta - \frac{p v^{2} \left(C_{D} S_{L} + C_{D} p \frac{\pi D p}{4} \right)}{2 m_{T}} \right]$$
(47)
$$\cdot t_{fR} \Delta T_{R} \stackrel{\text{def}}{=} \frac{v}{m_{T}} \left(\Delta m_{i} + \Delta m_{a} \right)$$

$$\Delta \theta = -\left(\frac{m\chi + m_{SS} + m_P}{m_T}\right) \frac{g \sin \theta}{v} t_{fR} \Delta T_R \qquad (48)$$

$$\Delta x = v \sin \Theta t_{fR} \Delta T_R$$
(49)

$$\Delta z = v \cos \theta t_{fR} \Delta T_R \qquad (50)$$

D. Free Descent; Three Degrees of Freedom

The final calculation phase, the free descent phase, is required for all of the separation-deployment systems. Due to the degree of complexity involved in the general case which has six degrees of freedom, the computer solution was programmed separately for the restricted problem of three degrees of freedom. The trajectory simulation is readily applicable to either three or six degrees of freedom merely by inserting the proper subroutines in the computer program and using the correct input value for allowable degrees of freedom in the main program.

When the simulation is restricted to three degrees of freedom, the subroutines required by the computer program for the free descent calculation phase are MØTIØN, INTGRAT, FØRMULA, EMØTIØN, DYNAMIC, and CØEFFTS. The function of this calculation phase is to calculate the trajectory of the parachute-load system during the period from full inflation to a specified time thereafter or until a specified altitude is reached, as defined by the program user.

1. Subroutine MØTIØN

a. Input

TSTØP, ZSTØP

b. Output

ALL NINT: T, ALT-RZ, RX, RZ, V, VX, VZ, A at the first three instances the parachute-load system is vertical or near vertical

NINT > 0: T, ALT-RZ, SYSANGL, TRAJANG, RX, RZ, V, VX, VZ, A

c. Formal Parameters

DQ, PCTERR, ETA, DT

d. Common Blocks

/CØNST/: ALT, PI, G, CDP, DNØT, CDSL, LSS, ML, MP, MSS, MST, NINT /VARIABL/: RHØ, T, V, THETA, X, Z, ALPHAL, ALPHAP, L1

e. Method

The problem during the free descent calculation phase is to solve the six differential equations of motion for U, W, Q, θ , x, and z simultaneously. These quantities are represented in the computer solution by the six-dimensional array Y. The initial conditions for the free descent calculation phase are determined by the conditions which exist at the instant of full inflation. Thus MØTIØN first assigns the following values to Y:

$$I(1) = \mathbf{U} = \mathbf{O} \tag{51}$$

$$Y(2) = W = v \tag{52}$$

$$Y(3) = Q = -\frac{9 \sin \theta}{v}$$
(53)

$$\mathbf{Y}(\mathbf{4}) = \mathbf{\Theta} \tag{54}$$

$$\Upsilon(5) = \times$$
(55)

(56)

$$Y(6) = 2$$

where v, θ , x, and z are the values of velocity, system angle, and position of the mass center determined by ØPENING at the time of full inflation of the main parachute. The array YDØT represents the time derivatives Ù, Ŵ, Q, θ , x, and z. An initial condition is assigned for Q such that

$$YDQT(3) = \dot{Q} = \frac{9^2 \cos\theta \sin\theta}{v^2} + \frac{g \sin\theta}{v} \frac{dv}{dt}$$
(57)

the value of dv/dt being given by the formal parameter DQ.

Once the initial conditions have been established, the actual solution of the equations of motion is accomplished by means of subroutine INTGRAT. For the first call to INTGRAT. the calling parameter ID is set equal to +1, and for subsequent calls ID equals -1. The calls to INTGRAT are made as part of a DØ loop which has a variable terminator, NUMB. Output of the trajectory parameters is executed after the operations of the $D\emptyset$ loop have been completed; the loop is then executed again. This process continues until the free descent calculation phase is terminated. The original value of the DØ loop terminator, NINT, is set by the program user via the main program. Since the integration routine INTGRAT automatically selects time increments for the solution of the equations of motion, output could come at infrequent intervals of time as the time increment is increased during phases which approach steady state conditions if the loop terminator were not allowed to vary. Thus, if at any time the product of NUMB with the time increment DX (assigned by INTGRAT) is larger than one second, the value of NUMB is adjusted so that trajectory parameters will be printed at roughly one second intervals.

The parameters of the call to INTGRAT are T, Y, TF, G, PCTERR, ETA, X1, X2, X3, W, YDØT, B, ID, DX, TI, and K. The parameter G indicates the number of equations to be solved by

INTGRAT; X1, X2, X3, W, and B are arrays established for use in INTGRAT and FØRMULA; and DX is the time increment set by INTGRAT. T1 is a temporary variable for the time values, and K is a signal which is positive if the solution of the equations blow up due to the parachute angle of attack exceeding 85° . The results of the call to INTGRAT are the values of the arrays Y and YDØT evaluated at the time TF, which is defined before each call to INTGRAT as TF = T + DX or, before the first call, as TF = T + DT.

After calling INTGRAT, the next step taken by MØTIØN is to evaluate the position, velocity, and acceleration components of the load, following the relations

$$r_{lx} = x + l_{1} \sin \theta \tag{58}$$

$$\mathbf{r}_{l_{z}} = \mathbf{z} + \mathbf{l}_{1} \cos \theta \tag{59}$$

$$V_{l_X} = (U + Q l_1) \cos \theta + W \sin \theta$$
 (60)

$$V_{l_{z}} = -(U+Q_{l_{1}}) \sin\theta + W \cos\theta$$
(61)

$$a_{lx} = (\dot{U} + QW + \dot{Q}l_1) \cos\theta + (\dot{W} - QU - Q^2l_1) \sin\theta$$
 (62)

$$a_{l_{2}} = -(\dot{U} + QW + \dot{Q}l_{1})\sin\theta + (\dot{W} - QU - Q^{2}l_{1})\cos\theta \qquad (63)$$

The value r_{l_z} is first stored as a variable R2 for consideration of interpolation at the end of MØTIØN.

The load trajectory angle is given by

$$\mathbf{x}_{t} = \boldsymbol{\Theta} - \boldsymbol{\alpha}_{l} \tag{64}$$

where α_{l} is available from the Common block /VARIABL/, having been calculated in EMØTIØN.

In order to calculate the trajectory parameters at the first three instances when the system is vertical or near vertical, it is necessary to define the oscillatory behavior of the system in a quantitative sense. A counter, NMARK, is defined, initially equal to zero, such that it is increased by one each time that the sign of the system angle changes or the system angle reaches an extreme position. Then the parachute-load system will be vertical, or near vertical, when NMARK equals one, three, and five, and the corresponding values of t, $h_0 - r_{d_z}$, r_{d_x} , r_{d_z} , v, v_{d_x} , v_{d_z} , and a_d , which have been stored in the array VERTPAR, approximate the required trajectory parameters at the first three vertical positions.

The final calculations performed by MØTIØN occur when the time exceeds TSTØP or the altitude loss exceeds ZSTØP. The trajectory parameters at the point t = TSTØP or z = ZSTØP are then found by linear interpolation, using a correction given by

$$CØRR = \frac{ZSTØP - r_{l_2}}{R^2 - r_{l_2}}$$
(65)

$$CØRR = \frac{TSTØP-t}{TI-t}$$
(66)

The final values of the parameters are then printed, and control is returned to the main program.

or

2. Subroutine INTGRAT

a. Input

None

b. Output

None

c. Formal Parameters

T, Y, TF, NN, PCTERR, ETA, TRY1, TRY2, TRY3, W, YDØT, Z, ID, DX, T1, ISIGNAL

d. Common Blocks

None

e. Method

This subroutine is arranged in the form of a general solution method for a given number of simultaneous first order differential equations. The numerical technique employed is the Runge-Kutta method, (Ref 2) and INTGRAT is based strongly on the University Computer Center library subroutine The advantage of structuring the subroutine in the RK. manner of a general differential equation solving method is that the same subroutine can be used without modifications to solve both the three and six degree of freedom cases. Furthermore, with slight modifications, the subroutine can be used to solve a system of differential equations which may arise at a future time if substitute methods are to be used for any of the trajectory calculation phases rather than those for which the trajectory simulation computer program was originally written.

The formal parameter T represents the initial time, TF is the time at which the values of the arrays Y and YDØT are desired, and Tl is the running value of the time used by INTGRAT. When returned to MØTIØN, Tl and TF are equal. NN gives the dimension of the arrays Y, YDØT, TRY1, TRY2, TRY3, ETA, W, and Z, and physically represents the number of equations to be solved. For the free descent calculation phase, NN is twice the allowable number of degrees of freedom. PCTERR and ETA are the relative and absolute error parameters input to the main program. Values of these parameters are discussed in Section IX. ID and ISIGNAL are signals; ID signals to INTGRAT whether or not the call from MØTIØN is the first call and ISIGNAL indicates to MØTIØN whether $|\alpha_p| > 85^{\circ}$ (the variable K in MØTIØN is equal to ISIGNAL).

The basic functioning of INTGRAT is as follows. The variable IMDØNE indicates whether or not the integration has proceeded successfully to a solution at the time TF. Initially IMDØNE is set equal to -1. If the call to INTGRAT is the first, indicated by a positive value of ID, the time increment for a first approximation to the integration with the Runge-Kutta formula is taken as TF-T. On subsequent calls, the time increment is taken as DX, which was a suitable time increment at the end of the previous call.

The solution of the equations of motion is approximated by calls to subroutine FØRMULA, which evaluates the Runge-Kutta formula. For a given time increment, the equations are numerically integrated by FØRMULA, over the entire corresponding time interval and the results stored in the array TRY1. To evaluate the acceptability of these results, the equations are then integrated over half the time interval, the integrated quantities being stored in TRY2, and then over the other half of the time interval, yielding results in the array TRY3. The two separate integrations, yielding values of

the variables represented by Y at the initial time plus the time increment, are then compared. If any of the quantities in TRY3 and TRY1 differ in absolute value by more than the prescribed relative or absolute errors (PCTERR and ETA), the solution is considered unacceptable. The time increment is then halved and the process repeated until satisfactory results are obtained for Y_i at the time TF.

In this way, the actual time increment used in FØRMULA may become quite small. If, however, five consecutive calls to FØRMULA are made without halving the time increment, the increment is doubled. The number of successful consecutive calls to FØRMULA is stored by the variable M, which continuously counts the calls to FØRMULA disregarding the fact that control may revert to MØTIØN. Thus, the solution method for the free descent phase uses only as small a time increment as is required to meet the prescribed allowable error. If the time increment must be halved twenty times before a successful integration is made, as indicated by MM, control is returned with a signal that the equations cannot be integrated.

The last function of INTGRAT is to call subroutine EMØTIØN to evaluate the derivatives $YDØT_i$ which correspond to the time TF. The third calling parameter of the call to EMØTIØN is 1, indicating that the call comes from INTGRAT rather than FØRMULA. Control is then returned to subroutine MØTIØN.

3. Subroutine FØRMULA

a. Input

None

b. Output

None

c. Formal Parameters

Y, H, YI, NN, W, YDØT, Z, ISIGNAL

d. Common Blocks

None

e. Method

The only function of this subroutine is to evaluate the Runge-Kutta formula for each of the equations being solved. Thus FØRMULA provides an approximation to the integration of the equations of motion by

$$Y_{i,n+1} = Y_{i,n} + \frac{1}{6} (k_{o} + 2k_{1} + 2k_{2} + k_{3})$$

$$i = 1, 2, ..., NN$$
(67)

where

 $k_{o} = \Delta t \dot{Y}_{i} (Y_{i,n})$ $k_{i} = \Delta t \dot{Y}_{i} (Y_{i,n} + \frac{1}{2}k_{o})$ $k_{z} = \Delta t \dot{Y}_{i} (Y_{i,n} + \frac{1}{2}k_{i})$ $k_{3} = \Delta t \dot{Y}_{i} (Y_{i,n} + k_{o})$

to yield k_0 , k_1 , k_2 , and k_3 in successive steps of the program.

The evaluation of Eqn (67) is accomplished by means of nested DØ loops. Initially the contents of Z are set equal to the contents of YDØT, and the contents of W and of YI are set equal to Y. A DØ loop is then utilized to call EMØTIØN with W and Z as parameters four times. W is updated after each call by the relation

$$W_{L} = Y_{i} + A_{\kappa} Z_{i}$$
; $\kappa = 1, 2, 3, 4$ (68)

where

$$A_1 = A_2 = A_5 = \frac{1}{2} \Delta t$$
$$A_3 = A_4 = \Delta t$$

and YI is updated by the relation

$$YI_{i} = YI_{i} + \frac{1}{3}A_{K+1}Z_{i} ; K = 1, 2, 3, 4$$
(69)

Relations (68) and (69) are carried out by a DØ loop such that i runs from one to NN. All calls to EMØTIØN have the third calling parameter 2 to indicate that the call comes from FØRMULA rather than INTGRAT. If ISIGNAL indicates that the solution blows up, control is returned to INTGRAT where the time increment is adjusted. After the equation (67) has been successfully evaluated, control is returned to INTGRAT.

4. Subroutine EMØTIØN

a. Input

None

b. Output

None

c. Formal Parameters

Y, YDØT, ISTØP, ISIGNAL

d. Common Blocks

/CØNST/: ALT, PI, G, CDP, DNØT, CDSL, LSS, ML, MP, MSS, MST, NØUSE

/VARIABL/: RHØ, T, V, THETA, X, Z, ALPHAL, ALPHAP, L1

e. Method

The function of EMØTIØN is to evaluate the new array of derivatives YDØT from the given array of values Y and YDØT. The derivatives of U, W, Q, θ , x, and z are not explicit functions of time, and thus the only required information is the values of U, W, Q, θ , x, z, and Q.

The calculations made by EMØTIØN are as follows. First, calls are made to DENSITY and DYNAMIC to determine the proper values of l_1 , l_2 , l_3 , I_{XX} , I_{YY} , I_{ZZ} , I_{XZ} , m_1 and m_a . I_{XX} , I_{ZZ} , and I_{XZ} are not required in the three degrees of freedom solution. The following equations are then evaluated in sequence.

 $\vee^2 = \overline{\vee}^2 + \overline{\mathbb{W}}^2$

(70)

(73)

 $\alpha = \tan^{-1}\left(-\frac{\upsilon}{\upsilon}\right) \tag{71}$

$$v_{\rho}^{2} = v_{\rho}^{2} + Q_{2}^{2}l_{2}^{2} + 2UQl_{2}$$
 (72)

$$\alpha_{p} = \tan^{-1}\left(-\frac{U+Ql_{k}}{W}\right)$$

$$v_{j}^{2} = v^{2} + Q^{2} l_{j}^{2} + 2 U Q l_{j}$$
 (74)

$$\alpha_{l} = \tan^{-1}\left(-\frac{U+Ql_{l}}{W}\right) \tag{75}$$

Subroutine CØEFFTS is then called to give the values of C_{T_o} , C_{N_o} , and C_{M_o} corresponding to α_p . Calling parameter ISTØP indicates to CØEFFTS whether the call to EMØTIØN was from INTGRAT or FØRMULA, and ISIGNAL indicates whether $|\alpha_p| < 85^{\circ}$. If $|\alpha_p|$ is too large, control is returned to the calling program. The equations of motion are then evaluated if $|\alpha_p| < 85^{\circ}$, i.e.

$$\dot{U} = -\left(\frac{m_{l}+m_{a}}{m_{T}}\right)\dot{Q}l_{2} - \left(\frac{m_{l}+m_{ss}+m_{P}}{m_{T}}\right)g\sin\theta$$

$$+ \frac{F_{N}}{m_{T}} + \frac{D}{m_{T}}\sin\alpha_{l} - QW$$
(76)

$$\vec{W} = \left(\frac{m_{l}+m_{A}}{m_{T}}\right) Q^{2} l_{z} + \left(\frac{m_{l}+m_{ss}+m_{P}}{m_{T}}\right) g \sin \theta$$

$$- \frac{T}{m_{T}} - \frac{D}{m_{T}} \cos \alpha_{l} + Q U$$
(77)

$$\dot{Q} = \frac{F_{N}l_{3}}{I_{YY}} + \frac{Dl_{1}\sin\alpha_{l}}{I_{YY}} + \frac{M_{A}}{I_{YY}}$$

$$- \frac{(m_{l}l_{1} + m_{p}l_{2}) gsin\theta}{I_{YY}}$$
(78)

$$\theta = Q$$
(79)
$$x = U\cos\theta + W\sin\theta$$
(80)

$$\dot{z} = -U\sin\theta + W\cos\theta$$
 (81)

The relation between the quantities as expressed above and the arrays Y and YD ϕ T is

 $Y(1) = U , Y D \emptyset T(1) = U$ $Y(2) = W , Y D \emptyset T(2) = W$ $Y(3) = Q , Y D \emptyset T(3) = Q$ $Y(4) = \Theta , Y D \emptyset T(4) = \Theta$ $Y(5) = x , Y D \emptyset T(5) = x$ $Y(6) = Z , Y D \emptyset T(6) = Z$

Control is then returned to the calling program, either INTGRAT or FØRMULA.

5. Subroutine DYNAMIC

a. Input

None

b. Output

None

c. Formal Parameters

RHØ, L1, L2, L3, IXX, IYY, IZZ, IXZ, MI.

d. Common Blocks

/DYNAM/: DNØT, X1, X2, X3, X4, X5, MBR, ML, MLS, MP, MR, MRX, IAZO, IZ

e. Method

The equations programmed in DYNAMIC are:

$$m_i = \rho V \tag{82}$$

$$\overline{S} = \frac{XNUM - m_i S_c}{XDEN@M + m_i}$$
(83)

$$\mathcal{L}_{1} = S_{\mathcal{S}} - \bar{S}$$
(84)

$$\mathcal{L}_{2} = -\bar{S} - S_{c} \tag{85}$$

$$l_3 = D_0 = \bar{s}$$
 (86)

$$I_{a} = (0.13195) p D_{p}^{3} l_{2}^{2}$$
(87)

$$I_{Y} = m_{p} l_{2}^{2} + m_{L_{s}} (\bar{s} - \bar{s}_{1})^{2} + m_{R} (\bar{s}_{2} - \bar{s})^{2} + m_{E} (\bar{s}_{2} - \bar{s})^{2} + m_{B_{r}} (\bar{s}_{4} - \bar{s})^{2} + m_{L_{s}} l_{1}^{2}$$
(88)

$$I_{YY} = I_Y + I_\alpha \tag{89}$$

$$I_{XX} = I_{YY}$$
(90)

$$I_{ZZ} = I_{Z} + I_{a_{Z}} \Big|_{o} \left[\frac{\rho}{(.002378)} \right]$$
(91)

$$\mathbf{I}_{\mathbf{X}\mathbf{E}} = \mathbf{O} \tag{92}$$

Thus the present arrangement of the computer solution is for parachutes which are rotationally symmetric. For a parachute without rotational symmetry, subroutine DYNAMIC must be modified for the appropriate components of the inertia tensor. After evaluation of the above equations, control is returned to the calling program.

6. Subroutine CØEFFTS

a. Input

None

b. Output

None
c. Formal Parameters

ALPHAP, CT, CN, CM, IPRINT, ISIGNAL

d. Common Blocks

None

e. Method

The function of this subroutine is to evaluate the aerodynamic coefficients corresponding to the parachute angle of attack. If α_p is larger in absolute value than 85°, the parameter ISIGNAL is set equal to +1 and control returned immediately. If IPRINT is 1 a message indicating this occurrence is printed, and the successive travel of parameter ISIGNAL will cause the particular run to terminate. Otherwise, the only result will be to decrease the time increment in subroutine INTGRAT, after control is returned by means of EMØTIØN and FØRMULA.

If α_p is within the acceptable range, the following results are calculated for solid flat circular or T-10 parachutes:

Solid Flat Circular: for $|\alpha_p| < 30^\circ$

$$C_{T_0} = 0.647 - (1.2 \times 10^5) |\alpha_p| + (9.15 \times 10^{-4}) |\alpha_p|^2 - (7.13 \times 10^{-5}) |\alpha_p|^3 + (1.33 \times 10^{-6}) |\alpha_p|^4$$
(93)

$$C_{N_{0}} = -(6.74 \times 10^{-3}) \alpha_{p} + (5.57 \times 10^{-4}) \alpha_{p}^{2}$$

-(1.53 × 10^{-5}) \alpha_{p}^{3} + (1.9 × 10^{-7}) \alpha_{p}^{4} (94)
(\alpha_{p} > 0)

$$C_{M_{0}} = (4.844 \times 10^{-3}) \alpha_{p} - (3.94 \times 10^{-4}) \alpha_{p}^{2} + (1.043 \times 10^{-5}) \alpha_{p}^{3} - (1.32 \times 10^{-7}) \alpha_{p}^{4}$$
(95)
(\alpha_{p} > 0)

for $|\alpha_p| \ge 30^{\circ}$

$$C_{N_0} = (.0056) (d_p - 30^\circ) + .04 (d_p > 0)$$
 (97)

$$C_{M_0} = -(.0044) (\alpha_p - 30^\circ) - .034 (\alpha_p > 0)$$
 (98)

$$for \left| \alpha_{p} \right| < 30^{\circ}$$

$$C_{T_0} = 0.570 - (2.48 \times 10^{-3}) |\alpha_p| + (1.219 \times 10^{-3}) |\alpha_p|^{-1}$$
(99)
- (7.687 × 10^{-5}) |\alpha_p|^{-3} + (1.2797 \times 10^{-6}) |\alpha_p|^{-4}

$$C_{N_{0}} = -(2.058 \times 10^{-2}) \alpha_{p} + (1.95 \times 10^{-3}) \alpha_{p}^{2} + (6.022 \times 10^{-5}) \alpha_{p}^{3} - (6.827 \times 10^{-7}) \alpha_{p}^{4}$$
(100)
(\alpha_{p} > 0)

$$C_{M_{0}} = (1.845 \times 10^{-2}) \alpha_{p} - (1.929 \times 10^{-3}) \alpha_{p}^{2} + (6.78 \times 10^{-5}) \alpha_{p}^{3} - (8.709 \times 10^{-7}) \alpha_{p}^{4}$$
(101)
(\alpha_{p} > 0)

for
$$\alpha_{\rm p} \geq 30^{\circ}$$

 $C_{\tau_{\circ}} = -(.0032)(|\alpha_{\rm p}| - 30^{\circ}) + ...553$ (102)

$$C_{N_0} = (.0072)(\alpha_P - 30^\circ) + .064 (\alpha_P > 0)$$
 (103)

$$C_{M_0} = -(.0060)(\alpha_p - 30^\circ) - .056 \quad (\alpha_p > 0) \quad (104)$$

The proper subroutine must be inserted for computer trajectory simulations with a given parachute type so that the corresponding aerodynamic coefficients are used. Any parachute type other than the solid flat circular or T-10 may be used by properly providing the aerodynamic coefficients by means of subroutine CØEFFTS in the manner outlined here for solid flat circular and T-10 parachutes.

E. Free Descent; Six Degrees of Freedom

The free descent calculation phase follows the same organization when six degrees of freedom are allowed as when the trajectory simulation is restricted to three degrees of freedom. The names of the subroutines are the same for the six degree of freedom solution as for the solution allowing only three degrees of freedom, with the exception of the addition of subroutine CØSINES for the six degree of freedom case. The subroutines INTGRAT, FØRMULA, and DYNAMIC are identical for both cases. Subroutines MØTIØN, EMØTIØN, and CØEFFTS are not the same when six degrees of freedom are allowed. In the following, only subroutines MØTIØN, EMØTIØN, CØEFFTS, and CØSINES are discussed.

1. Subroutine MØTIØN

a. Input

TSTØP, ZSTØP

b. Output

ALL NINT: T, ALT-RZ, RX, RY, RZ, V, VX, VY, VZ, AT, at the first three instances the parachute-load system is vertical or near vertical

NINT > 0: T, ALT-RZ, SYSANGL, TRAJANG, RX, RY, RZ, V, VX, VY, VZ, AT

c. Formal Parameters

DQ, PCTERR, ETA, DT

d. Common Blocks

/CØNST/: ALT, PI, G, CDP, DNØT, CDSL, LSS, ML, MP, MSS, MST, NINT

/VARIABL/: RHØ, T, V, THETA, X, Z, ALPHAL, ALPHAP, L1

e. Method

The basic aspects of subroutine MØTIØN are the same for the three and six degree of freedom cases. All input and output is the same, except that position and velocity components in the y-direction are included when all six degrees of freedom are allowed. The procedures for output and for calling the solution routine INTGRAT with variable time increments are exactly the same. After each call to INTGRAT, the position, velocity, and acceleration components of the load are evaluated by

$$\gamma_{l_{\mathbf{X}}} = \mathbf{X} + l_1 \mathbf{a}_{13} \tag{105}$$

$$r_{ly} = y + l_1 a_{23}$$
 (106)

$$r_{lz} = z + l_1 a_{33}$$
 (107)

$$V_{l_{x}} = (U + Ql_{1}) a_{11} + (V - Pl_{1}) a_{12} + W a_{13}$$
 (108)

$$V_{ly} = (U + Q l_1) a_{21} + (V - P l_1) a_{22} + W a_{23}$$
(109)

$$v_{l_{z}} = (U + Q l_{1}) a_{31} + (V - P l_{1}) a_{32} + W a_{33}$$
(110)

$$c_3 = U + QW - RV + Ql_1 + PRl_1$$
(111)

$$C_4 = \dot{V} + RU - PW - \dot{P}l_1 + QRl_1 \tag{112}$$

$$c_{s} = \dot{W} - PV - QU - (P^{2} + Q^{2})l_{1}$$
 (113)

$$\Delta L_{x} = C_{3} a_{11} + C_{4} a_{12} + C_{5} a_{13} \qquad (114)$$

$$a_{ly} = c_3 a_{21} + c_4 a_{22} + c_5 a_{23}$$
(115)

$$a_{l_{z}} = c_{3} a_{31} + c_{4} a_{32} + c_{5} a_{33}$$
(116)

For the six degree of freedom case, the system angle and load trajectory angle are defined by

$$\alpha_{s} = \cos^{-1}(\alpha_{33}) \tag{117}$$

$$\alpha_{tl} = \cos^{-1} \left\{ \frac{v_{l_{z}}}{\left[v_{l_{x}}^{2} + v_{l_{y}}^{2} + v_{l_{z}}^{2} \right]^{V_{z}}} \right\}$$
(118)

The values of the trajectory parameters corresponding to the first three vertical positions are stored in the array VERTPAR and are determined in the same manner as for the three degrees of freedom. When the termination condition TSTØP or ZSTØP is exceeded, the trajectory parameters at the given condition are approximated by linear interpolation and control is returned to the main program.

2. Subroutine EMØTIØN

a. Input

None

b. Output

None

c. Formal ParametersY, YDØT, ISTØP, ISIGNAL

d. Common Blocks

/CØNST/: ALT, PI, G, CDP, DNØT, CDSL, LSS, ML, MP, MSS, MST, NØUSE

/VARIABL/: RHØ, T, V, THETA, X, Z, ALPHAL, ALPHAP, L1

e. Method

The purpose of EMØTIØN is to evaluate the equations of motion, providing the array YDØT containing the time derivatives of the twelve variables given the previously existing values of Y and YDØT. The calculation procedure for subroutine EMØTIØN is as follows. The values of l_1 , l_2 , l_3 , I_{XX} , I_{YY} , I_{ZZ} , I_{XZ} , m_i , and m_a are determined by means of calls to DENSITY and DYNAMIC. EMØTIØN then finds the following quantities:

$$\mathcal{U}_{\mathbf{I}} = \mathcal{U} + \mathcal{Q}_{\mathbf{I}}$$
(119)

$$V_{\ell} = V - P\ell, \qquad (120)$$

$$U_{p} = \mathbf{U} + \mathbf{Q} \mathbf{l}_{z} \tag{121}$$

$$V_{p} = V - Pl_{2} \tag{122}$$

$$v_{l}^{2} = U_{l}^{2} + V_{l}^{2} + W^{2}$$
 (123)

$$v_{\rho}^{2} = U_{\rho}^{2} + V_{\rho}^{2} + W^{2}$$
(124)

$$\alpha_{l} = \tan^{-1} \left(- \frac{U_{l}}{W} \right) \tag{125}$$

$$\beta_{\ell} = \tan^{-1} \left(\frac{V_{\ell}}{W} \right) \tag{126}$$

$$\vec{v}_{l} = \tan^{-1} \left\{ \frac{V_{l}}{(U_{l}^{2} + W^{2})^{1/2}} \right\}$$
(127)

$$\delta_{\ell} = \tan^{-1} \left\{ \frac{U_{\ell}}{(V_{\ell}^{2} + W^{2})^{1/2}} \right\}$$
(128)

$$\alpha_{p} = \tan^{-1}\left(-\frac{\upsilon_{p}}{W}\right) \qquad (129)$$

$$\beta_{p} = \tan^{-1}\left(\frac{\nabla_{p}}{W}\right) \tag{130}$$

$$\Theta_{p} = \cos^{-1} \left\{ \frac{W}{\left(U_{p}^{2} + V_{p}^{2} + W^{2} \right)^{1/2}} \right\}$$
(131)

 θ_p represents the angle between the systems axis and the parachute velocity in the plane formed by the systems axis and the parachute velocity. The aerodynamic coefficients are then found by calling CØEFFTS; α_p , β_p , and θ_p are supplied and C_{T_o} , C_{X_o} , C_{Y_o} , C_{MX_o} , and C_{MY_o} are returned from CØEFFTS. The signals ISTØP and ISIGNAL in the call to CØEFFTS represent the same signals as in the three degree of freedom case. The aerodynamic forces and moments are given by

$$F_{NX} = \frac{1}{2} \rho v_{\rho}^{2} C_{N_{X}} S_{o}$$
(132)

$$F_{NY} = \frac{1}{2} \rho \vee \rho^2 C_{NY_0} \beta_0 \qquad (133)$$

$$T = \frac{1}{2} \rho \nabla \rho^2 C_{T_o} S_o$$
(134)

$$M_{AX} = \frac{1}{2} \rho v_{\rho}^{2} C_{MX} S_{o} D_{o} \qquad (135)$$

$$M_{AY} = \frac{1}{2} \rho v \rho^2 C_{MY} S_0 D_0 \qquad (136)$$

The direction cosines are evaluated by a call to CØSINES, and the equations of motion are then evaluated:

$$\dot{U} = \left(\frac{m_{\ell} + m_{ss} + m_{P}}{m_{T}}\right) g a_{31} + \frac{D_{\ell}}{m_{T}} \cos \vartheta_{\ell} \sin \vartheta_{\ell}$$

$$+ \frac{F_{NX}}{m_{T}} - \left(\frac{m_{\ell} + m_{A}}{m_{T}}\right) l_{2}(\dot{Q} + PR) - QW + RV$$
(137)

$$\dot{\mathbf{V}} = \left(\frac{m_{\ell} + m_{ss} + m_{\tilde{P}}}{m_{T}}\right) g^{a_{32}} - \frac{D_{\ell}}{m_{T}} \cos \delta_{\ell} \sin \beta_{\ell}$$

$$+ \frac{F_{NY}}{m_{T}} + \left(\frac{m_{\ell} + m_{a}}{m_{T}}\right) l_{z} \left(\dot{P} - QR\right) + PW - RU$$
(138)

$$\dot{W} = \left(\frac{m_l + m_{ss} + m_p}{m_T}\right) ga_{33} - \frac{D_l}{m_T} \cos \delta_l \cos \alpha_l$$

$$- \frac{T}{m_T} + \left(\frac{m_l + m_a}{m_T}\right) l_2 \left(p^2 + Q^2\right) - PV + QU$$
(139)

$$\dot{P} = -\frac{F_{NY}l_3}{I_{XX}} + \frac{M_{AX}}{I_{XX}} + \frac{D_l}{I_{XX}} \cos \delta_l \sin \beta_l l_1$$
(140)
$$- \frac{9 \alpha_{32}}{I_{XX}} (m_l l_1 + m_p l_2) + \dot{R} \frac{I_{XZ}}{I_{XX}} - QR \left(\frac{I_{ZZ} - I_{YY}}{I_{XX}}\right) + PQ \frac{I_{XZ}}{I_{XX}}$$

$$\dot{Q} = \frac{F_{NX} l_{3}}{I_{YY}} + \frac{M_{AY}}{I_{YY}} + \frac{D_{\ell}}{I_{YY}} \cos \delta_{\ell} \sin \alpha_{\ell} l_{1} \qquad (141)$$

$$+ \frac{9\alpha_{31}}{I_{YY}} (m_{\ell} l_{1} + m_{p} l_{2}) - PR\left(\frac{I_{XX} - I_{ZZ}}{I_{YY}}\right) - (p^{2} - R^{2}) \frac{I_{XZ}}{I_{YY}}$$

$$\dot{R} = \dot{Q} \frac{I_{XZ}}{I_{ZZ}} - PQ \frac{(I_{YY} - I_{XX})}{I_{ZZ}} - QR \frac{I_{XZ}}{I_{ZZ}}$$
 (142)

$$\dot{\Theta} = Q \cos \varphi - R \sin \varphi$$
 (143)

$$\dot{\varphi} = P + Q \sin \varphi \tan \theta + R \cos \varphi \tan \theta$$
 (144)

$$\Psi = (Q \sin Q + R \cos Q) \sec \Theta$$
 (145)

$$\dot{x} = U a_{11} + V a_{12} + W a_{13}$$
 (146)

$$\dot{y} = U a_{21} + V a_{22} + W a_{23} \tag{147}$$

$$\dot{z} = U a_{31} + V a_{32} + W a_{33}$$
 (148)

Control is then returned to the main program.

3. Subroutine CØSINES

.

a. Input

None

b. Output

None

c. Formal Parameters

Α, Υ

d. Common Blocks

None

e. Method

The formal parameters of CØSINES are A and Y. A is a 3 x 3 array representing the direction cosine matrix, whose components are functions of the Euler angles. The subroutine merely evaluates the following relationships:

$$a_{\parallel} = \cos \Theta \cos \Psi \tag{149}$$

$$a_{12} = \sin \varphi \sin \Theta \cos \Psi - \cos \varphi \sin \Psi$$
 (150)

$$a_{13} = \cos \varphi \sin \theta \cos \Psi + \sin \varphi \sin \Psi$$
(151)

$$a_{21} = \cos \Theta \sin \Psi \tag{152}$$

$$a_{22} = \sin \varphi \sin \theta \sin \psi - \cos \varphi \cos \psi \qquad (153)$$

$$a_{23} = \cos \varphi \sin \theta \sin \Psi - \sin \varphi \cos \Psi \qquad (154)$$

$$a_{31} = -\sin\Theta \tag{155}$$

$$a_{32} = \sin \varphi \cos \Theta$$
 (156)

$\alpha_{33} = \cos{(\varphi \cos \Theta)}$ (157)

Control is then returned to the calling program.

4. Subroutine COEFFTS

a. Input

None

b. Output

None

c. Formal Parameters

ALPHAP, BETAP, PØLANG, CT, CX, CY, CMX, CMY, IPRINT, ISIGNAL

d. Common Blocks

None

e. Method

This subroutine supplies the aerodynamic coefficients as functions of the parachute angles α_p , β_p , and θ_p . At present, measurements of the functional relationships which are required are not avilable. As an example of a possible arrangement for this subroutine, the following relationships are based on two-dimensional measurements for a solid flat circular parachute (Ref 3):

$$C_{T_{0}} = 0.647 - (1.2 \times 10^{5}) |\Theta_{p}| + (9.15 \times 10^{-4}) |\Theta_{p}|^{2} - (7.13 \times 10^{-5}) |\Theta_{p}|^{3} + (1.33 \times 10^{-6}) |\Theta_{p}|^{4}, |\Theta_{p}| < 30^{\circ}$$
(158)

$$C_{N_{X_{0}}} = -(6.74 \times 10^{-3}) \alpha_{p} + (5.57 \times 10^{-4}) \alpha_{p}^{2} - (7.13 \times 10^{-5}) \alpha_{p}^{3} + (1.9 \times 10^{-7}) \alpha_{p}^{4}, \quad 0 \le \alpha_{p} < 30^{\circ}$$
(159)

$$C_{NY_{0}} = -(6.74 \times 10^{-3})\beta_{p} + (5.57 \times 10^{-4})\beta_{p}^{2} - (7.13 \times 10^{-5})\beta_{p}^{3} + (1.9 \times 10^{-7})\beta_{p}^{4}, \qquad 0 \le \beta_{p} < 30^{\circ}$$
(160)

$$C_{M_{Y_{0}}} = (4.844 \times 10^{-3}) \alpha_{p} - (3.94 \times 10^{-4}) \alpha_{p}^{2} + (1.043 \times 10^{-5}) \alpha_{p}^{3} - (1.32 \times 10^{-7}) \alpha_{p}^{4}, \quad 0 \le \alpha_{p} < 30^{\circ}$$
(161)

$$C_{M_{X_{0}}} = (4.844 \times 10^{-3}) \beta_{P} - (3.94 \times 10^{-4}) \beta_{P}^{2} + (1.043 \times 10^{-5}) \beta_{P}^{3}$$
$$-(1.32 \times 10^{-7}) \beta_{P}^{4}, \quad 0 \le \beta_{P} \le 30^{\circ} \qquad (162)$$

$$C_{\tau_0} = 0.62 \quad , \quad |\Theta_p| \ge 30^{\circ} \tag{163}$$

$$C_{N_{X_{o}}} = (.0056)(\alpha_{p} - 30^{\circ}) + .04$$

 $\alpha_{p} \ge 30^{\circ}$ (164)

$$C_{NY_{0}} = (.0056)(\beta_{p} - 30^{\circ}) + .04$$
(165)

$$\beta_{p} \ge 30^{\circ}$$

$$C_{MY_{0}} = -(.0044)(\alpha_{p} - 30^{\circ}) - .034$$
(166)

$$\alpha_{p} \ge 30^{\circ}$$

$$C_{MX_{0}} = -(.0044)(\beta_{p} - 30^{\circ}) - .034$$
(167)

$$\beta_{p} \ge 30^{\circ}$$

Limits must be set on the allowable magnitude of the angles to prevent the solution from blowing up. When any of the angles are larger in absolute value than, for example, 85°, the parameter ISIGNAL so indicates. After the coefficients are determined, or the angles exceed the limit, control is returned to the calling program.

F. DENSITY and TRAJEQN

1. Subroutine DENSITY

a. Input

None

b. Output

None

c. Formal Parameters

RHØ, H

d. Common Blocks

None

e. Method

This subroutine provides the value of the air density at altitude h, as follows:

$$p = (0.002378) e^{-h/32,916}$$
, $0 \le h \le 15,000 \text{ ft}$

(168)

$$P = (0.002378)(1.07133) e^{-h/28,953}, 15,000 \text{ ft } \leq h$$

$$\leq 35,000 \text{ ft}$$

2. Subroutine T	RAJE	QN
-----------------	------	----

a. Input

None

b. Output

None

c. Formal Parameters

T, V, THETA, X, Z, RHØ, CDS, M, DT, G, ALT, DV

d. Common Blocks

None

e. Method

This subroutine evaluates the following two-dimensional

point mass trajectory equations:

$$\Delta v = \left[g \cos \Theta - \frac{\rho v^2 C_0 S}{2m} \right] \Delta t$$
 (169)

$$\Delta \theta = - \frac{9 \sin \theta}{V} \Delta t$$
(170)

$$\Delta x = v \sin \theta \Delta t \tag{171}$$

$$\Delta_{\vec{z}} = \vee \cos \Theta \Delta t \tag{172}$$

and then adds these finite increments to v, θ , x, z, and t.

IV. CALLING PARAMETERS

The calling parameters for each call by the various calling programs to each subroutine are listed in the following. The formal parameter list of the particular subroutine is shown first for a reference, followed by the call statements in the indicated subroutine.

A. EXTRACT (ISNATCH, IEXTRAC, VO, DT, TRCA)

MAIN PRØGRAM:

CALL EXTRACT (ISNATCH, IEXTRAC, VO, DT1, TRCA)

B. SNATCH (TRCA, DT)

MAIN PRØGRAM:

CALL SNATCH (TRCA, DT1)

C. $B\phi DIES$ (M1, CDS1, M2, CDS2, V1, V2, L, DT)

SNATCH:

CALL	BØDIES	(M1,	CDS1,	CAPM2,	CDS2.	V1.	V2.	L.	DT)
CALL	BØDIES	(M1,	CDS1,	MPBAG,	CDS2,	V1,	V2,	L,	DT)

68

D. ØPENING (DQ, TRCA, N, F, VØLUMG, IEXTRAC, DTT) MAIN PRØGRAM: CALL ØPENING (DQ, TRCA, NNN, SPACE, VØLUME, IEXTRAC, DT3)

E. FILLTIM (VØLUME, VO, XO, ZO, THETAO, MS, HO, H1, N, VØLDØT, TF)

ØPENING:

CALL FILLTIM (VØLUME, VO, XO, ZO, THETAO, MS, HO, H1, N, F, TF) CALL FILLTIM (VØLUME, VO, XO, ZO, THETAO, MS, HO, H1, N, F, TF)

F. CALC (CAPT, TF, DCAPT, DCAPTR, M, DV, DP, D) ØPENING: CALL CALC (CAPT, TF, DCAPT, DCAPTR, MS, DV, DP, D) CALL CALC (CAPT, TF, DCAPT, DCAPTR, MS, DV, DP, D) FILLTIM:

CALL CALC (CAPT, TF, DCAPT, DCAPTR, MS, DV, DP, D)

G. MØTIØN (DQ, PCTERR, ETA, DT)

MAIN PRØGRAM:

CALL MØTIØN (DQ, PCTERR, ETA, DT3)

69

H. INTGRAT (T, Y, TF, NN, PCTERR, ETA, TRY1, TRY2, TRY3, W, YDØT, Z, ID, DX, T1, ISIGNAL)

MØTIØN (Three Degrees of Freedom): CALL INTGRAT (T, Y, TF, 6, PCTERR, ETA, X1, X2, X3, W, YDØT, B, ID, DX, T1, K)

MØTIØN (Six Degrees of Freedom): CALL INTGRAT (T, Y, TF, 12, PCTERR, ETA, X1, X2, X3, W, YDØT, B, ID, DX, T1, K)

I. EMØTIØN (Y, YDØT, ISTØP, ISIGNAL)

FØRMULA:

CALL EMØTIØN (W, Z, 2, ISIGNAL)

INTGRAT:

CALL EMØTIØN (Y, YDØT, 1, ISIGNAL)

J. DYNAMIC (RHØ, L1, L2, L3, IXX, IYY, IZZ, IXZ, MI)
MAIN PRØGRAM:
CALL DYNAMIC (0.002378, A1, A2, A3, A4, A5, A6, A7, A8) CALL DYNAMIC (RHØ, B1, B2, B3, B4, B5, B6, B7, B8)
EMØTIØN:
CALL DYNAMIC (RHØ, L1, L2, L3, IXX, IYY, IZZ, IXZ, MI) K. CØEFFTS (ALPHAP, CT, CN, CM, IPRINT, ISIGNAL)

EMØTIØN (Three Degrees of Freedom): CALL COEFFTS (ALPHAP, CT, CN, CM, ISTØP, ISIGNAL)

L. CØEFFTS (ALPHAP, BETAP, PØLANG, CT, CX, CY, CMX, CMY, IPRINT, ISIGNAL)

EMØTIØN (Six Degrees of Freedom):

CALL CØEFFTS (ALPHAP, BETAP, PØLANG, CT, CX, CY, CMX, CMY, ISTØP, ISIGNAL)

M. CØSINES (A, Y)

MØTIØN (Six Degrees of Freedom): CALL CØSINES (A, Y) EMØTIØN (Six Degrees of Freedom): CALL CØSINES (A, Y) N. DENSITY (RHØ, H)
MAIN PROGRAM:
CALL DENSITY (RHØ, ALT)
BØDIES, TRAJEQN, CALC:
CALL DENSITY (RHØ, ALT-Z)
EMØTIØN (Three Degrees of Freedom):
CALL DENSITY (RHØ, ALT-Y(6))
EMØTIØN (Six Degrees of Freedom):
CALL DENSITY (RHØ, ALT-Y(12))

O. TRAJEQN (T, V, THETA, X, Z, RHØ, CDS, M, DT, G, ALT, DV)

EXTRACT:

CALL TRAJEQN (T, V, THETA, X, Z, RHØ, CDST, MT, DT, G, ALT, DV) CALL TRAJEQN (T, V, THETA, X, Z, RHØ, CDST, MT, DT, G, ALT, DV) ØPENING:

CALL TRAJEQN (T, V, THETA, X, Z, RHØ, CDST, MS, DTT, G, ALT, DV)

V. FLOW CHARTS

This section includes flow charts for the main program and for all of the computer program subroutines. The order of presentation corresponds to the order in which they are discussed in Section III. All details of the input and output in the various subroutines are not indicated. Input and/or output are treated in detail only where required for a basic understanding of the computer program.

FIG 10 MAIN PRØGRAM (Continued)

FIG 10 MAIN PRØGRAM (Concluded)

FIG 11 Subroutine EXTRACT (Continued)

FIG 11 Subroutine EXTRACT (Continued)

FIG 11 Subroutine EXTRACT (Concluded)

Subroutine SNATCH(Continued)

FIG 12 Subroutine SNATCH (Concluded)

FIG 13 Subroutine BØDIES

FIG 14 Subroutine ϕ PENING (Continued)

FIG 14 Subroutine ØPENING (Concluded)

FIG 15 Subroutine FILLTIM

FIG 16 Subroutine CALC

of Freedom)

FIG 17 Subroutine $M\phi TI\phi N$ (Three Degrees of Freedom) (Continued)

FIG 18 Subroutine INTGRAT

FIG 18 Subroutine INTGRAT (Concluded)

FIG 20 Subroutine EMØTIØN(Three Degrees of Freedom)

$$m_{i} = \rho V$$

$$x = \frac{XNUM - m_{i}s_{c}}{XDENOM + m_{i}}$$

$$\iota_{1} = X5 - X$$

$$\iota_{2} = -X - s_{c}$$

$$\iota_{3} = D_{o} - X$$

$$I_{a} = (0.13195)\rho D_{p}^{3} \iota_{2}^{2}$$

$$I_{Y}, Eqn(88)$$

$$I_{YY} = I_{Y} + I_{a}$$

$$I_{aZ} = I_{aZ} \left(\frac{\rho}{.002378} \right)$$

$$I_{ZZ} = I_{Z} + I_{aZ}$$

$$I_{XZ} = 0$$

$$Exit$$

FIG 21 Subroutine DYNAMIC

Degrees of Freedom)(Continued)

FIG 25 Subroutine CØEFFTS (Six Degrees of Freedom) (Concluded)

 $a_{11} = \cos\theta\cos\psi$ $a_{12} = \sin\phi\sin\theta\cos\psi - \cos\phi\sin\psi$ $a_{13} = \cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi$ $a_{21} = \cos\theta\sin\psi$ $a_{22} = \sin\phi\sin\theta\cos\psi + \cos\phi\cos\psi$ $a_{23} = \cos\phi\sin\theta\sin\psi - \sin\phi\cos\psi$ $a_{31} = -\sin\theta$ $a_{32} = \sin\phi\cos\theta$ $a_{33} = \cos\phi\cos\theta$ $[\Upsilon(7) = \theta, \Upsilon(8) = \phi, \Upsilon(9) = \psi]$

FIG 27 Subroutine DENSITY

108

FIG 28 Subroutine TRAJEQN

VI. COMPUTER PROGRAM SYMBOLS

 $\cdot \overset{\lambda}{\cdot}$

Tables I through XIX explain the various mnemonic symbols used in the computer program in terms of symbols used in the text of Volumes I and II of this report, where applicable, and brief comments. The symbols are arranged in tables which correspond to the various subroutines and are presented in the order of discussion in Section III.

Mnemonic Variation	Symbol	Comment
ALT	h _o	release altitude
Al	<i>i</i> 1	ℓ_1 at mean sea level
A2	* ₂	l ₂ at mean sea level
A3	٤ ₃	ℓ_3 at mean sea level
A4	IXX	I _{XX} at mean sea level
A5	IYY	I _{YY} at mean sea level
A6	IZZ	I _{ZZ} at mean sea level
A7	I _{XZ}	I _{XZ} at mean sea level
A8	^m i	m _i at mean sea level
A9	^m a	m _a at mean sea level
B1	٤ 1	l_1 at h_0
B2	٤2	l_2 at h_o
B3	٤3	ℓ_3 at h_o
B 4	I _{XX}	I_{XX} at h_o
B5	I	I _{YY} at h _o
Вб	I _{ZZ}	I _{ZZ} at h _o
B7	I _{XZ}	I _{XZ} at h _o
B8	^m i	m_{i} at h_{o}
B9	^m a	m _a at h _o
CDP	°Dp	drag coefficient of parachute based on projected area
CDSL	c _D s _ℓ	drag area of load

TABLE I Computer Symbols for MAIN PRÓGRAM

Mnemonic Variation	Symbol	Comment
C1-C5		A block of alphanumeric characters which form the title for a particular simulation
dnøt	Do	nominal diameter
DQ	dv dt	acceleration at the moment of full inflation
DT1	۵t	∆t in EXTRACT
DT2	Δt	∆t in SNATCH
DT3	Δt	∆t in ØPENING, MØTIØN
DYDNØT	D _o	nominal diameter
DYML	me	mass of load
DYMP	^m p	mass of parachute
ETA	η	absolute errors allowed in INTGRAT - N dimensional array
G	g	acceleration of gravity
I		<pre>implied DØ loop index for reading ETA</pre>
IAZO	I _a z) _o	Apparent moment of inertia about Z-axis at mean sea level
IEXTRAC		<pre>Integer Variable; if ISTATIC ≥ 0: IEXTRAC > 0, Reefed main parachute extraction system, IEXTRAC ≤ 0, Extraction parachute system</pre>
ISNATCH	2 - 11 - 12 - 12 - 12 - 12 - 12 - 12 -	Integer variable; if ISNATCH > 0, no snatch force calculation

TABLE I (Cont'd.) Computer Symbols for MAIN PRØGRAM

TABLE I (Cont'd.)

Mnemonic Variation	Symbol	Comment
IZ	Iz	moment of inertia about Z-axis due to physical masses of load, para- chute, and suspension system
J		DØ loop index for NSIM
LSS	$L_{S} + L_{R}$	suspension line + riser length
MBR	^m Br	mass of load bridle
ML	me	mass of load
MLS	^m L _S	mass of suspension lines
MP	^m p	mass of parachute
MR	^m R	mass of risers
MRX	^m E	mass of riser extensions
MSS	m _{ss}	$m_{L_S} + m_R + m_E + m_{Br}$
MST	Mrs Mrs	total mass
N		number of degrees of freedom allowed in MØTIØN
NINT		number of calculations between successive prints in EXTRACT, SNATCH, ØPENING and MØTIØN
NN		2 · N
NNN	n	number of steps used to approxi- mate inflation in ØPENING

Computer Symbols for MAIN PRØGRAM

Mnemonic Variation	Symbol	Comment
NSIM		number of total trajectory simu- lations in 1 computer run
PCTERR		Percentage error allowed in INTGRAT
PI	π	3.141592653589793
Q1	^s c/D _o	ratio of reference distance from canopy skirt to parachute center of volume in fully inflated con- dition to D _o
Q2	Dpmax/Do	projected diameter ratio in fully inflated configuration
RHØ	ρ	air density
TRCA	t _{RCA}	time at which reefing cutters are armed
VØLUME	V	fully inflated volume
VO	v _o	initial velocity
XDENØM		$m_p + m_{L_s} + m_R + m_E + m_{Br} + m_{\ell}$
XNUM		${}^{m}L_{s}{}^{s}1 + {}^{m}R_{s}{}^{s}2 + {}^{m}E_{3}{}^{s}3 + {}^{m}Br_{s}{}^{s}4$
		$+ m_{\ell}s_5 - m_ps_c$
Xl	^s 1	reference distance from canopy skirt to suspension line center of mass in fully inflated con- figuration
X2	s ₂	reference distance from canopy skirt to riser center of mass in fully inflated configuration
X3	s ₃	reference distance from canopy skirt to riser extension center of mass in fully inflated con- figuation

TABLE I (Cont'd.) Computer Symbols for MAIN PRØGRAM

TABLE I (Cont'd.)

Mnemonic Variation	Symbol	Comment
X4	s ₄	reference distance from canopy skirt to load bridle center of mass in fully inflated configuration
X5	\$ ₅	reference distance from canopy skirt to load center of mass in fully inflated configuration

Computer Symbols for MAIN PRØGRAM

Mnemonic Variation	Symbol	Comment
ALT	h _o	release altitude
CDP	C _D	drag coefficient based on projected area
CDSBAG	c _D s _B	drag area of main parachute deploy- ment bag
CDSEX	C _D S _{ex}	drag area of extraction parachute
CDSL	c _D s _e	drag area of load
CDSP	C _D S _{pilot}	drag are a of pilot chute
CDST	c _D s _T	drag area for calls to EXTRACT or for Eqn (4)
DISTANC		distinct values of ℓ where modeled physical process is changed
DNØT	Do	nominal diameter
DPILØT	D _{Pilot}	flat diameter of pilot chute
DT	Δt	time increment
DV	∆v	velocity increment
DX	$\Delta \mathbf{x}$	x increment, v∆t
G	g	acceleration of gravity
H	$(D_p/D_o)_{ex}$	D_p/D_o of reefed main extraction
ICØUNT		index for number of calculations made without print
IEXTRAC		<pre>IntegerVariable; If ISTATIC ≥ 0, IEXTRAC > 0, Reefed main parachute extraction system; IEXTRAC ≤ 0, Extraction parachute system</pre>
ISNATCH		Integer variable; ISNATCH > 0, no snatch force calculation
ISTATIC		<pre>Integer variable; ISTATIC < 0, static line used</pre>

TABLE II Computer Symbols for Subroutine EXTRACT

116

Mnemonic Variation	Symbol	Comment
LENGTH	L	distance load travels in aircraft
LSPILØT	^L s _{Pilot}	length of pilot chute suspension lines
LSS		$L_s + L_R$
LSTATIC	^L Static	Static line length
MST	m _{rs}	mass of entire recovery system
MR	^m T	mass used for calls to TRAJEQN or for Eqn (4)
NINT		number of calculations to be made between successive prints; if NINT < 0, continuous output is suppressed
PI	π	3.14159
R	^R ex	$\frac{(\ell_R/\pi)}{D_0} ex$
RHØ	ρ	air density
T	t	time
TD	^t D	coasting time at constant drag area
THETA	θ	system angle, radians
TRAJANG	θ	system angle, degrees
TRAJ1	θι	θ at static line stretch
TRCA	^t RCA	time at which reefing cutters are armed
T1	t ₁	t at static line stretch or when load leaves aircraft
V	V	velocity
VX	v _x	x component of v
VZ	vz	z component of v
VO	v _o	initial velocity
		117

TABLE II (Cont'd.) Computer Symbols for Subroutine EXTRACT

Mnemonic Variation	Symbol	Comment		
Vl	v 1	v at static load leaves	line stretch airvraft	or when
X	x	x position		
Xl	* 1	x at static load leaves	line stretch aircraft	or when
Z	2	z position		
21	z₁ , <i>s</i>	z at static	line stretch	

TABLE II (Cont'd.) Computer Symbols for Subroutine EXTRACT

Mnemonic Variation	Symbol	Comment
A	A	inverse of spring constant, k
ALT	h _o	release altitude
В	В	Equation (11)
C	C	Equation (12)
CAPM1	M _I	m _l + m _{ss}
CAPM2	M _{II}	$m_p + \frac{1}{2}m_{ss} + m_{Pb}$
CDP	c _{Dp}	drag coefficient based on pro- jected area of parachute
CDSL	C _D Sℓ	drag area of load
CDS1	c _D s _I	drag area of primary body
CDS2	$c_{D}^{s_{II}}$	drag area of secondary body
DELTAV	vs⁻vII	difference between velocity of parachute immediately before snatch and snatch velocity
dnøt	D _o	nominal diameter
DT	Δt	time increment
FA1	FAI	Equation (13)
FA2	FAII	Equation (14)
ICÓUNT		index for number of calculations made without print
K	k	suspension system spring constant

TABLE III Computer Symbols for Subroutine SNATCH

Mnemonic Variation	Symbol	Comment
L second se	Ł	distance between load and secondary body during deployment
LRXBR		$L_{E} + L_{BR}$
LSS		$L_{S} + L_{R}$
ML	m _e	mass of load
MP	^m P	mass of parachute
MPBAG	^m pb	mass of pilot or extraction para- chute and main parachute deploy- ment bag
MSS	m _{ss}	$m_{L_s} + m_R + m_E + m_{Br}$
ML	^m I	$m_{\ell} + \frac{1}{2}m_{ss}$
M2	^m p	mp
NINT		number of calculations to be made between successive prints; if NINT < 0 continuous output is suppressed
PI	Π.	3.14159
PMAX	P _{max}	maximum snatch force
Q	$\mathbf{Q} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	mass ratio, Equation (15)
RHØ	P	air density
	t.	time
THETA	0	systems angle, radians

TABLE III (Cont'd.) Computer Symbols for Subroutine SNATCH

TABLE III (Cont'd.)

Computer	Symbols	for	Subroutine	SNATCH
.				

Mnemonic Variation	Symbol	Comment
TL		t at snatch
TRAJANG	θ	system angle, degrees
TRAJL		θ at snatch
TRCA	^t RCA	time at which reefing cutters are armed
V	V	velocity
VF	v _s	velocity just after snatch
V1	v I	velocity of primary body
V1L		velocity of primary body at snatch
Vlx	v _{I_x}	x - component of v _I
V1Z	v _I z	z - component of v _I
٧2	v II	velocity of secondary body
V2L		velocity of secondary body at snatch
X (X	x position
XL		x at snatch
Ζ	Z	z position
ZL		z at snatch

Mnemonic Variation	Symbol	Comment
ALT	ho	release altitude
CDS1	c _D s _I	drag area of primary body
CDS2	$c_D s_{II}$	drag area of secondary
DL	Δ۶.	increment in distance between bodies
DT	∆t	time increment
DTHETA	Δθ	system angle increment
DV1	$\Delta \mathbf{v}_{\mathbf{I}}$	primary body velocity increment
DV2	Δv _{II}	secondary body velocity increment
DX	Δx	x increment
DZ	∆z	z increment
G	g	acceleration of gravity
	1	separation distance between bodies
M1	m _L	m _e + ½m _{ss}
M2	^m p	^m p
RHØ	ρ. 	air density
T is in the second	t	time
THETA		system angle, degrees
Vl	vI	velocity of primary body
V2	v _{II}	velocity of secondary body

TABLE IV Computer Symbols for Subroutine BØDIES
Mnemonic Variation	Symbol	Comment	
X	x	x position	a de la companya de l La companya de la comp
Ζ	Z	z position	
		an An shi katarar	
	alah geberaka Manang Kabupatén Manang Kabupatén Manang Kabupatén		

TABLE IV (Cont'd.) Computer Symbols for Subroutine BØDIES

Mnemonic Variation	Symbol	Comment
AL		acceleration
ALT	h _o	release altitude
CAPT	T	dimensionless time
CAPTR	T _R	dimensionless time for reefed in- flation
CDP	c _{Dp}	drag coefficient of parachute based on projected area
CDS	(c _D s) _p	drag area of parachute
CDSL	c _D sℓ	drag area of load
CDST		$(C_DS)_p + C_DS_\ell$; for call to TRAJEQN
D	d	canopy inlet diameter
DCAPT	$\Delta \mathbf{T}$	increment in T
DCAPTR	$\Delta \mathbf{T}_{\mathbf{R}}$	increment in T _R
DNØT	D _o	nominal diameter
DP	Dp	projected diameter
DQ	∆v/∆t	acceleration at full inflation
DT		time increment during inflation
DTT	Δt	time increment for coasting stages
DV	$\Delta \mathbf{v}$	velocity increment
F		array established for v _i in sub- routine FILLTIM

TABLE V Computet Symbols for Subroutine ØPENING

124

Mnemonic Variation	Symbol	Comment
FØ	F _{max}	maximum opening force
FRCE	FO	instantaneous opening force
G	g	acceleration of gravity
НО	h _o	initial reefed D _p /D _o
H1	h ₁	final reefed D _p /D _o
I për alti di sa Solo i ti sa solo Solo i sa solo i ti		DØ loop index for loop encompassing the complete inflation with reefed stages
ICØUNT		number of calculations made without print during coasting stages
IEXTRAC		integer variable, see MAIN PRØGRAM
J		DØ loop index for inflation per- iods; implied DØ loop index for printing array REEF
LSS		$L_s + L_R$
ML.	m	mass of load
MP	^m p	mass of parachute
MS		$m_{\ell} + m_{ss} + m_{p}$
MSS	m ss	mass of suspension system
N setting a set of set		number of steps used to approxi-

TABLE V (Cont'd.) Computer Symbols for Subroutine ØPENING

Mnemonic Variation	Symbol	Comment
NINT		<pre>number of calculations to be made between successive prints during coasting stages; if NINT < 0, continuous output is suppressed</pre>
NREEF		integer variable, number of reefing lines used
PI	Π	3.14159
		array which contains trajectory variables, opening shock, and filling time at end of each reefed inflation period
RHØ	ρ	air density
RO	R _o	initial reefing ratio = $\frac{\mathcal{L}_{R}}{D_{o}}$
R1	^R 1	final reefing ratio = $\frac{\ell_{\rm R}/\pi}{D_{\rm O}}$
T		time
TCD	t _{CD}	reefing cutter delay time
TDR	t _{DR}	rime of disreef, $t_{DR} = t_{RCA} + t_{CD}$
TF	t _{ff} or t _{fR}	filling time
THETA	θ	system angle, radians
THETAO	O D	θ initial, at entry to FILLTIM
TNØT	t _o	t initial, at beginning of each inflation stage
TRAJANG	θ	system angle, degrees

TABLE V (Cont'd.) Computer Symbols for Subroutine ØPENING

TABLE V (Cont'd.)

Computer	Symbols	for	Subroutine	ØPENING
----------	---------	-----	------------	---------

Mnemonic Variation	Symbol	Comment
TRCA	t _{RCA}	time at which reefing cutters are armed
V	V	velocity
V1 - V5		terms in Eqn (27)
VØLUME	V or V _R	volume, V or V_R , for call to FILLTIM
VØLUMG	V	volume of fully inflated parachute
VX	v _x	x component of velocity
VZ	V _Z	z component of velocity
VO		initial velocity, at entry to FILLTIM
X	X	x position
хо		initial x, at entry to FILLTIM
Ζ	Z	z position
ZO		initial z, at entry to FILLTIM

Mnemonic Variation	Symbol	Comment
C	C	effective porosity
CAPT	Т	dimensionless time
CAPTR	T _R	dimensionless time for reefed in- flation periods
CO	c _o	effective porosity at mean sea level
D	d	canopy inlet diameter
DCAPT	$\Delta \mathbf{T}$	increment of T
DCAPTR	∆T _R	increment of T _R
DNØT	D _o	nominal diameter
DP	D _p	projected diameter
DTF	n nin san san san san san san san san san sa	filling time increment,
		$\left(\frac{V \not O L U M E}{V \not O L} - 1\right) t_{fR}$
DV	$\Delta \mathbf{v}_{1}^{\text{rest}} = \mathbf{v}_{1}^{\text{rest}} + \mathbf{v}_{2}^{\text{rest}} + \mathbf{v}_{3}^{\text{rest}} + \mathbf{v}_$	velocity increment
НО	h _o	initial reefed D _p /D _o
H1	h ₁	final reefed D _p /D _o
I		DØ loop index for evaluation of continuity equation
J, K		DØ loop indices for evaluation of Simpson's rule formula
MS		$m_{\ell} + m_{ss} + m_{p}$

TABLE VI Computer Symbols for Subroutine FILLTIM

Mnemonic Variation	Symbol	Comment
N		number of steps used for integra- tion of continuity equation by Simpson's rule
PI	.π.	3.14159
RHØ	P	air density
SUM		approximation to
		$\int v \left[(1+2.2cT-T) \frac{d^2}{4} - \frac{1.1c}{2} \frac{D^2}{p} \right] dT$
TF	t _{ff} or t _{fR}	filling time
THETA	θ	system angle, radians
THETAO	θο	initial θ , at entry to FILLTIM
V	v	velocity
VØL	V	volume from integration of con- tinuity equation
VÓLDØT		array which contains integrand of Eqn (30)
vólume	V or V _R	volume increase for the particular inflation
٧O		initial velocity, at entry to FILLTIM
X	x	x position
XO	un delte delte d Gundense det	initial x, at entry to FILLTIM
Ζ	2	z position
ZO		initial z, at entry to FILLTIM

TABLE VI (Cont'd.) Computer Symbols for Subroutine FILLTIM

TABLE VII

Mnemonic Variation	Symbol	Comment
ALT	h _o	release altitude
CAPT	Τ	dimensionless filling time
CDP	c _{Dp}	drag coefficient of parachute based on projected area
CDS		$(c_{D}s)_{p} + c_{D}s_{\ell}$
CDSL	c _D s _ł	drag area of load
D	d	inlet diameter
DCAPT	$\Delta \mathbf{T}$	increment in T
DCAPTR	$\Delta \mathbf{T}_{\mathbf{R}}$	increment in T _R
DDØT	<u>d(d)</u> dT	dimensionless time derivative of d
DMA	∆m _a	increment of m _a
DMI	∆m _i	increment of m _i
dnøt	D _o	nominal diameter
DP	D _p	projected diameter
DPDØT	d(D _p)/dT	dimensionless time derivative of D P
DPMAX	D _{pmax}	projected diameter of fully inflated parachute
DTHETA	Δθ	increment in θ
DV STREET	$\Delta \mathbf{v}$	increment in v

Computer Symbols for Subroutine CALC

Mnemonic Variation	Symbol	Comment
DX	Δx	increment in x
DZ	Δz	increment in z
G	8	acceleration of gravity
LSS		$L_s + L_R$
M		$m_{\ell} + m_{ss} + m_{p}$
MA	^m a	apparent mass
MI	^m i	included mass
MT	^m T	$m_{\ell} + m_{ss} + m_{p} + m_{a} + m_{i}$
PI	Π	3.14159
RHØ	ρ	air density
SQ		term used in Eqn (46)
SQ1		term used in Eqn (46)
TF	t _{ff} or t _{fR}	filling time
THETA	θ	system angle, radians
V	v	velocity
X	X	x position
2	Z	z position

TABLE VII (Cont'd.) Computer Symbols for Subroutine CALC

TABLE VIII

Mnemonic. Variation	Symbol	Comment
Α	a	acceleration of the load
ALPHAL	ae	load angle of attack, radians
ALPHA1	α_{ℓ}	load angle of attack, degrees
ALT	h _o	release altitude
AMARK		± 1
ANG	θ	previous value of system angle
AX	а,	x-component of a
	¹ x	
AZ	alz	z-component of a
A1	a _l x	a_{ℓ_x} if $t_1 > TST \phi P$ or $R2 > ZST \phi P$
A2	a _l z	$a_{\ell} $ if $t_1 > TST \phi P$ or $R_2 > Z T \phi P$
B		dummy array established for use in call to INTGRAT
CØRR		correction for linear interpola- tion
DQ	dv dt	acceleration at the moment of full inflation
DT	۵t	time increment set by MAIN PRØGRAM
DX	Δt	time increment set by INTGRAT
ETA	η _i	array containing allowable abso- lute errors in the integration
G	g	acceleration of gravity
		DØ loop index; implied DØ loop index for printing array VERTPAR
ID		if ID > 0 indicates INTGRAT has not been called previously

TABLE VIII (Cont'd.)

Computer	Symbols	for Su	broutine	MØTIØN
. (Three Deg	grees o	f Freedom	ı)

Mnemonic Variation	Symbol	Comment
IVERT		1, 2, or 3 the number of times the system has been vertical or near vertical
J		Dø loop index
K		if K > 0 indicates the integra- tion cannot be completed
LL	٤ı	distance from parachute-load system mass center to load
NINT		the number of calculations made between prints if the time increment is small enough; if NINT < 0 continuous output is suppressed
NMARK		1, 2, 3, 4 or 5NMARK = 1, 3, or 5 indicates the system is vertical or near vertical
NUMB		DØ loop index for calculations without print
PCTERR	E _p	allowable relative error in integration
PI	Π	3.14159
RX	r _{ex}	x position of load
RZ	rez	z position of load
R1	r _ł x	r_{ℓ_x} if $t_1 > TST \phi P$ or $R2 > ZST \phi P$
R2	۲ ع	r _{tz} ; used to determine if r _{tz} > ZSTØP
SYSANGL	θ	system angle, degrees
Τ	t	time
TF	t _r	time at which integrated values

TABLE VIII (Cont'd.)

Computer Symbols for Subroutine MØTIØN (Three Degrees of Freedom)

Mnemonic Variation	Symbol	Comment
THETA	θ	system angle, radians
TRAJANG	θ-α _ℓ	trajectory angle of load
TSTØP		time at which simulation termi- nates; initially number of seconds after full inflation
T1	t ₁	time
	v, v _e	velocity of load or mass center
VERTPAR		array containing information at the first three instances when the system is vertical or near vertical
VX	v _e x	x - component of load velocity
VZ	v _{ez}	z - component of load velocity
VO	VL	velocity of the load
V1	v _e x	v_{ℓ_x} if $t_1 > TST P$ or $R2 > ZST P$
V2	v _{ez}	v_{ℓ_z} if $t_1 > TST \phi P$ or $R2 > ZST \phi P$
W		array established for call to INTGRAT
X	X	position of mass center at entry to MØTIØN
X1		array established for call to INTGRAT
X2		array established for call to INTGRAT
Х3		array established for call to INTGRAT
Y Spirite Legistr Reserve		array of U, W, Q, θ , x, and z

134

TABLE VIII (Cont'd.)

Mnemonic Variation	Symbol	Comment
YDØT		array of Ů, Ŵ, Q, ė, x, and ż
2		array established for call to INTGRAT
ZSTØP		altitude m a ss at which simula- tion terminates

and and the second s	and the second	
Mnemonic Variation	Symbol	Comment
DT .		time increment
DX	Δt	time increment; represents the last successful time increment used by INTGRAT on previous call
ERR1	ijan kongele Langele	$ Y_{3j} - Y_{1j} = 1, NN$
ERR2		$\max \left\{ \eta_{j}, E_{p} \cdot \left Y_{3_{j}} \right \right\} j = 1, NN$
ETA	η _j	array containing sbsooute errors allowed in integration
I ·		DØ loop index
ID		if ID ≤ 0, INTGRAT has been called previously
IMDÓNE		IMDØNE ≥ 0 indicates integration has been completed
ISIGNAL		ISIGNAL > 0 indicates solution cannot be accomplished
J		DØ loop index
K		DØ loop index
L		parameter of calls to FØRMULA; L > 0 indicates time increment must be halved
M		number of successful integrations without halving time increment
MM		number of times time increment is halved without successful integration
NN		number of equations being solved
PCTERR	Ep	relative error allowed in integration
Τ		time at entry to INTGRAT
TF	t _F	time to which integration is desired

TABLE IX Computer Symbols for Subroutine INTGRAT

136

TABLE IX (Cont'd.)

	and the second		ショーラー かかかか しか かいがく しんかく
	and the state of t		The second second second second
		Cubantian	T ATTIVEND A UP
COMPANY SVM	mm i e - i m m	Subroncine	
	and the fight sector of the sector of the	그 2월 1월	 We are a set of set of set

Mnemonic Variation	Symbol	Comment
TRY1	Y1J	array containing values of Y after integration from t_1 to $t_1 + \Delta t$ in one step
TRY2	Y2J	array containing values of Y after integration from t_1 to $t_1 + \frac{1}{2} \Delta t$
TRY3	¥3J	array containing values of Y after integration from $t_1 + \frac{1}{2} \Delta t$ to $t_1 + \Delta t$
T1		t ime
W		array used in FØRMULA
Y		array containing variable values for which solution is required
YDØT .		array containing derivatives of Y
Z		array used in FORMULA

Mnemonic Variation	Symbol	Comment		
A		array cont	aining const Kutta formul	ants for a
C C C C C C C C C C		1/3 A(K +	1)	
H	Δt	time incre	ment	in an
ISIGNAL		ISIGNAL > (to EMØTIØN cessfully (0 indicates could not b completed	the call be suc-
J		DØ loop in	dex	
К		DØ loop in	dex	
L		DØ loop in	dex	
NN		number of	equations be	ing solved
W Republic al 6.84		array cont for calls	aining value to EMØTIØN	es of Y
Y		array, see	INTGRAT	
YDØT	Carlo Market and Appendix Appendix	array, see	INTGRAT	
YI		final valu	es of Y at t	= t + H
2		array conta YDØT retur EMØTI Ø N	aining the w ned by calls	alues of to

Computer Symbols for Subroutine FØRMULA

TABLE XI

Mnemonic Variation	Symbol	Comment
A		m _i + m _a
AERØM ALPHA	MA	$(m_{\ell} + m_{ss} + m_{p} + m_{i} + m_{a})$ aerodynamic moment of parachute tan ⁻¹ (- $\frac{U}{W}$)
ALPHAL	al	angle of attack of load
ALPHAP	۵p	angle of attack of parachute
ALT	h	release altitude
В		$(m_{\ell} + m_{ss} + m_{p}) g$
		$\overline{(m_{\ell} + m_{ss} + m_{p} + m_{i} + m_{a})}$
c		^ρ /8 π D ₀ ²
CDNØT		$(\frac{o}{8} \pi D_o^2) \cdot D_o$
CDSL	C _D Sℓ	drag area of load
СМ	c _{Mo}	aerodynamic moment coefficient
CN	°C _{No}	aerodynamic normal force coefficient
СТ	с _{то}	aerodynamic tangent force co- efficient
D	DL	drag of load
dnøt	- D _o	nominal diameter
E		^l g ρ C _D S,
G	8	acceleration of gravity
ISIGNAL		if ISIGNAL > 0, call to CØEFFTS showed $ \alpha_p $ too large

TABLE XI (Cont'd.)

Mnemonic Variation	Symbol	Comment
ISTØP	and a second second Second second second Second second	l or 2; parameter indicating whether the call to EMØTIØN comes from FØRMULA or INTGRAT
IXX	IXX	moment of inertia about X-axis
IXZ	^I xz	product of inertia
IYY	I _{YY}	moment of inertia about Y-axis
IZZ	I _{ZZ}	moment of inertia about Z-axis
L1	e ₁	distance from parachute-load system mass center to load
L2	£2	distance from parachute-load system mass center to parachute center of volume
L3	l ₃	distance from parachute-load system mass center to moment center
Μ		$m_{\ell} + m_{ss} + m_{p} + m_{i} + m_{a}$
MA		$m_i + m_a$
MI MI MAR	mi	included mass
ML	n in a start and a start a	mass of load
MP	m n	mass of parachute
MSS	m _e e	mass of suspension system
N	F _N	aerodynamic normal force
PI	τ. Π	3.14159
RHØ	ρ	air density
TT	. ; T	aerodynamic tangent force
VL2	asi ten di	$\mathbf{V}_{\mathbf{a}}$

Computer Symbols for Subroutine EMØTIØN (Three Degrees of Freedom)

140

te i de ser i

TABLE XI (Cont'd.)

Mnemonic Variation Symbol	Comment
VP2	v _p ²
V 2	$u^2 + w^2$
Y	array containing U, W, Q, θ , x, z
YDØT	array containing U, W, Q, θ , x, z

Mnemonic Variation	Symbol	Comment
DNØT	D _o	nominal diameter
IA	I _a	apparent moment of inertia about X or Y-axis
IAZ	I _a Z	apparent moment of inertia about Z-axis
IAZO	^I az) _o	I at mean sea level Z
IXX	I _{XX}	moment of inertia about X-axis
IXZ	I _{XZ}	product of inertia
IY	IY	moment of inertia about Y-axis due to physical masses, Eqn (88)
IYY	I _{YY}	moment of inertia about Y-axis
IZ	ΊZ	moment of inertia about Z-axis due to physical masses
IZZ	IZZ	moment of inertia about Z-axis
L1	• E 1 • • • • • • • • • • • • • • • • • • •	distance from parachute-load system mass center to load
L2	٤2	distance from parachute-load system mass center to parachute center of volume
L3	[£] 3	distance from parachute-load system mass center to moment center
MBR	^m Br	mass of load bridle
MI	^m i	included mass
MLS	^m Ls	mass of suspension lines
MP	^m p	mass of parachute
MR.	^m R	mass of risers

TABLE XII

Computer Symbols for Subroutine DYNAMIC

142

TABLE XII (Cont'd.)

Computer Symbols for Subroutine DYNAMIC

Mnemonic Variation	Symbol	Comment
MRX	m _E	mass of riser extension
Q ₁	s _c /D _o	ratio of reference distance from canopy skirt to parachute center of Volume in fully inflated configuration to D _o
Q ₂	D _{pmax} /D _o	projected diameter ratio
RHØ	ρ	air density
VØLUME	V	volume of fully inflated parachute
X	.	distance of parachute-load system mass center from canopy skirt
XDEN Ø M		$m_p + m_L_s + m_R + m_E + m_{Br} + m_\ell$
XNUM		${}^{m}\mathbf{L}_{s} \cdot {}^{s}1 + {}^{m}\mathbf{R} \cdot {}^{s}2 + {}^{m}\mathbf{E} \cdot {}^{s}3$
		$+ m_{Br} \cdot s_4 + m_{\ell} \cdot s_5 - m_{p} \cdot s_c$
X1	s 1	reference distance from canopy skirt to suspension line center of mass in fully inflated configu- ration
X2	s ₂	reference distance from canopy skirt to riser center of mass in fully inflated configuration
X3	s ₃	reference distance from canopy skirt to riser extension center of mass im fully inflated configu- ration
X4	s ₄	reference distance from canopy skirt to load bridle center of mass in fully inflated configu- ration
X5	s ₅	reference distance from canopy skirt to load center of mass in fully inflated configuration

TABLE XIII

Computer Symbols for Subroutine CØEFFTS (Three Degrees of Freedom)

Mnemonic Variation	Symbol	Comment
A		an la α _p l anna an a
ALPHAP	α _p	parachute angle of attack, radians
ALPHAPD	۵	parachute angle of attack, degrees
СМ	C _{Mo}	aerodynamic moment coefficient
CN	с _{No}	aerodynamic normal force coefficient
CT	с _{то}	aerodynamic tangent force coefficient
IPRINT		l or 2; indicates whether or not to print message concerning parachute angle of attack
ISIGNAL		if ISIGNAL > 1, indicates
		$\left \alpha_{\rm p} \right > 85^{\rm O}$

144

1.1.1995年(二)4名(三)4月1日日 1月1日日 - 日日日(三)4月1日日 1月1日日 - 日日本の11日日

TABLE XIV

Mnemonic Variation	Symbol	Comment
A		3 x 3 array containing direction cosines
ALT	h	release altitude
AMARK		see MØTIØN (3DOF)
ANG		previous value of the system angle
AT	a	total acceleration of load
AX	a _{łx}	x-component of load acceleration
АУ	a _e y	y-component of load acceleration
AZ	a _l	z-component of load acceleration
A1	a _e x	a_{ℓ_x} if $t_1 > TST \phi P$ or $R3 > ZST \phi P$
A2	^a _{vy}	a_{ℓ_y} if $t_1 > TST \phi P$ or $R3 > ZST \phi P$
Α3	^a t _z	a_{ℓ_z} if $t_1 > TST \phi P$ or R3 > ZST ϕP
CÓRR		see MØTIØN (3DOF)
C1		$U + Q L_1$
C2		$V - R L_1$
C3		$\dot{U} + PW - RV + \dot{Q}\ell_1 + PR\ell_1$
C4		\dot{v} + RU - QW - $\dot{P}l_1$ + QR l_1
C5		$\dot{w} + QV - PU - (P^2 + Q^2) \ell_1$
DQ	$\frac{dv}{dt}$	see MØTIØN (3DOF)

TABLE XIV (Cont'd.)

Mnemonic Variation	Symbol	Comment
DT	۵t	see MØTIØN (3DOF)
DX	Δt	see MØTIØN (3DOF)
ETA	η	see MØTIØN (3DOF)
G	g	acceleration of gravity
Î.		see MØTIØN (3DOF)
ID		see MØTIØN (3DOF)
IVERT		see MØTIØN (3DOF)
\mathbf{J}		see MØTIØN (3DOF)
K		see MØTIØN (3DOF)
L1	E 1	distance from parachute-load system mass center to load
NINT		see MØTIØN (3DOF)
NMARK		see MØTIØN (3DOF)
NUMB		see MØTIØN (3DOF)
PCTERR	Ep	see MØTIØN (3DOF)
PI	π	3.14159
RX	r _e x	x-component of load position
RY	r _{ły}	y-component of load position
RZ	r الاع	z-component of load position
R1	r _{ex}	r_{ℓ_x} if $t_1 > TST \phi P$ or $R3 > ZST \phi P$
R2	r _{ły}	r_{ℓ_y} if $t_1 > TST \phi P$ or $R3 > ZST \phi P$
R3	r _{łz}	r_{ℓ_z} ; used to determine if r_{ℓ_z} > ZSTØP
SYSANGL		system angle

TABLE XIV (Cont'd.)

Mnemonic Variation	Symbol	Comment
T	t t state to see	time
TF	t _F	see MØTIØN (3DOF)
THETA	θ	system angle at entry to MØTIØN
TRAJANG		trajectory angle of load
TSTØP		see MØTIØN (3DOF)
T1	t	time
VERTPAR		see MØTIØN (3DOF)
VX	ve _x	x-component of velocity
VY	vey	y-component of velocity
VZ	v _{lz}	z-component of velocity
VO	ve	velocity of load
Vl	v _e x	v_{ℓ_x} if $t_1 > TST P$ or $R3 > ZST P$
V2	ve y	v_{ℓ_y} if $t_1 > TST p or R3 > ZST p$
٧3	vez	v_{ℓ_z} if $t_1 > TST P$ or R3 >/ZST P
W		see MØTIØN (3DOF)
X		see MØTIØN (3DOF)
X1		see MØTIØN (3DOF)
X2		see MØTIØN (3DOF)
X3		see MØTIØN (3DOF)
Y		array containing U, V, W, P, Q, R, θ , φ , ψ , x, y, z
YDØT		array containing Ů, Ѷ, Ŵ, Ҏ, Ѻ,
		Ř; θ, Φ, ψ, x, y, z
Ζ		se MØTIØN (3DOF)

TABLE XIV (Cont'd.) Computer Symbols for Subroutine MÓTIÓN (Six Degrees of Freedom)

Mnemonic Variation	Symbol	Comment			
· · · · · · · · · · · · · · · · · · ·				1	
ZSTØP		see MØTIØN	N (3DOF)		

TABLE XV

Mnemonic Variation	Symbol	Comment
A		3 x 3 array containing direction cosines
AERØMX	M	X-component of aerodynamic moment
AERÓMY	М	Y-component of aerodynamic moment
ALPHAL	a _L	angle of attack of load in XZ-plane
ALPHAP	α _p	angle of attack of load in XZ-plane
ALT	ho	release altitude
B		$(m_{\ell} + m_{ss} + m_p) g$
		$\overline{(m_{\ell} + m_{ss} + m_{p} + m_{i} + m_{a})}$
BETAL	β _e	angle of attack of load in YZ-plane
BETAP	β _p	angle of attack of parachute in YZ-plane
C		$\frac{\rho}{8} \pi D_0^2$
CDNØT		$\left(\frac{D}{8} \pi D_0^2\right) D_0$
CDSL	C _D Sℓ	drag area of load
CMX	C _M Xo	coefficient of aerodynamic moment about X axis
СМҮ	с _{Мұо}	coefficient of aerodynamic moment about Y axis
CT	C _T	aerodynamic tangent force coefficient
CX	c _{N_{Xo}}	coefficient of aerodynamic normal force in X-direction
	and the second	

TABLE XV (Cont'd.)

Mnemonic Variation	Symbol	Comment	
CY	с _{Nyo}	coefficient of aerodynamic normal force in Y-direction	
D	De	drag of load	
DELTAL	⁸ e	angle between load velocity and YZ-plane	
dnøt	D _o	nominal diameter	
E		¹ ₂ ρ C _D S _ℓ	
FX	F _{NX}	normal force in X-direction	
FY	F _{NY}	normal force in Y-direction	
G	8	acceleration of gravity	
GAMMAL	Ye	angle between load velocity and XZ-plane	
H1		$(I_{ZZ} - I_{YY})/I_{XX}$	
H2		$(I_{XX} - I_{ZZ})/I_{YY}$	
Н3		$(I_{YY} - I_{XX})/I_{ZZ}$	
H4		I_{XZ}/I_{XX}	
Н5		I_{XZ}/I_{YY}	
Нб		I _{XZ} /I _{ZZ}	
ISIGNAL		see EMØTIØN (3DOF)	
IST ØP		see EMØTIØN (3DOF)	
IXX	IXX	moment of inertia about X-axis	
IXZ	I _{XZ}	product of inertia	
IYY	I _{YY}	moment of inertia about Y-axis	

TABLE XV (Cont'd.)

Mnemonic Variation	Symbol	Comment
IZZ	I _{ZZ}	moment of inertia about Z-axis
L1	٤ ₁	distance from parachute-load system mass center to load
L2	² 2	distance from parachute-load system mass center to parachute center of volume
L3	ł3	distance from parachute-load system mass center to moment center
М		$m_{\ell} + m_{ss} + m_{p} + m_{i} + m_{a}$
MA		$m_i + m_a$
ML	m _i	included mass
ML	me	mass of load
MP	m _D	mass of parachute
MSS	m _{ss}	mass of suspension system
PI	π	3.14159
PØLANG	θ _p	polar angle of parachute velocity
R		$m_i + m_a$
		$\overline{m_{\ell} + m_{ss} + m_{p} + m_{i} + m_{a}}$
RHØ	орания и станования и служи. П Р	air density
TT	T	aerodynamic tangent force
UL		$U + Q \boldsymbol{\ell}_1$
UP		$U + Q \not L$
VL		$V - P \ell_1$

TABLE XV (Cont'd.)

Mnemonic Variation	Symbol	Comment		
VL2		v _e ²		
VP	د ا ا ا ا	V - PL 2		
VP2		v _p ²		
Y		array conta R, 0, 0, 1	ining U, V, x, y, z	W, P, Q,
YDØT		array conta Ř, ė, φ, ψ,	ining U, V, , x, y, z	W, P, Q,

TABLE XVI

Mnemonic Variation	Symbol	Comment	
A			
ALPHAP	α _p	angle of attack of parachute in XZ-plane, radians	
ALPHAPD	α _p	angle of attack of parachute in XZ-plane, radians	
B		β _p	
BETAP	β _p	angle of attack of parachute in YZ-plane, radians	
BETAPD	βp	angle of attack of parachute in YZ-plane, degrees	
СМХ	C _{MXo}	coefficient of aerodynamic moment about X-axis	
СМУ	с _{муо}	coefficient of aerodynamic moment about Y-axis	
CT	C _T o	aerodynamic tangent force coefficient	
CX	C _{NXo}	coefficient of aerodynamic normal force in X-direction	
СҮ	с _{NYo}	coefficient of aerodynamic normal force in Y-direction	
Ρ		Ιθ _p Ι	
PØLANG	θ _p	polar angle of parachute	

Mnemonic Variation	Symbol Symbol	Comment
A	Ā	3 x 3 array containing direction cosines
Y(7)	θ	Euler Angle
Y(8)	φ	Euler Angle
Y(9)	inan y ang bagan di	Euler Angle

TABLE XVII Computer Symbols for Subroutine CØSINES

Mnemonic Variation	Symbol	Comment	ji t ira	
H	h	altitude		
RHØ	ρ	air density		

TABLE XVIII Computer Symbols for Subroutine DENSITY

Mnemonic Variation	Symbol	Comment
ALT	h _o	release altitude
CDS	c _D s	drag area
DT	Δt	time increment
DTHETA	Δθ	system angle increment
DV	$\Delta \mathbf{v}$	velocity increment
DX	∆x	x increment
DZ	∆z	z increment
G	т 8 с с с с с с с с с с с с с с с с с с с	acceleration of gravity
М	m	mass
RHØ	ρ	air density
T	t intervention	time
THETA	θ	system angle
V	V	velocity
X	x	x position
Ζ	Z	z position

TABLE XIX T Computer Symbols for Subroutine TRAJEQN

VII. COMPUTER PROGRAM SOURCE LIST

The computer program is arranged in the form which will probably be the most useful at the present time, i.e., including the complete solution allowing three degrees of freedom, with aerodynamic coefficients for a solid flat circular parachute, and listed in Fig 29. In addition, the solution allowing six degrees of freedom for the free descent phase is listed in Fig 30. The only difference between the two solutions lies in the arrangement of the subroutines following subroutine DYNAMIC. The appropriate data cards are inserted immediately after subroutine CØEFFTS. All subroutine calls are indicated by arrows in the left margins of Figs 29 and 30 for aid when referring to these source lists.

```
PROGRAM TRAJSIM(INPUT, OUTPUT)
          THIS IS THE MAIN PROGRAM
С
      DIMENSION ETA(12), SPACE(1000)
      REAL IXX . IYY . IZZ . IXZ . IAZO . IZ, LSS . L1 . L2 . L3 . MA . MBR . ML . MLS. MP . MR . MRX .
     1MSS,MST
      COMMON /CONST/ ALT+PI+G+CDP+DNOT+CDSL+LSS+ML+MP+MSS+MST+NINT
      COMMON /VARIABL/ RHU, T, V, THETA, X, Z, ALPHAL, ALPHAP, L1
      COMMON /DYNAM/ DYDNOT+x1,x2,x3,x4,x5,MBR,DYML,MLS,DYMP,MR,MRX,IAZO
     1+1Z+01+02+VOLUME+XNUM+XDENOM
      PI=3.141592653589793
      G=32.17
      READ 10,NSIM
      DO 11 J=1,NSIM
      READ 9.01.02.03.04.05
      PRINT 12:01:02:03:04:05
      READ 6.ALT.VO.MST.MP.MLS.MR.MRX.MBR.ML.X1.X2.X3.X4.X5.IZ.IAZO.
     1DNOT,LSS,CDP,CDSL,Q1,Q2,VOLUME,N,NNN,DT1,DT2,DT3,NINT
      DYDNOT=DNOT
      DYML=ML
      DYMP=MP
      XNUM=MLS*X1+MR*X2+MRX*X3+MBR*X4+ML*X5-MP*Q1*DNOT
      XDENOM=MP+MLS+MR+MRX+MBR+ML
      MSS=MLS+MR+MRX+MBR
      CALL DYNAMIC(0.002378.A).A2.A3.A4.A5.A6.A7.A8)
      A9=0,375#A8
     CALL DENSITY (RHD+ALT)
     CALL DYNAMIC(RH0,31,82,83,84,85,86,87,88)
      89=0.375+88
      PRINT BIALTOVOOMSTOMLOMPO MLSOMROMRXOMBROABOBBOALTOA90B90ALTOXIO
     1X2+X3+X4+X5+A4+B4+ALT+A5+B5+ALT+A6+B6+ALT+A7+B7+ALT+DNOT+LSS+A1+B1
     2, ALT, A2, B2, ALT, A3, B3, ALT, Q1, Q2, VOLUME, CDP
     PRINT 81, CUSL .N
     NN=2#N
      READ 7. (ETA(I), I=1. NN), PCTERR
     CALL EXTRACT (ISNATCH, IEXTRAC, VU, DT1, TRCA)
      IF(ISNATCH) 4,4,5
     CALL SNATCH(THCA, DT2)
 + 4
 → 5 CALL OPENING (DQ, TRCA, NNN, SPACE, VOLUME, IEXTRAC, DT3)
     CALL MOTION (DQ.PCTERR, ETA.DT3)
  11 CONTINUE
      STOP
     FORMAT(2F10.0/7F10.0/7F10.0/7F10.0/I1,19.3F10.0.15)
  6
     FORMAT(6F10.0/6F10.0/F10.0)
   7
     FORMAT(3/,5X,*TRAJECTORY SIMULATION--T=0,Z=0 IS RELEASE POINT*,3/,
     15x,*RELEASE CONDITIONS*,/,10x,*ALTITUDE=*,F10.0.* FT*,/,10x,*VELOC
     2ITY=+,F10.2++ FT/SEC+,///,5X,+MASSES--SLUGS+,/10X,+TOTAL SYSTEM= +
     3,F10.3,/,10X,+LOAD= +,F10.3,/,10X,+PARACHUTE= +,F10.3,/,10X,+SUSP.
     4 LINES= *+F10.3,/,10x+*RISERS= *+F10.3,/,10x+*RISER EXTENSIONS= *+
    ~5F10.3*/*10X**LOAD BRIDLE= **F10.3*/*10X**INCLUDED= **F10.3**(SEA L
     6EVEL)*+F10+3+*(*+F7+0+* - FT)*+/+10X+*APPARENT= *++F10+3+*(SEA_LEVEL
     7)*•F10.3•*(*•F7.0•* FT)*•///•5X•*REFERENCE DISTANCES FROM SKIRT--
     8 FT#9/+10X+#X1= *+F10.3+/+10X+#X2= *+F10.3+/+10X+#X3= *+F10.3+/+
     910X+*X4= *+F10.3/10X+*X5= *+F10.3///+5X+*MOM./PROD. INERTIA--SLUG
     1FT4,3H++2,/10X,+IXX= +,F15,3,+(SEA LEVEL)+,F15,3,+(+,F7,0,+ F1)+
     2,/,10X,+IYY= ++F15.3,+(SEA LEVEL)+,F15.3,+(++F7.0,+) FT)+,/,10X,
     3 #122= *++F15+3++(SEA LEVEL)++F15+3++(++F7+0++ FT)++/+10X++IX2= *+
     4F15.3,*(SEA LEVEL)*,F15.3,*(*,F7.0,* FT)*,//,5X,*DIMENSIONS-- FT
     5**/*10X9*DNOT= **F10.3*/*10X**SUSP. SYSTEM= **F10.3*/*10X**L1= **F
     610.3,*(SEA LEVEL)*,F10.3,*(*,F7.0,* FT)*,/,10x,*L2= *,F10.3,*(SEA
     7 LEVEL)*+F10.3+*(*+F7.0+* FT)*+/+10X+*L3= *+F10.3+*(SEA LEVEL)*+F
     810.39*(*,F7.0,* FT)*,///,5X,*YC/DNOT= *,F10.3,/,5X,*DP/DNOT= *,F1
     90.3+/+5X+*V0LUME= *+F10-3+6H FT**3+/+5X+*PARACHUTE CDP= *+F10+3)
   B1 FORMAT(SX)*LOAD DRAG AREA= *+F10.3+6H FT**2+/+5X+*DEGREES OF FREE
     100M= *, 110,5/)
```

FIG 29 Computer Program for Three Degrees of Freedom
```
9 FORMAT(5A10)
10 FORMAT(13)
12 FORMAT(1H1+/+5X+#PARACHUTE-LOAD SYSTEM(DEPLOYMENT)--*+5A10)
END
```

```
SUBROUTINE EXTRACT (ISNATCH, IEXTRAC, VO, DT, TRCA)
      COMMON /CONST/ ALT.PI.G.COP.DNOT.CDSL.LSS.ML.MP.MSS.MST.NINT
      COMMON /VARIABLY RHO, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3
      REAL LENGTH, LSPILDT, LSS, LSTATIC, MST, MT, LRXBR
      ICOUNT=0
      READ 15, ISTATIC, IEXTRAC
      IF(ISTATIC) 1.8.8
      READ 16,LSTATIC, CDSBAG, CDSP, DPILOT, LSPILOT, TD, LRXBR
   1
      DISTANC=LSTATIC
      PRINT 22+LSTATIC+CDSBAG
      IF (DPILOT.GT.0.0) PRINT 23, CDSP, DPILOT, LSPILOT, TD
      IF(NINT.GT.0) PRINT 26
      T=X=Z=0.0
      THETA=0.5*PI
      V=V0
      CDST=CDSL+CDSBAG
      MT#MST
      CALL TRAJEQN (T. V. THETA , X. Z. RHO + COST + MT + DT + G+ALT + DV)
->2
      VX=V+SIN(THETA)
      TRAJANG=THETA+180./PI
      VZ=V+COS(THETA)
      ICOUNT=ICOUNT+1
      ALTMZ=ALT-Z
      IFILICOUNT.EQ.NINT) PRINT 19, T, ALTMZ, TRAJANG, TRAJANG, X, Z, V, VX, VZ
      IF(ICOUNT.EQ.NINT) ICOUNT=0
      IF((SQRT((V0#T+X)#(V0#T+X)+Z#Z)+LT+DISTANC) GO TO 2
      IF (DISTANC.GT.LSTATIC) GO TO 3
      71=7
      TRAJ1=TRAJANG
      X1#X
      71=Z
      V1=V
      DISTANC=LSTATIC+LSS+0.5*DNOT+LRXBR
      IF (DPILOT.GT.0.0) DISTANC=LSTATIC+LSPILOT+0.5+DPILOT
      GO TO 2
     IFIOPILOT) 7.7.4
  1
  4.
     ISNATCH==1
     CDST=CDSL+CDSBAG+CDSP
  6;
     IF((T-TD) 6.14.14
     CALL TRAJEGN (T.V. THETA .X. Z. RHO, COST, MT. DT.G. ALT. DV)
 -> 6
     TRAJANG=THETA#180./PI
     VX=V+SIN(THETA)
     VZ=V+COS (THETA)
     ICOUNT=ICOUNT+1
     ALTMZ=ALT=Z
     IF (ICOUNT.EQ.NINT) PRINT 19. T.ALTMZ, TRAJANG, TRAJANG, X.Z.V.VX.VZ
     IF(ICOUNT.EQ.NINT) ICOUNT#0
     GO TO 5
  7 ISNATCH=1
     TRCA=T
     PRINT 20, T1, TRAJ1, X1, Z1, V1, T, TRAJANG, X, Z, V
     RETURN
  8
     IF((IEXTRAC) 9,9,13
     READ 17, LENGTH, CDSBAG, CDSEX, TD
  0
     PRINT 24, LENGTH, CDSBAG, CDSEX, TD
     IF((NINT.GT.0) PRINT 26
```

```
FIG 29 Computer Program for Three Degrees of Freedom (Continued)
```

```
ISNATCH==1
10 T=X=Z=0.0
   THETA=0.5*PI
                                    1.1.1
   TRAJANG=90.
   COST=COSEX
   V=VO
11 DV=+RH0*CDST*V*V*DT/(2.*MST)
   DX=V+DT
   V=V+DV
   X=X+DX
   TET+DT
   ICOUNT=ICOUNT+1
   ALTMZ=ALT=Z
   IF (ICOUNT, EQ, NINT) PRINT 19, T, ALTMZ, TRAJANG, TRAJANG, X, Z, V, V
   IF(ICOUNT.EQ.NINT) ICOUNT=0
   IF(V0*T-X-LENGTH) 11,12,12
12 CDST=CDSL+CDSBAG+CDSEX
   MTEMST
   T1=T
   X1=X
   v1 = v
   GO TO 5
13 READ 18+R+LENGTH+TD
   H= (4.*LSS*R+2.*R*DNOT) / (4.*LSS+PI*R*DNOT)
   HTDNOT=H+DNDT
   PRINT 25, LENGTH, R, HTDNOT, TD
   IF(NINT.GT.O) PRINT 26
   CDSEX=CDP*PI*H*H*DNOT*DNOT/4.
   CDSBAG=0.0
   ISNATCH#1
   GO TO 10
14 IF (ISTATIC.LT.O) PRINT 20, T1 TRAJ1, X1, Z1, V1, T, TRAJANG, X, Z, V
   IF((ISTATIC.GE.0) PRINT 21, T1, X1, V1, T. TRAJANG.X.Z.V
   IF(IEXTRAC.GT.0) TRCA=0.0
   RETURN
15 FORMAT (212)
16 FORMAT(7F10.0)
17 FORMAT(8F10.0)
18 FORMAT(3F10.0)
19 FORMAT(1X+F8+2+4F11+2+11X+3F11+2+11X+F11+2)
                                                       Z(FT) VELOCITY(FT
20 FORMAT(//,60X, *TIME(SEC) ANGLE(DEG)
                                           X (FT)
  1/SEC) *+/+20X+*STATIC LINE STRETCH*+16X+5F11+2/20X+*PARACHUTE/PILOT
  2 CHUTE DEPLOYMENT* 3X + 5F11.2)
                                                      Z(FT)
                                                             VELOCITY (FT
21 FORMAT(//,60X, *TIME(SEC) ANGLE(DEG)
                                           X(FT)
  1/SEC)+9/.20X9+LOAD OUT OF AIRCRAFT+915X9F11.2911X9F11.2911X9F11.27
  220X, *PILOT CHUTE/EXTRACTION CHUTE RELEASE OR* ,/, 20X, *MAIN PARACHUT
  3E DISREEF*+13X+5F11+2)
22 FORMAT(////+20X+*STATIC LINE= *+F10+3+* FT*+/+20X+*PARACHUTE PACK
  1DRAG AREA= *, F10.3, 1x, 5HFT**2)
23 FORMAT (20X, +PILOT CHUTE+ 1/, 25X, +DRAG AREA#+, F10, 3, 1X, 5HFT++2, /, 25X
  1,*DIAMETER= *,F10.3,* FT*,/,25X,*SUSP. LINES= *,F10.3,* FT*,/,20X,
  2*TIME OF PILOT CHUTE RELEASE= *,F10.2.* SEC*,///)
24 FORMAT(////.20X, *RELEASE DISTANCE IN AIRCRAFT= *.F10.3.* FT*./.20X
  1*PARACHUTE PACK DRAG AREA= **F10.3+1X+5HFT**2+/+20X+*EXTRACTION CH
  2UTE DRAG AREA= *, F10.3, 1X, 5HFT*+2, /, 20X, +TIME OF EXTRACTION CHUTE
  3RELEASE= *+F10.2+* SEC++////
25 FORMAT (////.20X, *RELEASE DISTANCE IN AIRCRAFT= *, F10.3, * FT*, /, 20X
  1*REEFING RATIO= *,F10.3,/,20X,*REEFED PROJ. DIAMETER= *,F10.3.* FT
  249/+20X++TIME OF PARACHUTE DISREEFE ++F10-2++ SEC++////)
26 FORMAT (5/ ,4X, *TIME*,5X, *ALTITUDE*,4X, *SYSTEM*, 3X, *C.M. TRAJ. *, 10X
  1.*C.M. POSITION*, 26X, *C.M. VELOCITY*, 18X, *C.M.*, /, 26X, *ANGLE*, 6X,
                  +B0X+*ACCELERATION*+/4X+*(SEC)*+6X+*(FT)*+7X+*(DEG)*
       *ANGLE*
  3,6X,++(DEG)+,18X,++(FT)+,32X,++(FT/SEC)+,17X++(FT/SEC/SEC)+,/,50X++X+
  4.10X,+Y+,10X,+Z+,BX,+TOTAL+,8X,+X+,10X,+Y+,10X,+Z+,8X,+TOTAL+5/)
   END
```

```
SUBROUTINE SNATCH (TRCA.DT)
     COMMON /CONST/ ALT, PI, G, CDP, DNOT, CDSL, LSS, ML, MP, MSS, MST, NINT
     COMMON /VARIABL/ RHO, T.V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3
     REAL K.L.SS.ML.MP.MPBAG.M1.M2.MSS.LRXBR
     ICOUNT=0
     READ 5. MPBAG. CDS2. K.LRXBR
     PRINT 7, MPBAG, CDS2, K, LRXBR
     IF (NINT.GT.0) PRINT 9
     M2=MP
     M1=ML+0.5+MSS
     CAPM2=MP+MPBAG+0.5+MSS
     CAPM1=ML+MSS
     COS1=CDSL
     v1=v
     V2=V
     L=0.0
     CALL BODIES(M1,CDS1,CAPM2,CDS2,V1,V2,L,DT)
→ 1
     TRAJANG=THETA#180./PI
     VIX=VI#SIN(THETA)
     VIZ=VI+COS(THETA)
     ICOUNT=ICOUNT+1
     ALTMZ=ALT=Z
     IF:(ICOUNT.EQ.NINT) PRINT 6,T,ALTMZ,TRAJANG,TRAJANG,X,Z,V1,V1X,V1Z
     IF (ICOUNT.EQ.NINT) ICOUNT=0
     IF(L-LSS-LRXBR) 1,2,2
  2
     TLET
     TRAJL=TRAJANG
     XLEX
     ZL=Z
     V1L=V1
     V2L=V2
     Q=CAPM1/(CAPM1+M2)
     VF=(CAPM1+V1+M2+V2)/(CAPM1+M2)
     DELTAV=VF-V2
     FA1=RH0*CDS1*(V1*V1+VF*VF)/4.
     FA2=RH0+CDS2+(V2+V2+VF+VF)/4.
     A=1./K
     B=FA1*(1.+Q+2.*V2*Q/DELTAV)+FA2*(Q +2.*V2*Q/DELTAV)
     C=CAPM1*(Q=1.)/Q*((Q+1.)/Q*DELTAV*DELTAV+2.*V2*DELTAV) +M2*(DELTAV
    1+DELTAV+2.+V2+DELTAV)
     PMAX=-B+SQRT (B+B-C/A)
     TRCA=T
     v1 = v2 = vF
     M1=MP+ML+MSS
     CDS1=CDSL+0.015*CDP*DNOT*DNOT*PI/4.
     CALL BODIES(M1+CDS1+MPBAG+CDS2+V1+V2+L+DT)
TRAJANG=THETA#180./PI
     VIX=VI*SIN(THETA)
     VIZ=VI+COS(THETA)
     ICOUNT=ICOUNT+1
     ALTMZ=ALT-Z
     IF((ICOUNT.EQ.NINT) PRINT 6,T,ALTMZ.TRAJANG,TRAJANG,X,Z,V1.V1X,V1Z
     IF (ICOUNT.EQ.NINT) ICOUNT=0
     IF(L-LSS-LRXBR-DNOT/2.) 3,4,4
   V=V1
  4
     PRINT 8.TL.TRAJL.XL.ZL.V1L.V2L.PMAX.VF
     RETURN
     FORMAT(4F10.0)
     FORMAT(1X+F8+2+4F11+2+11X+3F11+2+11X+F11+2)
     FORMAT (//// 20X, * PARACHUTE PACK MASS= *, F10.3, * SLUG*, /. 20X, * PARAC
    1HUTE PACK AND PILOT/EXTRACTION CHUTE DRAG AREA= ++F10.3+1X+5HFT++2
    2/20X+*SPRING CONSTANT= *+F10.3+* LB/FT*+/+20X+*LENGTH OF RISERS+ E
    3XTENSIONS AND LOAD BRIDLE= *,F10.3,* FT*,////)
    FORMAT(//, 50X, #TIME(SEC) ANGLE(DEG)
                                                        Z(FT)
                                                                VELOCITY1
  8
                                            X(FT)
    1(FT/SEC) VELOCITY2(FT/SEC) **/*20X**SNATCH**20X*4F11*2*2F15*2*//*
  FIG 29
             Computer Program for Three Degrees of Freedom
```

(Continued)

```
220X+*SNATCH FORCE= *+F10.0,* LB*+/+20X+*SNATCH VELOCITY= *+F10.3*
  3# FT/SEC#)
  FORMAT(5/ ,4X,*TIME*,5X,*ALTITUDE*,4X,*SYSTEM*,3X,*C.M. TRAJ.*,10X
0
  1+*C.M. POSITION*, 26X, *C.M. VELOCITY*, 18X, *C.M. *, /, 26X, *ANGLE*, 6X,
       *ANGLE* +80X+*ACCELERATION*+/4X+*(SEC)*+6X+*(FT)*+7X+*(DEG)*
  2
  3, 5X, * (DEG) *, 18X, * (FT) *, 32X, * (FT/SEC) *, 17X, * (FT/SEC/SEC) *, /, 50X, *X*
  4,10X,+Y+,10X,+Z+,BX,+TOTAL+,8X,+X+,10X,+Y+,10X,+Z+,8X,+TOTAL+5/)
  END
  SUBROUTINE BODIES (M1, CD51, M2, CD52, V1, V2, L, DT)
  COMMON /CONST/ ALT, PI, G, CDP, DNOT, CDSL, LSS, ML, MP, MSS, MST, NOUSE
  COMMON /VARIABL/ RHO, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3
  REAL MI.M2.L
  CALL DENSITY (RHO, ALT-Z)
  DTHETA==G*SIN(THETA) +DT/V1
  DV1=(G*COS(THETA)+RHO*CDS1*V1*V1/(2.*M1))*DT
  DV2=(G*COS(THETA)-RHO*CDS2*V2*V2/(2.*M2))*DT
  DX=V1+SIN(THETA)+DT
  DZ=V1+COS(THETA)+DT
  DL=V1+DT=V2+DT
  THETA=THETA+DTHETA
  v1 = v1 + pv1
  V2=V2+DV2
  X = X + DX
  Z=Z+DZ
  L=L+DL
  T = T + DT
  RETURN
  END
   SUBROUTINE OPENING (DQ, TRCA, N, F, VOLUMG, IEXTRAC, DTT)
   DIMENSION F(N), REEF(7,10)
   COMMON / CONST/ ALT, PI, G, CDP, DNOT, CDSL, LSS, ML, MP, MSS, MST, NINT
   COMMON /VARIABL/ RHO, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3
   REAL LSS, ML, MP, MS, MSS
   ICOUNT=0
   DCAPT=DCAPTR=1./N
   MS=ML+MSS+MP
   READ 6. NREEF
   IF (NREEF.EQ.0) GO TO 4
   NREEF=NREEF-IEXTRAC
   NREEF1=NREEF+1
   DO 3 I=1,NREEF1
   READ 7, RO, RI, TCD
   TNOT=T
   TDR=TRCA+TCD
   H0=(4.*LSS*R0+2.*R0*DNOT)/(4.*LSS+PI*R0*DNOT)
   H1=(4.*LSS*R1+2.*R1*DNOT)/(4.*LSS+PI*R1*DNOT)
   HTDNOT=H1+DNOT
   PRINT 11, R1, HTDNOT, TCD, TDR
   IF (NINT+GT+0) PRINT 12
   V1=(H1+H1+H1-H0+H0+H0)+DNOT+DNOT+DNOT
   V2=H1*H1*SQRT((LSS+DNOT/2.=PI/4.*H1*DNOT)*#2-H1*H1*DNOT*DNOT/4.)
   V3=H0*H0*SQRT((LSS+DNOT/2.=PI/4.*H0*DNOT)**2=H0*H0*DNOT*DNOT/4.)
```

```
V4=R1+R1+SQRT(LSS+LSS=R1+R1+DNOT+DNOT/4.)
   V5=R0+R0+SQRT(LSS+LSS-R0+R0+DNOT+DNOT/4.)
   VOLUME#(V1+DNOT*DNOT*(V2=V3=V4+V5)) #P1/12.
   V0≢V
   X 0 = X
   20=2
   THETA0=THETA
   CALL FILLTIM (VOLUME . VO . XO . ZO . THETAO . MS . HO . HI . N. F. TF)
   F0=0.0
   DT=DCAPTR+TF
   CAPTR=0.0
   D0-1 J=1.N
   ICOUNT=ICOUNT+1
   CAPTR=CAPTR+DCAPTR
   T=TF+CAPTR+TNOT
   CAPT=PI*PI/4.*(H1*H1*CAPTR+H0*H0*(1.=CAPTR))
DCAPT=PI*PI/4.*(H1*H1=H0*H0)*DCAPTR
   CALL CALC (CAPT. TF, DCAPT. DCAPTR.MS, DV, DP.D)
   FRCE=ML+ (G+COS (THETA) -DV/DT)
   FO=AMAX1 (FRCE,FO)
   TRAJANG=THETA+180./PI
   VX=V#SIN(THETA)
   VZ=V+COS(THETA)
   IF(NINT.LT.0) GO TO 1
   IFI(ICOUNT.LT.N/20) GO TO 1
   ICOUNT=0
   ALTMZ=ALT-Z
   ACC=+ (G+COS (THETA) -DV/DT)
   PRINT B.T.ALTMZ.TRAJANG.TRAJANG.X.Z.V.VX.VZ.ACC
   CONTINUE
1
   REEF (1,I)=T
   REEF (2, I) = TRAJANG
   REEF(3,I) = X
   REEF (4, I) =Z
   REEF (5, I) =V
   REEF (6, I) =FO
   REEF(7,I)=TF
   IF NREEF+1-1) 3,3,2
2 [FI(T.GE.TDR) 60 TO 3
   CDS=CDP*PI*DNOT*DNOT*H1*H1/4.
   CDST=CDS+CDSL
   CALL TRAJEGN(T, V, THETA, X, Z, RHO, CDST, MS, DTT, G, ALT, DV)
   AL==G#COS(THETA)+DV/DTT
   TRAJANG=THETA+180./PI
   VX=V+SIN(THETA)
   VZ=V#COS(THETA)
   ICOUNT=ICOUNT+1
   ALTMZ=ALT-Z
   IF (ICOUNT EQ.NINT) PRINT B.T.ALTMZ.TRAJANG.TRAJANG.X.Z.V.VX.VZ.AL
   IFI(ICOUNT.EQ.NINT) ICOUNT=0
   IF((T-TDR) 2.3.3
  CONTINUE
3.
   PRINT 9+ (REEF(J+1)+J=1+7)
   IF (NREEF.GT.0) PRINT 10, ((REEF(J.I), J=1,7), I=2, NREEF1)
   DQ=DV/DT
   REITURN
4 VOLUME=VOLUMG
   H0 = 0.0
   H1=2./PI
   IF(NINT.GT.0) PRINT 12
   TNOT=T
   V0=V
   X = 0
   Z0=Z
   THETAOSTHETA
   CALL FILLTIM (VOLUME VO, XO, ZO, THETAO, MS, HO, HI, N, F, TF)
```

```
F0=0.0
   DT=DCAPT+TF
   CAPT=0.0
   D0 5 J=1,N
   ICOUNT=ICOUNT+1
   CAPT=CAPT+DCAPT
   T=TF+CAPT+TNOT
   CALL CALC(CAPT, TF, DCAPT, DCAPTR, MS, DV, DP, D)
   FRCE=ML# (G*COS (THETA) +DV/DT)
   FO=AMAX1 (FRCE,FO)
   TRAJANG=THETA+180./PI
   VX=V+SIN(THETA)
   VZ=V*COS(THETA)
   IF((NINT.LT.0) GO TO 5
   IF(ICOUNT.LT.N/20) GO TO 5
   ICOUNT=0
   ALTMZ=ALT-Z
   ACC=- (G*COS (THETA) +DV/DT)
   PRINT 8.T.ALTMZ.TRAJANG.TRAJANG.X.Z.V.VX.VZ.ACC
  CONTINUE
5
   PRINT 9.T.TRAJANG,X.Z.V.FO.TF
   DQ=DV/DT
   RETURN
  FORMAT(11)
6
   FORMAT (3F10.0)
   FORMAT(1X,F8.2,4F11.2,11X,3F11.2,11X,2F11.2)
8
   FORMAT(//,61X,*TIME(SEC) ANGLE(DEG) X(FT)
                                                   Z(FT)
                                                           V(FT/SEC)
٥
                                                                       F
  1MAX(LB) TF(SEC) ++/+20X++FULL OR REEFED INFLATION +12X+F10.2+
  2F 9.2,3F10.2,F10.0,F10.2)
10 FORMAT(9(58X)F10.2)F 9.2,3F10.2,F10.0,F10.2)/))
11 FORMAT(////.20x, *REEFED INFLATION*,/,25x, *REEFING RATIO= *, F10.3./
  1+25X+*REEFED PROJ. DIAM.= *+F10.3+* FT*+/+25X+*CUTTER DELAY= *+F10
  2.3,* SEC *,/,25X.*TIME OF DISREEF= *.F10.3.* SEC*.////)
12 FORMAT(5/ +4x++TIME++5x++ALTITUDE++4x++SYSTEM++3x++C+M+, TRAJ+++10x
  1.*C.M. POSITION*+26X+*C.M. VELOCITY*+18X+*C.M.*+/+26X+*ANGLE*+6X+
       #ANGLE#
                 +80X+*ACCELERATION*+/4X+*(SEC)*+6X+*(FT)*+7X+*(DEG)*
  2
  3+6X++(DEG)++18X++(FT)++32X++(FT/SEC)++17X++(FT/SEC/SEC)++/+50X+*X*
  4.10X.++Y+,10X.+Z+,BX.++TOTAL+,8X.+X+,10X.++Y+,10X.+Z+,BX.++TOTAL+5/}
   END
   SUBROUTINE FILLTIM (VOLUME, VO, XO, ZO, THETAO, MS, HO, HI, N, VOLDOT, TF)
   COMMON /CONST/ ALT+PI+G+CDP+DNOT+CDSL+LSS+ML+MP+MSS+MST+NOUSE
   COMMON /VARIABL/ RHO, T. V. THETA, X. Z. UNUSED, UNUSED2, UNUSED3
   REAL LSS.MS
   DIMENSION VOLDOT (N)
  DCAPTR=1./N
   TF⊨0.
   DTF=2.0+H1+DN0T/V0
  TF=TF+DTF
1
   V=V0
   X=X0
   Z=20
   THETA=THETA0
   CAPTR=0.0
2 DO 3 I=1,N
   CAPTR=CAPTR+DCAPTR
   CAPT=PI*PI/4.*(H1+H1*CAPTR+H0*H0*(1.*CAPTR))
   DCAPT=PI*PI/4.* (H1*H1-H0*H0) *DCAPTR
   CALL CALC (CAPT, TF, DCAPT, DCAPTR, MS, DV, DP, D)
   C0=0.05
```

SUBROUTINE CALC(CAPT+TF+DCAPT+DCAPTR+M+DV+DP+D) COMMON /CONST/ ALT, PI, G, CDP, DNOT, CDSL, LSS, ML, MP, MSS, MST , NOUSE COMMON /VARIABL/ RHO,T,V,THETA,X,Ž,ŪNUSĖD,UNUSED2.UNUSED3 REAL LOS.M.MA.MI.MT DP=2. +DNOT/PI+SQRT (CAPT) DPMAX=2. +DNOT/PI DPDOT=DNOT/(PI*SQRT(CAPT)) D=:(4.*LSS*DP)/(4.*LSS+2.*DNOT=PI*DP) DDOT=((4,*LSS+2,*DNOT-PI*DP)*4.*LSS*DPDOT+4.*LSS*DP*PI*DPDOT)/(4.* 1LSS+2.*DNOT-PI*DP)**2 MA=PI*RHO*DP*DP*DP*DP*DP/(32,*DPMAX*DPMAX) DMA=5.+PI*RHO/(32.+DPMAX*DPMAX)*DP*DP*DP*DP*DPDOT*DCAPT SQ=SQRT((LSS+DNOT/2.=PI*DP/4:)**2=DP*DP/4.) SQ1=SQRT(LSS+LSS-D+D/4.) MI=PI*RH0/12.*(DP*DP*DP*DP*DP*SQ=D*D*SQ1) D4I=PI+RH0/12.+(3.+0P+0P+0P00T+0P+0P+((2.+LSS+DN0T+PI+0P/2.)+PI+0P 1D0T/4.+DP*DPD0T/2.)/(2.*SQ)+2.*DP*DPD0T*SQ+D*D*D*DD0T/(4.*SQ1)=2.* 2D+DDOT+SQ1) +DCAPT MT=M+MA+MI DTHETA==G*SIN(THETA) *M*DCAPTR*TF/(V*MT) CDS=CDP#P1#DP#DP/4.+CDSL DV=(M+G+COS(THETA)/MT-RHO+V+V+CDS/(2.+MT))+DCAPTR+TF+V+(DMI+DMA) 17MT DX=V+SIN(THETA)+DCAPTR+TF DZ=V+COS (THETA) +DCAPTR+TF THETA=THETA+DTHETA V=V+DV X=X+DX Z=Z+DZ CALL DENSITY (RHO, ALT-Z) RETURN END

C=C0+(RH0/0.002378) ++.142857

SUM=VOLDOT(N) NM1=N=1

DO 4 J=1.NM1.2 SUM=SUM+4.*VOLDOT(J)

D0: 5 K=2+NM2+2 5 SUM=SUM+2+*VOLDOT(K)

VOL=DCAPTR/3.*SUM*PI*TF

DTF=TF#(VOLUME/VOL=1.)

IF (ABS (VOL-VOLUME) / VOLUME-0.00001) 7,7,6

N42=N-2

GO TO 1 7 V=V0 X=X0 Z=Z0

> THETA=THETAO Return End

3

4

6

VOLDOT(1)=V*((1.+2.2*C*CAPT~CAPT)*D*D/4.-1.1*C*DP*DP/2.)

```
SUBROUTINE INTGRAT(T+Y+TF+NN+PCTERR+ETA+TRY1+TRY2+TRY3+W+YDOT+Z+ID
     1, DX, T1, ISIGNAL)
     DIMENSION Y(NN), YDOT(NN), TRY1(NN), TRY2(NN), TRY3(NN), ETA(NN), W(NN),
     12(NN)
      MMEO
      T1=T
      IMDONE==1
      TF(ID) 1.1.2
  1
      DT=DX
      GO TO 12
  2
     DT=TF=T1
      M=0
-> 3
     CALL FORMULA(Y,DT,TRY1,NN,W,YDOT,Z,L)
      IF(L.GT.0) GO TO 15
- 4
     CALL FORMULA (Y.O. 5+DT. TRY2.NN.W.YDOT.Z.L)
      IF(L.GT.0) GO TO 15
      CALL FORMULA (TRY2,0.5+DT,TRY3,NN,W,YDOT,Z,L)
     IF(L.GT.0) GO TO 15
DO 5 J=1,NN
     ERR1=ABS(TRY3(J)=TRY1(J))
     ERR2=AMAX1 (ETA(J), PCTERR*ABS(TRY3(J)))
     IF(ERR1-ERR2) 5,5,10
  5 CONTINUE
      MM=0
     D0 6 K=1.NN
  6
     Y(K) = TRY3(K)
      T1=T1+DT-
      IF(M.LT.5) 8,9
     M=M+1
  R
     GO TO 12
  0
     M=0
     TT=2.0+0T
     GO TO 12
  10 M=0
     MM=MM+1
     IF (MM. GT. 20) GO TO 16
     IMDONE = -1
     DT=DT+0.5
     DO 11 I=1.NN
  11 TRY1(I) = TRY2(I)
     GO TO 4
     IF((T1=TF+DT) 3,13,13
  12 IFI(IMDONE) 7,14,14
  13 DX=DT
     DT=TF-T1
     IF(DT.EQ.0.) GO TO 14
     IMDONE=1
     GO TO 3
- 14 CALL EMOTION (Y.YDOT, 1, ISIGNAL)
     DX=AMAX1(DX,DT)
     RETURN
  15 M=0
     MM=MM+1
     IF(MM.GT.20) GO TO 16
     IMDONE==1
     DT=DT+0.5
     GO TO 3
  16 ISIGNAL=1
     PRINT 17
     RETURN
  17 FORMAT (5/+5X+5H+++++CANNOT INTEGRATE OR ANGLE OF ATTACK LARGE+)
     END
```

```
SUBROUTINE FORMULA (Y+H+YI+NN+W+YDOT+Z+ISIGNAL)
   DIMENSIONY (NN) , YDOT (NN) , YI (NN) , W (NN) , Z (NN) , A (5)
   A(3) = A(4) = H
   A(1) = A(2) = A(5) = 0.5 H
   DO 1 J=1+NN
   Z(J) = YDOT(J)
   W(J) = Y(J)
   YI(J)=Y(J)
1
   DD 2 K=1,4
   CALL EMOTION (W.Z. 2. ISIGNAL)
   IF(ISIGNAL.GT.0) RETURN
   00 2 L=1,NN
   W(L) = Y(L) + A(K) + Z(L)
  YI(L) = YI(L) + C + Z(L)
S
   RETURN
   END
   SUBROUTINE TRAJEQN(T.V.THETA,X.Z.RHO,CDS.M.DT.G.ALT.DV)
   REAL M
   CALL DENSITY (RHO, ALT-Z)
   DV=(G+COS(THETA)=RHO+CDS+V+V/(2.+M))+DT
   DTHETA==G*SIN(THETA) +DT/V
   DX=V#SIN(THETA) #DT
   DZ=V+COS(THETA)+DT
   V=V+DV
   THETA=THETA+DTHETA
   X = X + DX
   Z = Z + DZ
   T=T+DT
   RETURN
   END
   SUBROUTINE DENSITY (RHO, H)
   RH0=0.002378#EXP(-H/32916.)
   IF((H.GT.15000.) RH0=0.002378*1.07133*EXP(-H/28593.)
   RETURN
   END
   SUBROUTINE DYNAMIC (RH0.L1.L2.L3.IXX.IYY.IZZ.IXZ.MI)
   REAL IA, IAZ, IAZO, IY, IYY, IXX, IXZ, IZ, IZZ, LI, L2, L3, MBR, ML, MLS, MR, MRX,
  1MP.MI
   COMMON / DYNAM/ DNOT+X1+X2+X3+X4+X5+MBR+ML+MLS+MP+MR+MRX+IAZ0+IZ+
  1Q1,Q2,VOLUME,XNUM,XDENOM
   MI=RHO#VOLUME
   X=(XNUM+MI+Q1+DNOT)/(XDENOM+MI)
   L1=X5=X
   L2=-X+Q1*DNOT
   L3=DNOT=X
   IA=0.13195*RH0*Q2*Q2*Q2*DN0T*DN0T*DN0T*L2*L2
   IY=MP+L2+L2+MLS+(X+X1)+(X-X1)+MR+(X2-X)+(X2-X)+MRX+(X3-X)+(X3-X)+
  1MBR*(X4-X)*(X4-X)*ML*L1*L1
   IYY=IY+IA
   IXX=IYY
   IAZ=IAZ0#RH0/0.002378
   IZZ=IZ+IAZ
   IXZ=0.0
   RETURN
   END
```

```
SUBROUTINE MOTION (DQ.PCTERR.ETA.DT)
    DIMENSION Y(6), YDOT(6), ETA(6), X1(6), X2(6), X3(6), W(6), B(6), VERTPAR(
   18.3)
   REAL LI
   COMMON /CONST/ ALT, PI, G, CDP, DNOT, CDSL, LSS, ML, MP, MSS, MST, NINT
    COMMON /VARIABLY, RHO, T, V, THETA, X, Z, ALPHAL, ALPHAP, LI
   PRINT 8
   READ 7.TSTOP.ZSTOP
    TSTOP=TSTOP+T
   IF(NINT.GT.0) PRINT 6
   AMARK=1.0
   NMARK=0
   IVERT=1
   ANG=THETA#180./PI
   ID=1
   Y(1)=0.
   Y(2)#V
   Y(3)==G*SIN(THETA)/V
   Y(4) =THETA
   Y(5)=X
   Y(6)=Z
   YDOT (3) =G*G*COS (THETA) *SIN (THETA) / (V*V) +G*SIN (THETA) / (V*V) *DQ
   TF=T+DT
   NUMB=IABS(NINT)
   DO 2 I=1.NUMB
1
   CALL: INTGRAT(T+Y+TF+6+PCTERR: +ETA+X1+X2+X3,W+YDOT+B+ID+DX+T1+K)
   IFI(K.GT.0) RETURN
   V0≠V
   R2#Y(6)+L1+COS(Y(4))
   IFI(R2.GT.ZSTOP) CORR=(ZSTOP=RZ)/(R2=RZ)
   IF(T1.GT.TSTOP)
                     CORR=(TSTOP=T)/(T1-T)
   IFI(R2.GT.ZSTOP.OR.T1.GT.TSTOP) GO TO 3
   T=T1
   RX#Y(5)+L1+SIN(Y(4))
   RZ#R2
   VX=(Y(1)+Y(3)+L1)+COS(Y(4))+Y(2)+SIN(Y(4))
   VZ==(Y(1)+Y(3)+L1)+SIN(Y(4))+Y(2)+COS(Y(4))
   AX=(YDOT(1)+Y(2)+Y(3)+YDOT(3)+L1)+COS(Y(4))+(YDOT(2)+Y(1)+Y(3)+
  1Y(3) #Y(3) #L1) #SIN(Y(4))
   AZ== (YDOT(1)+Y(2)+Y(3)+YDOT(3)+L1)+SIN(Y(4))+(YDOT(2)+Y(1)+Y(3)
  1-Y(3)+Y(3)+L1)+COS(Y(4))
   V=SQRT(VX+VX+VZ+VZ)
   A=SQRT (AX#AX+AZ#AZ)
   IFI(V.LT.VO) A=-A
   SYSANGL=Y(4)+180./PI
   ALPHA1=ALPHAL#180./PI
   TRAJANG=SYSANGL-ALPHA1
   IF(IVERT.GT.3) GO TO 15
   IF((SYSANGL/ABS(SYSANGL) +ANG/ABS(ANG)) 13,12,13
12 IFI (ABS (SYSANGL) - ABS (ANG) ) * AMARK. GE. 0.0) 60 TO 13
   VERTPAR(1,IVERT) #T
   VERTPAR (2+IVERT) #ALT-RZ
   VERTPAR (3, IVERT) =RX
   VERTPAR(4, IVERT) #RZ
   VERTPAR (5+IVERT) #V
   VERTPAR(6+IVERT)=VX
   VERTPAR(7+IVERT)=VZ
   VERTPAR (8, IVERT) #A
   ANG=SYSANGL
   GO: TO 15
13 AMARK==AMARK
   NMARK=NMARK+1
   GO: TO(14,12,14,12,14) NMARK
14 IVERT#IVERT+1
   ANG=SYSANGL
```

```
15 ID=-1
   NUMB=IABS(NINT)
   IF(NUMB*DX.GT.1.0) NUMB=MAX1(1..1./DX)
   TF#T+DX
2 CONTINUE
   ALTMRZEALTERZ
   IF((NINT+GT+O) PRINT 4+T+ALTMRZ+SYSANGL+TRAJANG+RX+RZ+V+VX+VZ+A
   GO TO 1
3 T=(T1-T)+CORR+T
   R1=Y(5)+L1+SIN(Y(4))
   V1=(Y(1)+Y(3)+L1)+COS(Y(4))+Y(2)+SIN(Y(4))
   V2=-(Y(1)+Y(3)+L1)+SIN(Y(4))+Y(2)+COS(Y(4))
   A1=(YDOT(1)+Y(2)*Y(3)+YDOT(3)*L1)*COS(Y(4))+(YDOT(2)=Y(1)*Y(3)=
  1Y(3)+Y(3)+L1)+SIN(Y(4))
   A2=+(YDOT(1)+Y(2)+Y(3)+YDOT(3)+L1)+SIN(Y(4))+(YDOT(2)+Y(1)+Y(3)
  1-Y(3) *Y(3) *L1) *COS(Y(4))
   RX=(R1-RX)+CORR+RX
   RZ=(R2=RZ)+CORR+RZ
   VX=(V1-VX)+CORR+VX
   VZ=(V2=VZ) +CORR+VZ
   AX=(A1-AX) +CORR+AX
   AZ=(A2=AZ) +CORR+AZ
   V=SQRT (VX+VX+VZ+VZ)
   A=SQRT (AX+AX+AZ+AZ)
   IFICV.LIT.VO) A==A
   SYSANGL= (Y (4) +180 ./PI=SYSANGL) +CORR+SYSANGL
   ALPHA1= (ALPHAL#180./PI-ALPHA1) +CORR+ALPHA1
   TRAJANG=SYSANGL-ALPHA1
   ALITMRZ=ALT-RZ
   IF!(NINT+GT+0) PRINT 4+T+ALTMRZ+SYSANGL+TRAJANG+RX+RZ+V+VX+VZ+A
   PRINT 51
   IVERT1=IVERT=1
   00 31 J=1.IVERT1
31 PRINT 5. J. (VERTPAR(I.J).I=1.8)
   REITURN
  FORMAT(1X,F8,2,4F11,2,11X,3F11,2,11X,2F11,2)
5 -
  FORMAT(20X,11,* VERTICALVMINIMUM*+F9.2,F12,2)F11.2,3F10.2,2F12.2)
51 FORMAT(//+40X+*TIME(SEC) ALTITUDE(FT)
                                             X(FT)
                                                       Z(FT) V(FT/SEC)
  1 VX (FT/SEC) VZ (FT/SEC) A (FT/SEC/SEC) +)
  FORMAT(5/ ,4X, +TIME+,5X, +ALTITUDE+,4X, +SYSTEM+, 3X, +LOAD TRAJ. +10X
  1++LOAD: POSITION++26X++LOAD VELOCITY++18X++LOAD++/+26X++ANGLE++68+
       #ANGLE#
                 *BOX+*ACCELERATION**/4X+*(SEC)**6X+*(FT)**7X**(DEG)*
  2
  3,6X,+ (DEG) +,18X,+ (FT) +,32X,+ (FT/SEC) +,17X,+ (FT/SEC/SEC) +,/+50X,+X+
  4,10X,+Y#,10X,+Z#,8X,+TOTAL#,8X,+X#,10X,+Y+,10X,+Z#,8X,+TOTAL+5/)
  FORMAT (2F10+0)
7
   FORMAT(57,5X, #NOTER= POSITIONS, VELOCITIES, ACCELERATIONS, TRAJ. ANGL
  1ES REFER TO LOAD, PREVIOUS RESULTS ARE FOR MASS CENTER*)
   END
  SUBROUTINE EMOTION((Y, YDOT, ISTOP, ISIGNAL)
  DIMENSION Y(6) , YDOT (6)
  REAL MOMAOMIONLOMPOMSSOIXXOIYYOIZZOIXZOLIOL2018.N
  COMMONE / CONST/ ALIT+PI+G+CDP+DNOT+CDSL+LSS+MLHMP+MSS+MST+NOUSE
  COMMON /VARIABLY RHO, T, V, THETA, X, Z, ALPHAL, ALPHAP, L1
  CALL DENSITY (RHO, ALT-Y (6))
```

23

12

```
CALL DYNAMIC(RHO,LI,L2,LB,IXX,IYY,IZZ,IXZ,MI)
MA=1,375+MI
M=ML+MP+MSS+MA
```

```
A=MA/M
B=:(ML+MP+MSS) +G/M
```

VO

```
C=RHO#PI*DNOT*DNOT/8.
   CDNOT=C*DNOT
   E=0.5+RH0+CDSL
   \Lambda 5 = \Lambda(1) + \Lambda(1) + \Lambda(5) + \Lambda(5)
   ALPHA=ATAN (=Y(1)/Y(2))
   VP2=V2+Y(3)+Y(3)+L2+L2+2++Y(1)+Y(3)+L2
   ALPHAP=ATAN ( (-Y (1)+Y (3)+L2) /Y (2) )
   VL2=V2+Y(3)+Y(3)+L1+L1+2++Y(1)+Y(3)+L1
   ALPHAL#ATAN ( (-Y (1) -Y (3) +L1) /Y (2) )
   CALL COEFFTS (ALPHAP, CT, CN, CM, ISTOP, ISIGNAL)
   IF(ISIGNAL.GT.0) RETURN
   N#C+CN+VP2
   TT#C#CT#VP2
   AEROM=CDNOT+CM+VP2
   D=E#VL2
   YDOT(1) == A*YDOT(3) *L2=B*SIN(Y(4)) +N/M+D*SIN(ALPHAL)/M=Y(2)*Y(3)
   YDOT (2) = A*Y (3) *Y (3) *L2+B*COS (Y (4)) -TT/M-D*COS (ALPHAL)/M+Y (1) *Y (3)
   YDOT(3) # N*L3/IYY+D*L1*SIN(ALPHAL)/IYY+AEROM/IYY-ML*G*SIN(Y(4))*L1
  1/IYY=MP#G#SIN(Y(4))#L2/IYY
   YDOT(4) = Y(3)
   YDOT(5) = Y(1) + COS(Y(4)) + Y(2) + SIN(Y(4))
   YDOT(6) ==Y(1) +SIN(Y(4)) +Y(2) +COS(Y(4))
   REITURN
   END
   SUBROUTINE COEFFTS(ALPHAP+CT+CN+CM+IPRINT+ISIGNAL)
   ALPHAPD=ALPHAP#57.295779515
   IF((ABS(ALPHAPD).LT.85.) GO TO 2
IF((IPRINT.EQ.1) PRINT 1.ALPHAPD
   ISIGNAL=1
   REITURN
   FORMAT (5X+ MANGLE OF ATTACK# #+F9+3+# , TOO LARGE#)
٦
2 ISIGNAL=-1
   A=ABS(ALPHAPD)
   IF(A-30.0) 3.4.4
  3
   CN==6.74E=03*A+5.57E=04*A*A=1.53E=05*A*A*A+1.9E=07*A*A*A*A
   CM=4.844E=03+A=3.94E=04+A+A+1.043E=05+A+A+A=1.32E=07+A+A+A+A
   IF (ALPHAPD.GT.0.) RETURN
   CN==CN
   CMMMCMN
   RETURN
   CT=0.62~
   CN#,0056+ (A+30.0)+,04V
   CM#=.0044# (A=30.0) =.034
   IF (ALPHAPD.GT.0.) RETURN
   CN==CNN
   CM==CM
   RETURN
```

```
PROGRAM TRAJSIM (INPUT.OUTPUT)
          THIS IS THE MAIN PROGRAM
C
      DIMENSION ETA(12), SPACE(1000)
      REAL IXX, IYY, 12Z, IXZ, IAZO, IZ, LSS, L1, L2, L3, MA, MBR, ML, MLS, MP, MR, MRX,
     1MSS+MST
      COMMON /CONST/ ALT+PI+G+CDP+DNOT+CDSL+LSS+ML+MP+MSS+MST+NINT
      COMMON /VARIABL/ RHO, T, V, THETA, X, Z, ALPHAL, ALPHAP, L1
      COMMON /DYNAM/ DYDNOT + X1 + X2 + X3 + X4 + X5 + MBR + DYML + MLS + DYMP + MR + MR + IAZO
    1. IZ.Q1.Q2. VOLUME . XNUM. XDENOM
      PI=3.141592653589793
      G=32.17
      READ 10.NSIM
    (DO 11 J=1.NSIM
     READ 9,01,02,03,04,05
      PRINT 12,C1,C2,C3,C4,C5
      READ 6, ALT. VO, MST. MP. MLS. MR. MRX. MBR. ML, X1. X2. X3. X4. X5. IZ. IAZO.
    1DNOT, LSS, CDP, CDSL, Q1, Q2, VOLUME, N. NNN, DT1, DT2, DT3, NINT
      DYDNOT=DNOT
      DYML=ML
      DYMP=MP
      XNUM=MLS#X1+MR#X2+MRX#X3+MBR#X4+ML#X5-MP#Q1#DNOT
    VXDENOM=MP+MLS+MR+MRX+MBR+ML
      MSS=MLS+MR+MRX+MBR
    V CALL DYNAMIC (0.002378, A1, A2, A3, A4, A5, A6, A7, A8)
      A9=0.375#A8
     CALL DENSITY (RHO, ALT)
      CALL DYNAMIC (RH0.81.82.83.84.85.86.87.88)
      B9=0.375*B8
      PRINT 8, ALT. VO, MST. ML. MP. MLS. MR. MRX. MBR. AB. BB. ALT. A9, B9, ALT. X1,
     1X2+X3+X4+X5+A4+B4+ALT+A5+B5+ALT+A6+B6+ALT+A7+B7+ALT+DNOT+LSS+A1+B1
    2, ALT . A2, B2, ALT . A3, B3 . ALT . Q1 . Q2 . VOLUME . CDP
      PRINT B1,CDSL,N
     NN=2*N
      READ 7, (ETA(I), I=1, NN), PCTERR
      CALL EXTRACT (ISNATCH, IEXTRAC, VO, DT1, TRCA)
      IF (ISNATCH) 4+4+5
      CALL SNATCH (TRCA, DT2)
CALL DPENING (DQ, TRCA, NNN, SPACE, VOLUME, IEXTRAC, DT3)
   5
      CALL MOTION (DQ+PCTERR+ETA+DT3)
   11 CONTINUE
      STOP
     FORMAT(2F10.0/7F10.0/7F10.0/7F10.0/11,19,3F10.0,15)
   6
   7 FORMAT(6F10.0/6F10.0/F10.0)
   B. FORMAT(3/,5X, *TRAJECTORY SIMULATION-+T=0,Z=0 IS RELEASE POINT*,3/,
     15x, *RELEASE CONDITIONS*, /, 10x, *ALTITUDE=*, F10.0, * FT*, /, 10x, *VELOC
     2ITY=+,F10.2++ FT/SEC+,///,5X,+MASSES--SLUGS+,/10X,+TOTAL SYSTEM= +
     3,F10.3,/,10X,*LOAD= *,F10.3,/,10X,*PARACHUTE= *,F10.3,/,10X,*SUSP.
      LINES= *,F10.3,/,10x,*RISERS= *,F10.3,/,10x,*RISER EXTENSIONS= *,
     4
     5F10.3,/,10X,*LOAD BRIDLE= *,F10.3,/,10X,*INCLUDED= *,F10.3,*(SEA L
     6EVEL) *+ F10.3+* (*+ F7.0+* FT) *+ /+ 10x+* APPARENT= *+ F10.3+* (SEA LEVEL)
     7)*+F10.3,*(*+F7.0+* FT)*+///+5x+*REFERENCE DISTANCES FROM SKIRT-+
     8 FT#+/+10X+#X1= ++F10+3+/+10X+#X2= ++F10+3+/+10X+#X3= ++F10+3+/+
     910X,*X4= *,F10.3/10X,*X5= *,F10.3///,5X,*MOM./PROD. INERTIA--SLUG
     1FT#93H##29/910X9#IXX= #9F15.39#(SEA LEVEL)#9F15.39#(#9F7.09# FT)#
     2,/,10X,*IYY= *,F15.3.* (SEA LEVEL)*,F15.3.* (*,F7.0.* FT)*,/,10X,
     3 #IZZ=: #,F15.3.*(SEA LEVEL)#,F15.3.*(#,F7.0.* FT)*./.10X.*IXZ= *.
     4F15.3,*(SEA LEVEL)*,F15.3,*(*,F7.0,* FT)*,///,5X,*DIMENSIONS-- FT
     7 LEVEL)*•F10.3•*(*•F7.0•* FT)*•/•10X•*L3= *•F10.3•*(SEA LEVEL)*•F
     810.39+(*,F7.0,+ FT)+,//,5X,+YC/DNOT= +,F10.3,/,5X,+DP/DNOT= +,F1
     90.3./.5X. *VOLUME= *.F10.3.6H FT**3./.5X.*PARACHUTE CDP= *.F10.3)
   B1 FORMAT(5X++LOAD DRAG AREA= ++F10.3+6H FT++2+/+5X++DEGREES OF FREE
     1DOM= #+110+5/)
```

```
9 FORMAT(5A10)
10 FORMAT(13)
```

```
12 FORMAT(1H1./.5X.*PARACHUTE-LOAD SYSTEM(DEPLOYMENT)--*.5A10)
END
```

```
SUBROUTINE EXTRACT(ISNATCH, IEXTRAC, VO.DT. TRCA)
      COMMON /CONST/ ALT, PI, G, CDP, DNOT, CDSL, LSS, ML, MP, MSS, MST, NINT
      COMMON /VARIABL/ RHO, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3
      REAL LENGTH, LSPILOT, LSS, LSTATIC, MST, MT, LRXBR
      ICOUNT=0
      READ 15, ISTATIC, IEXTRAC
      IF(ISTATIC) 1.8.8
   1 READ 16+LSTATIC, COSBAG, CDSP, DPILOT, LSPILOT, TD, LRXBR
      DISTANC=LSTATIC
      PRINT 22+LSTATIC+CDSBAG
      IF(DPILOT.GT.0.0) PRINT 23.CDSP.DPILOT.LSPILOT.TD
      IF (NINT.GT.0) PRINT 26
      T=X=Z=0.0
      THETA=0.5*PI
      V=V0
      CDST=CDSL+CDSBAG
      MT=MST
-> 2
     CALL TRAJEQN(T+V+THETA+X+Z+RHO+CDST+MT+DT+G+ALT+DV)
      VX=V#SIN(THETA)
      TRAJANG=THETA+180./PI
      VZ=V+COS(THETA)
      ICOUNT=ICOUNT+1
      ALITMZ=ALT-Z
      IFICICOUNT.EQ.NINT) PRINT 19. T.ALTMZ. TRAJANG. TRAJANG. X.Z. V. VX. VZ
      IF(ICOUNT.EQ.NINT) ICOUNT=0
      IF (SQRT ( (V0+T-X) + (V0+T-X)+Z+Z) .LT.DISTANC) GO TO 2
      IF(DISTANC.GT.LSTATIC) GO TO 3
      T1=T
      TRAJ1=TRAJANG
      X1=X
      Z1=Z
      V1 \equiv V
      DISTANC=LSTATIC+LSS+0.5*DNOT+LRXBR
      IF(OPILOT.GT.0.0) DISTANC=LSTATIC+LSPILOT+0.5*DPILOT
      GO TO 2
  3
     IF (DPILOT) 7.7.4
     ISNATCH==1
      CDST=CDSL+CDSBAG+CDSP
  5
     IF((T-TD) 6,14,14
 -> 6
      CALL TRAJEQN(T,V,THETA,X,Z,RHO,CDST,MT,DT,G,ALT,DV)
      TRAJANG=THETA+180./PI
      VX=V+SIN(THETA)
      VZ=V+COS(THETA)
      ICOUNT=ICOUNT+1
      ALTMZ=ALT=Z
      IF (ICOUNT.EQ.NINT) PRINT 19, T, ALTMZ, TRAJANG, TRAJANG, X, Z, V, VX, VZ
      IF(ICOUNT.EQ.NINT) ICOUNT=0
      GO TO 5
  7 ISNATCH=1
      TRCA=T
      PRINT 20, T1, TRAJ1, X1, Z1, V1, T, TRAJANG, X, Z, V
     RETURN
  8
     IF (IEXTRAC) 9.9.13
  ۵.
     READ 17, LENGTH, CDSBAG, CDSEX, TD
     PRINT 24, LENGTH, CDSBAG, CDSEX, TD
      IF (NINT.GT.O) PRINT 26
```

```
ISNATCH=-1
10 T=X=Z=0.0
   THETA=0.5*PI
                                   100
   TRAJANG=90.
   COST=COSEX
   VEVA
11 DV=-RHO*CDST*V*V*DT/(2.*MST)
   DX=V#DT
   V = V + DV
   X = X + DX
   T=T+DT
   ICOUNT=ICOUNT+1
   ALTMZ=ALT=Z
   IF (ICOUNT, EQ. NINT) PRINT 19, T, ALTMZ, TRAJANG, TRAJANG, X, Z, V, V
   IF(ICOUNT.EQ.NINT) ICOUNT=0
   IF(V0#T-X-LENGTH) 11,12,12
12 CDST=CDSL+CDSBAG+CDSEX
   MT=MST
   T1=T
   X1=X
   v1=V
   GD TO 5
13 READ 18+R+LENGTH+TD
   H=(4.*LSS*R+2.*R*DNOT)/(4.*LSS+PI*R*DNOT)
   HTDNOT=H#DNOT
   PRINT 25, LENGTH, R, HTDNOT, TD
   IF(NINT.GT.O) PRINT 26
   COSEX=CDP+PI+H+H+DNOT+DNOT/4.
   CDSBAG=0.0
   ISNATCH#1
   GO TO 10
14 IF (ISTATIC.LT.0) PRINT 20.T1.TRAJ1,X1,Z1.V1.T.TRAJANG,X.Z.V
   IF(ISTATIC.GE.0) PRINT 21,T1,X1,V1,T,TRAJANG,X,Z,V
   IF(IEXTRAC.GT.0) TRCA#0.0
   RETURN
15 FORMAT(212)
16 FORMAT(7F10.0)
17 FORMAT(8F10.0)
18 FORMAT(3F10.0)
19 FORMAT(1X+F8+2+4F11+2+11X+3F11+2+11X+F11+2)
20 FORMAT(//,60X, *TIME(SEC) ANGLE(DEG) X(FT)
                                                     Z(FT) VELOCITY(FT
  1/SEC)*+/+20X+*STATIC LINE STRETCH*+16X+5F11+2/20X+*PARACHUTE/PILOT
  2 CHUTE DEPLOYMENT*, 3X, 5F11.2)
21 FORMAT(//+60X+*TIME(SEC) ANGLE(DEG)
                                          X(FT)
                                                    Z(FT) VELOCITY(FT
  1/SEC) **/,20X**LOAD OUT OF AIRCRAFT**15X*F11.2*11X*F11.2*11X*F11.2/
  220X++PILOT CHUTE/EXTRACTION CHUTE RELEASE OR++/+20X++MAIN PARACHUT
  3E DISREEF*+13X+5F11+2)
22 FORMAT(////+20X+*STATIC LINE= *+F10+3+* FT*+/+20X+*PARACHUTE PACK
  1DRAG AREA= *,F10,3,1x,5HFT**2)
23 FORMAT(20X,*PILOT CHUTE*,/,25X,*DRAG AREA=*,F10,3,1X,5HFT**2,/,25X
  1+*DIAMETER= *+F10.3+* FT*+/+25X+*SUSP. LINES= *+F10.3+* FT*+/+20X+
  2*TIME OF PILOT CHUTE RELEASE= *+F10.2+* SEC*+////)
24 FORMAT(////)20X,*RELEASE DISTANCE IN AIRCRAFT= *,F10.3,* FT*,/,20X
  1*PARACHUTE PACK DRAG AREA= *F10.3.1X.5HFT+*2./.20X.*EXTRACTION CH
  2UTE DRAG AREA= ++F10.3+1X+5HFT++2+/+20X++TIME OF EXTRACTION CHUTE
  3RELEASE= *,F10.2,* SEC*,////
25 FORMAT(////.20X,*RELEASE DISTANCE IN AIRCRAFT= *.F10.3,* FT*,/,20X
  1*REEFING RATIO= *,F10.3:/,20X,*REEFED PROJ. DIAMETER= *,F10.3:* FT
  2*,/,20X,*TIME OF PARACHUTE DISREEF= *,F10.2,* SEC*,////)
26 FORMAT(5/);4X;#TIME#;5X;#ALTITUDE#;4X;#SYSTEM#;3X;#C;M; TRAJ;#;10X
  1+*C.M. POSITION*+26X+*C.M. VELOCITY*+18X+*C.M.*+/26X+*ANGLE*+6X+
                > +80X+ *ACCELERATION*+/4X+* (SEC) *+6X+* (FT) ++7X+* (DEG) *
  2
      *ANGLE*
  3,5X+*(DEG)*,1BX,*(FT)*,32X,*(FT/SEC)*,17X+*(FT/SEC/SEC)*,19,50X+*X*
  4,10X,+Y+,10X,+Z+,BX,+TOTAL+,8X,+X+,10X,+Y+,10X,+Z+,8X,+TOTAL+5/)
  END
```

```
SUBROUTINE SNATCH (TRCA.DT)
     COMMON /CONST/ ALT, PI, G, CDP, DNOT, CDSL, LSS, ML, MP, MSS, MST, NINT
     COMMON /VARIABL/ RHO, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3
     REAL K.L.LSS.ML.MP.MPBAG.M1.M2.MSS.LRXBR
     ICOUNT=0
     READ 5, MPBAG, CDS2, K, LRXBR
     PRINT 7. MPBAG, CDS2.K.LRXBR
     IF(NINT.GT.0) PRINT 9
     M2=MP
     M1=ML+0.5*MSS
     CAPM2=MP+MPBAG+0.5+MSS
     CAPM1=ML+MSS
     CDS1=CDSL
     v1=v
     V2=V
     L=0.0
CALL BODIES(M1+CDS1+CAPM2+CDS2+V1+V2+L+DT)
     TRAJANG=THETA+180./PI
     VIX=VI+SIN(THETA)
     VIZ=VI+COS(THETA)
     ICOUNT=ICOUNT+1
     ALTMZ=ALT=Z
     IF (ICOUNT.EQ.NINT) PRINT 6.T. ALTMZ.TRAJANG.TRAJANG.X.Z.VI.VIX.VIZ
     IF(ICOUNT.EQ.NINT) ICOUNT=0
     IFIL-LSS-LRXBR) 1.2.2
  2
     TLAT
     TRAJL=TRAJANG
     XLEX
     ZLEZ
     V1L=V1
     V2L=V2
     Q=CAPM1/(CAPM1+M2)
VF=(CAPM1*V1+M2*V2)/(CAPM1+M2)
     DELTAV=VF=V2
     FA1=RH0+CDS1+(V1+V1+VF+VF)/4.
     FA2=RH0+CDS2+(V2+V2+VF+VF)/4.
     A#1./K
     B=FA1+(1.+Q+2.+V2+Q/DELTAV)+FA2+(Q +2.+V2+Q/DELTAV)
     C=CAPM1*(Q=1.)/Q*((Q+1.)/Q*DELTAV*DELTAV+2.*V2*DELTAV) +M2*(DELTAV
    1+DELTAV+2. +V2+DELTAV)
     PMAX =- B+ SQRT (B+B-C/A)
     TRCA=T
     V1=V2=VF
     M1=MP+ML+MSS
     CDS1=CDSL+0.015+CDP*DNOT*DNOT*P1/4.
- 3 CALL BODIES (M1, CDS1, MPBAG, CDS2, V1, V2, L, DT)
     TRAJANG=THETA+180./PI
     VIX=V1+SIN(THETA)
     VIZ=VI+COS(THETA)
     ICOUNT#ICOUNT+1
     ALITMZ=ALT=Z
     IF((ICOUNT.EQ.NINT) PRINT 6.T.ALTMZ, TRAJANG, TRAJANG, X.Z.VI+VIX, VIZ
     IFI(ICOUNT.EQ.NINT) ICOUNT=0
     IFIL=LSS-LRXBR=DNOT/2.) 3.4.4
  4 V=V1
     PRINT 8. TL. TRAJLOXL.ZL. VIL. V2L. PMAX.VF
     RETURN
  5 FORMAT(4F10+0)
     FORMAT(1X+F8.2+4F11.2+11X+3F11.2+11X+F11.2)
    FORMAT (////+20X+*PARACHUTE PACK MASS= *+F10.3+* SLUG*+/+20X+*PARAC
    1HUTE PACK AND PILOT/EXTRACTION CHUTE DRAG AREA: *, F10, 3, 1X, 5HFT**2
    2/20X+*SPRING CONSTANT= **F10.3+* LB/FT*+/+20X+*LENGTH OF RISERS+ E
    3XTENSIONS AND LOAD BRIDLE= *.F10.3.* FT*.////
    FORMAT(//, 50X, *TIME(SEC) ANGLE(DEG) X(FT)
  Â.
                                                         Z(FT) VELOCITY1
    1(FT/SEC) VELOCITY2(FT/SEC)*,/+20X+*SNATCH*+20X,4F11.2+2F15.2+//+
```

```
220X+*SNATCH FORCE= *+F10.0+* LB*+/+20X+*SNATCH VELOCITY= *+F10.3+
3* FT/SEC*)
```

```
9 FORMAT(5/ +4X, *TIME*, 5X, *ALTITUDE*, 4X, *SYSTEM*, 3X, *C.M. TRAJ.*, 10X
1,*C.M. POSITION*, 26X, *C.M. VELOCITY*, 18X, *C.M.*, /26X, *ANGLE*, 6X,
2 *ANGLE* +80X, *ACCELERATION*, /4X, *(SEC)*, 6X, *(FT)*, 7X, *(DEG)*
3, 6X, *(DEG)*, 18X, *(FT)*, 32X, *(FT/SEC)*, 17X, *(FT/SEC/SEC)*, /, 50X, *X*
4, 10X, *Y*, 10X, *Z*, 8X, *TOTAL*, 8X, *X*, 10X, *Y*, 10X, *Z*, 8X, *TOTAL*5/)
END
```

SUBROUTINE BODIES (M1, CDS1, M2, CDS2, V1, V2, L, DT)

```
COMMON /CONST/ ALT.PI.G.CDP.DNOT.CDSL.LSS.ML.MP.MSS.MST.NOUSE
COMMON /VARIABL/ RHO, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3
REAL MI.M2.L
CALL DENSITY (RHO+ALT=Z)
DTHETA=-G*SIN(THETA) *DT/V1
DV1= (G*COS (THETA) -RHO*CDS1*V1*V1/(2.*M1))*DT
DV2= (G*COS (THETA) -RHO*CDS2*V2*V2/(2.*M2))*DT
DX=V1+SIN(THETA)+DT
DZ=V1+COS(THETA)+DT
DL=V1+DT=V2+DT
THETA=THETA+DTHETA
vl = vl + nvl
v2=v2+Dv2
X = X + DX
Z=Z+DZ
L=L+DL
T=T+DT
RETURN
END
 SUBROUTINE OPENING (DQ, TRCA, N, F, VOLUMG, IEXTRAC, DTT)
 DIMENSION F(N) + REEF (7+10)
 COMMON /CONST/ ALT, PI.G, CDP. DNOT, CDSL, LSS, ML, MP. MSS, MST, NINT
 COMMON /VARIABL/ RHO, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3
 REAL LOS.ML.MP.MS.MSS
 I COUNT=0
DCAPT=DCAPTR=1./N
MS=ML+MSS+MP
READ 6+NREEF
 IFINREEF.EQ.0) GO TO 4
NREEF=NREEF-IEXTRAC
NREEF1=NREEF+1
DO 3 I=1 NREEF1
READ 7.RO.RI.TCD
TNOT=T
TDR=TRCA+TCD
H0=(4.*LSS*R0+2.*R0*DNOT)/(4.*LSS*PI*R0*DNOT)
H1=(4.*LSS*R1+2.*R1*DNOT)/(4.*LSS*PI*R1*DNOT)
HTDNOT=H1+DNOT
PRINT 11,R1, HTDNOT,TCD,TDR
IF (NINT.GT.0) PRINT 12
V1=(H1+H1+H1-H0+H0+H0) +DNOT+DNOT+DNOT
V2=H1*H1*SQRT((LSS+DNOT/2.=PI/4.*H1*DNOT)*#2=H1*H1*DNOT*DNOT/4.)
V3=H0*H0*SQRT((LSS+DNOT/2.=PI/4.*H0*DNOT)*#2=H0*H0*DNOT*DNOT/4.)
```

```
V4=R1*R1*SQRT(LSS*LSS=R1*R1*DNOT*DNOT/4.)
   V5=R0+R0+SQRT(LSS+LSS-R0+R0+DNOT+DNOT/4.)
   VOLUME=(V1+DNOT+DNOT+(V2+V3-V4+V5))+P1/12.
   V D = V
   X0=X
   20=Z
   THE TAO = THE TA
   CALL FILLTIM (VOLUME, VO, XO, ZO, THETAO, MS, HO, HI, N, F, TF)
FO=0,0
   DT=DCAPTR+TF
   CAPTR=0.0
   D0 1 J#1,N
   ICOUNT=ICOUNT+1
   CAPTR=CAPTR+DCAPTR
   T=TF#CAPTR+TNOT
   CAPT=PI*PI/4.*(H1*H1*CAPTR+H0*H0*(1.=CAPTR))
   DCAPT=PI*PI/4.*(H1*H1-H0*H0)*DCAPTR
   CALL CALC(CAPT, TF, DCAPT, DCAPTR, MS, DV, DP, D)
   FRCE=ML* (G*COS (THEITA) -DV/DT)
   FO=AMAX1 (FRCE+FO)
   TRAJANG=THETA+180./PI
   VX=V#SIN(THETA)
   VZ=V+COS(THETA)
   IF(NINT+LT+0) GO TO 1
   IF(ICOUNT.LT.N/20) GO TO 1
   ICOUNT=0
   ALTMZ=ALT=Z
   ACC==(G*COS(THETA)=DV/DT)
   PRINT B.T.ALTMZ.TRAJANG.TRAJANG.X.Z.V.VX.VZ.ACC
   CONTINUE
1
   REEF (1+I)=T
   REEF(2,I)=TRAJANG
   REEF(3+1)=X
   REEF(4,I)=Z
   REEF (5+1) =V
   REEF (6+I)=F0
   REEF(7,I)=TF
   IF# NREEF+1=1) 3,3,2
2 IFI(T.GE.TDR) GO TO 3
   CDS=CDP*PI*DNOT*DNOT*H1+H1/4.
   CDST=CDS+CDSL
   CALL TRAJEQN(T, V, THETA, X, Z, RHO, CDST, MS, DTT, G, ALT, DV)
   AL=-G+COS(THETA)+DV/DTT
   TRAJANG=THETA+180./PI
   VX=V+SIN(THETA)
   VZ=V+COS(THETA)
   ICOUNT=ICOUNT+1
   ALTMZ=ALT=Z
   IFI(ICOUNT.EQ.NINT) PRINT B.T.ALTMZ.TRAJANG, TRAJANG, X.Z.V.VX.VZ.AL
   IFI(ICOUNT.EQ.NINT) ICOUNT=0
   IF((T=TDR) 2+3+3
3 CONTINUE
   PRINT 9. (REEF(().1). J=1.7)
   IF (NREEF.GT.0) PRINT 10. ((REEF(J.1).J=1.7), I=2, NREEF1)
   DQ=DV/DT
   REITURN
   VOLUME=VOLUMG
4
   H0=0.0
   H1=2./PI
   IF(NINT.GT.0) PRINT 12
   TNOT=T
   V0=V
   X 0 = X
   Z0=Z
   THETAORTHETA
   CALL FILLTIM (VOLUME . VO. XO. ZO. THETAD. MS. HO. HI. N. F. TF)
```

```
FIG 30 Computer Program Allowing Six Degrees of Freedom for
Free Descent Phase (Continued)
```

```
F0=0.0
   DT=DCAPT+TF
   CAPT#0.0
   D0 5 J=1.N
   ICOUNT=ICOUNT+1
   CAPT=CAPT+DCAPT
   T#TF#CAPT+TNOT
   CALL CALC (CAPT + TF + DCAPT + DCAPTR + MS + DV + DP + D)
   FRCE=ML# (G+COS (THEITA) -DV/DT)
   FO=AMAX1 (FRCE,FO)
   TRAJANG#THETA#180./PI
   VX=V#SIN(THETA)
   VZ=V*COS (THETA)
   IF(NINT.LT.0) GO TO 5
   IFICICOUNT.LT.N/20) GO TO 5
   TCOUNT=0
   ALITMZ=ALT=Z
ACC==(G*COS(THETA)=DV/DT)
   PRINT B. T. ALITHZ, TRAJANG, TRAJANG, X.Z. V. VX. VZ. ACC
5 CONTINUE
   PRINT 9, T, TRAJANG, X, Z, V, FO, TF
   DQ=DV/DT
   REITURN
   FORMAT(11)
6
   FORMAT (3F10.0)
   FORMAT(1X,F8,2,4F11,2,11X,3F11,2,11X,2F11,2)
8
   FORMAT(//+61X+*TIME(SEC) ANGLE(DEG) X(FT)
                                                             V(FT/SEC)
۵.
                                                    Z(FT)
  1MAX(LB) TF(SEC) *1/20X1+FULL OR REEFED INFLATION +12X1F10.2.
  2F 9.2.3F10.2.F10.0.F10.2)
10 FORMAT(9(58X)F10.2)F 9.2.3F10.2.F10.0.F10.2./))
11 FORMAT(////+20X+*REEFED INFLATION*+/+25X+*REEFING RATIO=: *+F10.3+/
  1,25X,+REEFED PROJ. DIAM.= +,F10,3++ FT+,/,25X,+CUTTER DELAY= +,F10
  2,3+* SEC **//*25x++TIME OF DISREEF# **F10.3,* SEC#*////)
12 FORMAT (5/ +4x, *TIME*, 5x, *ALTITUDE*, 4x, *SYSTEM*, 3x, *C.M. TRAJ. *, 10x
  1,+C.M. POSITION+26X,+C.M. VELOCITY+18X,+C.M.+,/26X,+ANGLE+6X,
  2
       +ANGLE+
                 +80X+*ACCELERATION*+/4X+*(SEC)*+6X+*(FT)*+7X+*(DEG)*
  3+6X+4 (DEG) ++18X, + (FT) ++32X++ (FT/SEC) ++17X++ (FT/SEC/SEC) ++/+50X++X+
  4=10X++Y+=10X++Z++BX++TOTAL+=BX++X++10X++Y+=10X++Z++BX++TOTAL+5/}
  END
```

```
SUBROUTINE FULLTIM (VOLUME, VO X0, Z0, THE TAO, MS, HO, H1, N, VOLDOT, TF)
   COMMON / CONST/ ALT, PI, G, CDP, DNOT, CDSL, LSS, ML, MP, MSS, MST, NOUSE
   COMMON /VARIABLY RHO, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3
   REAL LSS.MS
   DIMENSION VOLDOT(N)
   DCAPTR=1./N
   TFRO.
   DTF=2.0+H1+DNOT/V0
   TEETEADTE
1
   V=V0
   X=X0
   Z=20
   THETA=THETAO
   CAPTR=0.0
   DO: 3 1=1.N
2
   CAPTR=CAPTR+DCAPTR
   CAPT=PI#PI/4.* (H1+H1+CAPTR+H0+H0+(1.=CAPTR))
   DCAPT=PI*PI/4.*(H1*H1-H0*H0)*DCAPTR
   CALL CALC (CAPT . TF, DCAPT, DCAPTR, MS, DV, DP, D)
   C0=0.05
```

```
SUBROUTINE CALC(CAPT.TF.DCAPT.DCAPTR.M.DV.DP.D)
COMMON /CONST/ ALT, PI, G, CDP, DNOT, CDSL, LSS, ML, MP, MSS, MST , NOUSE
COMMON /VARIABL/ RHO, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3
REAL LOSOMOMAOMIOMT
DP=2. +DNOT/PI+SQRT(CAPT)
DPMAX=2. +DNOT/PI
DPDOT=DNOT/(PI*SQRT(CAPT))
D=(4.*LSS*DP)/(4.*LSS+2.*DNOT-PI*DP)
DDOT=((4.*LSS+2.*DNOT-PI*DP)*4.*LSS*DPDOT+4.*LSS*DP*PI*DPDOT)/(4.*
1L55+2. *DNOT-PI*DP) **2
MA=PI*RHO*DP*DP*DP*DP*DP/(32,*DPMAX*DPMAX)
DHA=5.*PI*RHO/(32.*DPMAX*DPMAX)*DP*DP*DP*DP*DP*DPDOT*DCAPT
SQ=SQRT((LSS+DNOT/2.=PI*DP/4:)**2=DP*DP/4.)
SQ1=SQRT(LSS*LSS-D*D/4.)
MI=PI*RH0/12.*(DP*DP*DP*DP*DP*SQ+D*D*SQ1)
Dv1=PI+RH0/12.+ (3.+DP+DP+DPD0T-DP+DP+((2.+LSS+DN0T-PI+DP/2.)+PI+DP
1D0T/4.+DP*DPD0T/2.)/(2.*SQ)+2.*DP*DPD0T*SQ+D*D*D*DD0T/(4.*SQ1)=2.*
2D*DDOT*SQ1)*DCAPT
MT=M+MA+MI
DTHETA==G#SIN(THETA) #M#DCAPTR#TF/(V#MT)
CDS=CDP*PI*DP*DP/4.+CDSL
DV=(M*G*COS(THETA)/MT-RHO*V*V*CDS/(2.*MT))+DCAPTR*TF-V*(DMI+DMA)
17MT
DX=V+SIN(THETA)+DCAPTR+TF
DZ=V+COS(THETA)+DCAPTR+TF
THETA=THETA+DTHETA
V=V+DV
X=X+DX
Z=Z+DZ
CALL DENSITY (RHO, ALT=Z)
RETURN
END
```

C=C0*(RH0/0.002378)**.142857

SJM=VOLDOT(N) NM1=N-1

NM2=N-2

GO TO 1

V=V0 X=X0 Z=Z0

6

7

DO 4 J=1,NM1,2 4 SUM=SUM+4.*VOLDOT(J)

D0 5 K=2,NM2,2 5 SUM=SUM+2.*VOLD0T(K)

> THETA=THETAO RETURN END

VOL=DCAPTR/3.+SUM+PI+TF

DTF=TF*(VOLUME/VOL=1.)

IFI(ABS(VOL-VOLUME)/VOLUME-0.00001) 7.7.6

3 VOLDOT(I)=V*((1.+2.2*C*CAPT=CAPT)*D*D/4.=1.1*C*DP*DP/2.)

SJBROUTINE INTGRAT(T,Y,TF;NN;PCTERR,ETA,TRY1;TRY2,TRY3,W;YDOT;Z;ID 1.DX.TI.ISIGNAL) DIMENSION Y (NN), YDOT (NN), TRY1 (NN), TRY2 (NN), TRY3 (NN), ETA (NN), W (NN), 12(NN) MM=0 T1 = TIMDONE=-1 IF(ID) 1,1,2 1 DT=DX GO: TO: 12 5 DT=TF=T1 M≡0 CALL FORMULA(Y, DT, TRY1, NN, W, YDOT, Z,L) ▶ 3 IF(L.GT.0) GO TO 15 CALL FORMULA (Y.O. 5+DT. TRY2, NN.W. YDOT.Z.L) - 4 IF(L.GT.0) GO TO 15 CALL FORMULA (TRY2,0,5*DT, TRY3, NN, W, YDOT, Z,L) IFI(L.GT.0) GO TO 15 D0 5 J=1,NN ERR1=ABS(TRY3(J)-TRY1(J)) ERR2=AMAX1(ETA(J),PCTERR*ABS(TRY3(J))) IF(ERR1-ERR2) 5,5,10 5 CONTINUE ми≖о DD 6 K=1+NN Y(K) = TRY3(K)6 Tl = Tl + DTIF(M.LT.5) 8,9 8 $M \equiv M + 1$ GO: TO 12 ۵ M=0 DT=2.0+0T GO TO 12 10 M=0 MM=MM+1 IF(MM.GT.20) GO TO 16 IMDONE = -1DT=DT#0.5 DO 11 I=1.NN 11 TRY1(I)=TRY2(I) GO TO 4 IF((T1-TF+DT) 3,13,13 12 IFI(IMDONE) 7.14.14 13 DX=DT DT=TF=T1IF(DT.EQ.0.) GO TO 14 IMDONE=1 GO TO 3 - 14 CALL EMOTION (Y, YDOT, 1, ISIGNAL) DX=AMAX1 (DX+DT) RETURN 15 M#0 MM=MM+1 IF!(MM.GT.20) GO TO 16 IMDONE==1 DT=DT+0.5 GO TO 3 16 ISIGNAL=1 PRINT 17 RETURN 17 FORMAT (5/+5X+5H*****CANNOT INTEGRATE OR ANGLE OF ATTACK LARGE*) END.

```
SUBROUTINE FORMULA (Y+H+YI+NN+W+YDOT+Z+ISIGNAL)
   DIMENSIONY (NN) , YDOT (NN) , YI (NN) , W (NN) , Z (NN) , A (5)
   A(3) = A(4) = H
   A(1) = A(2) = A(5) = 0.5 + H
   DO 1 J=1,NN
   Z(J) = YDOT(J)
   ₩ (J) = Y (J)
1
   YI(J) = Y(J)
   DO 2 K=1.4
   CALL EMOTION (W.Z.2. ISIGNAL)
   IFI(ISIGNAL.GT.0) RETURN
   D0 2 L=1,NN
   W(L) = Y(L) + A(K) + Z(L)
   YI(L) = YI(L) + C + Z(L)
2
   RETURN
   END
   SUBROUTINE TRAJEQN(T,V,THETA,X,Z,RHO)CDS,M,DT,G,ALT,DV)
   REAL M
   CALL DENSITY (RHO+ALT-Z)
   DV=(G*COS(THETA) -RHO*CDS*V*V/(2.*M))*DT
   DTHETA=-G*SIN(THETA) +DT/V
   DX=V*SIN(THETA)*DT
   DZ=V+COS(THETA)+DT
   V=V+DV
   THETA=THETA+DTHETA
   X = X + DX
   Z=Z+DZ
   T=T+DT
   RETURN
   END
   SUBROUTINE DENSITY (RHO, H)
   RH0=0.002378+EXP(-H/32916.)
   IF(H.GT.15000.) RH0=0.002378*1.07133*EXP(-H/28593.)
   RETURN
   END
   SUBROUTINE DYNAMIC (RHO.L1.L2.L3.IXX.IYY.IZZ.IXZ.MI)
   REAL IA, IAZ, IAZO, IY, IYY, IXX, IXZ, IZ, IZZ, L1, L2, L3, MBR, ML, MLS, MR, MRX,
  1MP.MI
   COMMON /DYNAM/ DNOT . X1 . X2 . X3 . X4 . X5 . MBR . ML . ML S. MP . MR . MRX . IAZO . IZ .
  1Q1.Q2.VOLUME.XNUM.XDENOM
   MI=RHO#VOLUME
   X=(XNUM-MI*Q1*DNOT)/(XDENOM+MI)
   L1=X5=X
   L2=-X-Q1+DNOT
   L3=DNOT=X
   14=0.13195*RH0*Q2*Q2*Q2*DN0T*DN0T*DN0T*L2*L2
   IY=MP+L2+L2+MLS+(X=X1)+(X=X1)+MR+(X2=X)+(X2=X)+MRX+(X3=X)+(X3=X)+
  1M3R*(X4-X)*(X4-X)*ML*L1*L1
   IYY=IY+IA
   IXX=IYY
   IAZ=IAZ0#RH0/0.002378
   IZZ=IZ+IAZ
   IXZ=0.0
   RETURN
   END
```

```
SUBROUTINE MOTION (DQ, PCTERR, ETA, DT)
   DIMENSION Y(12), YDOT(12), ETA(12), X1(12), X2(12), X3(12), W(12), A(3,3).
   DIMENSION B(12), VERTPAR(10,3)
   REAL LL
   COMMON /CONST/ ALT, PI.G. CDP. DNOT. CDSL.LSS.ML, MP.MSS.MST.NINT
   COMMON /VARIABL/ RHO, T, V, THETA, X, Z, ALPHAL, ALPHAP, L1
   PRINT 8
   READ 7.TSTOP.ZSTOP
   TSTOP=TSTOP+T
   IF(NINT.GT.O) PRINT 6
   AMARK=1.0
   NMARK=0
   IVERT#1
   ANG=THETA+180./PI
   10=1
   Y(1)=Y(2)=Y(4)=Y(6)=Y(8)=Y(9)=Y(11)=0.0
   Y(3) = V
   Y(5)=-G+SIN(THETA)/V
   Y (7) = THETA
   Y(10)=X
   Y(12) =Z
   YDOT(4) = YDOT(6) = 0.0
   YDDT (5) #G#G#COS (THETA) #SIN (THETA) / (V#V) +G#SIN (THETA) / (V#V) #DQ
   TF#T+DT
   NUMB=IABS(NINT)
1
   DO 2 1=1.NUMB
   CALL INTGRAT (T, Y, TF, 12, PCTERR , ETA, X1, X2, X3, W, YDOT, B, ID, DX, T1, K)
   IFI(K.GT.0) RETURN
   CALL COSINES(A+Y)
-
   V0#V
   R3=Y(12)+L1+A(3,3)
   IFI(R3.GT.ZSTOP) CORR=(ZSTOP=RZ)/(R3=RZ)
   IF(T1.GT.TSTOP) CORR=(TSTOP=T)/(T1=T)
   IFI(R3.GT.ZSTOP.OR.T1.GT.TSTOP) GO TO 3
   T#T1
   RX = Y(10) + L1 + A(1,3)
   RY=Y(11)+L1+A(2,3)
   RZ=R3
   C1 = Y(1) + Y(5) + L1
   C2#Y(2) +Y(4) +L1
   VX=C1#A(1+1)+C2#A(1+2)+Y(3)#A(1+3)
   VY#C1#A (2+1)+C2#A (2+2)+Y (3)#A (2+3)
   VZ=C1+A(3+1)+C2+A(3+2)+Y(3)+A(3+3)
   C3=YDOT(1)+Y(5)+Y(3)-Y(6)+Y(2)+YDOT(5)+L1+Y(4)+Y(6)+L1
   C4=YDOT(2)+Y(6)+Y(1)-Y(4)+Y(3)-YDOT(4)+L1+Y(5)+Y(6)+L1
   C5=YDOT (3) + Y (4) + Y (2) - Y (5) + Y (1) - (Y (4) + Y (4) + Y (5) + Y (5) ) +L1
   AX=C3#A(1,1)+C4#A(1,2)+C5#A(1,3)
   AY=C3#A(2+1)+C4#A(2+2)+C5#A(2+3)
   AZ=C3#A(3,1)+C4#A(3,2)+C5#A(3,3)
   V=SQRT (VX+VX+VY+VY+VZ+VZ)
   AT#SQRT (AX#AX+AY#AY+AZ#AZ)
   IFI(V.LT.VO) AT=AT
   SYSANGL=ACOS(A(3,3))+180./PI
   TRAJANG=ACOS(VZ/V)+180./PI
   IF(IVERT.GT.3) GO: TO 15
12 IF(( (ABS( SYSANGL) = ABS( ANG) ) * AMARK+ GE+ 0.0) GO TO 13
   VERTPAR(1,IVERT)=T
   VERTPAR(2, IVERT) #ALT=RZ
   VERTPAR (3, IVERT) =RX
   VERTPAR (4 + IVERT) =RY
   VERTPAR (5+ IVERT) #RZ
   VERTPAR (6, IVERT) #V
   VERTPAR (7+IVERT) =VX
   VERTPAR (8+IVERT) =VY
   VERTPAR (9, IVERT) =VZ
```

```
VERTPAR(10, IVERT) =AT
    ANG=SYSANGL
    GO TO 15
 13 AMARK=-AMARK
    NMARK=NMARK+1
    GO TO (14.12.14.12.14) NMARK
 14 IVERT=IVERT+1
    ANG=SYSANGL
 15 ID==1
    NUMB=IABS(NINT)
    IFI(NUMB*DX.GT.1.0) NUMB=MAX1(1...1./DX)
    TFFT+DX
    CONTINUE
    ALITMRZ=ALT-RZ
    IF(NINT.GT.O) PRINT 4. T. ALTMRZ. SYSANGL. TRAJANG. RX. RY. RZ. V. VX. VY. VZ
   1.AT
    GO TO 1
3
   Tm:(T1+T)+CORR+T
    R1=Y(10)+L1+A(1,3)
    R2=Y(11)+L1+A(2.3)
    C1=Y(1)+Y(5)+L1
    C2=Y(2)=Y(4)+L1
    V1=C1+A(1+1)+C2+A(1+2)+Y(3)+A(1+3)
    V2=C1+A(2,1)+C2+A(2,2)+Y(3)+A(2,3)
    V3#C1#A(3+1)+C2#A(3+2)+Y(3)#A(3+3)
    C3#YD0T(1)+Y(5)+Y(3)+Y(6)+Y(2)+YD0T(5)+L1+Y(4)+Y(6)+L1
   C4=YDOT(2)+Y(6)*Y(1)=Y(4)*Y(3)=YDOT(4)*L1+Y(5)*Y(6)*L1
   C5=YDOT (3) +Y (4) +Y (2) -Y (5) +Y (1) - (Y (4) +Y (4) +Y (5) +Y (5) )+L1
   A1=C3+A(1+1)+C4+A(1+2)+C5+A(1+3)
    A2=C3+A(2,1)+C4+A(2,2)+C5+A(2,3)
    A3=C3+A (3,1)+C4+A (3,2)+C5+A (3,3)
   RX=(R1=RX)+CORR+RX
   RY=(R2-RY) +CORR+RY
   RZ=(R3-RZ) +CORR+RZ
   VX#(VI=VX) +CORR+VX
   VY=(V2=VY)+CORR+VY
   VZ=(V3=VZ)+CORR+VZ
   AX=(A1-AX) +CORR+AX
   AY=(A2=AY) +CORR+AY
   AZ# (A3-AZ) +CORR+AZ
   V#SQRT(VX#VX+VY+VZ+VZ)
   AT=SQRT (AX+AX+AY+AY+AZ+AZ)
   IFI(V.LT.VO) AT=-AT
   SYSANGL= (ACOS(A(3,3)) #180./PI-SYSANGL) *CORR+SYSANGL
   TRAJANG=ACOS(VZ/V) +180./PI
   ALTMRZ=ALT-RZ
   IFI(NINT.GT.O) PRINT 4.T.ALTMRZ.SYSANGL.TRAJANG.RX.RY.RZ.V.VX.VY.VZ
  1 AT
   PRINT 51
   IVERT1=IVERT-1
   D0 31 J#1, IVERT1
31 PRINT 5.J. (VERTPAR([,J), I=1,10)
   RETURN
   FORMAT(1X+F8.2+11+11.2)
   FORMAT (5X, 11, * VERT/MIN*, 3F12.2, 3F10, 2, 4F12.2)
51 FORMAT (//20X, *TIME (SEC) ALTITUDE (FT)
                                             X(FT)
                                                        Y(FT)
                                                                   Z(FT)
                VX (FT/SEC) VY (FT/SEC)
  1 V(FT/SEC)
                                           VZ(FT/SEC) A(FT/SEC/SEC)*)
  FORMAT (5/ +4X+ *TIME*+5X+*ALTITUDE*+4X+*SYSTEM*+3X++LOAD TRAJ+*+10X
6
  1.*LOAD POSITION*, 26X, *LOAD VELOCITY*, 18X, *LOAD*, /, 26X, *ANGLE*, 6X,
       #ANGLE#
                  *80X+*ACCELERATION**/4X+*(SEC)*+6X+*(FT)**7X+*(DEG)*
  3+6X+* (DEG) ++18X+* (FT) ++32X+* (FT/SEC) ++17X+* (FT/SEC/SEC) ++/+50X+*X*
  4,10X, *Y*,10X, *Z*,8X, *TOTAL*,8X, *X*,10X, *Y*,10X, *Z*,8X, *TOTAL*5/)
   FORMAT(2F10.0)
  FORMAT (5/ .5X . *NOTE ** POSITIONS . VELOCITIES . ACCELERATIONS . TRAJ. ANGL
A
  1ES REFER TO LOAD, PREVIOUS RESULTS ARE FOR MASS CENTER!)
   END
```

```
LA SUBROUTINE EMOTION (Y, YDOT, ISTOP, ISIGNAL)
  DIMENSION Y (12) , YDOT (12) +A (3+3)
  REAL MOMADNIONLOMPONSSOIXXOIYYOIZZOIXZOLUOLZOLO
  COMMON / CONST/ ALT, PI.G, CDP, DNOT, CDSL, LSS, ML, MP, MSS, MST, NOUSE
  COMMON /VARIABLY RHO, T.V. THETA, X.Z. ALPHAL, ALPHAP, L1
  CALL DENSITY (RHO, ALT-9 (12))
  CALL DYNAMIC (RHO+LI+L2+LB+IXX+IYY+IZZ+IXZ+MI)
  MA=1.375+MI
  M=ML+MP+MSS+MA
  R=MA/M
  B#:(ML+MP+MSS) #G/M
  H1=(IZZ=IYY)/IXX
  H2=(IXX=IZZ)/IYY
  H3=(IYY=IXX)/IZZ
  H4#IXZ/IXX
  H5=IXZ/IYY
  H6=1XZ/IZZ
  C=RHO+PI+DNOT+DNOT/8.
  CONOT#C*DNOT
  E=0.5*RHO*CDSL
  U \subseteq H^{+}(1) + Y(5) + L1
  VLHY (2) = Y (4) #L1
  UPHY (1) +Y (5) +L2
  VP#Y(2) #Y(4) #L2
  VLR=UL#UL+VL+VL+Y(3)+Y(3)
  VP2=UP#UP+VP#VP+Y(3) #Y(3)
  ALPHALHATAN (-ULYY (3))
  BETALSATAN (VL/Y(3))
  GAMMALEATAN (VL/SQRT (UL+UL+Y(3)+Y(3)))
  DELTALHATAN (+UL/SQRT (VL+VL+Y(3)+Y(3)))
  ALPHAP#ATAN (-UP/Y(3))
  BEITAP=ATAN (VP/Y (3))
  POLANG=ACOS (Y (3) / SQRT (UP#UP+WP#VP+Y (3) +Y (3) ))
  CALL: COEFFIS (ALPHAP + BETAP + POLANG + CT + CX + CY + CMX + CMY + ISTOP + ISIGNAL)
  IFI(ISIGNAL.GT.0) RETURN
  FX=C+CX+VP2
  FY#C#CY#VP2
  TT#C#CT#VP2
  AEROMX=CDNOT+CMX+VP2
  AEROMY=CONOT+CMY+VP2
  D#E#VL2
  CALL COSINES(A.Y)
  ŶDŌT(1)=B+A(3;1)+D+COS(GAMMAL)+SIN(ALPHAL)/H+FX/M-R+L2+(YDOT(5)+
 1Y (4) +Y (6) ) +Y (5) +Y (3) +Y (6) +Y (2)
  ŶDOT (2) #B#A (3+2) +D#COS (ĎEĽITAĽ) #SIN (BETAĽ) /M+FY/M+R#L2# (YDOT (4}++
 1Y(5)+Y(6))+Y(4)+Y(3)-Y(6)+Y(1)
  YDDT(3)=B+A(3+3)=D#COS(GAMMAL)+COS(ALPHAL)/M=TT/M+R+L2+(Y(4)+Y(4)
 1+Y(5) +Y(5)) +Y(4) +Y(2) +Y(5) +Y(1)
  YDOT (4) == FY+L3/IXX+AEROMX/IXX+D+COS (DELTAL) +SIN (BETAL) +L1/IXX=ML#G
 1#A(3+2)#LĨ/IXX=MP#G#A(3+2)#L2/IXX+YDOT(6)#H4=Y(5)#Y(6)#H1+Y(4)#Y(5;
 2) #H4
  YDOT (5) = FX+LB/IYY+AEROMY/IYY+D+COS (GAMMAL) +SIN (ALPHAL)+L1/IYY+ML#G
 1*A(3,1)*L1/IYY+MP+G*A(3,1)*L2/IYY=Y(4)*Y(6)*H2=(Y(4)*Y(4)=Y(6)*Y(6)
 2)) #H5
  YDDT (6) =YDOT (4) +H6=Y (4) +Y (5) +H3=Y (5) +Y (6) +H6
  YDOT (7) #Y (5) #COS (Y(8) ) #Y (6) #SIN (Y (8) )
  YODT (8) #Y (4) +TAN (Y (7) ) * (Y (5) *5IN (Y (8) ) +Y (6) *COS (Y (8) ) )
  YDDT (9) # (Y (5) #SIN (Y (8) ) + Y (6) #COS (Y (8) ) ) / COS (Y (7) )
  YDOT (10) #Y (1) #A (1,1) +Y (2) #A (1,2) +Y (3) #A (1,3)
  YDOT (11) #Y (1) #A (2,1) +Y (2) #A (2,2) +Y (3) #A (2,3)
  YDOT (12) #Y (1) #A (3,1) +Y (2) #A (3,2) +Y (3) #A (3,3)
  RETURN
  END
```

```
SUBROUTINE COSINES(A.Y)
DIMENSION Y(12),A(3,3)
   A(1,1) = COS(Y(7)) + COS(Y(9))
   A(1+2) #SIN(Y(8)) #SIN(Y(7)) #COS(Y(9)) #COS(Y(8)) #SIN(Y(9))
   A(1+3)=COS(Y(8))+SIN(Y(7))+COS(Y(9))+SIN(Y(8))+SIN(Y(9))
   A(2+1)=COS(Y(7))*SIN(Y(9))
   A(2+2)=SIN(Y(8))+SIN(Y(7))+SIN(Y(9))+COS(Y(8))+COS(Y(9))
   A(2,3)=COS(Y(8))+SIN(Y(7))+SIN(Y(9))-SIN(Y(8))+COS(Y(9))
   A(3.1) == SIN(Y(7))
   A (3+2) = SIN (Y (8)) + COS (Y (7))
   A(3+3) #COS(Y(8)) #COS(Y(7))
   RETURN
   END
 SUBROUTINE COEFFTS (ALPHAP, BETAP, POLANG, CT . CX . CY . CMX . CMY . IPRINT.
  1ISIGNAL)
   ALPHAPD#ALPHAP#57.295779515
   BETAPD=BETAP=57.295779515
   P=POLANG+57+295779515
   IFICABS (ALPHAPD) .LT.85.) GO TO 1
   IFUIPRINT.EQ.I) PRINT 2.ALPHAPD
   ISIGNAL=1
   RETURN
 IFILABS (BETAPD) .LT.85.) GO TO 3
1
   IF(IPRINT.EQ.1) PRINT 2.BETAPD
   ISIGNAL=1
   REITURN
2 FORMAT (5X, +ANGLE OF ATTACK= +, F6.3, + ... TOO LARGE+)
3 ISIGNAL==1
   A=ABS(ALPHAPD)
   IF (A=30.0) 4,5,5
4 CX==6.74E=03#A+5.57E=04#A#A=1.53E=05#A#A#A+1.9E=07#A#A#A#A
   CMY=4.844E-03#A-3.94E-04#A#A+1.043E-05#A#A#A-1.32E-07#A#A#A#A
   IF (ALPHAPD.GT.0.0) GO TO 6
   CX==CX
  CMY==CMY
   GO: TO 6
5 CX=.0056+(A=30.0)+.04
   CMY=-.0044+ (A-30.0) -.034
   IF (ALPHAPD.GT.0.0) GO TO 6
   CX=-CX
   CMY=-CMY
6 B#ABS (BETAPD)
   IFI(8=30.0) 7.8.8
7 CY#+6,74E+03+8+5,57E+04+8+8+1,53E+05+8+8+8+1,9E+07+8+8+8+8
   CMX#4,844E+03+8+3,94E+04+8+8+1.043E+05+8+8+8+1.32E+07+8+8+8+8
   IF((BETAPD.GT.0.0) GO TO 9
   CY=+CY
   CMX=-CMX
   GO TO 9
8 CY=,0056+(B=30.0)+.04
   CMX==.0044*(B=30.0)=.034
   IF((BETAPD.GT.0.0) GO TO 9
   CY==CY
   CMX==CMX
9 IFI(P=30.0) 10.11.11
10 CT#+647=1.2E=05*P+9.15E=04*P*P=7.13E=05*P*P*P+1.33E=06*P*P*P*P
   RETURN
11 CT=0.62
   REITURN
   END
```

```
FIG 30 Computer Program Allowing Six Degrees of Freedom for
Free Descent Phase (Concluded)
```

VIII. INPUT DATA CARD FORMAT

Input to the computer program is provided on punched data cards. Somewhat different data is required for each of the four separation-deployment systems. Tables XX through XXIII detail the data cards which are required for the four separation-deployment systems. The numbers listed as card numbers correspond to the order and total number of cards which are required for two-dimensional trajectories with no reefed inflations. Data cards which must be inserted only for three-dimensional trajectories are denoted by 7a and 7b. When reefed inflations are desired, the user must insert the required number of appropriate cards at the points indicated in Tables XX through XXIII.

Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
1	1-50	5A10	C1, C2, C3, C4, C5		title of simulation
2	1-10	F10.0	ALT	h	release altitude
	11-20	F10.0	VO	V	release velocity
3	1-10	F10.0	MST	m _{rs}	mass of load and packed recovery system
	11-20	F10.0	MP	m	mass of parachute
	21-30	F10.0	MLS	m _T .	mass of suspension lines
	31-40	F10.0	MR	m _R	mass of risers
	41-50	F10.0	MRX	m _E .	mass of riser extensions
	51 - 60	F10.0	MBR	m_ Br	mass of load bridle
	61-70	F10.0	ML	m	mass of load
4	1-10	F10.0	Xl	sl	reference distance from canopy skirt to suspen- sion line center of mass in fully inflated con- figuration
	11-20	Fl0.0	X2	\$ <u>2</u>	reference distance from canopy skirt to riser center of mass in fully inflated configuration

		'T'A	ABLF XX		
Input	Data	for	Static	Line	System
and the second					

186

 $\langle \rangle$

Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
	21-30	FlO.O	X3	^s 3	reference distance from canopy skirt to riser extension center of mass in fully inflated con- figuration
	31-40	Fl0.0	x 4	5 <u>4</u>	reference distance from canopy skirt to load bridle center of mass in fully inflated con- figuration
	41-50	Fl0.0	X 5	\$ <u>5</u>	reference distance from canopy skirt to load center of mass in full inflated configuration
	51 - 60	Fl0.0	IZ	I _Z (122) (1x2)	moment of inertia about Z-axis due to masses of load, parachute, and suspension system
	61-70	FlO.O	IAZO	I _a _{Z)o}	apparent moment of inertia about Z-axis at mean sea level
5	1-10 11-20	F10.0 F10.0	DNØT LSS	D _o	nominal diameter $L_{_{ m C}}$ + $L_{_{ m D}}$
	21-30	FlO.O	CDP	с _D р	drag coefficient of parachute based on projected area

TABLE XX (CONT.)

Input Data for Static Line System

Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
	31-40	F10.0	CDSL	C _D SL	drag area of load
	41-50	Fl0.0	Ql	sc/Do	ratio of reference dis- tance from canopy skirt to parachute center of volume in fully inflated condition to D _O
	51 - 60	Fl0.0	ର୍2	D_/D_ p _{max} o	projected diameter ratio in fully inflated con- figuration
	61-70	FlO.O	VOLUME	- A	volume of fully inflated parachute
6	1	Il	N		number of degrees of freedom
	2-10	19	NNN		number of steps used to approximate inflation stages in
	11-20 21-30 31-40	F10.0 F10.0 F10.0	DT1 DT2 DT3	∆t ∆t ∆t	Δ t in EXTRACT Δ t in SNATCH Δ t in ØPENING, MØTIØN
	41 - 45	15	NINT		number of calculations made without print; if ≤ 0 suppresses continuous
7	1-10	F10.0	ETA(l)	\mathfrak{n}_{1}	allowable absolute error in integration for U

1. 1

TABLE XX (CONT.) Input Data for Static Line System

Card Number	Column Number	Format Representation	Mnemonic	Symbol		Comments		
	11-20	F10.0	ETA(2)	h 2		allowable a in integrat	bsolute ion for	error W
	21-30	F10.0	ETA(3)	n 3		allowable a in integrat	bsolute ion for	error Q
	31-40	F10.0	ETA(4)	η4		allowable a in integrat	bsolute ion for	error O
	41 - 50	F10.0	ETA(5)	n_5		allowable a in integrat	bsolute ion for	error x
	51 - 60	Fl0.0	ETA(6)	m ₆		allowable a in integrat	bsolute ion for	error z
7a ¹	1-10	Fl0.0	ETA(1)	$\boldsymbol{\eta}_{l}$		allowable a in integrat	bsolute ion for	error U
	11-20	Fl0.0	ETA(2)	n ₂	•	allowable a in integrat	bsolute ion for	error V
	21 - 30	Fl0.0	ETA(3)	M 3		allowable a in integrat	bsolute ion for	error W

TABLE XX (CONT.)

Input Data for Static Line System

¹ these cards are required in place of card 7 when six degrees of freedom are allowed, i.e. N = 6

189

Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
	31-40	F10.0	ETA(4)	n 4	allowable absolute error in integration for P
	41-50	Fl0.0	ETA(5)	n 5	allowable absolute error in integration for Q
	51-60	Fl0.0	ETA(6)	n 6	allowable absolute error in integration for R
7b ¹	1-10	FlO.O	ETA(7)	\mathbf{n}_7	allowable absolute error in integration for Θ
	11-20	Fl0.0	ETA(8)	N 8	allowable absolute error in integration for $oldsymbol{arphi}$
	21 - 30	Fl0.0	ETA(9)	n 9	allowable absolute error in integration for $\pmb{\Psi}$
	31-40	Fl0.0	ETA(lO)	\boldsymbol{n}_{10}	allowable absolute error in integration for \mathbf{x}
	41-50	Fl0.0	ETA(11)	$\mathbf{n}_{\mathtt{ll}}$	allowable absolute error in integration for y
	51 - 60	Fl0.0	ETA(12)	η_{12}	allowable absolute error in integration for z

TABLE XX (CONT.) Input Data for Static Line System

¹ these cards are required in place of card 7 when six degrees of freedom are allowed, i.e. ${\rm N}$ = 6

Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
8	1-10	F10.0	PCTERR	Ep	allowable relative error in integration
9	1-2	I2	ISTATIC		
	3-4	I2	IEXTRAC		0
10	1 10	F10.0	LSTATIC	L _{static}	length of static line
	11 - 20	Fl0.0	CDSBAG	C _D S _B	drag area of main para- chute deployment bag
	21-30	F10.0	CDSP	C _D S _{pilot}	0
	31-40	F10.0	DPILØT		0
	41-50	FlO.O	LSPILØT	L _{s pilot}	0
	51-60	FlO.O	TD	t _D	0
	61-70	F10.0	LRXBR		$L_{R} + L_{Br}$
11	1	Il i i i i i	NREEF		number of reefing lines
11a ²	1-10	ElO.O	RO	R	initial reefing ratio
	11 - 20	F10.0	Rl	R ₁	final reefing ratio
	21-30	FlO.O	TCD	tCD	reefing cutter delay time

TABLE XX (CONT.) Input Data for Static Line System

² required only when NREEF \neq 0; must have NREEF cards of type lla

191

Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
12	1-10	Fl0.0	TSTØP	tstop	number of seconds after full inflation when sim- ulation is to terminate
	11-20	F10.0	ZSTØP	^z stop	altitude loss at which simulation is to terminate

٦

TABLE XX (CONT.) Input Data for Static Line System

TABLE XXI

Input Data for Static Line Deployed Pilot Chute System

Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
1-8					see Table XX
9	1-2	I2	ISTATIC		-1,
	3-4	I2	IEXTRAC		
10	1-10	F10.0	LSTATIC	L _{static}	static line length dead
	11-20	Fl0.0	CDSBAG		drag area of main para- chute deployment bag
	21-30	F10.0	CDSP	C_S	drag area of pilot chute
- Kerner	31-40	Fl0.0	DPILOT	D Do-pilot	flat diameter of pilot chute
	41-50	Fl0.0	LSPILOT	L _s pilot	length of suspension lines of pilot chute
	51-60	Fl0.0	TD	t _D	time at which coasting period ends; if no coast- ing period,= 0
	61-70	F10.0	LRXBR		0
11	1-10	F10.0	MPBAG	^m pb	mass of pilot parachute and main parachute de- ployment bag
	11-20	Fl0.0	CDS2	$C_{\mathbb{D}}S_{\mathbb{II}}$	drag area of pilot chute and main parachute de- plovment bag

193

Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
·	21 - 30	F10.0	K.	- k	spring constant of sus- pension system
	31-40	Fl0.0	LRXBR	a the second	$L_{E} + L_{Br}$
12	1	Il	NREEF		number of reefing lines
12a ^l	1-10	F10.0	RO	R	initial reefing ratio
	11-20	F10.0	Rl	R ₁	final reefing ratio
	21-30	Fl0.0	TCD	t _{CD}	reefing cutter delay time
13	1-10	Fl0.0	TSTØ₽	tstop	number of seconds after full inflation when sim- ulation is to terminate
	11-20	Fl0.0	ZST∳P	^z stop	altitude loss at which simulation is to terminate

TABLE XXI (CONT.)

Input Data for Static Line Deployed Pilot Chute System

¹ required only when NREEF \neq 0; must have NREEF cards of type 12a

194
					· · · · · · · · · · · · · · · · · · ·
Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
1-8					see Table XX
9	1-2	I2	ISTATIC		+1
	3-4	I2	IEXTRAC		0
10	1-10	FlO.O	LENGTH	L	distance load travels in aircraft
	11-20	Fl0.0	CDSBAG	$C_D S_B$	drag area of main para- chute deployment bag
	21-30	Fl0.0	CDSEX	$^{C}D^{S}ex$	drag area of extraction parachute
	31-40	Fl0.0	TD	t _D	time at which coasting period ends; if no coasting period,= 0
11	1-10	Fl0.0	MPBAG	^m pb	mass of extraction para- chute and main parachute deployment bag
	11-20	Fl0.0	CDS2	c_{D}^{s} II	drag area of extraction parachute and main para- chute deployment bag
	21-30	Fl0.0	K	k	spring constant of sus- pension system
	31-40	Fl0.0	LRXBR		$L_{E} + L_{Br}$

TABLE XXII Input Data for Extraction Parachute System

Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
12	1	I1	NREEF		number of reefing lines
$12a^{\perp}$	1-10	F10.0	RO	R	initial reefing ratio
	11 - 20	FlO.O	Rl	R ₁	final reefing ratio
	21-30	FlO.O	TCD	t _{CD}	reefing cutter delay time
13	1-10	Fl0.0	TSTØ₽	tstop	number of seconds after full inflation when sim- ulation is to be ter- minated
	11-20	Fl0.0	ZSTØP	^z stop	altitude loss at which simulation is to be terminated

TABLE XXII (CONT.) Input Data for Extraction Parachute System

¹ required only when NREEF \neq 0; must have NREEF cards of type 12a

-

Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
1 - 8					see Table XX
9	1 - 2	I2	ISTATIC		
	3-4	I2	IEXTRAC		+1
10	1-10	Fl0.0	R	R _{ex}	reefing ratio of main parachute during ex- traction
	11-20	FlO.O	LENGTH	\mathbf{L}	distance load travels
	21 - 30	Fl0.0	TD	t _D	time at which coasting period ends; if no coast- ing period, = 0
11	1	Il	NREEF		number of reefing lines
12 ¹	1-10	F10.0	RO	R	initial reefing ratio
	11-20	FlO.O	Rl	R ₁	final reefing ratio
	21-30	FlO.O	TCD	t _{CD}	reefing cutter delay time
13	1-10	Fl0.0	TSTØ₽	UD	number of seconds after full inflation when sim- ulation is to terminate
	11 - 20	Fl0.0	ZSTØP		altitude loss at which simulation is to terminate

TABLE XXIII

Input Data for Reefed Main Parachute Extraction System

¹ NREEF cards of this type are needed

IX. SAMPLE OUTPUT

Figures 31 through 35 include portions of the computer output related to those calculations which are presented graphically in Volume I of this report. Portions of the data during the free descent phase are omitted since the intent of this Section is only to indicate the type of output which is produced by the computer program.

All physical input data related to the parachute-load system is printed on the computer outputs. Those input values which are required for the specific systems have been discussed in Section VIII. The remaining inputs are left to the discretion of the program user, and the particular values which were used in all of the calculations shown in this section are listed in the following:

NNN = 100
DT1 = 0.001
DT2 = 0.001
DT3 = 0.001
NINT = 50 (determines print increments)
ETA(1) = 0.001
ETA(2) = 0.001
ETA(3) = 0.00001
ETA(4) = 0.0001
ETA(5) = 0.01
ETA(6) = 0.01
PCTERR = 0.001

The above values were chosen after experimentation with a typical calculation showed that smaller values (larger for NNN) did not significantly alter the numerical results but required significantly more computer time for the calculations. These values must, of course, be estimated for the particular application the program user intends.

PARACHUTE-LOAD SYSTEM (DEPLOYMENT) -- T-10 (STATIC LINE)

TRAJECTORY SIMULATION--T=0,Z=0 IS RELEASE POINT RELEASE CONDITIONS ALTITUDE= 6000. FT VELOCITY= 220.00 FT/SEC MASSES--SLUGS TOTAL SYSTEM= 8.343 LOAD 7.770 PARACHUTE= • 364 SUSP, LINES= •075 RISERS= •031 RISER EXTENSIONS= 0 LOAD BRIDLE 0 7.889(SEA LEVEL) FT INCLUDED= 6.574(6000. 2.958 (SEA LEVEL) 2.465(6000. FT) APPARENT= REFERENCE DISTANCES FROM SKIRT-- FT x1= 11.520 x2= 24.170 X3= 0 0 X4= 27.800 X5= MOM. / PROD. INERTIA -- SLUG FT++2 3339.500 (SEA LEVEL) 2994.494 (FT) 6000. TXX= IYY= 3339.500(SEA LEVEL) 2994.494 (6000. FT) 0.(6000. FT) IZZ= 0(SEA LEVEL) 6000. 0 (FT) O(SEA LEVEL) TXZ= DIMENSIONS-- FT. DNOT 35.000 SUSP. SYSTEM= 28.000 15.291 16.689 (SEA LEVEL) 6000. FT) L1= -15.766 (SEA LEVEL) 6000. FT) -17.164(L2= L3= 23.889 (SEA LEVEL) 22.491(6000. FT) .133 YC/DNOT= DP/DNOT= • 686 VOLUME= 3317.500 FT##3 PARACHUTE CDP= 1.487 LOAD DRAG AREA= 6.000 FT++2 3 DEGREES OF FREE DOME

STATIC LINE=: 15.000 FT PARACHUTE PACK DRAG AREA= .330 FT**2

FIG 31 Sample Output for the T-10 Parachute with Static Line System

	TIME	ALTITUDE	SYSTEM	C.M. TRAJ.		C.M. POSITION			C.M. VEL	DCITY	С.м.
	(SEC)	(FT)	(DEG)	(DEG)		(FT)			(FT/5	SEC)	ACCELERATION (FT/SEC/SEC)
					X	Y	Z	TOTAL	X	Y Z	TOTAL
1											
H											
CP .											
ω	.05	5999.96	89,58	89.58	10.96		.04	218.20	218,20	1.60	
	.10	5999.84	89.16	89.16	21.82		•16	216.44	216.42	3.19	
	.15	5999.64	88.73	88.73	32.60		.36	214.73	214.67	4.77	
L S	:25	5999.01	87.86	87.86	53.90			211.41	212.95	6 m33 7 . 88	
n E	.30	5998.58	87.43	87.43	64.42		1.42	209.81	209.59	9.42	
e p	. 35	5998.07	86.99	86.99	74.86		1.93	208.24	207.95	10.95	
o o	.45	5996.83	86.10	86.10	95.49		2.51	500.11	200.34	12.47	
y c	.50	5996.09	85.65	85.65	105.69		3.91	203.77	203.18	13.97	
а н	<u>،55</u>	5995.28	85.19	85.19	115.81		4.72	202.34	201.63	16.95	
e t	.65	5993.44	84.28	84.28	135.83		5.50	200.96	200.11	18.43	
р С Д	•70	5992.41	83.82	83.82	145.72		7,59	198.28	197.13	21.35	
e e e e e e e e e e e e e e e e e e e	•75	5971.31	63.30	03.30	155+54		8,69	196.99	195.67	22.79	
Оm	85	5988.89	82.42	82.42	174.97		9 .07	195+/3	194.23	24.22	
00	.90	5987.57	81.95	81.95	184.57		12.43	193.31	191.41	27.07	
рк t	1.00	5986.18	81,48	81.48 81.00	194.11		13.82	192.15	190.02	28.47	
H. H	1.05	5983.20	80.53	80.53	212.98		16.80	189.90	187.31	27.87	
n pe	1.10	5981.60	80.05	80.05	222.31		18.40	188.83	185.98	32.64	
e v	1.15	5979.93	79.56	79.56	231.58		20.07	187.78	184.67	34.01	
Q H	1.25	5976.40	78,59	78,59	249.92		23.60	180.76	183.37	35.38	
	1.30	5974.53	78.11	78.11	258,99		25.47	184.80	180.83	38.08	
0	1.35	59/2.59	77.62	77.62	268.00		27.41	183.86	179.58	39.42	
7.1	1.45	5968.52	76.64	76.64	285.84		29.41	182.94	178.34	40.75	
ມັ	1.50	5966.38	76.14	76.14	294.66		33.62	181.19	175.92	43.39	
H 0	1.55	5964.18	75.65	75.65	303.43		35.82	180.35	174.72	44.70	
ົດ	1.65	5959.58	74.66	74.66	320.78		38.09	179.54	173.54	46.00	
Ę							+0 • + <i>E</i>	110.12	112.30	47•30	
H I											
O		STA	TIC LINE S	TRETCH		IIME (SEC)	ANGLE (DEG)) X(FT)	Z(FT) V	ELOCITY (FT/SEC)	
£		PAR	ACHUTE/PIL	OT CHUTE DEPL	OYMENT	1.68	74.35	326.12	41.90	178.27	
Ľ.											
ä											
70											
10. 11.	TIME	ALTITUDE	SYSTEM	C.M. TRAJ.		C.M. POSTTION			A M ME		
ф ф			ANGLE	ANGLE		CALL OTITON			COMO VELI	70111	C+M+ ACCELERATION
₩ ₩	(SEC)	(FT)	(DEG)	(DEG)		(FT)			(FT/SI	EC)	(FT/SEC/SEC)
ρ					X	Ŷ	Z	TOTAL	X	Y Z	TOTAL

1,76

5954,18

73.53

73.53

339.80

45.82 163.54 156,82

46.37

-212.41

	1.85	5950.46	72.67	72.67	352.13			49.54	145.22	138.63		47.25	-230 40
	1.93	5947.02	71.74	71.74	362.93			52.98	126.42	120.06		39.60	-234.05
	2.01	5943.88	70.73	70,73	372.24			56.12	109.04	102.93		35.99	-211.69
	2,09	5941.03	69.60	69,60	380.21			58,97	93.88	87.99		32.73	-183.70
	2,18	5938.43	68,35	68.35	387.02			61.57	81.08	75.36		29.91	+156.32
÷.,	2,26	5936.04	66.97	66,97	392.87			63,96	70.43	64.82		27.55	-132.22
	2.34	5933.84	65.46	65.46	397.91	1		66 16	61.64	56.07		25.60	-112.07
	2.42	5931.79	63.82	63,82	402.28			68,21	54.39	48.80		24.00	-95.68
	2.50	5929.86	62.04	62.04	406.09			70,14	48.39	42.74		22.68	-82.53
	2,59	5928.02	60.15	60.15	409.43			71.98	43.41	37.65		21.61	-72.07
	2.67	5926.28	58,15	58.15	412.39			73,72	39.26	33,35		20.72	-63.78
	2.75	5924.59	56.06	56.06	415.01			75,41	35.79	29.69		19.98	-57.22
	2.83	5922.97	53.89	53,89	417.35		•	77.03	32.87	26,56		19.37	-52.04
	2.92	5921.39	51.66	51.66	419.45			78,61	30.41	23.85		18.86	-47.95
	3.00	5919.85	49.39	49.39	421.33			80.15	28.31	21.50		18.43	-44.72
	3.08	5918.35	47.10	47.10	423.03			81.65	26.53	19:44		18.06	-42.20
	3.10	5910.07	44.81	44.01	424.57			83,13	25.01	17.62		17.74	-40.22
	3.25	5915.42	42.54	42.54	425.97			84,58	23.70	16.02		17.46	-38.68
	3.33	5913.99	40.30	40.30	427.24			86.01	22.57	14.60		17.21	-37.48
							TIME(SE	C) ANGLE (DI	EG) X(FT)	Z(FT)	V(FT/SEC)	FMAX (LB)	TE (SEC)
		FUL	LI OR REEF	ED INFLATION			3.33	40.30	427.24	86.01	22.57	1868.	1.65
										· · · ·			
	NOTE	POSITIONS, V	ELOCITIES	ACCELERATION	S.TRAJ. A	NGLES	REFER TO	LOAD. PREV	TOUS RESUL	TS ARE FOR	MASS CENTE	'R	
1	NOTE	POSITIONS V	ELOCITIES	ACCELERATION	S,TRAJ. 4	NGLES	REFER TO	LOAD. PREV	IOUS RESUL	TS ARE FOR	MASS CENTE	;R	
	NOTE	POSITIONS.V	ELOCITIES	ACCELERATION	S.TRAJ. A	NGLES	REFER TO	LOAD, PREV	IOUS RESUL	TS ARE FOR	R MASS CENTE	R	
	NOTE	PDSITIONS,V	ELOCITIES	ACCELERATION	S,TRAJ. Ø	NGLES	REFER TO	LOAD, PRE	IOUS RESUL	TS ARE FOR	R MASS CENTE	R	
	NOTE	POSITIONS,V	ELOCITIES	ACCELERATION	S,TRAJ. A	NGLES	REFER TO	LOAD, PRE	IOUS RESUL	TS ARE FOR	R MASS CENTE	;R	
	NOTE	POSITIONS, V	ELOCITIES	ACCELERATION	S,TRAJ. A	ANGLES	REFER TO	LOAD, PRE	IOUS RESUL	TS ARE FOR	MASS CENTE	R	
	NOTE	PDSITIONS V	ELOCITIES System	ACCELERATION	S,TRAJ. A	NGLES	REFER TO OSITION	LOAD, PRE	IOUS RESUL	TS ARE FOR LOAD V	R MASS CENTE	R	LOAD
	NOTE TIME	POSITIONS, V	ELOCITIES System Angle	ACCELERATION	S,TRAJ. A	NGLES	REFER TO OSITION	LOAD, PRE	VIOUS RESUL	TS ARE FOR	R MASS CENTE	ÇR	LOAD ACCELERATION
	NOTE TIME (SEC)	POSITIONS,V ALTITUDE (FT)	SYSTEM ANGLE (DEG)	ACCELERATION LOAD TRAJ. Angle (DEG)	S,TRAJ. A	NGLES	REFER TO OSITION (FT)	LOAD, PRE	VIOUS RESUL	TS ARE FOR LOAD V	R MASS CENTE VELDCITY VSEC)	;R	LDAD ACCELERATION (FT/SEC/SEC)
	NOTE TIME (SEC)	POSITIONS,V ALTITUDE (FT)	SYSTEM ANGLE (DEG)	ACCELERATION LOAD TRAJ. Angle (DEG)	S,TRAJ. A X	NGLES	REFER TO OSITION (FT) Y	LOAD, PREM	VIOUS RESUL Total	TS ARE FOR LOAD V (FT X	R MASS CENTE VELDCITY VSEC) Y	ÇR Z	LDAD ACCELERATION (FT/SEC/SEC) TOTAL
	NOTE TIME (SEC)	POSITIONS,V ALTITUDE (FT)	SYSTEM ANGLE (DEG)	ACCELERATION LOAD TRAJ. Angle (DEG)	S,TRAJ. A X	LOAD P	REFER TO OSITION (FT) Y	LOAD, PREM	VIOUS RESUL Total	TS ARE FOR LOAD V (FT X	R MASS CENTE VELOCITY VSEC) Y	ER Z	LDAD ACCELERATION (FT/SEC/SEC) TOTAL
	NOTE TIME (SEC)	POSITIONS,V ALTITUDE (FT)	ELOCITIES System Angle (deg)	ACCELERATION LOAD TRAJ. ANGLE (DEG)	S,TRAJ. A X	LOAD P	REFER TO OSITION (FT) Y	LOAD, PREV	VIOUS RESUL Total	TS ARE FOR LOAD V (FT X	R MASS CENTE VELDCITY VSEC) Y	Z	LOAD ACCELERATION (FT/SEC/SEC) TOTAL:
	NOTE TIME (SEC)	PDSITIONS,V ALTITUDE (FT)	SYSTEM ANGLE (DEG)	ACCELERATION LOAD TRAJ. Angle (DEG)	S,TRAJ. 4 X	NGLES	REFER TO OSITION (FT) Y	LOAD, PREY	VIOUS RESUL Total	TS ARE FOR LOAD V (FT X	R MASS CENTE /ELDCITY (/SEC) Y	Z	LDAD ACCELERATION (FT/SEC/SEC) TOTAL
	NOTE TIME (SEC)	PDSITIONS,V ALTITUDE (FT)	SYSTEM ANGLE (DEG)	ACCELERATION LOAD TRAJ. ANGLE (DEG)	S,TRAJ. A	NGLES	REFER TO OSITION (FT) Y	LOAD, PREY	VIOUS RESUL Total	TS ARE FOR LOAD V (FT X	R MASS CENTE VELDCITY VSEC) Y	Z	LOAD ACCELERATION (FT/SEC/SEC) TOTAL
	NOTE TIME (SEC) 3.61	POSITIONS,V ALTITUDE (FT) 5895-33	SYSTEM ANGLE (DEG) 24.34	ACCELERATION LOAD TRAJ. ANGLE (DEG) -15.89	S,TRAJ. 4 X 436. <u>6</u> 9	NGLES	REFER TO OSITION (FT) Y	LOAD: PREY Z 104.67	VIOUS RESUL Total 23.41	TS ARE FOR LOAD V (FT X -6.41	R MASS CENTE /ELDCITY I/SEC) Y	Z 22.52	LOAD ACCELERATION (FT/SEC/SEC) TOTAL: -35.64
	NOTE TIME (SEC) 3.61 4.09	POSITIONS,V ALTITUDE (FT) 5895.33 5887.29	SYSTEM ANGLE (DEG) 24.34 -4.11	ACCELERATION LOAD TRAJ. ANGLE (DEG) -15.89 -48.48	S,TRAJ. 4 X 436.69 431.55	INGLES	REFER TO OSITION (FT) Y	LOAD, PREY Z 104.67 112.71	/IOUS RESUL Total 23.41 16.37	TS ARE FOR LOAD V (FT X -6.41 -12.26	R MASS CENTE /ELOCITY I/SEC) Y	Z 22.52 10.85	LOAD ACCELERATION (FT/SEC/SEC) TOTAL: -35.64 -22.22
	NOTE TIME (SEC) 3.61 4.09 4.60	POSITIONS,V ALTITUDE (FT) 5895.33 5887.29 5883.53	ELOCITIES SYSTEM ANGLE (DEG) 24.34 -4.11 -28.21	ACCELERATION: LOAD TRAJ. ANGLE (DEG) -15.89 -48.48 -35.24	S,TRAJ. 4 X 436.69 431.55 426.95	NGLES	REFER TO OSITION (FT) Y	LOAD, PREY Z 104.67 112.71 116.47	/IOUS RESUL TOTAL 23.41 16.37 7.50	TS ARE FOR LOAD V (FT X -6.41 -12.26 -4.33	R MASS CENTE VELDCITY T/SEC) Y	Z 22.52 10.85 6.12	LOAD ACCELERATION (FT/SEC/SEC) TOTAL: -35.64 -22.22 -21.06
	NOTE TIME (SEC) 3.61 4.09 4.60 5.24	PDSITIONS,V ALTITUDE (FT) 5895.33 5887.29 5883.53 5877.01	ELOCITIES SYSTEM ANGLE (DEG) 24.34 -4.11 -28.21 -39.67	+ ACCELERATION LOAD TRAJ. ANGLE (DEG) -15.89 -48.48 -35.24 28.44	S,TRAJ. 4 436.69 431.55 426.95 428.44	NGLES	REFER TO OSITION (FT) Y	LOAD, PREY Z 104.67 112.71 116.47 122.99	/IOUS RESUL TOTAL 23.41 16.37 7.50 18.25	TS ARE FOR LOAD V (FT X -6.41 -12.26 -4.33 8.69	R MASS CENTE VELDCITY VSEC) Y	Z 22.52 10.85 6.12 16.04	LDAD ACCELERATION (FT/SEC/SEC) TOTAL -35.64 -22.22 -21.06 28.46
	NOTE TIME (SEC) 3.61 4.09 4.60 5.24 6.27 6.27	PDSITIONS,V ALTITUDE (FT) 5895.33 5887.29 5883.53 5877.01 5852.81	ELOCITIES SYSTEM ANGLE (DEG) 24.34 -4.11 -28.21 -39.67 -13.64	+ ACCELERATION LOAD TRAJ. ANGLE (DEG) -15.89 -48.48 -35.24 28.44 47.25	X 436.69 431.55 426.95 428.44 447.46	NGLES	REFER TO OSITION (FT) Y	Z 104.67 112.71 116.47 122.99 147.19	/IOUS RESUL TOTAL 23.41 16.37 7.50 18.25 37.71	TS ARE FOR LOAD V (FT X -6.41 -12.26 -4.33 8.69 27.69	R MASS CENTE /ELDCITY (/SEC) Y	Z 22.52 10.85 6.12 16.04 25.60	LOAD ACCELERATION (FT/SEC/SEC) TOTAL -35.64 -22.22 -21.06 28.46 16.01
	NOTE TIME (SEC) 3.61 4.09 4.60 5.24 6.27 7.55	POSITIONS,V ALTITUDE (FT) 5895.33 5887.29 5883.53 5877.01 5852.81 5829.61	24.34 -4.11 -39.67 -13.64 35.41	ACCELERATION: LOAD TRAJ. ANGLE (DEG) -15.89 -48.48 -35.24 28.44 47.25 38.24	X 436.69 431.55 426.95 428.44 447.46 478.77	NGLES	REFER TO OSITION (FT) Y	Z 104.67 112.71 116.47 122.99 147.19 170.39	/IOUS RESUL TOTAL 23.41 16.37 7.50 18.25 37.71 19.94	TS ARE FOR LOAD V (FT X -6.41 -12.26 -4.33 8.69 27.69 12.34	R MASS CENTE /ELDCITY I/SEC) Y	Z 22.52 10.85 6.12 16.04 25.60 15.66	LOAD ACCELERATION (FT/SEC/SEC) TOTAL: -35.64 -22.22 *21.06 28.46 16.01 *26.59
	NOTE TIME (SEC) 3.61 4.09 4.60 5.24 6.27 7.55 8.19	POSITIONS,V ALTITUDE (FT) 5895.33 5887.29 5883.53 5877.01 5852.81 5829.61 5816.78	24.34 -4.11 -28.21 -39.67 -13.64 35.41 39.08	ACCELERATION: LOAD TRAJ. ANGLE (DEG) -15.89 -48.48 -35.24 28.44 47.25 38.24 -7.01	X 436.69 431.55 426.95 428.44 478.77 481.65	INGLES	REFER TO OSITION (FT) Y	Z 104.67 112.71 116.47 122.99 147.19 170.39 183.22	/IOUS RESUL TOTAL 23.41 16.37 7.50 18.25 37.71 19.94 25.27	TS ARE FOR LOAD V (FT X -6.41 -12.26 -4.33 8.69 27.69 12.34 -3.08	R MASS CENTE VELOCITY VSEC) Y	Z 22.52 10.85 6.12 16.04 25.60 15.66 25.08	LDAD ACCELERATION (FT/SEC/SEC) TOTAL: -35.64 -22.22 -21.06 28.46 16.01 -26.59 28.18
	NOTE TIME (SEC) 3.61 4.09 4.60 5.24 6.27 7.55 8.19 8.57	PDSITIONS,V ALTITUDE (FT) 5895.33 5887.29 5883.53 5877.01 5829.61 5829.61 5816.78 5806.18	24.34 -4.11 -28.21 -39.67 -13.64 35.41 39.08 31.69	+ACCELERATION LOAD TRAJ. ANGLE (DEG) -15.89 -48.48 -35.24 28.44 47.25 38.24 -7.01 -22.23	X 436.69 431.55 426.95 428.44 447.46 478.77 481.65 478.74	NGLES	REFER TO OSITION (FT) Y	LOAD, PREY Z 104.67 112.71 116.47 122.99 147.19 170.39 183.22 193.82	/IOUS RESUL TOTAL 23.41 16.37 7.50 18.25 37.71 19.94 25.27 31.89	TS ARE FOR LOAD V (FT X -6.41 -12.26 -4.33 8.69 27.69 12.34 -3.08 -12.07	R MASS CENTE /ELDCITY T/SEC) Y	Z 22.52 10.85 6.12 16.04 25.60 15.66 25.08 29.52	LOAD ACCELERATION (FT/SEC/SEC) TOTAL: -35.64 -22.22 -21.06 28.46 16.01 -26.59 28.18 24.38
	NOTE TIME (SEC) 3.61 4.09 4.60 5.24 6.27 7.55 8.19 8.57 9.34	PDSITIONS,V ALTITUDE (FT) 5895.33 5887.29 5883.53 5877.01 5852.81 5829.61 5816.78 5826.18 5784.40	ELOCITIES SYSTEM ANGLE (DEG) 24.34 -4.11 -28.21 -39.67 -13.64 35.41 39.08 31.69 2.88	+ ACCELERATION LOAD TRAJ. ANGLE (DEG) -15.89 -48.48 -35.24 28.44 47.25 38.24 -7.01 -22.23 -44.87	X 436.69 431.55 426.95 428.44 447.46 478.77 481.65 478.74 463.81	NGLES	REFER TO OSITION (FT) Y	Z 104.67 112.71 116.47 122.99 147.19 170.39 183.22 193.82 215.60	/IOUS RESUL 70TAL 23.41 16.37 7.50 18.25 37.71 19.94 25.27 31.89 34.24	TS ARE FOR LOAD V (FT X -6.41 -12.26 -4.33 8.69 27.69 12.34 -3.08 -12.07 -24.16	R MASS CENTE	Z 22.52 10.85 6.12 16.04 25.60 15.66 25.08 29.52 24.26	LDAD ACCELERATION (FT/SEC/SEC) TOTAL -35.64 -22.22 -21.06 28.46 16.01 -26.59 28.18 24.38 -15.23
	NOTE TIME (SEC) 3.61 4.09 4.60 5.24 6.27 7.55 8.19 8.57 9.34 10.30	POSITIONS,V ALTITUDE (FT) 5895.33 5887.29 5883.53 5877.01 5852.81 5829.61 5816.78 5866.18 5784.40 5766.66	24.34 ANGLE (DEG) 24.34 -4.11 -28.21 -39.67 -13.64 35.41 39.08 31.69 2.88 -31.87	+ ACCELERATION: ACCELERATION: ANGLE (DEG) -15.89 -48.49 -35.24 28.44 47.25 38.24 -7.01 -22.23 -44.87 -30.57	X 436.69 431.55 426.95 428.44 447.46 478.77 481.65 478.74 463.81 445.47	NGLES	REFER TO OSITION (FT) Y	Z 104.67 112.71 116.47 122.99 147.19 170.39 183.22 193.82 215.60 233.34	/IOUS RESUL TOTAL 23.41 16.37 7.50 18.25 37.71 19.94 25.27 31.89 34.24 19.18	-6.41 -12.26 -4.33 -3.69 -27.69 12.34 -3.08 -12.07 -24.16 -9.76	R MASS CENTE	Z 22.52 10.85 6.12 16.04 25.60 15.66 25.08 29.52 24.26 16.52	LOAD ACCELERATION (FT/SEC/SEC) TOTAL TOTAL -35.64 -22.22 -21.06 28.46 16.01 -26.59 28.18 24.38 -15.23 -24.46
	NOTE TIME (SEC) 3.61 4.09 4.60 5.24 6.27 7.55 8.19 8.57 9.34 10.30 10.87	POSITIONS, V ALTITUDE (FT) 5895.33 5887.29 5883.53 5877.01 5852.81 5829.61 5816.78 5806.18 5784.40 5766.66 5755.32	24.34 -4.11 -28.21 -39.67 -13.64 35.41 39.08 31.69 2.88 -31.87 -36.88	ACCELERATION: LOAD TRAJ. ANGLE (DEG) -15.89 -48.48 -35.24 28.44 47.25 38.24 -7.01 -22.23 -44.87 -30.57 8.53	X 436.69 431.55 426.95 426.95 428.44 447.46 478.77 481.65 478.74 463.81 445.47 443.73	IOAD P	REFER TO OSITION (FT) Y	Z 104.67 112.71 116.47 122.99 147.19 170.39 163.22 193.82 215.60 233.34 244.68	/IOUS RESUL TOTAL 23.41 16.37 7.50 18.25 37.71 19.94 25.27 31.89 34.24 19.18 23.68	TS ARE FOR LOAD V (FT X -6.41 -12.26 -4.33 8.69 27.69 12.34 -3.08 -12.07 -24.16 -9.76 3.54	R MASS CENTE	Z 22.52 10.85 6.12 16.04 25.60 15.66 25.08 29.52 24.26 16.52 23.61	LOAD ACCELERATION (FT/SEC/SEC) TOTAL: -35.64 -22.22 -21.06 28.46 16.01 -26.59 28.18 24.38 -15.23 -24.46 26.67
	NOTE TIME (SEC) 3.61 4.09 4.60 5.24 6.27 7.55 8.19 8.57 9.34 10.30 10.87 11.39	POSITIONS, V ALTITUDE (FT) 5895.33 5887.29 5883.53 5877.01 5852.81 5829.61 5816.78 5866.18 5784.40 5766.66 5755.32 5741.64	24.34 -4.11 -28.21 -39.67 -13.64 35.41 39.08 31.69 2.88 -31.87 -36.88 -26.01	ACCELERATION: LOAD TRAJ. ANGLE (DEG) -15.89 -48.48 -35.24 28.44 47.25 38.24 -7.01 -22.23 -44.87 -30.57 8.53 27.12	X 436.69 431.55 426.95 428.44 478.77 481.65 478.74 463.81 445.47 443.73 448.44	INGLES	REFER TO OSITION (FT) Y	LOAD, PREY Z 104.67 112.71 116.47 122.99 147.19 170.39 183.22 193.82 215.60 233.34 244.68 258.36	/IOUS RESUL TOTAL 23.41 16.37 7.50 18.25 37.71 19.94 25.27 31.89 34.24 19.18 23.88 32.45	TS ARE FOR LOAD V (FT X -6.41 -12.26 -4.33 8.69 27.69 12.34 -3.08 -12.07 -24.16 -9.76 3.54 14.80	R MASS CENTE /ELDCITY I/SEC) Y	Z 22.52 10.85 6.12 16.04 25.60 25.08 29.52 24.26 16.52 23.61 28.68	LDAD ACCELERATION (FT/SEC/SEC) TOTAL: -35.64 -22.22 -21.06 28.46 16.01 -26.59 28.18 24.38 -15.23 -24.46 26.67 22.04
	NOTE TIME (SEC) 3.61 4.09 4.60 5.24 6.27 7.55 8.19 8.57 9.34 10.30 10.87 11.39 12.15	POSITIONS, V ALTITUDE (FT) 5895.33 5887.29 5883.53 5877.01 5852.81 5829.61 5816.78 5806.18 5784.40 5766.66 5755.32 5741.64 5720.80	ELOCITIES SYSTEM ANGLE (DEG) 24.34 -4.11 -28.21 -39.67 -13.64 35.41 39.08 31.69 2.88 -31.87 -36.88 -28.01 -98	+ ACCELERATION: LOAD TRAJ. ANGLE (DEG) -15.89 -48.48 -35.24 28.44 47.25 38.24 -7.01 -22.23 -44.87 -30.57 8.53 27.12 47.02	X 436.69 431.55 426.95 428.44 447.46 478.77 481.65 478.74 463.81 445.47 443.73 448.44 464.63	INGLES	REFER TO OSITION (FT) Y	LOAD, PREY Z 104.67 112.71 116.47 122.99 147.19 170.39 183.22 193.82 215.60 233.34 244.68 258.36 279.20	/IOUS RESUL TOTAL 23.41 16.37 7.50 18.25 37.71 19.94 25.27 31.89 34.24 19.18 23.48 32.45 33.60	TS ARE FOR LOAD V (FT X -6.41 -12.26 -4.33 8.69 27.69 12.34 -3.08 -12.07 -24.16 -9.76 3.54 14.80 24.58	R MASS CENTE /ELDCITY T/SEC) Y	Z 22.52 10.85 6.12 16.04 25.60 15.66 25.08 29.52 24.26 16.52 23.61 28.88 22.91	LOAD ACCELERATION (FT/SEC/SEC) TOTAL: -35.64 -22.22 -21.06 28.46 16.01 -26.59 28.18 24.38 -15.23 -24.46 26.67 22.04 -13.77
	NOTE TIME (SEC) 3.61 4.09 4.60 5.24 6.27 7.55 8.19 8.57 9.34 10.30 10.87 11.39 12.15 13.24	POSITIONS, V ALTITUDE (FT) 5895.33 5887.29 5883.53 5877.01 5852.81 5829.61 5816.78 5829.61 5816.78 5829.61 5816.78 5829.61 5816.78 5829.61 5816.78 5829.61 5816.78 5829.61 5755.32 5741.64 5720.80 5700.97	ELOCITIES SYSTEM ANGLE (DEG) 24.34 -4.11 -28.21 -39.67 -13.64 35.41 39.08 31.69 2.88 -31.87 -36.88 -28.01 .08 33.63	ACCELERATION: ACCELERATION: ANGLE (DEG) -15.89 -48.48 -35.24 28.44 47.25 38.24 -7.01 -22.23 -44.87 -30.57 8.53 27.12 47.02 19.55	X 436.69 431.55 426.95 426.95 428.44 447.46 478.77 481.65 478.74 463.81 445.47 443.73 448.44 464.63 483.76	NNGLES	REFER TO OSITION (FT) Y	Z 104.67 112.71 116.47 122.99 147.19 170.39 183.22 193.82 215.60 233.34 244.68 258.36 279.20 299.03	/IOUS RESUL 70TAL 23.41 16.37 7.50 18.25 37.71 19.94 25.27 31.89 34.24 19.18 23.48 32.45 33.60 19.51	TS ARE FOR LOAD V (FT X -6.41 -12.26 -4.33 8.69 27.69 12.34 -3.08 -12.07 -24.16 -9.76 3.54 14.80 24.58 6.53	R MASS CENTE (ELDCITY (/SEC) Y	Z 22.52 10.85 6.12 16.04 25.60 15.66 25.08 29.52 24.26 16.52 23.61 28.88 22.91 18.38	LDAD ACCELERATION (FT/SEC/SEC) TOTAL TOTAL -22.22 -21.06 28.46 16.01 -26.59 28.18 24.38 -15.23 -24.46 26.67 22.04 -13.77 24.99
	NOTE TIME (SEC) 3.61 4.09 4.60 5.24 6.27 7.55 8.19 8.57 9.34 10.30 10.87 11.39 12.15 13.24 14.01	POSITIONS, V ALTITUDE (FT) 5895.33 5887.29 5883.53 5877.01 5852.81 5829.61 5816.78 5866.18 5784.40 5766.66 5755.32 5741.64 5720.80 5700.97 5683.22	ELOCITIES SYSTEM ANGLE (DEG) 24.34 -4.11 -28.21 -39.67 -13.64 35.41 39.08 31.69 2.88 -31.87 -36.88 -28.01 .08 33.63 30.57	ACCELERATION: ACCELERATION: ANGLE (DEG) -15.89 -48.49 -35.24 28.44 47.25 38.24 -7.01 -22.23 -44.87 -30.57 8.53 27.12 47.02 19.55 -20.86	X 436.69 431.55 426.95 428.44 447.46 478.77 481.65 478.74 45.47 443.73 448.44 464.63 483.76 482.18	NGLES	REFER TO OSITION (FT) Y	Z Z 104.67 112.71 116.47 122.99 147.19 170.39 183.22 193.82 215.60 233.34 244.68 258.36 279.20 299.03 316.78	/IOUS RESUL TOTAL 23.41 16.37 7.50 18.25 37.71 19.94 25.27 31.89 34.24 19.18 23.88 32.45 33.60 19.51 29.41	-6.41 -12.26 -4.33 8.69 27.69 12.34 -3.08 -12.07 -24.16 -9.76 3.54 14.80 24.58 6.53 -10.47	R MASS CENTE /ELOCITY I/SEC) Y	Z 22.52 10.85 6.12 16.04 25.60 15.66 25.08 29.52 24.26 16.52 23.61 28.88 22.91 18.38 27.49	LOAD ACCELERATION (FT/SEC/SEC) TOTAL -35.64 -22.22 -21.06 28.46 16.01 -26.59 28.18 24.38 -15.23 -24.46 26.67 22.04 -13.77 24.99 23.14
	NOTE TIME (SEC) 3.61 4.09 4.60 5.24 6.27 7.55 8.19 8.57 9.34 10.30 10.87 11.39 12.15 13.24 14.01 14.78	POSITIONS, V ALTITUDE (FT) 5895.33 5887.29 5883.53 5877.01 5852.81 5829.61 5816.78 5806.18 5784.40 5766.66 5755.32 5741.64 5755.32 5741.64 570.80 5700.97 5683.22 5662.06	24.34 ANGLE (DEG) 24.34 -4.11 -28.21 -39.67 -13.64 35.41 39.08 31.69 2.88 -31.87 -36.88 -26.01 .08 33.63 30.57 6.18	ACCELERATION: ACCELERATION: ANGLE (DEG) -15.89 -48.48 -35.24 -8.44 47.25 38.24 -7.01 -22.23 -44.87 -30.57 8.53 27.12 47.02 19.55 -20.86 -42.46	X 436.69 431.55 426.95 426.95 426.95 478.77 481.65 478.77 481.65 478.73 448.44 464.63 483.73 448.44 464.63 482.18 468.68	IOAD P	REFER TO OSITION (FT) Y	LOAD, PREY Z 104.67 112.71 116.47 122.99 147.19 170.39 183.22 193.82 215.60 233.34 244.68 258.36 279.20 299.03 316.78 337.94	/IOUS RESUL TOTAL 23.41 16.37 7.50 18.25 37.71 19.94 25.27 31.89 34.24 19.18 23.88 32.45 33.60 19.51 29.41 33.71	TS ARE FOR LOAD V (FT X -6.41 -12.26 -4.33 8.69 27.69 12.34 -3.08 -12.07 -24.16 -9.76 3.54 14.80 24.58 6.53 -10.47 -22.76	R MASS CENTE	Z 22.52 10.85 6.12 16.04 25.60 25.08 29.52 24.26 16.52 23.61 28.88 22.91 18.38 27.49 24.86	LOAD ACCELERATION (FT/SEC/SEC) TOTAL: -35.64 -22.22 -21.06 28.46 16.01 -26.59 28.18 24.38 -15.23 -24.46 26.67 22.04 -13.77 24.99 23.14 -13.97
	NOTE TIME (SEC) 3.61 4.09 4.60 5.24 6.27 7.55 8.19 8.57 9.34 10.30 10.87 11.39 12.15 13.24 14.01 14.78 15.80	POSITIONS, V ALTITUDE (FT) 5895.33 5887.29 5883.53 5877.01 5852.81 5829.61 5816.78 5829.61 5816.78 5806.18 5754.40 5766.66 5755.32 5741.64 5755.32 5741.64 5720.80 5700.97 5683.22 5662.06 5642.01	ELOCITIES SYSTEM ANGLE (DEG) 24.34 -4.11 -28.21 -39.67 -13.64 35.41 39.08 31.69 2.88 -31.87 -36.88 -28.01 .08 33.63 30.57 6.18 -27.93	+ACCELERATION: LOAD TRAJ. ANGLE (DEG) -15.89 -48.48 -35.24 28.44 47.25 38.24 -7.01 -22.23 -44.87 -30.57 8.53 27.12 47.02 19.55 -20.86 -42.46 -33.05	X 436.69 431.55 426.95 428.44 447.46 478.74 463.81 445.47 443.73 448.44 464.63 483.76 483.76 483.81 468.68 468.68 448.61	IOAD P	REFER TO OSITION (FT) Y	LOAD, PREY Z 104.67 112.71 116.47 122.99 147.19 170.39 183.22 193.82 215.60 233.34 244.68 258.36 279.20 299.03 316.78 337.94 357.99	/IOUS RESUL TOTAL 23.41 16.37 7.50 18.25 37.71 19.94 25.27 31.89 34.24 19.18 23.48 32.45 33.60 19.51 29.41 33.71 20.41	TS ARE FOR LOAD V (FT X -6.41 -12.26 -4.33 8.69 27.69 12.07 -24.16 -9.76 3.54 14.80 24.58 6.53 -10.47 -22.76 -11.13	R MASS CENTE	Z 22.52 10.85 6.12 16.04 25.60 15.66 25.08 29.52 24.26 16.52 23.61 28.88 22.91 18.38 27.49 24.86 17.10	LOAD ACCELERATION (FT/SEC/SEC) TOTAL: -35.64 -22.22 -21.06 28.46 16.01 -26.59 28.18 24.38 -15.23 -24.46 26.67 22.04 -13.77 24.99 23.14 -13.97 -21.77

383,97

404,13

422.27

434_01

27.76

22.75

17.86

23.44

20.03

-11.33

23.65

13.50

22.44

9,15

-3.08

30.86

31.95

20,06

23.64

.34 25,93

44.00

27.14

-7.48

-33.91 -25.57

-,23

28,32

32.03

5616.03

5595,87

5577.73

5565,99

16,31 16,95 17,72

18,68

19.26

450.42

465.19

482.00

493.73

System (Continued)

	19.77	5552 81	24.05	=25.99	470.49		447 10	30.34	-13.30		27.28	18.89
	20.54	5533.04	22	-43.78	465.16		466 96	31,13	-21.54		22.48	-10.25
	21 50	5514 74	-27 15	-25 61	449 08		485 26	20 17	_8 72		18 10	-20.54
	29 07	5517.91	-20 55	7 57	447 47		497 .09	22 62	3 10		33 33	22.69
	22.01	5502.01	-22 88	25 79	451 63		510 10	29.75	12 94		26 70	17 99
· .	22,07	5407.50	-22,00	42 80	465 48		510,10	27.19	16.77		22.34	-0.33
	24 29	2410.74	26 70	21 39	401 57		540 34	30,40	7 34		19 76	-20.13
	24,30	- 5450.10	20.17	12 65	402.001		547.24	20.13	5.07		06 47	-20.00
i Tj	25,05	5430.32	21.93	-13.02	482.04		576 00	20.10			24.41	20.02
h	20,00	5423.10	10.25	-29.42	4/0.04		5/0,90	30.20	=14+03		20.30	12+22
G.	20.20	5407.38	62	-42.05	464.96		592.62	29.71	-19,90		62.00	-8.40
	27,23	5387.57	-25.67	-19.87	449.63		612,43	20.25	-0.08		19.04	-19.37
ιus	27.87	53/3,86	-26.80	12.31	449.11		626,14	24.58	5.24		24.02	20.011
H	28,25	5364.21	-20,96	24.76	452.44		635,79	28.48	11,93	and the second second second	25.86	16.52
	29.02	5345,26	-,16	40.83	465.20		654.74	29.34	19.18		22.20	-7.76
	30.04	5325,16	23,87	21,33	480.48		674.84	20.47	7.45		19.07	-18,38
1 ····	30,62	5313.14	26.27	-7,55	481.75		686 86	23.17	-3.04		22.97	19.52
6 5	31,13	5300.61	19,58	-24.70	477.92	n.	699,39	27.97	-11.68		25.41	15.60
ด้ซี	31,90	5281.99	20	-39,85	465.60		718.01	28,63	-18.35		21.98	-6.90
يتم 😳	32,95	5261.14	-23.00	-18,66	450.79		738,86	20.51	-6.57		19.44	-17.79
S O	33,59	5247,50	-24.16	11.10	450.17		752,50	23,83	4,59		23.38	18.09
V	33,98	-5238.17	-19.06	23,32	453.14		761,83	27.10	10.73		24.89	15.13
S O	34,75	5219.74		38.41	464.69		780,26	28,15	17.49		22.06	⇒6.30
ц.Е	35,83	5198.00	21.49	18,47	479.53		802,00	20.67	6.55		19,60	-16.91
n n	36,41	5185.89	23,15	-7.81	480.51		814,11	22.88	-3.11		22.67	17.42
н <u>о</u>	36,92	5173.71	16,99	-24,05	476,86		826 29	26,76	-10,91		24.44	13.82
	37,69	5155.71	-,53	-37,42	465,60	-	844,29	27.25	-16,56		21.64	-5,28
-	38,91	5131,33	-21.34	-10,19	451.31		868,67	20.74	-3,67		20.41	16,59
C H	39.67	5114.26	-18,17	19.09	453,16		885,74	25,12	8,22		23.74	14.35
00	40.44	5096.23	-3,12	34,66	462.77		903.77	27,06	15,39	1	22.26	-5.73
p R	41.21	5080.27	12,46	31.18	473.94		919.73	23.18	12.00		19.84	-10.20
۲.	41.91	5066.16	19,96	6.42	479,19		933.84	20.97	2.34		20.84	15.68
E. C	42,68	5049.03	15.60	-20.33	476.63	やたいないもただ	950.97	24.94	-0.00		23.38	12.70
55	43,45	5031.45	1.27	-33,58	467.20		968,55	26,07	-14.42		21.72	-4.19
L U	44,22	5015.61	-12,23	+27,77	457.07		984.39	22.66	-10,56		20.05	=9.78
<u>о</u> ц	45.11	4997.15	-17,98	2.86	452.56		1002,85	21,73	1.08		21.71	14.24
	46.14	4974.02	-6,22	28,53	460.06		1025,98	25.45	12.16		22.36	6.39
ji	46.91	4957.66	7.00	29,98	469.83		1042,34	23,59	11.79		20.43	-5.85
0	47.80	4939.29	15,06	9,00	477.02		1060.71	21.27	3,33		21.00	-12.11
	48,57	4922.59	12,67	=14,34	476.02		107/ 41	23.05	-5,/1		22.33	10.53
- D	49,34	4905.55	2.14	-26.84	469.23		1094,45	24,25	=10,95		21.04	=3,47
μ	50,11	4889.45	-7,25	⇒24.42	461.02		1110,55	22.58	-9.34		20.56	=5.75
13	51,13	4867.98	-10.18	-3.98	455.33		1132.02	21.03	-1.50		21.58	7.01
	51,90	4851.19	-4,13	8.15	456.14		1148,81	22.12	3.12		21.90	3.01
5	52.19	4832.20	0,34	0.11	459.18		110/ 80	20,40	2,10		20.34	-3,03
Ē	53,50	4817.91	11.73	-8,65	458,97		1182,09	20.82	=3,13		20.58	8.50
11	54.01	4807.15	11.1/	-19.52	450.22		1192,65	22.13			21.43	0.00
O	55,03	4703.22		-30 61	443.04		1214,18	24.40	-10 73		20.17	-5 94
-	55,00	4/07.01	-0,00	-14 67	435,00		1230.17	20,91	=10,13		20 16	-7 17
্য	50,57	4/34.00	-7.10	-3 13	429.40		1240,40	20.03	=3,20		10 72	-1 07
	51,39	4133.71	7 10	-3,13	425 43		1200,03	17.73	-1,00		17.12	-1.UE
1 1 1 1	50,30	4710,71	7.10	-21 22	421.22		1201.03	22 07	_7 00		20 57	6 78
	60 41	4677 00	-1 43	-31 08	407 06		1270 41	22.70	-12 54		20 11	-1.62
ŝ	61 18	4661 98	7 75	-26 92	398 21		1338 02	21.82	9 88		19.46	-5.45
CT	62 46	4636 79	-/ 47	-8 67	300 33		1363 21	19 97	-7.01		19.74	-3.25
ц С С	63 23	4621 76	2 69	-7 54	398 42		1378 24	19 61	-2 61		19.66	1.80
rt i	63.99	4606.71	7.38	=15.86	385.42		1393 29	20.69	-5.65		19.90	5.40
Ľ.	64 76	4591 11	6 12	-25 24	370 48		1408 00	22 78	_9 70		20.61	4.74
0	66 04	4565.16	-4-07	-29.52	365.12		1434 84	22.59	-11.13		19.66	-2.71
	66 R1	4550 17	-7 38	-21 A3	367 72		1449 R1	21.02	_7 A2		19.51	
	67 83	4530 08	_3 30	-10 22	362.19		1449 02	19.92	-3.54		19.60	-2.37
	68 60	4515.10	2.71	-10.14	349.69		1484 90	19.78			19.47	1.85
	69 37	4500 01	6 20	-17 22	346 11		1499 99	20 86	-6-17		19.92	4-50
	70.14	4484 47	4.87	-25.00	340.04		1515 53	22-53	9.52		20.42	3.81
	71.67	4453.73	-5.14	-26.29	323.83		1546.27	21.75	-9.63		19.50	-3.43
	12 44	4438.76	-6.10	-18.24	317.62		1561 24	20.57			19.53	-4.26
												· · · · · · · · · · · · · · · · · · ·

- - ----

202

1 -

ŵ

بد 1													
ς Υ													
B										•			
þ	290.04	288,93	31	-20.21	-1201.74		5711.0	7	19.68	-6.80		18.47	01
=	290,55	279.47	32	-20.18	-1205.22		5720.5	3	19.68	-6.79		18.47	ü2
	291.07	270.01	-,32	-20.15	-1208.69		5729.9	9	19.67	-6.78		18.46	- •03
2	292.09	251.10	→ ,30	-20.10	-1215.62		5748.9	0	19,66	-6.75		18.46	01
-	293.11	232.20	26	-20.11	-1222.53		5767.8	0	19.65	-6.76		18.45	° - .01
	294 14	213.30	=.25 (-20.17	-1229.46		5786.7	0	19.66	-6.78		18.45	•02
h	295,10	194.40		-20.21	-1236.41		5805.6	n	19.66	-6.79		18.45	01
0	296.19	1/5.51	32	-20.15	=1243+36		5824.4	9	19.64	-6.78		18.44	*• 02
3	291.21	100.03	֥31	-20-12	-1250+29		5843.3		19.63	-0.75		18.43	-•02
	277.20	110.00		-20+14	-1204-11		5881.1	2	19.03	-0./0		18.43	-•01
	301.21	100•°1		-20+19	-1271.04		5899.9	9	19.63	-0./8		18.42	• 01
ดี	301.31	01+14	- 31	-20 15	-1264 91		5910.0		19.02			10.41	
	302.33	02.067	- 7ù	-20.15	-1201 91		5931.1	1	19.01	~0,15		18.41	
	305 40	5 75			-1291001		5750.5		19.60	=0.14		10.40	01
1 [°] .	305.40	0.0	- 27	-20-10	-1307 74		5794.2	2	19.00			10.39	• 01
قبب	303.71	- S • ₩	* •<1	-20-18	-1307.74		6000.0	0	19.00	-0./0		18.34	-• UI
0					1999 - S.					and the second second			
				TTM	E (SEC) ALTIT	UNE (ET)	X(FT)	7 (FT)	V(FT/SEC)	VX (FT/SEC)	V7 (FT/SFC)	ALET/SEC/	SEC)
5		1	VERTICAL/MINI	MUM	3.99 588	8.44 4	32.74	111.56	18.04	=12.42	13.09	-24.60)
R		2	VERTICAL/MINI	MUM	6.52 584	6.66 4	54.84	153.34	37.00	29.60	22.20	-16-26	
1		3	VERTICAL/MINI	MUM	9.34 578	4.40 4	63.81	215.60	34.24	-24.16	24.26	-15-27	•
^									5.12.			1	N

FIG 31 Sample Output for the T-10 Line System (Concluded)

cachute with Static

PARACHUTE-LOAD SYSTEM (DEPLOYMENT) -+ G-12D (STATIC LINE + PILOT CHUTE)

TRAJECTORY SIMULATION-T=0,Z=0 IS RELEASE POINT RELEASE CONDITIONS ALTITUDE= 6000. FT VELOCITY= 220.00 FT/SEC MASSES--SLUGS TOTAL SYSTEM= 72.870 LOAD= 68.386 PARACHUTE= 2.383 SUSP. LINES= .867 RISERS= .147 RISER EXTENSIONS= .280 LOAD BRIDLE= Ø INCLUDED= 41.143 (SEA LEVEL) 34.287(6000. FT) APPARENT 15.429 (SEA LEVEL) 12.858(6000. FT) REFERENCE DISTANCES FROM SKIRT-- FT ×1= 23.750 X2= 50.000 X3= 0 X4= 56.230 X5= 57.210 MOM . / PROD. INERTIA -- SLUG FT##2 TXX= 84525.147 (SEA LEVEL) 74577.364(6000. FTY IYY= 84525 .147 (SEA LEVEL) 74577.364(FT) 6000. TZZ= O(SEA LEVEL) 0 (FT) 6000. IXZ= Q(SEA LEVEL) 01 6000. FT) DIMENSIONS-- FT DNOT= 64.000 SUSP. SYSTEM= 56.420 LI 25.578 (SEA LEVEL) 23.0061 6000. FT) -42.460(6000. FT) L2= -39.888(SEA LEVEL) 29,7961 6000. FT) 1_3= 32.368(SEA LEVEL) YC/DNOT= .129 .64B DP/DNOT= VOLUME= 17301.500 FT**3 PARACHUTE CDP= 1.780 1.786 LOAD DRAG AREA 18.900 FT##2 DEGREES OF FREE DOME 3

STATIC LINE= 15.000 FT PARACHUTE PACK DRAG AREA= 7.146 FT**2

FIG 32 Sample Output for the G-12D Cargo Parachute with Static Line Deployed Pilot Chute System

PARACHUTE PACK MASS= .303 SLUG PARACHUTE PACK AND PILOT/EXTRACTION CHUTE DRAG AREA= 26.016 FT##2 SPRING CONSTANT= 4777.000 LB/FT 8.000 FT LENGTH OF RISERS, EXTENSIONS AND LOAD BRIDLET

195.68 13.32 207.21 .92 82.06 STATIC LINE STRETCH 203.05 28.96 PARACHUTE/PILOT CHUTE DEPLOYMENT 78.13 285.34 1.36

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -								
.05	5999.96	89,58	89,58	10.98	.04	219.15	219.15	1.6
.10	5999.84	89.16	89.16	21.92	.16	218.32	218.30	3.2
.15	5999.64	88.74	88,74	32.81	.36	217,51	217.46	4.
20	5999,36	88,31	88,31	43.66	,64	216,72	216,62	6.
25	5999.01	87,89	87.89	54,47	99	215,94	215.79	7.
30	5998.57	87.46	87.46	65.24	1,43	215,18	214,97	9,
35	5998.05	87.03	87.03	75,97	1,95	214.44	214.16	11.
40	5997.46	86.60	86.60	86.66	2.54	213.72	213.35	12.
45	5996.79	86.17	86,17	97.31	3,21	213.02	212.54	. 14.
.50	5996.04	85.74	85.74	107.91	3,96	212,33	211.74	15.
55	5995.21	85.30	85.30	118,48	4 79	211.66	210.95	17.
60	5994.31	84,87	84.87	129.01	5,69	211.00	210.16	18.
65	5993.33	84.43	84.43	139.50	6,67	210.37	209.38	20.
70	5992.27	84.00	84.00	149.95	7 73	209,75	208.60	21.
75	5991.13	83.56	83,56	160.36	8 87	209.15	207.83	23.
80	5989.92	83.12	83,12	170.73	10.08	208.56	207.06	24.
85	5988.64	82.68	82.68	181.07	11.36	207,99	206,30	26.
90	5987.28	82.24	82.24	191.36	12,72	207.44	205.54	28.
.95	5985.84	81.80	81.80	201.62	14.16	206.90	204.78	29.
00	5984.33	81.36	81.36	211.84	15,67	206.38	204.04	31.
05	5982.74	80.92	80.92	222.02	17.26	205.87	203.29	32.
10	5981.08	80.48	80.48	232.17	18,92	205,38	202,55	. 33.
15	5979.34	80.03	80.03	242.28	20.66	204.91	201.82	35.
.20	5977.53	79.59	79.59	252.35	22.47	204.45	201.09	36.
.25	5975.65	79.15	79.15	262.39	24.35	204.01	200.36	38.
30	5973.70	78.70	78.70	272.39	26.30	203.58	199.64	39.
35	5971.67	78.26	78.26	282.36	28.33	203.17	198,92	41.

0 SEC

C.M. POSITION

X

(FT) Y

Z

TOTAL

C+M+ ACCELERATION (FT/SEC/SEC)

TOTAL

Z

C.M. VELOCITY

х

(FT/SEC)

۲.

FIG 32

TIME

(SEC)

PILOT CHUTE

ALTITUDE

(FT)

DRAG AREA=

SUSP. LINES= 14.750 FT TIME OF PILOT CHUTE RELEASE=

C.M. TRAJ. ANGLE

(DEG)

DIAMETER=

SYSTEM

(DEG)

18.870 FT##2

5.660 FT

Sample Static Output for the Line Deployed]

	TIME	ALTITUDE	SYSTEM	C.M. TRAJ.	C.	M. POSITION			C.M. VELOCITY		C • M •
	(SEC)	(FT)	ANGLE (DEG)	ANGLE (DEG)		(FT)	n an	n an an tha an tha An tha an tha a	(FT/SEC)		ACCELERATION (FT/SEC/SEC)
	FIC				X		Ζ	TOTAL	XYY	Z	TOTAL
Static Lin	32 1.41 1.46 1.51 1.56 1.66 1.61 1.66 1.61 1.66 1.61 1.66 1.61 1.66 1.61 1.66 1.61 1.66 1.61 1.66 1.61 1.66 1.61 1.66 1.61 1.66 1.61 1.66 1.65 1.66 1.69 1.66 1.	5968.92 5966.72 5964.44 5962.09 5959.67 5957.18 5954.61 5951.96 5949.25 5946.46 5943.60 5940.67	77.68 77.24 76.80 76.35 75.91 75.47 75.03 74.58 74.14 73.71 73.27 72.83	77.68 77.24 76.80 76.35 75.91 75.47 75.03 74.58 74.14 73.71 73.27 72.83	295.26 305.15 315.02 324.86 334.67 344.46 354.22 363.95 373.66 383.34 392.99 402.62		31.08 33.28 35.56 37.91 40.33 42.82 45.39 48.04 50.75 53.54 56.40 59.33	202.83 202.62 202.42 202.24 202.07 201.91 201.77 201.64 201.52 201.41 201.32 201.24	198.16 197.61 197.07 196.53 195.99 195.45 194.92 194.38 193.85 193.32 192.79	43.27 44.76 46.24 47.72 49.19 50.67 52.13 53.60 55.06 56.51 57.96 50.41	
ne Deployed Pil	Dut 2.01 2.01 2.06 2.11 2.16 2.11 2.16 2.26 2.31 2.36 2.31 2.41 2.41 2.41 2.41 2.41 2.41 2.41	5934.58 5934.58 5931.43 5928.21 5924.92 5921.56 5918.22 5914.84 5911.42 5907.98 5904.50	72.83 72.39 71.95 71.52 71.09 70.65 70.22 69.78 69.33 68.88 68.43 67.97	72.39 72.39 71.95 71.52 71.09 70.65 70.22 69.78 69.33 68.88 68.43 67.97	+02.02 412.22 421.79 431.34 440.86 450.36 450.36 459.79 468.99 478.06 487.00 495.82 504.52		59.33 62.34 65.42 68.57 71.79 75.08 78.44 81.78 85.16 88.58 92.02 95.50	201.24 201.17 201.11 201.07 201.03 201.01 196.84 194.61 192.46 190.38 188.37 186.42	192.27 191.74 191.22 190.70 190.18 189.66 185.22 182.62 182.62 180.07 177.59 175.17 172.81	59.41 60.86 62.30 63.73 65.17 66.59 66.62 67.28 67.28 67.94 68.60 69.26 69.92	
Lot C	•12D (SNA	TCH		TIME (S	EC) ANGLE(DEG 5 70.31) X(FT) 457.94	Z(FT) 77.77	VELOCITY1(FT/SE 201.00	C) VELOCITY2(F 88.92	T/SEC)
hute S	Car PPO	SNA SNA	TCH FORCE	8293.1 TY= 197.29	-8 94 FT/SEC						
ystem (Co	DA TIME A C SEC)	ALTITUDE (FT)	SYSTEM Angle (deg)	C.M. TRAJ. Angle (deg)	č •	M. POSITION (FT) Y	2	TOTAL	C.M. VELOCITY (FT/SEC) X Y	2	C.M. ACCELERATION (FT/SEC/SEC) TOTAL
ntinued)	2,61 1,2,69 2,78 2,86 2,94 3,02 3,10	5897.78 5892.19 5886.83 5881.74 5876.96 5872.48 5868.29	67.09 66.33 65.54 64.71 63.84 62.91 61.93	67.09 66.33 65.54 64.71 63.84 62.91 61.93	520.82 533.86 545.92 556.93 566.90 575.88 583.95		102.22 107.81 113.17 118.26 123.04 127.52 131.71	176.90 165.44 152.66 139.55 126.82 114.92 104.06	162.94 151.52 138.96 126.18 113.83 102.31 91.82	68.86 66.42 63.21 59.61 55.91 52.32 48.97	-136.00 -160.76 -171.93 -172.34 -165.50 -154.51 -141.70

FIG 32	3,19 3,27 3,35 3,52 3,60 3,68 3,76 3,85 3,93 4,01 4,09 4,17	5864.36 5860.67 5857.21 5853.93 5850.82 5847.87 5845.04 5842.33 5837.20 5837.20 5837.20 5834.76 5832.39 5830.08	60.88 59.76 58.58 57.32 56.01 54.63 53.20 51.72 50.19 48.63 47.03 45.42 43.79	60.88 59.76 58.58 57.32 56.01 54.63 53.20 51.72 50.19 48.63 47.03 45.42 43.79	591.19 597.69 603.53 608.79 613.54 621.74 625.29 628.52 631.48 634.19 636.68 638.97		135,64 139,33 142,79 146,07 149,18 152,13 154,96 157,67 160,28 162,80 165,24 167,61 169,92	94.32 85.68 78.07 71.38 65.53 60.40 55.90 51.96 48.49 45.44 42.75 40.37 38.27	82.40 74.02 66.62 60.09 54.33 49.25 44.76 40.78 37.25 34.10 31.28 28.76 26.48		45,91 43,15 40,70 38,54 36,63 34,96 33,48 32,19 31,04 30,03 29,14 28,34 27,62	-128.57 -116.05 -94.59 -94.38 -85.45 -77.71 -71.07 -65.40 -60.57 -56.48 +53.02 -50.09 -47.62
Samp		Ful	LL OR REEFE	D INFLATION		TIME (SE 4.17	C) ANGLE(DE 43.79	G) X(FT) 638.97	Z(FT) 169.92	V(FT/SEC) 38,27	FMAX(LB) 11847.	TF (SEC) 1.65
												The second second
										4		
: =	NOTE	POSITIONS	VELOCITIES.	ACCELERATION	S.TRAJ.	ANGLES REFER TO	LOAD, PREV	IOUS RESUL	TS ARE FOR	MASS CENT	ER -	
						tan an a						
D												
	TIME	ALTITUDE	SYSTEM	LOAD TRAJ.		LOAD POSITION			LOAD N	ELOCITY		LOAD
ЪЧ			ANGLE	ANGLE								ACCELERATION
D m	(SEC)	(PT)	(DEG)	(DEG)	Y I	(FT)	7	TOTAL	······································	(/SEC)	-	(FT/SEC/SEC)
ı b					· · ·		۷	TOTAL	~		. 2	IUIAL
ູດ										•		
പ്റ												
									1			
4 12	4.39	5805.53	36.14	12.37	657,59		194,47	36.07	7.73		35,23	-39.83
	4,94	5788.65	15,23	-15,45	657,18		211.35	26,84	-7,15		25.87	-25.99
$\frac{1}{2}$	5,51	5777.00	-5,73	-29.53	651,96		223.00	17.69	-8,72		15.39	-14.76
Ξ ώ́	7 05	5/00.02	-24,09	11,18	654 77		233,38	14.74	2,80		14.46	20.31
H H	7 82	5728.39	-19 43	40 41	674 49		240.29	30.23	10.01		20.22	23.00
00 CT	8.71	5697.88	1.71	48.30	704-52		302.12	47.52	35.48		31.62	-8.73
	9 48	5675.72	19.03	46.04	729.55		324.28	38.66	27.83		26.84	-16.61
<u>د</u> بر	10.41	5650.23	30.80	17,01	747.05		349.77	31,53	9.22		30.15	23.18
ີຜິດ	11,18	5624.05	28,73	-10,09	747.96		375.95	38.42	-6,73		37.83	21.81
TH -	11.94	5593.62	16,53	-27.06	737.26		406,38	44.76	-20.36		39.85	15.02
	12,11	5504.78		-36,51	/18.88		435,22	42.94	=25.54		34.51	-9.29
3 17	14 62	5506.37	-29.08	6 78	602 45		407.74	30.11	-11.03		20.49	-17.02
Ē	15.27	5482-81	=23.83	22.74	699.06		517 19	42.37	16.38		39.08	19.07
TT -	16.55	5434.17	2.07	40.16	730.61		565.83	44.18	28,50		33.77	-8.59
ລຸດ	17,93	5393.05	26,31	19,05	760.03		606 95	31.17	10.17		29.46	-20.35
ĭ ≮	18,76	5365,83	27.50	-9.89	761.61		634,17	36.84	-6,33		36.29	21.10
Η μ.	19,53	5336.25	17,78	-26,55	751.39		663,75	44.12	-19.72	an a	39.47	15.27
· · · · ·	20,55	5798.47	-3,45	-38,05	720.35		701,53	42.22	-26.02		33.25	-8,24
י ת נ	22 54	5202.01	-24.71	-12.42	702.33		762 43	31.00	=10.34		27.31	-19.13
T T	23 18	5213.77	-21-20	22.37	706.60		786 22	33.66 41 96	15 97		34.75 28.81	20.07
<u>.</u>	24.46	5166-37	3.32	38.05	736.24		833.43	42,01	25.90		33 08	.7.63
	25.74	5127.96	24.17	18.20	761-15		872.04	31,15	9.73		29 50	-18.75
	26.57	5101.02	25.79	-9.30	762.79		898 98	35,98	-5.81		35.50	19.84
	27.34	5072.18	17.18	-25.71	753.22		927.82	42.75	-18.55		38.52	14.53
	28,36	5034.91	-2,38	-36,94	729.46		965.09	41.59	-25,00		33,25	-6.86
•	29.70	4994.31	-23,46	-16,78	704.26		1005.69	31.12	-8,98		29.79	-18.18

ot Cnute System (Con

μ.										
E E										
Ω,										
	170.92	654.88	. 62	21 35	1542 43					
$\omega \omega$	171.43	640.18	.76	20.80	1549 11	5345.12	30.83	11.22	28.	7137
N	171 94	625.50	.75	20.37	1573 64	5357.82	30.69	10.94	28.	67 57
	172 46	610 83	60	10 00	1575.04	5374,50	30.56	10.64	28.	6459
50.50	172 97	596 17	.35	10 56	15/9.01	5389.17	30.45	10.36	28.	63 -,49
CT 01	173 00	E66 91		17,00	1584.27	5403.83	30.39	10.18	28.	6431
	174 50	- 500.01	=+21	19,51	1594.03	5433.19	30.43	10.16	28.	68 .12
ก ซี	175 02	532.11		17.19	1599.08	5447.89	30.51	10,33	28.	71 .39
سر ،بر	175.02	537.440		20.22	1005.23	5462,60	30.63	10.58	28.	74 .51
0 0	172,03	522.01		20.69	1610.72	5477.33	30.74	10.86	28.	76 .53
	170.04	507.94	=• 5 1	21.12	1616.35	5492.06	30.83	11.11	28.	76 .45
FO	177,06	478.49	.01	21.57	1627.88	5521,51	30.88	11.35	28.	72 .14
H. C	1//,58	463,79	,29	21.51	1633,69	5536,21	30.82	11.30	28.	67 -18
D H	178.09	449.12	.52	21.26	1639.44	5550,88	30.72	11.14	28.	63 .36
ິດຕີ	178,60	434.46	.64	20.88	1645.08	5565,54	30.60	10.91	28.	59
£	179,11	419.82	.65	20.44	1650,60	5580,18	30.49	10.65	28.	57 - 50
Ö n	180.14	390.57	.32	19.73	1661.27	5609.43	30.34	10.24	28.	56 - 31
0	180,65	375.94	.06	19.60	1666.49	5624 06	30.33	10 17	28	57 - <u>0</u> 9
	181,16	361.30	-,20	19.66	1671.71	5638.70	30.36	10.21	20.	50 16
	181,67	346.65	-,41	19.89	1676.97	5653 35	30.43	10 35	20.	
3.0	182,18	331.98	- 53	20.24	1682.32	5668 02	30.53	10.55	20.	0 2 .32
ě H	183.21	302.63	44	21.01	1693.37	E697 37	30 70	11 01	20,	04 <u>•</u> 43 ∠/ 00
ö	183.72	287.95	- 25	21.29	1699.05	5712 05	30.74	11.01	20.	.39
- E	184.23	273.28	01	21.42	1704.78	E726 72	30.74	11.10	20.	.20
ਿਸਦ	184.74	258.63	.23	21.38	1710 53	5120.12	30.74	11.23	20.	©∠ =•10
ି ମ ୍ଚ ପ	185.26	244.00	43	21.18	1716 23	5741.37	30.70	11.19	28.	58 =.14
i i i i	186.28	214.79	56	20 49	1727 35	5795 01	30.01	11.00	28.	55 30
0 -	186.79	200.20	47	20 14	1732 75	5/05.21	30.41	10.05	28.	4940
nt N	187 30	185.61	30	10 89	1730 05	5/99.80	30.33	10.44	28.	4837
<u> </u>	187 82	171 02	00	10.75	1738.05	5814.39	30.28	10.30	28.	48 - 25
0	188 33	156 43	- 15	10 70	1743.30	5828,98	30.27	10,23	28.	4909
E C	180.35	100.70	15	17,17	1740.54	5843.57	30.29	10.25	28,	5 0 . 10
μ	199.05	112 50		20.25	1/59.16	5872.79	30.42	10,53	28.	54 .31
T T	107,00	112.30	=,40	20.59	1764.61	5887.42	30,51	10.73	28.	.38
10.00	190,30	71.70	÷,30	20.92	1/70.15	5902.05	30.57	10,91	28.	.34
- CO	190.89	83.33	22	21.16	1775.78	5916,67	30.61	11.05	28.	.23
	191.40	68.71	02	21.28	1781.45	5931,29	30.61	11.11	28.	53 .09
10 0	192.42	39.52	. 35	21.11	1792.80	5960.48	30,51	10.99	28.	+620
H H	192,94	24.95	.46	20.85	1798.38	5975.05	30.43	10.83	28.	43 33
0 0	193,45	10.39	,48	20.54	1803.88	5989,61	30.34	10.64	28.	41
HO	193,81	.00	.43	20.32	1807.74	6000 00	30,29	10.52	28.	40 - 34
5							•		· · · · · · · · · · · · · · · · · · ·	
Ē					1					
TT~				TIM	E(SEC) ALTITUDE (T) X(FT) Z(FT)	V(FT/SEC)	VX (ET/SEC)	VZ (FT/SEC) A (FT/SEC/SEC)
O O		1	VERTICAL/MINI	IMUM	5.32 5780.22	653.74 219.78	20.67	-9.68	18-26	=17.22
0		2	VERTICAL/MINI	IMUM	8.58 5702.00	699.97 298.00	48.31	35.57	33.69	-8.30
2 5		3	VERTICAL/MINI	EMUM 1	2.58 5569.28	722.16 430.72	43.85	-25 52	35.65	_8 79
0 H							+3103		33.03	
E C										
L P										
<u>6</u> .						그 생각 이렇는 것은 것이다.				
ω Ο										
يلغر										
-										

PARACHUTE-LOAD SYSTEM (DEPLOYMENT) -- G-11A (EXTRACTION) UNREEFED

TRAJECTURY SIMULATION--T=0,Z=0 IS RELEASE POINT RELEASE CONDITIONS ALTITUDE= 2000. FT VELOCITY= 220.00 FT/SEC MASSES--SLUGS TOTAL SYSTEM= 116.697 LOAD= 108.800 PARACHUTE 4.156 SUSP. LINES= •643 1.200 RISERS= RISER EXTENSIONS= •124 LOAD BRIDLE= • 342 INCLUDED= 158.613(SEA LEVEL) 149.262(2000. FT) APPARENT= 59.480 (SEA LEVEL) 55+973(2000. FT) REFERENCE DISTANCES FROM SKIRT-- FT x1= 16.450 X2= 61.100 X 3= 99.300 X4= 113.300 X5= 119.300 MOM . / PROD. INERTIA -- SI UG FT##2 IXX= 936191.608(SEA LEVEL) 907066.874(2000. FT) IYY= 936191.608(SEA LEVEL) 907066.874(2000. FT) IZZ= O(SEA LEVEL) 0. 2000. FT) IXZ= O(SEA LEVEL) 0(2000. FT) DIMENSIONS-- FT DNOT= 100.000 SUSP. SYSTEM= 95.000 L1= 79.081 (SEA LEVEL) 77.203 2000. FT) -53.119(SEA LEVEL) 2000. L2# -54.997(FT) 59.781 (SEA LEVEL) L3= 57.903(2000. FT) .129 YC/DNOT= DP/DNOT= .648 VOLUME= 66700.000 FT##3 PARACHUTE CDP= 1.786

LOAD DRAG AREA= 76.800 FT##2 DEGREES OF FREE DOM= 3

FIG 33 Sample Output for the Unreefed G-11A Cargo Parachute with Extraction Parachute System

FIG 33		EX TI	TRACTION CO ME OF EXTR	HUTE DRAG ARE ACTION CHUTE	A= 62∙20 RELEASE≖	0 FT**2 0 SEC					
Sample Output with Extracti	TIME (SEC)	ALTITUDE (FT)	System Angle (deg)	C.M. TRAJ. Angle (deg)	C∙M X	• POSITION (FT) Y	7	TOTAL	C.M. V (FT X	ELOCITY /SEC) Y	C.M. ACCELERATION (FT/SEC/SEC) Z TOTAL
on Parachute System (Continued)	.05 .10 .15 .20 .25 .30 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95 1.00 1.05	2000.00 2000.00	90.00 90.00	90.00 90.00	10.96 21.86 32.68 43.44 54.12 64.74 75.29 85.77 96.19 106.55 116.84 127.07 137.24 147.34 157.39 167.37 177.30 187.17 196.98 206.73 216.43 UTE RELEASE 1.432 SLUG EXTRACTION C 00 LB/FT ONS AND LOAD	TIME:(SEC) 1.07 OR 1.07 HUTE DRAG ARI BRIDLE=	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	218.57 217.15 215.75 214.37 213.01 211.67 210.34 209.03 207.73 206.45 205.19 203.94 202.71 201.49 200.29 199.10 197.92 196.76 195.61 194.48 193.36 (x(FT) 219.52 219.52	218.57 217.15 215.75 214.37 213.01 211.67 210.34 209.03 207.73 206.45 205.19 203.94 202.71 201.49 203.94 202.71 201.49 200.29 199.10 197.92 196.76 195.61 194.48 193.36 Z(FT)	VELOCITY(FT/SEC: 193.00 193.00	

15.000 FT 2.330 FT##2

RELEASE DISTANCE IN AIRCRAFT= PARACHUTE PACK DRAG AREA=

210

	TIME	ALTITUDE	SYSTEM	C.M. TRAJ.	C•M•	POSITION			C.M. VI	LOCITY		ACCELERATIO
	(SEC)	(FT)	(DEG)	(DEG)		(FT)			(FT)	SEC)		(FT/SEC/SEC)
ດີ	(SEC)	AC 17	(DEO)		X	Y	Z	TOTAL	×	ан Ү л	Z	TOTAL
ົບ	•											
Ū.												
S				00 5 -			0.6	191.56	191,56		1.60	
ည	1.12	1999.96	89,52	89.52	229.13		.04	191-16	190.13		3.19	
<u>B</u>	1.17	1999.84	89.04	89.04	230.07		• 10	188.79	188.73		4.77	
5	1.22	1999.64	88.55	00.00	240.10		. 30	187.46	187.35		6.34	
5	1.27	1999.37	88.05	00.00	251.55			186.15	185.99		7.90	
ιν.	1.32	1999.01	87.57	87.57	200.00		1 4 7	184.88	184.64		9.44	
0	1.37	1998.58	87.07	87.07	2/0.10		1.03	183.64	183.32		10.98	
ž	1.42	1998.07	86.57	00.07	283.35		2 53	182.44	182.01		12.50	
ĊT .	1.47	1997.48	86.07	00.07	294.40	- <i>d</i> -	3 18	181.26	180.72		14.01	
0	1.52	1996.82	85.57	05.0/	303.35		3.02	180.12	179.45		15.52	
С,	1.57	1996.08	85.06	05.05	312.50		4 73	179.00	178.19		17.01	
rt -	1.62	1995.27	84.55	54.55	321.50		5 62	177.92	176.95		18.50	
	1.67	1994.38	84.03	84.03	330.38		5.02	176 86	175.73		19.97	
Ë.	1.72	1993.42	83.52	83.52	339+19		7 61	175.84	174-52		21.44	
2	1.77	1992.39	83.00	83.00	341.75		4.70	174.84	173.33		22.89	
5	1.82	1991+28	82.48	82.48	356.65		0.12	17404	172.15		24. 34	
-+	1.87	1990+10	81.95	81.95	365+29		9.90	173.07	170.99		25.78	
÷.	1.92	1988.85	81.43	81.43	373.87		11.15	172.02	169.84		27.21	
5	1.97	1987.52	80.90	80.90	382.39		12.48	172.01	169.71		28-63	
	2.02	1986.13	80.37	80.37	390.85		13.87	1/1016	147 59		30.04	
	2.07	1984.66	79.84	79.84	399.26		15.34	1/0.20	101+30		31.45	
_	2.12	1983.12	79.30	79.30	407.61		16.88	169.42	100.40		32.84	
H.	2.17	1981.52	78.77	78.77	415.91		18.48	168.61	105.30		26.04	
D 🗌	2.22	1979.84	78.23	78.23	424.15		20,16	167.82	164.29		37.23	
D	2.27	1978.10	77.69	77.69	432.34		21.90	167.06	163.22		35.01	
Th .	2.32	1976.28	77.15	77.15	440.47		23.72	166.33	162.10		30.70	
<u>n</u>	2 37	1074.40	76.61	76.61	448.56		25,60	165.61	161.11		30.33	
F.	2.42	1072.45	76.07	76.07	456.59		27.55	164.92	160.07		39.10	
	2 47	1970-43	75.53	75.53	464.56		29.57	164.26	159.05		41+05	a de la compañía de l
1-	2.57	1968.36	74.98	74.98	472.44		31,64	158.94	153.51		41.19	
÷.	2.52	1966.28	74.41	74.41	480.03		33.72	155.90	150.17		41.89	
	2.51	1964.17	73.84	73.84	487.46		35,83	153.01	146.97		42.58	
	2.02	1042 02	73.26	73.26	494.73		37.98	150.26	143.89		43.28	
	2.01	1902002	73.67	72.67	501.85		40.16	147.63	140.93		43.99	
n i	2.12	1957.63	72.07	72.07	508.83		42.37	145.13	138.08		44.69	
â	2.11	1957-03	71 46	71.46	515.67		44.62	142.74	135.33		45.39	
н.	2.02	1953.30	70.84	70.84	522.37		46.91	140.46	132.68		46.09	
79	2.87	1953+09	70.04	70.22	528.94		49,23	138.28	130.12		46.80)
0	2.92	1420.11	40 50	60 50	535.38		51.59	136.21	127,65		47.50) and the second second
	2.97	1948.41	49 05	68.95	541.71		53.98	134.22	125.27		48.21	
D.	3.02	1940.02	49 31	69.31	547.91		56.41	132.33	122.96		° 48,9]	
1	3.07	1943.59	08.31	00.01	2419.51							
0												
0					TIME (SE	C) ANGLE (DE	G) X(FT) Z(FT) VELOCI	TY1 (FT/SEC)	VELUCITY	2171/3E61
D,		SV	TCH		2.50	75.12	470.	44 31.	11	107.18	52.00	, , .
_											· · · · · · ·	

SVATCH FORCE= 2365, LB SVATCH VELOCITY= 159.753 FT/SEC

	TIME	ALTITUDE	SYSTEM	C.M. TRAJ.	С.	M. POSITION			C.M. V	ELOCITY		C.M.
H	(SEC)	(FT)	(DEG)	(DEG)		(FT)		n an traisiús <u>a S</u> eca	(F1	T/SEC)		(FT/SEC/SEC)
୍ ନି					X	Ý	Z	TOTAL	X	Y	Z	TOTAL
ω												
ω												
	3 37	1028 75	64 45	64 4E	502 44		71 56	112 31	100 14 100 14		49.00	04 DE
2 O	3.64	1915.82	60.83	60.83	607.89		84.18	94.35	82.38		40.83	#04.70
L'H	3.91	1903.74	56.94	56.94	628.28		96.26	78.15	65.50		42.63	-72.28
סים	4.18	1892.55	52.79	52.79	644.47		107.45	65.43	52,11		39.57	=61,52
	4.45	1882.13	48.43	48.43	657.39		117.87	55.81	41.76		37.03	-52.93
L+J (D	4.72	1872,35	43.98	43.98	667.78		127.65	48.61	33.76		34.98	-46.74
a o	4.99	1863.07	39.57	39,57	676.21		136,93	43.23	27.53		33.32	+42.51
нc	5.20	1854.21	35,30	30.30	083.10 409 79		145,79	39.10	22.03		31.96	-39.69
p H	5 80	1837.47	27.57	27.57	693.49		162 53	33.62	15 56		20.81	-36 66
	6.07	1829.50	24.21	24.21	697.41		170.50	31.69	12,99		28.90	-35,89
H H	6.34	1821.78	21.20	21.20	700.69		178.22	30.11	10.89		28.07	-35,38
0	6,61	1814.27	18,53	18,53	703.44		185.73	28.80	9,15		27.31	-35.04
ЪЩ	6.88	1806.96	16.17	16,17	705,75		193.04	27.68	7.71		26,58	-34.80
HH	7,15	1799.84	14.11	14.11	707.70		200.16	26.71	6.51		25,90	-34.62
ല്	1.42	1792.91	12.31	12.31	709.35		207.09	25.84	5.51		25.25	=34,47
HC	7 97	1779 54	0 38	10.14	711 93	4	213,80	25.07	4.07		24.03	≈34.30 34.35
аЪ	8 24	1773.10	8,19	8,19	712.94		226 90	23 72	3 38		27.04	-34 15
5	8.51	1766.81	7.16	7.16	713.80		233,19	23.12	2.88		22.94	=34.06
Ê C				a da se	a Nilania						्राव्याः () ()	
t D						TINE	AL AND FIDE					
ິດ		Fill		ED INFLATION		LIME (St	CI ANGLEIUE	713.90	223.10	23 12	PMAX(LU)	IF (SEC)
S O							10.0	113000	-3	~J = + L	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2011
Υ.Ψ												
t õ.								e and Characteries Anna an Anna Anna				
n T											a shekara a sana Arwan ƙwarar a sana	
ခဂု	NOTE	POSTITONS V	FLOCITIES	ACCELERATION	S. TPALL ANG	ES REFER TO	I DAD . PREN	TOUS RESUL	TS ARE FOR	MASS CENTE	. 0	
السو				A COLECKA I I DA			LOAD	1000 1000		MAJJ GENTE		
1 -												
O P		and the state of the second										
S C				al grant the star								
á H	TIME	ALT TIMOT	SYSTEM	LOND TRAIL		D BOATTON	an an Angelana a'		1000	5. 001-V		
H• H	IIME	ALITIOUE	ANGLE	LUAU TRAJ.	LO	AU PUSITION			LOAD V	ELOCITY		
Dov	(SEC)	(FT)	(DEG)	(DFG)		(FT)		a far an	(FT	ISEC)		(FT/SEC/SEC)
60	101-07				X	Y	Z	TOTAL	x	Y Y	Z	TOTAL
d b	2011		e se égui e				i sulla sulla					
Ú												
S. R. S.												
C C												
T.	8.72	1684.68	4.96	-25.41	721.06		315.32	26.60	-11.41		24.02	-4.67
Ē	9 27	1672.07	71	-28,57	714.54		327,93	25.36	-12.13		22.28	=3.46
Ω.	9.91	1658.44	-7.08	-25.87	707.33		341,56	22.64	-9.88		20.37	-6.13
14	10.42	1648.22	-11.44	-17.08	703.19		351.78	20.60	-6.05		19.69	-8.77
	11,19	1632.87	=15.94 -17.30	5.33	701.47		367.13	20.71	1.92		20.62	11.60
	11.70	1010.00	-11-22	23.43	100.43		303,92	25.10	11.04		23.21	12.01

eefed (struct for the Unre	FIG 33 Sample Ou
	73,44 74,44 75,00 76,00 77,00 77,04 78,51 79,39 79,80 79,90	
	6 8 0 2 2 4 4 1 8 5 6 6 0	
	14 12 11 8 6 4 3	
1 2 3	7.45 4.55 2.95 9.34 5.51 7.81 0.31 2.82 1.03 .00	
VER VER VER		
TICAL/ TICAL/ TICAL/	5.24 7.13 7.23 5.75 2.49 53 -3.44 -5.75 -6.73 -6.77	
MINI MINI MINI		
MUM MUM MUM	33. 23. 17. 5. -2. -3. -3. -11. 12.	
TIME 9 14 20	91 80 35 00 72 90 75 09 78 27	
(SEC) •14 •52 •40	122 123 123 124 124 124 124 124 124 124	
ALTI 16 15 14	0.03 2.90 7.26 1.84 2.10 0.97 0.15 0.89 2.73 3.00	
TUDE (574.95 550.58		
(FT) 5 5 0		
X(F 716 766 817		
T) 10 50 25	1852 1875 1887 1910 1934 1952 1969 1987 1998 2000	
Z(FT) 325.05 449.42 589.7(55 45 05 66 49 19 69 18 97 00	
) V(5 2	26. 24. 23. 23. 22. 23. 23. 23. 23.	
FT/SEC 25.77 39.50 28.49	93 57 85 33 20 93 70 00 66 74	
) VX(F -1 3 -1	15.0 9.9 7.1 2.0 -1.1 -1.5 3 2.4 4.8 5.0	
T/SEC) 2.19 0.93 4.07	2 2 1 3 0 6 6 0 4 3 5	
VZ (FT/S 22•7 24•5 24•7		
EC) A(0 7 7 7	22, 22, 23, 23, 22, 22, 22, 22, 23, 23,	
(FT/SEC. -3.34 3.31 -2.91	,35 ,48 ,76 ,24 ,17 ,87 ,70 ,87 ,16 ,19	
/SEC) 4 6 0	-4.1 -5.4 -4.3 -1.8 6 -2.5 4.2 4.8	
	74B2315458	

s -11A Cargo Parachute 1 (Concluded)

TRAJECTORY SIMULATION--T=0,7=0 IS RELEASE POINT RELEASE CONDITIONS ALTITUDE= 2000 . FT 169.00 FT/SEC VELOCITY= MASSES--SLUGS TOTAL SYSTEM= 116.697 I OAD= 108.800 PARACHUTE= 4.156 .643 SUSP. LINES= RISERS= 1.200 RISER EXTENSIONS= .124 LOAD BRIDLE= •342 INCLUDED= 158.613(SEA LEVEL) 149.262(2000. FT) APPARENT= 59.480 (SFA LEVEL) 55.973(2000. FT) REFERENCE DISTANCES FROM SKIRT-- FT 16.450 x1= x5= 61.100 X3= 99.300 113.300 X4= 119.300 ¥5= MOM. / PROD. INERTIA -- SLUG FT##2 936191.608 (SEA LEVEL) 907066.874 (IXX= 2000. FTI IYY= 907066.874(936191.608 (SEA LEVEL) FT) 936191.608(SEA LEVEL) 20700000.000(SEA LEVEL) 5000 . 20658733.8681 1ZZ= FT) 2000. TXZ= O(SEA LEVEL) 0(2000. FT) DIMENSIONS-- FT DNOT= 100.000 SUSP. SYSTEM= 95.000 L1= 79.081 (SEA LEVEL) 77.203(2000 . FT) L2= -53.119(SEA LEVEL) -54.997(2000. FT) 57.903(59.781 (SEA LEVEL) 13= FT) 2000. YC/DNOT= .129 DP/DNOT= .648 VOLUME= 66700.000 FT**3 PARACHUTE CDP= 1.786 76.800 FT##2 LOAD DRAG AREA= DEGREES OF FREE DOME З

> RELEASE DISTANCE IN AIRCRAFT= 15.000 FT PARACHUTE PACK DRAG AREA= 2.330 FT++2

FIG 34 Sample Output for the Reefed G-11A Cargo Parachute with Extraction Parachute System

54413	0 SEC
62-200	SE #
AREA	UTE RELEA
CHUTE DHAG	RACTION CH
XTRACTION (INE OF EXT

4	at in the Second			. 4																				<u>[</u>]		
ELOCITY SEC) Y																								VELOCITY (FT/S)	148.26	148.26
C.M. VB X (FT,		168.15 167.31	166.48	165.66 164.85	164.04	163.24	162.45	160.89	160.12	159.36	158.61	157.12	156,39	155.66	154.94	154.63		152,13	151.44	150.76	150.09	149.42	148,76	Z(FT)		0
TOTAL		168.15 167.31	166.48	165.66 164.85	164.04	163,24	C4.201	160.89	160.12	159.36	158.61 157 af	157.12	156.39	155.66	154.94	154.23		152.13	151.44	150.76	150.09	149.42	148.76	X (FT)	219.56	219.56
Z		00	0	00	0	0	00	- 0	0	0	0	- c	0	O,	C	00				C	0	0	0	ANGLE (DEG)		00.06
OSITION (FT) Y																								TIME (SEC)	1.39	1.39
Q ¥ U X		8.43 16.82	25.16	33.47 41.73	49.95	58,13	66.28 74 38	82.44	90.47	98.46	106.41	122 10	130.03	137,83	145.60	153.33	20.101	156.01	183.90	191.45	198.97	206,46	213.92			IE KELEASE UN
C.M. TRAJ. Angle (DEG)		90.00 90.00	00.06	90.00	90.00	00.00	00.09	00.06	90.00	90.00	90.00		90.00	90.00	90.00	90.00	00.04		90.00	90.00	90.00	90.00	00°06		IRCRAFT	LIN CHU
SYSTEM ANGLE (DEG)		00°06	00.06	00.00	00.06	00.06	00.09	00.06	00.06	00.06	00.06	00.00	00.00	90.06	90.00	90.00	00.06		00-06	00.06	90.00	90.00	00.06		OUT OF A	NT CHUIEVE
ALTITUDE (FT)		2000-00	2000.00	2000.00	2000.00	2000-00	2000.00	000002	2000.00	2000.00	2000.00		2000.00	2000.00	2000.00	2000-00	2000-00		2000-00	2000.00	2000.00	2000.00	2000.00		LOAL	MAI'
TIME (SEC)		.05	.15	20 2 2 2	e e	35	0 4 1 0 4	5 C C C	55	• 60	65			.95	6.	- 35	1.00			1.20	1,25	1,30	1.35	•		

64+520 FT##2

1.432 SLUG Xtraction Chute Drag Area D LB/FT

L01/E

MASSE A DNA F.

28.000

ENSIONS AND LOAD BRIDLE

RISERS

PARACHUTE PACK PACK PARACHUTE PACK PARACHUTE PACK PACK SPRING CONSTANTICENGTH OF RISER

Sample Output for the Reefed G-11A Cargo Parachute with Extraction Parachute System (Continued) FIG 34

	TIME	ALTITUDE	SYSTEM	C.M. TRAJ.	10 C - 201	C.M. POSITION			C.M. VELOCIT	Y, State	C • M •
			ANGLE	ANGLE							ACCELERATION
	(SEC)	(FT)	(DEG)	(DEG)		(FT)			(FT/SEC)		(FT/SEC/SEC)
					X	Y	Z	TOTAL	ur X in the	Y Z	TOTAL
ត្រ											
ω		- 000 04	00.00	00.00							
4	1.44	1999.90	69.38	89.38	226.95		.04	147.41	147.40	1.	60
	1.49	1999.04	88.75	88,75	234.30		.16	146,59	146,56	3.	20
	1.54	1999.04	88.12	88.15	241.01		• 36	145.80	145,72	4.	78
2,00	1.39	1999.30	0/.49	0/.49	248.87		.64	145.04	144.90	6.	36
	1.04	1999.01	80.00	00.05	256.10		.99	144.30	144.08	7.	93
	1.09	1440.21	80.C1	00.21	263.28		1,43	143.59	143.27	9.	49
- Ĩ	1.74	1990.00	85.5/	05.57	270.43		1.94	142.90	142.47	11.	04
0-FT	1.19	1997.47	04 90	84.93	211.53		2,53	142.24	141.68	12.	58
×	1 04	1970.00	84.68	54.28	284.00		3,20	141.60	140.90	14.	12
rt O	1.04	1990.00	03.03	03.03	241.05		3,94	140.99	140.12	15,	64
, н д	1.94	1995.24	85.48	85.98	298.61		4.76	140.40	139,35	17.	16 18 18 19
p q	1.99	1994.35	82.33	82.33	305.56		5,65	139,84	138,59	18.	67
Q Q	2.04	1993.38	81.67	81.07	312.47		6,62	139.30	137.84	20.	17
	2.09	1992.33	81.02	81.02	319.34		7.67	138.79	137.09	21.	67
	2.14	1991.21	80.36	80.36	326.18		8,79	138.30	136,35	23.	16
ы Ч т	2,19	1990.02	79.70	79.70	332.98		9,98	137.83	135,61	24.	63
	2,24	1988.75	79.05	79.05	339.74		11,25	137.39	134,89	26.	11
ਿਸ਼ਲੱ	2,29	1987.41	78.39	78.39	346.47		12,59	136.97	134.17	27.	57
ພື້	2.34	1985.99	77.73	77.73	353,16		14.01	136.57	133.45	29.	03
H H	2,39	1984.51	77.07	77.07	359.81		15,49	136.19	132.74	30.	48
2 2 2	2.44	1982.95	76.41	76.41	366.43		17.05	135.84	132.04	31.	92
0 0 H	2.49	1981.32	75.75	75.75	373.02		18,68	135.51	131.34	33.	36
0 <u>5</u> _	2,54	1979.61	75.09	75.09	379.57		20.39	135.19	130.64	34.	78
	2,59	1977.84	74.43	74.43	386.08		22.16	134.90	129.96	36.	21
	2.64	1975.99	73.77	73.77	392.56		24.01	134.63	129.27	37.1	52
	2,69	1974.08	73,12	73,12	399.01		25,92	134.39	128,59	39.)3
ro m	2.74	1972.09	72.46	72.46	405.42		27,91	134,16	127.92	40.	43
Y O.	2,79	1970.04	71.81	71.81	411.80		29,96	133,95	127.25	41.0	32
ີ້ວິ	2.84	1967,91	71.15	71.15	418.15		32,09	133,76	126.59	43.	20
r Ω	2.89	1965.72	70.50	70.50	424.46		34,28	133,59	125,93	44.	58
01	2.94	1963.46	69.85	69.85	430.74		36.54	133,43	125,27	45,	96
B 1-1	2,99	1961.13	69.21	69.21	436.99		38,87	133.30	124.62	47.	32
Ч	3,04	1958.73	68,56	68,56	443.21		41,27	133,18	123.97	48.0	58
	3,09	1956.26	67.92	67,92	449.39		43,74	133.09	123.33	50.0	3
	3,14	1953.72	67.28	67.28	455.54		46,28	133.01	122,68	51.	38
	3,19	1951.12	66.64	66.64	461.66		48,88	132.94	122.05	52.	1
101	3.24	1948.45	66.01	66.01	467.74		51,55	132.90	121.41	54.() 4 44 (1997) - 1977) - 1977)
	3.29	1945.79	65.36	65.36	473.63		54.21	128.19	116,51	53.4	5
H• O	3.34	1943.10	64.70	64.70	479.41		56,90	126.60	114,46	54.	10
5 T	3,39	1940.38	64.04	64.04	485.08		59,62	125.09	112.46	54.	76
ੱ ਦ ਅ	3.44	1937.63	63,38	63,38	490.66		62,37	123.64	110.53	55.4	1 - Carlos Martines - C
<i>a</i> a	3,49	1934.84	62,71	62.71	496.14		65,16	122.26	108.64	56.0	06
ЪH	3,54	1932.02	62.04	62.04	501.53		67,98	120.94	105.81	56.1	1 Sector Sector Sector Sector
∼ ₽	3,59	1929.17	61,36	61.36	506.82		70.83	119.68	105,03	57.3	16
<u>C</u>	3,64	1926.29	60,68	60.68	512.03		73,71	118,47	103,30	58.0	9 1 - Calendar Statistics
Ę	3.69	1923.37	60.00	60.00	517.16		76,63	117.33	101.61	58.0	56
Ę.	3.74	1920,42	59.32	59.32	522.20		79.58	116.23	99,97	59.	30
1	3.79	1917.44	58,64	58.64	527.15		82,56	115.19	98.36	59.9	5
١٧	3,84	1914.43	57.96	57,96	532.03		85.57	114.20	96.80	60.5	i9
	3,89	1911.39	57.27	57.27	536.84		88.61	113.25	95.27	61.2	23
	3,94	1908.31	56.59	56.59	541.56		91.69	112.35	93,78	61.6	17 10 10 10 10 10 10 10 10
										angan di kacamatan kacamatan kacamatan Kacamatan kacamatan k	
		1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 -							(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		

	TIME(SEC) ANGLE(DEG)	X(FT)	Z(FT)	VELOCITY1 (FT/SEC) VELOCITY2 (F1/SEC)
SNATCH	3.24 65.95	468.23	51.76	132.90 44.71

SNATCH FORCE=	2084. LB	
SNATCH VELOCITY=	129.716	FT/SEC

REEFED INFLATION REEFING RATIO= .064 REEFED PROJ. DIAM.= 9.231 FT CUTTER DELAY= 2.000 SEC TIME OF DISREEF= 5,242 SEC

19

	TIME	ALTITUDE	SYSTEM	C.M. TRAJ.	C	.M. POSITION			C.M. VE	LOCITY		C • M •
	(SEC)	(FT)	ANGLE (DEG)	ANGLE (DEG)		(FT)			(FT/	SEC)		ACCELERATIO
<u>ה</u>					X	Y	Z	TOTAL	X	Y	Z	TOTAL
5												•
T .												
5												
	4.05	1901.58	55,13	55,13	551.52		98,42	112.39	92.21	1.5	64.25	-13.28
d .	4.13	1896.11	54.01	54.01	559.25		103.89	112.80	91.27	· · · · ·	66.29	-14.11
D	4.21	1890.46	52.91	52.91	566.89		109.54	113.19	90.29		68.26	=14.94
D	4.30	1884.65	51.84	51.84	574.46		115.35	113.55	89.28		70.16	-15.77
n.	4.38	1878+69	50.78	50.78	581.93		121.31	113.87	88,22		72.00	-16.61
5	4.47	1872.57	49.75	49.75	589.32		127.43	114+17	87.13		73.77	-17.44
<u>.</u>	4.55	1866.30	48.73	48.73	596.61		133.70	114.43	86.01		75.48	-18.28
5	4.63	1859.90	47.74	47.74	603.81		140.10	114.66	84.85		77.11	-19.11
	4.72	1853.36	46.76	46.76	610.91		146.64	114.85	83.67		78.68	-19.93
	4.80	1846.68	45.80	45.80	617.91		153.32	115.00	82.45		80.17	-20.74
	4.89	1839.89	44.87	44.87	624.81		160.11	115.12	81.22		81.60	-21.55
>.	4.97	1832.98	43.95	43.95	631.60		167.02	115.21	79.95		82.95	-22.34
_	5.05	1825.95	43.04	43.04	638.28		174.05	115.26	78.67		84.23	•23.12
כ	5.14	1818.83	42.16	42.16	644.86		181.17	115.27	77.36		85.45	-23.89
	5.22	1811.60	41.29	41.29	651.32		188.40	115.24	76.04		86.59	-24.64
Σ.	5.31	1804-27	40.44	40.44	657.68		195.73	115.18	74.71		87.67	-25-38
{	5.39	1796.86	39.60	39.60	663.92		203.14	115.08	73.36		88.67	-26.10
	5.48	1789.37	38.78	38.78	670.05		210.63	114.95	72.00		89.61	-26.80
н	5.56	1781.80	37.97	37.97	676.06		218.20	114.79	70-63		90.49	-27.48
ž	5.64	1774-16	37.18	37.18	681.95		225.84	114.59	69.25		91.30	-28.14

REEFED INFLATION REEFING RATIO= .127 REEFED PROJ. DIAM.= 17.582 FT CUTTER DELAY= 4.000 SEC TIME OF DISREEF= 7.242 SEC

С С	IIME	ALTITUDE	ANGLE	C.M. TRAJ.	C•1	M. POSITIO	N		C.M. VE	LOCITY		C . M .
6	(SEC)	(FT)	(DEG)	(DEG)		(FT)			(57/	SECI		ACCELERATION
4					X	Y	7	TOTAL	¥ 17.	JEC)	-	TOTAL
				and the second				I VINE	•		4	TUTAL
												an a
	1.1	2. C	a de la composición d									
÷ H				1.11								
ਤਾਰ	F 60	1760 77	76 74	- -								
<u>н</u>	5.74	1765.30	30.14	30.14	685+26		230.23	113.93	68.15	1 .	91.31	-39.93
ч O	5.70	1761 01	20.30	30.30	088.51		234.61	113.22	67.02		91.25	+41+31
	5.84	1756.63	35.00	35.00	691.11		238.99	112.45	65.87		91+13	-42.59
10	5.88	1752.27	35.00	35.43	694.05		243.37	111.62	64,70		90.96	-43.79
) H	5.93	1747.92	34 67	34 57	700 04		247.73	110.75	63.52		90.72	-44.89
50	5.98	1743.58	34.15	34.15	700.90		252.08	109.83	62.32		90.44	-45.91
+ Č	6 03	1739.26	37.75	37 73	703.73		250.42	108.88	61.12		90.10	-46.83
- 6	6 08	1734.96	33 31	33.73	700.05		260.74	107.89	59.91		89.72	-47.67
	6.12	1730.67	32.90	32.90	712 50		265.04	106.86	58.69		89.30	-48.43
5 Hh	6.17	1726.42	32.40	32.40	712.50		269.33	105.81	57.48		88.84	-49.10
O	6.22	1722.18	32.08	32.08	717 01		273,58	104.74	56.26		88.35	-49.70
י די ס	6.27	1717.98	31.67	31.67	720.53		292 02	103.04	55.05		87.82	-50.21
	6.32	1713.80	31.27	31.27	723 10	1. St. 1.	202.02	102.53	53.84		87.26	-50.66
55	6.36	1709.64	30.87	30.87	725.60		200.20	101+40	52.64		86.67	-51.04
้ดี	6.41	1705.52	30.47	30.47	728.05		270.30	100.27	51+44		86.06	•51.35
5	6.46	1701.43	30.07	30.07	730.44		208 57	97.12	50.20		85.43	-51.61
z P	6.51	1697.37	29.67	29.67	732.78		302 43	96 83	47.07		84.79	=51.80
† (D	6,56	1693.34	29.28	29.28	735.06		306 66	95.67	41.73		84.12	-51+95
0.0	6.60	1689.35	28,89	28,89	737.28		310.65	94.52	45.66		03.44	-52.04
n n	6,65	1685.22	28.42	28.42	739.54		314.78	93.71	44.60		82.40	-52-07
. O.	6.70	1681.11	27.95	27.95	741.74		318.89	92.95	43.57		82.11	-43.75
<u>,</u>	6,75	1677.01	27.49	27.49	743.90		322.99	92.23	42.57		81 82	-43 59
† G	6.80	1672.92	27.03	27.03	746.00		327.08	91.55	41.61		81.65	-41 04
), i l	6.85	1668.85	26.58	26.58	748.06		331.15	90.90	40.67		81.30	-41 37
	6.90	1664.79	26.12	26.12	750.07		335.21	90.29	39.75		81.06	-40 83
 H 	6,95	1660.75	25.68	25.68	752.04		339.25	89.71	38.87		80.85	-40-20
<u>حلني</u>	7.00	1656.71	25.23	25.23	753.96		343.29	89.16	38.01		80.65	=39.81
20	7.05	1652.68	24.79	24.79	755.84		347.32	88.64	37.17		80.47	-39.35
ົພິ	7.10	1648.66	24.36	24.36	757.68		351,34	88.14	36.36		80.29	-38.92
í R	7.15	1644.65	23.93	23.93	759.48		355,35	87.68	35.57	per distriction	80.14	+38.51
+ 00	7.20	1640.65	23.51	23.51	761.24		359.35	87.23	34.80		79.90	-38-13

REEFED INFLATION	
REEFING RATIO=	•191
REEFED PROJ. DIAM	•= 25.176 FT
CUTTER DELAY=	6.000 SEC
TIME OF DISREEF=	9.242 SEC

the Reefed G-11A Cargo Parachute rachute System (Continued)

$ \begin{array}{c} \text{(fT)} & \end{array}{(fT)} & \end{array}{($		TIME	ALTITUDE	SYSTEM	C.M. THAJ.	. C.M. POSITION			C.M. VELOCITY				
BEC OF OF OF OF OF A Y Z TOTAL X Y Z TOTAL FIG 133.10 22.14 72.57 133.10 22.44 72.57 133.30 77.57 133.30 77.57 133.30 77.57 133.30 77.57 133.30 77.57 133.30 77.57 153.57 </th <th></th> <th>15-01</th> <th>1571</th> <th>ANGLE</th> <th>ANGLE</th> <th></th> <th>(FT)</th> <th></th> <th></th> <th>(FT/S</th> <th>EC)</th> <th></th> <th>(FT/SEC/SEC)</th>		15-01	1571	ANGLE	ANGLE		(FT)			(FT/S	EC)		(FT/SEC/SEC)
FTIC 34 Sample Output State 1		(SEC)	((DEO)	(I)EOI	X	Ŷ	Z	TOTAL	X	Y	Z	TOTAL
FTG 34 76,70 366,60 77,70 366,60 77,70 16,70 16													
TG 34 Fig. 7 Fig. 7 <td< td=""><td>int i</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -</td><td></td><td></td><td></td></td<>	int i									1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			
$ \begin{array}{c} G & 34 \\ G & 34 \\ F^{25} \\ F^{2$	Ē												
9 10 22:46 72:56 10:42:46 22:46 74:40 36:40 85:46 33:38 97:10 -56:45 9 10:31:36 22:43 72:45 74:45	ନ	7 25	1637.04	23.14	23.14	762.79		362,96	86.74	34.08		79.76	-53.91
4 7.32 (31).36 22.63 765.19 366.44 84.47 36.09 (7.47) 36.32 77.15 555.07 7.35 (625.77) 22.17 766.10 376.97 82.26 30.66 76.33 555.07 7.35 (625.77) 22.17 766.40 377.97 82.26 30.64 76.33 555.07 7.35 (617.61) 21.42 21.42 766.40 377.97 82.26 30.64 77.35 565.55 7.55 (617.61) 21.42 77.57 382.43 77.40 77.45 <td>ί U</td> <td>7.29</td> <td>1634.19</td> <td>22.98</td> <td>22.88</td> <td>764.00</td> <td></td> <td>365.81</td> <td>85.86</td> <td>33.38</td> <td></td> <td>79.10</td> <td>-54.24</td>	ί U	7.29	1634.19	22.98	22.88	764.00		365.81	85.86	33.38		79.10	-54.24
7.38 128.156 22.37 22.37 766.35 371.457 85.057 371.92 771.16 -55.26 7.46 1625.137 22.157 766.455 377.65 81.35 29.08 75.63 -55.25 7.46 1625.137 21.12 21.13 771.66 385.07 76.53 28.07 76.13 25.135 7.46 1617.61 21.13 21.13 771.46 386.07 76.13 26.17 77.16 -55.35 7.55 1617.62 20.64 20.64 20.64 20.64 20.65 75.02 25.57 70.53 -55.28 7.75 1607.62 20.64 20.64 20.64 20.64 20.64 20.65 75.02 25.57 70.53 -55.28 7.76 1607.62 20.64 20.64 20.65 77.14 24.40 60.66 -55.62 7.76 1607.62 20.64 20.65 77.65 25.57 70.53 -55.22 7.76 1607.65 20.64 20.55 77.142 23.57 70.53 -55.22	4	7.32	1631.36	22.63	22.63	765.19	an the second	368.64	84,97	32.69		78.43	-54.55
7.36 17.36		7.36	1628.56	22.37	22.37	766.35		371.44	84.08	32.00		77.05	-55.07
7.43 1223.03 21.02 160.00 170.60 121.00 175.63 125.02 75.63 125.02 7.60 101.00 21.13 21.13 771.60 386.07 79.53 28.67 74.18 55.62 7.60 101.00 20.145 20.64 20.64 20.64 77.71 21.70 77.72.82 387.77 76.62 28.03 77.71 77.71 21.70 77.71.95 455.64 7.64 101.00 20.64 20.64 77.61 390.35 77.71 21.70 77.19 455.62 7.65 100.00 20.46 20.64 77.65 390.55 77.51 22.75 70.53 -55.62 7.76 1596.95 19.65 77.66 3998.75 77.68 22.75 66.94 -55.62 7.767 1596.95 19.45 19.45 77.66 3998.75 77.68 22.75 66.94 -53.62 -54.65 7.767 1596.95 19.45 19.45 77.46 66.53 21.13 66.54 -53.65 7.768 1	ST IN	7.39	1625.78	22.12	22.12	767.49		374 62	82 26	30 64		76.34	+55.24
1.30 1.6377.51 21.35 27.45 362.35 66.44 29.32 7.4.91 -55.42 1.7.57 1.612.24 20.49 77.282 387.72 76.62 28.67 77.14 -55.42 1.7.57 1.612.24 20.49 77.282 387.72 76.62 28.03 77.45 -55.42 1.7.57 1.612.24 20.49 77.47 24.40 20.44 77.71 27.90 77.72 -55.57 1.617.37 20.40 27.77.57 396.55 75.12 25.57 76.51.23 -55.62 1.7.76 1.90.45 1.9.45	10.1	7.43	1623.03	21.67	21.62	760.60		379.69	81.35	29.98		75.63	-55.35
T. 40 1014.93 21.13 21.13 71.10 365.97 79.53 28.67 74.16 -55.42 T. 41 1019.96 20.48 20.48 20.48 77.62 390.34 77.71 27.40 77.27 78.52 -55.42 T. 41 1019.96 20.48 20.48 77.71 390.34 77.71 27.40 77.272 -65.37 T. 41 1019.96 20.46 20.46 77.73 390.35 75.91 25.37 71.653 -55.42 T. 60 1019.75 10.90 10.90 10.90 77.72 10.15 10.90 -55.42 T. 77 101.95 10.90 10.90 10.90 77.60 25.97 70.53 -55.42 T. 760 1306.95 17.50 17.95 70.53 -55.42 27.40 23.83 60.96 -56.43 T. 760 1306.95 17.57 78.40 410.37 70.69 22.73 66.94 -53.45 T. 60 1557.23 17.55 17.55 77.54 407.74 65.32 21.13	n B	7 60	1620.31	21.38	21.38	770.76		382.39	80.44	29.32		74.91	-55.42
Trist 11222 20.650 20.650 77.2 78.622 28.03 77.45 -55.42 E Trist 1607.07 20.40 20.40 77.47 390.35 77.61 26.77 77.22 -55.37 E Trist 20.40 20.40 20.40 77.47 390.35 75.02 25.77 77.53 -55.27 E Trist 20.40 20.40 77.47 390.35 77.41 25.97 77.53 -55.27 77.53 -55.27 77.53 -55.27 77.53 -55.27 77.53 -55.27 77.65 -55.27 77.65 -55.27 77.65 -55.27 77.65 -55.27 77.65 -55.27 77.65 -55.27 77.65 -55.27 66.38 -55.42 66.38 -55.42 66.38 -55.42 66.38 -55.42 66.38 -55.42 66.38 -55.42 66.38 -55.42 66.38 -55.42 66.38 -55.42 66.38 -55.42 66.38 -55.42 66.38 -55.42 66.38 -55.42 66.38 -55.42 66.38 -5	סים	7 54	1614.93	21.13	21.13	771.80		385,07	79.53	28,67		74,18	-55.44
Xr 7,1 1000,06 22.64 20.64 773.61 390,33 77.71 27.60 72.62 -25.27 Y 0.76 1067.72 20.16 27.57 395.56 75.91 26.17 77.62 -55.16 Y 1061.95 19.92 19.62 175.65 395.56 73.63 26.17 77.63 -55.16 Y 1061.95 19.92 19.65 777.65 305.55 73.63 24.10 67.83 67.83 -55.16 Y 1000.46 19.92 19.22 779.22 405.52 73.64 24.40 66.36 -55.43 Y 1000.53 11.75 781.10 407.96 71.64 23.27 67.65 -55.43 Y 100.57 781.40 412.76 67.66 22.20 66.24 -51.43 Y 101.577.53 17.55 781.40 412.76 67.65 23.27 67.65 -47.47 74.26 43.60 422.73 66.24 -43.40 44.40 44.40 44.40 44.40 44.74 44.76 44.7	- E	7.57	1612.28	20.89	20.89	772.82		387.72	78.62	28.03		73.45	+55,42
TOP 7.4.64 1677.07 20.4.00 20.4.00 774.7.6 392.93 76.81 26.1.6 71.77 20.5.17 77.6.57 TAPT 7.7.72 1601.95 19.92 19.92 776.66 396.65 73.20 25.377 77.6.33 -55.62 TAPT 7.7.75 1990.45 19.42 19.42 19.42 776.56 403.05 73.20 25.46 60.88 -55.42 TAPT 7.7.75 1990.45 19.42 19.42 776.56 403.05 73.20 25.46 60.98 -55.42 TAPT 7.7.75 1990.45 19.45 19.42 17.98 76.55 72.40 23.83 68.36 -55.42 TAPT 7.7.85 1980.63 18.75 18.75 761.00 410.37 70.66 22.7.3 66.94 -53.95 Par 8.01 1.582.13 18.52 761.80 422.14 67.23 10.81 64.24 -42.4 42.4 42.7 46.55 21.3 65.42 -53.98 65.42 -53.98 65.42 15.55 765.63	X	7.61	1609.65	20.64	20.64	773.81		390.34	77.71	27.40		12.12	= 55, 37
THE 7.68 1644.50 20.16	n O	7.64	1607.07	20.40	20.40	774.78 <	24	392,93	76.81	20.18		71 26	-55.16
prpu 7,72 1001.95 14.92 1/7.057 200.02 71.02 51.02	μ <u>Ξ</u>	7.68	1604.50	20.16	20.16	175.13		395.50	75 03	20.17		70.53	-55.02
7:75 1900:43 10:05 17:01 405:05 73:26 24:40 69:08 -66:05 7:76 1902:45 10:22 17:03:22 405:05 73:26 24:40 69:08 -56:43 7:76 1902:46 10:25 16:99 16:99 16:99 70:011 407:96 71:54 23:27 67:65 -56:42 1:00 10:75 78:10 407:96 71:54 23:27 66:94 -53:49 1:01 157:23 17:96 17:85 78:42 417:67 69:86 22:20 66:24 -53:49 1:1 157:56 17:14 17:17:16 78:44 420:91 67:86 20:46 64:70 -43:75 1:1 157:56 16:74 16:74 78:64 421:9 63:65 18:60 63:42 -42:19 1:1 157:57 15:95 15:97 78:64 42:19 43:66 65:57 18:60 63:42 -41:56 1:1 157:56 15:19 15:19 77:61:41 77:61:41 43:61 65:57 18:60	ын Б.Н	7.72	1601.95	19,92	19.92	777 57		400 56	74.14	24.98		69.80	-54.84
1.12 1.22	μĞ	7.15	1577.44	19.09	19.09	778.46		403.05	73.26	24.40		69.08	-54.65
7:86 1:92:06 18:95 780,17 407,96 71.54 23.27 67.65 -54.20 7:80 1587.24 18.75 781.90 410.37 70.69 22.73 66.24 -53.68 0 7.93 1587.24 18.52 781.80 412.76 69.653 21.13 65.22 -44.62 0 1575.10 17.45 783.42 417.67 68.53 21.13 65.22 -44.62 0 1575.66 17.14 17.14 785.47 420.91 67.66 20.46 64.70 -43.75 0 1575.66 16.74 16.74 786.44 427.34 66.64 19.19 63.61 -422.94 0 6.16 1572.66 16.74 16.77.39 430.68 65.57 18.60 63.62 -44.62 0 8.26 156.53 15.37 786.31 433.68 65.09 17.47 62.71 -40.27 0 8.26 156.56 15.77 10.62 63.63 21.50 63.65 21.60 63.65 23.99 71.47	He H	7 83	1594 48	19.22	19.22	779.32		405 52	72.40	23.83		68,36	-54,43
D 7, 260 1585, 23 10, 75 18, 75 781, 00 410, 37 70, 69 22, 73 66, 94 -53, 68 D T 7, 93 1587, 24 18, 52 781, 80 412, 76 59, 66 22, 20 65, 24 -53, 68 D T T 8, 61 1579, 99 17, 755 783, 42 417, 67 68, 53 21, 13 65, 20 -44, 62 D T T, 755 786, 44 420, 91 67, 66 20, 46 64, 70 -43, 75 D T, 755 T, 755 786, 44 427, 34 66, 66 19, 81 63, 82 -41, 50 D T, 755 T, 755 786, 14 427, 34 66, 66 19, 10 63, 82 -41, 50 D B 15, 57 15, 57 15, 57 789, 19 436, 83 65, 69 18, 60 63, 82 -41, 50 D B B 15, 59 14, 10 790, 65 430, 65 65, 69 17, 47 62, 37 39, 72 D B B 15, 50, 12 15, 19<	<u>Q</u>	7 86	1592.04	18.99	18.99	780.17		407.96	71.54	23,27		67,65	-54,20
P 7,93 1867,24 18,52 781,80 412,76 69,86 222.20 00.24 -03.05 P 6,01 1582,33 17.95 17.95 783.42 417.67 68.53 21.13 65.20 -44.62 AL TH 8,06 1575.40 17.55 784.46 420.91 67.86 20.46 64.70 -43.75 AL TH 8,11 1575.66 16.74 16.74 785.47 424.14 67.23 19.81 64.22 422.94 CD 8,16 1575.66 16.74 16.34 77.793 430.52 66.09 18.60 63.42 -42.19 CD 8,16 1575 15.97 786.31 433.68 65.07 17.47 62.41 66.02 63.42 -42.19 63.05 60.80 62.29 63.05 -40.80 62.71 40.27 62.61 64.65 16.94 62.29 63.15 67.18 62.49 -39.72 67.23 64.65 16.94 62.39 -39.72 67.23 64.65 16.94 62.61 64.64		7.89	1589.63	18.75	18,75	781.00	· · ·	410.37	70.69	22.73		66.94	-53,95
bit 0.01 1582.33 17.96 17.96 783.42 417.67 68-33 21.13 05.00 -43.75 bit 75.55 17.55 784.46 420.91 67.86 20.46 64.70 -43.75 bit 1575.66 17.14 17.15 17.55 784.46 427.34 66.64 19.19 63.81 -43.75 bit 1575.66 16.74 16.74 786.47 424.14 67.23 19.81 64.24 -42.95 bit 1575.66 16.74 16.74 786.31 430.52 66.09 18.60 63.42 -41.50 bit 15.95 15.95 788.31 433.68 65.07 18.00 63.42 -41.50 bit 16.317 15.57 789.19 436.83 65.07 18.00 62.39 -39.72 bit 0.08 8.41 155.97 789.10 446.16 63.83 15.94 61.81 -33.97 62.39 -39.72 bit 0.05 15.19 15.19 790.69 443.07 64.62	HH	7,93	1587.24	18,52	18,52	781.80		412.76	69,86	22.20		60,24	
$ \begin{array}{c} \mathbf{H} \ \mathbf$	80	8.01	1582.33	17.96	17.96	783+42		417,67	68.53	21.13		63.20	-44.02
$ \begin{array}{c} B & B & 11 & 1575, 46 & 17, 14 & 17, 15 & 15, 15 & 15, 15 & 15, 15 & 17, 15, 15 & 15, 15 & 17, 15, 15 & 17, 15, 15 & 15, 15 & 17, 15, 15 & 17, 15, 15 & 15, 15 & 17, 15, 17 & 18, 17 & 19, 19 & 1436, 18 & 655, 15 & 16, 14 & 662, 19 & -336, 71 & 16, 14 & 16 & 17, 15 & 16, 16 & 13, 16 & 13 & 16, 14 & 16 & 14 & 16 & 16 & 13 & 13 & 17 & 17 & 16 & 16 & 13, 16 & 14 & 16 & 16 & 13 & 13 & 17 & 17 & 15 & 15 & 15 & 13, 15 & 17 & 17 & 15 & 15 & 13, 15 & 17 & 19 & 12 & 14 & 15 & 15 & 13, 17 & 19 & 13, 17 & 19 & 19 & 14 & 460, 128 & 14, 16 & 14, 16 & 17 & 129, 14 & 460 & 16 & 13 & 237, 16 & 16 & 14 & 16 & 16 & 13 & 237, 16 & 16 & 16 & 15 & 13 & 13, 75 & 13, 17 & 17 & 13, 17 & 17 & 13, 17 & 17 & 13, 17 & 17 & 13, 17 & 17 & 13, 17 & 17 & 13, 17 & 17 & 13, 17$	江日	8.06	1579.09	17.55	17.55	784.46		420,91	67.00	20.40		64.24	-42.94
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	a b	8,11	1575.86	17.14	17,14	782.47		427 34	66.64	19,19		63.81	-42+19
$ \begin{bmatrix} H \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	5	8,16	15/2.00	10.74	10.74	707.30		430.52	66+09	18.60		63.42	-41.50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	β β	8.21	1007.40	15.95	15.95	788.31		433.68	65.57	18.02		63.05	-40.86
D 0. 0. 36 1500.05 15.19 10.01 10.19 10.19 10.01 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.1	tt 0	8 21	1563.17	15.57	15.57	789.19		436.83	65.09	17.47		62.71	-40-27
$ \begin{array}{c} y_{0} \ p \\ b_{+1} \ 1556.53 \ 14.62 \ 14.62 \ 790.69 \ 443.07 \ 64.23 \ 16.43 \ 62.09 \ -39.24 \ 61.81 \ -38.74 \ 61.81 \ -38.74 \ 61.81 \ -38.74 \ 62.63 \ 1553.84 \ 14.46 \ 14.46 \ 791.70 \ 446.16 \ 63.63 \ 15.94 \ 61.55 \ -38.37 \ 15.46 \ 61.55 \ -38.47 \ 15.45 \ 61.55 \ -38.47 \ 15.45 \ 61.55 \ -38.47 \ 15.45 \ 61.55 \ -38.47 \ 15.45 \ 61.55 \ -38.47 \ 15.55 \ 61.57 \ -38.47 \ 15.45 \ 61.55 \ -38.47 \ 15.55 \ 61.57 \ -38.47 \ 15.55 \ 60.57 \ -36.47 \ 15.55 \ 60.57 \ -36.47 \ 15.55 \ 60.57 \ -36.47 \ 15.55 \ 60.57 \ -36.52 \ 61.11 \ 15.55 \ 50.45 \ 15.45 \ 15.45 \ 11.47 \ 11.47 \ 11.47 \ 11.47 \ 11.47 \ 11.47 \ 11.47 \ 11.45 \ 11.4$	0 0	8.36	1560.05	15.19	15.19	790.05		439.95	64.65	16.94		62.39	-39.72
C B: 46 1553,84 14.46 14.46 791.70 446.16 63.83 15.94 01.61 230.4 C B: 51 1550.75 14.10 14.10 792.48 449.25 63.12 15.00 61.32 -37.89 D B: 61 1544.62 13.41 793.98 452.32 63.12 15.00 61.32 -37.89 D B: 66 1541.57 13.07 13.07 794.70 456.43 62.50 14.14 60.88 -37.15 D B: 66 1541.57 13.07 13.07 794.70 456.43 62.50 14.14 60.88 -37.15 D B: 66 1541.57 13.07 13.07 794.70 461.47 62.22 13.72 60.69 60.34 -36.61 D B: 75 155.50 12.42 12.42 796.07 464.50 61.91 13.32 60.018 -35.71 C C B: 801 1526.46 11.49 1977.37 470.553 61.41 13.32 60.31 60.34 -36.23 <tr< td=""><td>ທີ່</td><td>8.41</td><td>1556.93</td><td>14.82</td><td>14.82</td><td>790 . 89</td><td></td><td>443.07</td><td>64.23</td><td>16.43</td><td></td><td>62.09</td><td>•39•21 -28.74</td></tr<>	ທີ່	8.41	1556.93	14.82	14.82	790 . 89		443.07	64.23	16.43		62.09	•39•21 -28.74
$ \begin{array}{c} \alpha & \theta.51 & 1550.75 & 14.10 & 14.10 & 792.48 & 449.25 & 03.47 & 15.40 & 01.13 & 737.89 \\ \hline m & 1 & 0.56 & 1547.68 & 13.75 & 173.75 & 793.24 & 452.32 & 63.12 & 15.00 & 61.32 & -37.89 \\ \hline m & 1 & 0.61 & 1544.62 & 13.41 & 13.41 & 793.98 & 455.38 & 62.60 & 14.56 & 61.09 & -37.15 \\ \hline m & 1 & 0.66 & 1541.57 & 13.07 & 194.70 & 458.43 & 62.50 & 14.14 & 60.68 & -37.15 \\ \hline m & 1 & 1530.53 & 12.74 & 12.74 & 795.40 & 461.47 & 62.22 & 13.72 & 60.69 & -36.82 \\ \hline m & 1 & 1530.58 & 12.42 & 12.42 & 796.07 & 464.50 & 61.96 & 13.22 & 60.51 & -36.51 \\ \hline m & 1 & 1532.48 & 12.10 & 12.10 & 796.73 & 467.52 & 61.71 & 12.94 & 60.34 & -36.23 \\ \hline m & 0 & 0.886 & 1529.47 & 11.79 & 11.79 & 797.37 & 470.53 & 61.48 & 12.56 & 60.18 & -35.71 \\ \hline m & 0 & 0.886 & 1523.46 & 11.49 & 11.49 & 797.99 & 473.54 & 61.27 & 12.20 & 60.18 & -35.71 \\ \hline m & 0 & 9.01 & 1520.47 & 10.90 & 10.90 & 799.17 & 479.53 & 60.67 & 11.51 & 59.90 & -35.48 \\ \hline m & 0 & 9.01 & 1520.47 & 10.90 & 10.90 & 799.17 & 479.53 & 60.67 & 11.51 & 59.78 & -35.26 \\ \hline m & 0 & 9.01 & 1520.47 & 10.90 & 10.90 & 799.17 & 479.53 & 60.67 & 11.51 & 59.78 & -35.26 \\ \hline m & 0 & 9.01 & 1520.47 & 10.90 & 10.90 & 799.17 & 479.53 & 60.67 & 11.51 & 59.78 & -35.26 \\ \hline m & 0 & 9.01 & 1520.47 & 10.90 & 10.90 & 799.17 & 479.53 & 60.67 & 11.51 & 59.78 & -35.26 \\ \hline m & 0 & 9.01 & 1520.47 & 10.90 & 10.90 & 799.17 & 479.53 & 60.67 & 11.51 & 59.78 & -35.26 \\ \hline m & 0 & 9.01 & 1520.47 & 10.90 & 10.90 & 799.57 & 485.49 & 60.53 & 10.67 & 59.55 & -34.87 \\ \hline m & 0 & 9.16 & 1511.53 & 10.07 & 10.07 & 800.83 & 486.47 & 60.37 & 10.56 & 59.44 & -34.69 \\ \hline m & 0 & 0.21 & 1508.56 & 9.81 & 9.81 & 801.35 & 491.44 & 60.23 & 10.26 & 59.35 & -34.53 \\ \hline m & 0 & 9.21 & 1508.56 & 9.81 & 9.81 & 801.35 & 491.44 & 60.23 & 10.26 & 59.35 & -34.53 \\ \hline m & 0 & 9.21 & 1508.56 & 9.81 & 9.81 & 801.35 & 491.44 & 60.23 & 10.26 & 59.35 & -34.53 \\ \hline m & 0 & 0.21 & 0.044.88 & -637 \\ \hline m & 0 & 0.21 & 0.044.88 & -637 \\ \hline m & 0 & 0.21 & 0.044.88 & -637 \\ \hline m & 0 & 0.21 & 0.044.88 & -637 \\ \hline m & 0.21 & 0.044.88 & -637 \\ \hline m & 0.21 & 0.044.88 & -$	A V	8.46	1553.84	14.46	14+46	791.70		446.16	63.83	15.94		61.65	-38.30
Tr G1 8,56 1544,68 13,45 13,45 13,45 13,41 14,41 45,45 62,50 14,41 60,88 -37,15 64,62 13,42 66,51 -36,61 13,42 60,51 -36,51 -36,23 60,51 -36,23 60,51 -36,423 60,34 -36,23 60,64 -35,71 14,89 14,49	0	8.51	1550.75	14.10	14.10	792.48		447.25	63 12	15.00		61.32	-37.89
B - 8.66 1541.57 13.07 13.07 794.70 458.43 62.50 14.14 60.88 -37.15 A 6.76 1535.50 12.42 12.74 795.40 461.47 62.22 13.72 60.69 -36.82 A 6.76 1535.50 12.42 12.42 796.73 467.52 61.71 12.94 60.34 -36.23 CO B.81 1532.48 12.10 12.10 797.37 470.53 61.48 12.56 60.34 -35.96 CO B.86 1529.47 11.79 11.79 797.37 470.53 61.48 12.56 60.04 -35.71 DH H 8.91 1526.46 11.49 11.49 797.99 473.54 61.27 12.20 60.04 -35.71 DH 9.06 1517.49 10.62 10.62 799.74 470.53 61.48 11.851 59.78 -35.26 DH 9.06 1517.49 10.62 10.62 799.74 482.51 60.70 11.18 59.66 -35.66	က္ရွာလူ	8,56	1547.68	13./5	13.75	703 98		452,32	62.80	14.56		61.09	-37,51
μ 5.800 13.01 12.74 12.74 195.40 461.47 62.22 13.72 60.69 -36.82 A 8.76 1535.50 12.42 12.42 796.07 464.50 61.47 61.32 60.51 -36.51 C 8.871 1532.48 12.10 12.10 796.73 467.52 61.71 12.94 60.34 -36.23 C 8.861 1522.47 11.79 11.79 797.37 470.53 61.48 12.56 60.18 -35.96 C A 8.91 1526.46 11.49 11.49 797.99 473.54 61.27 12.20 60.04 -35.71 C B 96 1523.46 11.19 11.97 797.99 473.54 61.27 12.20 60.04 -35.71 C B 96 1523.46 11.19 11.97 799.74 479.53 60.87 11.51 59.78 -35.26 D P 9.16 1517.49 10.62 10.62 799.74 482.51 60.70 11.18 59.66	ä -	8,01	1544.02	13.41	13.71	704 70		458.43	62.50	14.14		60.88	-37,15
B. 76 1535,50 12,42 12,42 796,07 464,50 61,96 13,32 60,51 -36,51 C.O. 8.81 1532,58 12,10 12,10 796,73 467,52 61,71 12,94 60,34 -36,23 O.D. 8.86 1529,47 11,79 11,79 797,37 470,53 61,48 12,20 60,04 -35,71 D.D. 8.96 1523,46 11,49 19,79,99 473,54 61,27 12,20 60,04 -35,71 D.H. 8.96 1523,46 11,19 11,19 798,59 476,54 61,06 11,85 59,90 -35,48 FLOQ 9.01 1520,47 10,90 10,90 799,17 479,53 60.87 11,51 59,76 -35,26 D.P. 9.06 1517,49 10,62 10,62 799,74 482,51 60,70 11,18 59,66 -35,06 D.P. 9.11 1514,51 10,34 600,29 485,49 60,53 10,87 59,55 -34,87 D.D. 9.81 9,81	البين البر	8 71	1534.53	12.74	12.74	795.40		461.47	62.22	13.72		60,69	-36,82
C C 8.81 1532.48 12.10 12.10 796.73 467.52 61.71 12.94 60.34 -35.23 C D D 8.86 1529.47 11.79 11.79 797.37 470.53 61.48 12.20 60.34 -35.96 D D B 8.91 1526.46 11.49 11.49 797.99 473.54 61.27 12.20 60.04 -35.71 D H 8.91 1525.46 11.19 11.19 798.59 476.54 61.06 11.85 59.90 -35.48 F O 9.01 1520.47 10.90 10.90 799.17 479.53 60.87 11.51 59.78 -35.26 D 9.06 1517.49 10.62 799.74 485.49 60.53 10.87 59.55 -34.87 D P 9.16 1511.53 10.07 10.07 800.83 488.47 60.37 10.56 59.35 -34.69 D P 9.21 1508.56 9.81 9.81 801.35 491.44 60.23 10.26 59.35 -34.53 O D P 9.21 1508.56 9.81 9.81 801.35	A	8 76	1535.50	12.42	12.42	796.07	addaeg of the fight	464,50	61.96	13,32		60,51	-36,51
C3 B 86 1529.47 11.79 11.79 11.79 797.37 470.53 61.48 12.85 60.04 -35.70 D H 8.91 1526.46 11.49 11.49 797.99 473.54 61.27 12.20 60.04 -35.71 D H 8.91 1526.46 11.49 11.49 797.99 473.54 61.27 12.20 60.04 -35.71 D H 8.96 1523.46 11.19 11.19 798.59 476.54 61.06 11.85 59.90 -35.48 TOQ 9.01 1520.47 10.90 10.90 799.17 479.53 60.87 11.51 59.78 -35.26 P 9.06 1517.49 10.62 10.62 799.74 482.51 60.70 11.18 59.55 53.46 C H 9.11 1514.51 10.34 10.34 800.83 488.47 60.37 10.55 59.44 -34.69 D H 9.21 1508.56 9.81 9.81 801.35 491.44 60.23 10.26 59.35 -34.53 D H	22	8.81	1532.48	12.10	12.10	796.73		467.52	61.71	12.94		60,34	-36.23
D R 8.91 1526.46 11.49 11.49 797.99 473.54 61.27 12.20 50.07 25.14 TCQ 8.96 1523.46 11.19 11.19 798.59 476.54 61.06 11.85 59.90 -35.48 PO 9.01 1520.47 10.90 10.90 799.17 479.53 60.67 11.51 59.78 -35.26 PO 9.06 1517.49 10.62 10.62 799.74 482.51 60.70 11.18 59.66 -35.06 D 9.06 1517.49 10.62 10.62 799.74 482.51 60.70 11.18 59.55 -34.887 D 9.11 1514.51 10.34 10.34 800.29 485.49 60.53 10.87 59.55 -34.887 D P.16 1511.53 10.07 10.07 800.83 488.47 60.37 10.56 59.35 -34.53 D P.21 1508.56 9.81 9.135 491.44 60.23 10.26 59.35 -34.53 D <td< td=""><td></td><td>8 86</td><td>1529.47</td><td>11.79</td><td>11.79</td><td>797.37</td><td></td><td>470.53</td><td>61.48</td><td>12,56</td><td></td><td>60 0A</td><td>-35.71</td></td<>		8 86	1529.47	11.79	11.79	797.37		470.53	61.48	12,56		60 0A	-35.71
TOO 8.96 1523.46 11.19 11.19 748.59 470.54 51.00 11.51 59.78 -35.26 FO 9.01 1520.47 10.90 10.90 799.17 479.53 60.67 11.51 59.78 -35.26 P 9.06 1517.49 10.62 799.74 482.51 60.70 11.18 59.66 -35.06 P 9.11 1514.51 10.34 10.34 800.29 485.49 60.53 10.87 59.55 -34.87 D P 16 1511.53 10.07 10.07 800.83 488.47 60.37 10.56 59.44 -34.69 D P 21 1508.56 9.81 9.81 801.35 491.44 60.23 10.26 59.35 -34.53 D REEFED INFLATION -637 -63.661 FT -0 SEC 50.661 FT 50.661 FT	H H	8,91	1526,46	11,49	11.49	797.99		473,54	01.21	16,60		59 90	-35.48
P: O 9.01 1520.47 10.90 10.90 199.17 479.53 600.70 11.18 59.66 -35.06 D: 9.06 1517.49 10.62 10.62 799.74 482.51 60.70 11.18 59.66 -35.06 D: 9.11 1514.51 10.34 10.34 800.29 485.49 60.53 10.87 59.55 -34.87 D: D: 9.16 1511.53 10.07 10.07 800.83 488.47 60.37 10.56 59.44 -34.69 D: H: 9.21 1508.56 9.81 9.81 801.35 491.44 60.23 10.26 59.35 -34.53 D: D: D: REEFED INFLATION .637 .6376 .6376 .63.661 FT .6376 .63.661 FT .63.661 FT <td>11 00</td> <td>8,96</td> <td>1523.46</td> <td>11.19</td> <td>11.19</td> <td>798.59</td> <td></td> <td>470,54</td> <td>60.87</td> <td>11.51</td> <td></td> <td>59.78</td> <td>-35.26</td>	11 00	8,96	1523.46	11.19	11.19	798.59		470,54	60.87	11.51		59.78	-35.26
D 9,06 1517.49 10.52 10.52 10.52 10.51 59.55 =34.87 D P 9,11 1514.51 10.34 800.29 485.49 60.53 10.87 59.55 =34.87 D P 9,16 1511.53 10.07 10.07 800.83 486.47 60.37 10.56 59.44 =34.69 D P 9.21 1508.56 9.81 9.81 801.35 491.44 60.23 10.26 59.35 =34.53 D P 21 1508.56 9.81 9.81 801.35 491.44 60.23 10.26 59.35 =34.53 D REEFED INFLATION 637 63.661 FT 63.661 FT 63.661 FT 63.661 FT CUTTER DELAY= =0 SEC	50	9.01	1520.47	10.90	10.90	709.74		477,53	60.70	11.18		59.66	-35.06
D D 11 1314.51 10.07 800.83 488.47 60.37 10.56 59.44 -34.69 D D 9.16 1511.53 10.07 800.83 488.47 60.37 10.56 59.44 -34.69 D D 9.21 1508.56 9.81 9.01.35 491.44 60.23 10.26 59.35 -34.53 D P E INFLATION 637 63.661 FT FT CUTTER DELAY= -0 SEC	2	9,05	1517.47	10.34	10.34	800.29		485.49	60.53	10.87		59.55	-34,87
A 10 1000,56 9,81 901,35 491,44 60.23 10.26 59,35 -34,53 A 9,21 1508,56 9,81 901,35 491,44 60.23 10.26 59,35 -34,53 A F <	6 6	9 16	1511.53	10.07	10.07	800.83		488.47	60.37	10.56		59.44	-34.69
D D C C C REEFED INFLATION REEFED RATIO= .637 REEFED PROJ. DIAM.= .637 CUTTER DELAY= -0 SEC	D H	9.21	1508.56	9.81	9.81	801.35		491.44	60.23	10.26		59,35	-34,53
T T T T T T T T T T T T T T		•			• • •								
LL CT D REEFED INFLATION REEFING RATIO REEFED PROJ. DIAM	<u>p</u>												
D REEFED INFLATION REEFING RATIO: .637 REEFED PROJ. DIAM.: 63.661 FT CUTTER DELAY: -0 SEC	Б С												
REEFED PROJ. DIAM.# 63.661 FT CUTTER DELAY# +0 SEC	D		RE	EFED INFL	ATIUN ATIO-	637							
CUTTER DELAY= -0 SEC				REFEED	PROJ. DIAM. =:	63.661	FT						
				CUTTER	DELAY=	-0 SEC							

	TIME	ALTITUDE	SYSTEM	C.M. TRAJ.		C.M.	POSITION			C • M •	VELOCITY		
	(SEC)	(FT)	(DEG)	(DEG)			(FT)		TOTAL	(F	T/SEC)	_	(FT/SEC/SEC)
			e ser e g				n in the second s	4	IDIAL	·. × ·	na l	4	TOTAL
12													
IG													
ິພ	9.28	1503.99	9.46	9.46	802.13			496 01	60.25	0 74			F-7 F7
4	9.48	1492.61	8.72	8.72	803.96			507.39	55.02	8.34	an the solution	54.39	=03.01 =52:41
	9.68	1482.02	8.03	8.03	805.54			517,98	51+09	7.14		50.59	-50.76
2 0	9,88	1472.16	7.38	7.38	806.88		•	527.84	47.53	6.10		47.14	-48.87
F• 2	10.08	1402.9/	6.16	6.76	808.03			537.03	44.37	5.23		44.06	-46.98
	10.48	1446.28	5.66	5.66	809.86			545.64	41.57	4.48	-	41.33	=45.22
ູບີບ ມີ	10.69	1438.65	5.16	5.16	810.59			561.35	36.96	3.32		36.81	=43.04
0 H	10.89	<u>1</u> 431.43	4.70	4.70	811.22			568.57	35.06	2.87		34.94	=41.05
X	11.09	1424.56	4.28	4.28	811.77			575.44	33.39	2.49		33.30	-40.02
H C	11.29	1418.01	3.89	3.89	812.24			581.99	31.91	2.16		31.84	=39.13
a Fi	11.69	1411-14	3.20	3.20	812.05			588.26	30.59	1.88		30.54	-38.38
0.0	11.89	1399.91	2.91	2.91	813.32			600.09	28.36	1.44		29.37	-37.73
	12.09	1394.31	2.64	2.64	813.59			605.69	27.41	1.26		27.38	=36.70
0	12.29	1388.89	2.39	2.39	813.83			611.11	26.55	1.11		26.53	-36.29
p m	12.49	1383.64	2.17	2.17	814.04			616.36	25.76	.97		25.74	-35.93
L 0	12.09	13/8.54	1.96	1.96	814-23			621.46	25.04	.86		25.03	+35.62
<u></u>	13.09	1368.75	1.61	1.61	814.54			631 25	24.38	• 16		24.37	=35.35
H H								031.53	23.11	•07		23.10	-35•11
0 0							21 - C C C C C C C C					n an	
5		F .11	-	D. THELATRON			TIME (SE	C) ANGLE (D	EG) X(FT)	Z(FT)	V(FT/SEC)	FMAX (LB)	TF (SEC)
L B		FUL	L OR REEPE	U INFLATION			5.64	37.18	681.95	225.84	114.59	3062.	1.68
CT O							7.96	18.34	782.44	414.66	59.3C	500/.	• 70
E Th							13.25	1.49	814.64	635.04	23.32	5828.	4.01
0 0													
X D										$(a_{ij}) \to (a_{ij})$			
ц Ц С										a) 51		a da anti-	
					이 승규는 것이.								
₽	NOTE-	- POSITIONS,V	ELOCITIES.	ACCELERATION	S, TRAJ. A	NGLES	S REFER TO	LOAD. PREV	VIOUS RESUL	TS ARE FOR	MASS CENTE	R	
2													
ភ័ក៍		lan Association										and the second	
P0 11													
F.O	IIME	ALITIOUE	ANGLE	LUAD TRAJ,		LOAD	POSITION			LOAD	ELOCITY		LOAD
Бъ	(SEC)	(FT)	(DEG)	(DEG)			1871			107	(650)		ACCELERATION
ΩΩ			(DEC)		X		Y	1	TOTAL	X	SEC/	7	TOTA
C H													I U I AL
0													
ੁੱਧ													
e	13.47	1282.06	1.03	+5.67	816.17			717.94	23.72	-2.34	i Na - A	23.60	1.04
	14.01	1269.11	-,18	-5.72	814.86			730.89	24.04	-2.40		23.92	.49
	14.78	1250.66	-1.88	-3.85	813.25			749.34	24.08	-1.62		24.02	-1.61
	16 32	1213.75	-4.28	+1D 5.71	012.00		n tari	167.79	24.00	•06		24.00	-2.62
	16.83	1201.43	-4.56	9.79	815-19			798.67	24.45	€ •40 ▲ 16		24.10	3.30
									67070	4014		67+IV	3.443

FIG 34 Sample Output for the Reefed G-11A with Extraction Parachute System 58.81 59.32 59.84 60.86 61.88 62.40 63.93 64.96 63.93 64.96 65.47 65.98 66.49 67.00 68.30 Cargo Parachute (Concluded)

1	VERTICAL/MIN VERTICAL/MIN	TIME IMUM 13 IMUM 19	(SEC) ALTITUDE(F .88 1272.17 .39 1139.43	T) X(FT) 815•17 836•00	Z (FT) 727.83 860.57	V (FT/SEC) 24.00 26.49	VX(FT/SEC) -2.43 11.08	VZ (FT/SEC) 23.87 24.06	A (FT/SE	C/SEC) 46 36
•00	1.93	20.40	1249.16	2000	0.00	24.35	8.49		22.83	-1.52
6.20	1.98	21.34	1246.96	1993	3.80	24.50	8,92		22,82	-1.55
29.62	1.52	24.55	1237.01	1970	0.38	25•16	10.46		22.89	-1.25
41.37	1.07	25.70	1231.50	1958	8.63	25.48	11.05		22.96	92
53.16	•5]	26.44	1225.73	1946	6.84	25.74	11.46		23.05	••53
64.99	11	26.71	1219.80	1935	5.01	25.91	11.64		23.15	19
76.88	74	26.51	1213.84	1923	3.12	25.96	11.59		23.24	•57
100.76	-1.85	24.76	1202.33	1899	9.24	25.71	10.76		23.34	1.26
112.73	-2.23	23,33	1196.99	188	7.27	25.42	10.07		23.34	1.54
124.08	-2+45	61.03	1192.04	187	5.32	25.08	9.24		23.31	1.70
130.02	-2.49	19.77	1187.54	186	3.38	24.71	8.36		23.25	1.73
148+52	-2.34	1/.89	1183.48	1,85	1.48	24.36	7.48		23.18	1.52
1/2.21	-1.54	14.69	1176.01	182	7.79	23.83	6.04		23.05	1.00
184.01	45	13.07	11/3+64	181	5.99	23.68	5.59		23.01	• 56
195.19	· · · 28	13.19	1170.84	1804	4.21	23.60	5.38		22.98	• 0 7
201.20	• • • 0	13.31	1168.08	179	2.44	23.59	5.43		22.96	-,45
219+36	1.04	14.03	1165-23	178	0.68	23.65	5.73		22.94	-1.00

PARACHUTE-LOAD SYSTEM (DEPLOYMENT) -- G-114 (MAIN PARACHUTE EXTRACTION) UNREEFED

TRAJECTORY SIMULATION -- T=0, Z=0 IS RELEASE POINT RELEASE CONDITIONS ALTITUDE 2000 FT VELOCITY= 220.00 FT/SEC MASSES--SLUGS TOTAL SYSTEM= 115.265 LOAD= 108.800 PARACHUTE= 4.156 SUSP. LINES= .643 1.200 RISERS= RISER EXTENSIONS= .124 LOAD BRIDLE= .342 INCLUDED= 158.613(SEA LEVEL) 149.262(2000. FT) APPARENT= 59.480 (SEA LEVEL) 55.973(2000. FT) REFERENCE DISTANCES FROM SKIRT-- FT X1= 16.450 ×2= 61.100 99.300 x3= x 4 = 113,300 x5= 119.300 MOM . / PROD. INERTIA -- SLUG FT ##2 907066-874(TXX≡ 936191.608 (SEA LEVEL) 2000. FT) 936191.608(SEA LEVEL) IYY= 907066.874(2000. FT) FT) IZZ= 20700000.000(SEA LEVEL) 20658733.868(2000. IXZ= O(SEA LEVEL) 0(.000S FT) DIMENSIONS-- FT 100.000 DNOT= SUSP. SYSTEM= 95.000 77,203(1.1= 79.081 (SEA LEVEL) 2000. FT) -53.119 (SEA LEVEL) -54,997(2000. FT) 1.2= 1_3= 59.781 (SEA LEVEL) 57.903(2000. FT) YC/DNOT= .129 DP/DNOT= .648 VOLUME= 66700.000 FT##3 PARACHUTE COP= 1.786 76.800 FT##2 LOAD DRAG AREA= DEGREES OF FREE DOM= 3

RELEASE DISTANCE IN AIRCRAFT= 15.000 FT REEFING RATIO= .064

FIG 35 Sample Output for the G-11A Cargo Parachute with Reefed Main Parachute Extraction System REEFED PROJ. DIAMETER= 9.231 FT TIME OF PARACHUTE DISREEF= 4.00 SEC

FIG												
ι U	TIME	ALTITUDE	SYSTEM	C.M. TRAJ.	C•	M. POSITION			C+M+ VI	ELOCITY		C.M.
S	(SEC)	(FT)	ANGLE (DEG)	(DEG)		(FT)			(FT	SEC)		FT/SEC/SEC)
					X	Y	Z	TOTAL	X	Y	Z	TOTAL
Sample Reefec												
	.05	5000.00	90.00	90.00	10.93		0	217.23	21/.23			
ZΟ	.10	2000.00	90.00	90.00	51.13		0	211.80	211.89			
β	15	2000.00	90.00	70.00	42.92		0	209.31	209.31			
		2000.00	90.00	90.00	53.32		ŏ	206.80	206.80			
2.6	• A D	2000.00	90.00	90.00	63.60		· Õ	204.35	204.35	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		
ਸ਼ ਜ	.35	2000.00	90.00	90.00	73.76		0	201.95	201.95			
ມັ	.40	2000.00	90.00	90.00	83.80		0	199.61	199.61			
HH.	.45	2000.00	90.00	90.00	93.73		0	197.33	197.33			
0 Q	.50	2000-00	90.00	90.00	103.54		. 0	195.10	195.10			
<u>H</u> 7	.55	5000.00	90.00	90-00	113.24		0	192.91	192.91			
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	•60	5000.00	90.00	90.00	122.83		0	190.78	190+78			
T T	.65	5000.00	90.00	90.00	132.32		0	100.07	186.64			
n n	• 70	2000+00	90.00	90.00	141.0		0	184.64	184.64			
HO	. /5	2000.00	90.00	89.78	150.16		- 01	182.14	182.14		•70	
N I	.00	1000.02	89.27	89.27	169-19		.08	179.05	179.03		2.29	
ц н	.05	1999.77	88.75	88.75	178.07		.23	176.07	176.03		3.84	
HE	.95	1999.54	88.22	88.22	186.80		.46	173.21	173+12		5.38	
ð Þ	1.00	1999.23	87.69	87.69	195.39		.77	170.45	170.31		6.88	
H Ó	1.05	1998.85	87.14	87.14	203.84		1.15	167.79	167.59		8.37	
H. 0	1.10	1998.40	86.59	86.59	212.15		1.60	165.24	164.95		9.83	
O.H.	1.15	1997.87	86.03	86.03	220.34		2.13	162.18	162.39		12 70	
20 C	1.20	1997.027	85.46	5.46	228.39		2.13	158.13	157.50		14.10	
, O	1.25	1990.00	04.50	04.00	244 15		4 14 -	155.93	155.16		15.49	
S H	1.30	1995.00	04.30	83.71	251.85		4,95	153.81	152.88		16.85	
6 6	1.35	1995+05	83.11	83.11	259.44		5.82	151.77	150.67		18.21	
n H	1.45	1993.23	82.50	82.50	266.92		6.77	149.80	148.52		19.55	1964 C. 1964
a b	1.50	1992.22	81.89	81.89	274.29		7.78	147.91	146.43		20.87	
BO	1.55	1991.15	81.27	81.27	281.57		8.85	146.08	144.39		22.18	
2	1.60	1990.01	80.64	80.64	288.74		9,99	144.33	142.41		23.47	
~ #	1,65	1988.80	80.01	80.01	295.81		11.20	142.63	140.47		24.13	
00	1.70	1987.53	79.37	79.37	302.79		12.47	141.01	138.58		20.01	
0	1.75	1986.20	78,72	78.72	309.67		13.80	139.44	130.14		29 51	
25	1,80	1984.81	78.07	78.07	316.46		10.19	136 47	123 10		29.73	
	1,85	1983.35	11.42	74 75	323+1/		18 16	135 07	131.48		30.95	
5.4	1,90	1981.04	76.10	76 00	325.10		19 74	133.73	129.81		32.15	11 A.
Ē -	2 00	1978.62	75.42	75.42	342.77		21.38	132.44	128.17		33.35	
D	2 05	1976.93	74.74	74.74	349.14		23.07	131.19	126.57		34.53	
م	2.10	975.17	74.06	74.06	355.43		24.83	130.00	125.00		35.70	
\sim	2.15	1973.36	73.38	73.38	361.64		26.64	128.85	123.47		36.86	
	2.20	1971.49	72,69	72.69	367.78		28.51	127.75	121.97		38.01	
	2,25	1969.56	72.00	72.00	373.84		30.44	126.69	120.49		39.15	
	2.30	1967.57	71.31	71.31	379.83		32,43	125.68	119,05		40.28	

FIG 35 Sample Output for the G-11A Cargo Parachute with Reefed Main Parachute Extraction System (Contin	2.35 2.450 2.555 2.557 2.577 2.577 2.577 2.577 2.577 2.577 2.577575 2.5775 2.5775 2.577575 2.57775 2.5775757575 2.57757575757575	1965.53 1963.43 1961.28 1959.07 1956.81 1954.50 1952.13 1949.70 1947.23 1944.70 1942.12 1939.49 1936.81 1934.08 1931.30 1928.47 1925.59 1922.66 1919.68 1916.66 1913.58 1910.46 1907.30 1904.08 1900.82 1897.52 1894.17 1890.78 1883.85 1880.33 1876.76 1873.15 1869.50 LOAD PILO MAIN REEF	70.61 69.91 69.21 68.51 67.81 67.10 66.40 65.69 64.99 64.28 63.58 62.87 62.17 61.47 60.77 59.37 58.68 57.98 57.30 56.61 55.93 55.25 54.58 53.91 53.24 52.58 51.92 51.27 50.62 49.98 49.34 48.71 48.08 0UT OF A T CHUTE/E PARACHUTI REEFED PI CUTTER DI TIME OF D	70.61 69.91 69.21 68.51 67.81 67.81 67.10 66.40 65.69 64.99 64.28 63.58 62.87 61.47 61.47 60.77 59.37 58.68 57.98 57.30 56.61 55.93 55.25 54.58 53.91 53.24 52.58 53.91 53.24 53.24 52.58 51.92 51.27 50.62 49.98 49.34 48.71 48.08 IRCRAFT KTRACTION CHU E DISREEF	385.74 391.59 397.37 403.08 408.73 414.31 419.83 425.28 430.67 436.01 441.28 446.49 451.65 456.75 461.79 466.78 471.71 476.59 481.42 486.20 490.92 495.60 509.32 513.80 518.23 522.62 526.96 531.25 535.50 539.70 543.86 547.97 JTE RELEASE OF •637 63.661 FT 0 SEC 0 SEC	TIME(SEC) .78 4.00	34.47 36.57 38.72 40.93 43.19 45.50 47.87 50.30 52.77 55.30 57.88 60.51 63.19 65.92 68.70 71.53 74.41 77.34 80.32 83.34 86.42 89.54 92.70 95.92 99.18 102.48 105.83 109.22 112.66 116.15 119.67 123.24 126.85 130.50 ANGLE (DEG) 48.07	124.71 123.78 122.89 122.04 121.23 120.45 119.71 119.00 116.33 117.69 115.95 115.44 114.95 113.64 113.25 112.89 112.55 112.89 112.55 112.89 112.55 112.89 112.55 112.89 112.68 111.43 111.20 110.99 110.63 110.47 110.33 110.47 110.10 110.01 X(FT) 156.14 548.05	117.64 116.25 114.89 113.56 112.25 110.96 109.70 108.45 107.23 104.85 103.69 102.54 101.41 100.31 99.21 98.14 97.07 96.03 95.00 93.98 92.97 91.98 91.01 90.04 89.09 84.15 87.22 86.30 85.39 84.49 83.61 82.73 81.86 Z (FT) 130.58	VELOCITY(FT/SE 183.54 110.01	41.40 43.61 43.61 45.79 48.98 50.03 55.10 53.12 54.14 55.14 55.14 55.14 55.14 55.14 55.14 57.13 59.08 61.00 61.98 63.81 65.65 56.14 57.13 59.08 61.94 65.65 56.14 57.13 57.10 61.98 61.99 77.66 73.49 72.66 73.49 72.66 73.49 72.66 73.49 72.66 73.49 72.66 73.49 72.66 73.49 72.66	
h nued)	TIME (SEC)	ALTITUDE (FT)	SYSTEM ANGLE (DEG)	C.M. TRAJ. Angle (deg)	C∙M• ×	POSITION (FT) Y	2	TOTAL	C•M• VE (FT/ X	ELOCITY 'SEC) Y	Ζ	C.M. Acceleration (ft/sec/sec) Total

	4 26	1951.09	45 09	45.09	567.65	· · · · · · · · · · · · · · · · · · ·	148 91	96.77	68.54		68.31	-75.46
	4 51	1934 26	42.11	42.11	583.87		165.74	83.35	55.89		61.83	-74.39
	4°77	1819.09	39,08	39.08	597.03		180.91	71.58	45.12		55.57	-67.64
	5 02	1915-44	36.00	36.00	607.64		194.56	61.96	36.41		50.13	-60.32
	5.02	1003.44	30.00	32 91	616.23		206 91	54.33	29.52		45.61	=54-01
	5.20	1791.07	20.87	20.87	623.20		218 10	48.34	24.08		41.92	-49-07
	5,34	1701.01	27.07	26 03	629 00		228 60	63.64	19.77		38.90	-45.36
her!	5.19	1771040	20.75	20073	623.50		220.00		16.33		36.42	=42.62
	0.00	1/01+/1	24015	24013	607 60		230.27	37+71	10.33		34 35	-40.60
୍	6.30	1752.60	21.55	21.00	03/ 40		241.40	30.73	13.00		34.35	-30 11
43	0,50	1744.00	19.16	19.10	640+11		250.00	34.51	11.32		32.00	-37+11
ω ω	6.82	1735.81	16.98	16.98	643.41		264.19	32.51	9.49		31.10	-38.00
Ū	7.07	1727.99	15.01	15.01	645.68		272.01	30.84	7.99		29.19	-3/-10
	7,33	1720.48	13.25	13.25	647.60		279.52	29.43	6.75		28.64	-30.52
	7.58	1713.26	11.68	11.68	649.21		286.74	28.20	5.71		27.62	-36.01
Σ S S	7.84	1706.29	10.29	10.29	650.58		293.71	27+14	4.85		26.70	-35.61
രല	8.10	1699+54	9.07	9.07	651+75		300.46	26.20	4.13		25.87	=35+28
0 3	8,35	1693.00	7.99	7.99	652.74		307.00	25.35	3.52		25.11	-35.01
ΗO	8.61	1686.64	7.03	7.03	653.59		313,36	24.59	3.01		24.41	-34.78
0 1	8.86	1680.46	6.20	6.20	654.31		319,54	23.90	2.58		23.76	-34.59
p. 10	9.12	1674.44	5.46	5.46	654.93		325.56	23.27	2.21		23.16	-34.42
50												
5.5						TIME (SEC) ANGLE (D	EG) X(FT)	Z(FT)	V(FT/SEC)	FMAX(L3)	TF (SEC)
5 -		F.JI.	L: OR REEFED	INFLATION		9.	12 5.46	654.93	325.56	23.27	8348.	5.12
~ č									-			
ъđ												
۵ ۵												
H H		·										
0 4					*							
<u> </u>	NOTE	POSITIONS .	EI OCITIES. A	CCELERATION	S. TRAJ. ANGL	ES REFER	TO LOAD. PRE	VIOUS RESUL	TS ARE FOR	MASS CENTE	R	
2.				•			• • • • • • •					
44												•
6 6												
												1
БŪ												
XI	TIME	ALTITUDE	SYSTEM	LOAD TRAJ.	LOA	D POSITIO	N		LOAD V	ELOCITY		LOAD
H H			ANGLE	ANGLE								ACCELERATION
H H	(SFC)	(FT)	(DEG)	(DEG)		(FT)			· (F)	/SEC)		(FT/SEC/SEC)
ti i⊳			and the second second		X	Y	Z	TOTAL	X	Y	Z	TOTAL
	1							-				
		· · · · · ·										
5 H												
H m												
0												
ഹ്	9.34	1592.05	3.79	-19,95	660.50		407.95	25.35	-8.65		23,82	-3.08
Y P	9 88	1579.33	- 55	-21.81	655.57		420.67	24.66	-9.16		22.89	-1.85
α Ω	10 65	1562.17	-6.39	+17.32	649.21		437.83	22.91	-6.82		21.87	-5.13
rt H	11 42	1545.45	-10.97	-3.97	645.86		454.55	21.88	-1.51		21.82	-8.26
n n	12.19	1528.29	-13.46	13.50	647.32		471.71	23.64	5.52		22.98	9.86
BO	12 95	1509 97	-13 43	27 73	654.43		490 03	27.88	12.97		24.68	9.72
5	13 47	1497.08	-12.03	34.51	662.27		502.92	31.02	17.57		25.56	8.75
2	14 49	1470.63	-12:05	43.30	684.05		529 37	35.34	24.28		25.68	4.67
С.Т.	15 00	1457 64	-3 01	45 00	604 00		542 36	35.84	25.78		24.91	2.67
ເງພ	15.00	1437.04	-3.01	47.22	793 12		546 71	23 26	24 41		22.50	-4.34
24	10,03	1433.27	4.27	44 80	723.12		579 44	30 79	21 72		21 81	-6.19
	10,54	1421.74	1.45	99,07	752 24		510.00	30.10	12 72		23 00	-9 99
	17.56	1344.00	11.00	31.60	70.30		611 04	20.00	T3+12		22 04	-0.39
	10.07	1300.14	12.42	CI+34	707.21		011.00	24.07	7.00		24 83	-7037
2	14,10	1303.59	11.05		103.18		030,41	24.03			24,03	0.23
ē	19.87	1344.26	7.81	•11.90	761.03		033.74	23.02	-2.33		23.21	-7 42
õ.	20.63	1325.05	3.23	-18.84	150.20		D/4,95	25.94	-0.57		24.00	-2.00
5	21.40	1305.66	-1.89	-20.01	749.52		693.34	24.80	-0.49		23.31	-2+31
	22,17	1583.08	-6.65	-14.14	743.91		/10,92	23.28	-2.07		22.58	-2+23
	22,94	1271.67	-10.22	-1.49	741.37		728.33	22.89	*. 60		22.88	1.04
	23,71	1253.70	-11.93	13.68	743:.33		746,30	24,66	5,83		23.96	8.85
	24.73	1228.31	-10.89	29.67	753.83		771.69	29.32	14.51		25,48	7.94

FIG 35								
Sample Outpu Reefed Main								
It for the G- Parachute Exi	72.99 74.01 74.52 75.03 75.55 76.57 77.00	91.23 68.03 56.52 44.98 33.35 9.85 .00	2.06 39 4.80 30 5.60 20 5.94 20 5.80 19 4.17 6 3.05 3	.20 1170.09 .27 1185.25 .06 191.43 .05 1196.48 .70 1200.34 .17 1204.76 .40 1205.57	9	1908.77 1931.97 1943.48 1955.02 1966.65 1990.15 2000.00	28.04 16.16 26.01 13.11 25.01 10.99 24.22 8.70 23.66 6.40 23.16 2.49 23.07 1.37	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
llA Cargo traction		1 2 3	VERTICAL/MINIMUM VERTICAL/MINIMUM VERTICAL/MINIMUM	TIME(SEC) ALT 9.75 1 15.00 1 21.02 1	ITUDE (FT) 1582•28 1457•64 315•73	X(FT) Z(FT) 656.75 417.72 696.92 542.36 752.87 684.27	V(FT/SEC) VX(FT/SEC) 24.88 -9.21 35.84 25.78 25.50 -8.81	VZ(FT/SEC) A(FT/SEC/SEC) 23.12 -1.76 24.91 2.67 23.93 -1.69

System (Concluded)

X. REFERENCES

- 1. Heinrich, H. G.: <u>The Effective Porosity of Parachute</u> <u>Cloth</u>, USAF Technical Report No. AFFDL-TR-65-102, January, 1966.
- 2. Hildebrand, F. B.: <u>Introduction to Numerical Analysis</u>, McGraw-Hill Book Company, 1956, pp. 236-239.
- 3. Heinrich, H. G. and Noreen, R. A.: <u>Wind Tunnel Drag</u> and Stability of Solid Flat Circular, <u>T-10</u>, and <u>Ringslot Parachute Models with Centerlines</u>, USAF Technical Report No. AFFDL-TR-73-17, December, 1972.

DISTRIBUTION LIST

No. of Copies

1

1

1

1

1

1

1

Director of Defense Research and Engineering Department of Defense Washington, DC 20315

Department of the Army Office of the Chief of Research and Development ATTN: DARD-DDA Washington, DC 20310

Department of the Army US Army Advanced Materiel Concepts Agency ATTN: AMXAM-AC Washington, DC 20315

Commander US Army Foreign Science and Technology Center 220 Seventh Street, NE Federal Building Charlottesville, VA 22312

Commander US Army Materiel Command ATTN: AMCRD-FS Washington, DC 20315

Commander USA Test and Evaluation Command ATTN: AMSTE-BG Aberdeen Proving Ground, MD 21005

President USA Airborne Communications and Electronics Board Fort Bragg, NC 28307

Commander Yuma Proving Ground Air Test Division ATTN: STEYP-TAT Yuma, AZ 85364

DISTRIBUTION LIST (CONT'D)

1

1

1

1

1

1 : 5,75

1

1

USA CDC Institute of Land Combat ATTN: Technical Library 301 Taylor Drive Alexandria, VA 22314

Commander

USA Combat Developments Command Institute of Advanced Studies Carlisle Barracks, PA 17013

Commander

US Army Combat Developments Command Institute for Strategic and Stability Operations ATTN: ISSO-A Fort Bragg, NC 28307

Chief, Systems and Equipment Division Eustis Directorate US Army Air Mobility R&D Laboratory Ft. Eustis, VA 23604

Commander

US Army Materiel Laboratories ATTN: Technical Library Fort Eustis, VA 23604

Commander

USA Aviation Systems Command ATTN: AMSAV-FBTD P. O. Box 209 St. Louis, MO 63166

Commander

USA Aviation Systems Command ATTN: AMSAV-L-QRE P. O. Box 209 St. Louis, MO 63166

Commander

US Army Aviation Systems Command ATTN: AMSAV-R-R P. O. Box 209 St. Louis, MO 63166
1

1.

1

1

1

1

1

......**1**...

1

gener togeten et h

Commander

US Army Aviation Systems Command ATTN: SAVDL-8 St. Louis, MO 63166

Commander

US Army Aviation Systems Command ATTN: AMSAV-SA (CE) AMRDC St. Louis, MO 63166

Commander

US Army Aviation Systems Command ATTN: AMCPO-LSE St. Louis, MO 63166

Director

US Army Mobility R&D Laboratory AMES Research Center Moffett Field, CA 94035

Commander

US Army Missile Command ATTN: Technical Library Redstone Arsenal, AL 35809

Commander

US Army Munitions Command ATTN: Technical Library Dover, NJ 07801

Commander

US Army Weapons Command Research & Development Directorate ATTN: Technical Library Rock Island, IL 61201

Commander

Frankford Arsenal Bridge and Tacony Streets ATTN: Technical Library Philadelphia, PA 19137

Commander

Redstone Scientific Information Center US Army Missile Command ATTN: AMSMI-RBLD Redstone Arsenal, AL 35809

3

1

1

1

1

6

1

1

1

Commandant

Quartermaster School Airborne Department ATTN: ATSQM-EA Fort Lee, VA 23801

Commandant

Quartermaster School ATTN: ATSQM-AR-T Fort Lee, VA 23801

Commandant Quartermaster School ATTN: ATSQM-AR-D Fort Lee, VA 23801

Commander

Readiness Command ATTN: STRJ4-T MacDill Air Force Base Tampa, FL 33608

Commander

Aeronautical Systems Division US Army Natick Laboratories Liaison Office ATTN: ASDL-8 Wright Patterson Air Force Base, OH 45433

Commander

Army Research Office (Durham) ATTN: Information Processing Office Box CM, Duke Station Durham, NC 27706

US Army Standardization Group, UK ATTN: Research/General Materiel Representative Box 65 FPO New York 09510

Department of the Air Force Hq, 6511th Test Group (Parachute) (AFSC) Naval Air Facility Army Liaison Office, ATQ El Centro, CA 92243

4

1

1

1

1

1

1

1

1

1

Direct**o**r Air University Library Maxwell Air Force Base, AL 36112

Headquarters Tactical Air Command ATTN: TAC-OA Langley Air Force Base, VA 23365

Commander USAF Tactical Airlift Center (TAC) ATTN: DAL Pope Air Force Base, NC 28308

Commander Military Air Lift Command ATTN: MAORD Scott Air Force Base, IL 62225

Director Naval Research Laboratory ATTN: Technical Information Officer Anacostia Station Washington, DC 20390

Chief

Office of Naval Research Department of the Navy ATTN: Code 423 Washington, DC 20390

US Naval Air Systems Command Department of the Navy ATTN: AIR 5315A Washington, DC 20360

Director Development Center Marine Corps Development and Education Command Quantico, VA 22134

Marine Corps Liaison Officer US Army Natick Laboratories Natick, MA 01760

Commander US Army Natick Laboratories ATTN: STSNL-AOP Natick, Mass 01760

Commander US Army Natick Laboratories ATTN: STSNL-RTL Natick, MA 01760

Commander Defense Documentation Center Cameron Station 5010 Duke Station Alexandria, VA 22314

Sandia Laboratories Deceleration & Recovery Systems Division Albuquerque, NM 87115

Commander

Naval Aerospace Recovery Facility ATTN: Code ENAAT El Centro, CA 92243

Commander Hdqs Edgewood Arsenal ATTN: Mr. A. Flatau Aero Research Group Aberdeen Proving Ground, MD 21005

Commander Aero System Division ATTN: AFFDL/FER (Mr. James De Weese) WPAFB. OH 45433

Prof. Helmut G. Heinrich Department of Aeronautics and Engineering Mechanics University of Minnesota Minneapolis, MN 55455

20

2

12

1

1

1

3

Unclassified			
Security Classification		<u></u>	
DOCUMENT CONT	ROL DATA - R &	D	
(Security classification of title, body of abstract and indexing	annotation must be ent	ered when th	e overall report is classified)
		Incla	act fi ad
University of Minnesota	2	b. GROUP	29111 ou
3. REPORT TITLE	I		
DEVELOPMENT OF A TOTAL TRAJECTORY SIMULA	ATION FOR SING	LE RECOV	VERY PARACHUTE SYSTEMS -
VOLUME II: CALCULATION PROCEDURES AND (COMPUTER PROGR	AM.	
		-	
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)			
Final Report 15 Nov 1971 - 30 June 1973			
5. AUTHOR(S) (First name, middle initial, last name)			
Robert A. Noreen			
David P. Saari			
6. REPORT DATE	78. TOTAL NO. OF	PAGES	76. NO. OF REFS
	241		3
88. CONTRACT OR GRANT NO.	98. ORIGINATOR'S	REPORT NUI	MBER(\$)
DAAG 17-72-C-0030	None		
b. PROJECT NO.			
1 77 000004400			
c. 1F162203AA33	9b. OTHER REPORT this report)	NO(5) (Any	other numbers that may be assigned
	74-9-AD(II)	
d.			
10. DISTRIBUTION STATEMENT			
Distribution of this document is unlimit	ted.		
11. SUPPLEMENTARY NOTES	12. SPONSORING MI	LITARY ACT	τινιτγ
	US Army Natick Laboratories		
13. ABSTRACT			
A method of total trajectory simula	ation was estab	lished v	which is based on the
governing equations of the various phase	es of an airdr	op or re	ecovery system. In
view of these equations, a computer prof	gram capable o	fpredic	cting the performance
characteristics of a parachute-load syst	tem from the i	nstant (of initiation to the
moment of landing was established. Cal	ulations were	perfor	med for a number of
different aerial delivery systems. The	calculated re	sults f	all well within the
hyond yanges of expected performance, bi	eed upon fami	liarity	with field test
Droad ranges of expected performance, or	15eu upon som	TTOTT 0	WI GIT LIGIT COST
results			
To Malore I simulation mothods and	numori del del	aulatio	n maguilta ana
In volume I, simulation methods and	numerical our	Curation	- and computer
presented; in volume II details of the	Sarcuration pr	oceume.	s and computer
program are presented. The system is re	eady to be use	d Ior o	verall prediction of
parachute performance characteristics ar	id an intensiv	e compar	rison of calculated
and recorded field test results in highl	ly desirable I	or valid	dation and improvement
of the technique of total trajectory sim	nulation.		

Unclassified

	14	^	 1.01		
SACIIF		1 1 6		COL	105

:

14.		LIN	LINK A		LINK B		LINKC	
KEY WORDS	ROLE	wт	ROLE	wт	ROLE	wт		
	Extraction	8						
	Cargo	2		9				
	Aircraft	1			A Sta			
	Recovery	10		4				
	Parachutes	10			a a A an an an a			
	Low Altitude Drop	4		9.4				
	Tests			8				
	Equations			8				
	Data			8				
	Computer Programming			10			-	
	Aerial Delivery			9	line Line de la			
	Loads			9				
				Terrenti Terrenti	n an the Theorem			
	· · · · · · · · · · · · · · · · · · ·							

《编成出版》 2.5

Unclassified

Security Classification