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S~ PREFACE

This report presents results of a study designed to investigate

the dynamics of a spin-stabilized free rocket during the launch phase

of motion. The models developed are applicable for the case of very

high spin rates similar to those achieved by ANSSR, an aerodynamically

I neutral spin-stabilized rocket developed by Emerson Electric Company

for the U. S. Army [1]*. This 105 mm rocket is pre-spun in its launcher

L by four auxiliary motors thrusting tangentially at the rear of the round.

r The boost phase of the flight does not begin until these motors have

been exhausted. Thus, the rocket exits the launcher with spin rates

(10,000 rpm) considerably greater than those considered by previous

investigators [2]. A double-diameter launcher tube is used to minimize

L tip-off effects.

The design objective for the ANSSR system has been to utilize the

stabilizing effect of the extremely high spin rate in lieu of fins to

decrease the overall wind sensitivity of the weapon. A factor affecting

the accuracy of any free rocket is mallaunch (that component of the rocket

I, angular rate vector not aligned with the launcher bore axis at the instant

of release). Mallaunch values observed with optical lever and camera

techniques at Redstone Arsenal were higher than expected [3]. This

I investigation has addressed the problem of mallaunch due to

r * Nunbers in square brackets refer to references at the end of the preface.

E iii*1I



Ut
"* tip-off effects

"* in-tube rocket bending

* launcher motion caused by rocket -I
excitation

This report is presented in three distinct sections. Each

section is complete with its own list of symbols, fit-res, tables3

and references. Results obtained are discussed at the end of each

section and will not be belabored here. However, we will mention ii
that the results show

"* that tip-off should not be a major
c•,,se of mallaunch

"* that body bending can be a major
cause of mallaunch

"• that the launcher support system
can be designed so as to minimize
mallaunch TI

The diligent efforts of the project leader's co-workers Messrs. ii
Lindholm and Tomb is hereby acknowledged. The calculations were

made with the help of Mr. John B. Hill. Also, the skill and extreme

good humor of Mrs. Dianne Fretwell along with Mr. Robert Sullivan [1
and Mr. Robert Young were indispensable in preparing the manuscript.

The research team, during the course of this investigation, has U
enjoyed the cooperation of the Aeroballistic Directorate of Redstone
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Arsenal and particularly that of Messrs. Conard and Vest of the Systems

Evaluation Branch.

Joe W. Reece
Project Leader
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SECTION I

I4ALLPJJNCI DUE TO TIP-OFF

ABSTRACT

A Unem.'Lzed modet iu devetoped 604t the dgnmi~c6 o6 a

api4.nAJg, wtbola~nced, kigd Aoche~t duiting the tip-o~j pha~e

o6 taunwch. Mollaunch AazteA6 ot the 4ocke.C ax4e obtainted 604

tfie aho4t time inite'waL 6'wm tip-oJ6 to end ad guidance. The

_ ~4e~u.LU6 Ahow tha~t t4p-o6j &houtd not be a nuajo4 cau~e 06

~ .1 indawttuch 6o4 ve~y high apinute'A~t and a6k0t tip-o66 timeA.
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LIST OF SYMBOLS

X,Y,Z ground reference

i;j,k unit vectors of XyZ
x,y,Z body reference

e1,e2,e3  unit vectors of x~y,,z

Euler Angles
* g R angular rotation vector of x,y,z with respect to X,Y,Z I

g R angular rotation vector of the rocket with respect
to XYZ

angular rotation vector of the rocket with respect
to x,y,z (spin rate of rocket) L,

1o angular momentum vector of the rocket with respectto the origin of x,yz

0o external moment vector with respect to the origin
of X,y,Z

Ixx, yyIzz principle moments of inertia of the rocket withrespect to x,y,z

Sfront bearing reaction vector I f

T thrust vector

inertia load vector

m rocket mass I'
E distance of rocket mass center from y-axis

2
'F



II

Fr position vector of the c.m. of the rocket with
respect to x,ymz

,xo.iyow4zo components of % expressed in x,y.z

Sg 32.2 ft/sec2

!. e.transfer functions of 0 and V
S elgenvalues of the system

L IpI magnitude of the pitch mallaunch rate

I a•yI magnitude of the yw mallaunch rate

V approximate rocket velocity at the end of guidance

a average rocket acceleration from boost motor ignition
until the end of guidance

s guidance length

.8 bearing mismatch - longitudinal

t total tip-off time

~i
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A. INTRODUCTION tii
A possible source of mallaunch for the NSSR Rocket is due to what

has come to be called the "tip-off" effect. This phenomenon occurs in

the time period after the rocket's rear bearing has lost its launcher

tube support while the front bearing retains its support. Due to the

extremely small time of contact it is possible to obtain a closed form

solution for a linearized dynamical model of the rocket motion during

"tip-off". The process of analysis allows the capability of treating

both static and dynamic unbalances. The mallaunch rates, caused solely

by tip-off, which are predicted by this model are the pitch and yaw

rotation rates for the rocket immediately after the front bearing has

lost its launch tube support, i.e., as the rocket becomes free. These

rates are depicted in Figure 1.

The spinning, unbalanced, rigid (i.e., no bending) rocket during

the tip-off phase is open to the same sort of dynamic analysis u,,ally

applied to the classical dropped gyro [1]. A significant difference

is the inclusion of the pertubation of the rocket motion due to static

and dynamic mass unbalances. As a result, this analysis yields a set

of linearized equations of motion rather than the more general solution

utilizing elliptic functions [1].

Shown in Figure 2 is the configuration of the rocket in the tip-off

phase. In the analysis, the rocket is assumed to be simply supported

by its front bearing. These simple supports are aligned with the

4
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6 [
geomtric center of the front bearing. At utime zero, (i.e., when the

rear bearing has lost its launcher tube suppott) the position of the U
rocket is as shown in Figure 2.

The physical characteristics used in this analysis are presented

in Table I.

Traverse Axial *C.M.
Rocket Mass (Slug) N.I. (Sluq-ft2) M.I (Sluq-ft 2 ) Location (ft),

1.54 2.2 0.03 2.058

TABLE I. Rocket Characteristics (ANSSR I1)

Li.

U
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B. ANALYSIS 1
The position of the rocket in space can, at any time, be described p

by the two independent Euler angles shown in Figure 3.

The coordinate systems and Euler angles used in the analysis are

defined as follows:

9 Ground Reference: Ground reference is (XYZ) with respective LI
unit vectors (6,jk). The origin is fixed at the geometric center of

the front bearing. The Y axis is taken positive going out of the

launcher tube's longitudinal axis. The Z axis is taken positive up and L

parallel to the local vertical. The X axis completes a right hand

system. All equations of motion will be written with respect to this

coordinate system. This can be done as the acceleration of point 'loll

is essentially parallel to the acceleration of the rocket C.M. for

the short time period involved. This frame will be designated as

"frame g".

* Body Reference: Body reference is (x,y,z) with respective unit

vectors (i 1 ,W2 ,e 3 ). The origin (point "o") of this frame is fixed

coincident with that of frame g. At time zero this frame is aligned

with frame g (i.e.,# - * - 0.0). At any time, the position of the p'
body reference with respect to frame g is defined by the Euler angles

Sand 0 as in Figure 3. This frame will be designated as "frame b".

It is important to note that x and z do not spin with the rocket,

i.e., the rocket spins about the y axis of frame b.

8
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0 Systam Euler Angles: The two independent Euler angles that

describe the position of frame b with respect to frame g are and 0. B
*is the first angle of rotation about Z and 0 is the second angle of -

rotation about x. Both angles and their rates are expressed in red

and rad/sec respectively.

The relation between the coordinates of frame b and those of

frame g Is: F-

y [A]] X 
1

with matrix [A] defined as:

A] 0 CO S O] C* 0 (2)

where CO is taken to be COS(#), etc.

Now:L
g-R - the angular rate of frame b with respect to frame

g (I rad/sec).

gaR - the angular rate of the rocket with respect to frame

g (2 rad/sec).

S- the angular rate of the rocket with respect to frame
b (! rad/sec).

The above angular rates are given by the following equations:

gwb i + iSO1 2 + 4COF 3 (3) [



1 11

giRi R *1 + (' S # + ) '2  *C C 3  (4)

A "2~I (5)

It follows that the angular mo•entun vector of the rocket expressed

L in frm b is:

I r0  xX " + 1y (' SO +f') 12 + Jl*C* '3 (6)

I The sun of all external moments about point NON must be equal to

the first time derivative of IT with respect to frame g. So:
0

d (RO)(7)

or
F oI frmb+9bx10 (8)

[ If it is assumed that for the time period of interest, 0, # and

their respective time derivatives are very small (on the order of
Smilliradians), all second order terms, such as I zz*SecO , that result

from the evaluation of equation (8) can be ignored as Iii is large.

If SO - and CO- 1, equation (8) reduces to

I M xxO Iyy f)*

"" 7 0  (9)

M M+ I
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These equations are similar In form to those presented in (2] for

the aalysis of the two-axis gyroscope.

1he only forces acting on the rocket during the tip-off configur- [I

ation, Figure 4, are rocket weight, inertia loads due to static and

dynamic mass unbalances, thrust, and front bearing reactions. Of these,

only the rocket weight and inertia loads exert any moment about point

"*0. This is true because the rocket is assumed to be rigid (i.e., no

bending) and point "0* is located at the geometric center of the front

bearing. It is known, that if the rocket is bent during tip-off, that

a component of the thrust vector will create a moment about point "00.

The question of the degree of bending that the rocket experiences is

treated In Section II of this report. L.

- front bearing reaction. This force always acts in the z - x

plane and is assumed to act, at all time, on a line through

point "0" (2 lb).

T a rocket thrust vector. This force always acts along y. (2 lb).

-mg - rocket weight. This force always acts at the rocket c.m.

and is always parallel to Z. (d lb). Note, g - 32.2 ft/sec2 .

i1. inertia load due to static and dynamic mass unbalances. This F
L

force is assumed to act through the rocket c.m. and always in

a plane parallel to the z-x plane. The rate of rotation of

T1 is assumed to be that of the rocket (i.e., 987 rad/sec)

and its location wth respect to an arbitrary reference axis L
in its plane of rotation will be given by the quantity 11t

where 1)- 987 rad/sec and t a tim (I sec). The magnitude of

,is given by:



I
1 13

Ix

I

i

I

Figure 4. Free body diagram of the rocket during tip-off



14 1!

where: l
mn a rocket ma~ss( slug)

E a distance of. fron y (2 ft)

"- rocket spin rate (U rad/sec)

- the pcsition vector of the c.m. with respect to frame b.

This vector is always parallel to y. (d ft).

Now:

o x (11)

with

T T l mgk (12)

as

CG= 1,

Nxo = mgr - mE 2r cos(flt)

oM 0 o (13)

2
M = mE 0 r sin(flt)zo

Equations (13) represent the external moments about point "0"

during tip-off. Note also that equations (13) assume that at time

zero T1 is aligned with +Z.

Substitution of equations (13) into equations (9) yields:



is

1X0 I flý -mgr -mEifr cos (f10I I9(14)
Izz i- Iy YY nE If2 r sin(GOt

Since the rocket is SyMetric (i.e., I * I zz) the following

Sterm are defined:

(15
xx

Xx

Note that the tem & is the natural frequency of the system

d( rad/sec). If equations (15) are substituted into equations (14)

then the equations of motion take on the following form:

M = 1 - N2 cos(nt)

I-. *;+e M N2 sin(nt)

L The equations of motion for the system are a pair of second order,

coupled, linear, non-homogeneous, ordinary differential equations in 0

and*.

I Equations (16) can be modified for the case of 'F, being initially

aligned with the -Z axis at time zero and have the form:

-mooe" * 1 + M2 cos( n t)
M 2(17)I *e+.ii- -2 sin(O t)



The Laplace transform method E2] was used to solve equations (16). L
The transformed equations have the form:

S• M2 0 (18)
rS2 . a2 1(

where the S's are the eigenvalues of (16).

The response functions for ( and T can be obtained from (18)

and are of the form:

SSHMne 1  2_______ + 20
S(S2 + &2) (S2 + 002)(S2 + n 2) S(S2 +& 2 )(S 2 + W2)

M2 (1+1 ) Nl. (19) &
(S2 +02)(S2 + fl 2 ) S2 (S2 +.2)

By use of the partial fraction method and tables in [2] the inverse

transforms of 0 and * are found and the time responses for a 0 and P 1.

during tip-off are:

M , M 1 + 2 ]M 2
*(t) = cos( a t) Cos( (at) •L!_ +

C(t) = sin(& tL2 +. M2 sin (nt)[ 2]- !-t

Witth the first time lerivatives of equations (19) and the projection

of these quantities onto frame g the magnitudes of the pitch and yaw

mallaunch rates are found to be:

I



I (21)

[I4g I c2,

F Figure 9 was obtained by assuming that both the thrust and the

mass are constant from boost motor ignition until the end of guidance.

An average thrust for this time was computed as 4808.367 lb [4]. With

a rocket mass of 1.54 slug an average acceleration of 3122.316 ft/sec2

can be calculated. As the initial velocity of the rocket is zero the

[velocity at the end of guidance can be calculated from:

V.V-;2 & (22)
r|r and has a value of 1246.96 in/sec.

a - average acceleration up to the end of guidance (I tt/sec2 )

s - guidance length (20.75 in.) [4]

FIf the velocity of the rocket Is assumed to be constant during tip-off

then the following relation exists between velocity, bearing mismatch,

and total t.,ne of tip-off:

St - 8/V (23)

where

8 - bearing mismatch (d in.)

II t - total tip-off time d sec.)

I V - average velocity of the rocket during tip-off (1246.96 in/sec)

Thus, for any specified amount of bearing mismatch the total tip-off

I time can be calculated.



A typical dynamic unbalance at the front bearing (before balancing)

has been measured as 0.45 oz-in and reported in [3]. This is equivalent

to an effect caused by a D'Aleubert's force at the center of mass and

expressed by equation (10). For a rocket mass of 1.54 slugs and 0 of

987 rad/sec, the equivalent E will be 5.015 x l0-5ft.

In order to obtain the mallaunch rates the amount of bearing mis-

match must be specified. If the bearing mismatch is as much as a tenth

of an inch then the total tip-off time is 8.0 x 10"5 sec (Figure 9).

With the aforementioned conditions and for the case where T, is

initially aligned with -Z the pitch and yaw mallaunch rates of

0.048 x 10-2 rad/sec and -0.0136 x 10-3 rad/sec respectively (Figures 7

and 8). These two values yield by a vector sum a total mallaunch rate

of 0.48 x 10-3 rad/sec due to the .10 inch mismatch.

The shaded area on Figuies 5, 6, 7, and 8 depict the range of

mallaunch for 0.0 to 0.02 oz-in of mass unbalance as reported in [3].

For a bearing mismatch of 0.23 in and total tip-off time of 20 x 10-5

sec, a mass unbalance of 0.02 oz-in yields pitch and yaw mallaunch rates

of 0.0598 x 10- 2 rad/sec and 0.0123 x 10-3 rad/sec respectively if is

assumed to be initially aligned with the -Z axis. These two values

yield by a vector sum a total mallaunch rate of 0.598 x 10" rad/sec

due $ the 0.23 inch mismatch.

fLi
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LIST OF SYSOLSL

a acceleration of payload center of mass with respect to X.Y,Z

ir longitudinal (along launch tube) acceleration of rocket due
to engine thrust

el102,e3 unit vectors in x y,z

r moment of momentum vector

ij unit vectors in xY,Z

I Inertia tensor of rocket

k dynamic stiffness

K stiffness (as to bending)

L length between bearing centers .

m mass

g bending moment

r position vector of center mass of payload section with respect
to X,Y,Z

x,y,z body reference

XY,Z ground reference

bending angle

rocket section deviation angle for ith section

41,12 bearing clearances .

0 angle between longitudinal axes of launch tube and unbent rocket

*,0 Euler Angles

'p Laplace transform of * U
0 Laplace transfom of e

/
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5 w body frme spin rate with respect to XY,Z

Mallaunch or cponent of rocket spin vector not along launch5 tube axis

SR angular rate vector of romkvt with respect to XYZ

5 • angular rate vector of rocket with respect to x~y,z
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A. INTRODUCTION

The objective of this section of the report is to develop an analyti-

cal model that will predict the whirling and mallaunch rates of ANSSR II.

The motor section of the rocket will be modelled as a variable El beam

that is simply supported between its front and rear bearings while the

payload section will be considered rigid. The basis of these assumptions

is Figure 25 of [1].

The analysis will be divided into four parts. The bending and

deflection equations of the motor section subjected to the loading condi-

tion shown in Figure 1 will be developed first. A general motion analysis

of the payload section, coupled with the bending equations, will then be

carried out and will yield a whirling rate for AtlSSR II that is within 18

to 20 percent of the observed whirling rate. A prescribed motion analysis

of the payload section, taking into account the rocket's bearing clearances,

is also coupled with the bending equations yielding the degree of "in-tube"

bending for ANSSR II. The degree of bending predicted by this model will

be in agreement with bending data that is presented in Figure 22 and Figure

23 of [1]. Once the degree of "in-tube" bendine is known then the mass

center of the bent rocket and its PLAI with respect to its mass center are

both found via a lumped parameter model. Thus, knowing the bent rocket's

PLAI, the mallaunch rate of ARISSR I1 is easily found.

The majority of the above analysis is carried out in one of the trans-

verse planes of the rocket as complete symmetry of rocket motion in its

perpendicular transverse planes is assumed.

28
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S. BENDING MD DEFLECTION EQUATIONS OF THE MOTOR SECTION

The motor section of ANSSR I1 is considered to be a variable El bern

as shown in Figure 1. The coordinate system used in this analysis is

S(Y,!,). The origin is located at the center of the rear bearin>. The Y

axis is taken positive going frm the rear of the rocket towards the nose

and is parallel to the unbent rocket's longitudinal axis. The r and T

axes are normal to T and form a right hand system. The sign convention

that will be used is that a negative ament, applied as in Figure 1, will

cause a positive displacement.

The bending and deflection equations for the various sections of the

motor section are represented as;

N c '
.2 4i

and
M- - . Ct KtI

C1 x y + K17 (2)

where,

t - 1, 2, and 3 and represents the been sections:

0 _ L< , L L_ - L2 < 7- - L

respecti vely,

M_ - A moent applied In the negative X direction as shown in

Figure 1 (d ft lb),

29
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El1 a the El of the ith section of the motor section, see Figure 1

L dlb ft 2).

[ L " the length of the motor section (d ft)

(i and K1 a constants of Integration of the lth motor section (! lb ft 2 and

L lb ft respectively).

The cov tants C1 and K1 can be evaluated due to the following boundary

conditions:

At O, a O;

At •u pI, *_ and g 1 * 2 ;
x2

x2 0 13;

At 
-L. i2 

D3

Aty-L, 3 - 0

Upon evaluation of the boundary conditions the C1 and K1 are found to be:

2 3

"[!L1  Ell ] M ]2 - 2 1 (

C • 1 2 _E• 1] + E1 C1 (4)

C/* 2 -[ E 2

SK 1 -o (6)

2K "0 (6)
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The degree of bending in both transverse planes of the motor section

at the front bearing can be found by combining equations (1) and (5).

The equations are of the following form;

a * 1  (9)

73 K

and

a xI _ (10)
73 7

where

3 3

L - I I - I- - I L~(1
X32 EI3 EIz 32 1 EI 3EI3

The quantity K can be thought of as the bending stiffness of the

motor section at the front bearing to a mument applied as shown in Figure 1.

The numerical values of L1, L29 L and EHI used in this report are

presented in Table I.

f
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C. GEUERAL MOTION ANALYSIS OF THE PAYLOAD SECTION

As stated, the payload section of the rocket will be assumed to be

rigid. The position of the payload section in the space can be described

L by two independent Euler angles as shown in Figure 2.

The coordinate systems and Euler angles used in this portion of the

[ analysis are defined as follows:

0 Ground Reference: Ground reference is (X,YZ) with respective

unit vectors (i,J,k). The origin is fixed &t the center of the front

[ bearing. The Y axis is taken positive going out of the launch tube

longitudinal axis. The Z axis is taken positive up and parallel to the

Li local vertical. The X axis completes the right hand system.

e Body Reference: Body reference is (xy,z) with respective unit

vectors (i. 1 Z2, g3). The origin (H p) is located at the mass center of

the payload section. If the angles * and 0 were both zero then the body

reference axes would be parallel to the corresponding ground reference axes.

It is important to note that x and z do not spin with the rocket,

i.e., the rocket spins about the y axis of the body frame.

e System Euler Angles: The two independent Euler angles that des-

scribe the position of the body reference (or frame) with respect to the

ground reference are * and 0.-* is the first rotation about z and -0

is the second angle of rotation about x'. Note that x' is parallel to x.

Both angles and their time derivatives are expressed in rad and rad per

; Esecond respectively. 3
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The relation between the coordinates of the body frs and those of

the ground reference is:

Iz
H CB]. [ (12)

with the matrix [B] defined as,

[Bl- t o - • s SC o (13)
0 so 0 0 1

or, the relation may also have the following form:

LU [] (14)

with the matrix [C] defined as,

o S# 0 10 ( o15

0 0 1 0 -so Ce

where CG is taken to be COS( ), etc.

Now:

* the angular rate vector of the body frame with respect to the

ground reference (I rad/sec).

1I
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* the angular rate vector of the rocket with respect to the ground

reference (d rad/sec).

g the angular rate vector of the rocket with respect to the body [j
frame, i.e., the rocket spin rate (I rad/sec).

The above angular rate vectors are given by the following equations:

+- * + so CO-cei (16). U- i 2 - 3

ii -e + (•So+ O 2 - CO (17)

= e2 (18) Ll
It follows that the angular momentum vector of the payload section

with respect to its mass center, expressed in the body frame is [23:

e--,x i ., ',)z - z *cei 3  (19) LI
The sum of all external moments about the mass center of the payload

section must be equal to the first tir-e derivative of H- with respect to [I
the ground reference. Therefore, rj

•cwp =tl'np)J Body + , x Hm (20)

f rane

A constant spin rate of 987 rad/sec will be used in this analysis.

This value was obtained by averaaing the spin rates (excluding flights

1, 2, and 3) presented in Table 6 of [3]. As 987 rad/sec is a very large [1
number, all second order terms, such as I j2 S# CS , that result from

the evaluation of equation (20) can be ignored. Because the degree of I



[1
H "in-tube* bending has been observed to be very small, [I or 2]. the sub-

stitution of So-#. S#-#, CO- 1, and C#- 1 into equation (20) yields:

9 N - (I o*-aIx )ie - (I *z+i ay (21)

where

[xx a Izz - the transverse mass moments of inertia of the payload

section with respect to its mass center (I slug ft2).

1Yy i the longitudinal mass moment of inertia of the payload n
section with respect to its mass center (I slug ft 2 ).

Equation (21) can be expressed in the ground reference with the use of

-i• equations (14) and (15). Therefore,

a 1 0(I "*- x )i - (I + I n9)k (22)

The only external forces that create a moment about the mass center of

the payload section are the reaction forces acting at point "0" as shown

L in Figure 3. These forces can be evaluated with the use of Newton's

Second Law, i.e.,L
FT *p.Mi (23)

where

i rip - the mass of the payload section (d slug).

F a - the acceleration of the mass center of the payload section
L.

with respect to the ground reference (d ft/sec 2).

Now, a can be found due to the fact that,

(24)
dt 2
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where

- the position vector of the mass center of the payload section

[1�with respect to the ground reference (d ft) and is of the form,

where
r ~~~n ah poin + t"0"t S

wr z -the linear distance between the point np and the point 0",

Lsee Figure 2 (1 ft). If equation (25) is combined with equation (24)

then the following expression is found,

a - t~i - tok (26)

L As the rocket is also accelerating in the positive Y direction due to the

thrust provided by the main engine, equation (26) can be modified to be
L of the form,

a *a.i + T - k(27)

where

aT = the longitudinal acceleration of the rocket due to the thrust of

the main engine (, ft/sec2 ).

The mass of the rocket and the thrust are assumed constant from boost

motor ignition until the end of guidance. An average thrust for this time

-i.. was computed as 4808 lb [4]. With a rocket mass of 1.54 slug [5] an

"- average acceleration (aT) of 3122 ft/sec2 can be calculated.

The only external moments that act on the payload section are the

reactiun moments acting at point "0", see Figure 3. These moments can

be evaluated with the use of the fol1oing equation,
L.r

IR - (r x rTapn = R" (28)
p p
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where

Pro - the reaction moments acting on the pIload section. at point

"Wo (I ft lb).

An expression for Fr. can be found by substituting equations (22). (23).

(25), and (27) into equation (28). This substitution yields a vector

equation for RR which can be represented by the following scalar equations:

M -- '(x +L 2 Mp) * lp aT 12 fyy (29) +n

TMRY 0

Mz a #(Ix + L2 Mp + *z Mp aT "a Iyy (31)

The above equations are the components of the reaction moment, acting

on the payload section at point "0", that enables the payload section to

move as depicted in Figure 2. An equal, but opposite, moment must act

on the motor section and is of the form,

MX =' *(I + x 2 + p) -t Mp aT -* Iyy (32)

Z . x pý( +Y2 p ST + g2yy (34)

If the unbent rocket is placed in the tube such that the (Xr,'V,7) axes

are parallel to their respective (XY,Z) axes, and equations (9) and (10)

are re-written as: Ti
M1 Ka (ga) h
r 73
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and

Km (10Oa)

then the foll•wing expressions result:

K a3 " irloxx + t2 p ). -t *Ip "r - "YYt (35)
K a 3 a *(Ixx + t 2 MP) - M p aT i I yy (36)

As 0 and 0 are a and a 3 to the first order, respectively,

equations (35) and (36) become

#(I xx + t2 M p ) - #(I M p aT + K) a Iyy U 0 (35a)

and

(i xx + t 2 m p) - #(.t mp aTr + K) + ao yy a 0 (36a)

The tern t -n p aT << K and can be ignored in this analysis. If

A K (31)
1xx + 2 Mp

and

B - Y (38)
ixx + j p2 Mp

then equations (35a) and (36a) become,

"- AS - 8 0 (35b)

and

*- A* + B =0 (36b)
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The above procedure, I.e.. the cmbination of general dynauics equa-

tions and bending equations is similar to a procedure that is presented

in [6].
,ft

The Laplace Transform Method [7] can be used to put equations (35b)

and (36b) into the following form:

[(S2 -A) - 8SS ro
141 [ *C] (39)

BS (S2 -A)

where

S - the elgenvalues of (35) and (36) (1 rad/sec).

e and ' - the transfer functions of * and # respectively.

CC] - A matrix that is a function of S and the initial values of *,

0, G, and i [7]. Its particular fore is of no importance to

this analysis.

The eigenvalues, or natural frequencies of whirl, of equations (35) and

(36) can be found by setting the determinant of the matrix

S2 -A) - as

(40)S8s (S2 -A)

equal to zero. This yields the characteristic equation of equations (35)

and (36) whose roots are the eigenvalues. The characteristic equation is

(S 2 - A) 2 + B2 S 2 = 0 (41)

The physical properties of the motor section and the payload

section (Tables I and II)and the spin rate of the rocket (987 r3d/sec)
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a a all that is needed to evaluate equation (41). The resulting roots

of (41) are + J 810 rad/sec and + j 749 rod/sec, where the J denotes

j an imaginary number. These values are within 18 to 20 percent, respectively,

of the rocket spin rate of 987 red/sec.

That the whirling -,ate during the spin-up phase is less than the rocket

spin rate has been documented previously, e.g., see Figure 22 of [1].

ji However, no explanation for the discrepancy was given. Exmination of

L this data shows that the whirling rate is about 406 rad/sec while the
spin rate is about 510 rad/fec. This ratio of whirling rate to spin

rate of .796 agrees very well with theoretical results obtained in this

study. In fact, the average value of the two whirling rates, 810 rad/

sec and 749 rad/sec, ratioed to the spin rate of 987 rad/sec gives .794.

Other range data indicates that, when the spin motors are exhausted,

the rocket settles into a state of synchronous whirl. Strain gage data

1t from hard mounted launchers support this contention.

L.o

Ii

1.

V.



0. PRESCRIBED NOTION ANALYSIS OF THE PAYLOAD SECTICN

This section of the report will be an analysis of a more prescribed

"in tube" rocket motion. It will also take into account the actual front

and rear bearing clearances of ANSSR II. The basic bent, in-tube rocket

shape is shown in Figure 4 where e1 and E2 are the rear and front bearing

clearances respectively. As shown in Figure 4, a is the angle between the

unbent rocket axis, # is the angle between the longitudinal axis of the

launch tube and the bent rocket axis. Nominal values of 4, and e2 can be

found to be 0.003155 inches and 0.002075 inches respectively [5]. If L,

the length between bearing centers, is 2.1625 ft [5] then the angle * can

be found and is 2.0154 x 10-4 rad.

Experimenital strain gauge and optical lever data [1 or 2] strongly

indicates that the in-tube motion is one of synchronous whirl, i.e., the

rocket spins about its bent axis with a rate of 987 rad/sec and it whirls

around the launch tubes longitudinal axis at the rate of 987 rad/sec

simultaneously. This means that there is no flexing of the motor section

and thus no shear forces due to flexure. Thus, a somewhat less complex

model can be used than the Timoshenko beam [8] model that is needed to

account for shear due to flexure.

So, 3ven though the general motion analysis of the payload section

yielded a whirling rate within 18 to 20 percent of the actual rocket

spin rate, this portion of the report, due to the strong experimental

evidence previously cited, will assume the rocket to have a whirling

frequency equal to the spin frequency, i.e., a synchronous whirling situa-

tion prevails.
44
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Once again, the payload section is assumed to be rigid. This

analysis, due to symmetry, is an instantaneous one and the particular LI
configuration in space is depicted by Figure . [I

The ground and body reference definitions remain the saw as In the

previous section (noting the addition of the front bearing clearance, j
Figure 5).

The Euler angles definitions also remain the same but are placed

under the constraints that # - - 0 and 9Is a constant.

The relation between the coordinates of the body frame and those of

the ground reference can be found by using equations (12). (13), (14)

and (15) subject to the above constraints.

The terms w, wR and n are as previously defined and their respective

values are

i- CS+42 + se 4W3  (42)

•-"(P. + Cce*)i 2 + sew 3  (43)

n -ne2 (44)

The angular momentum vector of the payload section with respect to

its mass center is of the form:

iT~ sI. (n + C0 )i, + I w (45)

where

= the magnitude of the whirling rate vector, 987 r'ad/sec.

i
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The sum of all external momnts about the payload sections mass center

can be found by substituting equations (42) and (45) into equation (20). I
The resulting expression for the moment vector is

g [.E2 sOce(izz CS (I) I sD] ;1 (46)

As in the general motion analysis, a constant spin rate of 987 rad/

sec will be used, second order terms are ignored, and small angles are

assumed.

The external forces that create a moment about the mass center of the

payload section are shown in Figure 5. These forces can be found with the

use of equation (23). The definitions of mp, i, and r will remain the

same but the expression for i and Twill be written as

" • x ( x r) (47)

and

r (T Se#2 ) "2 C&2 c ' 3  (48)

iNote that

t the linear distance between the point "aup* and point "P"

(d ft).

The resulting expression for i can be found by substituting equations (42)

and (48) into equation (47),

a =2 (se, 2 - s~o 0 )i2 " ' (W2 2 - SG0C )"3  (49)

It has been demonstrated that the thrust of the rocket engine has

little effect on the problem so this section of the report will not

include it.
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The external moments acting on the payload section are also showm in

Figure 5 and can be evaluated by substituting equations (23), (46). (48)

and (49) into equation (28). Thus, the following expression Is found for

the reaction aents at point "PO,

L ,.-q tw g.2 + 2 (1y 1 0 12 ) (SO)

i An equal, but opposite, moment must act on the motor section and since

L at this instant te x axis and X axis are parallel, this moment is of

the following scalar form:

Mx-M L 02 2#+ w 2 (I - I{ mN pL2 ) (51)

By aligning Y and X, and by noting that a (Figure 4) is equal to a

then equations (9a) and (51) can be combined to form,

Ka - Mt w2 412 
+ W2 (Jyy - Izz - m p 2 )0 (52)

If a dynamic stiffness is defined as

k = w2 (Iyy - Izz -mp t 2 ) (53)

and it is observed that

l "(54)

j then the fo'ilowinq expression can be written:

mp t W2 q2 k# 55

K-k

This equation results in a direct computation for '. If a rocket

length of 48.24 inches is used and the rest of the needed physical char-
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acteristics are obtained from Tables I and I1 then the resulting value of D

Is 1.123 ulillirad. A value of 9 can now be found from equation (54) and Is j

0.922 millired. Once it is realized that 0 is the "in-tube" pitch angle of

the payload section, it is seen that the presented value It in excellent

agreinnt with the experimental data presented in [1 or 2]. Jl
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[1 E. MASS CENTER AND PLAI OF THE BENT ROCKET

This section of the report deals with the calculation of the mass

center and the PLAI (Principal Linear Axis of Inertia) of the bent rocket.

U Both will be found via a lumped parameter model.

The analysis will be divided into two parts: first, the mass center

*•- of the bent rocket will be found, and then the PLA! will be found with

respect to the launcher axis. In both parts, the physical characteristics

I V- of the rocket will be lumped in four sections: the motor assembly, the

first and second halves of the shell section, and the payload section as

in Figure 6. The resulting PLAI will give a mallaunch rate that is about

L halfway between the mallaunch rates of 200 illirad/sec and 300 millirad/

sec reported in [1] and (2].

The mass of the entire shell section can be found using a shell

Slength (Ls) of 1.871 ft., a shell thickness of 0.038 in., an inside shell

radius of 2.0 in., mild steel shell (density equal to 15.23 slug/ft 3 ),

a fuel density of 3.28 sluq/ft 3. an inside fuel radius of 1.0 in., and a

fuel thickness of 1.0 in [9]. The resulting shell and fuel mass (ms ) is

0.4992 slug. As the entire mass of the motor section is 0.7689 slug,
Table II,the resulting motor assembly mass (m ) is 0.2697 slug. Note that

m
the motor section is made up of the motor assembly and both shell sections.

The distance of the mass center of the motor assembly (cut) from the

rear of the rocket (d),(see Figure 7),can be found using the following

equation,
d m mLaS + ms (Lcm " Lm - 1/4 LS)

mm
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LwM the distance of the mass center of the motor section from the

rear of the rocket (0.9133 ft).

The resulting numerical value of d is 0.2556 ft.

Figure 8 shows the geometry of the four rocket sections in their bent

configuration. The following symbols will be defined to clarify Figure 9,

z the value of the I - 1 deflection equation evaluated at

• 0.333 ft. The numerical value of z1 is 2.5313 x 10 4ft.

z2 a the value of the t a 2 deflection equation evaluated at

1.269 ft. The numerical value of z2 is 6.5677 x 10 4ft.

Bm - the angle between the longitudinal axis of the motor assembly

and the unbent axis of the rocket (0.795 millirad).

Osl a the angle between the front half of the longitudinal axis of the

shell section and the unbent axis of the rocket (0.4312 millirad).

Bs2 - the angle between the second half of the longitudinal axis of the

shell section and the unbent axis of the rocket (0.7021 millirad).

p a - the angle between the longitudinal axis of the payload section V
and the rocket's unbent axis (1.1236 millirad).

Figure 9 shows the locations of the mass centers of the four rocket

section with respect to the (X,Y,Z) coordinate system. The mass center of

the motor as6embly is described by coordinate pairs (ym,Z,). Each remain-

ing section has its respective coordinate pairs of (ysZsl), (Ys2 ,Zs2 ),

and (yp,z p). The numerical values of each of these pairs are:

O-4f

Ym - 0.2557 ft. * 1.942 x 10 ft

Ysl -0.8010 ft. Zsl 4.551 x 104 ft. F,
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Y$2 1.7365 ft. Zs2 3.2838 x 10 4 ft.

yp 2.9834 ft. Zp 8.7548 x 10 4ft.

L The mass center of the rocket can now be found with the use of the

1: following equations,

Sn mn
' 1. nn (57)

zcm n (58)

where

Y " the y coordinate of the mass center of the bent rocket in

the (X,Y,Z) system (0 ft)

zo- the z coordinate of the mass center of the bent rocket in the

S(X,Y,Z) system (I ft)

Ni - m, sl, s2, and p and represents the motor assembly, the first

half of the shell section, the second half of the shell section,

and the payload section respectively.

Yn the y coordinate of the nth section's mass center in the (X,Y,Z)

"system (d ft)

zn the z coordinate of the nth section's mass center in the (XY,Z)

system (0 ft)

M= the mass of the nth section (I slug).

The resulting numerical values for yon and z cm upon evaluation of

equations (57) and (58) on 1.951 ft. and -2.781 x 10-4 ft. respectively.
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The coordinate system (X. 1X2.X3 ) is shown in Figure 9. The relation-

ship between the coordinates of the (X1 OX2 .X3 ) system and those of the (X.Y,Z)

system is, p

II
xz D [ e Y (59)

where the matrix [D] is defined as,

[1 0 0j
[D]0) C4 -S4 (60)

10 S4 C4J ii

Note that * is defined by Figure 4 and has a value of 0.2015 milliradians

for the bearing clearances given previously.

If X2 and X3  represent the coordinates of the rocket's mass center

in the (X1,X2,X3 ) system, their values, via equations (59) and (60), are

1.951 ft. and 1.1512 x 10-4 ft. respectively.

The coordinate pairs (X , X can also be found with the use of equa-

tions (59) and (60) and their values are,

m 0.2557 ft m= 2.4573 x 10-4 ft.X2 = .57f 3 =

sl = 0.8010 ft. sl 6.1654 x 10 4 ft.2 .3

xs2 1.7365 ft. s2 = 6.7835 x 104 ft.
2

XP 2.9834 ft. XP = -2.742 x10-4 ft.2 3

I°
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Now that the geometiry and mass center locations are known for the four

rocket sections and for the entire rocket, the task of finding the inertia

tensor of the rocket can be undertaken. The inertia tetisor of each rocket

section will be found with respect to the principal axis system that is loca-

ted at its own mass center, e.g., see Figure 10. Then the inertia tensor of

each section is found in a coordinate system at its mass center, that is par-

allel to the (X1 ,X2 ,X3 ) system. Next, the entire inertia tensor of the

rocket will be found at a coordinate system located at the rocket's mass

center and parallel to (X11X2 ,X3 ). The final step is to diagonalize

this inertia tensor and thus find the bent rocket's PLAL.

The longitudinal mass moment of inertia of the first half of the shell

section with respect to its principal axis system can be found from the

following equation,

SlIyy= - 1/2(mlr 2
0 - m 2 r 2

1 ) + 1/2 (mfl r2fo - mf2 r2fl) (61)

where,

r0 a the outside shell radius (0 ft),

r1 = the inside shell radius (d ft),

rfo- the outside fuel radius (_ ft),

rfl * the inside fuel radius (d ft),

and the quantities mI,, MV, mfl, and m• are given by the following equations,

mI 1/2 p w Ls r2
0  (62)

m2 - 1/2 p n Ls r 2
1  (63)

mfl - 1/2 Pfw Ls r2fo (64)
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L 2 •1/2 of Ls r 2f (65)

where

P the mass density of mild steel (• slug/ft 3),

Of the mass density of the fuel (d slug/ft).

The transverse mass monent of inertia of the first half of the shell section

.. with respect to its principal axes can be found from the following equation,

sllxlx, - slzZ/ - 1/12 [3(mlr2o - m2 r 2
1 ) + (1/2 Ls) 2 (mI - m2 )]

+ 1/12 [3(mflr~fo - mf2r2f) + (1/2 Ls)2(mfl - mf2)] (66)

The numerical values of slIy'y and slIx'x' are 4.8731 x 10-3 slug/ft 2

and 0.0206 slug/ft 2 respectively. As the physical dimensions of the first

and second halves of the shell section are the same, their mass moments of

inertia are the same.

The principal axis system of the motor section (x',y',z') is shown

in Figure 11. The values of dm, dsl and ds2 are 0.6577 ft., 0.1123 ft.,

and 0.8231 ft. respectively. The values of the principal longitudinal,

and transverse (Iyiy, and I = Iz., mass moments of inertia of the

motor section with respect to (x',y',z') are 0.01837 slug/ft 2 and 0.43900

slug ft 2 (TableII) respectively.

The longitudinal mass moment of inertia (mly yI) of the motor assembly

with respect to its own principal axis system, m(x',y',z'), can be found

from the following equation,

mIy y, y yy,y sl Iy1y' 's2IyIy, (67)
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Also, the transverse mass moment of Inertia (Mixx - lzIz) of the motor

U assembly with respect to the same system is expressed by,

[nix x, I M lz,z, ix,x, - sllx,x, . ms1 (dsl)2 -s2lx x, - *s2 (ds2) 2

% (dm) 2  (68)

The resulting values of mIy'y, and 1 are 8.6264x 10-3 slug/ft 2 and

0.1087 slug/ft 2 respectively.

V The inertia characteristics of the payload section are in Table 2.

The values of pIy'y, and p xIx, are 0.0108 slug/ft1 and 0.20423 slug/ft 2

respecti vely.

The coordinate systems N(xl,x 2 ,x3 ) and CM(xlx 2 x 3 ) are shown in
L. Figure 12. The ;,(x1,x 23 x3 ) system is at the mass center of the Nth

section and parallel to the (xl,x 2 ,x3 ) system. The cm(xl,x 2 ,x 3 ) system is

located at the mass center of the bent rocket and is also parallel to the

(x1 ,xO x3 ) system.

Figures 13, 14, 15 and 16 show the geometric relationship between

the N(x',y',z') systems and the ,(xl,x 2 ,x3) systems.

The inertia tensor of each section can be found in its respective

(xl,x 2 ,x3 ) system by the transformation properties of the inertia terms

* (See Section 16.5 of (10]).

The resulting inertia tensor for each section with respect to Its own

(xl,x2 ,x3 ) system is for the following motor assembly;

" m x3x 3 ' 0.1087 slug ft2

mx2x2 - 9.6265 x 10"3 slug ft 2

xlx2 m x30
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mIXlXIa a 1x3x 3 - 0.1087 slug ft 2

I x 8.6265 x 10-3 slug ft 2

Y21

1Ixlx2 1 xlx3 a 0

mIxx3 9.6223 x 10-5 slug ft 2

for the first half of the shell section

sllXlXl a siIx3 3 0.02064 slug ft 2

S1 x2x2 - 4.8731 x 10-3 slug ft 2

sl~xx 2 a slIXlX3 a 0

slIxzx3 - 9.98 x 10-6 slug ft 2

for the second half of the shell section

s2xixl s21x3x3 0.02064 slug ft 2

s2'xZx2 = s2 xlx 3 = 0

sZ x2x3 - -3.9575 x 10"9 slug ft 2

for the payload section

pIxlxl 2 pIx 3x3 = 0.20423 slug ft 2

pxlxl



1 - 0.010833 slug ft 2
p "2' 2

PX 1X2 " 1XX3

1 - -1.783 x 10' slug ft 2
p x~x

The total inertia tensor of the bent rocket with respect to its

•(xlx 2,x 3 ) system can be found with the following equations,

can x2x2  M x2  + slx2x2 s2 x2x2 " p x2x2  m 3 x3)

(69)

+ mm - i2 xc 2)2 Mp(Xan P 2

3 3 s2 3 X3  p 3 3

ai n I x 1 I +1anxx3 x3  3 sx 3x3  s2 x3x3  Px3x3

+ xx +(x On xi) 2 +inxcm- sl

in 2 2 + -s

+ mp (x"'- x)2 + Mn(xcm- xP) 2  (70)

+ s+(x anI x+ )2 + (Xa1- xm )2
2 m2 3n 3

+ M(x01- P)2+ (Xa~n - xP) 2 ]
+ I 2 3 3

+ n51[(x~ an 3 2 + -Xm xs )

" 2  ) (X2 2 2)

+ (x" - xS)2] (71)

3 3



As (x'-A2<1xm 2te
L 7

3 N 2 2 OnAs~~~~x3 ~Y cm3 x(2 33'thnnlx

cx1 x 0 1 3 1 (72)

I *l + I I + rmrP~ sl sl
anX2 3 mx2 X3 s 2 3 SX2 x3  mr.+mslr r3

+ m r s2 r s2 + m IrPr! (73)

whee te qanttie r2 and rN are defined in the following equations

r N + rN k(74)
rN * 2 j 3 k

and FNis the position vector of the mass center of the 11th section with

respect to an (x 1,x 2 ,x 3). [10], The resulting numerical values are:

cm i 0.02921 slug ft 2

an xxl a I x 3 x3 * 2.2949 slug ft 
2

ani X2 x -6.1663 x 10- slug ft2

The angle between the PLAI axis and the cm x2 axis, Figure 17, is given

by

TAN(2s~) PLA 2 3 1 (75)____

I - I

01 a 2 lxl3  cl x0 
(

3

The resulting value for a PLAI is -0.2722 millirad.

The instantaneous rallaunch rate that corresponds to this particular

gemnetry can be found from
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I WMA - 0 SIN (0PLAI) (76)

The resulting value of (IALs - 267 mtllirad/sec. As asntioned previously

-I. this is about halfway between the values of 200 millrad/sec and 300 milli-

rad/sec presented in [1) and [2] that are predicted to cause the down-range

motion of AE4SSR II.
i.
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L1 L2 L3

0.3333 ft 1.829 ft 2.2042 ft

EIl EI2  E13

1,006,944 lb ft 2  208,333 lb ft 2  1,041,667 lb ft 2

TABLE I. Physical Characteristics of the Motor Section

A
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LIST OF SYMBOLS

A Constant for the bearing amplitude

a Average acceleration of the rocket

a Constant for the bearing amplitude

c Lateral Stiffness of the supports

d Translation displacement of rocket along the y-axis
after boost ignition

F1 ,2  Vertical stiffness forces

F3 4 5 6  Lateral stiffness forces

F7 , 8  Forces due to pitch L

F-, 0  Forces due to yaw

Ft Reversed inertia force due to the vertical acceleration
of launch assembly

F Reversed inertia force due to the lateral acceleration

of the launch assembly

I xx Pitch moment of inertia of launch assembly

I Roll momert of inertia of launch assembly
xy

Iz Yaw moment of inertia of launch assembly

k Vertical stiffness of supports

11 Distance from aft end of launcher to rear support

12 Distance from rear support to front support

13 Distance from aft end of launcher to the center of mass

78
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14 Center to center distance between rocket bearings

15 Vertical distance from top of launcher to the center
"of mass

m Mass of the launch assembly

P Magnitude of the rear bearing force

SPF Magnitude of front bearing force

Rear bearing force vector

R. Front bearing force vectorF)

t Time after boost

x Displacement in the x-direction

xc Distance to the bore axis of the launch tube from the
C.M in the x-direction

y Displacement in the y-direction of launch assembly

z Displacement in the z-direction of launch assembly

0 Pitch

* Roll

Yaw

Operational spin rate of the rocket



A. INTRODUCTION

The purpose of this section is to present the results of an analytical

study of the launch dynamics of a multitube launching assembly for an

aerodynamuically neutral spin-stabilized rocket.

The system considered in this section has t wo component parts; the

rocket and the multitube launching assembly. The launching assembly is

composed of individual tubes that are rigidly mounted together to form a LA

cluster. Each tube contains four guide rails one each on the sides of

the tube and one each on the top and bottom of the tube as seen in Figure

1. The stability of the rocket is obtained through gyroscopic effects due !}

to the spinning of the rocket within bearings mounted integrally with

the rocket case. This spinning motion is attained before boost (i.e.,

ignition of the thrust motor) by four spin motors that are mounted on

the aft end of the rocket. After the rocket is brought up to the opera-

tional spin rate, the thrust motor ignites propelling the rocket out the

tube.

If the rocket is rigid (i.e., the rocket case does not bend) and the L

rocket's center of mass is tn be located on the spin axis, then the rocKet

is theoretically balanced. If either of these conditions are not attained,

the rocket will be in a state of unbalance. For the systemn considered,

the unbalance effects are transmitted to the tube guide rails via the

rocket's bearings. When the thrust motor is ignited, the rocket will

traverse the length of the tube thus causing the unbalance forces to trans-

late along the axis of the launch tube. Due to the spinning motion of the

80
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rocket, the unbalance forces rotate in a circular path within the launch

tube. Thus, the forces applied to the launching system by the rocket

are equivalent to a set of spiraling forces out the launch tube. This

type of motion by the rocket within the tube can cause the launching

assmbly to oscillate. If the oscillations are severe enough, they can

impart to the rocket a malaim and a mallaunch rate at the end of guid-

ance.

The goal of this investigation is to determine the natural frequencies

of the launching system and to determine if the assembly has any undue

rotational motions at end of guidance severe enough to disturb missile

launch. The theoretical work has been directed toward formulation and

solution of the dynamical equations of motion for the multitube launching

assembly. The rocket and the assembly are treated as discrete parts with

the rocket contributing only to the motion of the assembly by the amplitude

and the spin rate of its bearing reactions. In an earlier study it was

found that the points of application of the force vectors of the front

and rear bearings are 180 degrees out of phase (see Section II). In the

mathematical expressions, the system considered is one with two supports

equally spaced longitudinally from the center of mass as seen in Figure 2.

Each support has a given lateral and vertical stiffness. As the two

supports are equally spaced from the center of mass of the launcher

assembly, the dynamical equations of motion are decoupled. As a result

of this decouplina, matherdtical expressions can be developed in a straight

forward manner to determine the theoretical position and state of motion

of the cluster assembly during launch.

From the mathematical expressions for the natural frequency, the

position, and the motion of the assembly, parametric results are obtained

y/1

A t- _-
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and are presented in part D of this section. Thus, given certain para-

meters that affect the stability of the assembly, notably the acceleration

of the rocket, the amplitude of the bearing forces the spin rate of the

rocket, and the stiffness of the mounting hardware, the malaim and the

mallaunch rates at the end of guidance can be determined and accounted

for.



B. MATHEMATICAL FORMULATION OF DYNAMICAL EQUATIONS OF MOTION

Si"In developing the differential equations, which describe the

motion of the cluster assembly, several physical dimensions are used.

For a complete list as to all of these physical dimensions, reference

is made to Table 1. It is assumed that the individual tubes of the

1.cluster assembly are rigid with respect to one another. The center

of the mass is considered fixed and the supports are equally spaced

"with respect to the center of mass.

The coordinate system to which all motion and position is

referred is a right-handed cartesian coordinate system, X,YZ, with

* the origin 0 of the system fixed at the center of mass in such a

position that the Y-axis lies parallel to the bore lines of the launch

tubes.

From the free body diagrams, Figures 3 and 4, the summation of

forces in the negative z-direction gives

-. F~z - 0 - B + Fl + Fi - WFF + F2  (1)

and the summation of forces in the positive x-direction gives

Fx O B + F3 + Fj + F4  (2)

where F1 and Fj are the reversed inertia forces due to the vertical and

lateral stiffness of the launcher assembly such that

:. 85
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F1 F2 z

L 12

Figure 3. Free Body Diagram Nlumber 1 i

F3  F4

c~r,/. I

d 14 x

Figure 4. Free Body Diagram Number 2

F F.
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TABLE!

Physical Dimensions of Launch Tube

12 Support Attachment Spacing 14.0 in

13 Transverse Distance to Center 24.495 inof Mass Forward of AFT End of

Launch Tube

14 Rocket Bearing Spacing 25.690 in

I Pitch Moment of Inertia 13.6 slug ft 2

SIzz Yaw Moment of Inertia 13.6 slug ft 2

m Mass of Launch Assembly 5.49 slugs

a Average Acceleration of 3122.316 ft/sec 2

Rocket

t Time after Boost Ignition

w Rocket Operational Spin Rate 158 cps

I'
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and

Fj -

From the free body diagrams, Figure 5,6. and 7, the summation of

moments about the center of mass in the positive y-direction yields

N" m 0 -x.y , 15 (F5  F6 ) (3)

" Zc(PB + PF) cos W t - xc(PB + PF) sinwt

The summation of moments about the center o01 mass in the x-direction

gives

- - -½ 12 F7 2½ 1z F8

(4)
+ (13 - d) B - (13 d - 14) 'F

and the summation of moments about the center of mass in the z-direction

I •yields

=* 0 = I '-½1 Fg ½12Flo (5)1: z : zz 12 •lzF + " 12Fo s

+ (13 - d) •B - (13 - d - 14) fF

From the geometry of the system and the stiffnesses of the

supports, the following physical relationships are obtained:

Fl a F2 - kz (6a)

F3 - F4 = F5  F6 0 cx (6b)I"
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Figure 5. Free Body Diagram Number 3
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d -

Figure 6. Free Body Diagram Number 4
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F7 -k (z -h1 2 sine) (6c)

F F8 ,k (z+isl 2 sinO) (6d)

fFg a c€(x - 12 sin to) (6e)

for small angles of rotation,

F 7  k (z-½1 2  ) (6g)

-F k (z + 12 I (6h)

Fg-c(x- h12  ) (6j)

Flo c (x +h 12 I) (6k)

The bearing reactions are cyclic and revolve within the launch

tube at a rate approximately equal to the spin rate of the rocket (3].

The front and rear bearing reactors are 180* out of phase. Thus,

the bearing reactions can be represented by the sinusoid of functions

which results in

rF = - PF sin w t (7a)

= PB sin w t (7b)

where PF and PS are the magnitudes of the front and rear bearing

reactions respectively and w is the spin rate of the rocket.

The distance, d, that the rocket has moved out the launch tube

is giver by the equation
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where a is the average acceleration of the rocket and t is the elapsed

tim after boost.

From Newton's second law of motion, the Inertia forces asso-

ciated with the cluster assembly due to acceleration of the center of

.mss vertically and laterally are

SFj - d (9a)

F x ni~ (9b)

IEquations (6a, 6b, 6g-k, 7a, 7b, 8, 9a, ýb) substituted into

equations (1-5) result in the dynamical equations of motion.

I" m. + 2kz * (PB P F)sin c t (10)

nim + 2kz a (P PF) sin wt (11)

I y4$ + 2c1
5x - (PB + PF)(zc cos Wt

+ Xc sinwt) (12)

xx + ½ l~k = -U113- 14) pF + 13 PB:

+ stnwt + ; (P8 - PF) at 2 sinm t (13)

zz + 2 I• CO =-[13 - 14) PF + 13 P B
L + sinwt + h(PB + PF) at sinct (14)

Equation (12) has two dependent variables, 4, and x, and one independent



C. SOLUTIONS OF DYNAMICAL EQUATIONS OF MOTION

The solution to the dynamical equations of motion derived in the

preceding section will be given in two parts, the first being the

natural frequency of the cluster assembly, which will be obtained from

the unforced part of the equations of motion. The second solution will

be used to obtain the position and motion of the assembly as a function

of time during launch.

Part 1

The characteristic equations are obtained by setting the unforced

part of the equations of motion equal to zero which yields

(MS2 + 2k)z = 0 (17)

(ms2 + 2c)x = 0 (18)

(IyyS2 + 2cl) 0 (19)

(xx2 + 0l0k)-= 0 (20)

(IS2 + lc) 0 (21)

The natural frequencies, s, are obtained by a solution of each

characteristic equation which gives

S 2k+ m (22)
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s2 a t .2 (23)

H S3 a t4-2-c01/I (24)

54 " k/2 iU (25)

S5/21 (26)

Part 2

Each of the dynamical equations of motion is a second order

linear differential equation with constant coefficients. The method of

variation of parameters is used to solve the equations. Three different

solutions are required due to differences in the forcing functions in
the equations of motion. Equations (10) and (11) are of the same form

L [and equations (13) and (14) are of the same form. It is possible to

obtain a general solution for each set.

; I. The general form of equations (10) and (11) is

S+ ky a A stnot

where m, k, and A are constants. This is a second order linear differ-

ential equation with constant coeffients with a sinusoidal forcing

* function. y is obtained by the method of variation of parameters as

[ y.-y (Ad*k a2,sin "- t

t ( s t(27)

I' 1



z is obtained by a substitution of equation (10) i;to equation (27) as

(P0 - PF) fsn kZk-~z sin• t

Z'2k - oI2

+ sin&t (28)

x is obtained by a substitution of equation (11) into equation (27) as

• a -•_[(ps " PF) sn 2
sin-

rZk\ 2 c - /w 4c

+ -- stnwt

(2c - maD2 /(29)

Equations (13) and (14) are of the form

+ ky a A sin Wt + Bt2 smnut

This equation is also a second order linear differential equa-

tion with constant coeffielents. y is again obtained by the method of

variation of parameters which yields

y a i ;r. "+ +8 A ]sinJ<t 8 t2
.k (k-m.9)3  (k-m "k-3 Ic k-mB 3

(30)

sin t - 4B mw tCs wt + A - 2Me 8B i 1O sinawt
(k-me9) 2  [k-mwui2 (k-mui) k-MW) 3 -]

i is obtained by a substitution of the variables and constants of

I,
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FS
7q uaton (13) into equation (30) as

2 ((~'13-14)PF + 1 3 PB 12 w IAXa (pBF

"11 2 k 12k- 2 1(W2)k12 x2)2

8 ;xxea(P 6 + PF)

a(P2 + P

[2((13 - 14)PF + 13 PB] 4 Ixxa(PB + F

32+uaP )X sin a t (1

(1' k - 2 1 2 ) J402

*~ * S obtained by a substitution of the variables and constants of

equation (14) Into equation (30) as

S2 1x2 w za(B+ F

S03zz - Y 13"14)PF + 13 P BJ + 1 cuIa(P8 +

c ~ I [ 1Xc- (Xc-

32 1zz2 W3a(PB + PF) si1n(

+ (12 c -2 Izz1D2 )P sin 2-

et (Equation continued on next page.)

?(U31p 1 (
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+ a(PB + PF) t 2 sinwt - 8 Izz4 a(PB + PF) t cos2t

1 c - 2lz 2  81j (I'c - 2 1 z42)2

103-14, + 4 1zza(Pc + P F)w

32 1zz 2 _W3a(p B+P F)
+ (12 c'- 2 1zz+2)3 sinwt (32)

(2 C 2za
2

Equation (16) is of the form

*+ ky - A coswt + B sinwt

The same method also serves to obtain a solution for y as

) sin ~ ( Ai co Fiit

nm+k-mw

Sfollows by a substitution of equation (16) into equation (33)

as

(Equation continued on next page)
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[~2 _y~~. 2 1 5~[ : yy,2

• [Xc sinwt + Z€ cosct] (34)

The stiffness of the mounting hardware is considered such that

the lateral stiffness and the vertical stiffness are equal. The equa-

tions (31 and 32 are identical except for the principal moments of

inertia. If the moments of inertia are approximately equal, then

equation (32) becomes identical to equation (31). Equations (28 and 29)

are identical as the vertical and lateral stiffness are equal. Thus,

I• substitution of

k•a c

into equations (28, 29, 31, and 32) yields

(P___ -P. ____
- ~ ~~j~k dw) sin -W +I~' Jlw (35)

and

2Ix [ 2 "'W(1 3- 1 4)PF +1 3 P8 ]+_l__x_(PB+PF)

72 k 1 2k - 2 1 W2  (12 k - 2 1 ~W2 )2

S• 2 Ixx 1 -2 I xxt:3 , 2W3a(PB+ F) Tj' (2~&2sni

32 1 kiA t+ P +

(Equation continued on next page.)
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8 .a_(PB__+ PF)_ 2[103-14)PF+13PR] + 4 _xxa(PB__F)

'(12 2k -2I,1 W2 [1 2k - x2 1 + (I' k -2I1 w2)2

+32 Ixx 2 3 a(PB+ PF)] sinwt (36)
(1' k - 2 Ia 2)3 J

For the time rate of change of pitch, i, and displacement,

22d_.[[(13 .-14)PF + 13PB' 12wJxxa(PB+PF)

dWt -21C (12 k -21 2)

32 1 xx 2W 3 a(PB+PF) 1 [o-k it + 2 a(PB+PF)
+ ( 2I (. )3jcos IV t

esinwt + a(PB+PF) t2 COS +,t +8rawxxa(PB+PF) 112lnt I k - 2 1=• t2 +s(12-kI- I2 )

wit sinwt - cositJ -r2((13-1 4 )PF+I3PB) + 4 Ix a(PB+PF)
212 k -2 IXW 2  (1' k -2 1 (j2)2

2 xx

+ 32 Ixx 2W 3 a(PB+PF) wcoswt (37)

2(l k - 2 Ixx )

and

I
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[1ii~ (X) [+ s)~~ 4 iFosr-2 ) (38)
1ii

Equations (35, 36, 37, and 38) give the displacenent, mlaim,

I) iallaunch, and rate of displacement as a function of the parameters,

I! support stiffness, average acceleration, bearing reactions and spin

rate.

* I



D. ANALYSIS AND CONCLUSIONS

From the solution of the dynamical equations of motion, a para-

metric study has been done to determine the malaim and mallaunch rates

at end of guidance. The results of this study are presented in

Figures 8 thru 21 for the multitube launcher parameters as listed in

Table I.

In this study the following parameters are varied: the average

acceleration, the bearing reactions, the support stiffnesses, the

operational spin rate and the time from initial boost until end of

guidance. The average acceleration was varied from 1000 ft/sec2 to

4000 ft/sec2 as shown in Figures 8 and 9. Increasing the average

acceleration (i.e., increasing the thrust) decreases the time to end

of guidance, but increases the mallaunch rate at end of guidance.

By assuming the front and rear bearing forces to be equal, the

displacement, z, and the rate of change of displacement, z, are zero.

Increasing the bearing reactions equally causes the magnitude of the

malaim and mallaunch rate to increase as shown in Figures 10 and 11.

Figures 12 and 13 show typical solutions of the dynamical

equations of motion for support stiffnesses, k = 0.0 to k As

the natural frequency of the cluster assembly approaches the critical

spin rate, that is

k xx
122
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the magnitude of the malaim and mallaunch rate approaches Infinity

making the launcher assembly increasingly unstable in these areas.

iLThe area of study is confined to

IL k

Figures 14 and 15 show malaim and mallaunch rates as functions of

L time for support stiffnesses equal to zero.

-. The malaim is a finite value for zero stiffness at the end of

guidance, but is zero before boost, Figure 16. The mallaunch is also

firite at end of guidance, Figure 17, but is zero at time, t a 0.0.

After boost, the mallaunch increases negatively then becomes positive

at end of guidance. At end of guidance the mullaunch rate tends to

become increasingly unstable for large bearing reactions and zero

support stiffnesses.

Equations (36) and (37) are periodic functions of the operational

spin rate, Figures 18 and 19, hence it is possible to minimize

either malaim or mullaunch. The period for mallaunch is approximately

1.4 cycles. The operational spin rate need vary only 0.35 cycles per

-: second at the end of guidance for the mallaunch rate to go from zero

to a maximum. For a missile with an operational spin rate of 158 cycles

Equations (36) and (37) are also periodic functions of time.

The mallaunch rate and the malaim become increasingly large, Figures 20

I- and 21 as the missile approaches end of guidance. By close selection
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of the average acceleration of the rocket, the time at end of I
guidance may be selected such that the mallaunch rate is zero.

AS the ml1aunch rate it the time rate of change of malaim, it [

will not be possible to null both variables at the same time. The

malalm affects only the point of impact of a launched missile and

can easily be accoun-,.d for with initial aim. The mallaunch rate

affects the actual trajectory of flight, and hence, should be nulled.

The performance of the missile is very sensitive to any changes

in Its operational spin rate. The bearing forces increase with the

square of the operational spin rate. The time to end of guidance is

a direct function of the average acceleration, and hence, the thrust

and the operational spin rate of the rocket must be tightly controlled.

Ii

II

I i

ITt

I!
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F. APPENDIX A COMUTER PROCRAN

C MAIN--MALAIM AND MALLAUNCH VERSUS STIFFNESS
OIMENSION PITCHD(1*498)9 PITCH1(19498), AKi t,498)t
IPBlI(1#941

26 FnRMAT(4E15.4)C
C ON tS tHE OPERATIONAL SPIN RATE OF THE ROCKEt. (RAD/SEC)
C

OM-158.0*2e*3. 14159
C
C
C PF AND PB ARE THE MAGNITUDES OF THE SEARING FURCFS
C OF THE ROCKET'S FRONT AND REAR BEARINGS RESPECTIVELY.
C ILBF)
C

pO5w".o
PF=5O.O

C
C
C AM IS THE MASS OF THE MULTITUBE LAUN4CHING ASS=M3LY.
C (SLUGS)

E4 C
AM=223.5/32.2

C
C
C Aj IS THE MOMENT OF INERTIA ASOUT THE X-AXIS.
C (SLUGS-FT-FT)

AJ=13.6
C
C
C b2 IS THE DISTANCE BETWEEN THE MouNrIN.4 LUo;S OF THE
C LAUNJCHER ASSEMBLY. (FT)
C

02=14./12.
C
C
C 03 IS THE DISTANCE FROM THE AFT END OF THF ROCKST TO
C THE CENTER OF GRAVITY, (FT)
C

03=24.493 /12.
C
C
C D4 15 THE CENTER TO CENTER DISTANCF'BzTWEE'I THtl
C HEARINGS. (FT)
C

D0425.69/12.
C
C

118
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C A IS THE AVERAGE ACCELERATIO4 OF THE iAOCKST AS IT IS
C PROPELLED OUT THE TUBE. (FT/SEC/SEC)

C

LI DO 15 K-lol
C AX IS THE STIFFN4ESS OF THE MOUNTING LINKS* (LBF/FT)

C
0~l001.J199

C T IS THE ELAPSED TIME FROM INITIAL BOOST. (SEC)

TuO.?

L ~A~u2.*AJ/( 02**2*AK)
AC=(03-D4) *PF+O3*Paj
AD=A*(PB.PF)F ~AExO2**Z*AK-2. *AJ*OM**2

C Z IS THE VERTICAL DISPLACEME"ATo (FT)

C Zz-SORT(AM/(2.*AK))*((PB-PF)*flm/(?.*AK-AM4*Om**2))*SIN(
ISRT(2.*AK/AMJ*T3,((PB-PF)/(2,*AK-AM*OA**2R)*SI'i(aTiY*T)

C
C ~l IS THE RATE OF VERTICAL DISOLACFME4IT. (FT/SE7C)
c

K Dl a(PR-PF)*OM/(2.*AK-AH*IM**2)*(CUS(flt.*T)-COS(S.j'RT

1tZo*AK/AM)*T))

C PITCH IS THE MALAIM. (RAO)

V C PITCH=SQRTIAB)*(2.*OM*AC/AE,12.*O'1*AJ*AD/45**?,32.*AJ
1**?*CM**3*AO/AE**3'*I*5N(soqrT,/A3)*T),AO)/AC*T**2*5p4
2(om*r)-d.*AJ*OM4*AU/AF.**2*T*cns(O,4*T)-(2.*AC/AE,4.*4J*

t ~3A0/AE**2+32.*A.J**2*OM**3*AO/AE**3)*SIN(rlm*T)

C L)PITCH IS THE MALLAUNCH R.ATE. (RAfl/SEC)

DPI TCH = (2.*OM*AC/AI:,12. *OM*AJ*AP/AE**2+32.*AJ**)*

PITCj(K,J )zP5 TC

PIC 1( # )= IC
I (.vJ xP
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AXI (KJlnAK
AX uAK*ZOOO.O

It cONTINUE
PS*PB*225*0

15 CONTINUE
001 18 Kulo1
00 16 Jslp498

18 WRITE16,26)PITCHDIKJ) ,PITCHlIKJ3 ,PiU(KJ) ,AKI(K.J)
CALL SPPLOT(AK1##STIFF-14ESS lL8FIFT)l,1RPITCHl,
IWMALAIM (RAD)*,1Z.
21FIGURE 8 MALAIM VS. STIFFNESS AT EOGO#36#5.C.3.0o.ý
119498)
CALL SPPLOTIAKtISTIFFNESS (L6F/FT)4slR#01TCHO,

10?4ALLAU'4C14 (RAD/SEC) '.19,
29FNURE 14 MALLAU14CH RATE VS. STIFFNE3S AT EOG0,45,
35.,C, 3.0,0,1498)
CALL PLOT10.3,O.O99)91

ENO
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SJbROUTINE SPPLOrIXXHORKEtYYHORKY.FHDoiF,

C ALENE.ALENY#LIPNrYP#tIROW9NCOL)

SPPLOT IS A SUBROUTINE THAT WILL PLOT P4ROWd NUMBIER OF{ LINES PER GRAPH.

C THE ARGUJMENTS OF THE LIST ARSO
C X NAME OF THE ARRAY CONTAINING THF AdSCISSA 0_4 X
c VALUES.
C Y NAME OF THE ARRaAY CnNTAININS THE flAOItATE ORi Y
C VALUES.
C XHUR ANU KX DESCRIBE THE nEsIRFO L6E'E' FOPQ THE
C X-AXIS.
C XHOR IS THE LITERAL EXPRESSION OF THE LEGE40 TO flC
C PRINTEU.
C KX IS THE INTESER, NUMBER OF CHARACTSRS IN XHI1g.
C YHOR AND KY nESCRItiE THF DESIRSD LEGEND FOR rT-z
C Y-AXIS.
C YHDR IS THE LITERAL EXPRESSION flF THE LEGE'lE. Tr, hA
C PRINTED. HACRS'YsV

LC ALE'4Y ISTHE UESIRED LEN4GTH OF THE Y-IXTSO
C L~TYP ETER14EST~z YPEOF LINE Y-11) GET.

C IF LINTYP GREATER THAN it YOU GET A STRAIGHT LI'lf
C CONNECTIN5 A SYMbOL PUT DOWN AT EVERY L1P4TYPTII

c THUS* IF LINTYP WERE E'OUAL TI 2. yflU 4rULD 1"T A
c LINE COINECTINO EVERY SECO'JD POINT.

C IF LINTYP WERE E'lUAL rO ý# Yl31i WILL rcT A LlI E
C ONLY .
C IF LINTYP LESS THAMI*) Yn'u WOJULD GFT Ai SYM60IL
C EVERY LINTYPTH POINT*

K~CC
DIMENSION X(NROW#NCOL)t YINKOW0&COLu, xHfr~(2)),

lYH0R(?Oh ,FHDR( ICJ)
CALL GSIZE(IIO11.DIl.,l2z)
CALL SYMBOL(2.5,I.3,.15,FHL.:RJO.0,KF)
CALL PLOT(2*5,5.5#3)
CALL PLOT17.595.5t2)
CALL PLOT(7.592.592)

*CALL PLOT(2.5,2.5,-3)
CALL SCALE2( XALEN4X#4,NRW,NCOLFRKOLXI
CALL SCALF2(YALr"IYAJRfl~,NCO)L FRYvc'LY)
CALL 4XISI(O.'),olXHOR.-KXALý'JX,-.1S,FRXi)LX)
CALL AXI15 3O.0 O,0YHURKYALE'4Y,ii.',IF~ty,)LY)
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DO 32 JmIAIROW 1
IFIS *ME* 1) CALL PLOTI3.Q,0.0,3)
INrEQUj
[PEN a 3
ICoCe a -1

NiT a[ABS(LI'ITYP)
IF ILINTYP)?t697

6 ilTul
I 'IFak

NIA a N
KKu1
IF ILIl.4YP) 11,12,13

It IPSNA *3
*CDS -1

LSW v
10 TO 15

12 NAu-4COL
13 [PENA~ a 2

ICUOEA a -2
LSWd-0

15 00 30 1*10'COL
XN=fA(JI )-FRX)/OLX
Yflm(Y(J, I)-FRYJ /OLY
IP ('iA-NT) 20921922

2-3 IF (LSW) 23922923
21 CALL SYMBaOL (XNqYNv00Q8vJNTEC90.091CODF)

iA a I
GO Tn 25

22 CALL PLOT (XNYN,IPEN)
23 AA N 'A + 1
25 WF -tF.KK

icnoD a ICOOEA
3' PE IP EN1
31 COJT I NUE
32 CONTINUE

RETURN
END~
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SIBOSAUT1'4E SCALE2IAqA~Y,AXLFN,?4R0UNC'JL,FIRSTDEL)
C ARR~AY N4AME OF ARRAY CONTAININq VALUES Tn OE
C SCALED.

AXLEN LENGTH IN INCHt'S OVER WHICH ARqAY is ro
C BE SCALEri.
C *4pTS NUMBER OF PlI~4TS TO RE SCALMfl
C 114C INCREMENT OF LUiCATofN OF S11CCESSIVt_
C POITS.

UIPE4S104 A'&RAYfNROW*NCAL),SAVEl7)1. 5* yVEM-1).1.
SAVE(2)=2.r,
SAVF1 3)34.)
SAVE14)a5.)
SAVFI53uR.)
SAVE 16)= 10.0
SAVEI 71*20.I' FA0).C01
INC .1

N4P? S*NC OL

Km 1*651IN4C)

YFu-l.E6
UC 26 JJslNROW
Yl~uAARAY(JJ, 1)
YN=Y0

GO 26 1-1,'49K
YSaARRAY1JJ, I)
IF IYO-YS) 22922921

21 YZ3=YS
GOJ TU 25

22 IF (YS-Y'4) 25,25924
24D YPNzYS
i7 IPIYN *GT. YF)YFxY?4

IF(YO -LT. Y1)Y1sY0
26 CO'4TI%UE

Y C ay I

FIRSTV=Y'
IF (IY) 34,35,35

34 FAU-FAD-t.0
35 0FLTAVz(Yf4-FIRSTV)/AXLEN

IF (VELTAV) 709,70940
4C IxALOG;11(DELTAV)+11m.''.'

Pz1:...o**( 1-1000)
DELTA VOFLTA V/P-0. 31
00 45 1=1,6
[Sul
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IF (SAVEII)-OCLTAV) 459SO953
45 CONTINUE
50 DELTAV=SAVE( IS)*P

FIRSTVUDELTAV*AINTfYO/DELTAVFACI
7-FIRST V~(.XLE'4.0*01 )*OELTAV
IF IT-YNI 550757,b

S5 FRSTV*P*AINTlY0/P+FAD)
7sF IRSTV ( AXLE'4..01) *DELTAV
IF IT-YM) 569i57*57

56 ISsIS.1
GO T0 so

57 FIRSTVUFIRSTV-AINTf tAXLI FITVYIDLAV/*Vl
IOEL TA V
IF IYO*FIRSTVI 58958959

58 FIRSTV*I.l
59 IF 114C) 61,61,65
61 FIRSTVsFIPSTV4ApNTIAXLEN+.5)aflELTAV

DEL TA V-OELTA V
65 FIAST*FIRSTV

I)E LaELTAV
67 RETUR.i
70 L)PLTAVs2.0*FIRSTV

DEL VAV*ABSfUELTAV/AXLEN)+I.
1;0 TU 43
CNU


