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PREFACE

This report presents results of a study designed to investigate
the dynamics of a spin-stabilized free rocket during the launch phase
of motion. The models deveioped are applicable for the case of very
high spin rates similar to those achieved by ANSSR, an aerodynamically
neutral spin-stabilized rocket developed by Emerson Electric Company
for the U. S. Army [1]*. This 105 mm rocket is pre-spun in its launcher
by four auxiliary motérs thrusting tangentially at the rear of the round.
The boost phase of the flight does not begin until these motors have
been exhausted. Thus, the rocket exits the launcher with spin rates
(10,000 rpm) considerably greater than those considered by previous
investigators [2]. A double-diameter launcher tube is used to minimize
tip-off effects.

The design objective for the ANSSR system has been to utilize the
stabilizing effect of the extremely high spin rate in lieu of fins to
decrease the overall wind sensitivity of the weapon. A factor atfecting
the accuracy of any free rocket is mallaunch (that component of the rocket
angular rate vector not aligned with the launcher bore axis at the instant
of release). Mallaunch values observed wifh optical lever and camecra
techniques at Redstone Arsenal ware higher than expected [3]. This

investigation has addressed the problem of mallaunch due to

* Humbers in square brackets refer to references at the end of the preface.
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o tip-off effects
¢ in-tube rocket bending

¢ launcher motion caused by rocket
excitation

This report is presented in three distinct sections. Each
section is complete with its own list of symbols, fiqures, tables
and references. Results obtained are discussed at the end of each
section and will not be belabored here. However, we will mention

that the results show

s that tip-off should not be a major
cause of mallaunch

¢ that body bending can be a major
cause of mallaunch

e that the launcher suoport system
can be designed so as to minimize
mallaunch

The diligent efforts of the project leader's co-workers Messrs.
Lindholm and Tomb is hereby acknowledged. The calculations were
made with the help of Mr. John B. Hill. Also, the skill and extreme
good humor of Mrs. Dianne Fretwell along with Mr. Robert Sullivan
and Mr. Robert Young were indispensable in preparing the manuscript.

The research team, during the course of this investigation, has

enjoyed the cooperation of the Aeroballistic Directorate of Redstone
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SECTION 1

MALLAUNCH DUE TO TIP-OFF

ABSTRACT

A Linearnized model is developed fon the dynamics of a
spinning, unbalanced, rigid nocket duning the tip-off phase
of Launch. Mallaunch nates for the rocket are obtained for
the shont time intewal from tip-ofd o end of guidance. The
nesults show that tip-off should not be a majon cause of
mallaunch for very high spin nates and short tip-off times.
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x.Y,z
1.3,k
X,¥,2

e, .ez ,83

LIST OF syMoLS

ground reference
unit vectors of X,Y,2

body reference
unit vectors of X,¥,2

Euler Angles

angular rutation vector of X»y,2 vith respect to xY,2

angu%arzrotation vector of the rocket with respect
to X,Y,

angular rotation vector of the rocket with respect
to x,y,z (spin rate of rocket)

angular momentum vector of the rocket with respect
to the origin of X,¥,2

external moment vector with respect to the origin
of x,y,z

principle moments of inertia of the rocket with
respect to x,y,z

front bearing reaction vector
thrust vector
inertia load vector

rocket mass

distance of rocket mass center from y-axis
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position vector of the c.m. of the rocket with
respect to x,y,z

components of lo expressed in x,y,z

32.2 ft/sec?
transfer functions of © and ¥

eigenvalues of the system

magnitude of the pitch mallaunch rate

magnitude of the yaw mallaunch rate

approximate rocket velocity at the end of guidance

average rocket acceleration from boost motor ignition
until the end of guidance

guidance length
bearing mismatch - longitudinal
total tip-off time
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A. INTRODUCTION

A possible source of mallaunch for the ANSSR Rocket 1s due to what
has come to be called the “tip-off" effect. This phenomenon occurs in
the time period after the rocket's rear bearing has lost its launcher
tube support while the front bearing retains its support. Due to the
extremely small time of contact it is possiblé to obtain a closed form
solution for a linearized dynamical model of the rocket motion during
"tip-off*. The process of analysis allows the capability of treating
both static and dynamic unbalances. The mallaunch rates, caused solely
by tip-off, which are predicted by this model are the pitch and yaw
rotation rates for the rocket immediately after the front bearing has
lost its launch tube support, i.e., as the rﬁcket becomes free. These
rates are depicted in Figure 1.

The spinning, unbalanced, rigid (i.e., no bending) rocket during
the tip-off phase is open to the same sort of dynamic analysis usually
applied to the classical dropped gyro [1]. A significant difference
{s the inclusion of the pertubation of the rocket motion due to static
and dynamic mass unbalances. As a result, this analysis yields a set
of linearized equations of motion rather than the more general solution
utilizing elliptic functions [1].

Shown in Figure 2 is the configuration of the rccket in the tip-off
phase. In the analysis, the rocket is assumed to be simply supported
by its front bearing. These simple supports are aligned with the
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geometric center of the front bearing.

At “time zero”, (i.e., when the

rear bearing has lost {ts launcher tube support) the position of the

rocket is as shown in

Figure 2.

The physical characteristics used in this analysis are presented

in Table 1.

Traverse Axial *C.M.
Rocket Mass (Sluq) M.I. (Slug-ft2){ M.I (Slug-ft2) | Location (ft)
1.54 2.2 0.03 2.058
TABLE I. Rocket Characteristics (ANSSR II)
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B. AMALYSIS

The position of the rocket in space can, at any time, be described
by the two independent Eulerv angles shown in Figure 3.

The coordinate systems and Euler angles used in the analysis are
defined as follows:

e Ground Reference: Ground reference ﬁ_ (X,Y,Z) with respective
unit vectors (i,i.fc). The origin is fixed at the geometric center of
the front bearing. The Y axis is taken positive going out of the
launcher tube's longitudinal axis. The Z axis is taken positive up and
parallel to the local vertical. The X axis completes a right hand
system. All equations of motion will .be written with respect to this
coordinate system. This can bz done as the acceleration of point “o"
is essentially parallel to the acceieraﬂon of the rocket C.M. for
the short time period involved. This frame will be designated as
"frame g".

® Body Reference: Body reference is (x,y,z) with respective unit
vectors ('e'] ,32,33). The origin (point "o0") of this frame is fixed
coincident with that of frame g. At time zero this frame is aligned
with frame g (i.e.,9=0 = 0.0). At any time, the position of the
body reference with respect to frame g is defined by the Euler angles
¥ and 8 as in Figure 3. This frame will be designated as "frame b".

It is important to note that x and z do not spin with the rocket,

j.e., the rocket spins about the y axis of frame b.
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Figure 3. Rocket Euler Angles and Coordinate Systers




10

¢ Systam Euler Angles: The two independent Euler anglci that
describe the position of frame b with respect to frame g are 9 and §.
¥ is the first angle of rotation about Z and @ is the second angle of
rotation about x. Both angles and their rates are expressed in rad

3 L 9

——

and rad/sec respectively. ﬂ

The relation between the coordinates of frame b and those of
frame g is: U

y = [A] o Y (1)

with matrix [A] defined as:

1 0 0] [cd s o0 ]
[A] = |0 co soje|-sé ¥ O} (2 |
0 -se co o o 1

where C@ is taken to be C0S(@), etc.
Now: |

ggR = the angular rate of frame b with respect to frame B
9 (9 rad/sec). J

ggR = the angular rate of the rocket with respect to frame
g (,‘.‘ rad/sec).

g

Q = the angular rate of the rocket with respect to frame
b (:’ rad/sec).

The above angular rates are given by the following equations:

ggb = 0% +9S0E, +9Co e, (3)

[':3[?:1[:’]

LN i
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‘-‘ﬂ

n
sgR=07 + (50 +0)E, +écow, (#)
=10 :2 (5)

It follows that the angular momentum vector of the rocket expressed

in frame b is:
Wo - I“O 'e'] + !” (¢SO +9Q) e, + Iuﬁco e, (6)

The sum of all external moments about point "0" must be equal to
the first time derivative of Ffo with respect to frame g. So:

d .
F‘o @ mo) (7)
or
. b
F'o * rro,ifmme b *+ %67 x Fo (8)

If 1t 1s assumed that for the time period of interest,®, ¥ and
their respective time derivatives are very small (on the order of
milliradians), all second order terms, such as Izzi S#Co , that result
from the evaluation of equation (8) can be ignored as |f}] is large.

If S@=0 and CO = 1, equation (8) reduces to

on = 1.,0- Iyyﬂ‘i’

”yo =0 (9)

nzo = Iut + xyyno

(et ——— e
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These equations are similar in form to those préseuted in [2] for
the analysis of the two-axis gyroscope.

The only forces acting on the rocket duf‘lng the tip-off émfiwr-
ation, Figure 4, are rocket weight, inertia loads due to static and
dynamic mass unbalances, thrust, and front bearing reactions. Of these,
only the rocket weicht and inertia loads exert any mament about point
*0*. This is true because the rocket is assumed to be rigid (i.e., no
bending) and point "0" is located at the geometric center of the front
bearing. It is known, that if the rocket is bent during tip-off, that
a component of the thrust vector will create a moment about point "0,
The question of the degree of bending that the rocket experiences is
treated in Section II of this report.

R = front bearing reaction. This force always acts in the z - x
plane and fs assumed to act, at all time, on a line through
point "0* (4 1b).

T = rocket thrust vector. This force always acts along y. (¢ 1b).
-ngi = rocket weight. This force always acts at the rocket c.m.
and is always parallel to Z. ‘(2 1b). Note, g = 32.2 ft/sec2.

F'I- inertia load due to static and dynamic mass unbalances. This
force is assumed to act through the rocket c.m. and always in
2 plane parallel to the z-x plane. The rate of rotation of
rI is assumed to be that of the m&et (1.e., 987 rad/sec)
and its location with respect to an arbitrary reference axis
in its plane of rotation will be given by the quantity it
where f2= 987 rad/sec and t = tim (d sec). The magnitude of

FI is given by:

,...,_,,.
AL .
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Fiqure 4. Free body diagram of the rocket during tip-off
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IARE 'y (10)

where:
n = rocket nass (9 slug)
E = distance of m from y (S ft)

= rocket spin rate (4 rad/sec)

T = the pesition vector of the c.m. with respect to frame b.

This vector is always parallel to y. ('.1 ft).

Now:

H’ol?xr (11)
with

F = F - mgk (12)
as

cé=1,

2
"xo =mgr - mE Q r cos(fN2t)

"yo =0 (13)

2
Mzo =mEN rsin(Qt)

Equations (13) represent the external moments about point "0"
during tip-off. Note also that equations (13) assume that at time
zero }'I is aligned with +Z.

Substitution of equations (13) into equations (9) yields:

g

amtealiliel
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15
e * 2
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20 . z
Iut- l” 0= Q rsin(Qt)

Since the rocket is symmetric (i.e., Iy
terms are defined:

- MEQ’r
T

M
2 XX

(14)

. Izz) the following

(1s)

Note that the term @ is the natural frequency of the system

(‘,“ rad/sec). If equations (15) are substituted into equations (14)

then the equations of motion take on the following form:

3‘.‘ = "] - "2 cos(Qt)

Vil = "2 sin(Qt)

The equations of motion for the system are a pair of second order,

coupled, linear, non-homogeneous, ordinary differential equations in @

and ¢.

Equations (16) can be modified for the case of FI being initially

(16)

aligned with the -Z axis at time zero and have the form:

3-~6-n1 + M, cos(D t)

Viwd= *, sin(Q t)

(17)
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The Laplace transform method [2] was used to solve equations (16).

The transformed equations have the form:

" s
52 -Se e 1 - ."—2-———
Sw 2| |w "2 0

t s2+ Q2

where the S's are the eigenvalues of (16).

The response functions for © and ¥ can be obtained from (18)
and are of the form:
N‘ SHZ Hgno

S(2 + @7)  (52+ w2)(S2 + 2) | S(S2 +w?)(S? + w?)

M (0+ @) Mo (19)

(52 +a2)(52 + Q2) ) $2(S2 +@2)

By use of the partial fraction method and tables in [2] the inverse
transforms of © and ¥ are found and the time responses for a © and ¥

during tip-off are:

", MM MM
0(t) = cos(n t)[————-—-] - cos(w t) [—-—+—-—-——]+_+_..
a0 -e) »2 o(Q-w)l @2 o)

M M M M
0(t)=s1n(ut>[-l+-——-——-2 ]-sin (m)[—————---2 ]--‘-t
* () -w) i -wd ¢

With the first time derivatives of equations (19) and the projection
of these quantities onto frame g the magnitudes of the pitch and yaw

mallaunch rates are found to be:

| S

" ————
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@l = 9cos(?)
o (21)
|u’| -9

Figure 9 was obtained by assuming that both the thrust and the

> B —— B —— I — N

®mass are constant from boost motor ignition until the end of guidance.
An average thrust for this time was computed as 4808.367 1b [4]. With

ol |

a rocket mass of 1.54 slug an average acceleration of 3122.316 ft/sec?

can be calculated. As the initial velocity of the rocket is zero the
velocity at the end of guidance can be calculated from:

Ve of2as (22)

and has a value of 1246.96 in/sec.

|

a = average acceleration up to the end of guidance (g tt/sec?)

s = guidance length (20.75 in.) [4]

s 1

If the velocity of the rocket is assumed to be constant during tip-off
then the following relation exists between velocitv, bearing mismatch,
and total t.ne of tip-off:

t=38/V (23)

where

8 = bearing mismatch (‘_‘ in.)
t = total tip-off time (f.’ sec.)

‘ . TN MG e
en TUEp Dmg Peand P Py

V = average velocity of the rocket during tip-off (1246.96 in/sec)

Thus, for any specified amount of bearing mismatch the total tin-off
time can be calculated.

At
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A typical dynamic unbalance at the front bearing (before balancing)
has been measured as 0.45 oz-in and reported in [3]. This is equivalent
to an effect caused by a D'Alembert's force at the center of mass and
expressed by equation (10). For a rocket mass of 1.54 slugs and Q1 of
987 rad/sec, the equivalent E will be 5.015 x 10°ft.

In order to obtain the mallaunch rates. the amount of bearing mis-
match must be specified. If the bearing mismatch is as much as a tenth
of an inch then the total tip-off time is 8.0 x 107° sec (Figure 9).

With the aforementioned conditions and for the case where FI is
initially aligned with -Z the pitch and yaw mallaunch rates of
6.048 x 1072 rad/sec and -0.0136 x 10-3 rad/sec respectively (Figures 7
and 8). These two values yield by a vector sum a total mallaunch rate
of 0.48 x 1073 rad/sec due to the .10 inch mismatch.

The shaded area on Figures 5, 6, 7, and 8 depict the range of
mallaunch for 0.0 to 0.02 oz-in of mass unbalance as reported in [3].
For a bearing mismatch of 0.23 in and total tip-off time of 20 x 1075
sec, a mass unbalance of 0.02 oz-in yields pitch and yaw mallaunch rates
of 0.0598 x 10”2 rad/sec and 0.0123 x 1673 rad/sec respectively if }'I is
assumed to be initially aligned with the -Z axis. These two values
yield by a vector sum a total mallaunch rate of 0.598 x 10'3 rad/sec
due *: the 0.23 inch mismatch.
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SECTION 11

MALLAUNCH DUE TO IN-TUBE ROCKET BENDING

& = v B

e |

ABSTRACT

Rocket flexibility is modelled for the launch phase. The
model accounts for bearing clearances, a variable stiffness
moton section and allows fox the 3-D motion of a rigid war-
head. The phenomenon of whirling 4is invu&&éaxed and the
bent configuration of the rocket is calculated for synchronous
whirling. The resulting mallaunch rates agree with repoated
range data.
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LIST OF SYMBOLS

acceleration of payload canter of mass with respect to X,Y,2

y Tongitudinal (along launch tube) acceleration of rocket due :
to engine thrust {
'61.5'2.?3 unit vectors in x,y,z ? 7
{
R moment of momentum vector
i,j.l; unit vectors in X,Y,Z
Ii ] Inertia tensor of rocket
k dynamic stiffness ’
K stiffness (as to bending)
L length between bearing centers -
m mass Lo
M bending moment |
r pos;tiog vector of center mass of payioad section with respect ;
to X,Y, L.
X,¥,2 body reference :
i
X,Y,2 ground reference '
a bending angle L
‘L,.'
8y rocket section deviation angle for ith section
v
]
€% bearing clearances -
¢ angle between longitudinal axes of launch tube and unbent rocket g
¥,0 Euler Angles
v Laplace transform of y {
o Laplace transform of o { i
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body frame spin rate with respect to X,Y,Z

Mallaunch or component of rocket spin vector not along launch
tube axis

angular rate vector of rocket with respect to X,¥,2

angular rate vector of rocket with respect to x,y,2




A. INTRODUCTION

The objective of this section of the report is to develop an analyti-
cal model that will predict the whirling and mallaunch rates of ANSSR II.
The motor section of the rocket will be modelled as a variable EI beam
that is simply supported between its front and rear bearings while the
peyload section will be considered rigid. The basis of these assumptions
is Figure 25 of [1].

The analysis will be divided into four parts. The bending and
deflection equations of the motor section subjected to the loading condi-
tion shown in Figure 1 will be developed first. A general motion analysis
of the payload section, coupled with the bending equations, will then be
carried out and will yield a whirling rate for ANSSR II that 1s within 18
to 20 percent of the observed whirling rate. A prescribed motion analysis
of the payload section, taking into account the rocket's bearing clearances,
is also coupled with the bending equations yielding the degree of “in-tube"
bending for ANSSR II. The degree of bending predicted by this model will
be in agreement with bending data that is presented in Figure 22 and Figure
23 of [1]. Once the degree of "in~tube" bendino is known then the mass
center of the bent rocket and its PLAI with respect to its mass center are
both found via a lumped parameter model. Thus, knowing the bent rocket's
PLAI, the mailaunch rate of ANSSR II is easily found.

The majority of the above analysis is carried out in one of the trans-
verse planes of the rocket as complete symmetry of rocket motion in its

perpendicular transverse planes is assumed.
28
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B. BENDING AND DEFLECTION EQUATIONS OF THE MOTOR SECTION

The motor section of ANSSR II is considered to be a variable EI beam
as shown in Figure 1. The coordinate system used in this analysis is
(X,Y,Z). The origin is located at the center of the rear bearing. The ¥
axis is taken positive going fram the rear of the rocket towards the nose
and is parallel to the unbent rocket's longitudinal axis. The X and 7

axes are normal to Y and form a right hand system. The sign convention
that will be used is that a negative mament, applied as in Figure 1, will
cause a positive displacement. |

The bending and deflection equations for the various sections of the

motor section are represented as;

"
s - ; _2+c‘ (])

a_ 7eI, LY TEl,

xi i i
and

G K

Y- TY ‘ELYE (2)

where,

i=1, 2, and 3 and represents the beam sections:

O<ylpplisyslyulcysl
respectively,
M_= A moment applied in the negative X direction as shown in

X
Figure 1 (4 ft 1b),

29
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EI1 = the E! of the 1th section of the motor section, see Figure 1
(@ w re2),
L = the length of the motor section (3 ft)

C; and K, = constants of integration of the ith motor section (¢ 1b ft2 and

1b ft respectively).

The constants c, and K, can be evaluated due to the following boundary
conditions:
Aty=0,2=0;

Aty=L,,a_ =a_,andg =2,
"5 2 1 2

Aty=L,,a =a ,and e, = 2.;
L I 2 3

Atva.!3-0

Upon evaluation of the boundary comditions the C; and K, are found to be:

2 3 2 3
c - [_E_‘l i 5_1_1_] ["x'-z ) ]_E’l ) ,]["x"] _ AL } M LEL, (3)
1 e, edla 312 2L nzd e,

I

2
O P AL
2" - &L,

C3=-—=r— |, -

2

M L [513 : ML [5_1_1_513] El,
e,

2 o

(4)

(5)

(6)

(7)




R

3 3
M El ML, [Etl El
3 1 3 3
K3 s e XLZ [] - !.r; - —XI—-[FTZ- - !T]- . (B)

The degree of bending in both transverse planes of the motor section
at the front bearing can be found by combining equations (1) and (5).

The equations are of the following form;

)

a_ *=M_

3 K X (9)
and

1M

a =- = (10)

3 R ¢
where

3 3

l,,i?_[_l_-_l.]-fl_[_L-.L]-_L_ ()
R oaz|ery e, ) a2 e, En] 3l

The quantity K can be thought of as the bending stiffness of the

motor section at the front bearing to a mument applied as shown in Figure 1.

The numerical values of L], LZ’ L and EIi used in this report are

presented in Table 1.
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C. GENERAL MOTION ANALYSIS OF THE PAYLOAD SECTION

As stated, the payload section of the rocket will be assumed to be
rigid. The position of the payload section in the space can be described

by two independent Euler angles as shown in Figure 2.

The coordinate systems and Euler angles used in this portion of the
analysis are defined as follows:

e Ground Reference: Ground reference is (X,Y,Z) with respective
unit vectors (i,j,fz). The origin is fixed &t the center of the front
bearing. The Y axis is taken positive going out of the launch tube
longitudinal axis. The Z axis is taken positive up and parallel to the
local vertical. The X axis completes the right hand system.

o Body Reference: Body reference is (x,y,z) with respective unit
vectors (?]. 32, 3'3). The origin (cnp) s located at the mass center of
the payload section. If the angles ¢ and @ were both zero then the body
reference axes would be parallel to the corresponding ground reference axes.

It is important to note that x and z do not spin with the rocket,
i.e., the rocket spins about the y axis of the body frame.‘

e System Euler Angles: The two independent Euler angles that des-
scribe the position of the body reference (or frame) with respect to the
ground reference are ¥ and 0.-¢ is the first rotation about z and -0
is the second angle of rotation about x'. Note that x' is parallel to x.
Both angles and their time derivatives are expressed in rad and rad per

second respectively.

33
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k 3
The relation between the coordinates of the body frame and those of

the ground reference is:

=]

with the matrix [8] defined as,

0 0 Cé =S¥ 0
(8] = CO -SO[el ¥ C¥ O (13)
So 0 0 11

or, the relation may also have the following form:

X X
[Y] = [C]e y] (14)
4 z

with the matrix [C] defined as,

0 T 1 0 0
[c]1= [-s¥ ¢ o ]°]9 co Seo (15)
9 0 1 0o -s¢& ¢co

where C@ is taken to be COS(#), etc.
Now:

0O -

@ = the angular rate vector of the body frame with respect to the

ground reference (4 rad/sec).




k 3
;R = the angular rate vector of the rocket with respect to the ground
reference (9 rad/sec).

Q = the angular rate vector of the rocket with respect to the body
frame, 1.e., the rocket spin rate (J rad/sec).

The above angular rate vectors are given by the follawing equations:

e -05 + WSOE, - ¥ COT, (18)
T = - 08 + ($50+ a)e, - ¥COT, (17)
Q= 95'2 (18)

It follows that the angular momentum vector of the payload section
with respect to its mass center, expressed in the body frame is [2]:
chp =- 1,08+ Iyy (¥s0 + n)e’2 -1, $Co e, (19)

The sum of all external moments about the mass center of the payload
section must be equal to the first time derivative of Tl'm with fespect to
the ground reference. Therefore,

d -
Momp = Ft’[manp)] Body * ¢ * Hemp
frame

(20)

A constant spin rate of 987 rad/sec will be used in this analysis.
This value was obtained by averaaing the spin rates (excluding flights
1, 2, and 3) presented in Table 6 of [3]. As 987 rad/sec is a very large

2
number, all second order terms, such as Izz ¥ 58 CO, that result from

the evaluation of equation (20) can be ignored. Because the degree of

L
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*in-tube” bending has been cbserved to be very small, [1 or 2], the sub-
stitution of S@=0, SP=¢, CO= 1, and C¥P= 1 into equation (20) yields:

. e .0 . _
Iap = (I” ae- 1., o)e] - “zz** Iyy Q 0)93 (21)
where
lxx = lzz = the transverse mass moments of inertia of the payload

section with respect to its mass center (9 slug ft2).
IW = the longitudinal mass moment of inertia of the payload
section with respect to its mass center (9 slug ft2).
Equation (21) can be expressed in the ground reference with the use of

equations (14) and (15). Therefore,

H _=(IL_a¢- Ixxo)i - “zz** Iyy o 0)k (22)

anp yy

The only external forces that create a moment about the mass center of
the payload section are the reaction forces acting at po1'nt "0" as shown
in Figure 3. These forces can be evaluated with the use of Newton's

Second Law, 1.e.,

T =
ap = M

(23)

where

Hp = the mass of the payload section (S slug).

a = the acceleration of the mass center of the paylocad section
with respect to the ground reference (4 ft/sec?).

Now, a can be found due to the fact that,

7= 7 (24)
dt2

e ere A s AN, an & ik A o b bt e
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where

T = the position vector of the mass center of the payload section
with respect to the ground reference (E ft) and is of the fom,
Teadi+n]-rok (25)
where

Lt = the linear distance between the point "cup" and the point "0",
see Figure 2 (4 ft). If equation (25) is combined with equation (24)

then the following expression is found,

T adi - 20k (26)

As the rocket is also accelerating in the positive Y direction due to the
thrust provided by the main engine, equation (26) can be modified to be
of the form,

- o9 ~

‘a‘=z'¢'1‘+aTj-zak (27)

where

a, = the longitudinal acceleration of the rocket due to the thrust of

the main engine (g ft/sec?).

The mass of the rocket and the thrust are assumed constant from boost

motor ignition until the end of guidance. An average thrust for this time

was computed as 4808 1b [4]. With a rocket mass of 1.54 slug [5] an
average acceleration (aT) of 3122 ft/sec? can be calculated.

The only external moments that act on the payload section are the
reactiun moments acting at point "0%, see Figure 3. These moments can

be evaluated with the use of the following equation,

H,-(rxF_)=N
R cmp <:mp

(28)




where

8

FIR = the reaction maments acting on the payload section at point
0" (4 £t ).

pr—

An expression for HR can be found by substituting equatfons (22), (23),

}
(25), and (27) into equation (28). This substitution yields a vector &
equation for FR which can be represented by the following scalar equations: i
.-Oo 2 ‘ . !
Mox O(Ixx + 2 Hp) +¥e Hp a; +¥1 Iyy | (29) o
My = 0 ! |

vy (31) n

4 =@ 2 -8

"Rz *(Ixx + L Hp) +9r np ar-0al

The above equations are the components of the reaction moment, acting
on the payload section at point "0", that enables the payload section to
move as depicted in Figure 2. An equal, but opposite, moment must act T

on the motor section and is of the form,

..

My = O(Ixx X Mp) -02 Hp 3 -90 Iyy (32) :

My = 0 ' (33) ;i |
e b 5

M, = &(Ixx + 22 Mp) - ¥t Mp a +00 Iyy (34) E;

If the unbent rocket is placed in the tube such that the (X,V,Z) axes M
are parallel to their respective (X,Y,Z) axec, and equations (9) and (10)

are re-written as: , H

M =2Ka (9a) Ix




4
and
M=K (10a
7 B )
then the following expressions result:
K " UL + 22 H) - 02 M) ap - ¥ Iy _ (35)
K % = W1, + 12 M) -9 M) ap + 00 Ly (36)

As @ and ¥ are aY3 and 023. to the first order, respectively,
equations (35) and (36) become

2 - + - L = 5
b’(lu + e mp) (2 my a7 K) - ¢ I” 0 (35a)
and
. 2 - * =
O(Iu+z mp) &(znpaT+K)+OnI” ] (36a)
The term mp g << K and can be ignored in this analysis. If
Ixx + 1 mp
and
Ql
2
Ixx + mp

then equations (35a) and (36a) become,
0-A0 -8B% =0 (35b)

and

V-A¥ +BO =0 (36b)




Q
The above procedure, i.e., the combination of general dynamics equa-
tions and bending equations is similar to a procedure that is presented
in [6].
The Laplace Transform Method [7] can be used to put equations (35b)
and (36b) into the following form:

(s2-A) - BS
= [€] (39}

BS (S2-A) 1lwv

where

S = the eigenvalues of (35) and (36) (2 rad/sec).
O and ¥ = the transfer functions of 8 and ¥ respectively.
[C] = A matrix that is a function of S and the initial values of @,
v, 6, and ") [7]. 1Its particular form is of no importance to

this analysis.

The eigenvalues, or natural frequencies of whirl, of equations (35) and

(36) can be found by setting the determinant of the matrix

(s2-A) - BS
(40)
8S (s2 - A)

equal to zero. This yields the characteristic equatfon of equations (35)

and (36) whose roots are the eigenvalues. The characteristic equation is

(S2-A)2+8B2S2=0 (41)

The physical properties of the motor section and the payload
section (Tables I and I1I)and the spin rate of the rocket (987 rad/sec)
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are a1l that 1is needed to evaluate equation (41). The resulting roots

of (41) are + j 810 rad/sec and + § 749 rad/sec, where the j denotes

an imaginary nuwber. These values are within 18 to 20 percent, respectively,
of the rocket spin rate of 987 rad/sec.

That the whirling rate during the spin-up phase 1s less than the rocket
spin rate has been documented previously, e.g., see Figure 22 of [1].
However, no explanation for the discrepancy was given. Examination of
this data shows that the whirling rate is about 406 rad/sec while the
spin rate is about 510 rad/sec. This ratio of whirling rate to spin
rate of .796 agrees very well with theoretical results obtained in this
study. In fact, the average value of the two whirling rates, 81C rad/
sec and 749 rad/sec, ratioed to the spin rate of 987 rad/sec gives .794.

Other range data indicates that, when the spin motors are exhausted,
the rocket settles into a state of synchronous whirl. Strain gage data
from hard mounted launchers support this contention.




D. PRESCRIBED MOTION ANALYSIS OF THE PAYLOAD SECTICN

This section of the report will be an analysis of a more prescribed
"in tube” rocket motion. It will also take into account the actual front
and rear bearing clearances of ANSSR 11. The basic bent, in-tube rocket
shape is shown in Figure 4 where < and €, are the rear and front bearing
clearances respectively. As shown in Figure 4, a is the angle between the
unbent rocket axis, ¢ is the angle between the longitudinal axis of the
launch tube and the bent rocket axis. Nominal values of ¢, and ¢, can be
found to be 0.003155 inches and 0.002075 inches respectively [5]. If L,
the length between bearing centers, is 2.1625 ft [5] then the angle ¢ can
be found and is 2.0154 x 10°# rad.

Experimental strain gauge and optical lever data [1 or 2] strongly
indicates that the in-tube motion is one of synchronous whirl, i.e., the
rocket spins about its bent axis with a rate of 987 rad/sec and it whirls
around the launch tubes Tongitudinal axis at the rate of 987 rad/sec
simultaneously. This means that there is no flexing of the motor section
and thus no shear forces due to flexure. Thus, a somewhat less complex
model can be used than the Timoshenko beam [8] model that is needed to
account for shear due to flexure.

» aven though the general motion analysis of the payload section
yielded a whirling rate within 18 to 20 percent of the actual rocket
spin rate, this portion of the report, due to the strong experimental
evidence previously cited, will assume the rocket to have a whirling
frequency equal to the spin frequency, i.e., a synchronous whirling situa-

tion prevails.
44
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Once again, the payload section is assumed to be rigid. This
analysis, due to symmetry, is an instantaneous one and the particular
configuration in space is depicted by Figure 5.

The ground and body reference definitions remain the same as in the
previous section (noting the addition of the front bearing clearance,
Figure S).

The Euler angles definitions also remain the same but are placed
under the constraints that ¥ =% = 8 = 0 and 9 is a constant.

The relation between the coordinates of the body frame and those of
the ground reference can be found by using equations (12), (13), (14)
and (15) subject to the above constraints.

The terms w, .‘;R’ and 2 are as previously defined and their respective

values are
wx COue, + SO 2, (42)
wp = (2 + Coule, + 50.ue, (43)
Q= qe, (44)

The angular momentum vector of the payload section with respect to

its mass center is of the form:

chmp = Iyy (a + cam)ez + Izz SOue3 (45)

where

w = the magnitude of the whirling rate vector, 987 rad/sec.

-
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The sum of all external moments about the payload sections mass center
can be found by substituting equations (42) and (45) into equation (20).
The resulting expression for the mament vector is

Wy, =[«2sece(1, -

I
p yy

)'lwmﬂs.]-e-] (“)

As in the general motion analysis, a constant spin rate of 987 rad/
sec will be used, second order terms are ignored, and small angles are
assumed.

The external forces that create a moment about the mass center of the
payload section are shown in Figure 5. These forces can be found with the
use of equation (23). The definitions of mos a, and r will remain the
same but the expression for a and r will be written as

2ux(uxT) (47)
and

F=(1-50¢,)e,+Coee, (48)
ifote that

t = the linear distance between the point “cmp" and point “P*
(9 ft).

The resulting expression for a can be found by substituting equations (42)
and (48) into equation (47),

- 2 - -

a= (S“Z -S$°9 z)ez - mz(COCZ - S.C‘l)e3 (49)

It has been demonstrated that the thrust of the rocket engine has
little effect on the problem so this section of the report will not

include it.
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The external moments acting on the payload section are also sham in
Figure 5 and can be evaluated by substituting equations (23), (46), (48)
and (49) into equation (28). Thus, the folloxing expression is found for
the reaction moments at point "P",

Mpe-DMra2e, v a2 (1 -1,-m 2200 (50)

An equal, but opposite, moment must act on the motor section and since
at this instant the x axis and X axis are parallel, this moment is of

the following scalar form:
Hx-nzuzizhoz (lyy-lu-npzz) (51)

By a'igning X and X, and by noting that o (Figure 4) is equal to QY
3
then equations (9a) and (51) can be combined to form,
. 2 2 - - 2 :
Ka =Mt w lz*u(lw Izl Npl)o (52)

If a dynamic stiffness is defined as
- w2 - - 2
Kk *uw (l” lu mp 22) . (53)
and it is observed that
0=a-9 (54)
then the foilowing expression can be written:

2 -
Tplu ‘2 ke

®" K-k ' (55)

This equation results in a direct computation for . If a rocket

length of 48.24 inches is used and the rest of the needed physical char-
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sctaristics are obtained from Tables I and 1I then the resulting value of o
is 1.123 millirad. A value of @ can now be found from equation (54) and is
0.922 millirad. Once it is realized that @ is the "in-tube” pitch angle of

the payload section, it is seen that the presented value {is in excellent
sgreement with the experimental data presented in [1 or 2].
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E. MASS CENTER AND PLAI OF THE BENT ROCKET

This section of the report deals with the calculation of the mass
center and the PLAI (Principal Linear Axis of Inertia) of the bent rocket.
Both will be found via a lumped parameter model.

- m—— ————

The analysis will be divided into two parts: first, the mass center
of the bent rocket will be found, and then the PLAI will be found with
respect to the launcher axis. In both parts, the physical characteristics
of the rocket will be lumped in four sections: the motor assembly, the
first and second halves of the shell section, and the payload section as
in Figure 6. The resulting PLAI will give a mallaunch rate that fs about
halfway between the mallaunch rates of 200 nillirad/seé and 300 millirad/
sec reported in [1] and [2].

The mass of the entire shell section can be found using a shell
Tength (Ls) of 1.871 ft., a shell thickness of 0.038 in., an inside shell
radius of 2.0 in., mild steel shell (density equal to 15.23 slug/ft3),

a fuel density of 3.28 slug/ft3, an inside fuel radius of 1.0 in., and a
fuel thickness of 1.0 in [9]. The resulting shell and fuel mass (ms) is
0.4992 slug. As the entire mass of the motor section is 0.7689 slug,
Table II, the resulting motor assembly mass (mm) is 0.2697 slug. Note that
the motor section is made up of the motor assembly and both shell sections.

The distance of the mass center of the motor assembly (cqm) from the
rear of the rocket (d),(see Figure 7), can be found using the following
equation,

J- mml.cm +m (LCm - Lm - 1/4 Ls)

" (6)

5
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where

"a = the distance of the mass center of the motor section from the
rear of the rocket (0.9133 ft).

The resulting numerical value of d is 0.2556 ft.
Figure 8 shows the geametry of the four rocket sections in their bent
configuration. The following symbols will be defined to clarify Figure 5,

2y = the value of the 1 = 1 deflection equation evaluated at
¥ = 0.333 ft. The numerical value of z; fs 2.5313 x 10”%r¢.

z, = the value of the { = 2 deflection equation evaluated at
¥ = 1.269 ft. The numerical value of z, is 6.5677 x 10" %t

8y * the angle between the longitudinal axis of the motor assembly
and the unbent axis of the rocket (0.795 millirad).

By = the angle between the front half of the longitudinal axis of the
shell section and the unbent axis of the rocket (0.4312 millirad).

Bgp * the angle between the second half of the longitudinal axis of the
shell section and the unbent axis of the rocket (0.7021 millirad).

sp = g = the angle between the longitudinal axis of the p@yload section

and the rocket's unbent axis (1.1236 millirad).
Figure 9 shows the locations of the mass centers of the four rocket

section with respect to the (X,Y,Z) coordinate system. The mass center of
the motor assembly is described by coordinate pairs (yn,zn). Each remain-
ing section has its respective coordinate pairs of (Ysl'zsl)’ (ysz.zsz),

and (_vp,zp). The numerical values of each of these pairs are:

Y, = 0.2557 ft. 2 = 1.942 x 1074¢

-4
ys] = 0,.8010 ft. ’ Zs] 4,551 x 10 ft.
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-4

y, = 2.9834 ft. 2, = 8.7548 x 1074f¢. |

The mass center of the rocket can now be found with the use of the
following equations,

)
.mn
L2, m,
= 58
zcm Z mn ( )

where

Yen * the y cocrdinate of the mass center of the bent rocket in
the (X,Y,Z) system (4 £t)

L the z coordinate of the mass center of the bent rocket in the
(X,Y,2) system (3 £t)

M =m, s1, s2, and p and represents the motor assembly, the first
half of the shell section, the second half of the shell section,
and the payload section respectively.

y_ = the y coordinate of the nth section's mass center in the (X,Y,Z)

system (S ft)

N
]

n the z coordinate of the nth section's mass center in the (X,Y,Z)
system (S ft)

m, = the mass of the nth section (2 slug).

The resulting numerical values for Yam and z o, upon evaluation of

equations (57) and (58) on 1.951 ft. and -2.781 x 10'4 ft. respectively.




The coordinate system (X1.X2.X3) is shown in Figuri 9. The relation-
ship between the coordinates of the (x].xz.xa) system and those of the (X,Y,Z)

system {s,
X‘ X
X3 z

where the matrix [D] is defined as,

1 0 0
1. lo & -s¢ (60)
0 S¢ Co

Note that ¢ is defined by Figure 4 and has a value of 0.2015 milliradians

for the bearing clearances given previously.

If chm and x3cm represent the coordinates of the rocket's mass center
in the (X1,X2,X3) system, their values, via equations (59) and (60), are
1.951 ft. and 1.1512 x 1074 ff. respectively.

The coordinate pairs (Xg, Xg) can also be found with the use of equa-

tions (59) and (60) and their values are,

Xy = 0.2557 ft X} = 2.4573 x 1074 .
x;‘ = 0.8010 ft. x;’ = 6.1654 x 1074 ft.
xzz = 1.7365 ft. x§2 = 6.7835 x 1074 ft.
X = 2.9834 ft. X§ = -2.742 x 1074 ft.

= & ==

’; »

-y

it 8 s
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Now that the geometiy and mass center locations are known for the four
rocket sections and for the entire rocket, the task of finding the inertia
tensor of the rocket can be undertaken. The inertia teusor of each rocket
section will be found with respect to the principal axis system that is loca-
ted at its own mass center, e.g., see Figure 10. Then the inertia tensor of
each section is found in a coordinate system at its mass ceater, that is par-
allel to the ()(1 .xz,xa) system. Next, the entire inertia tensor of the
rocket will be found at a coordinate system located at the rocket's mass
center and parallel to (X] .xz.x3). The final step is to diagonalize
this inertia tensor and thus find the bent rocket's PLAIL.

The longitudinal mass moment of inertia of the first half of the shell
section with respect to its principal axis system can be found from the

following equation,
s]Iy'_y' = 1/2(m]r2o - m, rZ]) +1/2 (mﬂ rzfo =M, rzﬂ) (61)

where,

the outside shell radius (2 ft),

-
]

the inside shell radius (9 ft),

-
-—
]

= the outside fuel radius (9 ft),

r the inside fuel radius (g ft),

f1

and the quantities Mys Moy Meys and Mme, are given by the following equations,
m = 1/2 o = LS r2° (62)
my=1/2 0 n L r2, (63)

= 2
My = 1/2 pgm L r2, (64)

0
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neo ® 1/2 PR Ls r2ﬂ ' (65)

where

p = the mass density of mild stee) (§ slug/ft3),

oy ® the mass density of the fuel (2 slug/ft3).
The transverse mass monent of inertia of the first half of the shell section
with respect to its principal axes can be found from the following equation,

I = 1/12 [3(m1r20 - mz.rzl) + (172 Ls)z(m.l - mz)]

s1lx'x' " silzz

+ 112 [3(mﬂr2f° - mfzrzfo) + (]/2 Ls)z(mﬂ - mfz)] (55)

-3

The numerical values of sll voo and I, , are 4.8731 x 10 ° slug/ft?

sl x'x
and 0.0206 slug/ft? respective1y{ yAs the physical dimensions of the first
and second halves of the shell section are the same, their mass moments of
inertia are the same.

The principal axis system of the motor section (x',y',z') is shown
in Figure 11. The values of dm' dSI and dSZ are 0.6577 ft., 0.1123 ft.,
and 0.8231 ft. respectively. The values of the principal longitudinal,
and transverse (Iy'y' and I, .\ = Iz.z.) mass moments of inertia of the
motor section with respect to (x',y',z') are 0.01837 slug/ft2 and 0.43900
slug ft2 (Tablell) respectively.

The longitudinal mass moment of inertia (me'y') of the motor assembly
with respect to its own principal axis system, m(x',y',z'), can be found

from the following equation,

ILoov =T 0= 41 (67)

ll"I ]
my'y y'y' sly'y' s2y'y

R
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Also, the transverse mass moment of inertia (-Ix'x' . 'lz.z

sssembly with respect to the same syscem is expressed by,

) of the motor

L= 1

mx'x' “mzz " Lot = slx

x'x' "~ ”sl(dﬂ )2 -s2lx'x - 'sz(dsz)z
}
- lb(dm)2 (68)

The resulting values of .. and 1 . ., are 8.6264 x 10”3 slug/ft? and

y'y
0.1087 slug/ft? respectively.
The inertia characteristics of the payload section are in Table 2.

The values of ply.y. and pIx'X

, are 0.0108 slug/ft! and 0.20423 slug/ft?2
respectively.

The coordinate systems N(x1.x2.x3) and cm(x].xz;x3) are shown in
Figure 12. The N(x].xz,x3) system is at the mass center of the Nth
section and parallel to the (xl.xz,x3) system. The cm(x],xz,x3) system is
located at the mass center of the bent rocket and is also parallel to the
(x].xz,x3) system.

Figures 13, 14, 15 and 16 show the geometric relationship between
the N(x',y'.z') systems and the “(x1,x2,x3) systems,

The inertia tensor of each section can be found in its respective
(x].xz,x3) system by the transformation properties of the inertia terms
(See Section 16.5 of [10]).

The resulting inertia tensor for each section with respect to its own
(x],xz,x3) system is for the following motor assembly;

1

m XX ) mlx3x3 = 00,1087 slug ft2

I =9.6265 x 10°3 slug ft2
m XZXZ

I = 1 -
m X:Xy M x2x3 0
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n » 2
ulx]x1 nlx3x3 0.1087 slug ft

8.6265 x 1073 slug ft?

J&%

I

-Ix]xz ) m x]xa =0

I 9.6223 x 107" slug ft2

for the first half of the shell section

2

I = 0.02064 slug ft

s1xpx, * sllx3x3

s1lxpx, = 4.8731 x 1073 slug ft?

I -
ST xyx, = (4 -
172 81 X%y 0

slIx2x3 = 9.98 x 1075 s1ug £t?

for the second half of the shell section

2
1 LIS | = 0.02064 slug ft
$2 X1%q s2 XqXq

I = 1
s2 X1Xo s2 X)Xy = 0

521x2x3 » -3.9575 x 1077 slug ft2

for the payload section

= a2 2
plx1x] plx3x3 0.20423 slug ft
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- 2
Pllgxz 0.010833 slug ft

plx]xz - pIx]x3 =0

.. -4 2
91*2*3 1.783 x 107" slug ft

The total inertia tensor of the bent rocket with respect to its
cm(xl’XZ’x3) system can be found with the following equations,

2
cm m
L, * s 3 - %3)

cmlxzxz * m XZKZ I * mm(x

+ 21 +
xzx2 S xzx2 p x2x2
(69)

2 2
en _ sl cm _ s2 cm_.p
tmlxg - xg) #mp(xgt - x37) +m(xgt - x3)

an" x4 i} me3x3 ) slIx3x3 ¥ sZIx3x3 * pIx3x3
am  .m2 an  _s1,2
+mpxy" - xp)" *+ mey (xg" - x37)
+m_, (xS xs)2 +m (xS xp)2 (70)
5272 2 p'\2 2
chx]x1 mlx1x] * s]lx]x1 * sZIx]x] * pIx]x]
cm my2 an .m,2
+ mm[(x2 - xz) + (x3 - x3) ]
a _ py2 an _ _py2
+ mp[(x2 x5)" + (x5 x3)"1]
cm 3,2 cm $242
+m LG - xp)% + (X7 - x57)

+ (P - x4 ()




j n
‘ an _ N2 an _ Ny2 -
E‘ As (x3 - x3) << (x2 - xz) , then cmlx]x] cmlx313‘
=0 (72)

I = 1
o xyXy  OmoXqXq

,.-..4‘

I o= 1 .+ 0+ 1 4m e Mem, 5]
O XyXy M XpXq sl XoXq s2 XgXq m 2 3 s1'2 '3

$2 s2
tmgry ry 4 my rg rg (73)
where the quantities rg and rg are defined in the following equations
= . N3 N
™w* " J+ rs k (74)

and Fh is the position vector of the mass center of the Nth section with

respect to cm(x],xz,x3), [10). The resulting numerical values are:

a 2
leizxz 0.02921 slug ft

2
I = 1. . =2.2949 slug ft
an X]X-' am X3X3

4 2

I = -6.1663 x 10°

slug ft
an’x X4

The angle between the PLAI axis and the a2 axis, Figure 17, is given

by
TAN(2 ) - Ix2x3 (75)
B =
PLAI 1 - 1
an X2X3 an X3X3

The resulting value for Bp AT is -0.2722 millirad.

The instantaneous mallaunch rate that corresponds to this particular

geometry can be found from
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The resulting value of WAL 1s - 267 millirad/sec. As mentioned previously
this is about halfway between the values of 200 millirad/sec and 300 milli-

rad/sec presented in [1] and [2] that are predicted to cause the down-range
motion of ANSSR II.




7
1
Ly L, Ly
0.3333 ft 1.629 ft 2.2042 ft
el el El,
1,006,944 1b £t [208,333 1b £t |1,041,667 1b ft2

TABLE I. Physical Characteristics of the Motor Section

!
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SECTION III

MALLAUNCH AND MALAIM DUE TO
LAUNCHER MOTION

ABSTRACT

Dynamical equations of motion are developed for a
multitube Launcher assembly for a spin-stabilized rocket.
A parametric study is performed to minimize the mallaunch
rates affecting missile fLight. The results show that
pwudent selection of specific stwetural parameters can
minimize mallaunch rates.
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j LIST OF SYMBOLS
A A Constant for the bearing amplitude
a Average acceleration of the rocket
B Constant for the bearing amplitude
c Lateral Stiffness of the supports
¢/ d Translation displacement of rocket along the y-axis
L after boost ignition
F].z Vertical stiffness forces

F3.,4,5.6 Lateral stiffness forces

F Forces due to pitch
7.8
F9,10 Forces due to yaw
Fy Reversed inertia force due to the vertical acceleration
of launch assembly
Fj heversed inertia force due to the lateral acceleration
of the launch assembly
- Pitch moment of inertia of launch assembly
Ixy Ro11 momert of inertia of launch assembly
‘ Izz Yaw maoment of inertia of launch assembly
, K Vertical stiffness of supports
11 Distance from aft end of launcher to rear support
R 12 Distance from rear support to front support
13 Distance from aft end of launcher to the center of mass
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Center to center distance between rocket bearings

Vertical distance from top of launcher to the center
of mass

Mass of the launch assembly

Magnitude of the rear bearing force
Magnitude of front bearing force
Rear bearing force vector

Front bearing force vector

Time after boost
Displacement in the x-direction

Distance to the bore axis of the launch tube from the
C.M in the x-direction

Displacement in the y-direction of launch assembly
Displacement in the z-direction of launch assembly
Pitch

Roll

Yaw

Operational spin rate of the rocket




A. INTRODUCTION

The purpose of this section is to present the results of an analytical
study of the launch dynamics of a multitube launching assembly for an
aerodynamically neutral spin-stabilized rocket.

The system considered in this section has two component parts; the
rocket and the multitube launching assembly. The launching assembly is
composed of individual tubes that are rigidly mounted together to form a
cluster. Each tube contains four guide rails one each on the sides of
the tube and cne each on the top and bottom of the tube as seen in Figure
1. The stability of the rocket is obtained through gyroscopic effects due
to the spinning of the rocket within bearings mounted integrally with
the rocket case. This spinning motion is attained before boost (i.e.,
ignition of the thrust motor) by four spin motors that are mounted on
the aft end of the rocket. After the rocket is brought up to the opera-
tional spin rate, the thrust motor ignites propelling the rccket out the
tube.

If the rocket is rigid (i.e., the rocket case does not bend) and the
rocket's center of mass is to be located on the spin axis, then the rocket
is theoretically balanced. If either of these conditions are not attained,
the rocket will be in a state of unbalance. For the system considered,
the unbalance effects are transmitted to the tube guide rails via the
rocket's bearings. When the thrust motor is ignited, the rocket will
traverse the length of the tube thus causing the unbalance forces to trans-
late along the axis of the launch tube. Due to the spinning motion of the
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rocket, the unbalance forces rotate in a circular path within the launch
tube. Thus, the forces applied to the launchirng system by the rocket
are equivalent to a set of spiraling forces out the launch tube. This
type of motion by the rocket within the tube can cause the launching
assembly to oscillate. If the oscillations are severe enough, they can
impart to the rocket a malaim and a mallaunch rate at the end of guid-
ance.

The goal of this investigation is to determine the natural frequencies
of the launching system and to determine if the assembly has any undue
rotational motions at end of guidance severe enough to disturb missile
launch. The theoretical work has been directed toward formulation and
solution of the dynamical equations of motion for the multitube launching
assembly. The rocket and the assembly are treated as discrete parts with
the rocket contributing only to the motion of the assembly by the amplitude
and the spin rate of its bearing reactions. In an earlier study it was

found that the points of application of the force vectors of the front
and rear bearings are 180 degrees out of phase (see Section II). In the

mathematical expressions, the system considered is one with two supports
equally spaced longitudinally from the center of mass as seen in Fioure 2.
Each support has a given lateral and vertical stiffness. As the two
supports are equally spaced from the center of mass of the launcher
assembly, the dynamical equations of motion are decoupled. As a result
of this decouplina, mathematical expressions can be developed in a straight
forward manner to determine the theoretical position and state of motion
of the cluster assembly during launch.

From the mathematical expressions for the natural frequency, the

position, and the motion of the assembly, parametric results are ohtained
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and are presented in part D of this section. Thus, given certain para-
meters that affect the stability of the assembly, notably the acceleration
of the rocket, the amplitude of the bearing forces the spin rate of the
rocket, and the stiffness of the mounting hardware, the malaim and the

mallaunch rates at the end of guidance can be determined and accounted

for.
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B. MATHEMATICAL FORMULATION OF DYNAMICAL EQUATIONS OF MOTION

In developing the differential equations, which describe the

motion of the cluster assembly, several physical dimensfons are used.
For a complete list as to all of these physical dimensions, reference
is made to Table I. It is assumed that the individual tubes of the
cluster assembly are rigid with respect to one another. The center
of the mass is considered fixed and the supports are equally spaced
with respect to the center of mass. _ )

The coordinate system to which all motion and position is
referred is a right-handed cartesian coordinate system, X,Y,Z, with
the origin 0 of the system fixed at the center of mass in such a
position that the Y-axis lies parallel to the bore lines of the launch
tubes. |

From the free body diagrams, Figures 3 and 4, the summation of

forces in the negative z-direction gives

2F.,=0=-Rg+F1+Fi -Rp+F (1)
and the summation of forces in the positive x-direction gives

Z:Fx »= Q= - ﬁb +Fy3+Fy- Re + Fa (2)

where F{ and Fj are the reversed inertia forces due to the vertical and

lateral stiffness of the launcher assembly such that

85
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TABLE 1

Physical Dimensions of Launch Tube

XX

IZZ

Support Attachment Spacing

Transverse Distance to Center
of Mass Forward of AFT End of
Launch Tube

Rocket Bearing Spacing
Pitch Moment of Inertia
Yaw Moment of Inertia

Mass of Launch Assembly

Average Acceleration of
Rocket

Time after Boost Ignition
Rocket Operational Spin Rate

14.0 in

24.495 in

25.690 in
13.6 slug ft2
13.6 slug ft?

5.49 slugs
3122.316 ft/sec?

158 cps
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Fi = mx
and

Fy= "z
From the free body diagrams, Figure 5,6, and 7, the summation of
moments about the center of mass in the positive y-direction ylelds

Ty =0-1I,0+1; (F5 + Fg) )

- 2¢(Pg + Pp) cos wt - x (Pg + Pp) sinwt

The sunmmation of moments about the center of mass in the x-direction

gives

\

TM =01, 8 -xlpF+ulyFy
(4)
+ (13 - d) Fb - (]3 - d - ]4) “%

and the summation of moments about the center of mass in the z-direction

yields

TM, =0=1,,¥ -%1yFg+k1,F (5)

+(]3‘d)R-B-(13-dfl4)EF

From the geometry of the system and the stiffnesses of the
supports, the following physical relationships are obtained:

Fy=Fp=kz (6a)

F3 = F4 = FS = FG = CX (Gb)
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Fp=k(z-%1,sin0) | (6¢c)
Fg=k (z+31,sin 6 ) (6d)
Fg=c(x-%1,siny) | (6e)
Flo=clriXisiayp) [5¢)
for small angles of rotation,
Fp=k(z-%1,0 ) (69)
Fg=k(z+%1,0 ) (6h)
Fa=c(x-%1,9 ) (63)
Fm-c(x-r!;l.z;//). (6k)

The bearing reactions are cyclic and revolve within the launch
tube at a rate approximately equal to the spin rate of the rocket [3].
The front and rear bearing reactors are 180° out of phase. Thus,

the bearing reactions can be represented by the sinusoid of functions
which results in

Re

- PF sinwt (7a)

Rg

Pg sinw t (7b)

where PF and PB are the magnitudes of the front and rear bearing
reactions respectively and w is the spin rate of the rocket.

The distance, d, that the rocket has moved out the launch tube
is giver by the equation

—®
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.; where a is the average acceleration of the rocket and t is the elapsed
L time after boost.
| . From Newton's second law of motion, the inertia forces asso-
L
! ciated with the cluster assembly due to acceleration of the center of
b
L mass vertically and laterally are
L Fy = ui (9a)
| Fy = mi (9b)
E ’ Equations (6a, 6b, 6g9-k, 7a, 7b, 8, 9a, 5b) substituted into
i equations (1-5) result in the dynamical equations of motion.
L. .
mZ + 2kz = (Pg - PF) sinwt (10)
i
;tﬁ: mx + 2kz = (PB'PF) sinwt (m)
i
L Iw& + 2c]5x = (Pg + Pp)(z, coswt
.-
| ! + X, sinwt) (12)
i,_: lxxé + lj ]%ko = -[(]3 - ]4) PF + ]3 PB]
‘ ] + sinwt + % (P - Pp) at? sinwt (13)
" -
P - 2
i Iz W+ %15 c¥ = -[(13 - 15) Pp + 15 Pg]

+ sinwt + %(Pg + Pg) at? sinwt (14)

——
[

Equation (12) has two dependent variahles, ¢ and x, and one independent

|
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C. SOLUTIONS OF DYNAMICAL EQUATIONS OF MOTION

The solution to the dynamical equations of motion derived in the
preceding section will be given in two parts, the first being the
natural frequency of the cluster assembly, which will be obtained from
the unforced part of the equations of motion. The second solution will
be used to obtain the position and motion of the assembly as a function

of time during launch.

Part 1
The characteristic equations are obtained by setting the unforced

part of the equations of motion equal to zero which yields

(ms2 + 2k)z = 0 (17)
(ms2 + 2¢)x = 0 (18)
(1,452 + 2c15)$= 0 (19)
(1,52 + 515k)@ = 0 (20)
(1,52 +X1pc)¥= 0 (@)

The natural frequencies, s, are obtained by a solution of each

characteristic equation which gives

5 = :\[-2k/m' : (22)
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S, = syf-2c/m (23)
S3 = q-2clg/1 (24)
Sy= ey-Tg M2 Ly (25)
Sg = +y-13 ¢/2 Iy (26)

Part 2

Each of the dynamical equations of motion is a second order
1inear differential equation with constant coefficients. The method of
variation of parameters is used to solve the equations. Three different
solutions are required due to differences in the forcing functions in
the equations of motion. Equations (10) and (11) are of the same form
and equations {13) and (14) are of the same form. It is possible to
obtain a general solution for each set.

The general form of equations (10) and (11) is
my +t ky = Asinet

where m, k, and A are constants. This is a second order linear differ-
ential equation with constant coeffients with a sinusoidal forcing
function. y {is obtained by the method of variation of parameters as

ys -{%_(:.:,z)sm{%.t
*(kfm..z)sinut

(27)




T s e

94

2 {s obtained by a substitution of equation (10) into equation (27) as
(Pg - Pg) ) 2K
2= J' —_——singd &t
2"(zn - aw? -
N 4
+(PB—-—E- )sinut (28)
k - mw’

x is obtained by a substitution of equation (11) into equation (27) as
(Pg - Pg)
,."%(__.B_L sinJiC t
2¢ - mw?

Pp - P
+(.—B-——£—-) sinwt
2¢c - mw? ‘ (29)

Equations (13) and (14) are of the form
my + ky = A sinwt + Bt? sinwt

This equation is also a second order linear differential equa-
tion with constant coeffieients. y is again obtained by the method of
variation of parameters which yields

y,J',_‘ Aw , EBmw , 88 mwd sn{_“ \¢2
K |k-mw? (k-mw?)3  (k-mwF)3 '-mu2

(30)

4 B mw A 2nB 8 Bm'e’
sinwt - ———= teoswt + - - i
(k-mas) 2 [k-mu’ (k-mes?) k-mm’)3]s nwt

@ is obtained by a substitution of the variables and constants of

L]
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equation (13) into equation (30) as

o ,—z Tax [2d(13-14)P + 15 Pg) , 2o Lt ¢ Pe)
2 2 . 2 2. 2)2
Bk [ 12k-21, @ (Lk-21 w?)

2
321,23 a(Py + P) 15 k
+ . XX B E sin -z-—t
(1 k-21,w2) 2 1,
a(P, +P.) 81 ea(P, +P.)
B F XX 8 F
+ t? sinwt - t coswt
72{" -2, “ (13 k - 2 I @2)2
. 2[(]3 - ]4)PF + ]3 PB] . 4 I“a(PB + PF)
Bk-2lger (k-2 et
32 1,2 w3a(Pp + P.)
+ XX B F | sinwt (31)

13k -2 I,w?)3

@ is obtained by a substitution of the variables and constants of

equation (14) into equation (30) as

v- 2 Ty |20[03-14)P + 13 7] 12 wD5a(Pg + Pr)
l% c Sc-21,,w? (l; c-21,,w?)?
32 1,,2w3a(Pg + Py) 15 ¢
+ 2 sin t
(1§ c-21I,,w?)3 2 1,,

(Equation continued on next page.)




96

a(P, + P.) 81 a(Py, + Pc)
+ --—B-—---E————t:2 sinwt - 22478 F t coswt

2 2
2c-2 Izzwz (13c-21,,w2)2

+

2[(13-14)PF + 13P&] Iz a(PB + PF)w

2z
z 2 + 242
'2 c-2 Izzw 12 c -2 qu )

%

32 I}_(z2 w3a(PB+PF)

+ 2
“2 c -2 12202)3

sinwt (32)

Equation (16) is of the form
my + ky = A coswt + B sinwt

The same method also serves to obtain a soluvion for y as

’m Bw k A ’ k B
o T sing/ = t - cosq/ = ¢t +( )
A (k-mm2 ) " (k-mwz ) m k-mew?2
. A
sinwt +<k-mu2 ) coswt (33)

@ follows by 2 substitution of equation (16) into equation (33)

as

I X. (Pq -~ P 2¢1
@ =g Y c (Pg = Pp) 4‘“" ¢ 's

—
2 2- 2
2clg l2c ]5 Iyyw J I: ,

(Equation continued on next page)
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(Pg-P¢)Z 2¢1 (Pp - Pg)
- :z i ¢ = | cos 5 t 4 lg IF -
¢l - I, w J Iy 2¢cls -1 w
. o [X; sinwt + Z_ coswt] (34)

The stiffness of the mounting hardware is considered such that
the lateral stiffness and the vertical stiffness are equal. The equa-
tions (31 and 32 are identical except for the principal moments of
inertia. If the moments of inertia are approximately equal, then
equation (32) becomes fdentical to equation (31). Equations (28 and 29)

are identical as the vertical and lateral stiffness are equal. Thus,
substitution of

k=c¢
into equations (28, 29, 31, and 32) yfelds

(Po-Pclw P.-P
X=1= -\fg?(-z—ki'-:—;-;—z-) sin f 2K ¢ +(—B—-—F——-—)sinwt (35)

2k - mw?

and

2T [ 20[05-19)P¢ + 13P5] 1201, a(Py+Pp)

0: w.
1 & k-2, (k-2 w2
32 1,,2w3(Pg+Pg) 12k a(P, + P,)
t— XX 8 2F3 sing] —— t + x B__F . t2 sinwt

(Equation continued on next page.)
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i 8 Ixxua(PB* PF) ) 2[03-14)PF+13PB] . 4 Ixxa(PB+PF)

192 2 2 2 2 - 212
('lzk-ZIxxw 12k-21xx¢0 , ('lzk ZIxxw)

321 2w3 a(Pp+ P
+— XX '( g* Pr) sinwt {(36)
13k - 2 1,,w?)? S

For the time rate of change of pitch,é, and displacement,

2u[(13-14)PF + 13PB] . 'IZUIxxa(PB+PF)

6= w: %t.(O) =

13 k- 21,02 (13 k - 21, w2)2
i .
‘32 Ixx2u3 °(P3+PF) 15 k 2 a(PB+PF)
+ —5 713 cos t +5 y
(12 k - 2 I,w2) 21, k-21,w
a(Pa+Pe) 8wl __a(P, +P:)
esinwt + — B F t2 coswt + 3 xx__ B F ]
]2 k-2 Ixxwz (]2 k - 2 IXXUZ)ZJ

[LO314)Pe13Pg)] 4 1, a(Pgepp)
- +
lli k-2 I, w? (12 k - 2 L,w?)?

e[wt sinwt - coswt]

, 32 Lulw? a(Py+Py)
(13 k - 2 1,0?%)3

wcoswt (37)
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. . (Pg=Pe)
x-z-g?(x 2k:: }nsut-coSJZk) (38)

Equations (35, 36, 37, and 38) give the displacement, malaim,

mallaunch, and rate of displacement as a function of the parameters,
support stiffness, average acceleration, bearing reactions and spin
nu.
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D. ANALYSIS AND CONCLUSIONS

. From the solution of the dynamical equations of motion, a para-
metric study has been done to determine the malaim and mallaunch rates
at end of guidance. The results of this study are presented in
Figures 8 thru 21 for the multitube launcher parameters as listed in
Table 1.

In this study the following parameters are varied: the average
acceleration, the bearing reactions, the support stiffnesses, the
operational spin rate and the time from initial boost until end of
guidance. The average acceleration was varied from 1000 ft/sec? to
4000 ft/sec? as shown in Figures 8 and 9. Increasing the average
acceleration (i.e., increasing the thrust) decreases the time to end
of guidance, but increases the mallaunch rate at end of guidance.

By assuming the front and rear bearing forces to be equal, the
displacement, z, and the rate of change of displacement, z, are zero.
Increasing the bearing reactions equally causes the magnitude of the
malaim and mallaunch rate to increase as shown in Figures 10 and 11.

Figures 12 and 13 show typical solutions of the dynamical
equations of motion for support stiffnesses, k = 0.0 to k =@ , As
the natural frequency of the cluster assembly approaches the critical

spin rate, that is

21 ,w?
K ——
122

100
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the magnitude of the malaim and mallaunch rate approaches infinity
making the launcher assembly increasingly unstable in these areas.
The area of study is confined to

2 I w?

%

Figures 14 and 15 show malaim and mallauﬁch rates as functions of

k <<

time for support stiffnesses equal to zero.

The malaim is a finite value for zero stiffness at the end of
guidance, but is zero before boost, Figure 16. The mallaunch is also
firite at end of guidance, Figure 17, but 15 zero at time, t = 0.0.
After boost, the mallaunch increases negatively then becomes positive
at end of guidance. At end of guidance the mallaunch rate tends to
become increasingly unstable for large bearing reactions and zero
support stiffnesses.

Equations (36) and (37) are periodic functions of the operational
spin rate, Figures 18 and 19, hence it is possible to minimize
efither malaim or mallaunch. The period for mallaunch is approximately
1.4 cycles. The operational spin rate need vary only 0.35 cycles per
second at the end of guidance for the mallaunch rate to go from zerc
to a maximum. For a missile with an operational spin rate of 158 cycles
per second, the deviation from zero to maximum mallaunch is 0.22%.

Equations (36) and (37) are also periodic functions of time.

The mallaunch rate and the malaim become increasingly large, Figures 20
and 21 as the missile approaches end of guidance. By close selection
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of the average acceleration of the rocket, thg time at end of
guidance may be selected such that the mallaunch rate is zero.

As the ullauﬁch rate it the time rate of change of malaim, it
will not be possible to null both variables at the same time. The
malaim affects only the point of impact of a launched missile and
can easily be accouniced for with fnitial aim. The mallaunch rate
affects the actual trajectory of flight, and hence, should be nulled.

The performance of the missile is very sensitive to any changes
in 1ts operational spin rate. The bearing forces increase with the
square of the operational spin rate. The time to end of guidance is
a direct function of the average acceleration, and hence, the thrust

and the operational spin rate of the rocket must be tightly controlled.
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F. APPENDIX A COMPUTER PROGRAM

MAIN--MALATIM AND MALLAUNCH VERSUS STIFFNESS
OIMENSION PITCHD(1,498), PITCHL(1,498), AK1(1,498),
1PB1(10499)
26 FORMAT(4E15.4)

OM 1S THE OPERATIONAL SPIN RATE OF THE RNCKET. (RAD/SZC)
OM=158.7%2,.%3,14159

PF AND PB ARE THE MAGNITUDES OF THE BEARING FUORCES
OF THE ROCKET®S FROANT AND REAR BEARINGS RESPECTIVELY.
(LBF)

PB8=5),0

PF-590°

AM IS THE MASS OF THE MULTITUBE LAUNCHING ASSSM3LY.
{SLUGS)

AM=2223.5/32,2

83 IS THE MOMENT OF INERTIA ASOUT THE X-AXIS.
(SLUGS=FT=-FT)

AJ=l3,.6
L2 1S THE DISTANCE BETWEEN THE MOUNTINI LUSS 0OF THE
LAUNCHER ASSEMALY., (FT)

V2=16,/712.
V3 IS THE DISTANCE FROM THE AFT END OF THF RNCKET TC
THE CENTER OF GRAVITY, (FT)

D3=24,493 /12.
D& 1S THE CENTER TO CENTSR DISTANCE "BSTWESN THE
BEARINGS. (FT)

D&=25.69/12.
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A IS THE AVERAGE ACCELERATION OF THE ROCKET AS [T IS
PRUPELLED OUT THE TUBE. (FT/SEC/SEC)

A=3122,316

00 15 K=1,1
AK IS THE STIFFNESS OF THE MOUNTING L!NKS. (LBF/FT)
AK=1300.9 |

LO 11 J=1,498 .
T IS THE ELAPSED TIME FROM INITIAL BUOOST. (SEC)

T=0.7

AB=2.%AJ/(DN2%%2%AK)
AC=(D3-D4)#PF+03%Pj
AD=A%(PB+PF)
AE=D2#%2%AK~2,%AJeOM%%2

L 1S THE VERTICAL OISPLACEMENT, (FT)

2==SORT(AM/(2.8AK) }*#( (PR=PF)2NM/ (2 . 2aAK~AMEIMEE2) ) x5 TN(
1SQRT(2.%AK/AMIST)+{ (PB-PF)/ (2, *AK-AMBOME32 ) ) &SI (IVET)

wZ IS THE RATE OF VERTICAL DISOLACEMENT. (FT/SEC)

2 2(PR-PF)*IM/ (2. %AK-AMRINER2 ) % (COSIOMET ) -COS(SURT
1(2.%AK/7AM)%T))

PITCH IS THE MALAIM. (RAD)

PITCH=SQRT(AB)# (2., 20MRAC/AE+]12. %04 %AD/AC#E2432, %A
LE¥s24CMex32AD/AE##3)#SIN(SQRT(1,/740)#T)+AN/AZSTx429S] Y
2(0MRT ) =8, #AJR0MPAD/ARSR22THCNS(OMRT )~ (2, %AC/AE+4 208
3AD/AE**2432,#AJRR220MERIRAD /AR X ) xS IN(MET)

DPITCH IS THE MALLAUNCH RATZ. (RAD/SEC)

DPITCH (2., 0MSAC/AE+12. 2OMEAYSADN/AL®824T2 A 22 %
1OMe 23220 /AC#23) sCOS{SORT( L /7AR) ST ) 42, #AD/ARET S (InaT
2)YYUMSADST 22 /AESCUSIOMET )+ (3 *ADRAYRUM/ARRR2 ) x( ) *2aTs
3SIN(OMET ) «=COS(OMET ) ) ~{ 2. %AC/AF+6  AJTAD/AZSS% 243/ S8 %2
L28NMeR3IRAD/AERRI ) 22 COS{IMRT)

PITCHO(K,J)=DPITCH

PITCHLIK,,J)=PITCH

PBLI{K,J)=PB
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AK]1(KoJ)=AK

AK =AK+2000,0

CONTINUE

PB=PBe225.0

CONTINUE

00 16 K=},1

00 16 J=1,498
WRITE(O,26IPITCHOIK 9 ) yPITCHLIK ) yPBLIIKsI)AK]LIK,J)
CALL SPPLOTIAKL,*STIFFNESS (LBF/FT) ', 1R,PITCHL,
1*MALAIM (RAD)*,12,
2'FIGURE 8 MALAIM VvS. STIFFNESS AT EQG? 43695093040
11,498)

CALL SPPLOTIAKL,*STIFFNESS (LBF/FT)',1R,21TCHD,
1*MALLAUNCH (RAD/SEC)',19,
2'FIGURE 14 MALLAUNCH RATE VS. STIFFNESS AT EOG*445,
35.C93¢040010498)

CALL PLOT(04J+v0.0,999)

sTOP

END
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SULROUT INE SPPLOT(l.XHOR.K!.Y.YHDR.KY.FHDR.KF-
LALENXoALENY,LINTYP,NROW,NCOL)

SPPLOT IS A SUBROUTINE THAT WILL PLOT NROW NUMHBER JF
LINES PER GRAPH,

THE ARGUMENTS OF THE LIST AREQ
X NAME OF THE ARRAY CONTAINING THE ABSCISSA 0% X
VALUES.
Y NAME OF THE ARRAY CONTAINING THE NIDINATE OR Y
VALUES.
XHDR ANO KX DESCRIBE THE DESIRED LESEND FNR Th3
X=-ax1S.
XHOR IS THE LITERAL EXPRESSINN OF THE LEGEND TH AC
PRINTED.
KX 1S THE [NTEGER NUMBER NF CHARACTERS [N XHOR.
YHOR AND KY DESCRIUE THF DSSIRED LEGEND FOR Tk
Y*AXIS.
YHOR IS THE LITERAL EXPRESSIUN NF THE LEGEYL T k=
PRINTEOD.
KY IS THE INTEGER NUMBER OF CHAQACTERS [N YMD2,
ALENX IS THE DESIRED LENGTHM DF THS A-aX[S,.
ALENY IS THE UESIRED LENGTH OF THE v-axIS,
LINTYP DETERMINES THZ TYPE OF LINE YW GET,
IF LINTYP GREATER THAN 9, YOU GET A STRAIGHT LI4F
CONNECTING A SYMBOL PUT DOWN AT EVERY LINTYPTH
POINT,
THUS, IF LINTYP WERE EQUAL TI 2, YNU W0ULD 53T A
LINE CONNECTING EVERY SECOND POINT,
[F LINTYP WERE EQUAL 0 3, YNU WILL 6ST A LI SE
nNLY.
[F LINTYP LESS THAM 9, YNy wWOULD GFT A SYMpOL
EVERY LINTYPTH POINT,

DIMENSION X(NROW,NCOL)y Y{NKDW,YCOL), XHDN(2)),
1YHCR(20)+FHDR(1CD)

CALL GSIZE(1leNyll.2s1121)

CALL SYMBOL{245¢1e09e154FHCR 4N O4KF)

CALL PLOT(2.5454543)

CALL PLOT(745+154552)

CALL PLOT(7.542.5+2)

CALL PLOY(Z-S!Z-S"‘B’

CALL SCALE2(XyALENX,NRIWyNCOL FRYXyULX)

CALL SCALEZUY)ALFMY ¢ NROWGNCOL,FRY,DLY)

CALL AXISUJe0s2a2¢XHOR y=KXgALENK Y V9FRX,NLK)
CALL AXIS(3.092eCoYHURGKY ALENY,,99.0,FRY,DLY)
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00 32 J=),NROW

IF(J oNEs 1) CALL PLOT(J.0,59.0,3)
INTEQeY

IPEN = 3

ICO0E = -}

NT s[ABS(LINTYP)

IF (LINTYP)?,4,7
NTa}l

MEa]

NA = NT

KK=1 .

{F (LINTYP) 11,12.13
IPENA = 3

1CO0cA = -}

LSW = }

50 10 18

NA=NCOL

IPENA = 2

ICODEA = =2

LSu=)D

0GC 30 I=1,NCOL
XN3(X{Jel)-FRX)/DLX
YH=(Y(Jy1)~FRY)/DLY
[F (NA=NT) 23,21,22
IF (LSW) 23,22,23
CALL SYMBOL {XN,YN,0D, OB.]VTEQ 0.0, 1CODE)
A =2 ]

0 ™ 25

CALL PLOT (XN,YN,IPEN)
A = NA ¢ ]

NF = NF+KK

1CODE = ICODEA

1PN = [PENA
COMNTINUE

CONTINUE

RETURN

END
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SUBRIJUTINE SCALE2{ARRAY AXLEN,NROW,NCILFIRST,DEL)

ARRAY
AXLEN

NPTS
INC

NAME OF ARRAY COMTAINING VALUES T2 it
SCALED.

LENGTH IN INCHES OVER WHICH ARRAY 15 1O
BE SCALED.

NUMBER OF POINTS TO ARE SCALED,
INCREMENT OF LUCATION OF SUICCESSIVE
POINTS,

DIMENSION ARRAY{NROWSNCNL) ,SAVELT)

SAVE(2)=2.9
SAVE(3)=4,)
SAVE(4)=25,)
SAVE(S)=8,)

SAVE(6)=10.0

SAVE(T7)=20,
FAD=7.C]
InC=]
NPTS=NCOL
K=[ABS(INCG)
NaNPTSeK
Yl=1.0E69
YF=-1.0E-67

UC 26 JJ=1,NROW
YC=AQRAY(JJ,1)

YNaYQ

CO 26 I=1eNeK

YS=ARRAY(JJ, 1)

IF (Y0-YS)
YJ=Y$S
G TOu 25
IF  (YS-YN)
YNz2YS

22022421

254254924

IFILYN GT. YFIYFaYN
IFLYS JLT. Y1)Y1i=YC

CONTINUE
Yo=Yl
YN=2YF
FIRSTV=Y)

IF 1Y) 34,35,3%

FAU=FAD-1.0

OFLTAVa(YN~FIRSTV)ZAXLEN

IF (DELTAV)

72470447

[=ALOGL2(DELTAV)I+1NIZ."
P=13,0¢%([-1000)
DELTAV=DELTAV/P-0,)1

U0 &5 [=1,6

15=1

oy
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IF  (SAVE{1)-DELTAV 4£5950,%9

4% CONTINUE '

SO DELTAV=SAVE(IS)*P
FIRSTYV=DELTAVSAINTI(YI/CELTAVSFAD)
TaFIRSTVE(AXLEN+D.,CL)SDELTAY
IF (T=YN) 55,57,5%7

55 FIRSTY=pS#AINTIYS/P+FAD)
TsFIRSTVS(AXLEN®.01)®#DELTAY
IF (T=YN) 855,57,57

56 1SalSe)

G0 710 80
57T FIRSTVaFIRSTV=-AINTI{AXLENC(FIRASTV=-YN)/DELTAV)/2.0)¢
10ELTAY
IF (YO*FIRSTV) 58,58,59

58 FIRSTV=).N

59 IF (INC) 61,61,65

61 FIRSTV=FIRSTVSAINTIAXLEN+.S)*DELTAY
DELTAVYV==-DELTAYV

65 FIAST=FIRSTY
DELaVELTAY

67 RETURWN

T URLTAV=2,0%FIRSTY

DELVYAV=ABS(UELTAV/AXLEN)+L,
0 Ty &)
END




