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FOREWORD

This work was performed under US Army Natick Laboratories
Contract No, DAAG 17-72-C-0030 during the period 15 November
1971 and 30 June 1973. The project Number was 1F162203AA33
and the Task Number was 04 entitled "Study of Dynamic Stability
Characteristics of Parachute-Load Systems', Mr, Edward J.
Giebutowski served as Project Officer,

The objective of the effort was to produce a computerized
trajectory simulation which would describe the motion of a
single varachute and its cargo from the time of release from
the aircraft to the time of impact.

This report describes the analytical modeling and design
rationale for the computer simulation of the trajectcry and
shows typical results obtained from computer solutions of
several test cases involving a selected number of parachute
configurations as used by the US Army for ajrdrop of cargo
and personnel,

id.
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ABSTRACT

A method of total trajectory simulation was established
which is based on the governing equations of the various
phases of an airdrop or recovery system. In view of these
equations, a computer program capable of predicting the
performance characteristics of a parachute-load system from
the instant of initiation to the moment of landing was
established, Calculations were performed for a number of
different aerial delivery systems., The calculated results
fall well within the broad ranges of expected performance,
based upon a familiarity with field test results, The system
is ready to be used for overall prediction of parachute per-
formance characteristics and an intensive comparison of cal-
culated and recorded field test results is highly desirable
for validation and improvement of the technique of total
trajectory simulation.

The report is presented in two volumes. Volume I dis-
cusses and shows the development of the phases of the total
trajectory simulation, and includes the results of sample
calculations from release to ground impact for several cases
of parachute-load systems. . Volume" II presents the computer
program and methods for obtaining numerical results in detail.

XV



I, INTRODUCTIGN

The process of delivering a load from an airplane in
flight to the ground--or the recovery of a manned or instru-
mented ::apsule, drone airplane, or missile--encompasses a
number of dynamic and aerodynamic problems, The various
phases of such a process are usually organized in detailed
groupings concerning parachute deployment, inflation and
descent, 1In each field intensive investigations have been
carried out and generally the basic physical and mathematical
models have been established. In many cases the actual pro-
cesses are so complicated that closed, or semi-closed, solu-
tions can be established only by imposing stringent simplifi-
cations and restrictions, In certain phases of the entire
operation, for example the parachute deployment and inflation,
the assumption that the parachute-load system moves in one
plane is quite acceptable. However, during the descent
phase, many types of parachutes impose motions upon the
system in three dimensions, and neglecting this fact is often
an unacceptable simplification,

The availability of large high speed computers makes it
possible to pursue numerical scolutions which allow the intro-
duction of non-linear performance characteristics and consid-
erations of multiple degrees of freedom, This is particularly
important for the analysis of the descent phase of the opera-
tion where large deflections of the system from the ideal
trajectory occur, and where three dimensional oscillations
and coupling between planar oscillations and roll modes of
the parachute-load system can exist,

One objective of the following study was then the estab-
lishment of a computer program to calculate all performance
characteristics and capable of three dimensional calculations
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for the descent phase, using established performance para-
meters and functional relationships with a minimum of numeri-
cal simplifications, A further objective was that the pro-
gramw allow the continuous performance calculation of a given
parachute-load system from initiation of parachute deployment
to landing.

In view of these primary objectives, mechanical and
mathematical models for the various phases, whose validity
had previously been proven by comparisor with experimental
results, were selected from the literature and formed the
basis for the computer program. A major feature of the pro-
gram is that it has been arranged so that entire calculation
methods can easily be replaced or updated when better methods
become available, This can be done simply by replacing major
subiroutines,

The basic approach to the various phases can be
described as follows, The motion of the parachute-load
system during the phases of ioad extraction, when app! - :»le,
parachute deployment, and inflation is considered to be two-
dimensional. The calculation follows the state-of-the art
methods and is coupled with the equations for a two-
dimensional trajectory, In the final descent phase, the
parachute-load system is treated as a rigid body and a classi-
cal mechanics formulation is used to find the equations of
motion with six degrees of freedom which provide trajectory
data in three dimensions, or with three degrees of freedom for
two-dimensional solutions,

Numerical results are obtained using finite-difference
methods for the trajectory simulation prior to full inflation,
and the Runge-Kutta method is used for numerical integration
of the equations of motion for the final descent phase.

" The report is presented in two volumes, Volume I dis-
cusses and shows the development of the phases of the total
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trajectory s‘mulation, and includes the resuics of sample
calculations from release to ground impact for several cases
of parachute-load systems, Volume II presents the computer
program and methods for obtaining numerical results in
detail, .

The authors wish to express their gratitude to
Mr, Edward J. Giebutowski of the United States Army Natick
Laboratories for his cooperation in establishing the composi-
tion and physical data of the various airdrop systems and

for his many constructive contributions throughout this study.




I1. SEPARATION AND DEFLOYMENT SYSTEMS

This section describes the various physical airdrop
systems to which the total trajectory simulation applies.
The basic phases of functioning for any parachute-lcad
system are: 1) separation from the ajrcraft, 2) deployment
of the parachute, 3) inflation, and 4) free descent, The
physics of the last two processes is essentially the same for
any parachute type decelerator; however, there are many dis-
tinctly different physical processes used to accomplish
separation and deployment., This study considers four different
systems which represent methods most likely to be used by the
United States Army for cargo and personnel airdrop (Ref 1),

The fou: separation and deployment systems incorporated
in the trajectory simulation are: 1) static line, 2) static
line deployed pilot chute, 3) extraction parachute, and 4)
reefed main parachute extraction. Separation from the air-
craft is achieved by the load merely falling away from the
aircraft in the first two systems, whereas in the last two
systems a parachute is attached to thc load to increase the
relative velocity between aircraft and load. A detailed
description of the four systems follows.

A, Static Line System

Figure 1 showz the static line separation-deployment
system used with calculations for the T-10 personnel parachute
and the G-13 cargo parachute, The static line is attached
to the aircraft while its free end pulls the deployment bag
from the rarachute after the lines are extended., The canopy
is then iree tuo inflate, No distinction is made between
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"lines first" and "canopy first" deployments, since the
modeling equations apply to either,

B. Static Line Deployed Pilot Chute System

Figure 2 illustrates the use of a static line with a
pilot chute, used for separation-deployment of the G-12D
cargo pa.achute, After release of the parachute-load system,
the sta:ic line deploys the pilot chute frem its pack, The
pilot chute is then used to deploy the main canopy in a
lines-first fashion, and the deployment bag is separated.

C. Extraction Parachute System

Figure 3 illustrates the extraction parachute system,
used for separation-deployment of the G-12D and G-11lA. cargo
parachutes. The load is separated from the aircraft by means
of the extraction parachute. As the load leaves the aircraft,
the extraction parachute force is transferred to the deploy-
ment bag of the main parachute, and the canopy is deployed in
a lines-first manner. Tigure 4 shows a reefing sequence, as
used with large parachutes, The extraction parachute again
separates the main canopy deployment bag from the load,
paylng out the risers and suspension lines, But, as the
suspension lines tighten, the reefing cutters are armed, and
the remainder of the canopy is depleyed. After a prescribed
delay time, the reef’'ng line is cut, and the parachute is free
to inflate fully or to a second reefed stage,
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D. Reefed Main Parachute Extraction System i

The fourth system, Fig 5, involves the use of the main
canopy in a reefed configuration as the extraction parachute,
The load is pulled from the aircraft, and after a prescribed
delay the reefing line is severed.
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ITI, TRAJECIORY SIMULATION METHODS

The total trajectory simulation was divided into phases
which represent the significant physical processes of the
airdrop and relate to computer program major subroutines,
which can be replaced individually, Details of the differ-
ent phases are described in the following. The first two
Subsections, entitled Atmospheric Density Function (IIL A)
and Two Dimensional Point Mass Trajectory Analysis (III B),
represent cal~-uilations which are made at various points
throughout the total trajectory simulation and thus arc
discussed first,

A, Atmospheric Density Function

During the trajectory simulation, the values for the
air density used in the various equations governing the
motion throughout the airdrop are determined bty the position
of the parachute-load system center of mass, The function

that is used to describe the air density for a standard day is

f’= f’o e-k/?’z’q"‘ , ©¢ W £ 15,000 £T
) "
-\ /28953 (
= 1.07133) € ) 15,000 £t <\
P=Pe \ ) ’ ¢ 35,000 £t

where p, = 0.002378 slug/ft3. This function was determined
by fitting two straight lines to a logarithmic plot of ¢
vs altitude determined from Ref 2 as shown in Fig 6.

B. Two-Dimensional Point Mass Trajectory Analysis

The motion of the parachute-load system is assumed to
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be two-dimensional during the processes of separation, deploy-
ment, and inflation, since all forces act in ore vertical
plane during these processes, For the periods during this
two-dimensional portion of the airdrop when the position
of the mass center does not change significantly, such as in
separation and deployment, the motion of the mass center is
approximated by a point mass ballistic trajectory. Equations
for the trajectory of the parachute-mass system can then be
found by considering the forces acting on a point mass with
a given drag area.

Summing forces parallel and perpendicular to the tra-
jectory of a particle of mass m with drag area Ch S (Fig 7)
yields the equations

m G = my <0584 pv2Cos 2)
® , 3
Vh\(-;;; = - wag sin e (3)

The velocity and angle can then be found numerically by
expressing Eqns (2) and (3) in finite difference form, and
the galues of x and z are easily found from~a— v v gin 8
and-a— = v cos § expressed in finite difference form.
Summarizing, for all processes which can be approximated by
point mass trajectories, the gcverning equations are

= PVT' CoS 4
sv=] 3ees0 - AL 00 ]m‘: (4)
: - 985mP 5

A© = (5)

Ax= VSO &t (6)

Az = vcos© &t (7)
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C. Separation from Aircraft

There are several possible calculation schemes for this
phase of performance, depending on the separation-deployment
system to be used., This is the first phase of the total
trajectory simulation, beginning at the instant the load is
released from the aircraft.

1. Load Extraction

If the load is to be extracted with extraction parachutes
or by the reefed main parachute, the governing equation is
for horizontal deceleration unti? the load leaves the aircraft,
i.e,

N
w5 = -2pViCoS (8)

The modeling equations incorporated in the total trajectory
simulation are then, expressing Eqn (7) in finite difierence
form,

{C S
av= - P2 at 9

Ax= Vbt (10)

where m is the mass of the entire recovery system and CDS is
the drag area of the extraction parachute, (CDSex)’ or the
reefed main parachute, (C Sp). Equations (9) and (10)
govern the motion until the load has traveled a specified
distance L and leaves the aircraft, i.e., until

Vot -x = L (11)
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where v, is the aircraft velocity. Once the conditions are
such that (11) is satisfied, the system is then governed

by the two-dimensional trajectory Eqns (4) through (7), with
the mass remaining the same but increasing the drag area to
include the load and main parachute bag which are now exposed
to the flow, for a specified time until the extraction main
canopy is disreefed or deployment of the main canopy by the
extraction parachutes is initiated. The next phase of the
sinulation is then inflation of the main parachute from iis
reefed configuration for the former case or deployment and
snatch force for the latter.

2. Static Line Extension

When a static line is used, the system is governed by
Eqns (4) through (7) using tHe mass and drag area of the load
and the packed recovery system. This is true until the dis-
tance between the aircraft and the load equals the length of
the static line, plus the suspension system and kalf the
diameter of the pilot pare~hute, if used., This criterion is

'\ﬁ"o’e"x)z + itﬁ = Lgimic * L (12)

where L' is the additional length of the suspension system
and deployed pilot parachute canopy. If a pilot chute is
used, the trajectory can be governed by Eqns (4) through (7)
with the drag area increased to include the pilot chute until
a specified time is reached.

D, Deployment and Snatch Force

Once the system has separated from the aircraft and

17
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coasted on the extraction or pilot parachutes if desired,
i.e., remained unchanged in configuration while following
its trajectory for a specified time, the deployment of the
main parachute begins. Two methods are considered, static
line deployment and deployment by pilot or extraction para-
chute. It has been assumed that the 'snatch force" from a
static line deployment can be neglected.

1. Deployment by Static Line

For the case of deployment by static line, the trajec-
tory is governed by the same equations as during the static
line separation process. Thus the governing equations are
Eqns (4) through (7), and the canopy is deployed when Eqn (12)
is satisfied, where L' is the length of the suspension system
plus half the diameter of the main canopy. The total tra-
jectory simulation then proceeds to the inflation calculation
phase,

2. Deployment by Pilot or Extraction Parachute

The physical process involved in this method begins at
the instant that deployment of the main parachute is initiated
and includes the deployment of the suspension lines, risers,
etc., snatch force, and the deployment of the main parachute
canopy.

Certain assumptions concerning the motion of the primary
and secondary bodies during this phase of operation must be
made, Basically, it is assumed that the primary body alone
determines the trajectory that the system follows during the
deployment, i.e., that the velocity vector of the secondary
body is always aligned with that of the primary. body
(Fig 3).

18
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a, Suspension Line and Riser Deployment

The motion during deployment is given by a point mass
trajectory analysis of the primary body with the secondary
body decelerating at a different rate but in the same direc-
tion as the primary body. To simplify the problem of time
varying mass as the suspension system is deployed, the pri-
mary and secondary body masses are defined in a manner simi-
lar to Ref 3 during deployment of the suspension system,

oy = vy v g (13)

My = o+ % mgs + Wpp (14)

where m . 18 the mass of the suspension lines, risers,
extensions, bridle, and links and oo is the mass of the pilot
or extraction parachute and the main parachute bag. In finite
difference form, the governing equations during deployment

of the suspension system are then

- _ gsnb
AB= 3 v: At (15)
o - P CpSy "% %
.AVI= (3(‘.03 T\A (16)
_ ( 8 r» CbSn vn’t. ) 4
Avg = (3cos ¥ ~ '—éT b (17)
Az = Vg cos® st (18)
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02 vz cos O At (19)

Al=s vgAt-vg At (20)

where ! is the distance between the primary and secondary
bodies. CpSyy in Eqn (17) is the drag area of the pilot or
extraction parachute and the main parachute bag.

b. Snatch Force

When the value of {, which is initially zero, aquals

the length of the suspension lines, risers, extensions, and 3
bridle, the line elongation and the development of the line
force begins. The force calculation follows the energy 5
conservation method of Ref 3, and the maximum or snatch force
f is given by
1]
where .
’ F, A 3
‘ § 8 — A [\+ Q + ]
o I v X (22)
[ 4
- 2vy
+ +
ag | @ ]
L Ve-VT Q
: |
¥ Q-' ‘-‘
; C= Mz = [% (v,-vn)"' + 2vg (v,-vn)] ]
£ + ""‘p\'(.vs‘ Vo) 4+ 2vg Lv,-\h_;)]
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a2

is accelerated at snatch,

2 2
Fag= 5 Um+Ys)
My
Q= Fore

5 Mla-m?

suspension lines, risers, extensions, and bridle,
My is given by My = my + mgg, and Eqns (26) and (27) reflect
the assumption that the suspension system is moving at the

same velocity as the load and only the main parachute canopy
The time increment during which

the lines elongate is very short and is neglected in view of
the total elapsed time,

Main Parachute Canopy Unfolding

22

(24)

(25)

(26)

(27)

and A is the inverse of the effective spring constant of the
The value

After snatch, the main parachute unfurls from the bag.
The primary body is now considered to consist of the suspended
load, risers, and canopy, and the secondary body consists of
the pilot or extraction parachute and the deployment bag.
The equations governing the motion during unfolding of the
main parachute are similar to Eqns (14) through (19) with the
exception that (15) and (16) are replaced by




Sy +0018Cp, SIVET]
) _ p(CoSy DoSe) Vz 28
Avm-‘.gcose | Z(Mz o) A+ (28)
2
CoSq4 V
AVII= (Bcose - &%_:?—f—) A't (29)

The drag area in Eqn (28) is increased by the addition of
1.5% of the fully_ihflated drag area of the main parachute.
This value represents the drag area of the uninflated main
parachute and was taken from Ref 4, The trajectory is cal-
culated with Eqns (15), (28), (29), (18) and (19) and the
separation with Eqn (20) until the value of { equals the
value at snatch plus half the nominal diameter of the main
parachute at which time the canopy is deployed. The next
phase is then the inflation phase.

3. Summary of Assumptions for the Deployment Phase

'In the following the assumptions on which the preceding
calculations were based are summarized, For static line
'deployment, it is assumed that (1) the static line remains
in a straight configuration between the aircraft and the
load, and (2) there is no appreciable '"snatch force." When
the main decelerator is deployed by extraction or pilot para-
chute several assumptibns are made: (1) the'trajectory of
the parachute-load system during deployment is determined
only<by the load; (2) the positions of the primary and second
ary bodies can be described by point-mass trajectory equa-
tions using 'average'" values for the masses; (3) the occur-
rence of snatch is instantaneous for elapsed time coﬁsidefation;
(4) the maés of the: parachute bag and pilot or extraction
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parachute is decelerated relative to the load as the canopy
unfurls. The above assumptions are simplifications of actual
deployment conditions. The need for a more exact treatment
of this phase should be determined in future work.

E. Inflation of the Main Parachute

The inflation of the main parachute begins at the instant
the parachute is deployed in a stretched-out configuration
with assumed zero projected area, or at some initiation time
ty when the parachute is used in a reefed configuration to
extract the load. ‘Yhe total trajectory simulation calculates
the motion of the parachute-load system as it inflates to its
fully open configuration with or without intermediate reefed
configurations,

1. Governing Equationsg

The basis for the total trajectory simulation during the
inflation of the main parachute is a coupling of the calcula-
tions of the opening force (Ref 5), and a ballistic trajectory.
The opening force calculation assumes that the inflating
parachute has the shape of a truncated cone with a hemispheri-
cal cap such that the suspension lines extend parallel to the
edges of the truncated cone (Fig 9)., The trajectory calcula-
tion is based on force equations pararlel and perpendicular
to the trajectory of the mass center of the parachute-load
system, and it is assumed that the velocity components of
the load and the parachute normal to the systems axis are
assumed to be negligible., This assumption may be questionable,
especially for large parachutes with long distances between
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parachute and load; however, it was felt that such an
assumption was a reasonable first approximation. It should
be noted that the above velocity components are not neglected
in the free descent phase,

Therefore, the parachute-load system is considered to
be, in effect, a point mass with varying mass and drag area
during the inflation process., The force equations parallel
and perpendicular to the trajectory of the mass center are
then

7
S 1ad (C""SL * Cop 1%2) + (myevaggamp) geos §

L. AV (30)
-V gk (Mirma) - (miema) at T L‘W."’"‘u"mf) 3-7\":
and
(g rmgsomg) gsin® ~(mivma) v 52 = (myarm,
1 +* M35t ™) g Sin SN Al L+m‘s+m?) (31)
v 38
Defining a total mass by at
M‘r‘ Vﬂ1+ms:+m?+hl+wk (32)

the equations governing the motion can be written in finite
difference form as

Wij* Mg+ ™ v
A"""i( L) gees® - £ (co3, |
(33
XDg N dwmi dw
+C°r'4'£)+vn-.-(at - 1“*

and

Y A R TR ¢ qs;n‘e
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Thus the motion of the parachute-load system during infla-
tion can be found numerically from Eqns (33) and (34) if the
values of my, m_, dm,/dt, dm /dt, and Dp are known throughout
the inflation process,

a. Inflation Without Reefing

The basic assumptions of Ref 5 are that the canopy
geometry &+ any time instant during inflation is determined
by a linear growtk of the projected area and a linear function
of the influx versus a dimensionless time T = (t - to)/tff.
These are commonly used assumptions which are subject to
change on the basis of future studies, Certain differences
appear between the definitions of filling time used in this
report and in other literature, such as Ref 6, The dimension-
less time scale T as used in Ref 6 ranges from T = 0 at peak
snatch force to T = 1 when the projected area first reaches
j.ts steady state value. The dimensionless time scale in this
study begins after the main parachute canopy unfolding process
has been completed, T = 0, and continues until the steady state
volume of the parachute canopy is reached, T = 1. Thus the
base of the dimensionless scale is referred to as the final
filling time, t..

The first assumption provides for the projected diameter
the relationship

= ZDv e

D? o

(35)
All other terms in the equations of motion can then be
determined from D_ and the assumed geometry. Expressing
projected diameter as a function of dimensionless time adds
the unknowntff to the problem., The solution for tff.is
acromplished by examining the continuity equation Jescribing
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the imbalance of mass flow into and out of the parachute canopy.,
This equation is, in accordance with Ref 5,

‘l 2
av _. N ]
cLT = TV [(|+2 2¢T-T) (36)
which is based on the inflow velocity in the form of
Vi
~ =(1+22c7-T) (37)

Thus the filling time tg for inflation without reefing can be
found by integration of Eqn (36) as T ranges from 0 to 1,
The volume V of the fully inflated parachute is equal to

Ve M#S v[(i+22cT—T)-4- ._--:]AT (38)

The filling time is readily found by a numerical pro-
cedure as follows, An initial value must be estimated for
the filling time, Equation (38) can then be numericaﬂly
integrated with Simpson's Rule using a number, n, of equal
increments of time AT such that T ranges from 0 to 1, yielding
a result which depends on the assumed filling time, This
numerical integration is expressed as

Vs )= gy, Tt o2, odogozye +34 (39)
where

Lt
e v fezee o) S - e i '@} (40)

Tj’ j=1, 2, ..., n, represent the values of the time scale
selected for the numerical integration. The numerical value
of Dp(Tj) is found from Eqn (35) evaluated at T = Tj, and
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the corresponding numerical value of d(Tj) is determined by
the geometrical relation

as 4 (Lg*Lg) Op
4(Lgrig)* 2D,-FDp

(41)

The velocity v(T;), however, must be found from the equations
of motion, Eqns (33) and (34) with initial conditions 8= 0y

and v = Vv, for T = 0., The mass terms in the equations of
motion based on the assumed geometry and expressed as functions
of T and Dp are

L xp OF
T se (DPH,QZ (42)
2 2’ i
Do TD
N ' (43)
o |
e F)
dwy  __sxp _ pf 410p) .
aT = 32 (Ppmex)’ AT (44)
dwi _ T(E ap2 2\_521)_ D:[[ZLL”LO‘*D.'-'%DP];%) ‘ l
AT 2 ) ¢ [z[('-r'-a*%'-"% -2
D o (Dg)/ AT 4(Dp) (45)

y o dkt ST "'ZDP";ﬁ-L (Letla |
ZL(L,“‘LQ"%!-I"P." - 1’ } s .
A a dld) ry

' e e fLgthn) = ==

* Pé! - 1‘?*)2 %”1 * 4 (Lrta)- };]"t 2T -7
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where
A (46)
T xTV2

d(d) (Ls-t- Le+ _.3 - P) u—s"L ) d(D:)

o E——

AT (Ls"’l- * 'TP) @
('-s"" ) 14""

(L Lo+ - ____g)

Eqns (32) and (33) are, in terms of tge and T,

Av:‘(hﬁ+m”+mp)3cue - g._v_? ‘_Cosg*cor-

V‘hT .
(48)
.KDz l AML AW'\Q_
-TF]E*HAT" my \ & T o\'r)m
A ez-( My '“a,”"r) gsind & AT (49)
" V

Thus the veiocity can be found for any value of Tj by using
Eqns (48) and (49) for the particular choice of tff , and the
numerical integration (39) can be performed.

The value of V(tgs;) determined from Eqn (39) is then
compared with the known volume of the fully inflated canopy,
and a new approximation to the filling time is found from
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+ = + A4
HaT NASTH . (50)

The process outlined above is repeated until |V - V(tffi)l
is small enough that the filling time can be considered
accurate, .

It may be mentioned that the method of Ref 5 follows a
similar scheme, however, the various functions are simplifiad
by means of curve fitting since a practically closed solution

is pursued in Ref 5.

Once the filling time is known, the trajectory of the
parachute-load system mass center is determined from Eqns
(48) and (49) in conjunction with

Ax = vsnm® t AT (51)
Dz = v cos® £ AT (52)
and the instantaneous opening force is found from

- Av
Fo= Wy (3@059 't“AT) (53)

b. Reefed Inflation

When the inflation process includes intermediate reefed
configurations, the trajectory simulation is divided into
periods of inflation and periods of coasting in the reefed
configuration, if desired, Provision for the coasting
periods is made by prescribing a reefing cutter delay from
the time of suspension line deployment, or from t = 0 when
the load is released in the aircraft for systems extracted
by the reefed main parachute,
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During the coasting periods, the drag area remains con-
stant, and the motion is described by the two-dimensional
ballistic trajectory equations (4) through (7), with the value
of the load drag area plus the drag area corresponding to the
particular reefed configuration of the parachute, and the
mass of the parachute-load system, When the final configura-
tion of an inflation phase is the fully jnflated configuration,
there is no coasting period, but the trajectory simulation
proceeds immediately with the free descent phase.

During each period of inflation, it is assumed that the
projected area increases linearly with time (Fig 10).

Defining a dimensionless time scale for each period of
inflation such that

+t-te
tr

Tr® (54)
vhere t  is the initial time and tgp is the inflation time

for the particular reefed inflation period, enables the

problem to be viewed in a manner similar to the approach
followed for the unreefed inflation., The projected area growth
for each of the inflation periods is given by (Fig 10)

isf.= WE e (tohal) Te (55)

wnere, with the geometry as used before,

Ef) . 4(Lyste) R+ 2R D0
.= Do ®  4(ts*br) + TR, D,

TQ=°

and (56)

=

Et 4(Lg*Lr)R,*+ 2R Do
Dy )TR-I 4 ‘.Ls"‘ L&) + KR, Do
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In these equations, R, and R; are the reefing ratios defined
by

Lr /%
R= *—B{ (57)

corresponding to the reefing lines at the beginning and end
of the inflation period., The projected diameter is then
found from Eqn (55) to be

Dp= DAW Tg + i (1-Te) (58)

Comparing Eqns (35) and (58), it is evident that one can

consider the projected diameter growth during an inflation
period to be a function of T, the Jimensionless time scale
which would exist if the inflation were taking place in one

complete step without reefing, i.e., the functions describing

the reefed i1nflation can be considered to be portions of the
functions developed for the unreefed case, The values of
projected diameter, masses, etc, can then be found for any
value of Tp by evaluating the equations presented in Item a
at a value of T given by

Te TN Te + WS (-TR) (59"

which is obtained by equating the right hand sides of Eqns
(35) and (58),

The procedure for calculation of the filling time, tra-
jectory, and opening force is similar to that discussed for
the unreefed case. The filling time is found from numerical
integration, with Ty ranging from 0 to 1, of

1
Ve= T §: v[(u 22cT-T)§ - '.-Lsthz]o\'rg (60)
34
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The value VR represants the increase in the volume of the
parachute canopy 18 it inflates rfrom the initial to the final
reefed configuration and is given by

|
Ver &{0202w) + 02 Wiyt T -Foy
- HtDl

- WL Ty a5

£ “'Doi { QfV(Ls*Lg)t— ‘-?-!:—D-: - R:’"(Lsﬂ_qu' -

)

(62)

RID,
4

Successive values of teg oxe given by
D

Nr_

63
V('EJR) (63)

{"RLH = .t"-RL

until the value V(tfna) - Vi ie small enough.

The necessary valies for evaluation of Eqn (61) are

f \
'VR({_‘R&) = “'E#RL _A_SB kv,-:-‘lv,*- vy +ont +vh) (61)
. where v is given by Eqn (40) with Tj evaluated from Eqn (59).

. determined as follows. " ]
The velocity is found from
v =[ Mt st e\ oo ® - P (o bl].
e
_ ' (64)
o, NV [ dww; .
| e o (T e i
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aATg (65)

Y'\’_-t-mss-l'ml) 3 B'W\ e
™ v

Ao =- te

The values of Dp, m, m, dm,/dT, and dma/dT are found from

Eqns (35), (42), (43), (44), and (45) with T from Eqn (59).

The increment AT is determined from the prescribed increment
ATp by

- TR 2o\t
AT = Tb‘. \n.)AT (66)
The trajectory is described by

Dx = vsin® g &Tp (67)

Az= v cos © tip ATR (68)

and the instantaneous opening force is given by

= - -—A'L
Fo M’-(Sm tep BTR (69

2,  Summary 4ssumptions for the Inflation Phase

The inflation phase of the trajectory simulation is
modeled by the following assumptions. (1) The shape of
the parachute is described by a truncated cone with a hemi-
spherical cap and the projected area increases linearly with

36




time during both reefed and unreefed inflation periods.

(2) The motion is confined to a vertical plana, (3) The
magnitudes of the components of parachute and load veloci-
ties normal to the trajectcry of the mass center are assumed
negligible. (4) When reefing is used and coasting between
the inflation periods is arranged, the path of the center of
mass can be approximated by the two-dimensional point mass
trajectory equations. (5) The time functions describing

the performance of the parachute when inflating without reef-
ing can be used to describe the reefed inflation periods by
adjusting the time scale,

F. Free Descent

This phase begins at the instant the parachute is fully
inflated and terminates at ground impact.

Two-body trajectory analyses are available, such as
Refs 7 and 8, which describe the two-dimensional motion of
the separate masses of the parachute and payload when con-
strained by the elastic connection (risers, slings, and
suspension lines) between them, While consideration of
elasticity is undoubtedly a more accurate representation of
an actual system, it was felt that a reasonable approximation
of the free descent phase could be achieved by analyzing the
system as a rigid body having realistic distribution of the
masses, It should be noted that the systems under consideration
are limited to single parachutes with assumed point mass
payloads, Further, the requirement for developing three-
dimensional equations of motion and computer programs would
have been considerably complicated by the assumption of a
two-body system. '
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1. Governing Equations

In the following, a set of orthogonal coordinate axes
fixed in the parachute load system is defined (Fig lla) with
respect to which the mass distribution is constant, These
body-fixed axes ave denoted by XYZ. The Newtonian or space-
fixed axes, with respect to which all accelerations must be
measured, are chosen to be fixed at the point of release from
the drop aircraft. These Newtonian coordinates are the same
axes, denoted xyz, used to describe the motion of the system
during the previous phases of the trajectory simuletion,

The orientation of the parachute-load system is described
by Euler angles, ¥, 08, ¢, chosen to correspund with the
notation of Refs 9 and 10, The Euler angles chosen for the
trajectory simulation are three consecutive rotations, begin-
ning with a coordinate system X15121 parallel to the space-
fixed reference frame (see Fig 11b), defined as follows:

(1) a rotation § about axis 021, yielding X9¥ 929

(2) a rotation 8 about axis Oy,, vielding X3Y425

(3) a rotation @ about axis 033, yielding XYZ.

Vector quantities expressed in the space-fixed axes are then
related to quantities expressed in the body-fixed axes by the
direction cosine matrix, i.e.

e - AE (70)
where e and E are vectors in the space-fixed and body-fixed

coordinate gystems, respectively, The direction cosine matrix
is the direction cosine matrix of Ref 10 transposed:
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Choosing the origin of the body-fixed coordinate system
as the mass centzr of the parachute-load system allows the
equations of motion in the body fixed system to be written as

dX
h‘ F-= (s g ¢ mp) —= (72)
- (73)

M= &(H)
? Time derivatives of vectors in the rotating reference frame

must be measured relative te the Newtonian reference frame,
If the parachute, and thus the body-fixed coordinate system,
{ rotates with an angular velocity w, the time derivative cf a
vector E is given by Euler's equation,

d E :
#(e) = 53 oy T E*E (74)

Thus the equations of motion (73) and (74) can be expressed
in scalar form as follows:

s Fx = (W\’_-rm“vmf)[ﬁ'wi'R‘_v] (75)
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EFY = (\'hlq-ms, +M?)[\.T* RU- PW] (76)

SFy= (wu-t- m55+m?)[w-o- PV -Q‘U] an

L= éI’u = (.D_Igy - hlgg -+ -QR(IqZ'I?f)

78

+(R%6") Tyq + PRIxy - PRIy, "

Zm= é'I'!?-QI“H - Pl + PR Txe-Tan) (79)
+(P-RY) Ty, * PQIy; - QR Iy

2N = RIgg- PIxg -QIye + PR(Tyy-Txx) (80)

,.(P?_ Qt) I!Y * QR 11.5 = PRIYB

where L, M, N are the body-fixed components of the moment M,
U, V, W are the body-fixed components of the center of mass
velocity v, and P, Q, R are the body-fixed components of the
angular velocity w. In terms of the angular velocity com-
ponents, the Euler angles are found from the differential
equations (Ref 8)
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©= ch(?—ﬁs'mq (81)
P= P+ Qsn@tond + Reos Gtomd (82)
Y a st-‘hq*_ Rw’@) sec © (83)

The velocity of the mass center in space-fixed coordinates is
related to the velocity in body-fixed coordinates by

x=Toy + Va,+ Wou, (84)
v =Uag‘* V&zz+waz5 (85)
e VUoay ¢ Vag, + Wy (86)

Thus Eqns (75) through (86) represent a complete
description of the system, and a solution to these twelve
equations provides the necessary information for a three-
dimensional trajectory simulation, Linearizing the equations
as is usually done in dynamic stability analyses, for
example airplane dynamic stability, is not an appropriat:
solution method for a trajectory simulation of a parachute-
load system due to the large angle deflections which occur in
parachute-load system trajectories, Thus the approach taken
for this trajectory simulation is to solve the equations
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numerically using the Runge-Kutta method. The remaining
task which must first be accomplished is the formulation of

the external forces and moments in the equations of motion
(75) through (80).

a. Three Degrees of Freedom

When the trajectory simulation is restricted to three
degrees of freedom, the quantities V, P, R, @, §, and y are
all constrained to zero, Figure 12 illustrates the orienta-
tion of the parachute-load system and the external forces
and moments which act upon the parachute and the load for the
three-degree-of-freedom-problem. The formulation of the
equations of motion is simplified corsiderably by the
restriction to three degrees of freedom, and the number of
equations required for a complete description of the system
is reduced from twelve to six, These equations are:

EFx= (e emp) | Traw| @D

£ Fy=(mpmmp)[W-aU]  (s9)

M= Qlyy (89)
e=Q (90)
Xz JcosO + Wising (91)

22 -Ugn® + Weos® (92)
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The external forces and moments which are considered in
the trajectory simulation are due to the weights of the
various components of the parachute-load system, the aero-
dynamic tangent and normal forces and aerodynamic moment due
to the parachute, the aerodynamic drag force on the load, and
the force due to the acceleration of the included mass and
the effect of the apparent mass of the parachute. The Liengths
11"12' and L4 from the system mass center to the load,
parachute center of volume, and moment center, respectively,
are signed quantities, the positive direction coinciding with
the positive Z-coordinate direction. These distances are
functions of the air density, since the mass center position
changes as the included mass changes., The aerodynamic normal
force and the aerodynamic moment due to the parachute act
at the moment center, which is defined as a point located a
distance equal to D, ahead of the canopy skirt, Thus the
1engthL is always positive, l is always negative, andl
can concelvably have either sign.

The force required to accelerate the included mass and
the effect of the apparent mass are given by

F= - (masmd) (2p) (93)

assuming that the apparent mass has the same value in each
of the coordinate directions., The acceleration of the para-
chute center of volume is given by

Ay
Flxp)= Hhers WY o4)

The components of the forces for the two-dimensional case
can then be written as
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ZFg = ~(myamgme) gsind + Fy + Dy sinwy (95)
- (ivma)[ (Ty QW) + Ql‘l]

. EFg = (mnq-m,s-nm‘,) gcos® -T - Dy cosely (96)
N . 2
- [(W- QU) - Q%]
If the moment of inertia tensor is defined such thact it
includes the effect of the apparent and included mass, i.e.
L1=1a* Low 97)

the moment due to the apparent force need not be considered.
The moment in the two-dimensional case is then

in - - (M.Ln‘* \mr .Qz) 353\:\9 +* D.l S'W\o(l ’.' * FN ”S*MAY (93)

The masses of the risers, suspension lines, bridle, etc., are
neglected in the formulation of the moment (98).

Using the definition of total mass employed in the
inflation analysis

M My Mg * W\P+ ™M+ Mg (99)

the equations of motion (87) through (89) can be written

in terms of equations for the derivatives of the valocity
and angular velocity components in the body-fixed coordinate
system, This formulation is

U= -( it Tes P \39%0 . '::’

i =
. oL -y (100)
- ey (_L"'"'vm- )LlQ - oW




Wz(mum"*mt)scose- T VD,%_'_“’ %y

™ ™M (101)
Q= (g 4y +wpL2) gm0 | D2 L simecg
Tyy Tyy (102)
+ FN 11 + Mﬂ
Iyy 1oy

The six equations (100), (101), (102), (90), (91), and (92)
then form a system of first order differential equations which
completely describe the parachute-load system.

The aerodynamic forces and moments are given by

T4 pve Or, 8, _(193)
Fu=Y%pvét Cn,S, (104)
Ma® SpVp CMo S, Do (105)
Dy = Fpvi CoSy (106)

The velocities of the load and parachute are fcund from

V= W04 aL) (107)
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and the angles of attack of the paraclute and load are

Ay =t [.. v+, (109
_ ) )
V+Qt
- T
1 ol % o [—
The angle is required sirice the coefficients CTo’ CNo’ and
CMo are dependent on the parachute angle of attack,
The lengths 11, 12, and.l3 are found from the geometry H
of the parachute-load system. Figure 13 shows the profile

of a parachute-load system in the XZ-plane, which is defined
as the plane of symmetry for a general parachute-load
gystem. The distances sy, 895 835 8, and 8g are reference 1
distances from the canopy skirt to the c¢7.ters of mass of
the suspension lines, risers, riser extensions, bridle, and
load, respectively, and s, .is the distance to the parachute
center of volume, If all these distanres, as well as the

/ volume V of the inflated parachute canopy and the masses of
the suspension lines, risers, riser extensions, bridle, and
load are knowm, the parachute-lovad system mass center
location can be determined for any value of the air density.
The distance of the mass center firom the canopy skirt is
then given by

ML S+ MgSe? g Sy + Wig, S4 T Se" Mo S~ Mise (777

S =
Nl+m5,+m? vy

-
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where

It is assumed that the values of S1s 893 S35, 8, S8g, and S,

do not change during the free descent phase. Thus the
lengths from the system mass center are

f,2(55-3) (113)
f,= -S-3¢ (114}
13= Do" B (115)

An approximation to the moment of inertia of the parachute-
load system about the Y axis is

IYY =1y + I, (116)
where }
IY = W‘l;_ + W\LS(Sf"g )z + MRLSZ-E )7. i
+ g L%"E)z + wg, (s.,-;)z r oy 1:3- (117) g
and
a =\ ) 3 ,0(._15_: ) lz‘ (118)
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The relation (118) is based on Ref 1l with the coefficient
0.252 selected for a solid flat circular parachute. The
apparent mass is assumed to be given by

W = % w (119)

which results from Eqns (43) and (44) when Dp = meax'

Thus all informationm is available for the solution of
the equations governing the moticn of the iystem during the
free descent phase of the trajectory simulation. Once the
equations are solved for U, W, Q, ¢, x, and 2z, further
information can be readily obtained, In particular, the
position, velocity, and acceleration of the lcad relative to
the space-fixed coordinate system are given by

Yi,= X+ £ swmB (120)
Yoz =2+ 4cos® (121)
Vg, =(U+Ql)) cos® + W sim8 (122)
Vig=-(U+ QL)) 5w + Wcos® (123)

0y, = (T+QW+AL ) cos ©+(W-QU-Q'Q)smb  (124)

ag,=- ({J’-&Q‘W-ﬁ@,l.} s O+ (W-QU-Q'L,)cos®  (125)
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b. Six Degrees of Freedom

For the general case, allowing six degrees of freedom
for the parachute-load system during the free descent phase,
the equations describing the system are far more complicated
than those for three degrees of freedom. The external
forces and moments are indicated in Fig 14,

In order to express che forces and moments in the body-
fixed system it is convenient to define the following angles:

dys tow _[_v:qm.] (126)
P = +ov3! ‘...1_;7_@'_.\ (127)

°<F= 'fcm-\ i—— .P.:_Q_h]

~T (128)
V"‘ Plz}
~ o | ——— (129)
P e \ W
\ V- Pll
VL= ton [W*QlﬂtJt-W‘]"z (130)
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Fig 14 External Forces and Moments
Acting on the Parachute -Load
System




e

Sy = +an! (- v-9L Y (131
L= [v-p2)* o] 2 )

where the subscripts b and p refer to the load and the para-
chute center of volume, respectively, The angles @y and
are the same angles of attack in the XZ-plane as discussed
previously. The angles g and ﬁp, analagously, are angles
of attack in the YZ-plane. The angles El and 8§, represent
the angles between the load velocity and the XZ- and YZ-
planes, respectively.

The force required to accelerate the included mass and
the effect of the apparent mass are given by Eqn (93) and the
forces and moments are

ZFX'-'-" (Nl* msS«r MF) S Qs‘ + F-Nx
"'D.ﬁ.. Cos 3\1 sy dg - b‘“L"W‘M) . (132)
[T+QW- RV + £,(&+rr)]
ZFY-_-(ML-;-M,_,‘a.mP)Sau v Fyy

'D.Q cos§p o P; - (\m“.m“) .

, (133)
[Xr+ RU - PW = £5(p-QR) ]

ZFg = (NL*’M“*W'F) QAzy =1 - D.l cos Ty cose g

") [ W+ PV - QU - £,(P5QY)] (134)




2'—"3 agzL"ﬂ? lf_* W\xll) - FNY 23
+ Dy 9-| Cos (S_L ALY {51 + Mﬂx (135)

M= 9 oan(mele sw L)) + Fug 4,

| (136)

Z2N= Mg (137)

where M, is a control or turning moment applied to the system.
Arrenging the equations of motion as equations for the time
derivatives of U, V, W, P, Q, and R, we have

. Vhlé 'N\“#\“P FNX .
Uz( Yoo ) % * vy * %cosf; sinoly

(138)
- "_“»_:“.'2&.. 1,(Q+PR) - QW+ RV
T
w _ [ Y tWMgy+tWMp ~NY D .
MR R
W'\L#W'\k

¥ Li(P-QR) - RU 4 PW
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Dy

oy 3% T - W, cos¥y cosay
w
7 _%. lz(P'Z_'.Qt) - PV QU (140)
F."-r- ) 3052(“91,__-*\«“1 !.D _ F!I L: N »)] ﬂl.
Ixx Ty Txx
w03y snfy + Max, +r'2lx.%_ - Qggﬁi (141)
+Pq X8
Ixx
Q= 3“5'(';?‘2*"‘11') + "N;ﬂs. s D_; L cosYy -
TY e 2 b (142)
S Ny +_1M_“.Y - pR(‘Iz'IIQ) -(P?-R _I_E
Yy Iyy Iyy
M Ixy Ty = Txx Iy,
R- < >4 - p - =
Toe Ton Q Toy QR I, (143)

making use of the fact that all parachutes are bilaterally
symnetric and hence (choosing the XZ-plane as the plane of
symmetry) Iy, = 1y, = 0. For most parachutes, it is also
true that the XYZ-axes are the principal axes, so that I

0, and Iyg = IYY' Equations (141) through (143) are left in
the general form, however, and are thus applicable to any
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parachute. Equations (127) through (142) and (81) through (86)
then form a system of twelve differential equations which

can be solve” for U, V, W, P, Q, K, %, 8, & x, ¥y, and z,

thus completely describing the velocity and angular velocities
as well as the Euler angles and location of the parachute-

Y

load system,
The parachute aerodynamic forces and moments and the
[ drag of the load are given by

' T=3% P sz Cr, S (144)
L Fuy = %Pvf' Crhx, So (145)
_l Fry -5 p vr: Culy., S (146)
Max = 4pep Co, S, an

Mag '=T?E pve’ Cmy, S (148)

L Dg= % p W Cosy (149)

where

vile (U+ Q1) 4 (V-pp )+ W (150)

VP"' =0+ Ql,)z +(v- 99.1)1' + Wt (151)
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Again, the coefficients in Eqns (144) through (148) depend on
the angles of attack o and Bp.

Since the XZ-plane is a plane of symmetry, the lengths
11, 12, ,[3, and the value of Iy, are found in the same
manner as for three degrees of freedom, with Eqns (113)

through (116). In general, the values of Iyxs Iggs and I, are

not given by such a simple approximation, but depend. on tﬁé
particular parachute-load system, As discussed previously,
it is often the case that I,y = IYY and IXZ = 0, but even in
this case the value of I,, must be formulated for the general
six degree of freedom system,

Once the equations have been solved for U, V, W, P, Q,
R, ¥ 0, ®, X, ¥, and 2, which are related to the mass center,

the position, velocity, and acceleration of the load are

given by
Yoy = X+ &0, (152)
My = Y b Oes (153)
=2+ §iag, (154)
Vgxﬂ'U*QQ..) an FV-PL)a,+ Way, (155)
VL, =(Us@ Yo+ (V-PL) A + Way, (156) i
Vi (U +@8 ) ag + (V- PL) 05 * Wy (157) 1

Q£x= (f]* QW’RV+ Q‘L|+ PRR|)&H + k\.r-p Rv

-PW - PR+ QR ) a,, + LWePy- QU (158)
= (Pz"' Qt)nl ] Qi3




.

e —— ——

"D i

A = (T+QW-RV + QL+ PRE Y,y + (V4 RU-PW
-PL+ @R )q,, + [WwePV-QU-

(159)
(P?fa‘)p_"].a“ |

oy, = (T+ QW -RV+ QL1+ PRL) ag +(V+ RV -pw
-PL,«QRL )ag + [W+PV- QY - (160)

(P2 Q') 1, ] ags

The numerical solution of these equations then represent
the desired information councerning the characteristics of the
descent trajectory of the suspended load allowing six degrees
of freedom of the parachute-load system.

2, Summary of Assumptions for the Free Descent Phase

In summary, the model for the free descent phase includes
the following assumptions. (1) The parachute-load system can
sbe described as a rigid body whose shape does not change as
the center of mass location charges due to change in air
density. (2) The aerodynamics of the parachute can be fully
described by a tangent force and by normal forces and aero-
dynamic moments acting at the moment center, (3) The aero-
dynamics of the load are described sufficiently by the drag
force, (4) The moments about the center of mass due to the
suspension lines risers, extensions, and bridle are negligible,
although their masses are included in calculation of the center
of mass position and the moment of inertia about the Y-axis,
(5) The apparent moment of inertia can be sufficiently approxi-
mated with a coefficient measured for models of a solid flat
circular parachute, and the apparent mass is the same in any
direction.
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IV, NUMERICAL TRAJECTORY CALCULATIONS OF
SEVERAL PARACHUTE-LOAD SYSTEMS

In the preceding Sections II and III, various mechanical
arrangements of different parachute systems and their function-
ing are described and the governing equations established,

.In view of the overall objective of this study a continuous

computer program incorporating all phases of the functioning
of the various parachﬁte-load systems was developed. This
program is based on the equations shown in Section III.

In order to check the functioning of this program and to
obtain results which can be compared to a certain extent with
field test observations, a number of total trajectory simula-
tions were carried out, The results of these calculations
and details of the systems for which the simulations were
made will be shown later,

At this time it may be stated merely that the program
works and that the results compare favorably with field test
observations. However, before reviewing these total trajec-
tory simulations it appears to be advisable to discuss the
more general inputs to the governing equations,

A, Steady State Canopy Volume and Geometry

Fcr the trajectory simulations, certain assumptions were
made concerning the shape of the parachute canopy during the
free descent phase, In accordance with Ref 11, the voiume of
a fullyninflated solid flat circular parachute is

V = (0.0667) Dy (161)

whereas the projected diameter of a fully infiated solid
flat circular parachute amounts to
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DPvnux =(0.¢48) Do (162)

as indicated in Ref 6, Assuming that the shape of the para-
chute is sami-ellipsoidal and the volume and major axis are
given by (161) and (162), the distance to the parachute
center of volume from the canopy skirt amounts to

s.=(0.129) D, (163)

These values of V, Domax? and s, were used in the trajectory
simulations when the solid flat circular parachutes G-13,
G~12D, and G-11lA were used,

For the extended skirt parachute, type T-10, it was
assumed that (161) is valid, whereas measurements of photographs
from Ref 13, combined with the assumption of a semi-ellipsoidesl
canopy give for the diameter and the mass center distance

Dpyny =(0-68¢) Do (164)

s°=LO-|33) Do (165)

The geometry of the parachute-load suspension system is
defined by the value of Dppax? the lengths of the suspension
lines, risers, extensions and bridle, and the load dimensions.
This allows the determmination of the distances s; through ss,
and together with s. and the masses of the components of each
parachute-load system all data for determination of the
various lengths { 1» 1 25 [3, and the moment of inertia Iyy are
known, provided that the free descent phase is constrained to
three degrees of freedom, For the more general case of six
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degrees of freedom, the only additional requirement is
sufficient data to calculate the momernt of inertia about the
Z-axis, Iy, since for the T-10 and solid flat circular
parechutes the moment of inertia Iyy = Iyy and the product
of inertia Iyxz vanishes,

Further details of the calculation of inputs to the
trajectory simulation program are discussed in Volume II of
this report.

B. Aerodynamic Coefficients

The remaining irformation necessary for the trajectory
simulation are the aerodynamic coetficients for the force and
the moment for the T-10 and solid flat circular parachutes.
Reference 14 presents in tables and graphs the results of
recently conducted measurements, and these coefficients were
used in the sample calculations,

The tangent force coefficient for the solid flat circular
parachute, taken from Ref 14, can be approximated by the
expression .

CTD‘.- 0647 -{).2 x10"5) \OlPI +(9.l5'x\o"4')|d flz

=(7113 x107%) \%p)3 + (133 x67C) lcpl? E |o!r|-‘- 30°
' (166)
Cr.= o0.¢20 |, ‘df\z 30°

e

Similarly, the tangent force coefficient for the T-10 para-
chute is approximately ’
Cr,= 0.570 -(2.48 x10-3) LTy +(.219x15°%) \quz
-(7.687x157%) ot > 4 {1.2797 x10°¢) lurl" : .
o ¢lapl ¢ 30° (167) :
Ct, = -.OOSZUGFJ - 30°)+.583 |°"p| 230°

.
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The measured data points from Ref 14, and these approximate

expressions are shown in Fig 15.
The aerodynamic moment coefficient for the solid flat

circular parachute can be approximated by
Cm= (4944 x 1073) dp - (3.94 x10°4) o“,"-

+(j.045:lb’s)o(;-(i.szxio")o(r‘ y Odotpe30®
\168)

©

Cr, = -, 0044 (ofp-130° )-om, &p 2 30°

and for the T-10 parachute by

Che = (1845 x107%) Ap - (1929 x15°3) g
- (678 x 167 %) X p? -(8.709:&10'7)0(?“ 0% qPLso"

(169)
Chme = ~.0060 (o- 30°)-0s6 % p 2 30° .

Moment coefficient data points, Ref 14, and their approxima-

tions are shown in Fig 16.
Finally, the normal force coefficients for the solid

flat circular parachute can be a; jroximated by
Cre = -(674x1072) %p + (5257 o) 042?
- ‘5 3 ’ -1 4 (-]
(153x15%) o« +(9x1oT ) otp" | O pe30” o

Cuo = .005¢ (xp~30") +.04, oAp 2 30°
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and for the T-10 parachute by

C~°= -(2.508 » to'?') op +U.95x\0'3)°‘pz
_(g,.ozzu\o") o(f.3 +(6827 x167) d‘,4 ) OgoAp< 30°
(171)
Cn,= 0072 (ot?-so')d-.oc,ﬂ)o(r > 30°

Again, data points from Ref 14 and expressions (170) and (171)
are shown in Fig 17, Because of the parachute symmetry, the
signs of the coefficients of Cy and CMO are reversed for
negative angles of attack,

It should be noted that the signs for the normal forces,
Fig 12, and coefficients, Fig 16, are reversed from those
shown in Refs 14 and 15 in order to arrange them in a standard
right-hand coordinate system, This was done because it was
necessary that in this trajectory simulation, all forces,
moments, and angles follow a sign convention consistent with
a right-hand coordinate system,

C. Examples of Total Trajectory Simulations

Once the governing equations had been formulated and the
computer programming completed, several sets of input data
were selected to provide a basis for debugging the program,
demonstrating that all of the calculation methods function as
intended, and, of course, to see if the results agreed reason
ably will with field test experience. Five parachute-load
systems were used with various release velocities, release
altitudes, suspended loads, and main parachute reefings to
give inputs for a data production run of 21 total trajectory
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simulations specified by the procuring agency. The input
data for these 21 cases is presented in detail in the
Appendix, The data was not intended to provide the extensive
parametric variations which would be needed to judge the
accuracy of the calculations.

All of the sample calculations presented were constrained
to three degrees of freedom, since no measurements of aero-
dynamic coefficients for a system allowing six degrees of
freedom exist, However, one sample calculation was accom-
plished with six degrees of freedom using the same aero-
dynamic coefficients in the XZ- and YZ-planes., These functions
were the same as those used with three degrees of freedom.
Since no disturbance in the YZ-plane was introduced, the
calculation gave results which remained two-dimensional and
were exactly the same as for the calculation allowing only
three degrees of freedom. This indicates that the total
trajectory simulation with six degrees of freedom functicns
properly.

In the following, graphical and numerical results are
presented for calculations for four separation-deployment
methods, inrcluding ore case with disreefing of the main
parachute, Also, some results for the remainder of the 21
sample calculations are tabulated.

1. T-10 Parachute with Static Line System

The physical data for this calculation were from a T-10
personrel parachute, D, = 35 ft, with a suspended load of
250 1b, 1In this case it was released from an altitude of
6,000 ft at a speed of 220 ft/sec., The physical processes
which occur throughout the airdrop for the static line system,
followed by the particular Subsection or Part of this
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report in which the modeling equations were developed, are:
load falling away from aircraft, IIIC2, deployment of main
parachute, IIID1, main parachute inflation, IIIE, and free
descent, IIIF.

The trajectory variables of altitude loss, z, system
angle, §, horizontal velocity, and vertical velocity are
plotted versus time in Figs 18 and 19, These show a system
oscillation with a period of about 6 sec, which has to be
expected since the T-10 is unstable at O 0°, The small
discontinuity in the curves at 3,2 sec is the result of
changing from data at the mass center to data at the load
center after full inflation. This discontinuity occurs in all
cases, and becomes larger as the parachute-load system lengths
increase. For this T-10 static line system there is no snatch
force calculation, the unreefed filling time was 1.65 sec,
and the maximum opening force was 1868 1b.

2. G-12D Cargo Parachute with Static Line Deployed
Pilot Chute System,

The parachute-load system that provided the physical
data for this calculation was a G-12D parachute with a sus-
pended load of 2200 1b. The G-12D is a solid flat circular
parachute, D, = 64 ft, also unstable at o, = 0°, The release
conditious were again h, = 6,000 ft, v, = 220 ft/sec., The
physical processes and modeling equations were : load falling
away from aircraft, IIIC2, suspension system deployment,
I1ID2a, snatch force, IIID2b, main parachute unfolding,
IIID2c, main parachute inflation, IIIE, free descent, IIIF.

The trajectory vari2bles calculated for this case are
shown in Figs 20 and 21, Again a damped oscillation is cal-
culated, but with a system larger than the T-10 system, the
period is about & sec, The figures show that this svstem is
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approaching a steady glide related to the parachute's stable
angle of attack, as all systems did when given enough alti-
tude. The snatch force was 8293 1b at a velocity of 197 ft/
sec, the unreefed filling time was 1,65 secs, with a maximum
opening force of 11,847 1b,

3. G-11A Cargo Parachute with Extraction Parachute System,

a, Unreefed Main Parachute Inflation

Data for this case was obtained from a G-11lA parachute,
D, = 100 ft with a 3500 1b suspended load. The extraction
parachute used was a 15 ft reefed ringslot parachute. The
release conditions were h = 2,000 ft, v = 220 ft/sec, The
physical prccesses and modeling equations were: extraction
of load from aircraft, IIICl, suspension system deployment,
I1ID2a, snatch force, II1ID2b, main parachute unfolding,
I1ID2c, main parachute inflation, IIIE, and free descent,
IIIF.

The trajectory variables, Figs 22 and 23, again show a
damped oscillation with a period of 11 secs. The calculated
snatch force was 2,357 1b at a velocity of 160 ft/sec, and
the maximum opening force was 9,331 1b for an unreefed fill-
ing time of 5.41 sec,

b. Reefed Main Parachute Inflation

This calculation was made to demonstrate that reefed
inflations could be modeled. The case presented here uses
the same separation-deployment system and parachute-load
system as discussed in the previous item. The release
conditions were h, = 2,000 ft, v, = 169 fc/sec. This sample
case represents & three stage reefed inflation with reefing
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cutter delay times of 2 sec, 4 sec, and 6 sec after snatch
force, The equations of subsection IIIB were used for the
coasting periods of constant drag area between inflation
stages.

Figures 24 and 25 present the trajectory variables, and
again show a damped oscillation with an 1l sec period. It
is intevesting that the amplitude of the oscillations was
considerably smaller than the unreefed G-11A, The snatch
{force was 2078 1b at a velocity of 130 ft/sec; the reefed
inflation times, excluding cutter delays, were 1.68, 0,96, 0.72,
and 4,01 sec with corresponding maximum forces of 3,062 1b,
5,667 1b, 6,032 1b, and 5,828 1b,

4, G-1lA Cargo Parachute with Reefed Main Parachute
Extraction System,

The physical data for this system came from a G-1lA
parachute with a 20-ft reefing line and a 3500 lb extracted
and suspended load. The reefing line was cut 4 sec after the
load was relezsed in the aircraft. The release conditions
were h, = 2,000 ft, v, = 220 ft/sec. This sample case has
the following physical processes and modeling equations:
extraction from aircraft, IIICl, main parachute iuflation,
IIIE, and free descent IIIF.

The trajectory variables are presented in Figs 26 and 27
and were very similar to the other G-11lA systems. The maxi-
mum opening force was 8,348 lb for a reefed infiation time
of 5.12 sec,

5. Additional Calculations,

Tables I and II show numerical results for all of the
2] total trajectory calculations made, including those just
discussed., Graphs like those prese:ited previously were made
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for all cases, but they have not been reproduced because

they were essentially the same as those presented. They
showed differences in oscillation period and temminal
velocity, but this would be expected from systems with various
sizes and loadings. The accuracy of the results cannot be
judged at this time, but obtaining all of these results from
a single submission of the computer program certainly shows
that the total trajectory simulation functicns satisfactorily

with any pertinent inputs.

85




t -

V. SUMMARY

The functioning of an airdrop or recovery system by
mezas of parachutes was organized in phases covering the
main events, These were the separatio~ of the lcad from an
aircraft, the deployment of the parachute system, the dynamic
and aerodynamic forces during the parachute snatch and para-
chute inflation processes, and the movement of the parachute-
load system after the inflation of the main parachute. The
phases indicated above included considerations related to the
various methods required by th: differing arrangements of the
parachute systems. For example, consideration was given to
the inflation of the main parachute in an unrestrzained single
process as well as in steps accomplished by diiferent reefing
line arrangement-,

For all phases, the basic equations were taken from
existing literature, when available, or they were established,
as, for example, the equations of motion of the fully in-
fiated and descending parachute allowing six degrees of
freedom,

A continuous computer program was déveloped which allowed
the total trajectory simulation of any purachute-load system
whose arrangement fits any one of the czses discussed in this
study, The program was designed in suca a way that different
subroutines wrelating to mechanical, aerodynamic, and dynamic
methods can be introduced, removed, or exchenged,

After completicn of che computer program a number of
numerical total tralectory calculations was carried out and
the results were indicated in tables anu graphical presenta-
tions, A study of the calculated rasults showed that they
fell well within the broad ranges cne would expect based upon
a familiarity with exieting field test results, All
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cal~ulated results follow the known basic parachute performance
characteristics very well, Statements about the accuracy of
the calculated results cannot be made without having more
complete field test data, Also, the calculation of the move-
ment of the parachute~load system after full inflation of the
main parachute had to be restricted tov movement in one plane
because aerodyuamic coefficients of parachutes at composite
angles of attack were not available,

The computer program has been laid out and calculations
have been made which consider the known non-linearities of
the aerodynamic coefficients versus their angle of attack.
The calculations do prove that the complete single computer
program is capable of predicting the dymamics of the entire
aerial delivery process. In particular it has been shown
that the movements of the parachute-load system in two
orthogonal planes can be predicted provided that the aero-
d'mamic inputs are available,

It appears that the program is ready to be used for
predicting parachute performance and that intensive compari-
sons between calculated and observed performance character-
istics are highly desirable.
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APPENDIX

The numerical data for the 21 sample trajectory cal-
culations discussed in Section IV were based on five parachute-
load systems frequently used by the United States Army, The
parachutes used in these five systems are the T~10 personnel
parachute and the G-13, G-12D, and G-11A cargo parachutes,
The four separation-deployment systems discussed in Section
II correspond to these systems as follows: the static line
system (System 1) is used for the T-10 and G-13 parachutes,
the static line deployed pilot chute system (System 2) is
uced for the G-12D parachute, the extraction parachute system
(Syster 3) is used with the G-11A and G-12D parachutes, and
the reefed main paracbute extraction system (System 4) is
used with the G-11A parachute. All physical details of these
five parachute-load systems as used with the four separation-
deployment methods are indicated schematically and described
in Figs 28 through 32, The various masses, lengths, voluues,
etc. wnich were used as inputs to the total trajectory
simulation were determined from Figs 28 through 32 and are
listed in Tables II through VII. The drag coefficient CDp is
given by

’

Cp,=
: DP

Coe

(OPrnex /Do)
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710 MNrsmesl Peresimis

1) Scatic lime, L, ..., ® 13 ft, seterisl = KIL-¥-4088, Type VIII
syles,

5 Depleywent bag, ¢immzions lemgth = 12 in, width = 12 {a, beight =
3 1o, (G © 0.33 £ed, wetghe = 3.3 B,
Bresk sord, materisl = I, & wbbing, cotten, finished ‘emgth
¥ -31-:-[.::-0.110:{”" b VS
4 B, =33 fe, 100 flat sxtended skirt . Camopy material,

sylen sleth MIL-C-020, Type 1y 1.1 ea/pd", neatsal porustity = 72 -
132 fe)/ted-ata (asome 100 #e)/tetute), W, 117 13, W - i

» 1 HIL-C-3040 L, ¢ -
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4 - » ’ - »
;.'ﬁ";‘ :nmuﬁt : ﬁa{;ﬁﬂt Type 1L aylem, €, = 2% (eot)
D Teylesd By = 290 1, (G, = 6.0 12, [

Fig 28, T-10 Parachute with Static Line System
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TABLE III

TOTAL 7RAJECTORY SIMULATION INPUTS
FOR T-10 PARACHUTE WITH STATIC LINE SYSTEM

Dimensions and Lengths

H D =35 ft D, = (0.686)D 8y = 11,52 ft

° max °
L, = 25 ft 5, = (0.133)Do 8y = 24,17 ft
i g = 2.5 ft Lotatic = 15 ft 85 = 27.8 ft
Masses
f
r my = 0,364 slug mp = 0.231 slug m, = 8.343 slug
: 8

F mLs = 0,075 slug my = 7.77 slugz

T Drag Areas, Drag Coefficieut

Vo

- C.Sy = 6 ft? €S, = 0.33 ft? C., = 1.487
D°L D°B  ° D,

Main Parachute Canopy Volume

V= 3317.5 fto
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C+13 Cargo Parachmta

1)  Statlc loa, L, ..( = 15 £t 6.0 Lo, caterfal = MIL-W-5665, Type
[ VI1I cotton web, 2300 1b or, str. xin,

2) DBraak cord, cazeslial = T I k inch cotten webbiog, 80 1b, finished
L lengtn = 6 in, weight = 0,17 oz,

k) D, = 32 ft hmisp’mricd cenopy, cancpy satarial, cotton lulli.o,
| fn 25 ozlyd NIL-C-3279, Type LI, oominal poroaity = 153 -~ 253 £t ]
‘ - - -
fel-ulo, ¥, = 23.89, ¥, v 2389, G = 0.75. |

4) 20 suspension lines, MIL-C-4232 Type 1, 40C 1b, ‘m = 1% L~
30 fr, weight = &.8 lb,

r 5) Risars, caterial = MIL-W-5665, Type VIII cotton wstbing 2900 1b (aio), ’
| em'ﬂ-m!(ut) I.‘-JOI.o, weight » 1,2 1b,

6) Cargo containar, langth = 30 in, width = 30 in, height = 20 in,
type A-21, (Cp3), = 7.123 £c? y ¥y = 300 1b,

Fig 29. G~13 Cargo Parachute with Static Line System
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TABLE 1V

TOTAL TRAJECTORY SIMULATION INPUTS FOR G-13
CARGO PARACHUTE WITH STATIC LINE SYSTEM

Dimensions and Lengths

D, = 32 ft meax = (0.648)Do 8 = 14,215 ft

L, = 30 ft S, " (0.129)1)o 8y = 29,615 ft

Ip = 2,5 ft Lecatic = 15 ft 85 = 31.635 ft
Masses

m, = 0,743 slug mp = 0.037 slug m.g 16,471 slug

W= 0.149 slug my = 15,542 slug

Drag Area and Drag Coefficient

2

= 7.125 ft C, = 1.786

D

CnS
D
' P

Main Parachute Canopy Volume

V = 2185.62 ft3
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1)

3)

4)

3)

)]
10}

i

'_[ ]

° T f

C-12D Cargo Parachuts

Stacic line, L, .00 . * 15 ft, materisl = Type VIII cotton webbing,

rolled WIL-W-3665,
Pilot Perachuts. Pask, weight @ 0,5 ib, (CpRw0.3 fe2,

PMlot Parachuts, D= 5.66 ft octayonal canopy, 3 suscension
10 = 3 £e] Mzi-C- 751, Type 11, G, = 0.75, veighe -
1) . n

loyment lina and bridls, matsrisl = Type VIII nylon webbin
?:“ = 30% (set), lengch « 14 ft, weight = 2.G 1b w/clevia. 5
Deplcywent hag, dimensicos, langth » 36 o, widech = 24.5 in, height =
W 1n, (Cp8) = 1.78 £, weigbe = 6 1b.
Brask cord, watsrisl = Type III 530 lb nylom enrd MIL-C-5040,
fioished langth = 6 {n, weighe = 0,003 1b,
B e 6h ft.crculsr flat canopy, cannpy material, nylag. 2,25 oz/
WL-C-7350, Typc 1. nowinal potosity = 90 - 165 ft It:z--in
TR lb,'ﬂp- 163.5 1b. '

suspensicn lines, ¥IL~C-7513, Typs 1V, 1,000 1b, € = 20%
L =S fe, weight & 2.9 1b, i mox >

]
risers, MIL-W-27265 Class R, €___ = 2%, 870C 1b
Ly = 5 £ 3 in, weight = g it J '

4 Suspeusion Slings, MIL-W-27265 Type VII oylon web, 5500 1b
€™ 0%, lengih's 26 in, welght w2 lb. ’ i

16 A-22 Sugpension Slinga, NIL-W-S5665 VIIT cottan web, 2900 1b,
S an ™ 182, langtn « 3'ft, weight = 7 10 (showm on frone stde of

u;utnor; typical of &ll four atdes).

2 o3

A 22 Cargo contatosz, leagth = 52 in, widta = 43 {o, weligat = ¥ in,
(Cp®, = 18.9 £ed, v = 2,200 1b (vich carge)

Fig 30. G-12D Cargo Parachute with Static Line

Deployed Pilot Chute System




TABLE V

TOTAL TRAJECTORY SIMULATION INPUTS FOR G-12D
CARGO PARACHUTE WITH STATIC LINE UEFPLOYED
PILOT CHUTE SYSTEn

Dimensions and Lengths

D, = 54 ft meax = (0.648)Do 8, = 23.75 ft
Ly = 51 ft 8, = (0.129)Do 8, = 50.00 ft
Lp = 5.42 ft Lotatic = 15 ft 8, = 56.23 ft
L, = 8 ft Do)pilot = 5.66 ft 8¢ = 57.21 ft
(Ls + LBr)pilot = 14,75 ft
Masses
mp = 2,383 slug Mp. = 0.280 slug mpb = 0,303 slug
mo= 0.867 slug my = 68,386 slug m.g = 72,870 slug

8
mg = 0.147 slug

Drag Areas and Drag Coefficient

S, = 18.9 ft2 C.Ser = 26.016 ft2 c 1.786

C
D D"II D
. P
Main Parachute Canopy Volume
V= 17,301.5 ft°

Suspension System Spring Constant
1/A = 4777 1b/ft
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G=-12D Cargo Parachute

1) 13 ft ringslot parachute - reefed to o, - ® 12 fc, caocopy
[ ]
naverial, nylon cloth MIL-C-7350, Type I, 2,25 ozlydz, nominsl
porosity « 90 - 165 ﬂ:al!tz-ld.n, Cp = 0.55, W = 6,06 1b, L
8.06 1b, (CpS)  pqpeq = 62-2 ft2. °
2) Raefing line, length = 260 in,

J3) Extrection perachute bridle; saterial = MIL-W-27263 n{lon, Type X,
8700 1b br, et, (min), € . = 0L (esc), lengen = &0 fe,1’loop,
welght » 10 1b,

4) Daployzent bag, dizensions, length = 36 in, wideb = 24,5, height =
10 10, (CyS) = 1.78 fe?, wuight = 6 1b,

5) Break cord, material = Tyne IIZ 530 1b nglon cord MIL-C-3040,
flol.hed length = & in, weight = 0.003 1b,

6 b= &4 ft circuler flat canopy, canopy material, nylon, 2.25 oz/
‘dz MIL-C-7350, Type I, nomioal porosity = 90 - 165 ft7/fci-aio,

e ™ 78,79 1,°¥ = 13.5 1b.

7) &4 suspaniioo lines, MIL-C-751" e IV, 1,000 1b, € - 20%
L, = 51 ft, weight & 27.9 1b. Trpe % 1 ' T wax ’

8 risere, MIL-W-27265, Tyse X, Class &, € = 287, 8700 1b -
" 54t 5 In, v:;..ht - 275 th, * " max » ’ 1-.

9) HMacform bridle, material = MEL-W-27263, rylon mbbing! e X,
8700 1 br, str. (cin), G 3L (ent), leageh = § It (4 each

2 loup) weight = 11,0 1ba,

2
10} Cargo platform, length= 8 fr, width = § ftr, (C,S); = 76.8 ft
? Vg © 2,200 16 (with cergo)s | » o’ ’

_Fig 31. G-12D Cargo Parachute with Extraction
Parachute System

»
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TABLE VI

TOTAL TRAJECTORY SIMULATION INPUTS FOR G-12D CARGO
PARACHUTE WITH EXTRACTION PARACHUTE SYSTEM

Dimensions and Lengths

D, = 64 ft Ly, = 8 ft 8 = 23,75 ft
L, = 51 ft Dﬂhax = (0.6&8)D0 8y = 50,00 ft
g = 5.42 ft 8, " (0.129)DO S = 56.50 ft
8g = 62.50 ft
> : Masses
mp = 2,383 slug mp. = 0,341 slug mpb = 0,746 slug
mLs = 0,867 slug my = 68.386 slug m.g = 72,87
mp = 0.147 slug
Drag Areas and Drag Coefficient
b
i = 2 - 2 =
r~J CD%L 76,8 ft CDSII 63.98 ft CDp 1.786

Main Parachute Canopy Volume

V= 17,301.5 ft°

Suspension System Spring Constant
r 1/A = 4777 1b/ft




n

k)]

4)

3

€)

8

9

10)

1

Fig

@0
’

Nl

G-11A Cargo Parachuts
1§ ft rinrgalot parachuts - reafad to Dn » 12,0 ft, canopy

off
mitarlal, nylsa ¢loth MIL-C-7350, Type I, 2.25 ozfydz, nowinal
porcaity = 50 - 165 fe3/fe-utn, ) = 0.5, V_ = 6.06 1b, v, -
.06 1o, (CoS)ppqpeq = 62:2 fE2, °

Reafing llos, langth = 260 in,

Extractlon parschute bridle; maierlal = MIL-W-27265 nylon, Typa X,
8700 1b br, stx. (z=in), €™ 0% (est), langth = 60 fr (one
loop), weigbtz = 10 1bs,

iploysent bag, dizenalons, lsngth = 48 ln, width = 35 ln, helght =
12 1n, (€8 = 2.33 £e2, veighe = 28 1b..
Braak cord, material = Type II1 550 1b nzlon cord MI1.-C-304&0,
finished length = & in, weight = 0,005 1b,
°°2- 100 ft clreular flat canopy, cancpy materisl, rlgvlr.m.5 l.g oz/

d® -HIL-C-7020, Type II, nominal poresity = 70 - 176 ft”/ft*-nin
5‘, - 133.7 1b, ﬁp =193 Ib, 4 '
120 suspension llnas, MIL-C-50%0, Type IIIL, 550 1b, €__ = 3
L, - 35 ft, weight ='20.7 1b, ’ A

12 risery, MIL-W-27165 XVIII, 6,000 1b, € __ = 21 -
60 fr, velght = 33,6 1£.m' ' toax " BN Iy

Load attacheent riee., metariel = MIL-W-27165 nylon, Type X
8709 1b br. str, (oinf, €, = 30% (¢sr), Ly = 20 Ic (one loop),
waight = 4 1b,

Platform brldle, materisl » MIL-W-27265 nylow, Tvpe X, 3700 1b
br, atr. {nin), €, = X% (est), length = I ft, weight = 11.0 1b.

Carpo pletform, length = § ft, widzh = 8 ft, (COS). =- 76,8 !tz,
¥, = 3500 1b or 500 1b (vith cavrgo);

32. G-11A Cargo Parachute with Extraction
Parachute System
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TABLE VII

TOTAL TRAJECTORY SIMULATION INPUTS FOR G-11A CARGC
PARACHUTE WITH EXTRACTION PARACHUTE SYSTEM OR
REEFED MAIN PARACHUTE EXTRACTION SYSTEM

Dimensions and Lengths

Db = 100 ft LBr = 8§ ft
= = (0,648)D
Lg 35 ft meax ( ) 5
LR.' 60 ft S ™ (0.129)Do
Masses

my = 4,156 slug . 0.342 slug

Op
= 0.643 slug m, = 108.8 slug
mLs L or

155.4 slug
mg = 0.124 slug

Drag Areas and Drag Coefficient

- - 2
CDSII 64,53 ft

- 2

Main Parachute Canopy Volume
V= 66,700 £t

= 16.45 ft
= 61,10 ft
= 99,30 ft
= 113,30 ft
= 119.30 ft

g

8

v B~ w e =

mpb = 1,432 slug
m. = 112;697 slug
163,324 slug

Cp = 1,786

Suspension System Spring Constant

1/A = 910,7 1b/ft
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