AD-779 449

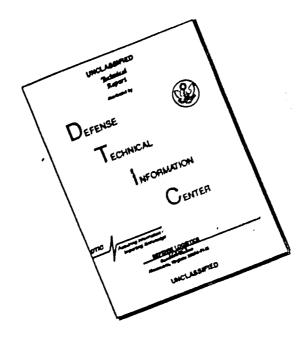
APPLICATION OF AN INTERDISCIPLINARY ROTARY-WING AIRCRAFT ANALYSIS TO THE PREDICTION OF HELICOPTER MANEUVER LOADS

William D. Anderson, et al

Lockheed-California Company

Prepared for:

Army Air Mobility Research and Development Laboratory


December 1973

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Security Classification		HP //
	ROL DATA - R & D	
(Security classification of title, body of abstract and indexing 1. ORIGINATING ACTIVITY (Corporate author)		when the overall report is classified;
LOCKHEED-CALIFORNIA COMPANY		NCLASSIFIED
P.O. Box 551		ROUP
Burbank, Calif.	40. V	ROUP
Burbank, Caill.		
	- 23	
APPLICATION OF AN INTERDISCIPLINARY ROTARY	-WING AIRCRAFT A	NALYSIS TO THE
PREDICTION OF HELICOPTER MANEUVER LOADS		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) FTNAL REPORT		
FINAL REPORT S. AUTHOR(S) (First name, middle initial, last name)		
William D. Anderson		
Fox Conner		
Andrew W. Kerr		
A REPORT DATE	74. TOTAL NO. OF PAG	78. NO. OF REFS
December 1973	418	12
Ma. CONTRACT OR GRANT NO.	SE ORIGINATOR'S REPO	
DAAJ02-72-C-0100		
b. PROJECT NO.	USAAMRDL Tech	nical Report 73-83
1F162208AA82		
e.	S. OTHER REPORT NO	(5) (Any other numbers that may be assigned
Ti and the second secon	this report)	to the same of the
d.	LR 25945	
10. DISTRIBUTION STATEMENT	Reproduced t	
		NAL TECHNICAL
Approved for public release; distribution unlimited		ATION SERVICE
Approved to		irtment of Commerce agfield VA 22151
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITA	
	Eustis Director	
Reproduced from best available copy.		Mobility R & D Laboratory
Desi available Copy.	Fort Eustis, Vi	rginia
18. ABSTRACT		
An interdisciplinary analytical mode		
revised and extended rotor (REXOR), he for predicting the flight envelope o		
performance, dynamic stability, hand	iling qualities, and tre	mansient load
limits. A study was undertaken to c	correlate this analysis	with steady-
state and transient flight test mane XH-51A compound helicopters.	ever loads tata for the	e AH-56A and
The flight test data for the correla operation at speeds between 111 and		
4500 to 18,300 pounds, and normal lo	oad factors between D.	and P.O #.
Fifty-six flight test cases were sel	lected, from which third	ty-seven steady-
state cases and twelve transient as components of steady-state flap and		
blade spans are compared with analyt	tical estimates for the	steady-state
cases, while time history comparison presented. Feather moment and some		
presented. reacted moment with some	blade forsion towns a	e also compares.
The results of the correlation study		
sufficient correlation of low harmon tion tool for transient maneuver loa		
opes. Areas where the method needs		
The report contains a discussion of	Ata model and its appl	In-tions &
The report contains a discussion of description of the two test mircraft		
mary of correlation results. A deta		
steady-state flight test data, a det ponents of test and analysis, a list		
aircraft, and a comparison of REXOR		
appendixes.		

DD . 1473 REPLACES DO PORM 1475, 1 JAN 64, WHICH 18

Unclassified
Security Classification

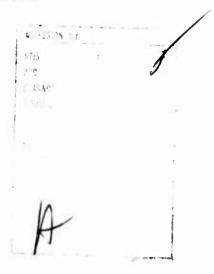
1.

Unclassified

~~~	LIN	K A	LIN	K B	LIN	K C
KEY WORDS	ROLE	WT	ROLE	WT	ROLE	W
Helicoptors						
Compound Helicopters						
Helicopter Rotors						
Helicopter Rotor Loads						
Helicopter Transient Maneuver Loads	i					
Compound Helicopter Test Data						
Helicopter Analysis						
Hingeless Rotors						
ia						

Unc	lassified	
Security	Classification	

## DISCLAIMERS


The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

#### DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.





# DEPARTMENT OF THE ARMY U. S. ARMY AIR MOBILITY RESEARCH & DEVELOPMENT LABORATORY EUSTIS DIRECTORATE FORT EUSTIS, VIRGINIA 23604

This report has been reviewed by the Eustis Directorate, U. S. Army Air Mobility Research and Development Laboratory and is considered to be technically sound. The purpose of this program was to investigate the validity of analytically predicting helicopter maneuver flight loads using the REXOR II computer program.

The technical monitor for this contract was Mr. Donald J. Merkley, Aeromechanics, Technology Applications Division.

# Project 1F162208AA82 Contract DAAJ02-72-C-0100 USAAMRDL Technical Report 73-83 December 1973

# APPLICATION OF AN INTERDISCIPLINARY ROTARY-WING AIRCRAFT ANALYSIS TO THE PREDICTION OF HELICOPTER MANEUVER LOADS

Final Report

Lockheed Report 25945

Ву

W. D. Anderson F. Conner A. W. Kerr

Prepared by

Lockheed-California Company Burbank, California

for

**EUSTIS DIRECTORATE** 

U.S. ARMY AIR MOBILITY RESEARCH AND DEVELOPMENT LABORATORY FORT EUSTIS, VIRGINIA

Approved for public release; distribution unlimited.

# FOREWORD

This report describes a correlation study comparing REXOR analysis results with flight test data for evaluation of the transient load prediction capabilities of the REXOR analysis. This study was conducted by the Lockheed-California Company from June 1972 to June 1973 under Contract DAAJ02-72-C-0100 (Project 1F162208AA82) with the Eustis Directorate, U.S. Army Air Mobility Research and Development Laboratory. USAAMRDL direction was provided by D. J. Merkley.

Major Lockheed contributors to this report include R. E. Donham, P. Kretsinger, T. Liu, and A. J. Potthast.

Preceding page blank

# TABLE OF CONTENTS

		Page
SUM	ARY	iii
FORE	WORD	v
LIST	OF ILLUSTRATIONS	ix
LIST	OF TABLES	xii <b>i</b>
INTE	ODUCTION	1
BACK	GROUND OF REXOR DEVELOPMENT AND APPLICATIONS	2
	Performance	6 11 12 19
TECH	NICAL APPROACH	20
	Test Data Selection and Review	20 21 21 21 27
REXC	R MODEL DESCRIPTION	29
	Modification and Operation for Study	34
DESC	RIPTION OF TEST VEHICLES	35
	AH-56A Compound Helicopter	35 45
INST	RUMENTATION AND DATA REDUCTION	55
	AH-56A	55 58 59

# Preceding page blank

# TABLE OF CONTENTS - Continued

								Page
DISCUSSION OF RESULTS				•				64
AH-56A Steady-State Correlation Results Correlation with Forward Speed Correlation with Load Factor	•			•			•	65 84 87 88 89 106 107 108
CONCLUSIONS		•	•					128
LITERATURE CITED								129
APPENDIXES								
I. Flight Test Data			•		•			131
II. Correlation Data	•			•	•			257
III. REXOR Inputs Data				•	•			295
IV. Comparison of the C-81 Program with REXOR .		•		•		•	•	393
DISTRIBUTION								405

# LIST OF ILLUSTRATIONS

Figure		Page
1	REXOR Program Organization	3
2	Rotor and Body Degrees of Freedom	4
3	Rotor Blade and Hub Geometry	5
4	Flap/Feather-Moment Feedback Control System Schematic	7
5	Flap/Feather-Moment Feedback Control System Block Diagram	8
6	Direct Flap-Moment Feedback Control System Block Diagram	9
7	Direct Flap-Moment Feedback Control System Schematic	10
8	Effect of Droop and Weight on Reactionless Mode Damping and Chord Load Time Histories	13
9	Reactionless Mode Damping vs. Gross Weight	14
10	Reactionless Mode Damping vs. Forward Speed	15
11	AH-56A ICS/AMCS Flight Envelope Comparison	16
12	Canopy Clearance Time History - V = 200 KTAS	17
13	Canopy Clearance Analysis Summary	18
14	AH-56A Correlation Data Flight Envelope	22
15	XH-51A Correlation Data Flight Envelope	23
16	Study Scope	28
17	REXOR Computational Flow Diagram	30
18	AH-56A, S/N 66-8834 (1009) Test Configuration, Front View	36
19	AH-56A, S/N 66-8834 (1009) Test Configuration, Front Quarter View	36

# LIST OF ILLUSTRATIONS - Continued

Figure		Page
20	AH-56A, S/N 66-8834 (1009) Test Configuration, Side View	37
21	AH-56A Three View (General Arrangement)	39
22	AH-56A Rotor Blade Airfoil Sections	43
23	Detailed Blade/Hub Description	1414
24	XH-51A Compound Helicopter (In Flight)	48
25	XH-51A Compound General Arrangement	49
26	AH-56A Blade Sta 18 Flap Moment vs. Airspeed	61
27	AH-56A Blade Sta 18 Chord Moment vs. Airspeed	62
28	AH-56A Feathering Moment vs. Airspeed	63
29	AH-56A Sta 18 Flap Moment vs. Forward Speed	66
30	AH-56A Sta 18 Chord Moment vs. Forward Speed	67
31	AH-56A Sta 174 Flap Moment vs. Forward Speed	68
32	AH-56A Sta 174 Chord Moment vs. Forward Speed	69
33	AH-56A Sta 131.5 Torsion Moment vs. Forward Speed	70
34	AH-56A Feathering Moment vs. Forward Speed	71
35	AH-56A Sta 18 Flap Moment vs. Load Factor	72
36	AH-56A Sta 18 Chord Moment vs. Load Factor	73
37	AH-56A Blade Sta 174 Flap Moment vs. Load Factor	74
38	AH-56A Blade Sta 174 Chord Moment vs. Load Factor	75
39	AH-56A Feathering Moment vs. Load Factor	76
40	AH-56A Blade Sta 131.5 Torsion Moment vs. Load Factor	77
μι	AH-56A Main Rotor Trim Angle vs. Load Factor	78

# LIST OF ILLUSTRATIONS - Continued

Figure		Page
42	AH-56A OP Flap and Chord Moment vs. Blade Station ~ Case 1	<b>7</b> 9
43	AH-56A 1P and 2P Flap Moment vs. Blade Station ~ Case 1	80
44	AH-56A 1P and 2P Chord Moment vs. Blade Station ~ Case 1	81
45	AH-56A OP Torsion Moment vs. Blade Station $\sim$ Case 1	82
46	AH-56A 1P and 2P Torsion Moment vs. Blade Station ~ Case 1	83
47	AH-56A Transient Maneuver, Pullup ~ Case 51	90
48	AH-56A Transient Maneuver, Pushover ~ Case 50	92
49	AH-56A Transient Maneuver, Right Roll ~ Case 47	94
50	AH-56A Transient Maneuver, Left Roll ~ Case 48	96
51	AH-56A Transient Maneuver, Pushover ~ Case 49	98
52	AH-56A Transient Maneuver, Pullup ~ Case 50	100
53	AH-56A Transient Maneuver, Pullup ~ Case 45	102
54	AH-56A Transient Maneuver, Pushover ~ Case 46	104
55	XH-51A Sta 6 Flap Moment vs. Load Factor	109
56	XH-51A Sta 115 Flap Moment vs. Load Factor	110
57	XH-51A Sta 6 Chord Moment vs. Load Factor	111
58	XH-51A Sta 45 Chord Moment vs. Load Factor	112
59	XH-51A Feathering Moment vs. Load Factor	113
60	XH-51A Main Rotor Trim Angles vs. Load Factor	114
61	XH-51A OP Flap and Chord Moment vs. Blade Station	115

# LIST OF ILLUSTRATIONS - Continued

Figure		Page	
62	XH-51A 1P and 2P Flap Moment vs. Blade Station	116	Þ
63	XH-51A 1P and 2P Chord Moment vs. Blade Station	117	
64	XH-51A Transient Maneuver, Left Roll ~ Case 53	119	)
65	XH-51A Transient Maneuver, Right Roll ~ Case 54	121	
66	XH-51A Transient Maneuver, Pullup ~ Case 55	123	
67	XH-51A Transient Maneuver, Pullup ~ Case 56	<b>1</b> 25	
68	Conversion Factor Pitch Link to Feather Moment, AH-56A ICS Phase III Blade	133	
69	Conversion Factor, Pitch Link Load to Feather Moment, XH-51A Compound	134	
70	Longitudinal Response 1-Inch Longitudinal Control Input, 150 Knots	397	
71	Pullup Maneuver to High Load Factors, 150 Knots	398	
72	OO12 Airfoil Section Data, Lift Coefficient	399	
73	OO12 Airfoil Section Data, Drag Coefficient	400	
74	Pullup Maneuver to High Load Factors, Modified Airfoil Data, 150 Knots	401	
<b>7</b> 5	Gradual Pullup Maneuver, 150 Knots, C-81 Program	402	
76	Forward Flight Performance	403	
77	Pullup Maneuver to High Load Factors, Corrected Fuselage and Stabilizer Data, 150 Knots	5+O5+	•

# LIST OF TABLES

Table		Page
I	Selected Flight Test Cases	24
II	Experimental Data Correlation Parameters	26
III	Characteristics of the AH-56A ICS Airframe Aerodynamics Surfaces	41
IV	Characteristics of AH-56A ICS Dynamic Components	46
V	AH-56A Inertia Data	48
VI	Characteristics of the XH-51A Compound Helicopter	52
VII	Phasing Lags for Rotating Measurements	60

#### INTRODUCTION

A complete understanding of the factors which establish the flight envelope of a helicopter requires simultaneous consideration of power, static and dynamic stability, handling qualities, and pilot techniques as well as resulting loads and vibration levels. To facilitate this understanding, an interdisciplinary mathematical model that provides analytical prediction of free-flight characteristics of single-rotor helicopter and compound helicopter configurations has been developed by the Lockheed California Company. This interdisciplinary analysis tool (see Reference 1), known as REXOR (Revised and EXtended rotOR), is a fully coupled rotor/body/control system model that includes nonlinear mathematical simulation and has over 30 degrees of freedom.

To make a total vehicle model in sufficient depth to predict detailed transient rotor loads is inhibitively expensive with the current computer state of the art. The approach taken in the formulation of the interdisciplinary model is to produce reasonably accurate transient shaft and fundamental blade loadings which can be used to define a structural flight envelope that may be checked at a few critical points with a detailed rotor loads analysis and be adjusted if required. The model is not designed to provide highly accurate spanwise load distributions of higher harmonic internal blade loads. This study is designed to evaluate REXOR as a tool for prediction of rotor loads in transient maneuvers by providing correlation of both steady and transient computed maneuver loads with compound helicopter flight test data.

The work described in this report presents a loads correlation of the current (.EXOR II) program with existing AH-56A and XH-51A (compound) test data with primary focus on steady and cyclic loads during steady and transient maneuvers. The 18,300-pound and 4500-pound gross weights of these aircraft and the relatively large compound helicopter flight envelope of each that has been flown offer a broad spectrum of test conditions between 100- and 200-knot flight speeds. The correlation was done under Contract DAAJ02-72-C-0100, sponsored by the Eustis Directorate, U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia.

# BACKGROUND OF REXOR DEVELOPMENT AND APPLICATIONS

Analytical prediction of practical flight envelopes for helicopters including compound configurations requires evaluation of the effects of limits of steady or maneuvering flight on performance, dynamics, handling qualities, and loads. To meet these requirements, analytical models must fully describe the dynamically coupled rotor/body/control system combination, including both nonlinear and the time-variant effects. Outputs of such programs are in the form of transient response time histories, steady-state time histories, steady-state harmonic analyses, and constant or periodic numerical coefficients for use in linear analyses.

REXOR is an integrated rotor/body model of this type which has been applied in the prediction of performance, dynamics, handling qualities, and steady and transient loads for hingeless rotor aircraft throughout their flight envelopes. The analysis method can readily be applied to other rotor systems by minor modifications to the model. Figures 1, 2, and 3 show the organization of the program, body and rotor degrees of freedom, and rotor blade and hub geometric definitions. The approach employed to develop this model was a coordinated effort among specialists in several applicable rotary-wing disciplines. Equations of motion were derived from a basic Lagrangian formulation, resulting in a rotor/body/control system model consisting of 30 fully-coupled degrees of freedom with a minimum of simplifying assumptions. In the formulation, each blade mode, although developed from a multi-degree of freedom analysis, constitutes but a single degree of freedom. In Reference 1, the modeling approach used is discussed in detail along with a description of the procedural ground rules required for sucessful implementation and use of this type model. This reference includes derivation of the model, program structuring, data management, checkout procedures, and documentation. The basic requirements were that the model fully describe the dynamically coupled rotor/body/control system, including both nonlinear and time-variant effects.

By examining results of this free-flight vehicle analysis, the engineer is able to conduct flight test programs by digital computer. As implemented, the control system, aeroelastic rotor, and body combination requires that the aircraft remain continuously in equilibrium. This permits evaluation of transient control input and subsequent transient response behavior in order to investigate the helicopter's static and dynamic stability. The steady-state loads analysis that can be performed is a restricted case for examining linear systems. In the case of nonlinear or transient behavior, the system is examined in time-varying modes of equilibrium.

Two different gyro-controlled hingeless rotor system concepts have been modeled in REXOR. The first of these, the flap/feather-moment feedback system, was used in the XH-51A and in the early AH-56A configurations.

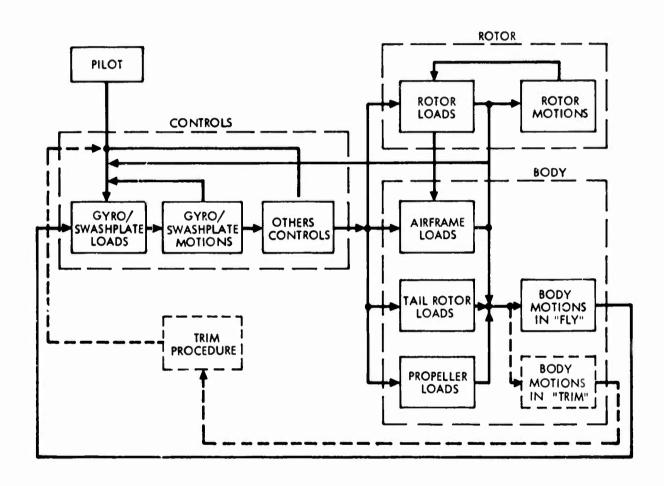



Figure 1. REXOR Program Organization.

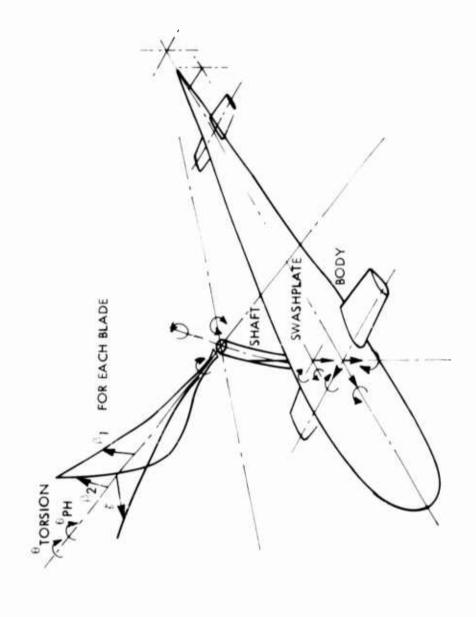
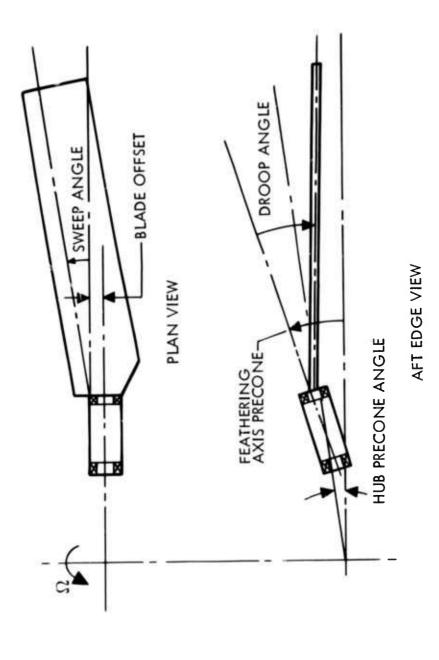




Figure 2. Rotor and Body Degrees of Freedom.

}



į

Figure 3. Rotor Blade and Hub Geometry.

This is the system for which correlation will be provided in this report. For the AH-56A, this system is called the Improved Control System (ICS) configuration. The second concept, the Advanced Mechanical Control System (AMCS), is a direct flap-moment feedback system. The REXOR analysis was used extensively in the design of the AMCS, using experience gained in the analysis of phenomena encountered in ICS flight tests. A brief description of each system is presented for reference.

The flap/feather-moment feedback gyro-controlled rotor (ICS) is presented schematically in Figure 4. Figure 5 is a representative simple block diagram of the system. Pilot control input drives an irreversible actuator which applies control moment to the gyro through a positive-negative spring assembly, linkage, and swashplate. With the gyro fixed, compression of the positive spring by the actuator applies control moment to the gyro. With the actuator input fixed, gyro motion drives both the positive and negative spring, the sum of which represents the steady-state impedance to the gyro and the value of the gyro net positive spring. A small damper is used to damp the gyro nutation mode (2P). The gyro responds to the pilot input and drives the rotor blade cyclically through pitch links and a blade control horn.

Cyclic blade angle changes create a rotor flap moment which is tranmitted to the aircraft body via the fixed hub and shaft to pitch or roll the aircraft. Precise rotor moment control and reduced rotor lag is obtained by feedback of rotor flap-moment (proportional to rotor shaft moment) through the feather axis to the gyro. Feathering moment proportional to flap moment is obtained by sweeping the blade quarter-chord forward of the feathering axis (sweep angle  $\psi_{\rm O}$ ), as noted in Figure 4. Feather moment is then proportional to the product of flap moment and effective sweep angle. The total moment applied to the gyro with this concept is the difference of the pilot input and feathering feedback moment proportional to blade flap moment, as shown in Figure 5.

The direct flap-moment feedback rotor system is shown in block diagram form in Figure 6 and in schematic form in Figure 7. The concept is the same as the flap-feathering feedback system except that irreversible hydraulic actuators have been added between the gyro and the cyclic blades. Secondly, only moment proportional to rotor blade cyclic flap moment is fed back to the gyro. Except for the distinct features noted above, the direct flap feedback system operates in the same manner as the feathering feedback system.

Major areas of application of the REXOR analysis are described briefly below.

#### PERFORMANCE

An analytical study of the maneuverability of 16,000-pound class winged and conventional helicopter configurations is reported in Reference 2. This analytic investigation, which was also sponsored by the Eustis Directorate, U.S. Army Air Mobility Research and Development Laboratory, was conducted

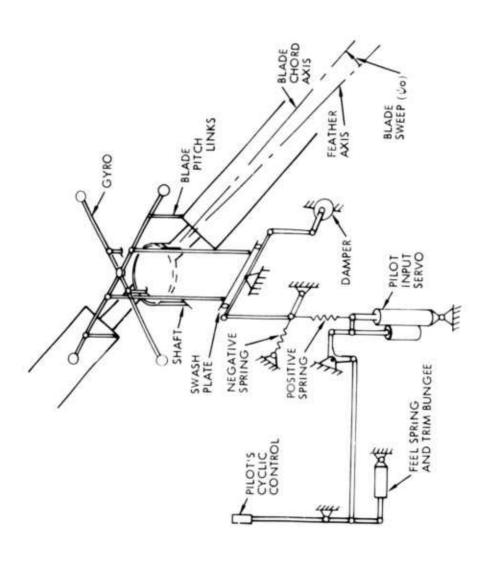
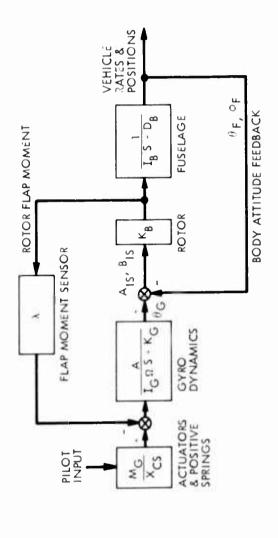
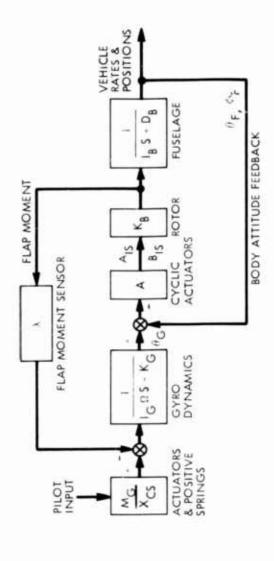





Figure 4. Flap/Feather-Moment Feedback Control System Schematic.



Flap/Feather-Moment Feedback Control System Block Diagram. Figure 5.

}



Direct Flap-Moment Feedback Control System Block Diagram. Figure 6.

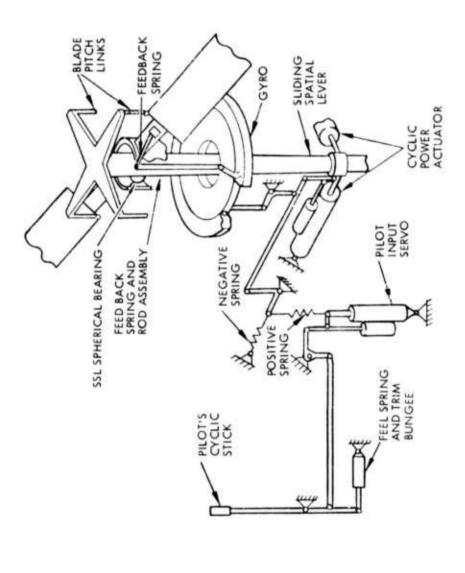



Figure 7. Direct Flap-Moment Feedback Control System Schematic.

under Contract DAAJ02-70-C-0032, using the REXOR simulation program. In this previous investigation, specific transient requirements had to be met for prescribed power and maneuvering levels. The study investigated maneuvering load factors of 1.5, 1.75, and 2.0 g in coordinated turns and symmetrical maneuvers, at flight speeds up to 150 KEAS (167 KTAS), sustaining maximum load factors for 3 seconds during coordinated turns, without excessive speed loss or altitude change.

Subsequent refinements in the analytical description have been incorporated in the current REXOR II program, but basic degrees of freedom and methodology are common to both programs. These refinements were directed at providing an improved control system description and accounting for the structural principal axis position of the blade as it varies with time relative to the spin plane due to collective and cyclic blade angle variations. The effect of these changes has been of some importance in the dynamics area, but their prime benefit has been to contribute to completeness of the description. Results of the referenced study should be unchanged with respect to power, altitude, and velocity relationships as a result of the new program refinements.

## DYNAMICS

Development of the gyro-controlled hingeless rotor was motivated by the outstanding control and stability achievable with this system. During this development, several dynamic problems were encountered. Through the use of the REXOR analysis, these problems were thoroughly analyzed and understood. They can now be eliminated during design, as they have been in the current (AMCS) version of the AH-56A and proposed advanced configurations.

In an early version of the AH-56A flap/fe ther-moment feedback system, a lP x 2P problem resulted from feathering feedbacks due to in-plane motion in conjunction with flapping motions of the blades. The feedback mechanism which caused this problem is only possible with the flap/feathering-moment feedback system. With the direct flap-moment feedback system, as currently employed in the AH-56A/AMCS configuration, the mechanism for this problem is eliminated. This has been demonstrated both on the whirl tower and in extensive flight test programs.

A second problem that was experienced in earlier hingeless rotor configurations was the 1/2P hop problem. Computer studies and flight tests revealed that this problem resulted from insufficient stiffness of the collective system and from an unstable is coupling. Successful elimination of the problem has been demonstrated in both flap/feathering-moment feedback and direct flap-moment feedback configurations of the AH-56A. Correlation between REXOR analysis and flight test data was highly successful, providing a high confidence level in selecting suitable design parameters prior to flight for the AH-56A/AMCS and subsequent advanced designs.

Another problem which manifested itself in rigid rotor configurations was that due to a reactionless in-plane blade mode. REXOR analysis, whirl tower testing, and flight testing all demonstrated that this problem is closely associated with pitch-lag coupling and may be encountered in hingeless rotors under very high lift conditions. In this case again, correlation of computer analysis, whirl tower, and flight testing has provided a high confidence level through diagnostic analysis to select suitable parameters and to eliminate the problem or avoid it in new designs. This was demonstrated in the AH-56A program and is documented in Reference 3.

Examples of REXOR program computations and related flight test results for an AH-56A rotor system are shown in Figures 8 through 10. Figure 8 illustrates analytically the effect of blade droop with respect to the feather axis as shown in Figure 3, and rotor lift on reactionless mode damping and chord load. The traces shown at the top of the figure are the analytical time histories of the reactionless mode content of the blade root chord load for three different configurations. The curves at the bottom of the figure show the results of a moving block Fast Fourier Transform (FFT), Reference 4, of these traces. The slope of the moving block analysis results indicate the damping of the mode. These results and additional REXOR results are compared with flight test in the evaluation of reactionless mode damping shown in Figure 9. A summary of the mode as a function of speed from the analysis and flight test is presented in Figure 10.

# HANDLING QUALITIES

The original purpose of the analysis effort which led to the development of REXOR was to provide a full vehicle model for evaluating rotary-wing aircraft handling qualities. It is for this reason that the full control system is modeled so that the vehicle response to pilot control inputs may be evaluated.

In the development of the AH-56A, REXOR was also used extensively to evaluate handling qualities. In the ICS configuration, a reduction in longitudinal stability due to retreating blade moment stall under high maneuvering load factor conditions limited the flight envelope of the aircraft. This resulted from high feather moments associated with shifts in the aerodynamic center on the retreating blade. This problem again related to the flap/feather-moment feedback system of the earlier rigid rotor control systems under high lift conditions. The mechanism for the problem is eliminated with the direct flap-moment feedback in the present AMCS/AH-56A, as demonstrated by extensive flight testing which increased the demonstrated flight envelope (Figure 11).

An example of the use of the REXOR program in analytic studies which involve the interface of various technical disciplines (dynamics, handling qualities, loads, etc.) is presented in Figures 12 and 13. A blade canopy clearance analysis for the AH-56A was made based on dynamic response of the vehicle to various types of pilot control input. Rotor blade deflection, shaft moments, and body rates of Figure 12 represent typical output data.

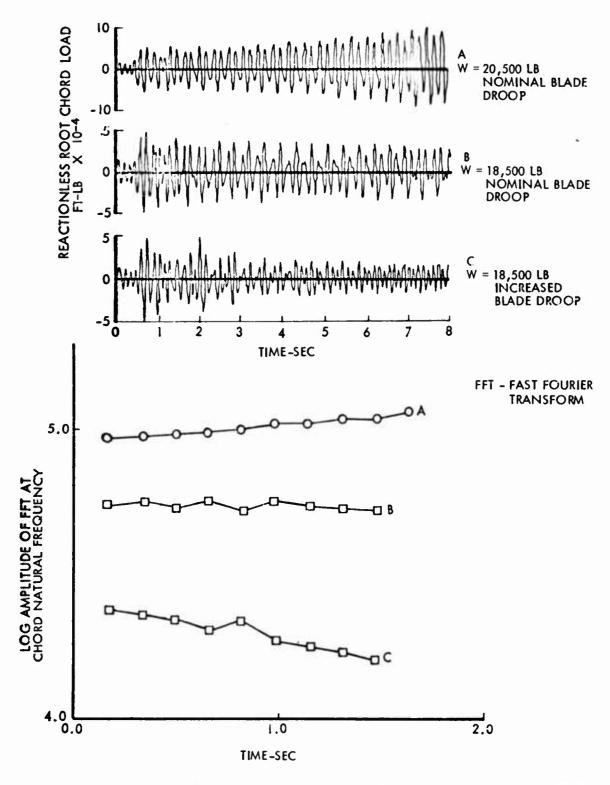



Figure 8. Effect of Blade Droop and Gross Weight on Reactionless Mode Damping and Chord Load Time Histories.

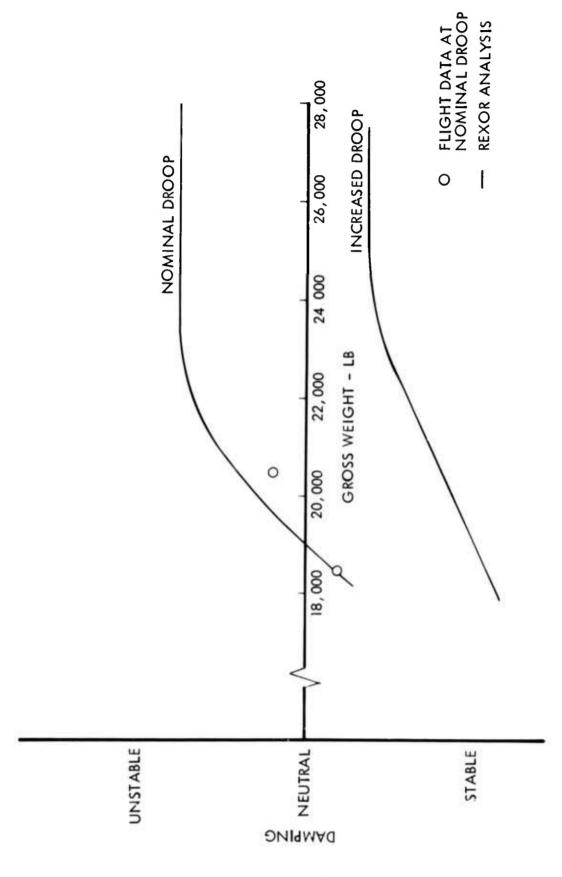



Figure 9. Reactionless Mode Damping vs. Gross Weight.

}

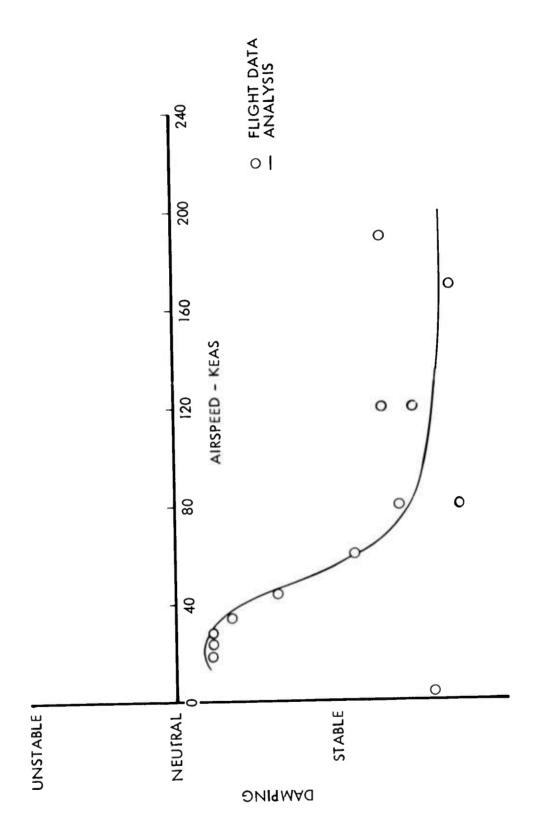



Figure 10. Reactionless Mode Damping vs. Forward Speed.

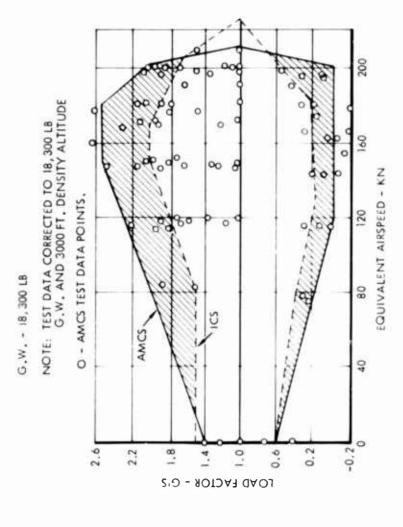



Figure 11. AH-56A ICS/AMCS Flight Envelope Comparison.

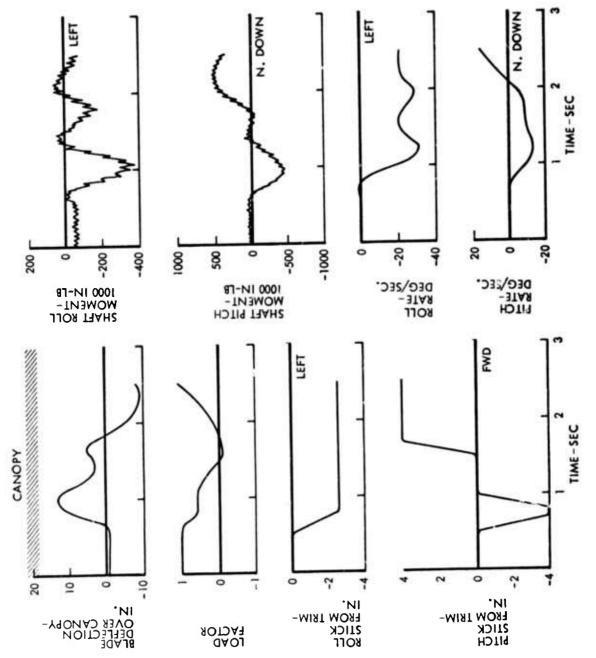



Figure 12. Canopy Clearance Time History - V=200 KTAS.

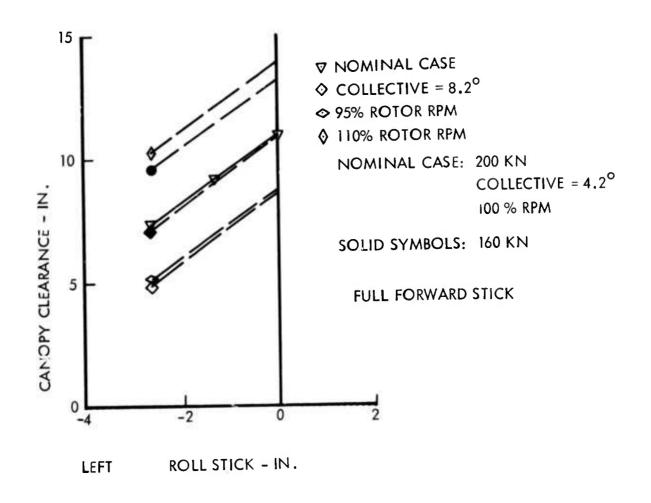



Figure 13. Canopy Clearance Analysis Summary.

Figure 13 shows a summary of the analytic results for pitch and roll control inputs. The relationship of the various technical disciplines to the problem investigated is readily apparent. A more complete discussion of this study is presented in Reference 5.

# LOADS

It is evident that in these varied applications, a good estimate of rotor transient loads is inherent in the model. The analysis has shown good agreement in defining the practical flight envelope of the various versions of the AH-56A. This study will provide a detailed correlation of the loads capability of the REXOR analysis.

## TECHNICAL APPROACH

The purpose of this study is to correlate a mathematical rotary-wing simulation program (REXOR) with AH-56A and XH-51A flight test data. Primary emphasis is placed on steady and cyclic blade loads during steady and transient maneuvers. Correlation of analytical results with experimental data for both high speed and high load factor conditions offers a basis for analytic extension into regions beyond those measured. The 4,500- and 18,300-pound respective gross weights, 100- to 200-knot flight speed range, and large maneuver envelope of each aircraft establish a quantitative assessment of the limiting factors for a range of aircraft. Factors of prime consideration are root blade loads (chordwise and flapping), feathering moments, and blade torsion moments. Distributed blade loads, both chordwise and flapwise, and in particular midspan loads, are also considered to be important in the correlation effort.

Two sets of test data were made available, one set for the AH-56A and one set for the XH-51A (compound mode). Each set consists of a number of steady and transient maneuvers over a defined load factor and speed range. Because of the fundamental differences in the two configurations, each must be considered separately and requires individual adaptation of the REXOR mathematical analysis. The correlation effort was segmented into five tasks:

- Selection and review of test data (AH-56A and XH-51A).
- Reduction of test data to correlation format.
- Modification or REXOR.
- Operation of REXOR to obtain data for correlation.
- Correlation report.

#### TEST DATA SELECTION AND REVIEW

Correlation cases were selected to cover the aircraft operational range from which test data are available and to place emphasis on a flight regime of high interest with respect to steady and transient rotor loads. The selected range covers maneuver load factors from 0.2 to 2 g and a speed range from 100 to 200 KEAS. A set of 56 flight test cases was made available and processed for correlation purposes. From a subset of 48, 33 steady-state and 8 transient cases for the AH-56A were correlated with analytic data; for the XH-51A, 4 steady-state and 4 transient cases were correlated.

The correlated static and dynamic cases for the AH-56A as a function of the flight envelope are noted in Figure  $1^{l_1}$ . XH-51A cases are noted in Figure 15. A tabulation of all the flight cases considered for correlation and for which data were tabulated are noted in Table I.

## REDUCTION OF TEST DATA TO CORRELATION FORMAT

The selected data were reduced from its time history format. Harmonic analysis of blade bending loads, determination of transient rates and accelerations, and extractions of time history records from oscillograph rolls were among the data reduction requirements. Data items utilized for correlation for each of the aircraft are listed in Table II. Time history data were also read and processed to provide data plotted to the same scale as that which is output by the REXOR analysis to allow for a direct comparison.

#### REXOR PROGRAM MODIFICATIONS

To correlate AH-56A maneuver loads, data output consistent with test data measurement items must be available from the REXOR analysis model. Minor modifications to the program were made to provide computational outputs required that had not previously been made available. For example, calculation of blade bending loads at specific blade radial stations consistent with test instrumentation locations was required.

The REXOR program was originally developed for the AH-56A. For the XH-51A correlation, additional modifications were required. The XH-51A turbojet was simulated by a scaled-down version of the AH-56A pusher propeller model. Minor XH-51A control and rotor blade mechanical geometry description changes were also necessary. Blade radial stations for load computations were changed to be consistent with the test configuration of the XH-51A aircraft.

## REXOR DATA FOR CORRELATION

Operation of the REXOR program to obtain simulated flight data for correlation is straightforward and only requires submittal of input data listed in Appendix III along with the appropriate case data. No modifications of the mathematical model or the computer program were made to achieve or improve the correlation except those required to correctly describe the control geometry as defined above, or to facilitate a data output consistent with the measurement references used in the flight test program. Pilot control inputs were made consistent with flight test measurements. Data management and bookkeeping procedures to control the program are indicated by the arrangement of the data in the appendix.

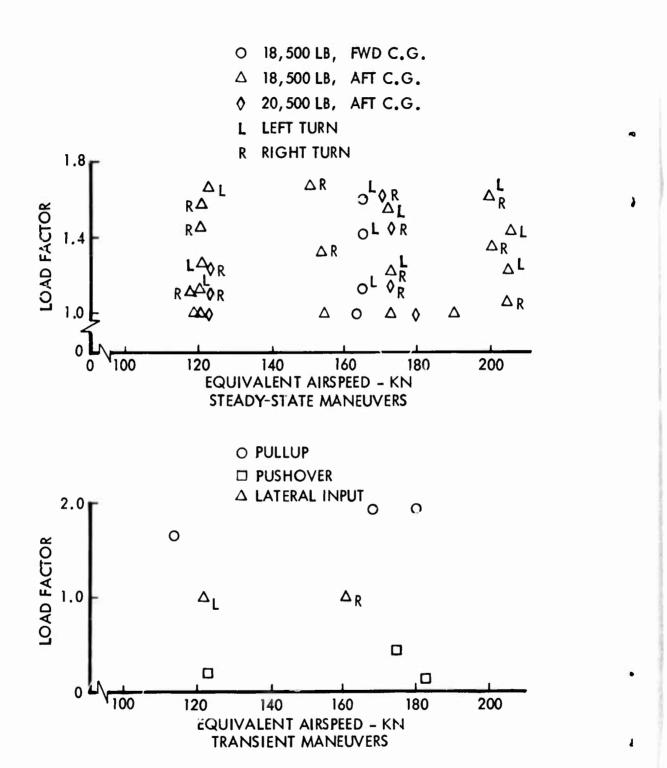



Figure 14. AH-56A Correlation Data Flight Envelope.




Figure 15. XH-51A Correlation Data Flight Envelope.

PITCH SHAFT MOMENT (IN12)	• 6,300	2000-11-	300.04	200,811.	- 160,000	*. 6., 0.00	277.5%	N.	37.4	8.	2	05,		905, 17.	200	3000-1-	200.2	30° 4° 4	200,4.	0000	900	2 . •	302.**3*	• •	37	0	.00.00	
SHAPT NEMENT (181.b)	900° -	200.	900°E**-	-4. 300	1	.30.00		2	3		300.00	300	2 4 2	30,000	000*15	2500	10000	2	-tt	) ) ) ) ()	JC7. 33-	201	2	300.	500, 34	-115,30C	000	
#07G# CE13 (E13)	7,890	303	1	2	3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	30K***	3	200	2 7 9	2000	.300.	3.800	2	7	2	5	13	37.	30.00	.5.	3	30,	25,860	7	11.130		
PA/ITY (IN.)	A:-	Aft	ATT	POTMBED	F.rvard	S.CTMBERG	T. P.	1	7.54	¥	ACS	A	7.14	A:-	¥.:.	į	Aft.	Aft	ACC	A	A.C.	¥.7.	Aft	Aft	A £ *	Aft	Aft	
18 55 185 135 (18.1	Normal	N. Clab.	No real.	Nurse	Norman.	horma.	MOTES.	North.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	N. CEAR.	W. TEA.	100	25 10 10 10 10 10 10 10 10 10 10 10 10 10	N. FEA.	North B.	Author.	Verifie.	Surran.	Number	North A.	Norma.	No.rem.	Sores.	Nursa.	Heavy	Heavy	Heavy	
THIR COLLECTIVE (DEG)	5.6	dt)			· ·	ι	1					ř	7		ķ	'n	j	÷	,		9	17.	9	* * * * * * * * * * * * * * * * * * *	e)	-		
THEE AIR TEMPERATURE (*E)	78	7.6	3	3 a)	7	7	3.		-,	ĭ	ij	T _p	5	I.	4	*	r y	Ţ,	ч	-			100	W)	,2	,'	r ²	
PRESSURE ALTITUDE (FT)	2) 3	*	3, 50	2	2	7.6	4,	9. 6.	3 27 1	7	ţ		ţ	4,	, 2 7	T as C	į	į.	:		y a	î	100	, 40	3	0	3 £ 4 £	
TRIM	1.00	3	27	30	:	1	*:	Ŀ		*	*	:	7 7	***	Ķ	7	:	:	:		2	1	4		, oc.	60		
FOTOP SPEED (\$)	0.100	B. 304	0.33			1.3	41		1		1	*	3.4.6	1	1.30	1.00	1	a.00.0	ati ,	* 00° -	12: -13: -4:		00	\$50.3	100.0	100.0	100,	
FATE OF TING (FT MIN)	В		-800	0	7	20%		7	2	Ť	1	2		(); 4					- 300	90, -	009-	** 00c	-600	36	• 500	-500	100	
ALREPEL ALREPEL (KN)	3 5	2 4 101 1	<i>y</i>	a. C. 4. 6	1	2 0 0 0	***	i	2,	3	*	24.	,	7		;	+	d			*****	H,		:	-	173		
COUNTER	. 30	?	5	¥.	1	ij	*		,		2)	1 2		2 2	41	13.	*	7	1	*	3	(3.1) 2 (%	3	4	D P	ψ,	9,	
TEST	0	2) 7	W. P	3	,	1	7	•,	,	,	F ₂	-,	1,	1,	46.9	9- 61 2	12	7 4	632	7 0 7	1. 2.	537	3.	0,0	1 2	503	y	
DESCRIPTION	Forward File	F.PVard Fire	Forward Fit	27 4. 19 La	Jers Pare	11 mm	3 Law 2 Law	145° - 1451	F. 42.	12 to	11 A 12 A	ART. Taff.	Age Tabe	Left Larr.	Pushover	Pushover	Left Tare	Bight Taffi	Left Turn	Ragnt Durn	Left Thrm	Paght Parr	25.5	Pract Turn	Formerd Fat	Pight Durn	Pight Turn	
VEHICLE	AN-56A	AM-5cA	AH-SCA	AHCA	AH-10A	AH-'EA	Air- cA	AH-5+A	AH-50A	AH-50A	AH-5cA	AH-5cA	AHEA	AB-56A	AM-StA	AB-+6A	AM-5cA	AM-56A	AH-5cA	AH-5cA	AH-5¢A	AN-SeA	AH-SEA	AH-55A	AB-56A	AH-5€A	AH-56A	
CASE		Cy.	~	ŧ	41	۵	F	\$)	>		7 74	4	7.7	*	27	D	l- e4	40	61	2	;	27	~1	2	52	4	5	

	SHAPT MOMENT (1N(Lb)	390***	300	• E. 90C	000	•.7.900	0000	• 0000	•58,000	+60,000	000**3•		-10,300	905	00-	•7.200	197,000	•, 58,30c	- 300	000, 1	`0C' > ·	300,3,1.	2000° a-	-c ,000	-1*,200	190	500	00,,,-
	SHAPE SHAPE CORECT (181.b)	-71,000	-7, ,000	-7, ,000		200,41	5500-23-	94,000	2000, 46-	300° 4	000,000	06,00c	6,000	36	00 **	J 20° .	A. , 000	2000	-89.0vv	300	000*		000.5	-56 200	• H. B00	30, 44	00°.8.	EV
		14,690	.6,300	3001	30-0	3	30.3.	1	0000.5	8	20	17,630	4,250	3	1	0	- m.	9.80c	30.00	3		90	3	90,	. 3	1	20,	1
	OFFICE OF SEAVITY (IN.)	V.V	ACC	Aft	Aft	Aft	\$' *E	ASA	Aft	¥3	¥2	Aft	Nursa.	N TEA.	No Plate.	N FEA.	3	3	:	3	, ,	2.	.7	*				
	GRASS PEICHT (1.b)	Heavy	Heavy	Heavy	Heavy	Heary	(Anau	48	North.	And the	No. of Balls	Norma.	Norman.	N. ITER.	V. FBA.	No. Fither.	3	į,	7	- 3 	?	?	1	27	:	1	*	-
	COLLECTIVE (SES)	6.9		ă	t.	ω.	,!	,		1,95	43	4	1.		4		-	÷	, - I , - I		1,3	1, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	•	*.		÷	-) ?
	TEMPERATTRE	ř			,*		ř	7 4	,	*	1	4	٠		1,				7	,'	r		7		2.2	E T	a de	1
	PRESTRE ALTITUDE (PT)	3	4	÷				Ţ	?	2	÷ 3,		·,	P P	,	ŧ	1	1			*	:	1,0	d t	7 7	2 3 7	-	T.
-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							;	*						1			:						;	:	1	*.	
	Porton OF EET				1				1.		,	1,	1 1,					-	-1			1		7		100		
1	AND		1		ř	*	7	6			ì	; ; ;	7	1	è			r 1			ì			v e		2		ī
	ALMANAMA ALBAT ALBAT KN					÷	:	3			,		1	•,				į	3			a t		•		·	70.74	·.
	· · · · · · · · · · · · · · · · · · ·	3	2		177		7	r.				•	Ą	l: I	3	A	}						*		,			
	¥ \$	,	,		,	,	g	*			1	ă.	1	ş.		8		*					7	•	4	i,		
	300 300 17 15 1 15 1 16 1 17 1 17 1 18 1 18 1 18 1 18 1 18 1 18	Sample Sample	F. 45.	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14 m		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1) 12 11 6 -		***	11 11 11 14	10 m	121	1	120 1 12 20	. 679	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Jan High	.;  	1. 9 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	5-6- 9 1 1 1	6-0s- 9 1 1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	4 4 5 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1-00   17   4   4   6	ede T t e e ch,
	7	A41	A	Att- +A	An- + A	Alter A	AhA	AhA	AH CA	AH-1-KA	Ah-'cA	AHcA	A KA	XB=5.A	A10	A. '-A	An A	An A	Art : A	A.H A.	A	1111	401-12	A	Alt- A	AH	5	*5
	N A L					1		ý	:	D)	5	3	;	1	7	2 7	Ţ	<i>ω</i> 7	7	1 p	7h. 7				Çil.	夫	ĵ	3

### TABLE II. EXPERIMENTAL DATA CORRELATION PARAMETERS

### AH-56A

- 1. Main Rotor Fixed Hub Flap Bending Moment at Station 18.
- 2. Main Rotor Fixed Hub Chord Bending Moment at Station 18.
- 3. Main Rotor Blade Chord Moment at Station 103.
- 4. Main Rotor Blade Flapping Moment at Station 130.5.
- 5. Main Rotor Blade Flapping Moment at Station 174.
- 6. Main Rotor Blade Chord Moment at Station 174.
- 7. Main Rotor Shaft Bending Moment.
- 8. Main Rotor Blade Torsion Moment at Station 131.5
- 9. Blade Pitch Link Axial Load.
- 10. Blade Angle.
- 11. Longitudinal Cyclic Stick Position.
- 12. Lateral Cyclic Stick Position.
- 13. Collective Control Position.
- 14. C.G. Vertical Acceleration.
- 15. Pitch Rate.
- 16. Roll Rate.
- 17. Yaw Rate.
- 18. Angle of Attack.
- 19. Sideslip Angle.

### XH-51A

- 1. Main Rotor Fixed Hub Flap Bending Moment at Station 6.
- 2. Main Rotor Fixed Hub Chord Bending Moment at Station 6.
- 3. Main Rotor Blade Chord Bending Moment at Station 45.
- 4. Main Potor Blade Flap Bending Moment at Station 115.
- 5. Main Rotor Blade Angle.
- 6. Longitudinal Cyclic Stick Position.
- 7. Lateral Cyclic Stick Position.
- 8. Collective Control Position.
- 9. Main Rotor Pitch Link Axial Load.
- 10. C.G. Vertical Acceleration.

### TABLE II. (Continued)

- 11. Pitch Rate.
- 12. Roll Rate.
- 13. Yaw Rate.
- 14. Angle of Attack.

### CORRELATION REPORT

A one-to-one comparison of REXOR results with corresponding AH-56A and XH-51A experimental data is presented in this report. Emphasis has been placed upon comparing blade harmonic loads versus load factor and time history comparisons of loads and responses. A diagram of the scope of study is illustrated in Figure 16. As a part of the report, other areas for future productive correlation activity are also identified.

# ANALYTICAL DATA (REXOF)

- MODIFY REXOR
- GENERATE AH-56A INPUTS
- GENERATE XH-51A INPUTS
- OPERATE REXOR

### TEST DATA

- READ AH-56A STEADY-STATE CASES (40)
- READ AH-56A MANEUVERS
- (8)
- READ XH-51A STEADY-STATE CASES (4)
- READ XH-51A MANEUVERS
  - (7)
- HARMONICALLY ANALYZE
   TRIM CASES
  - PLOT TIME HISTORY OF

TRANSIENTS

CORRELATION

- MATCH ANALYTICAL ROTOR
  LOADS TO TEST IN TRIM
- ANALYTICAL BODY MOTIOMS
  AGREE WITH TEST
- RUN CHECK WITH BASIC LOADS PROGRAM
- RESCALE TEST MANEUVER
   DATA TO REXOR SCALES

## REPORT MATERIAL

- HARMONICS VERSUS LOAD FACTOR
- HARMONICS VERS'IS BLADE STATION
- COMPARISON

TIME HISTORY

Figure 16. Study Scope.

### REXOR MODEL DESCRIPTION

The model is written for a helicopter which can be conventional, winged or compounded, with a single, four-bladed main rotor. Figure 17 is a computational flow diagram for the REXOR computer program and indicates how the various components are related to one another in the analysis. The motions of the entire helicopter are simulated including a detailed dynamic description of the rotor and control system as well as a conventional, six degree-of-freedom airframe.

The model operates in two modes identified as TRIM or FLY. The TRIM procedure operates directly on main rotor collective, angle of attack, main rotor cyclic, tail rotor collective, and propeller blade angle. TRIM may be established in either a level, climbing, or descending flight path at a steady load factor. Besides free flight, TRIM can be conducted for the fixed-shaft case for whirl tower or wind tunnel analysis. When TRIM is complete, the analysis proceeds to the FLY model where all the degrees of freedom are activated and the helicopter responds for a specified length of time to any input. The pilot simulation can be single- or multiple-control inputs such as steps, pulses, doublet, stick stirs, or other transient inputs within the capability of the control system. Hence, transient loads and the resulting rotor, control, and airframe motions can be generated. Additionally, gust inputs and other types of external excitations can be applied directly to the rotor and airframe.

The aircraft is described dynamically by 28 fully coupled degrees of freedom. These include the airframe with 6 rigid-body degrees of freedom; the swashplate motions with roll, pitch, and heave; the main rotor hub with tilt in roll and pitch due to shaft bending; and with rotor speed due to engine and drive train dynamics. The motion of each main rotor blade is described by three coupled bending modes with flapwise and lagwise components and an elastic feathering or pitch horn bending degree of freedom between the swashplate and the blade. The four independent blades have a total of 16 degrees of freedom, making a grand total of 28 fully coupled dynamic degrees of freedom. In addition to these coupled degrees of freedom, there is a first torsion mode for each blade. This mode is included either as a dynamic mode or as a massless torsion response to blade torsion loads through a first-order lag, depending on the type of analysis being performed.

The three rotating natural modes for each blade are obtained from the Lockheel Rotor Blade Loads program. This computer program consists of an aerodynamic performance-trim analysis of an isolated rotor that is coupled

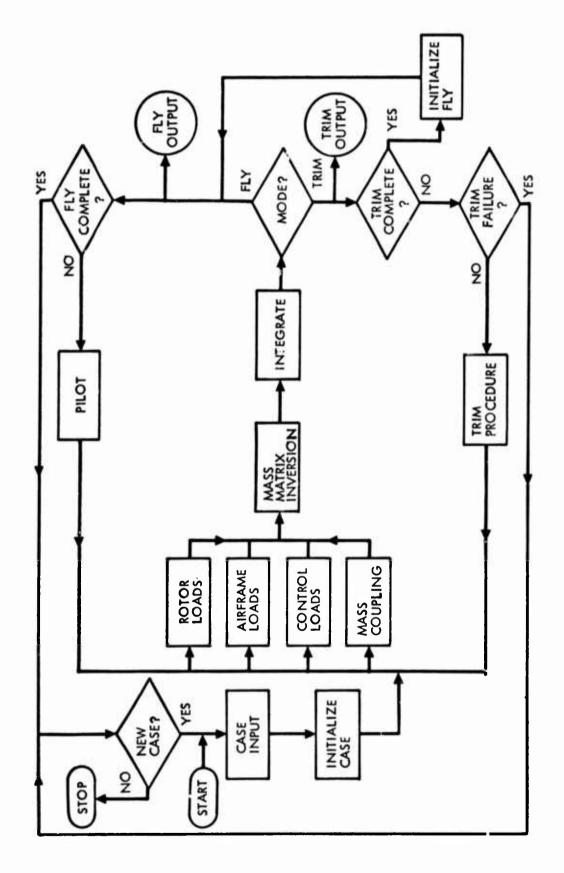



Figure 17. REXOR Computational Flow Diagram.

with the dynamic response of the blades. A relaxation type of iterative procedure is employed between the aerodynamics and the structural response of the blades. Converged trim characteristics of the rotor that are consistent with the blade mode shape and loads are obtained. The first three modes of the cantilevered rotating beam which can be characterized as the first-flap, first-in-plane, and second-flap bending modes are obtained from this principal axis coupled finite element analysis. The program structurally models the rotating blade, using up to 75 discrete span-wise lumped parameter loading stations with the flapwise-chordwise response fully coupled.

The structural description is generalized in that two separate beams in a centrifugal force field are used to describe one arm of the rotor. The two beams represent the feathering blade, and the fixed hub which supports the blade. Each beam is free to deform independently of the other except for the constraint at the points of attachment to each other (feathering bearings). These points must have the same spatial displacement. A provision in the description permits the consideration of bearing support elasticity at the feather bearing locations as a function of the radial reaction forces acting on the bearings. The structural modeling accommodates either concentric hub and blade or door hinge blade concepts, and either compression-torsion or tension-torsion packs for blade retention with the appropriate load transfers. The elastic response of the blade considers the structural coupling between flapwise and chordwise bending due to collective pitch and the built-in blade twist.

The natural frequencies and mode shapes are used directly as basic input data for the REXOR program. The number of blade and hub stations is, however, reduced to facilitate computational times. Thirteen inertial stations and eleven aerodynamic stations (the two root stations are not loaded) are used to represent each rotor blade for this correlation study although any number up to 20 may be used. The highest frequency mode of the rotating natural modes used in the study is approximately 2.6P at nominal rotor rpm for both the AH-56A and the XH-51A. As a result, the 3rd harmonic and all higher harmonic loadings are not as well represented due to the use of only three modes. The Rotor Blade Loads program has also been used to provide a basis of comparison for REXOR correlation. In some cases, Rotor Blade Loads analysis data is included in this report to show the limitations of the REXOR structural description on loads estimation.

The dynamic equations of motion are written in matrix form as:

$$-[A(q, t)] \{\ddot{q}\} + \{G(\dot{q}, q, t)\} = 0$$

where [A] is a matrix of generalized mass elements, which is a function of the displacements of the generalized coordinates, q, and the time, t;

 $\{\ddot{q}\}$  is a column matrix of accelerations of the generalized coordinates; and  $\{G\}$  is a column matrix derived from the Lagrangian energy functions, dissipation functions and generalized forces, and contains all of the linear and nonlinear dynamic and aerodynamic terms.

The equations of motion are solved in the time domain at rotor azimuth angle increments small enough to provide computationally stable results for the highest frequency mode present. The analysis is fully coupled and nonlinear, with the generalized forces and masses being automatically generated at each time point; application of the above equation assures complete force equilibrium of the system at each instant.

The blade motions are in terms of modal displacements where the centrifugal and structural stiffness terms are separately defined. This permits a description of the periodic reorientation of the structural and centrifugal springs due to cyclic blade angle. Additionally, the blade response includes motions due to simultaneous consideration of blade feathering and the blade element locations relative to the feather axis due to precone, sweep, droop geometry, and elastic blade deflections. The feathering and shaft moments include all of the nonlinear terms associated with coupled flapping and in-plane loads acting on the combined static and elastic displacements of the blade and shaft.

The equations of motion are obtained by application to each of the generalized coordinates  $\mathbf{q}_{\mathbf{r}}$ , of the following equation, which is a form of the Lagrangian energy expression.

$$\sum_{i=1}^{n} (F_{x_i} - m_i \ddot{x}_i) \frac{\partial x_i}{\partial q_r} + \sum_{i=1}^{n} (F_{y_i} - m_i \ddot{y}_i) \frac{\partial y_i}{\partial q_r}$$

$$+ \sum_{i=1}^{n} (F_{z_{i}} - m\ddot{z}_{i}) \frac{\partial z_{i}}{\partial q_{r}} + \frac{\partial U}{\partial q_{r}} = 0$$

 $F_{x_i}$ ,  $F_{y_i}$ , and  $F_{z_i}$  are forces acting on n elements of mass,  $m_i$ , with orthogonal coordinates  $x_i$ ,  $y_i$  and  $z_i$ . The generalized potential,  $U \equiv U(q_r, \dot{q}_r)$  provides additional generalized forces not included by  $F_{x_i}$ ,  $F_{y_i}$ , and  $F_{z_i}$ . The elemental accelerations, velocities, and displacements are derived using conventional vector analysis techniques.

The aerodynamic description comprises a rotor inflow model, nonlinear steady and unsteady blade element airloads, nonlinear body airloads, rotor and

airframe airflow interference, and airloads from the tail rotor and the propeller. The rotor inflow model is an empirical modification to uniform downwash based on data from Reference 6, with adjustments for shaft moments. The inflow velocity at station x of a blade of radius R and azimuth  $\Psi$  has the form:

$$\mathbf{w}_{i} = \overline{\mathbf{w}}_{i} \left\{ 1 + \frac{\mathbf{x}}{R} \left\{ \mathbf{f}(\mathbf{X}_{u}) \cos \Psi + \mathbf{f}(\mathbf{X}_{v}) \sin \Psi \right\} \right\} + \frac{\mathbf{x}}{R} \left( \overline{\mathbf{p}}_{i} \sin \Psi + \overline{\mathbf{q}}_{i} \cos \Psi \right)$$

where  $\overline{w}_i$  is the uniform momentum inflow velocity,  $f(X_u)$  and  $f(X_v)$  are functions of longitudinal and lateral wake angles, and  $\overline{p}_i$  and  $\overline{q}_i$  are first harmonic inflow components that are functions of rotor rolling and pitching shaft moments and translational velocity.  $\overline{w}_i$ ,  $\overline{p}_i$ , and  $\overline{q}_i$  are filtered with first-order lags which represent the delay in establishing a new inflow pattern following a change in rotor loading.

The blade section lift, drag, and pitching moment are nonlinear functions of the section thickness ratio and camber, the angle of attack, and the Mach number as determined from a table lookup routine. Aerodynamic loads due to pitch and plunge are quasi-steady and are of the general form found in Reference 7, with the Theodorsen deficiency function set to 1.0. Stall hysteresis is also included in a form similar to that described in Reference 8. This dynamic stall was not available at the beginning of this study and therefore, was not used.

The aircraft control system simulates the pilot controls operating through a servo boost on all control axes. Gearing and phasing are provided in the cyclic control path. The servos are simulated by first-order lags with rate limits. Soft and hard stops are modeled. The dynamic equations include the response of blade feathering to swashplate springs and blade loads.

The input data are printed as a card listing and also as a listing grouping like inputs which give the FORTRAN symbol as well as the value. A high degree of flexibility is provided by making each input an element of one large array of dimension 3000. Changes in either the master, the overrides to the master, or case data are minimized. The standard output format gives time history plots of up to 40 parameters in the TRIM mode and 60 in the FLY mode. Automatic scaling is provided on all plots. Output data are also tabulated at the start and end of both TRIM and FLY modes. The program can provide plots of the blade loads over the last revolution of trim on an expanded time scale. These loads are harmonically analyzed and the components tabulated. Other capabilities are included such as the generation of linear models with or without periodic coefficients for solution by linear or Floquet eigenvalue routines, Reference 9, or Fast Fourier Transform techniques which permit identification of frequency and damping during transients, Reference 4.

### MODIFICATION AND OPERATION FOR STUDY

To minimize computation time, several degrees of freedom not required to define the test vehicle were eliminated. These included the shaft tilt degrees of freedom for the AH-56A and XH-51A configurations, and the rotor speed degree of freedom for the XH-51A helicopter due to a lack of data concerning its engine dynamic characteristics.

Modifications to the modeling of the physical systems were made to accommodate the XH-51A helicopter. The jet thrustor was modeled as a scaled-down version of the AH-56A propeller. This simplification has a minor effect on body accelerations and a negligible effect on blade loads. Tail rotor height and thrustor lateral offsets were added to accommodate the XH-51A configuration.

A number of other modifications were made to obtain the desired output capability and to save computational time. The blade loads plot time history capability in the FLY mode was expanded. A harmonic analysis subroutine was created, and the output was converted to standard engineering units and signs. TRIM SAVE data were made available to save computing time in the TRIM mode. One blade trim procedure was activated for the AH-56A configuration to save computer time in the TRIM mode.

Harmonic analyses are conducted during the last revolution in TRIM. In order to compute true equilibrated blade loads, however, a modification to the program was required due to the computational sequence used in the REXOR program. For a given time point, the accelerations from the previous time are integrated to provide the current velocities and displacements. Accelerations at the last time point and the current velocities and displacements are then used to compute loads and "generalized forces." The acclerations at the current time point are found by multiplying the generalized forces by the inverted mass matrix to give delta accelerations which are added to the accelerations from the previous time to give the true current acceleration.

Loads computed up to this point are not completely accurate in that they are based upon current velocities and displacements but previous time accelerations. Therefore, the program was modified to compute internal loads using all current values of accelerations, velocities, and displacements before proceeding to the next integration step for the next time velocities and displacements. This loads computation is only implemented during the harmonic analysis cycle to conserve computation time.

### DESCRIPTION OF TEST VEHICLES

As a basis for correlation of the loads evaluation capability of the REXOR analysis, flight test data from two test aircraft were used: The AH-56A compound helicopter and the XH-51A compound helicopter.

The AH-56A data were obtained on the Lockheed S/N 1009 in its Improved Control System (ICS) configuration. The XH-51A compound helicopter is a modified XH-51A helicopter (Lockheed S/N 1002), which was developed under contract to the U.S. Army Aviation Materiel Laboratories to study the high-speed compound helicopter flight regime. The results of this research have been reported in Reference 10. This section contains a brief description of these test aircraft.

### AH-56A COMPOUND HELICOPTER

The AL-56A is a two-place, high-performance, compound attack helicopter powered by a single General Electric T64-GE-716 turboshaft engine. A fixed wing unloads the main rotor and assumes the greater portion of the total aircraft lift at high speeds. Longitudinal thrust is provided by a three-bladed pusher propeller. Photographs of the test vehicle are presented in Figures 18 through 20. A three-view drawing is presented in Figure 21.

The low aspect ratio wing consists of left and right panels which are mounted to the sponsons low on the fuselage. The wings are trapezoidal in planform, having a total area of 196 square feet. The wing cross section is a convex upper surface and a concave lower surface airfoil tapering from 12-percent thickness at the root to 8-percent thickness at the tip.

The horizontal stabilizer is mounted to the aft end of the fuse lage. The two panels of the horizontal stabilizer are basically trapezoidal in planform. The trailing edge of both panels is unswept. The left panel is contoured from a symmetrical airfoil with a cutoff trailing edge ("bobtailed"). The right panel also is derived from a symmetric airfoil with the aft third of the chord deflected downward 2.84 degrees.

The vertical stabilizer is ventrally mounted near the aft end of the fuselage. It is mounted on the fuselage centerline with no incidence relative to the fuselage centerline. The fin airfoil section is symmetrical.



Figure 18. AH-50A, S/N 60-8834 (1000), Test Configuration, Front View.

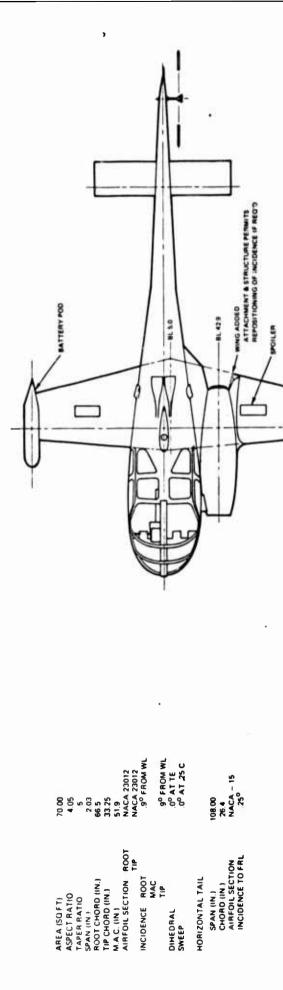


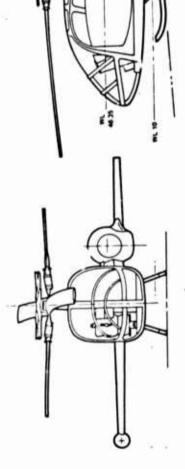
Figure 14. AH-50A, 3/H 66-8634 (1004), Test Configuration, Front Quarter View.



Figure 20. AH-56A, S/N 66-8834 (1009), Test Configuration, Side View.

The engine is installed in the upper mid-fuselage with inlets on both sides of the main rotor mast. The engine exhausts over the aft fuselage with the wake deflected upward by means of a tailpipe design feature. The retractable main landing gears are attached to the sponsons. The tail wheel is mounted at the tip of the vertical stabilizer and also retracts. Table III lists in detail the airframe physical characteristics.


The dynamic system is comprised of the main rotor, the tail rotor and the propeller. The rotating components are integrally connected with no clutching provisions except at the engine where a sprague-type clutch separated the rotating system from the engine during autorotations.


The four-bladed hingeless main rotor is centered on fuselage station 300 and waterline 165.3. The blades are rectangular in planform. Each blade is attached to a movable hub at blade station 70 (blade station 0 was defined to be at the hub center). Each movable hub is attached to a fixed hub with feather bearings located at blade stations 35 and 60. The centrifugal load, rather than passing through the bearings, is reacted through a tension-torsion pack which attached to the movable hub at station 30 and the fixed hub at station 12. The blade airfoil section is cambered, with thickness tapered from root to tip. Typical airfoil sections are illustrated in Figure 22. The blade in the ICS configuration is swept forward 4 degrees and drooped down 1 degree 57 minutes at station 70. Additional droop is provided by 23 minutes of feather bearing offset in the fixed hub and 50 minutes of feather bearing offset in the movable hub, resulting in a total of 3 degrees 10 minutes of blade droop with respect to the feather axis. Figure 23 schematically illustrates blade sweep and droop and the configuration relationships of the blade, movable hub, fixed hub, feather bearings, and tension-torsion pack.

The tail rotor is mounted on the tip of the left stabilizer. The fourbladed teetering tail rotor is centered on fuselage station 658.5, waterline 114.5 and buttline 72 left. The constant chord airfoil section has a constant thickness over a large percentage of the chord and a droop nose. The airfoil section is shown in Figure 22. The direction of rotation is in the sense of opposing the main rotor downwash (i.e., upper blade rotates aft).

A three-bladed Hamilton Standard 1311 GE 30/11FA 10A4-0 propeller is mounted at the aft end of the fuselage. The propeller thrust is controlled by variation of the collective blade angle at essentially constant speed (i.e., beta prop). The airfoil sections are NACA 16-series sections over the outer span and NACA 64-series sections in the spinner region, with the transition occurring between approximately 38 and 49 percent of span.

The shaft moment capability available with Lockheed's hingeless rotor design makes possible ample roll and pitch control with main rotor cyclic feathering. Elevator, aileron, or rudder provisions are not incorporated

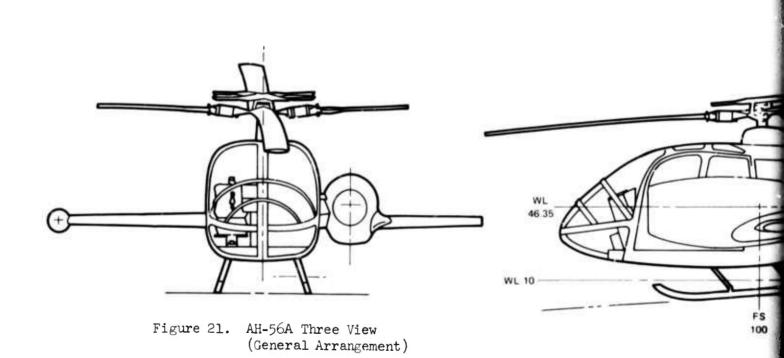


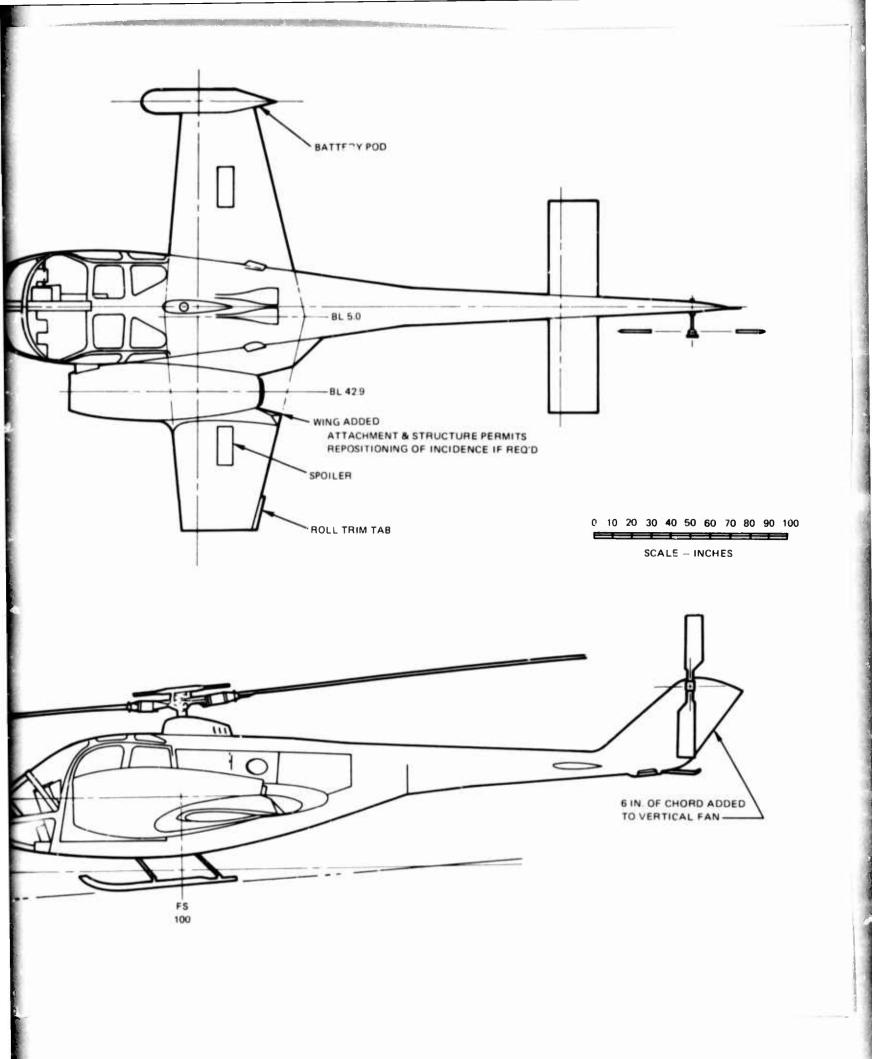


6 IN OF CHORD ADDED TO VERTICAL FAN

Figure 21. AH-56A Three View (General Arrangement)

39


AREA (SQ FT) ASPECT RATIO TAPER RATIO SPAN (IN.) ROOT CHORD (IN.) TIP CHORD (IN.) M.A.C. (IN.) AIRFOIL SECTION INCIDENCE ROOT MAC TIP DIHEDRAL	ROOT TIP	70.00 4.05 .5 2.03 66.5 33.25 51.9 NACA 23012 NACA 23012 .9° FROM WL
HGRIZONTAL TAIL		


108.00

26.4 NACA – 15

SPAN (IN.) CHORD (IN.) AIRFOIL SECTION

INCIDENCE TO FRL





### TABLE III. CHARACTERISTICS OF THE AH-56A ICS AIRFRAME AERODYNAMIC SURFACES

WING	
Airfoil:	
Root	AH-56A 12%
Tip	AH-56A 8%
Area	195 ft ²
Span	26.7 ft
Aspect Ratio	3.66
Mean Aerodynamic Chord	7.6 ft
Fuselage Station at 25% M.A.C.	308.2
Taper	0.50
Dihedral	5°
Root Chord Incidence:	
Left Wing	11° 52'
Right Wing	12° 58'
Twist Root to Tip:	
Left Wing	-3° 06'
Right Wing	-3° 02'
HORIZONTAL STABILIZER	
Airfoil:	
Right Panel:	
Root, B.L. 0	NACA 0018 (MOD)
Tip, B.L. 65.0	NACA 0012 (MOD)
Left Panel	NACA 0018 (Highly modified, bobtailed)
Area:	
Left Side	16.25 ft ²
Right Side	15.58 ft ²
Total	31.83 ft ²
Span, B.L. 65.0 Left to B.L. 65.0 Right	10.83 ft ²

TABLE III. (Continued)	
Aspect Ratio	3.68
10-11 - 1-11 - 1-11 - 1-11 - 1-11 - 1-11 - 1-11 - 1-11 - 1-11 - 1-11 - 1-11 - 1-11 - 1-11 - 1-11 - 1-11 - 1-11	3.00
Mean Aerodynamic Chord:  Left Side	2 07 64
	3.07 ft
Right Side	2.95 ft
Average	3.01 ft
Fuselage Station at 25% M.A.C.	(27, 20
Left Side	637.38
Right Side	636.98
Average	637.18
Taper:	
Left Side	0.583
Right Side	0.568
Average	0.576
Dihedral	0°
Twist	0°
Deflection of aft 33% of Right Panel	5° Down
VERTICAL STABILIZER	
Airfoil	
Root, W.L. 114.5	NACA 0018(MOD)
Tip, W.L. 37.6	NACA 0018(MOD)
Area between W.L. 37.6 and W.L. 114.5	24.6 ft ²
Span	6.41 ft
Aspect Ratio	1.67
Mean Aerodynamic Chord	3.92 ft
Fuselage Station at 25% M.A.C.:	
Fuselage Station	620.3
Waterline	79.4
Taper	0.587
Incidence	00

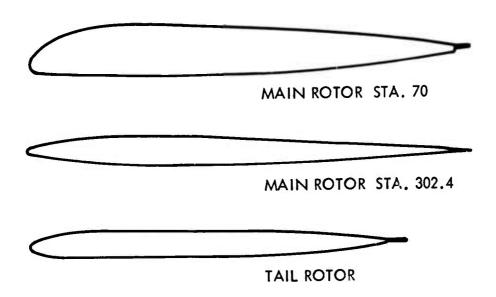
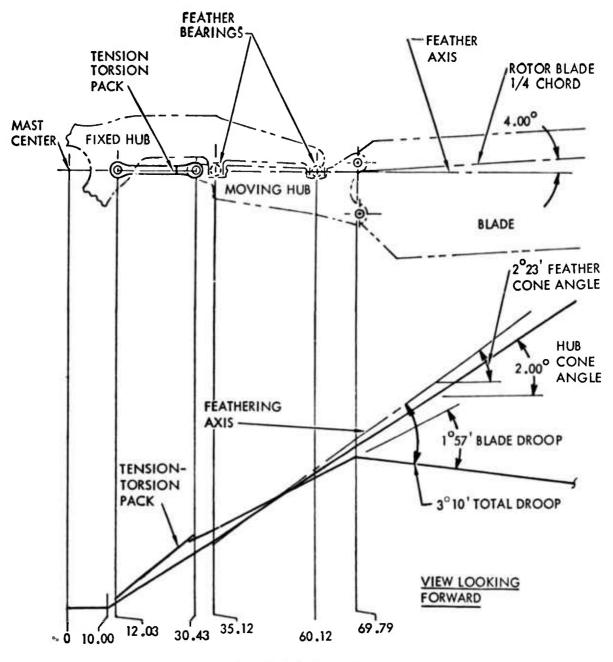




Figure 22. AH-56A Rotor Blade Airfoil Sections.

### VIEW LOOKING DOWN



BLADE STATION-IN.

Figure 23. Detailed Blade/Hub Description.

in the design. Flight stabilization is achieved with a unique gyro control system. The ICS (Improved Control System) on the test vehicle was a version featuring an external gyro and feedback of the feathering moments for shaft moment control. The gyro is located above and concentric with the main rotor. It is attached to each blade by means of the pitch link and pitch horn. Gyro tilt is therefore equivalent to cyclic feathering. The pilot controls the vehicle by moving the cyclic stick. This control motion deflects a positive spring system and applies a moment to the gyro. The gyro precesses until a new tilt angle is achieved. This gyro tilt angle (i.e., blade cyclic angle) is that spatial position where the moments due to the feathering loads are in balance with the pilot's control gyro moment. The stability augmentation function is accomplished by the spatial reference characteristics of the control gyro.

In the simplest terms, the blade flapping associated with an external disturbance (i.e., gust) acting through a moment arm determined by the blade sweep results in a feathering feedback moment being applied to the gyro. This feedback moment precesses the gyro to a position which, by design, commands cyclic blade angle of a magnitude and phasing sufficient to correct for the external disturbance.

Pilot control of pitch and roll control moments to the gyro is accomplished with a conventional cyclic stick. Directional control is accomplished with "rudder" pedals which control tail rotor collective pitch. A conventional collective stick controls main rotor collective blade angle. A propeller collective blade angle control (Beta) is provided through a twist grip located at the top of the collective stick.

The normal mode of operation at low a rspeed utilizes standard helicopter techniques of main rotor collective blade angle thrust and vehicle attitude variations for acceleration and flight path control. The compound technique used at higher airspeeds (i.e., above 100 KEAS) essentially fixes the main rotor collective at a predetermined position, and the vehicle is flown in a manner similar to a fixed-wing aircraft with the propeller used for acceleration and deceleration control.

Details of the rotating system are listed in Table IV.

The aircraft design gross weight is 18,300 pounds, the maximum overload gross weight is 22,550 pounds, and the weight empty is 12,847 pounds. Inertia data are listed in Table V.

### XH-51A COMPOUND HELICOPTER

The XH-51A is a five-place light helicopter with a single gyro-controlled hingeless rotor. The basic configuration was modified by the addition of a tapered wing and the installation of a Pratt and Whitney J60-P-3 turbojet engine. The J60-P-3 was mounted in a nacelle on the left wing panel next to the fuselage. A photograph of the XH-51A compound helicopter is presented in Figure  $2^{14}$ , and a three-view drawing is shown in Figure  $2^{5}$ .

TABLE IV. CHARACTERISTICS OF AH-56A ICS DYNAMIC COMPONENTS

MAIN ROTOR	
Hub Location:	
Fuselage Station	300.0
Waterline	165.3
Hub Precone	20
Shaft Incidence	00
Number of Blades	4
Airfoil Section:	
Root	NACA(4.6) 3012(MOD)
Tip	NACA(0.6) 3006(MOD)
Radius	25.617 ft
Blade Chord:	
Rotor Station 79.12	27.50 in.
Rotor Station 140.0	27.60 in.
Rotor Station 170.0 Linear taper between stations	27.66 in.
Rotor Station 302.4	27.94 in.
Rotor Station 302.4 to tip	27.94 in.
Droop:	
Fixed Hub Feather Bearing Offset	23'
Moving Hub Feather Bearing Offset	50'
At Station 70	1° 57'
Total	3° 10'
Sweep Forward at Station 70	4° 00'
Disc Area	2062 ft ²
Solidity	0.1159
Blade Twist, Root to Station 302.4	-5°
Blade Station at Tab Centerline	264.0
Tab Size	28.1 in. x 2 in.

TABLE IV. (Continued)	
Direction of Rotation, viewed from above	Counterclockwise 660 ft/sec
TAIL ROTOR	
Hub Location:	
Fuselage Station	658.5
Waterline	114.5
Buttline	72.0 Left
Precone	00
Number of Blades	14
Airfoil Section	NACA(0.675) 300(5.89)(MOD)
Radius	5 ft
Chord	1.167 ft
Disc Area	78.5 ft ²
Solidity	0.297
Twist	0°
Delta -3 Hinge	37.5°
Normal Tip Speed	648 ft/sec
Direction of Rotation, viewed from left side	Clockwise
PROPELLER	
Propeller Designation	Hamilton Standard 1311 GB 30/11FA 10A4-0
Hub Location:	
Fuselage Station	675.7
Waterline	114.5
Shaft Incidence	00
Number of Blades	3
Radius	5 ft
Activity Factor Per Blade	142
Integrated Design Lift Coefficient	0.411
Direction of Rotation, viewed from rear	Counterclockwise
Normal Tip Speed	899 ft/sec

TABLE V. AH-56A INERTIA DATA								
	Design Weight	Maximum Weight						
Weight (entire aircraft)	18,300 lb	22 <b>,</b> 550 lb						
Center of Gravity (entire aircraft, gear up)								
Fuselage Station	301.0	300.4						
Waterline	108.0	_						
Products and Moments of Inertia: (excluding main rotor):								
Roll I _{xx}	7,120 slug-ft ²	18,100 slug-ft ²						
Pitch I yy	55,300 slug-ft ²	58,000 slug-ft ²						
Yaw I _{zz}	51,600 slug-ft ²	62,800 slug-ft ²						
Products I	1,611 slug- t ²	$1,092 \text{ slug-ft}^2$						
Products I xz	1,127 slug-ft ²	$1,640 \text{ slug-ft}^2$						
Products I _{y2}	35.3 slug-ft ²	49 slug-ft ²						

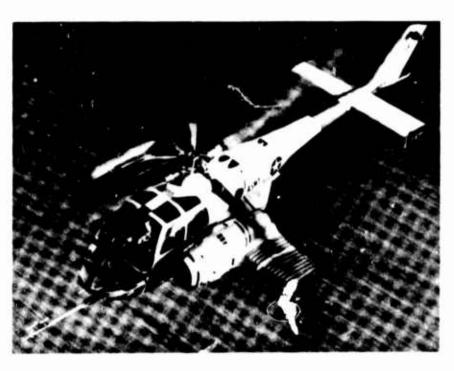



Figure 24. XH-51A Compound Helicopter (In Flight).

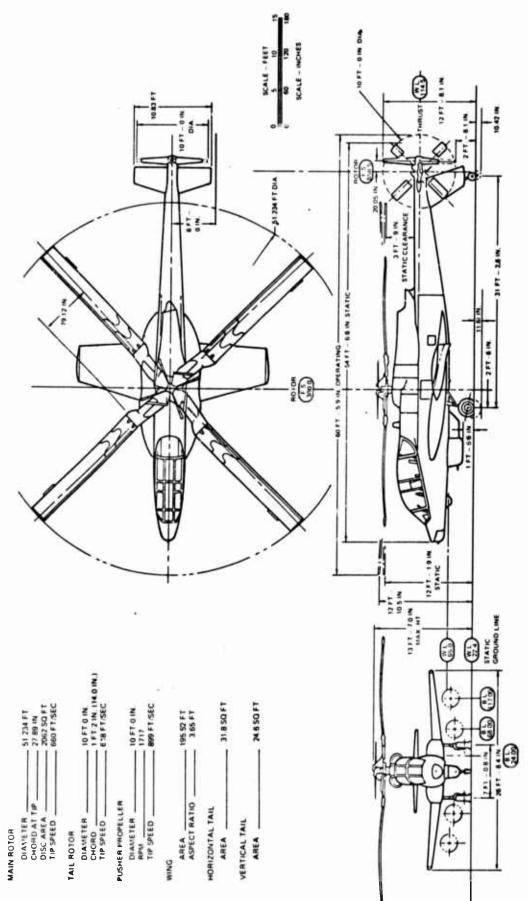
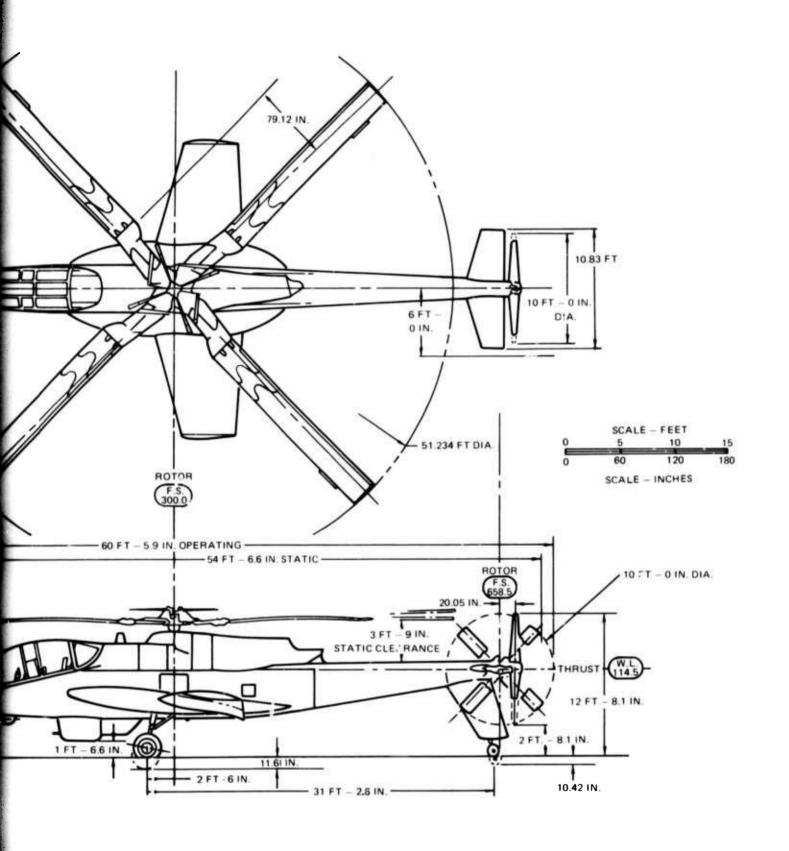




Figure 25. XH-51A Compound General Arrangement

### **MAIN ROTOR** DIAMETER ______ 51.234 FT CHORD AT TIP _____ 27.89 IN. DISC AREA ______ 2062 SQ FT TIP SPEED ______ 660 FT/SEC TAIL ROTOR DIAMETER _______ 10 FT-0 IN. CHORD _______ 1 FT-2 IN. (14.0 IN.) TIP SPEED ______ 648 FT/SEC **PUSHER PROPELLER** DIAMETER ______ 10 FT-0 IN. RPM _______ 1717 TIP SPEED _______ 899 FT/SEC WING ASP. CT RATIO ______ 195.52 FT 3.65 FT HORIZONTAL TAIL AREA ______ 31.8 SQ FT **VERTICAL TAIL** AREA ______ 24.6 SQ FT ROTO 60 FT - 5.9 IN. 12 FT -10.5 IN. 13 FT - 7.0 IN. MAX. HT. 12 FT - 1.9 IN. STATIC 1 FT - 6.6 IN 7 FT - 0.8 IN STATIC **GROUND LINE** 26 FT - 8.4 IN.

Figure 25. XH-51A Compound General Arrangement



The vertical stabilizer is swept back from the aft fuselage with a two-bladed tail rotor mounted at the tip. The horizontal stabilizer is rectangular in planform and mounted to the aft fuselage just forward of the tail rotor tip-path plane.

The main rotor design is similar to that previously described for the AH-56A except there are no external tension-torsion packs. The centrifugal force passes into the fixed hub through tension-torsion packs concentric and internal to the feather bearings. The blade attaches to the movable hub at blade station 27.8. The feather bearings are located at stations 15 and 23.

A Canadian Pratt and Whitney PT6B-9 turbine engine with a maximum takeoff horsepower of 550 powers the dynamic system. The landing gear consists of two retractable skids.

The controls, including the external gyro above the main rotor, are similar in design and principle of operation to those of the AH-56A with the ICS controls installed.

In the test configuration, the passenger space is used for instrumentation and extra fuel. The design gross weight of the test vehicle is 4,500 pounds.

Table VI summarizes the pertinent XH-51A configuration characteristics.

### TABLE VI. CHARACTERISTICS OF THE XH-51A COMPOUND HELICOPTER

WING	
Span	16.83 ft
Taper Ratio	0.5
Twist	o°
Area	70 ft
Dihedral	00
Aspect Ratio	4.05
Sweepback, 25% M.A.C.	0
Mean Aerodynamic Chord	51.72 in.
Airfoil Section	NACA 23012
Incidence Relative to Fuselage Reference	-0.9°
HORIZONTAL STABILIZER	
Span	108 in.
Chord (Constant)	26.4 in.
Twist	00
Area	19.8 ft ²
Dihedral	00
Aspect Ratio	4.1
Incidence Relative to Fuselage Reference	-0.25°
Airfoil Section	NACA 0015
Sweep	00
VERTICAL STABILIZER	
Span	41.75 in.
Tip Chord	38.5 in.
Root Chord	51.5 in.
Area	12.68 ft ²
Sweepback, 25% M.A.C.	45°
Taper Ratio	0.70
Aspect Ratio	0.95

TABLE VI. (Continued)	
VERTICAL STABILIZER (Cont'd)	
Airfoil Section	NACA 4424(MOD)
Incidence	00
MAIN ROTOR	
Туре	Rigid
Diameter	35 ft
Number of Blades	4
Blade Chord	13.5 in.
Airfoil Section	NACA 0012(MOD)
Blade Taper	1
Blade Twist, Root to Tip	-5°
Rotor Tilt	6° forward
Hub Precone	+3.2°
Droop at Station 27.85 (No Bearing Offset)	10
Sweep Forward at Station 27.85	1.40
Disc Area	962 ft ²
Solidity	0.0818
Normal Operating Speed	355 rpm
TAIL ROTOR	
Diameter	72 in.
Number of Blades	2
Blade Chord	8.5 in.
Туре	Teetering
Airfoil Section	NACA 0012
Blade Taper	1
Blade Twist, Root to Tip	-4.35°
Feathering Moment Balance Weights:	
Weight	2.25 lb/blade
Arm	3.0 in.
Delta -3 Hinge	15°

TABLE VI. (Continued)	
TAIL ROTOR (Cont'd)	
Disc Area	28.27 ft ²
Solidity	0.1503
Pitch Change Travel	$27^{\circ}$ to $-8^{\circ}$
Normal Operating Speed	2,085 rpm
TURBOJET	
Туре	Turbojet J60-P2
Military Thrust at 200 Knots and Sea Level	2, ¹ 490 1b
Engine Centerline Incidence	+7°
INERTIA DATA	
Design Gross Weight	4,500 lb
Roll Mass Moment of Inertia (including rotor)	$1,500 \text{ slug-ft}^2$
Pitch Mass Moment of Inertia (including rotor)	3,180 slug-ft ²
Yaw Mass Moment of Inertia (including rotor)	3,800 slug-ft ²
Rotor Polar Moment of Inertia	1,013 slug-ft ²

### INSTRUMENTATION AND DATA REDUCTION

### AH-56A

The AH-56A data used in this report were recorded on a photo recorder and two 50-channel oscillographs. The photo recorder took time-lapse pictures of a photo panel of calibrated instruments similar to those installed in the pilot's panel. The oscillographs recorded the vehicle body rates and attitudes, gyro position, control positions, the blade-feathering angle, shaft moment, blade loads, and control loads. Correlation between the recording devices was effected by a timer that activated counters on the photo panel and simultaneously activated counters which were photographed on the oscillograms.

The following data were obtained from the photo panel:

- Airspeed (Boom)
- Pressure altitude (Boom)
- Outside air temperature
- Fuel used
- Rate of climb
- Time

All the above were corrected for instrument error. Airspeed and altitude were measured with a test airspeed boom system mounted on the nose of the vehicle. A position error calibration was applied to all airspeed and altitude data. Vanes measuring the angle of attack and the angle of sideslip were also mounted on the end of the nose boom. The ambient air temperature was obtained by correcting the indicated temperature for adiabatic temperature rise. The Mach number used in the computations was based on the speed of sound corresponding to ambient temperature. Vehicle weight and center of gravity were calculated from the fuel used.

The parameters listed below were not necessarily available on every test nor are they necessarily included in this report. They are, however, representative of the sensors installed on the test vehicle and recorded at various times during the test program.

- Angle of attack
- Angle of sideslip
- Longitudinal stick position
- Lateral stick position
- Roll rate
- Pitch rate
- Load factor at center of gravity
- Bank angle
- Pitch angle
- Collective servo control load
- Roll servo control load
- Pitch servo control load
- Gyro roll input angle
- Gyro pitch input angle
- Pitch link tension
- Main rotor blade angle
- Shaft bending moment
- Flap bending moment at station 18 fixed hub
- Flap bending moment at station 31 fixed hub
- Flap bending moment at station 40.5 movable hub
- Flap bending moment at station 52.5 movable hub
- Flap bending moment at station 130.5 blade
- Flap bending moment at station 174 blade
- Flap bending moment at station 205 blade
- Flap bending moment at station 235 blade

Blade No. 1

- Flap bending moment at station 270 blade
- Chord bending moment at station 18 fixed hub
- Chord bending moment at station 46 movable hub
- Chord bending moment at station 103 blade
- Chord bending moment at station 174 blade
- Chord bending moment at station 235 blade
- Torsion at station 131.5 blade
- Blade azimuth reference

Blade No. 1

The rotating bending moments and loads were sensed with strain-gage bridges. These bridges were compensated during calibration to eliminate unwanted axis "crosstalk." The signals were transmitted from the rotor through a slip ring assembly to appropriate signal-conditioning equipment and then to the oscillograph. No signal amplification was used with any of the sensors. This eliminated the "drift" concern which is often a problem in amplified signals. All measurements were deadweight calibrated in a laboratory. A pilot-operated shunt/calibration resistor system was included in each circuit to provide both a means of in-flight calibration determination and a check on proper sensor operation. The reference galvo deflection for the flap bending moments and the pitch link tension were corrected to compensate for the static weight of the blade.

The main rotor blade angle was measured between the fixed and movable hubs. The collective value of this measurement was adjusted for geometric blade twist so that the reduced data is applicable to the projected blade root on the hub centerline. The feathering moment was obtained by multiplying the pitch link load by an equivalent moment arm determined from the geometry of the pitch link and the pitch horn.

The angle of attack was corrected for fuselage upwash using data obtained during full-scale wind tunnel tests of the vehicle without the main rotor. A correction was also applied for the main rotor upwash which was estimated to have a value of 20 percent of a uniform rotor downwash distribution at the location of the angle of attack vane, Reference 6. An additional correction was applied to account for the effect of pitch rate on measured angle of attack due to offset of the vane from the aircraft center of gravity.

The rotor lift was determined from the collective flap bending at blade station 18. A calibration of this relationship was obtained during whirl tower tests. An analysis conducted using the Rotor Blade Loads program

indicates the change in this calibration with airspeed was engligible. In accelerated maneuvers, a correction was applied to the calibration for an additional blade weight inertial effect not included in the whirl tower calibration which was obtained at a load factor of one.

# XH-51A

The instrumentation and data reduction for the XH-51A compound helicopter were similar to that previously described for the AH-56A. Only differences between the two vehicles will be discussed. The XH-51A photo recorder took time-lapse pictures of the pilot's panel instead of a separate photo panel.

The parameters obtained from the oscillograph were:

- Angle of attack
- Longitudinal stick position
- Lateral stick position
- Roll rate
- Pitch rate
- Load factor at center of gravity
- Bank angle
- Pitch angle
- Pitch link axial load
- Main rotor blade angle
- Rotor lift
- Flap bending at station 6 fixed hub, blade number 2
- Flap bending at station 115 blade
- Flap bending at station 157 blade
- Chord bending at station 6 fixed hub
- Chord bending at station 45 blade
- Blade azimuth reference

blade no. 1

Rotor lift was determined from a "direct" measurement instead of from a collective flap bending-lift relationship. The XH-51A transmission was

mounted on springs compared to the AH-56A transmission which was hard mounted to the fuselage. Sufficient structural deflections occurred with the XH-51A transmission springs to result in sufficient strain gage output which was proportional to lift.

The XH-51A instrumentation did not include strain gages on the rotor shaft for shaft bending moments. Instead, the shaft moment magnitude was determined by multiplying the 1P flap bending moment at station 6 by a value determined from the Rotor Blade Loads program. The phase angles for the two parameters were assumed to be the same.

XH-51A blade load data are presented in Reference 10 at more test conditions and for more blade stations than are included in this report. The suitability of the reference data for comparison with REXOR is questionable because during the tests from which the referenced data was obtained, one blade was highly modified for installation of blade pressure transducers. The structural characteristics of this modified blade differed from the other three blades. The blade bending instrumentation was located on this modified blade. The REXOR program has four equal blades and uncertainty exists whether the XH-51A blades in question would be adequately represented in REXOR. Therefore, these previously published data are not suitable for this correlation effort.

## DATA QUALITY

The following discussion describes items pertinent to making a judgment on the accuracy and consistency of the test data. This includes the machine routines used to process the data in a form suitable for analysis.

The overall static instrumentation system accuracy was between 1 percent and 5 percent of the full-scale value of the particular parameter. The dynamic (i.e., rotating) accuracy was primarily a function of the natural frequency of the galvanometer used for the particular measurement. In all cases, the galvanometers were selected to result in negligible load magnitude attenuation within the frequency range of interest. The frequency response of the galvanometer does have an impact on the phasing. The theoretical phasing lags resulting from the galvanometers used for the rotating measurements are tabulated in Table VII.

The system accuracy on establishing phase angle was primarily limited by readibility. The phasing of the 1P could not be reliably reduced more accurately than ±5 degrees and the 2P not more accurately than ±10 degrees. Therefore, to be consistent with system accuracy capability, the only lag correction applied to the rotating data was for the 1P blade angle data. Although the theoretical lag was 36 degrees, a correction of only 30 degrees was applied. This number was based on experimental comparisons of the swashplate position as derived from the rotating blade angle measurement compared to that derived from the nonrotating measurements.

TABLE VII. PHASING LAGS FOR ROTATING MEASUREMENTS			
Measurement	Galvanometer Frequency Response	Harmonic	Lag (deg)
Main Rotor Blade Angle	lO Hz	1P	36
Strain Gage Measurements	100 Hz	1P	3.7
		2P	7.4

The consistency of the test data is shown in Figures 26 through 28. On these curves, representative loads are broken down into the primary harmonics and the corresponding phasings are plotted versus airspeed. Note that the scatter from the faired curves of this data, which was taken at various stages of the program, is small. Some of this scatter can be attributed to the listed variations in weight, center of gravity, and collective blade angle.

The computer software used for the harmonic analysis routines was identical to that used to analyze the data of Reference 10. A two-rotor revolution time span was used for each data point to improve accuracy. The system was checked by inputting periodic waveforms of known characteristics and comparing the computer output with the known harmonics.

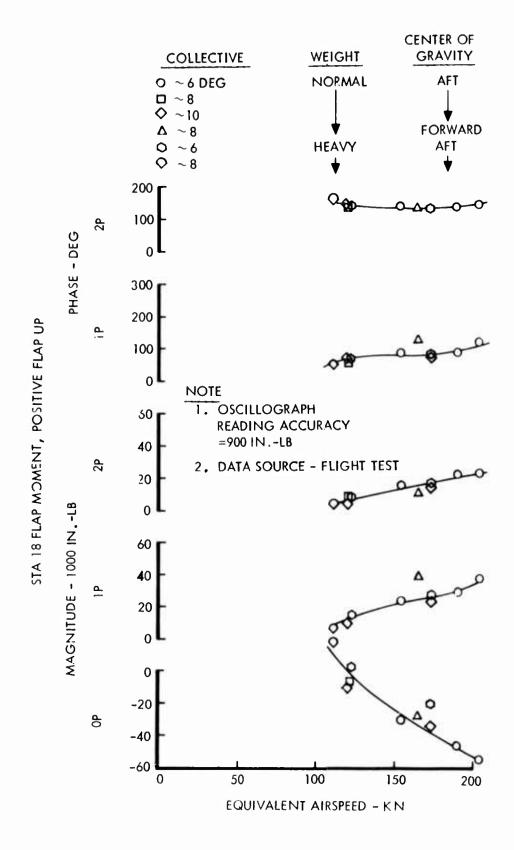



Figure 26. AH-56A Blade Sta 18 Flap Moment vs. Airspeed.

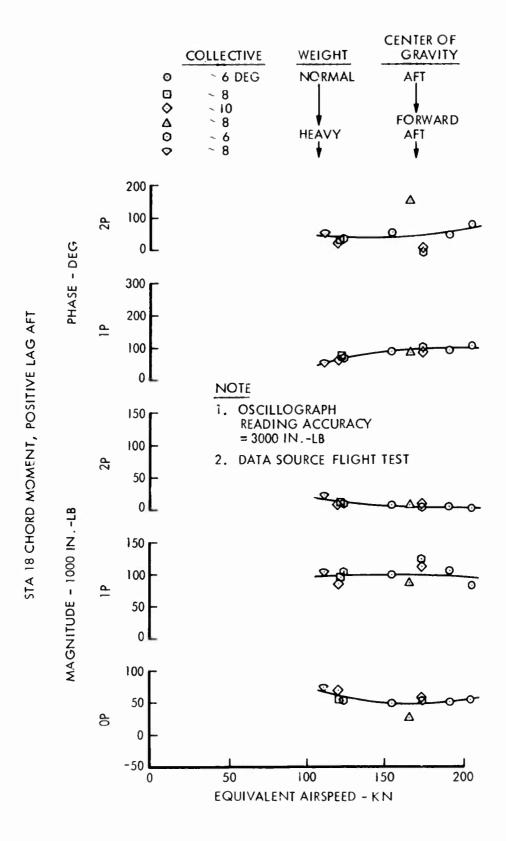



Figure 27. AH-56A Blade Sta 18 Chord Moment vs. Airspeed.

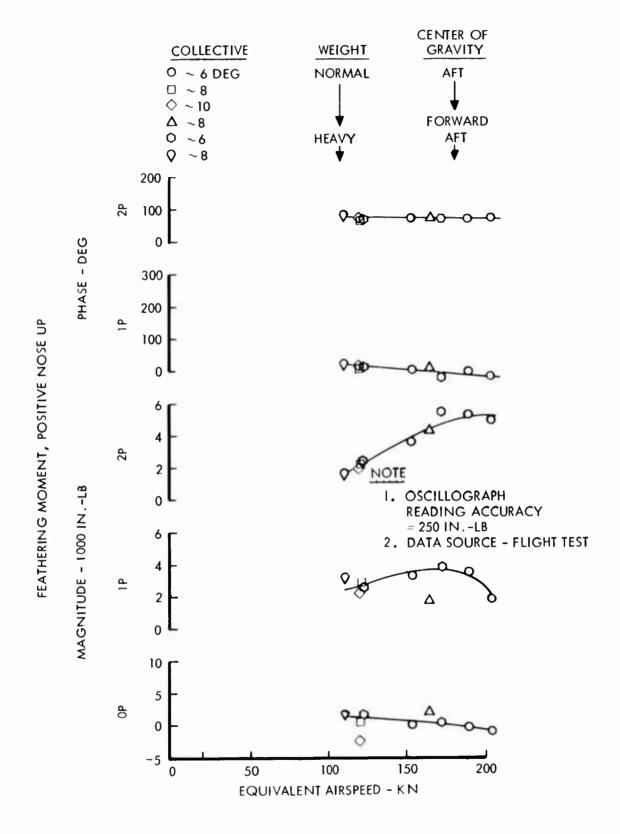



Figure 28. AH-56A Feathering Moment vs. Airspeed.

#### DISCUSSION OF RESULTS

This section presents a discussion and review of typical steady-state correlation data plus a complete summary of the transient response correlation data. In addition, Appendix II presents all of the steady-state correlation data obtained during the study. Table I gives a listing of the various correlation cases contained in this study. The first 40 cases (33 on which correlation studies were made) are AH-56A steady-state trim conditions, Cases 41 to 44 are XH-51A steady-state trim conditions, and Cases 45 through 52 and 53 through 56 are transient maneuver conditions for the AH-56A and XH-51A vehicles, respectively. The table also includes a tabulation of the parameters which define each flight condition. Items tabulated include airspeed, atmospheric conditions, collective blade angle, gross weight, center of gravity, rotor lift, shaft moment, rate of climb, load factor, and rotor speed.

The correlation data is presented in terms of either comparisons of harmonics of blade loads for the steady-state conditions or time histories of blade loads for transient conditions. The harmonics of the blade loads, M, are defined by the following equation.

$$M(t) = a_0 + c_1 \cos (\Omega t - \phi_1)$$

$$+ c_2 \cos (2 \Omega t - \phi_2) + \dots$$

$$+ c_n \cos (n \Omega t - \phi_n)$$

where t is time;  $\Omega$  is rotor speed;  $a_0$  is mean or "OP" component; and  $c_1, c_2, \ldots, c_n$ , and  $d_1, d_2, \ldots, d_n$  are the amplitude and phase of the IP, 2P, . . . , nP harmonic, respectively. Only the OP, IP, and 2P components of response are included for comparison in the correlation study and are referred to accordingly.

The following points are introduced to clarify the data presented:

- Blade loads are referred to moving axes aligned with the blade chord. Fixed hub loads at blade station 0.0, the hub center, and at station 18 on the AH-56A and station 6 on the XH-51A are defined in orthogonal coordinates perpendicular and parallel to the shaft.
- Test data for the root 1P flapping moments are measured shaft moments divided by two.
- Test data for torsion were only available on the AH-56A, and then only at rotor station 131.5 on the blade.

- Torsion is referenced to the elastic axis while the flapping and chordwise moments are referenced to the neutral axis.
- REXOR was trimmed to the same rotor lift and shaft moments as occurred on the test case. Collective pitch was also fixed while the rotor angle of attack and the blade cyclic feathering angles were allowed to vary until rotor lift and shaft moments were achieved. Airspeed, load factor, and ambient air pressure and temperature were the same in the analysis as occurred at the flight test condition.

# AH-56A STEADY-STATE CORRELATION RESULTS

As indicated above, test data was reduced for 40 cases with airspeeds ranging from 111 to 205 KEAS, load factors from slightly below 1.0 to 1.77 g. rotor lifts from 3400 to 22,600 pounds, and shaft moments up to 310,000 inch-pounds. Again, Table I presents the basic trim conditions for these cases. All but Cases 2, 3 and 25 fell into eight groups where load factor was the principal variable, with airspeed being held about constant in each group. REXOR correlation studies were performed by trimming to the flight conditions for a selection of 33 of the 40 cases. A few test cases were obtained in mild pushovers, where the load factor was slightly below 1 g, which could not be precisely duplicated since pushovers are not true steadystate maneuvers. Also, trim could not be established in the analysis in Cases 33, 34, and 35, where there was substantial penetration into blade stall. The inability to trim these conditions is attributed to the lack of a dynamic stall description in the analysis and the associated nonlinearities in trim derivatives in the stall region. As indicated in the model description, a dynamic stall description has been subsequently added to the model but was not used in the present study.

Since the primary purpose of this study was prediction of maneuver flight loads, only a summary of correlation data obtained for steady-state cases is presented in this section. The complete set of steady-state correlation data is given in Appendix II. The summary contained in this section reviews trends with forward speed and load factor. Figures 29 through 34 present root and midspan flap, chord and torsion moments versus airspeed for 1 g flight and at a nominal collective blade angle of six degrees. The root chord and flap moments are for span station 18 on the fixed hub, and the midspan moments are at rotor station 174. The root torsion moment is the feathering moment reacted by the pitch arm, while the midspan torsion moment is measured at rotor station 131.5.

Likewise, Figures 35 through 40 present these same loads as a function of load factor for typical conditions at 165 KEAS. Figure 41 gives the corresponding trim angles associated with these load factors. Figures 42 through 46 show correlation data as a function of span for a 1 g level flight case at 154 knots; Figure 42 gives steady or OP flapping and chordwise moments as a function of span; Figure 43, the 1P and 2P flapping

Figure 29. AH-56A Flap Moment vs. Forward Speed.

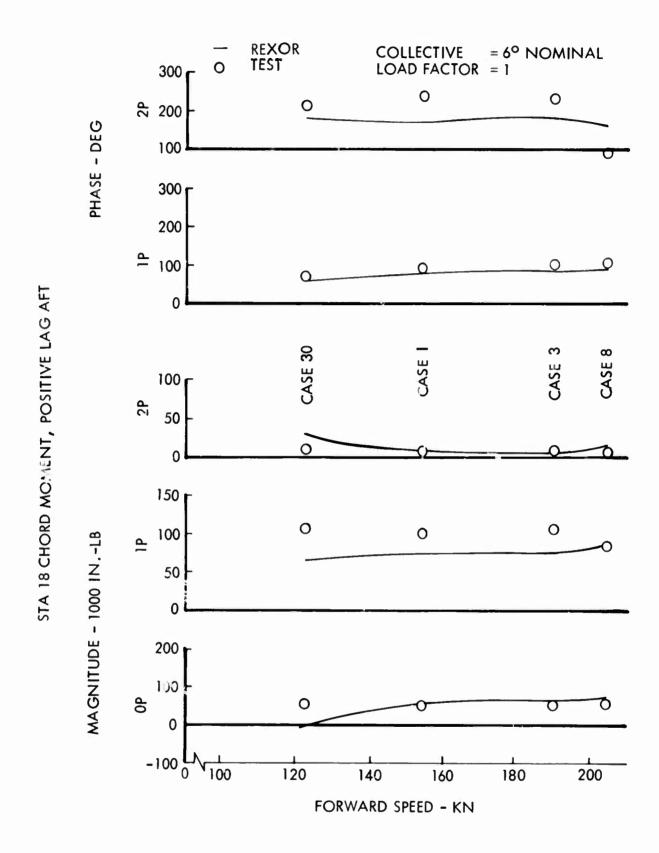



Figure 30. AH-56A Sta 18 Chord Moment vs. Forward Speed.

Figure 31. AH-56A Sta 174 Flap Moment vs. Forward Speed.

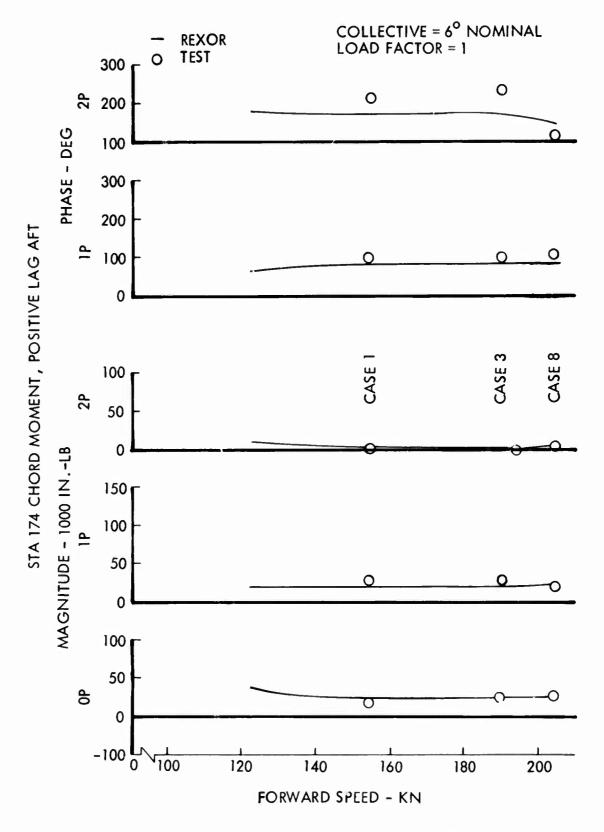



Figure 32. AH-56A Sta 174 Chord Moment vs. Forward Speed.

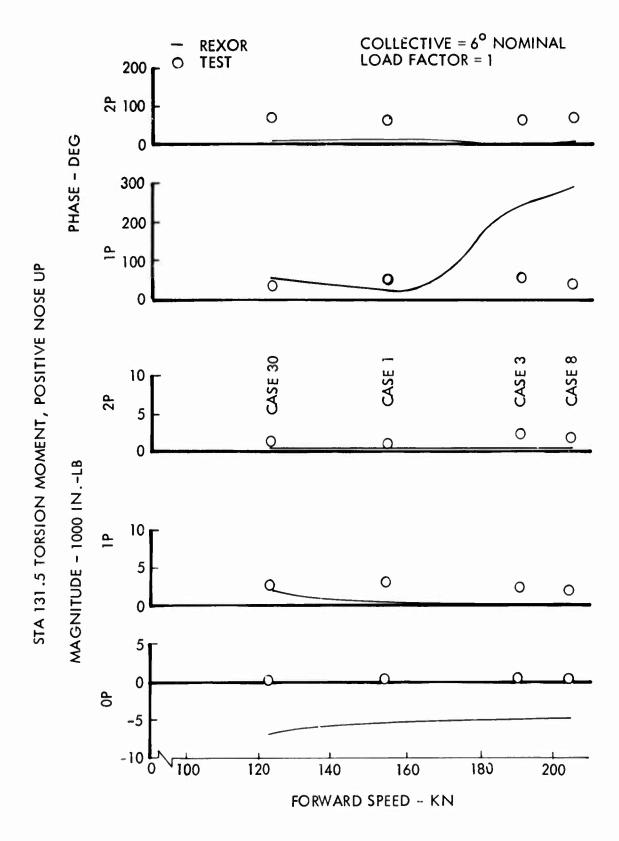



Figure 33. AH-56A Sta 131.5 Torsion Moment vs. Forward Speed.

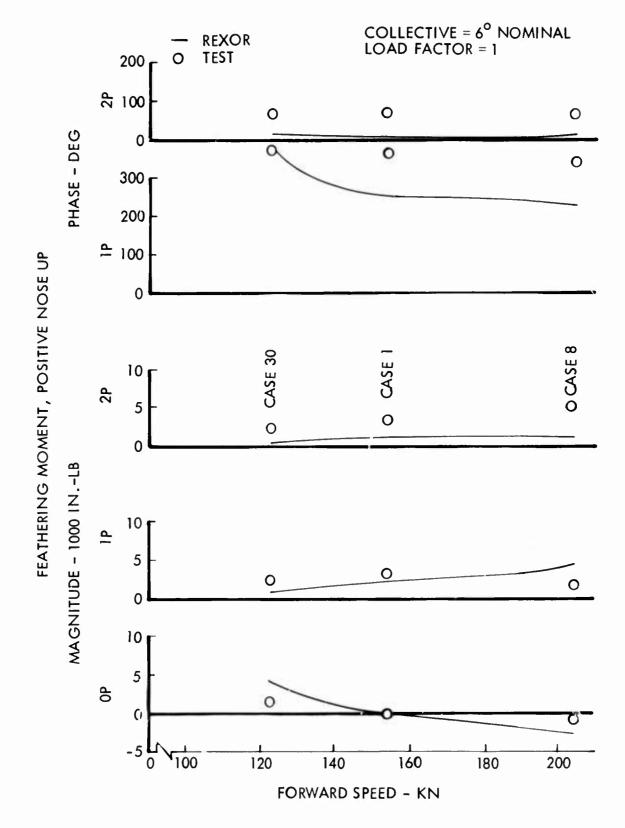



Figure 34. AH-56A Feathering Moment vs. Forward Speed.

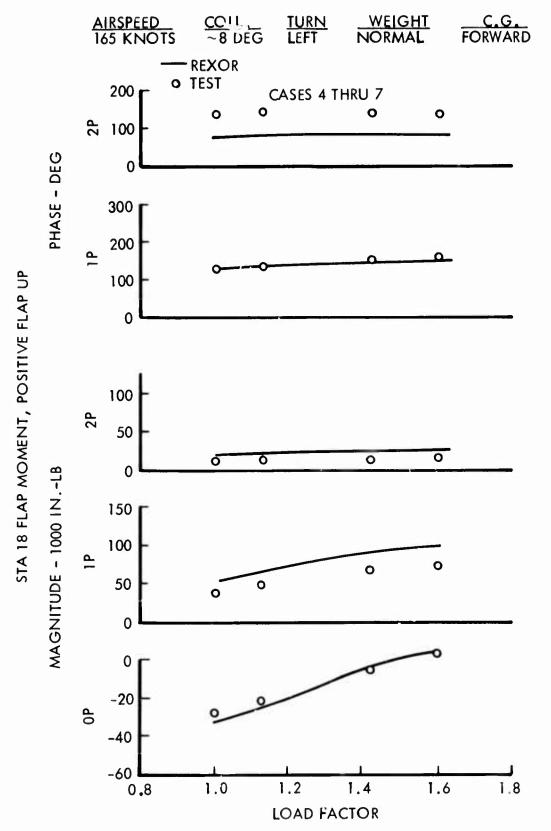



Figure 35. AH-56A Sta 18 Flap Moment vs. Load Factor.

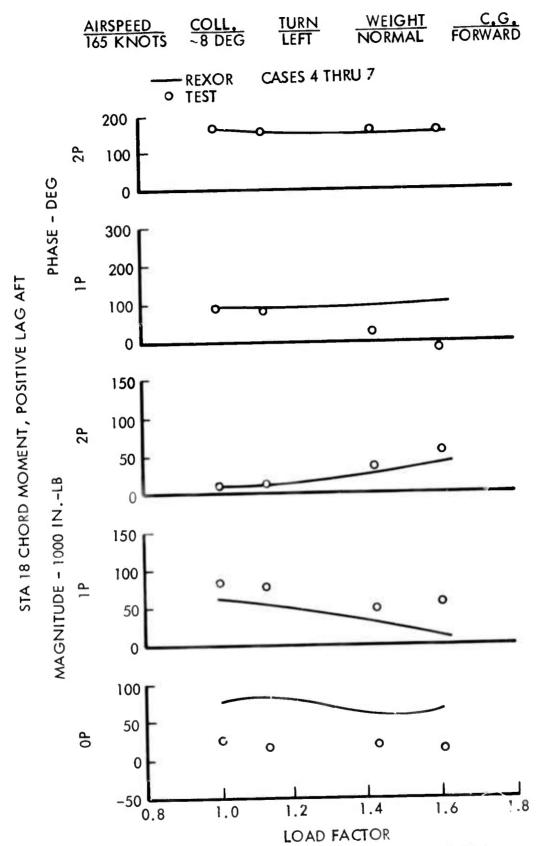



Figure 36. AH-56A Sta 18 Chord Moment vs. Load Factor.

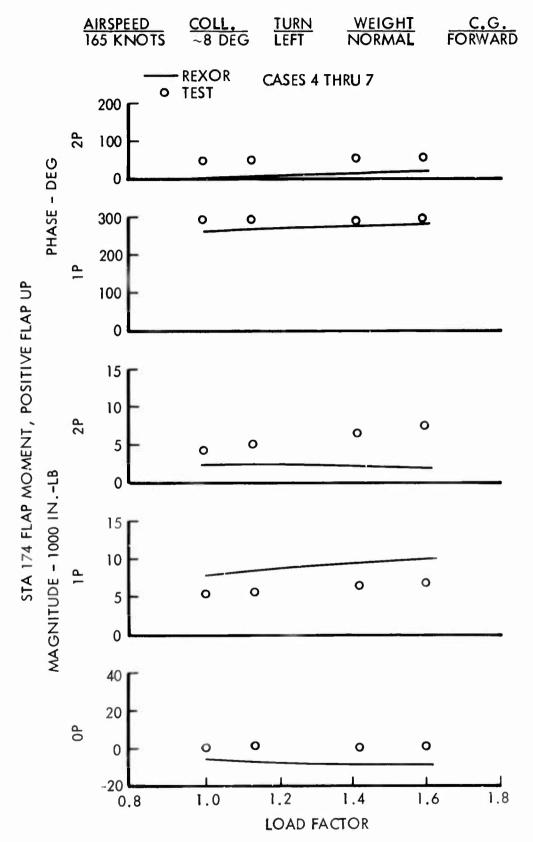



Figure 37. AH-56A Blade Sta 174 Flap Moment vs. Load Factor.

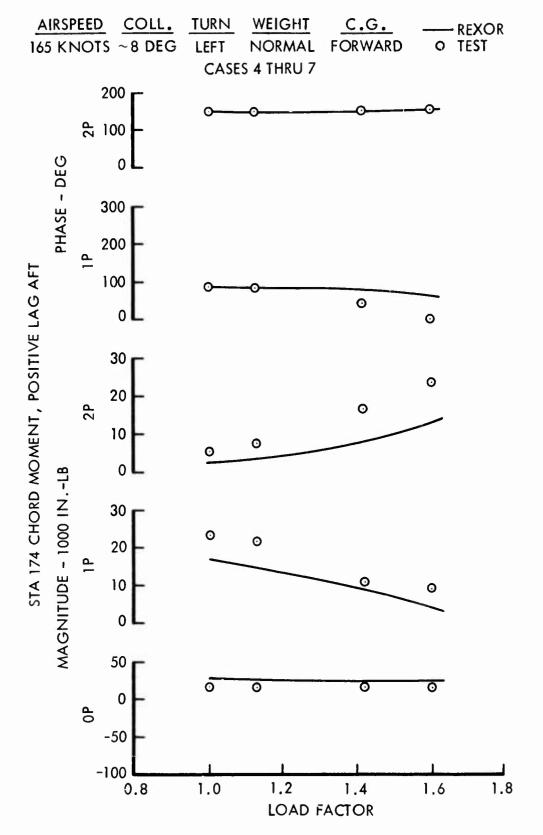



Figure 38. AH-56A Blade Sta 174 Chord Moment vs. Load Factor.

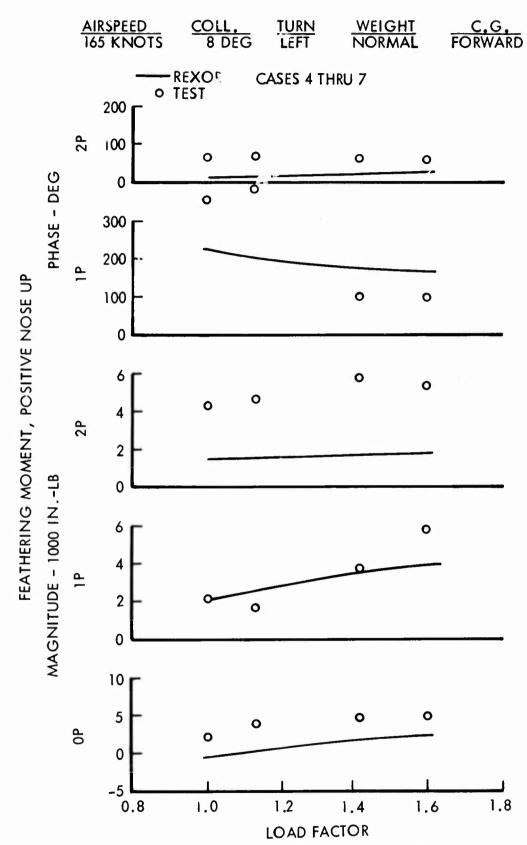



Figure 39. AH-56A Feathering Moment vs. Load Factor.

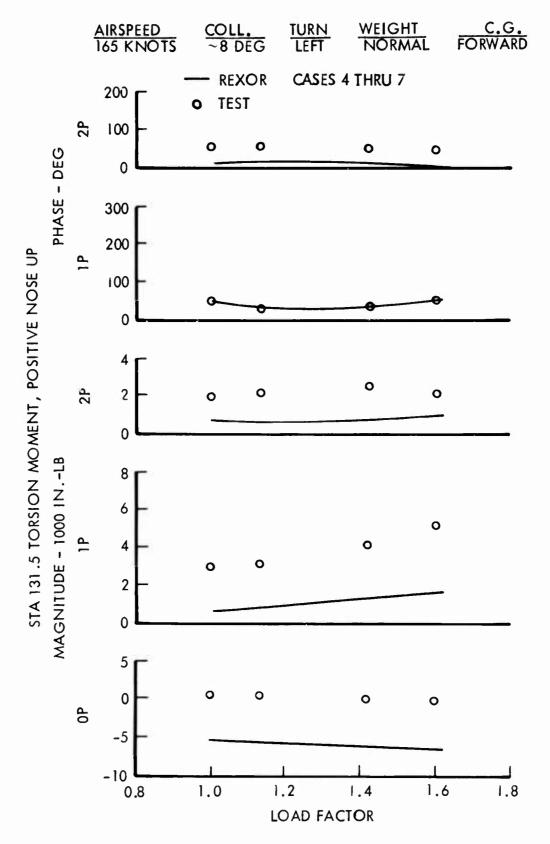



Figure 40. AH-56A Blade Sta 131.5 Torsion Moment vs. Load Factor.

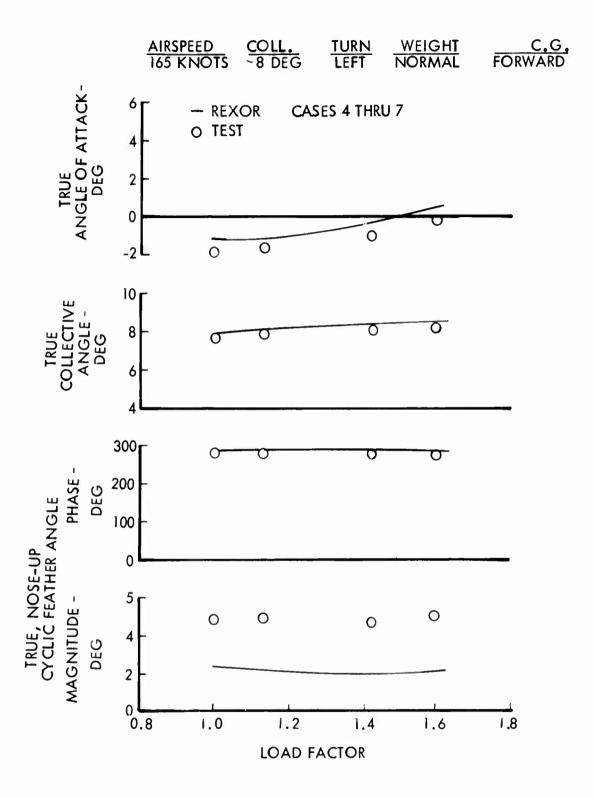



Figure 41. AH-56A Main Rotor Trim Angle vs. Load Factor.

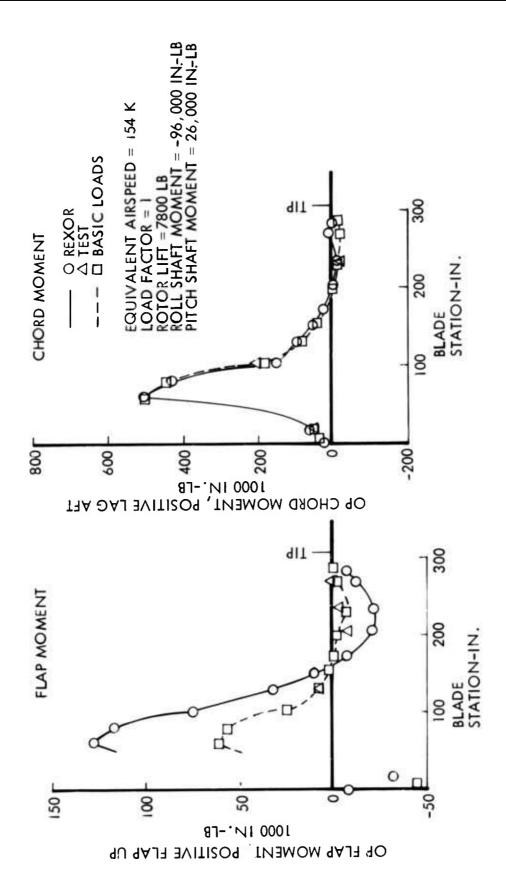



Figure 42. AH-56A OP Flap and Chord Moment vs. Blade Station  $\sim$  Case l

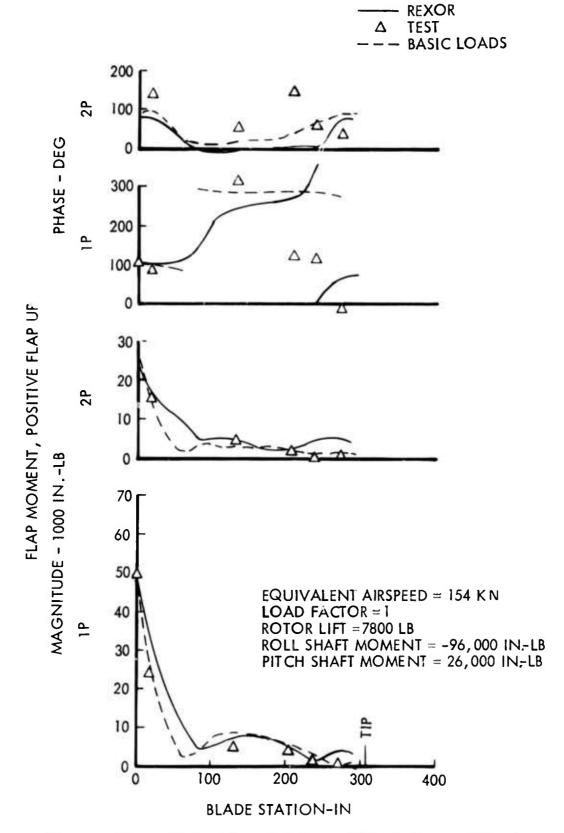



Figure 43. AH-56A 1P and 2P Flap Moment vs. Blade Station  $\sim$  Case 1.

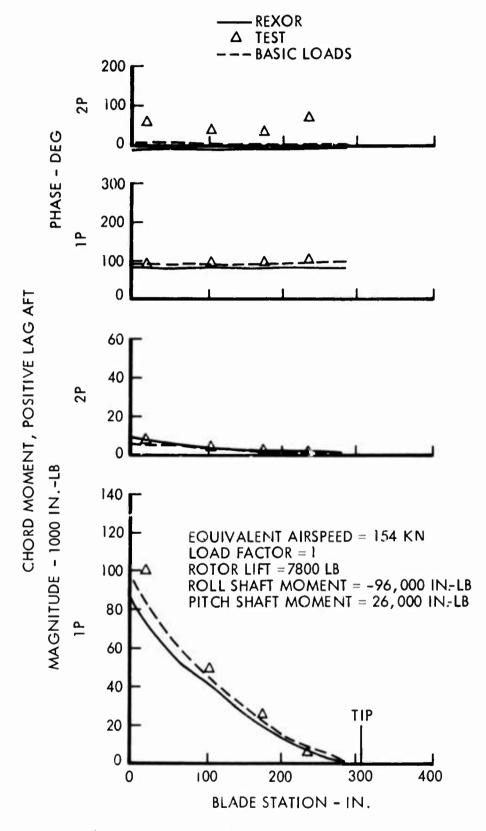



Figure 44. AH-56A 1P and 2P Chord Moment vs. Blade Station ~ Case 1.

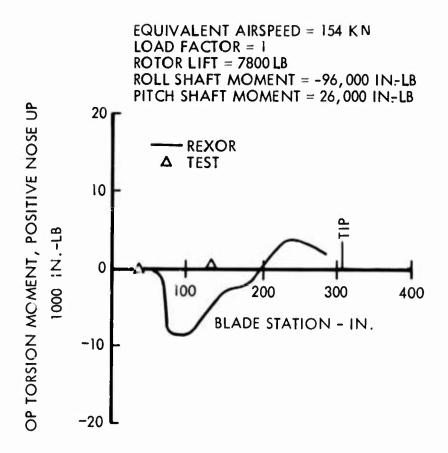



Figure 45. AH-56A OP Torsion Moment vs. Blade Station ~ Case 1.

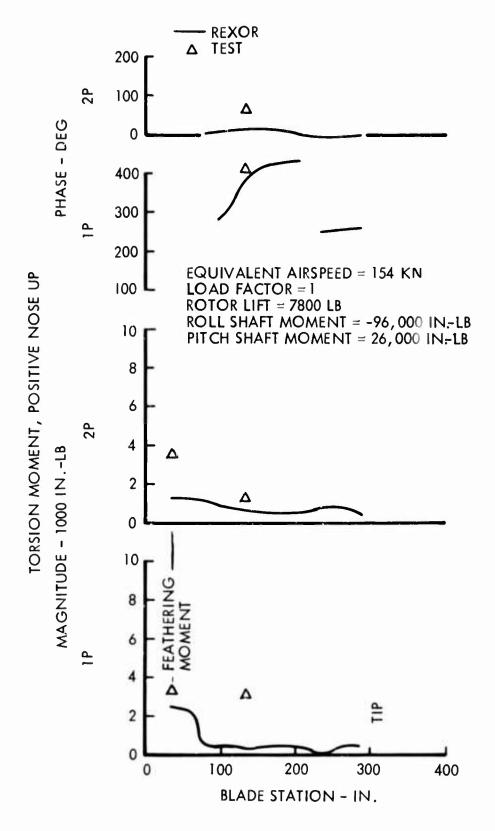



Figure 46. AH-56A 1P and 2P Torsion Moment vs. Blade Station ~ Case 1.

moments; Figure 44, the 1P and 2P chordwise moments; Figure 45, the steady torsion moments; and Figure 46, the 1P and 2P torsion moments. It is noted for 1P and 2P moments that both amplitude and phase are compared.

A review of Figures 29 through 32 and 35 through 38 shows that overall correlation on flapping and chordwise bending moments is fairly good for these steady-state conditions. This is true for both absolute levels and trends with forward speed and load factor.

The flapwise bending moments computed internally at station 18 in REXOR were effectively the total moment acting across the fixed hub and tension-torsion (T-T) pack at that station. The end kick shears of the T-T pack were included in the internal load balance and generalized forces in the system, but were not included in the specific integration for loads at station 18 since this integration included only external loads and not internal loads. A correction was therefore made to the REXOR computed flapping moments at station 18 to account for the internal load of the T-T pack. This correction was found to have a significant effect on steady moments, a lesser effect on 1P flapping moments, and 5 percent or less effect on 2P flapping moments at station 18. Therefore, it was only necessary to apply the correction to the steady and 1P moments.

### Correlation With Forward Speed

Figure 29 shows that fairly good correlation is achieved between the measured OP, 1P, and 2P flapping moments at station 18 (approximately 0.06R) and the predicted moments. Steady moments, which are not particularly critical loads, are seen to be in very good agreement. The first harmonic moments at station 18 predicted by REXOR are 20 to 30 percent higher than the measured levels, with the phase angle showing very good agreement. It is believed that the predicted IP flapping moments at station 18 are apparently high due to the limitation imposed on blade deflections by only including three blade modes (2 flapwise and 1 in-plane), or less importantly, by the radial loading stations being limited to 12. This has been demonstrated by the Rotor Blade Loads analysis of the same test conditions where the blade was described by this analysis with approximately 60 stations. The measured and computed loads with this method fell within 5 percent of each other as shown in Figure 43. Subtleties involved in defining 1P bending deflection shape include coupling effects such as the products of 1P cyclic feathering times the blade forward sweep. This results in a sharp discontinuity in the vertical deflection of the blade at the point where the blade sweep occurs. This discontinuity is not well represented by the deflections allowed in a first- and second-mode bending formulation. As a result, errors are generated which cause some error in the predicted distributed 1P flapping moments in the REXOR program. These differences in moment are readily identified by comparisons with the Rotor Blade Loads program. Once noted, the differences can then be applied to results of transient solutions, the principal purpose for applying REXOR as a loads analysis tool.

The amplitudes of the 2P flapping moments, as seen in Figure 29, agree quite well. However, differences do exist between the measured and predicted 2P

phase angle. This phase difference is attributed to several factors. The primary contributor is differences in cyclic blade angle required for trim, Figure 41. The error in cyclic blade angle on the AH-56A has not been totally resolved but could be due to an inadequate accounting of inflow effects associated with the forebody shape and its proximity to the main rotor, the wing downwash, and the method for accounting for propeller inflow. The forebody proximity to the rotor and the propeller influence are peculiar to the AH-56A configuration.

Referring to Figure 30, good agreement was obtained between measured and predicted blade chord moments as a function of airspeed. The biggest discrepancy in loads occurred at the low-speed end. Here, the nominal collective setting was only 6 degrees. This means that rotor lift must be obtained to a large degree by angle of attack of the rotor. Any error in collective setting will result in large differences in rotor angle of attack. For this condition, REXOR trimmed to an angle of attack that was approximately 3 degrees higher than the measured value, thus causing REXOR to be in a more autorotative state than the test vehicle. This resulted in the smaller predicted steady chordwise bending moment at the low-speed points. At higher speeds, any differences in collective setting result in a much lower discrepancy in rotor angle of attack.

Figures 31 and 32 show the flap and chord moment comparison at rotor station  $17^{14}$  for these same forward speed conditions. It is noted that flapping moment at station  $17^{14}$  was only available on the high-speed 20¹⁴ KFAS test condition. Also, chord moment at this station was not available for the low-speed test point. The results show very good correlation for 1P and 2P phase angles.

Figures 33 and 34 give correlation between test and analysis for the same speed conditions for blade torsion moment at rotor station 131.5 and for feathering moment respectively. The steady and 1P feathering moments show reasonable agreement, with the 2P moments showing less agreement. Poor agreement is also shown for steady, 1P, and 2P harmonics of blade torsion moment.

Blade torsion moment at station 131.5 is affected on a first-ord this by pure torsion moments on the blade and secondarily by effects of the product of flapping and/or chordwise deflections times chordwise and/or flapping moments. In contrast, for the feathering moment, each of these is a first-order effect. In review of the torsion moments (referring again to Figure 34), it is seen that predicted steady moments are more nose down than the values measured. Study of the azimuthal histories revealed that 1P predicted moments on the advancing side of the rotor were more nose down than measured, with this discrepancy increasing with airspeed. Both of these discrepancies could be compensated for in the analysis with a larger, more positive value of  $C_{\rm MO}$  for the airfoil to account for tracking tab

setting. The AH-56A rotor blades are equipped with fairly large tracking tabs. These tabs are easily capable of producing increments of steady torsion or feathering moments of  $\pm 3,000$  inch-pounds in hover. For a given radius or rotor station r,  $\text{TM}_{OP}$  and  $\text{TM}_{1P}$ , the OP and 1P aerodynamic torsion moment due to  $\text{C}_{MO}$ , can be written in terms of  $\text{TM}_{HOVER}$ , the hover value, as follows:

$$TM_{OP} = (1 + \mu_{r}^{2}/2) TM_{HOVER}$$

and

$$TM_{1P} = \mu_r TM_{HOVER}$$

where  $\mu_r$  is the equivalent advance ratio at station r. At  $\mu_r$  = 0.5 or approximately 180 KEAS, a steady moment of 1125 inch-pounds and a 1P moment of 500 inch-pounds would result due to each 1,000 inch-pounds of hovering  $C_{MO}$  torsion moment due to tab setting.

The correlation analysis presented was all performed with an analytical tab setting which produced the test value of collective control load in hover. This analytical tab setting is lower than that measured on the test vehicle. If the test setting were used, the computed collective control load would be reduced between 1,000 and 1,500 pounds tension, which is equivalent to 1,700 to 2,550 inch-pounds of blade torsion moment for the hovering case. Because of this, the analytical setting which matches hover control loads was used. If the measured tab setting had been used, at 180 KEAS an increment of steady nose-up torsion moment of 2,400 inch-pounds and a 1P torsion moment of 1,060 inch-pounds nose up on the advancing blade would result. Combining these load increments with the predicted torsion moments in Figure 33 would improve correlation of the magnitude of both the steady and 1P torsion moments and the phase of the 1P torsion moments.

Another item affecting the 1P torsion moment is aerodynamic pitch rate damping due to cyclic feathering. The higher experimental cyclic blade trim angles compared to the REXOR trim angles result in fairly significant increments of nose-up feathering in the right rear quadrant of the rotor system. This effect would further enhance the degree of correlation obtained on the 1P torsion moments in level flight. The magnitude of this vector can range from 1,000 to 2,000 inch-pounds of torsion moment and is in a direction to improve this prediction.

The mechanisms producing feathering moments include the same items that result in blade torsion moments and additionally significant contributions due to the product of flapping and in-plane moments times in-plane and flapping deflections, both geometric and elastic. Referring to Figure 30, at 120 KEAS the discrepancy in steady in-plane moment times the blade droop below the feathering axis for this condition would result in an increment of nose-up feathering moment. This increment of feathering moment due to

the discrepancy in the steady chord moment would disappear with increasing airspeed. This, combined with the effects on steady and IP torsion moments discussed earlier, would bring the overall correlation of steady and first-harmonic feathering loads into much better agreement.

# Correlation With Load Factor

Data for typical steady-state load factor penetrations are shown in Figures 35 through 41. The data are for a 165-KEAS, 8-degree collective-blade-angle flight condition, and the load factor is obtained in a steady left-bank turn. The vehicle is configured at its normal gross weight with a forward center of gravity in contrast to an aft center of gravity for the data previously discussed.

Figure 35 presents a comparison of predicted flap moments at station 118 with measured values. Good correlation is shown, both in the absolute levels of moment and in the variation with load factor. Comparing Figures 29 and 35 at the 1 g condition, the predicted 2P flapping moments increased approximately 20 percent due to the combined effect of increased shaft moment and an increase of collective pitch from 6 degrees to 8 degrees, as would be expected. In contrast, the experimental data indicated an unexplained small reduction in the 2P flapping moments.

The chord moments at station 18 are shown in Figure 36. Comparing the steady chord moments with those on Figure 30 casts some doubt on the validity of the experimental data. The 1 g point in Figure 36 shows a steady chord moment of 27,000 inch-pounds for a collective angle of 8 degrees, whereas the data in Figure 30 for a collective angle of 6 degrees indicates a level of 50,000 inch-pounds. The higher collective should require a higher rotor torque or a more aft bending steady chord moment. This requirement is reflected in the predicted station 18 steady chordwise bending moments.

The 1P chord moment amplitude and phase correlates poorly at the high load factor. The phase of the experimental data moves from a predominant lag aft in the advancing blade position at 1 g load factor, to a lag aft in the aft quadrant at the higher load factor. The poor correlation is due to the lack of agreement on cyclic blade angle discussed earlier. The higher experiemental cyclic blade angles, particularly in the aft quadrant, are required basically to account for inflow distortions which cause IP variations in the tilt of the lift vector. Figure 41 shows that the measured cyclic blade angle is approximately 2.5 times the predicted angles for the high load factor shown. The rotor lift, of course, increases with increasing load factor. The product then of the lift and the increase in inflow angle over the aft quadrant, times an effective in-plane moment arm, causes an increase in lag aft in-plane bending moment in the aft quadrant of the rotor. This effect is not present to any large degree in the REXOR predicted lot for this condition due to the significantly lower blade cyclic trim angles obtained by the analysis. Therefore, the REXOR analysis does not indicate a shifting of the 1P in-plane moment from a predominant lag aft bending on the advancing blade to a predominant drag aft when the blade is in the aft quadrant. 87

Again, where the blade cyclic trim angles are in better agreement, as in the case of the XH-51A data presented later, the 1P chord moments, both amplitude and phase, are in much better agreement.

#### Correlation With Blade Radial Station

Figure 42 presents the steady flap and chord moments as a function of rotor station for Case 1. This case is the same for the 154-KEAS point used in presenting the correlation with forward speed. Figures 29 through 34. Shown are spanwise distribution of moments from REXOR, from the Rotor Blade Loads program and from test data. Good or excellent agreement is obtained between REXOR, and Rotor Blade Loads program, and the test data for the steady chord moment distribution. The chordwise bending moments are not heavily dependent upon the deflection of the blade. In contrast, for steady flap moments, where the moments are strongly dependent upon blade flexibility and the associated contribution of centrifugal force, the correlation between the REXOR results and the rotor loads program and test data is not as good. This is particularly true in the region of rotor station 60 to 70 where the blade built-in droop occurs. It is apparent that incorporation of a static or steady mode, or higher modes into REXOR would greatly improve its ability to predict spanwise distribution of steady flapping moments. The discrepancy is primarily due to the lack of blade deformation sufficient to relieve the steady centrifugal flapping moments, and so that trends with load factor, airspeed, etc., as has been earlier demonstrated, are valid.

Referring to Figure 43, where the forced response is much closer to the natural mode response, much better agreement in 1P flapping moments is obtained between the REXOR, test and Rotor Blade Loads program moment distributions. In fact, as indicated in Figures 43 and 44, good correlation on the spanwise distribution of moments for both the 1P and 2P components of flap and chord moments is achieved.

Figure 45 gives a comparison of the REXOR steady torsion moments versus span, and the measured data for this same flight condition. Figure 46 is a comparison of the 1P and 2P torsion moments, amplitude, and phase. In addition to the earlier discussion on feathering and torsion moments, it is evident from Figure 42 that the REXOR computed steady flapping moment is 60,000 to 70,000 inch-pounds more flap up at station 70 than computed by the Rotor Blade Loads program. Station 70 is the span location at which the blade is swept forward 4 degrees. This increment of flapping moment times the 4-degree sweep angle produces a nose-up feathering moment of approximately 4,500 inch-pounds. Correcting for this flapping moment discrepancy would result in a steady nose-down feathering moment for the case shown in Figure 45. Referring now to Figures 33, 34, 39, and 40, a nose-down correction in the feathering moment of this magnitude combined with the nose-up correction in torsion/feathering moment due to blade-up tabbing discussed earlier, would bring the overall correlation of steady torsion/feathering moments into much better agreement. Similarly, these corrections would bring the predicted 1P torsion/feathering moment

spanwise distributions into good agreement with the measured data. The assessment of any of these effects on the 2P feathering moments is much more difficult to make since they involve much higher order effects.

The foregoing discussion has attempted to be objective in its review of the correlation data presented. The areas in which good agreement was obtained were noted, and the areas in which fair or poor agreement was obtained were highlighted. An attempt was made to give the reader a comprehensive understanding of both the capabilities and limitations of the REXOR program relative to steady-state loads predictions and, also, of the various factors which influence the correlation study both from the standpoint of mathematical modeling and from interpretation of test data. It is felt that this understanding is essential before proceeding to the part of the study involving transient maneuvering loads, which is the prime reason for applying REXOR as a loads analysis tool.

# AH-56A TRANSIENT MANEUVERING CORRELATION RESULTS

Eight cases were selected for transient maneuvering correlation on the AH-56A. These cases included pullups at 114, 169 and 180 KEAS, pushovers at 123, 176 and 183 KEAS, a right roll maneuver at 161 KEAS, and a left roll maneuver at 122 KEAS.

The pullups, in order of the speeds indicated above, are given in Figures 47, 52, and 53; the pushovers, in Figures 48, 51 and 54; and the rolling maneuvers, in Figures 49 and 50. The correlation data is presented on two separate pages, an (a) and a (b) figure, for each condition or maneuver. The (a) portion of each figure presents time histories of flight condition data such as vertical acceleration, angle of attack, roll and pitch rates, and stick positions. The (b) portion of each figure presents time histories of main rotor blade loads, including feathering moment, torsion at station 131.5, chordwise and flapwise bending at station 18 and station 174, and a rotor index pip which references when the subject blade is straight aft at the zero azimuth position.

The transient maneuvers on REXOR were performed by selecting a particular flight condition parameter and attempting to fly REXOR with the cyclic stick to match the maneuver. For pullups and pushovers, the center of gravity vertical acceleration was chosen with attention also given to pitch rate and roll rate. For rolling maneuvers, roll rate was the prime parameter selected to which to fly REXOR. The initial REXOR time histories generated used measured stick motions from the flight test maneuvers. Usually it was found that some modest correction or change in stick positions was required to give reasonable duplication of the flight condition. The degree to which the AH-56A transient maneuvers were duplicated can be seen by reviewing the (a) portions of Figures 47 through 54.

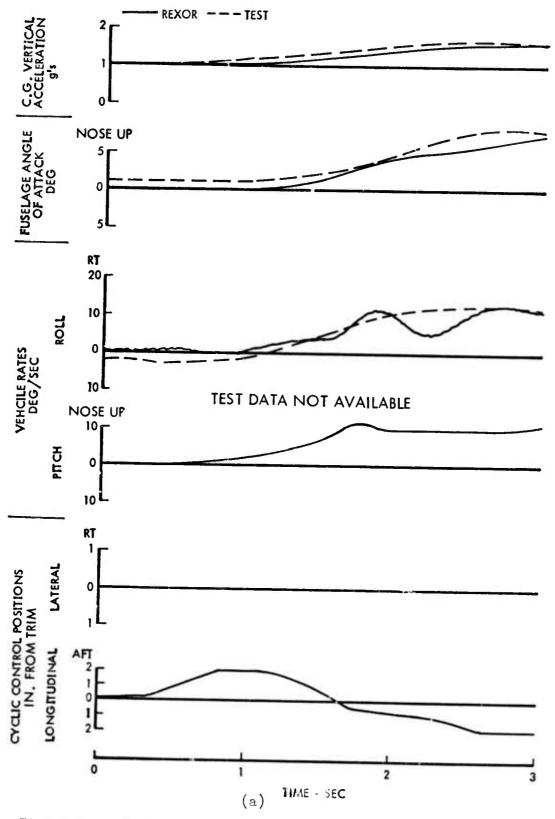
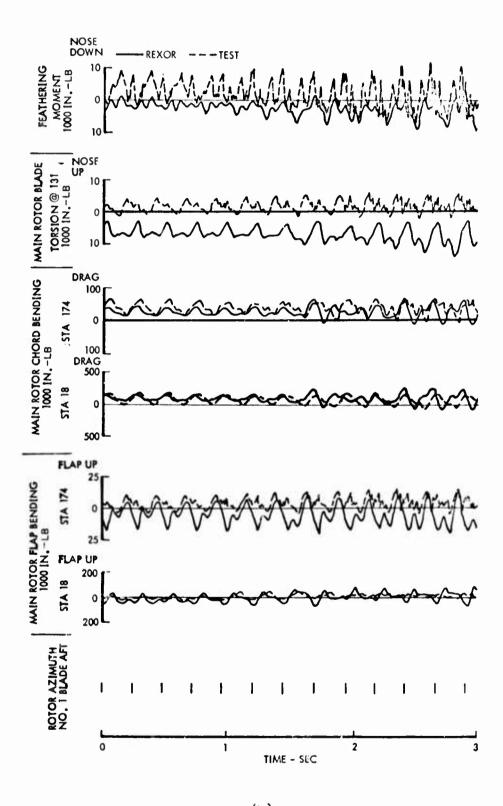




Figure 47. AH-56A Transient Maneuver, Pullup ~ Case 51.



(b) Figure 47. Continued.

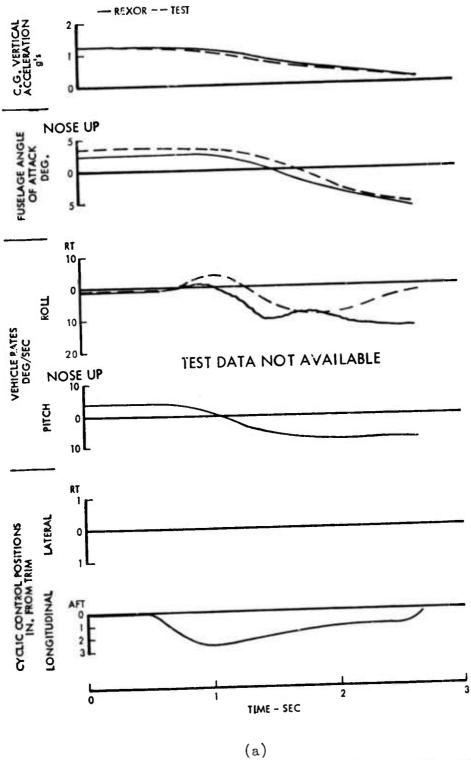



Figure 48. AH-56A Transient Manuever, Pushover ~ Case 50.

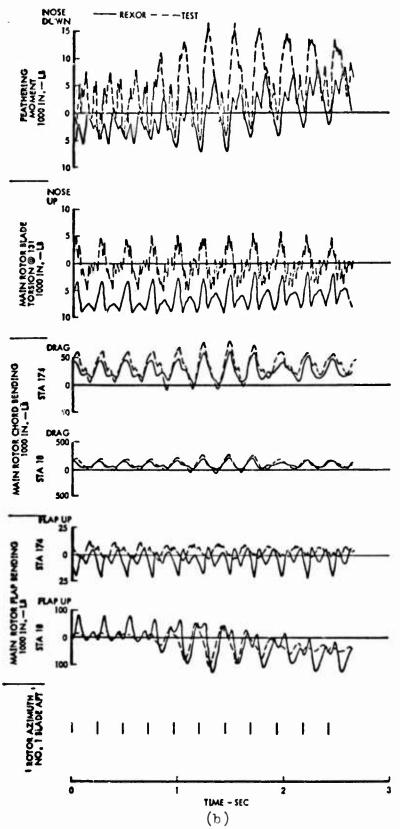



Figure 48. Continued.

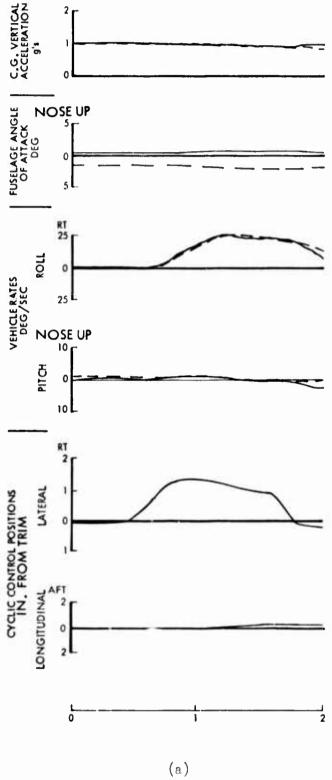
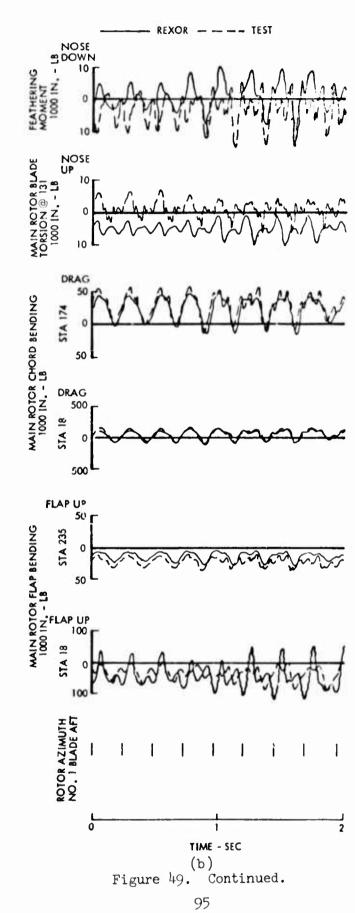
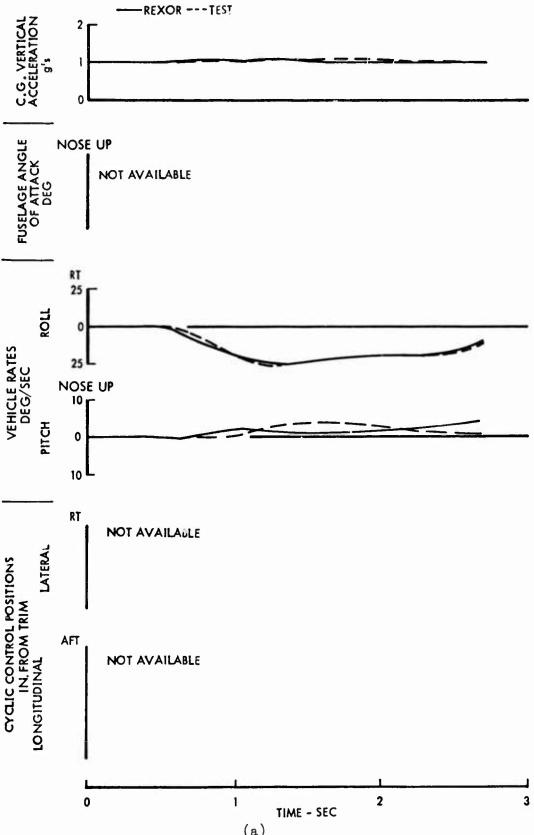





Figure 49. AH-56A Transient Manuever, Right Roll - Case 47.







(a) Figure 50. AH-56A Transient Manuever, Left Roll ~ Case 48.

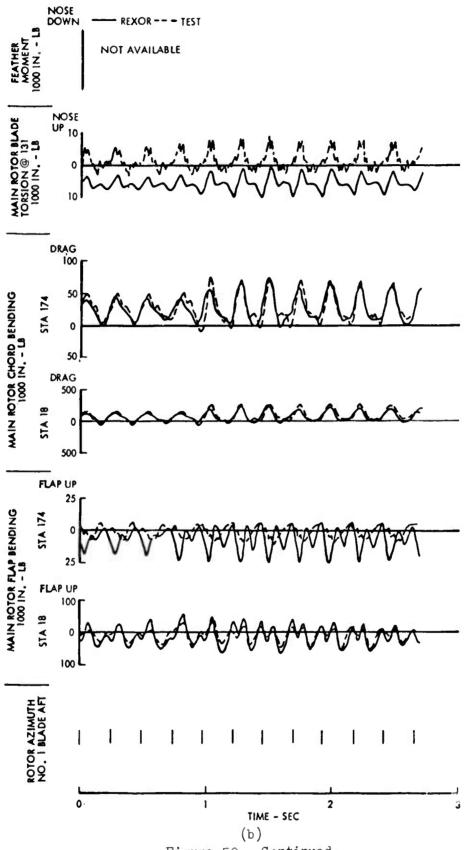



Figure 50. Continued.

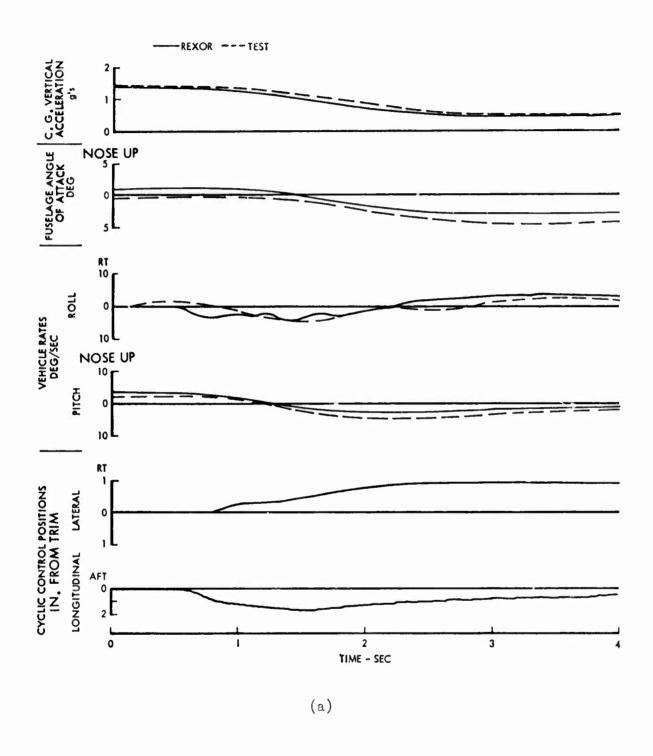



Figure 51. AH-56A Transient Manuever, Pushover - Case 49.

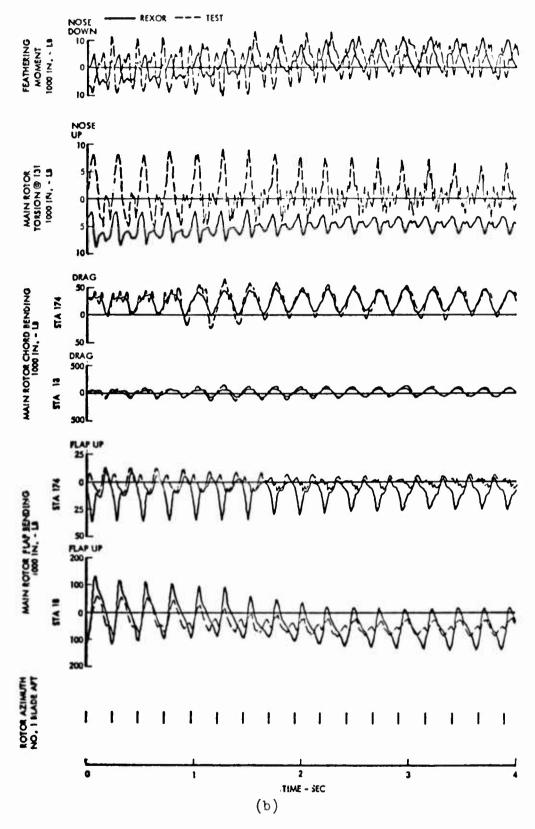



Figure 51. Continued.

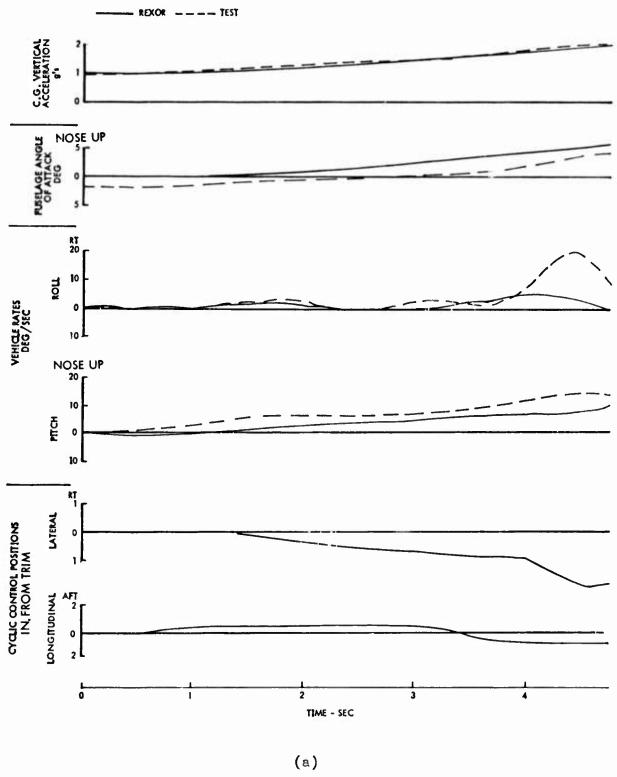



Figure 52. AH-56A Transient Manuever, Pullup - Case 50

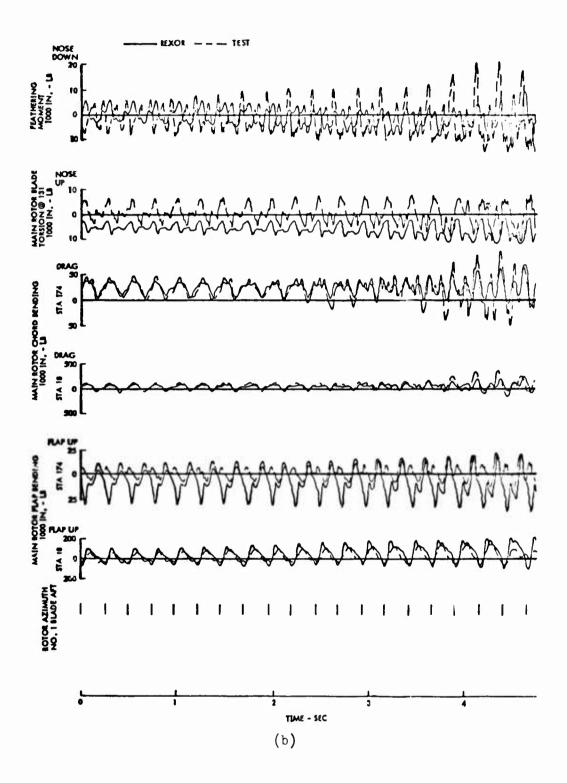



Figure 52. Continued.

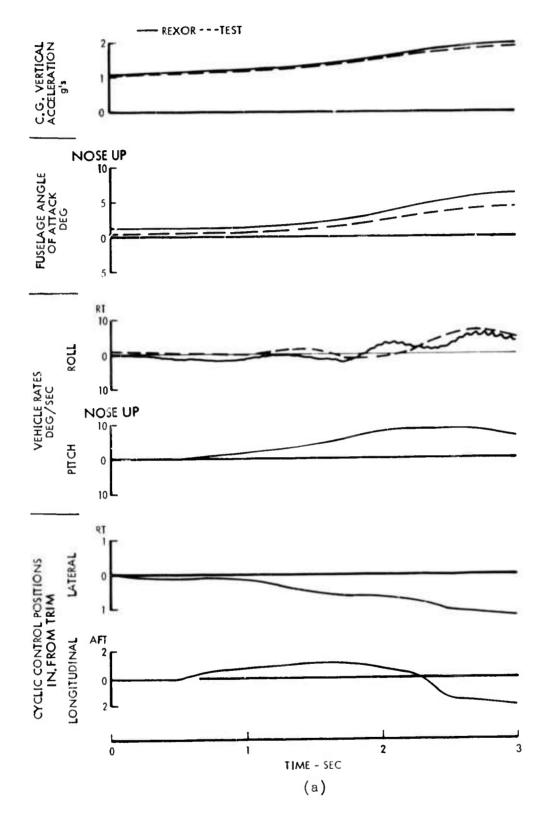



Figure 53. AH-56A Transient Manuever, Pullup Case 45.




Figure 53. Continued.

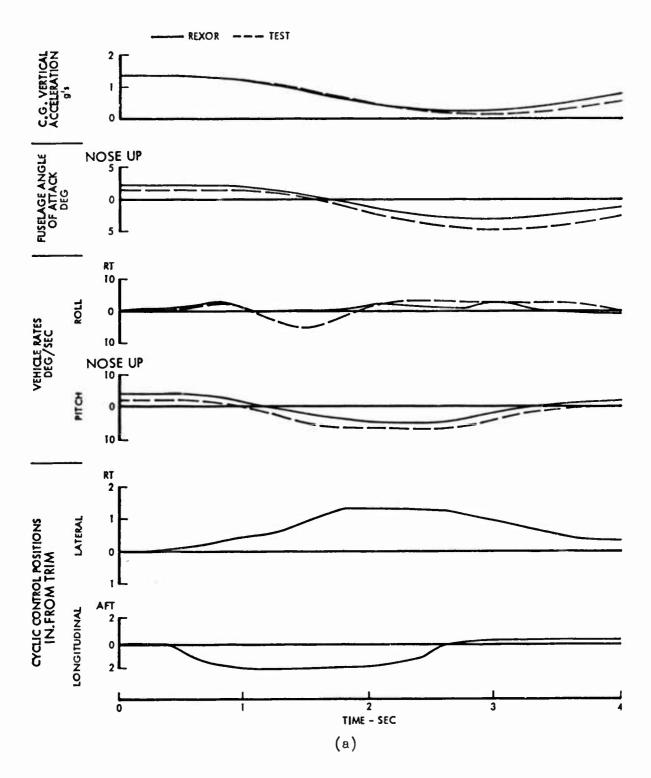



Figure 54. AH-56A Transient Manuever, Pushover - Case 46.

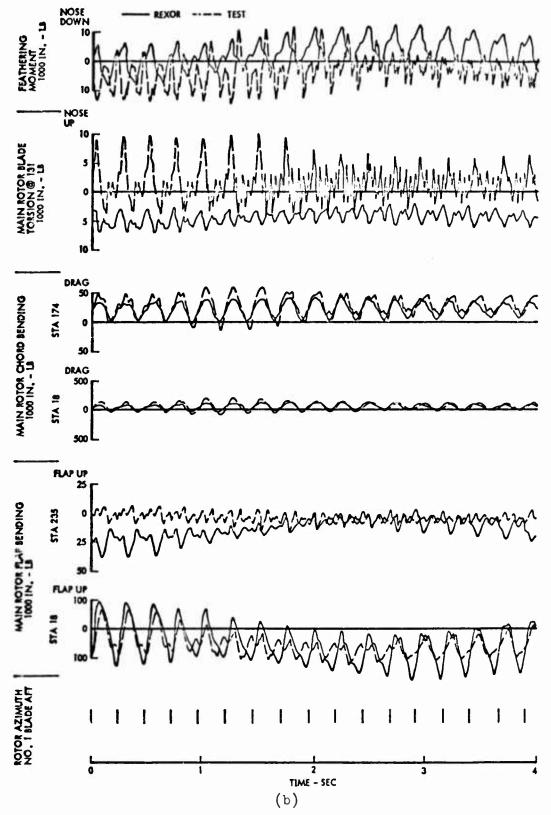



Figure 54. Continued.

In some cases, test data was not available for certain parameters or data items. A note on the respective figure indicates that the test data was not available, or another parameter may be substituted in place of the nominal parameters previously described as being selected for correlation. For blade loads, an attempt was made to show correlation of data for loads near the rotor centerline and near the midspan of the blade. The correction previously discussed on the flap moment at station 18 due to the T-T pack was applied to the steady value of this moment in the time histories shown. However, no correction was applied to the oscillatory portion of the station 18 computed time histories, which means they are approximately 9 percent too high.

# Correlation With Pullup Maneuvers

In Figures 47, 52 and 53, the three pullup maneuver conditions are shown. Figure 47 is a pullup to approximately 1.7 g at 114 KEAS; Figure 52 to approximately 1.9 g at 169 KEAS; and Figure 53 to 2 g at 180 KEAS. Referring to the (a) portion of these figures, it can be seen that fairly good duplication of the experimental flight conditions is impractical to achieve; it is to be expected that exact duplication of the corresponding rotor loads is not achieved. The (b) portions of these three figures show that excellent correlation of the REXOR computed root and midspan chordwise bending moments is achieved throughout each maneuver. Similarly, good correlation is seen with the station 18 flapwise bending moment. However, the midspan flapping moment correlation is only fair. Again this is due to the limitations imposed by inclusion of only three blade modes. The correlation on feathering moments and torsion moments is only fair at best; however, the predicted overall levels of torsion/feathering loads and their trends agree well with the measured data. It is apparent that poor 2P and higher harmonic torsion and feathering moment correlation is obtained, particularly at the load factor peaks, because dynamic stall was not accounted for in the correlation study.

In the 114 KEAS pullup in Figure 47, a roll rate oscillation occurred which was not present in the experimental time history. This resulted in the computed flap and chord moment rotor loads in some phase shifting and changing in amplitude relative to the test data. Where the predicted roll rate was in good agreement with the experimental data, as in Figures 52 and 53, excellent agreement is seen in these loads.

### Correlation With Pushover Maneuvers

The three pushover maneuver correlation cases are shown in Figures 48, 51 and 54. Figure 48 presents a pushover maneuver at 123 KEAS to 0.25 g; Figure 51 at 176 KEAS to 0.5 g; and Figure 54 at 183 KEAS to 0.2 g. These maneuvers are roller-coaster type maneuvers in that they are not initialized from 1 g level flight, but from a positive load factor or pullup condition. Again, referring to the (a) portion of these three figures, it can be seen that there is fairly good agreement between the

REXOR time history of parameters defining the maneuvers and the test response. Some deviation in roll rate is seen in the low-speed case in Figure 48 and in the high-speed case in Figure 54. However, neither of these deviations is as sharp or rapid as for the pullup case in Figure 48; therefore, less effect should be seen on the flap and chord moments. A review of the (b) portion of Figures 48, 51 and 54 shows that the correlation of chord moments is excellent, flap moments is good and torsion and feathering moments is fair. The same influences as discussed previously on feathering moments and torsion moments still hold true.

In the pushover maneuver in Figure 48, it is seen that the 1P station 18 flapping moment at the low load factor, negative angle-of-attack end of the maneuver, is more flap up over the tail than measured. The IP flapping moment at station 18 is directly proportional to the shaft moment required to balance the pitching moments coming from the body. This discrepancy in flapping moment would therefore be indicative of a more nose-down, aerodynamic pitching moment on the test vehicle body with negative angle of attack than that used in the analysis. Also, referring to Figure 52, the test shaft moment or 1P station 18 flap moment gradient with increased load factor or positive angle of attack appears to be larger than the predicted level. This would tend to indicate that the effective aerodynamic center to center of gravity relationship on the test vehicle wing body was somewhat ahead of that used in the REXOR analysis. This could come from several sources, including definition of the wing body aerodynamic characteristics, main rotor to body inflow or aerodynamic interference effects, and main rotor-propeller inflow considerations and associated flow and loading effects on the horizontal tail.

With this consideration in mind, overall good agreement is obtained in these transient pushover maneuvers between REXOR and flight data on both chord and flap moments. The predicted torsion and feathering moments show similar trends to the test data and are in agreement on general levels of loads.

#### Correlation With Rolling Transient Maneuvers

Two cases were selected for correlation of transient rolling maneuvers. The correlation data for these two cases is shown in the form of time histories in Figures 49 and 50. Figure 49 shows a right rolling maneuver to 25 degrees per second at an airspeed of 161 KEAS, and Figure 50 shows a left rolling maneuver to 25 degrees per second at 122 KEAS. Both of these maneuvers were conducted from 1 g level flight condition.

Again, referring to the (a) portion of these two figures it can be seen that good duplication of each of these two flight conditions is achieved by the computed time histories. Also, a review of the (b) portion of the figures for these two rolling maneuvers shows that correspondingly excellent correlation is achieved for the chordwise bending moments.

The correlation obtained on the flapping moments, particularly flap at station 18, is good to excellent. The flapping moment correlation for the left rolling maneuver is very good. The higher speed right rolling maneuver, however, shows a higher level of 3P flapping than measured.

Fairly good agreement in the fundamental oscillatory behavior of both the torsion and feathering moments computed by REXOR and those measured in test has been achieved. The predicted amplitudes and phases of the predominant frequency (1P) response in these moments are in very good agreement. As would be expected, due to the restricted number of modes used in the analysis, the test data shows lower amplitude, higher frequency responses which are not duplicated by the REXOR time histories.

# XH-51A STEADY-STATE CORRELATION RESULTS

Four XH-51A cases were selected for correlation with the REXOR program. These cases include four steady load factors ranging from 1.03 g to 1.69 g, all at an airspeed of 170 KEAS and at a collective setting of 3 degrees measured at the blade root. The results of these studies are presented in Figures 55 through 63.

Figures 55 and 56 show the harmonics of hub and blade flapwise moments as a function of load factor at rotor stations 6 and 115. Figures 57 and 58 present the chord moments for these conditions at stations 5 and 45, and Figure 59 presents the harmonics of feathering moment. Figure 60 presents a comparison of the corresponding trim angles for each of these load conditions. In addition to the harmonic data vs load factor, harmonics of flapping and chord moments as a function of rotor station are given in Figures 61, 62, and 63.

In general, a review of these data shows that much of the same discussion as on the AH-56A steady-state correlation is applicable here. The predicted chord moments and 1P flapping moments show good agreement with measured data. The feathering moment exhibits much the same characteristics as on the AH-56A, and the degree of correlation is similar.

One item made evident by the study, which has primary effect on the blade and hub steady flapping moments, is an apparent shortcoming in REXOR in the accounting of the energy contribution of the centrifugal loads into the blade mode generalized forces. The rotor blade on the XH-51A is sheared forward so that the 1/4 chord at the blade attachment to the cuff (station 27.85) is approximately 10 percent of the chord forward of the feathering axis. In the REXOR program, the centrifugal loads and the work done by these loads are treated independently in that they are not incorporated as equivalent generalized stiffness in the several blade modes. This was done to permit the time variation of the structural principal axes on the blade relative to the centifugal force field and thus enhance its capability in dynamic stability computations by inclusion of these periodic effects.

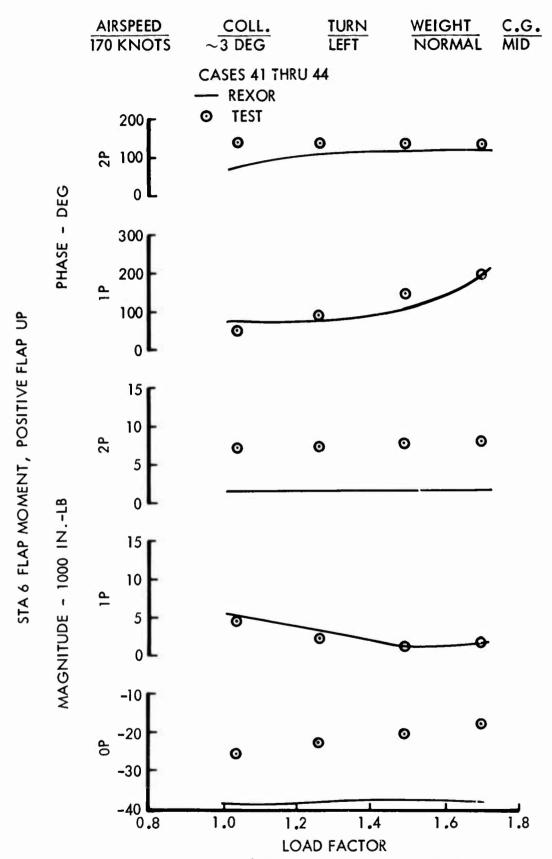



Figure 55. XH-51A Sta 6 Flap Moment vs. Load Factor.

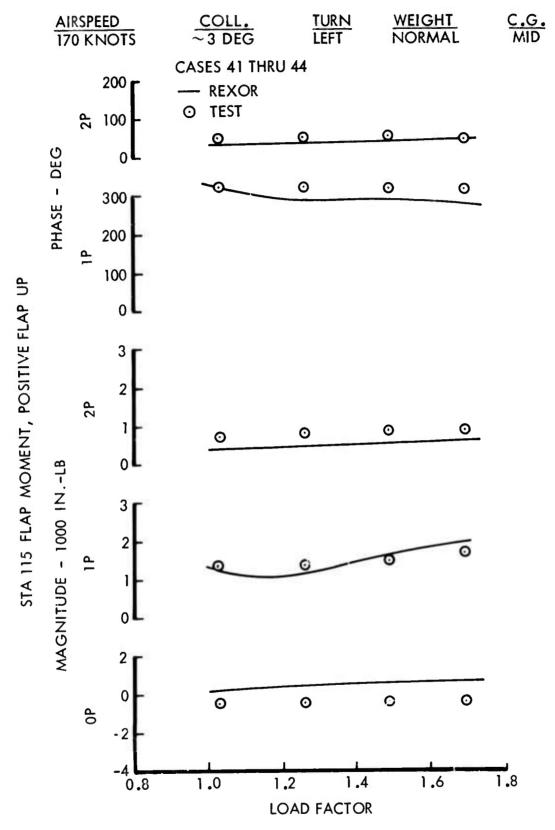



Figure 56. XH-51A Sta 115 Flap Moment vs. Load Factor.

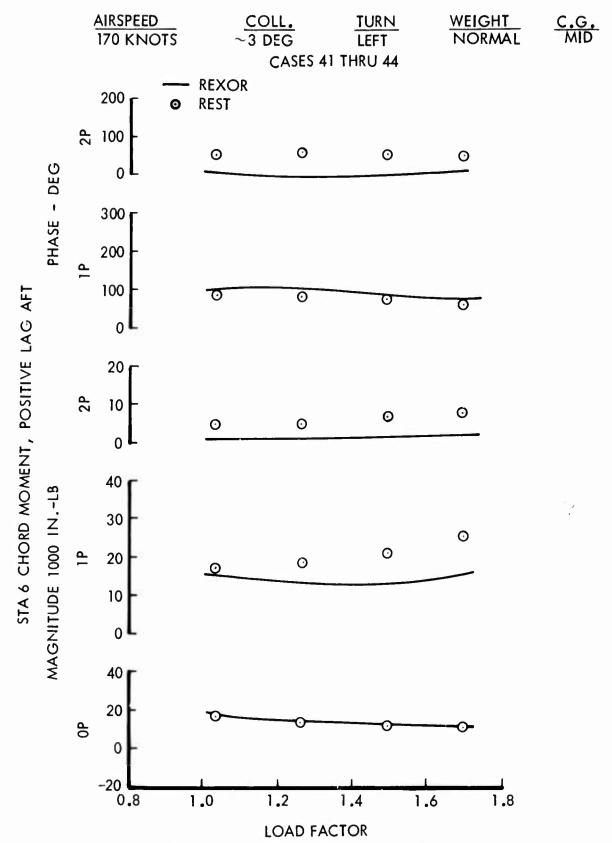



Figure 57. XH-51A Sta 6 Chord Moment vs. Load Factor.

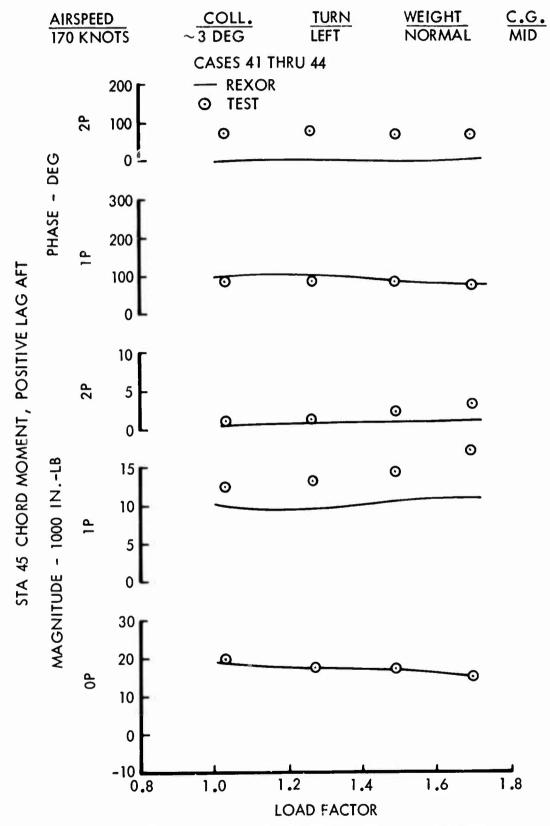



Figure 58. XH-51A Sta 45 Chord Moment vs. Load Factor.

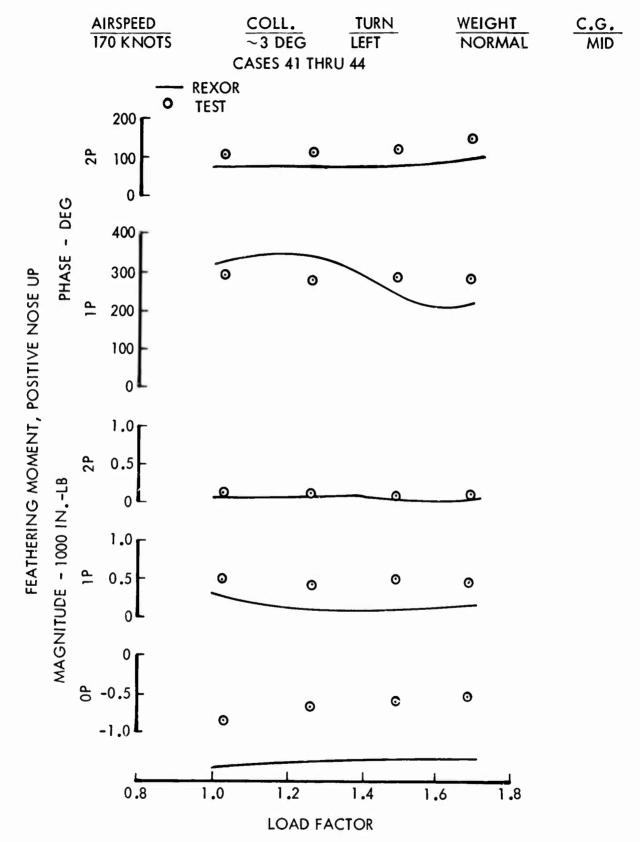



Figure 59. XH-51A Feathering Moment vs. Load Factor.

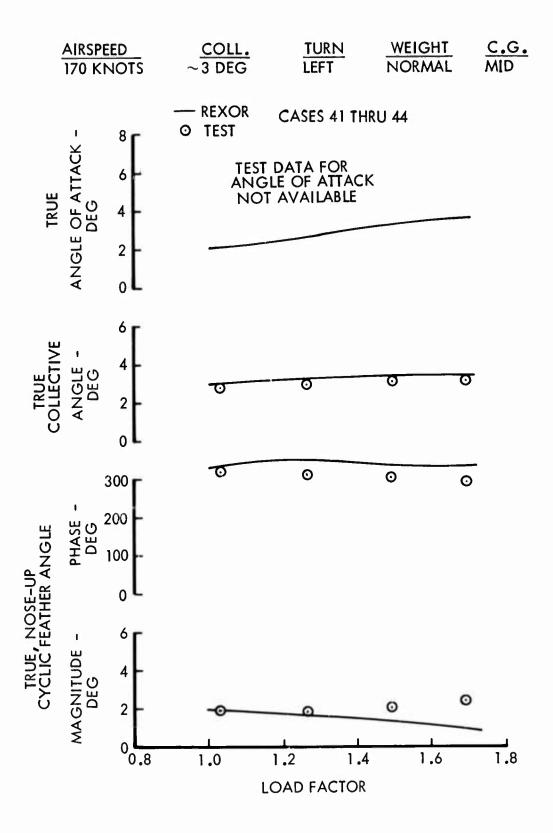



Figure 60. XH-51A Main Rotor Trim Angles vs. Load Factor.

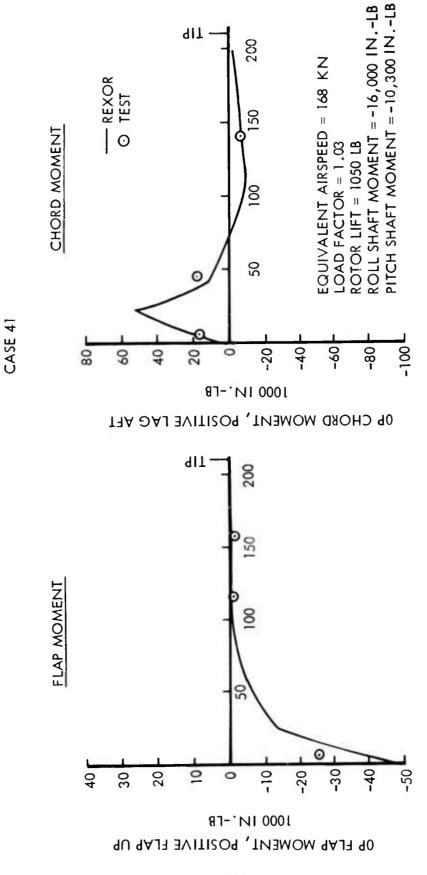



Figure 61, XH-51A OP Flap and Chord Moment vs. Blade Station.

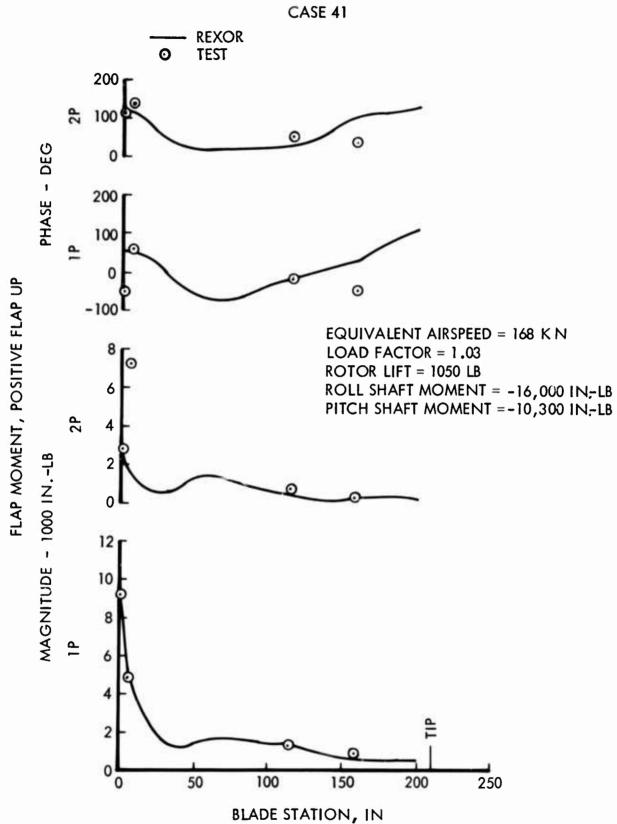



Figure 62. XH-51A 1P and 2P Flap Moment vs. Blade Station.

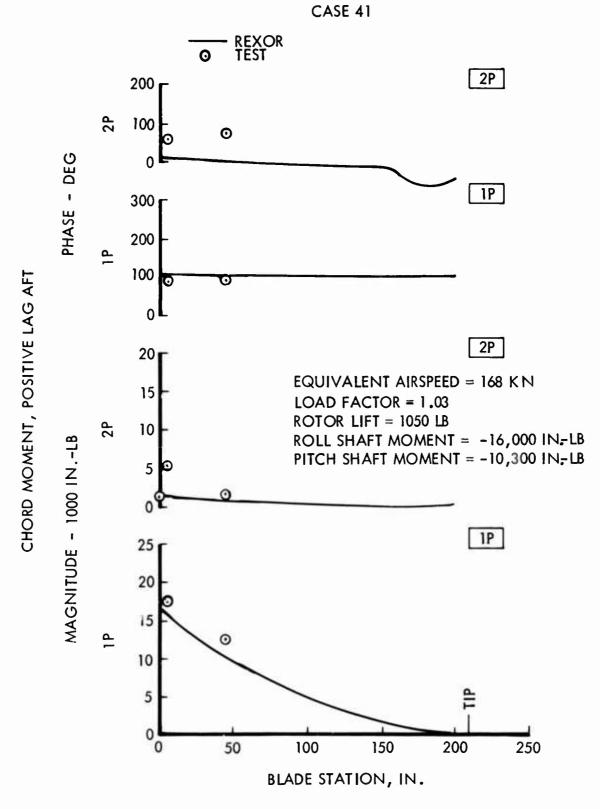



Figure 63. XH-51A 1P and 2P Chord Moment vs. Blade Station.

The shortcoming in the analysis was in the computation of the energy contribution due to the centrifugal loads. This computation requires computing the spanwise or radial motion of each blade element. The computation for this is based on the computed span motion of a reference line with a transformation then being made to the center of gravity. This reference line was originally selected as the quarter-chord which is an improper choice. The reference line should be the neutral axis of the blade. This improper choice of axes results in errors in the work done by the centrifugal force in the various modes, particularly in a system as in the XH-51A blade description where large differences can exist between the neutral axis, one-quarter chord and blade center of gravity. The correction to the program is relatively simple but was not incorporated in this correlation effort since the contract called for taking the existing REXOR program and performing the correlation. The result of this correction, however, would provide a much better determination of the steady deformed shape of the blade. Differences in the steady shape of the blade, particularly in flapping, have been noted between REXOR and the Rotor Blade Loads program which are not totally attributable to the restrictions imposed by three blade modes. This improved representation should resolve these differences to a large degree and therefore enhance the prediction of steady flapping moments by the REXOR program.

### XH-51A TRANSIENT MANEUVERING CORRELATION RESULTS

Four XH-51A transient maneuvering cases were also selected for correlation. The cases included a left rolling maneuver at 129 KEAS, a right rolling maneuver at 161 KEAS, and pullups at 139 and 162.5 KEAS. Correlation data for each of these cases are presented in Figures 64, 65, 66, and 67 respectively. The data presented is similar to that presented for the AH-56A transient maneuvers. That is, the (a) portion of each figure shows maneuver condition data, and the (b) portion of each figure presents time histories of predicted and measured blade loads. Flapping moment at station 6 was not measured during any of the experimental transient maneuvers.

Referring to the (a) portion of Figures 64 and 65, good duplication of the left and right rolling maneuvers is achieved. The predicted angle of attack in each case, however, is on an average approximately 3 degrees lower than measured. It is not clear whether this is a real difference or an error in the measured data. The (b) portion of these two figures shows that very good correlation is obtained in the levels of the fundamental responses of each of the loads compared.

It is interesting to note the predicted chord moment at station 6, for the right rolling maneuver shows very good agreement up to the peak load measured during the maneuver and then remains at a higher level than that

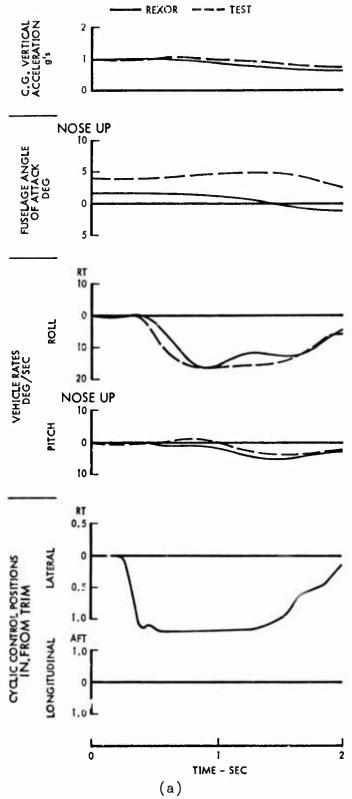



Figure 64. XH-51A Transient Manuever, Left Roll - Case 53.

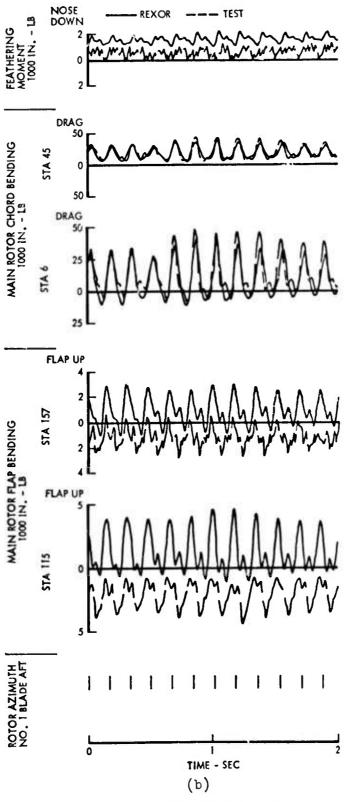



Figure 64. Continued.

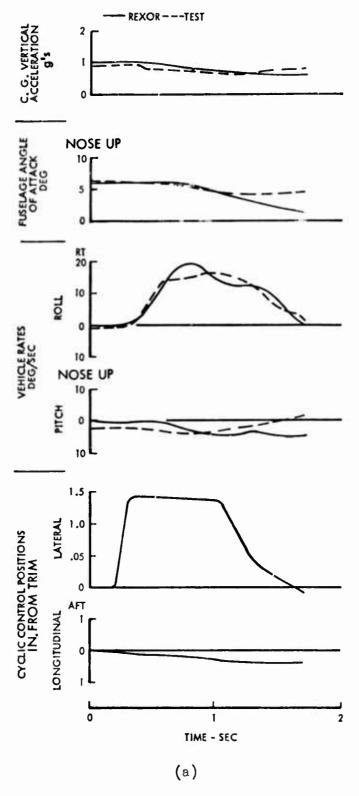



Figure 65. XH-51A Transient Manuever, Right Roll ~ Case 54.

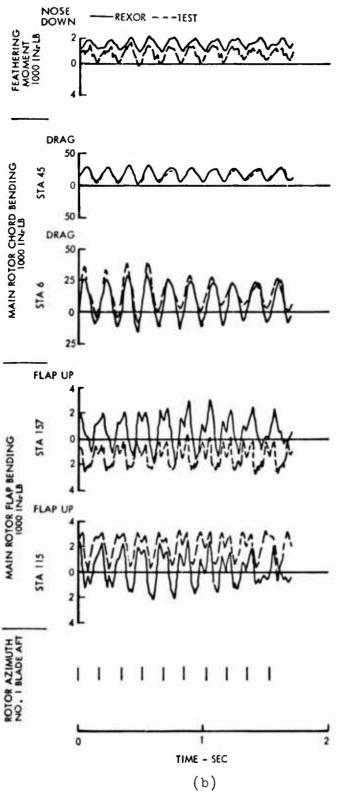



Figure 65. Continued.

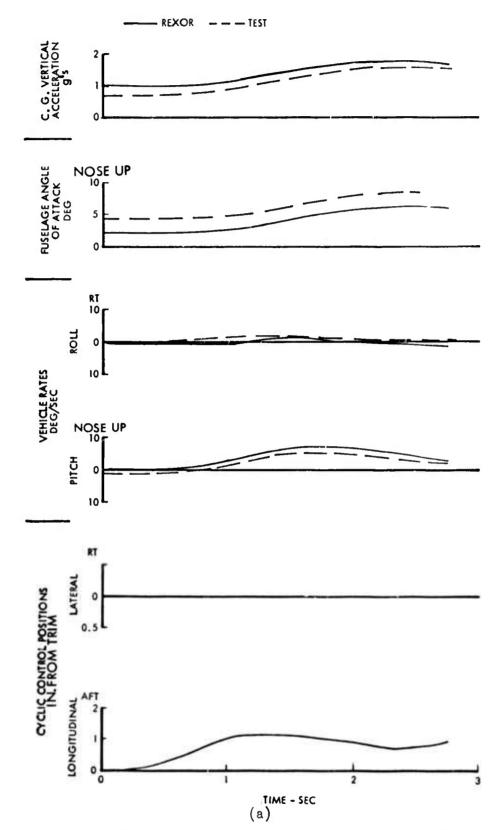
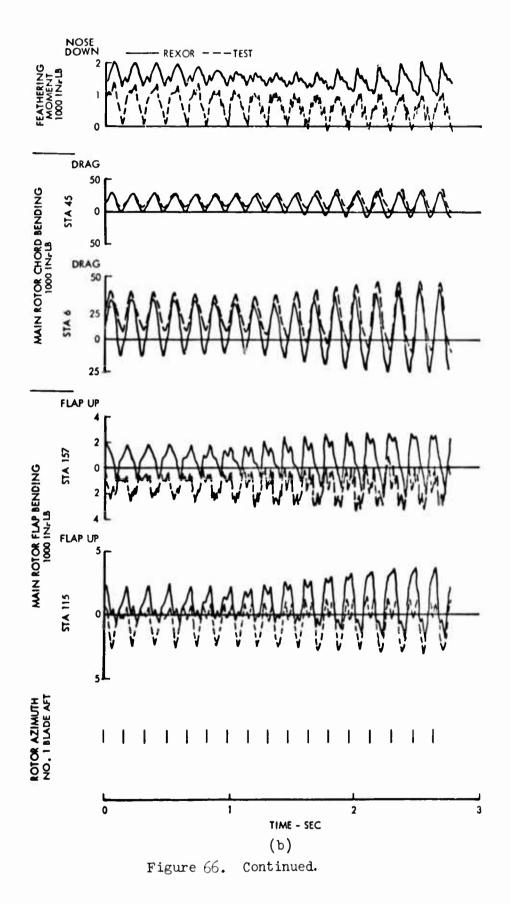




Figure 66. XH-51A Transient Maneuver, Pullup - Case 55.



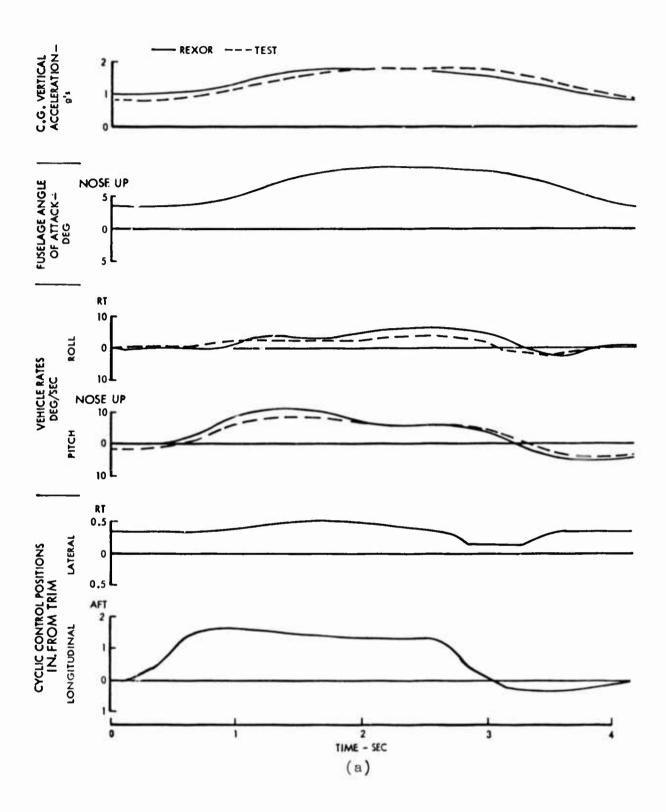
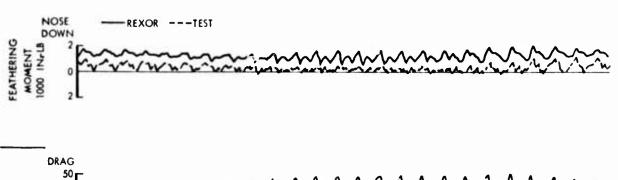
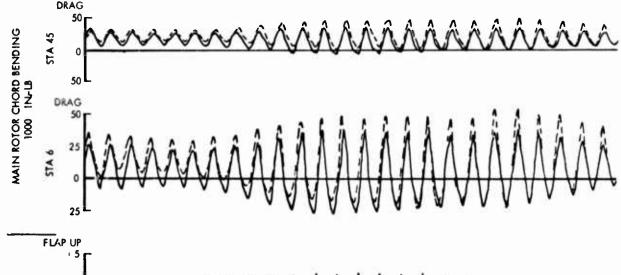
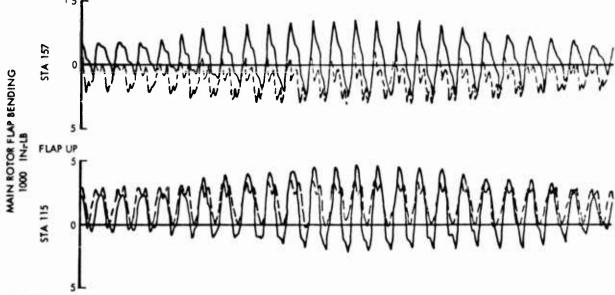
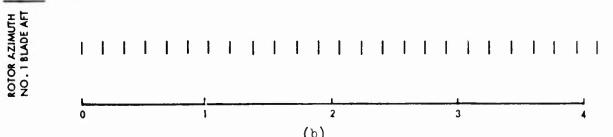







Figure 67. XH-51A Transient Maneuver, Pullup ~ Case 56.









(b)
Figure 67. Continued.

measured during the time history. The predicted chordwise bending at station 45, however, shows nearly precise duplication of the experimental result. The left rolling maneuver exhibits a similar characteristic with a less pronounced difference in the station 6 chordwise moment.

The two XH-51A pullup maneuvers are shown in Figures 66 and 67. The pilot technique for making pullup maneuvers in the XH-51A test program was to initiate the maneuver from a mild pushover. The REXOR analysis does not currently include trim capability in pushover maneuvers, so the load factors variation shows the same trends as the test data, but is not identical. As in the case of the AH-56A, correlation of chord loads is excellent and the correlation of flap loads is fair. The feathering-moment correlation is better than that on the AH-56A.

#### CONCLUSIONS

The results of the correlation effort between REXOR and AH-56A and XH-51A flight data lead to the following conclusions:

- The REXOR analysis, which has been developed as an interdisciplinary method for predicting performance, dynamic stability, and handling qualities, can also be successfully applied to predict steady-state and transient maneuver rotor loads and corresponding flight envelope limits.
- The REXOR analysis, as applied for predicting both steady-state and transient rotor loads, accounts for the full coupling of individual rotor blades to each other through the hub and control system dynamics to the fuselage.
- The study has demonstrated the capability of REXOR to simulate any specific actual flight condition, thus permitting prediction of blade loads for these conditions.
- The study has demonstrated the flexibility of the REXOR analysis in application to different helicopter configurations. In this report, successful application of the analysis has been carried out for two helicopters the AH-56A and the XH-51A.
- Results of the investigation showed excellent agreement between REXOR and flight test data for blade chordwise loads in both steady-state and transient maneuver flight. Within the limitations imposed by including only two flap bending modes, good correlation was achieved between predicted and measured flapwise bending moments.
- The feathering moment at the blade root and outboard blade torsion loads gave only fair agreement in steady-state and AH-56A transient maneuver cases. The reason for the discrepancy is discussed within the text and is partially due to difficulties in determining the proper blade trim tab setting for the analysis.
- The correlation studies revealed that the accuracy of prediction with the REXOR analysis was strongly dependent upon precise definition of the relative locations of the blade feathering axis, center of gravity axis, neutral axis, elastic axis, and hub and blade reference axes.

#### LITERATURE CITED

- 1. Kerr, A.W., Potthast, A.J., and Anderson, W.D., AN INTERDISCIPLINARY APPROACH TO INTEGRATED ROTOR/BODY MATHEMATICAL MODELING, Presented at the American Helicopter Symposium on the Status of Testing and Modeling for V/STOL Aircraft, October 1972.
- 2. Gorenberg, N.B., and Harvic, W.P., ANALYSIS OF MANEUVERABILITY EFFECTS ON ROTOR/WING DESIGN CHARACTERISTICS, Lockheed Report 24051, USAAVLABS Contract DAAJ02-70-C-0032, March 1971.
- 3. Anderson, W.D., INVESTIGATION OF REACTIONLESS MODE STABILITY CHARACTER-ISTICS OF A STIFF INPLANE HINGELESS ROTOR SYSTEM, Presented at the 29th Annual National Forum of the American Helicopter Society, May 1973.
- 4. Kobayashi, B., and McCorkle, B.R., FOURIER TRANSFORM ANALYSIS, Lockheed-California Company Report, LR 25111, March 31, 1972.
- 5. Carlson, R.M., and Kerr, A.W., INTEGRATED ROTOR/BODY LOADS PREDICTION, Presented at the AGARD Specialists Meeting on Helicopter Rotor Loads Prediction Methods, AGARD-CPP-122, March 1973.
- 6. Heyson, H.H., and Katzoff, S., INDUCED VELOCITIES NEAR A LIFTING ROTOR WITH NONUNIFORM DISK LOADING, NACA Report 1319, Langley Aeronautical Laboratory, Langley Field, Virginia, 1957.
- 7. Bisplinghoff, B., Ashley, R.L., and Halfman, R.L., AEROELASTICITY, Reading, Mass., Second Printing, November 1957, Addison-Wesley Publishing Company, Inc.
- 8. Harris, F.D., Tarzanin, F.J. Jr., and Fisher R.K. Jr., ROTOR HIGH SPEED PERFORMANCE, THEORY VS. TEST, Journal of the American Helicopter Society, Volume 15, Number 3, July 1970.
- 9. Gockel, M.A., PRACTICAL SOLUTION OF LINEAR EQUATIONS WITH PERIODIC COEFFICIENTS, Journal of the American Helicopter Society, Volume 17, Number 1, January 1972.
- 10. Bartsch, E.A., and Sweers, J.E., IN-FLIGHT MEASUREMENT AND CORRELATION WITH THEORY OF BLADE AIRLOADS AND RESPONSES ON THE XH-51A COMPOUND HELICOPTER ROTOR, USAAVLABS Technical Reports 68-22A,B, & C, May 1968, AD 674193, AD 674194, and AD 674195.
- 11. Carpenter, P.J., "Lift and Profile-Drag Characteristics of an NACA 0012 Airfoil Section as Derived from Measured Helicopter-Rotor Hovering Performance," NACA TN 4357, September 1958.

12. Tanner, W.H., "Charts for Estimating Rotary Wing Performance in Hover and at High Forward Speeds," NASA CR-114, November 1964.

#### APPENDIX I

#### FLIGHT TEST DATA

The harmonic components of the blade loads and related parameters from trimmed flight conditions are presented in tabular form in this appendix. Forty AH-56A cases and four XH-51A cases are included as shown in Table I.

The harmonic components are defined from the equation:

$$Y = AO + \sum_{J=1}^{N} AD \cos JX + \sum_{J=1}^{N} BJ \sin JX$$

or in complex notation

$$Y = AO + \sum_{J=1}^{N} CJ \cos (JX - PSIJC)$$

where Y = Y(t) is the time history being harmonically analyzed. The other symbols and abbreviations used above and in the tables are defined as:

Т	Test Number
CTR	Counter number
FLT	Flight number
TR	Oscillograph trace number
AO	Mean or zero harmonic
AJ	Cosine component of the J'th harmonic. In the tables the first number in the column is $AO$ .
BJ	Sine component of the J'th harmonic
CJ	Magnitude of the J'th harmonic
CJ MAX	CJ component having the largest value

JX Azimuth of the J'th component

PHIJC Phase Angle

PSIJC Equals PHIJC/J, the azimuth for the first maximum

The tabulated frequencies are in Hertz (cycles per second) and the phase angles are in degrees where the blade in the aft position is defined as zero azimuth. The units for other variables and their positive directions are:

Flap moments, flap up, in.-lb

Inplane moments, drag aft, in.-lb

Torsion, nose up, in.-lb

Pitch link axial load, tension, lb

Main rotor blade feather angle, nose up, deg

The pitch link loads were converted to feather moments for discussion and presentation in the body of the report. They were obtained from the pitch link loads tabulated in this appendix by multiplying the load by an effective arm using the relationships defined in Figures 68 and 69. Tension in the pitch link corresponds to a nose-down feathering moment. A static weight tare correction of 1,600 in-lb should be subtracted from the feathering moments derived from the data in this appendix. The data presented for the flap bending measurements include a static tare correction.

The feather-angle phase presented, lags the true value by 30 degrees because of the frequency response considerations previously discussed. The phase angles for all other parameters are correct as presented.

The harmonic analysis was conducted over two rotor revolutions in every case.

The rotating measurements with one exception were taken from blade No. 1. The one exception was the XH-51A fixed hub flap bending at station 6 which was taken from blade No. 2. The No. 2 blade passes the blade reference position one-quarter of a revolution or 90 degrees after the No. 1 blade. A correction of 90 degrees should be applied to these data to obtain an equivalent No. 1 blade load.

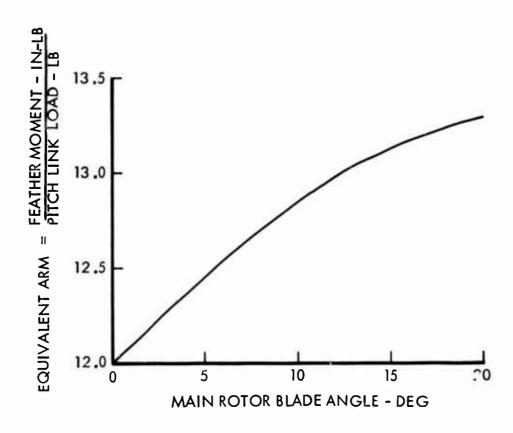



Figure 68. Conversion Factor, Pitch Link Load to Feather Moment, AH-56A ICS Fhase III Blade.

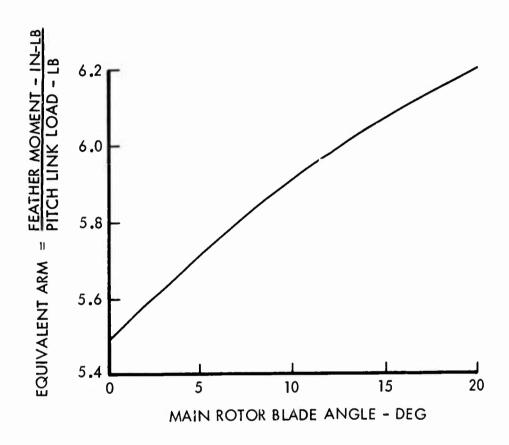



Figure 69. Conversion Factor, Pitch Link Load to Feather Moment, XH-51A Compound.

Reproduced from best available copy.

BLADE FEATHER ANGLE

MARMONIC ANALYSIS MODEL AM-SOA SHIP 1009 T 400 CTR 230 FLT 503.0 TR 31

AJ	6.3	CJ	PHIJC	PSIJC	CJ/CJMAA	J	FREWUENCY
0.55518111 01							
0. 10148916 01	-0.2344831E 01	0.383520oE 01	322.304	322.309	1.000000	1	4.048
-3.140147+1 00	-0.15241248 00	0. 2070527E 90	227.401	113.700	0.053487	4	8.147
-0.2147782E-01	-0.59021301-02	U. 2227594E-01	195.364	65.121	0.005808	3	12.295
-0. 79730156-01	-0.1010635 00	U. 14/2644E 00	227.309	56.847	0.038398	4	10.193
0.161363-6-01	0.4.3-1076-01	0.45312392-01	69.136	13.827	0.011615	5	20.492
J. 4984+116-02	0.05770046-05	0.50130416-02	7.505	1.201	0.001507	6	24.590
-0. 11753516-31	-0.859/3/46-02	U. 328 7681E-01	195.150	27.879	U.UU0578	7	28.004
-0.1471717F-01	-0-12543446-01	0-2304328E-01	212.980	26.622	0.006006	ь	32.787
10-2-141-6-01	-U.2507672E-02	0.24224891-01	354.058	34. 340	0.006316	y	36.005
-0.241+307E-02	-0.46228492-03	9. 10150016-05	188.825	18.883	0.000786	10	40.984

SHAFT MOHENT HARMUNIC ANALYSIS MODEL AM-DOA SHIP 1009 T 408 CTR 230 FLT 503.0 TH 30

4.1	ыJ	CJ	PHIJC	PSIJC	VAMED \ L J	J	FREGUENCY
-0. +afualat 04							
-), 2533500E 05	0.961+1506 05	CO 30080884.0	105.272	105.272	1.000000	ı	4.040
-).116347+2 04	-U. 143UZY1L 04	0.1644019E 34	230.063	115,431	0.014405	2	8.197
9. 187467JE US	-0.0422782E U3	U. 120250E US	285.120	95.042	0.007213	3	12.295
-J. 14483812 03	0.17116715 01	0. 18,70176 03	107.304	41.840	0.0078+8	4	16.343
0. //050505 04	0.5531570E 03	0. //25408E 04	4.106	0.321	0.071351	>	63.492
J. 1954741E 02	-U. 8546414E Us	U. 854864/E Us	271.310	45.218	C. 000560	6	24.54.)
+0 328c E 10c .C-	-0.53129536 03	J. 3/10503E 04	188.215	806.05	J. 03/215	1	20.004
-0.25100000 03	0.10021142 01	0.2978425E 03	147.459	15.432	0.002482	ь	32.787
-0. 749 st27F 0s	0.62244436 03	3.47+5UZ7E 03	140.303	15.559	·. 004756	9	30.885
-0.2454124E 03	-D. lyozoloc Us	0. 31425106 03	218.653	21.000	0.001147	10	40.764

MITCH LINK TENSION MARKETSIS MODEL AN-DOA SHIP 1009 T 408 CTH 230 FLT 503.0 TH 11

AJ	БJ	LJ	PHIJC	DLIZA	CJ/CJMAX	J	FREQUENCY
-U.135>15/E 03							
-11.2640617 US	-0. E+000ccz 02	U. 2057542E US	185.183	185.183	0.933417	i.	4.098
J. lilonile do	-0.21109.52 03	7.28.71125 03	312.145	150.072	1.000000		0.197
0.34417112 02	-0.35929122 01	7.346UZ34E 02	354.795	119.255	0.139097	3	14.295
- Jo 4646 JULE UK	-0.1301133c 04	J. 34736161 UZ	234.850	54. 102	0.296414	4	10.193
-1.531 +e47e 02	0.6(5)5662 02	J. 6520406E J2	120.036	25.121	0.257265	5	20.492
-1.1025,//E OI	0.54201606 02	U.5423254E UZ	91.929	10.322	0.1 70463	U	24.593
Journaut Or	-0.20500100 02	0.20095 JEE 02	218.057	34. 9 19	0.101490	7	20.664
0.23317-11 01	-0.11/oc U2	0.11400208 02	2/9. /81	34.9/3	J. 042000	ø	32.101
10 3cr(+5r2-0-	-0.3057.046 01	J. 4684 SUGE UI	231.357	25. 196	0.01447	4	36.885
0. Laleus/F 02	0.2404010: 01	0.16219348 02	7.557	0.750	0.064203	10	40.984

FEXED HUR FLAP AT STA 18
HARMUNIC HURLIS FUDEL AM-564 SHIP 1009 T 408 CTR 230 FLT 503.0 TH 1

A.J	υJ	L.J	PHIJC	PSIJC	CJ/CJMAX	J	FREWJENCY
-0.331537c 05							
J. 1345 / J. E. (13	1.2411643E 05	0.1411434F 02	14.640	64.040	1.003000	A	4.798
3. 1950. 115 34	-0.15597cmc 05	0.15997726 05	202.340	141.420	0.461215	4	0.171
0.2405:430 04	-U. 1021224 02	0. 4405 to 16 04	359.762	114.921	3.102215	د	12.295
- Jak 9 - 7 199 L 04	-1.11412432 03	J U/2/815 04	233.114	50.044	V444 B G . O	4	10.3 + 3
0.14571911 04	0.5/27270: 03	0.15050110 04	11.450	4.217	0.06.911	5	23.492
1.12774592 03	-0.09937/92 02	0. 140 /21 nt U J	315.000	25.638	0.002043	Ł	240 500
-0. 4004(04) 03	-0.56434545 02	0.4645848E 03	107.225	26.740	U. Ul 1.62	7	20.084
3.00005511 03	-0. >> #111 oc 03	U. 11/11c/E U4	305.530	33.171	0.040551	ь	32.101
J. c + 1 54 3 16 32	U. 4FUDICSE 02	U. YOYILAIL OZ	29.610	3.244	0.004010	4	\$4.885
3.1020190101	-0.2044061_ 03	CO Bossicics	301.504	30.150	U. 012001	10	40.904

FIXED HUB CHORD AT STA 18
HARMONIC ANALYSIS MOLEL AH-DOA SHIP 1009 T 408 CTR 230 FLT D03.0 TR 3

. AJ	ы		CJ	PHIJC	PS130	CJ/CJMAX	J	FREQUENCY
0.505+0946 05	6,5		CJ	PHIJC	7313	CJ/CJ/IAX	•	PRESCENCT
-J. 112/02/16 J5	0.1001/456	06	0.100d0oot 0	6 96.419	96. +19	1.000000	1	4.046
-0.41431236 04	0.770+1746		0.8747559E 0		59.1.15	0.086776	4	8.197
-0. JUIDS68E C4	-0.47200845		J. >601/15E 0		14.143	0.055564	3	12.295
-3.63647412 02	0.68001420		0.08915282 0		23. Hu8	0.00636	5	16.393
0.19018378 34	-0.18202421		0.1910527E 0 0.123/3/-L 0		70.707	0.018452	6	20.492 24.599
-0.13265191 04	U. 153070JE		0.13377756 0		24.772	0.013271	7	480.687
J. 274 7032E 03	-0.10791 6:		0.1701139E 0		24.904	0.016675	ь	32.787
-J. 60370/LE 03	-0. 21931/3b		0. 6571 943E 0		22. 151	0.000416	9	30.860
to inclication	-0.10404726	04	J. 1102079c 0	£66.065 ÷	25.066	0.010439	10	40. 104
BLADE FLAP AT STA		SHIP	1009 T 40#	CT0 230 51	T 503.0	TR 19		
MANAGE AMARIAN	HOUSE MIN-20M	JALLE	1007 / 400	CIK 230.F1				
_								202-0-0
AJ	23		Ca	PHIJC	PSIJC	X AMLD VLD	٤	FREGUENCY
0.7498253E C+	-0.3200c75E	0.	1.4965024E 0	4 319.40/	314.00/	1.000000	1	4.040
-3.12489101 04	0.42614046		0.4435137E 0		53.043	0.893167	4	8.197
-J. 429678>E C)	0.43719536		. 491770JE 0		50.299	0.094035	3	14.495
J. 7455342E U3	-0.2124066		1. 14444 JUE 0		86.122	0.159709	4	16.343
-0.81537211 03	U. 170714.E		. 8 34 7276E O		13.527	C. 168101	5	23.492
-C. 1497240£ 03	U. 23651605	01 0	0. 30320 Joe 0	3 148.730	21.456	0.001000	6	24.590
-0.203+5+uE U3	-0.34206702	J3 (	442000E O		32.998	U. U81408	7	28.089
J. 448717JL 03	0.91708448	04 (	1.458J52JE U	11.549	1.444	0.092245	8	32.787
-9. 9440534E Oc	-0.34000000	02 0	0.100-1002 0	1 194.825	22.203	0.020222	4	300 005
-0.4614147E 01	-0.85144855	02 (	. 8>249U7E U	2 267.100	20.717	0.017108	IU	40.984
	0.00							
BLADE FLAP AT STA								
BLADE FLAP AT:STA SIZYJANA DINLERAH		SHIP	1009 1 408	CTR 230 FL	T 503.0	TH 20		
		SHIP	1009 T 408	CTR 230 FL	.T 503.0	TH 20		
		SHIP	1009 T 408	CTR 230 FL	.T 503.0	TK 20		
		SHIP	1009 T 408	CTR 230 FL	.T 503.0	TH 20		
		SHIP	1009 T 408	CTR 230 FL	.T 503.0	TH 20	J	FREQUENCY
AJ  -J. 0340324E 04	MODEL AH-SOA		c.,	PHIJC		CJ/CJMAA	J	FREQUENCY
AJ -J. 8340324E 04 -J. 8340324E 04	MODEL AM-50A	04 0	CJ 0.4452957E 0	PHIJC 4 121.241	PS1JC 121.241	CJ/CJMAX 1.000000	1	4.098
######################################	MODEL AM-SOA 8J 0.38072645 -U.10154076	04 6	CJ 0.4452957E 0 0.1730773E U	PHIJC 4 121,241 4 2/1,068	PSIJC 121.241 145.834	CJ/CJMAA 1.000000 0.390476	1 2	4.098 8.197
AJ  -U. 8340324E 04  -0. 2307457E 04  U. 0620115E U3  -U. 2281460E U4	MODEL AM-SOA  8J  0.38072645 -0.10159076 -0.10020195	04 0	CJ 0.4452957E	PHIJC 4 121,241 4 271,668 4 204,861	PSIJC 121.241 145.834 68.237	CJ/CJMAA 1.00000 0.390476 0.567282	1 2 3	4.098 8.197 12.295
AJ  -J. 8340324E 04  -J. 2307455E 04  J. 2421966 04  J. 2782445	#00EL AH-50A #03 0.38072645 -0.16154076 -0.10220152 0.77510692	04 0 04 0 04 0 02 0	CJ 0.4452957E 0 0.1736773E U 0.252001E 0 0.3du1e55E 0	PHIJC 4 121.241 4 2/1.008 4 2/14.801 3 11.639	PSIJC 121.241 145.834 68.237 2.910	CJ/CJMAA 1.000000 0.390476 0.567282 0.086726	1 2 3 4	4.098 8.197 12.295 16.393
AJ  -J. 8340324E 04  -J. 8340324E 04  -J. 2307455E 04  J. 6620115E J4  -U. 229146E 04  J. 3782444E 03	#00'EL AH-SoA #00'EL AH-SoA #00'E AH-SoA #00'E AH-SoA #00'E AH-SoA #00'EL AH-SoA #00'EL AH-SoA #00'EL AH-SoA #00'EL AH-SoA	04 0 04 0 04 0 02 0	CJ 0.4452957E	PHIJC 4 121.241 4 2/1.008 4 204.801 3 11.039 3 2/2.734	PSIJC 121.241 145.834 68.237 2.910 40.547	CJ/CJMAX 1.00000 0.390476 0.56728 0.066726 0.111486	1 2 3 4 5	4.098 8.197 12.295 16.393 20.492
AJ  -0.0340324E 04  -0.230445.E 04  0.0620115E 03  -0.240146E 04  0.3782447E 03  -0.4710447E 03  -0.4020127E 03	#UVEL AH-SOA  #U  0.38072645 -0.10154076 -0.10220195 0.7710045 -0.19136726 -0.24230905	04 0 04 0 04 0 02 0 03 0 03 0	CJ 0.4452957E 0 0.1730773E U 0.2520081E 0 0.3401255E 0 0.446446E 0	PHIJC 4 121.241 4 2/1.668 4 2/1.668 3 11.659 3 2/1.273 3 124.902	PSIJC 121.241 145.834 68.237 2.910 40.547 21.650	CJ/CJMAA 1.000000 0.390476 0.567282 0.086728 0.111486 0.070932	1 2 3 4 5 6	4.098 8.197 12.295 16.393 20.492 24.590
AJ  -0.836324E 04  -0.2307452E 04  0.6620115E 03  -0.2291460E 04  0.3782447 03  -0.477224E 03  -0.499236E 03	#UVEL AH-SOA  #U  0.3807264E -0.1015407E -0.1022019E 0.77510042 -0.19130726 0.2423090E -0.3418165E	04 0 04 0 02 0 03 0 03 0	CJ 0.4452957E 0 0.1730773E U 0.2526081E 0 0.3401859E 0 0.4764440E 0 0.31585042 0 0.25972736E 0	PHIJC 4 121.241 4 2/1.668 4 2/4.861 3 11.659 3 2/2.736 3 124.902 3 359.925	PSIJC 121.241 145.834 68.237 2.910 40.547 21.650 51.418	CJ/CJMAA  1.000000 0.390476 0.567282 0.026726 0.111486 0.070932 0.067354	1 2 3 4 5 6 7	4.098 8.197 14.295 16.393 20.492 24.590 28.689
AJ  -J. 8340324E 04  -J. 2307457E 04  J. 2407457E 04  J. 2407457E 04  J. 3782447E 03  -J. 477647E 03  -J. 477647E 03  -J. 477647E 03  -J. 47747E 03	#UVEL AH->0A 0.38072645 -0.10154076 -0.10220195 0.77510042 -0.191.06726 0.24230905 -0.34151655 0.21033936	04 0 04 0 04 0 02 0 03 0 03 0 00 0	CJ 0.4452957E 0 0.1730773E U 0.252001E 0 0.400455E 0 0.4164446E 0 0.41585040 0 0.2579236E 0	PHIJC 4 121-241 4 2/1-668 4 2/1-668 4 2/1-669 3 11-639 3 2/2-736 3 129-902 3 359-925 3 02-328	PSIJC 121.241 145.834 68.237 2.910 40.547 21.650 51.418 7.791	CJ/CJMAA  1.000000 0.390476 0.567282 0.086726 0.111486 0.070932 0.0167354 0.053336	1 2 3 4 5 6 7 8	4.098 8.197 14.295 16.393 27.492 24.590 26.689 32.767
AJ  -J. 8340324E 04  -J. 8340324E 04  -J. 2307455E 04  -J. 240146E 04  -J. 782494E 03  -J. 776494E 03  -J. 777646 03  -J. 7776 03  -J. 6914935E 02	#00EL AH-SoA  #0.38072645 -0.16154076 -0.1020191 0.7710042 -0.1913676 0.24230900 -0.34181650 0.21033936 0.49314335	04 0 04 0 02 0 03 0 03 0 00 0 00 0	CJ 0.4452957E 0 0.1730773E U 0.2526081E 0 0.446460E 0 0.41585042 0 0.41585042 0 0.42674236E 0 0.2477421E U	PHIJC 4 121.241 4 2/1.008 4 2/4.801 3 11.039 3 2/2.730 3 127.902 3 354.825 3 62.328 2 144.525	PSIJC 121.241 145.834 68.237 2.910 40.547 21.650 51.418 7.791 16.058	CJ/CJMAX  1.000000 0.390476 0.567282 0.011486 0.070932 0.015334 0.019082	1 2 3 4 5 6 7 8 9	4.098 8.197 12.295 16.393 20.492 24.590 20.409 32.787 30.885
AJ  -J. 8340324E 04  -J. 2307457E 04  J. 2407457E 04  J. 2407457E 04  J. 3782447E 03  -J. 477647E 03  -J. 477647E 03  -J. 477647E 03  -J. 47747E 03	#UVEL AH->0A 0.38072645 -0.10154076 -0.10220195 0.77510042 -0.191.06726 0.24230905 -0.34151655 0.21033936	04 0 04 0 02 0 03 0 03 0 00 0 00 0	CJ 0.4452957E 0 0.1730773E U 0.252001E 0 0.400455E 0 0.4164446E 0 0.41585040 0 0.2579236E 0	PHIJC 4 121.241 4 2/1.008 4 2/4.801 3 11.039 3 2/2.730 3 127.902 3 354.825 3 62.328 2 144.525	PSIJC 121.241 145.834 68.237 2.910 40.547 21.650 51.418 7.791	CJ/CJMAA  1.000000 0.390476 0.567282 0.086726 0.111486 0.070932 0.0167354 0.053336	1 2 3 4 5 6 7 8	4.098 8.197 14.295 16.393 27.492 24.590 26.689 32.767
AJ  -J. 8340324E 04  -J. 8340324E 04  -J. 2307455E 04  -J. 240146E 04  -J. 782494E 03  -J. 776494E 03  -J. 777646 03  -J. 7776 03  -J. 6914935E 02	#00EL AH-SoA  #0.38072645 -0.16154076 -0.1020191 0.7710042 -0.1913676 0.24230900 -0.34181650 0.21033936 0.49314335	04 0 04 0 02 0 03 0 03 0 00 0 00 0	CJ 0.4452957E 0 0.1730773E U 0.2526081E 0 0.446460E 0 0.41585042 0 0.41585042 0 0.42674236E 0 0.2477421E U	PHIJC 4 121.241 4 2/1.008 4 2/4.801 3 11.039 3 2/2.730 3 127.902 3 354.825 3 62.328 2 144.525	PSIJC 121.241 145.834 68.237 2.910 40.547 21.650 51.418 7.791 16.058	CJ/CJMAX  1.000000 0.390476 0.567282 0.011486 0.070932 0.015334 0.019082	1 2 3 4 5 6 7 8 9	4.098 8.197 12.295 16.393 20.492 24.590 20.409 32.787 30.885
AJ  -J. 8340324E 04  -J. 8340324E 04  -J. 2307455E 04  -J. 240146E 04  -J. 782494E 03  -J. 776494E 03  -J. 777646 03  -J. 7776 03  -J. 6914935E 02	0.38072645 -0.10159076 -0.10220195 0.77510092 -0.19136726 0.24230905 -0.39181655 0.21033936 0.49314335 -0.1007000c	04 0 04 0 02 0 03 0 03 0 00 0 00 0	CJ 0.4452957E 0 0.1730773E U 0.2526081E 0 0.446460E 0 0.41585042 0 0.41585042 0 0.42674236E 0 0.2477421E U	PHIJC 4 121.241 4 2/1.008 4 2/4.801 3 11.039 3 2/2.730 3 127.902 3 354.825 3 62.328 2 144.525	PSIJC 121.241 145.834 68.237 2.910 40.547 21.650 51.418 7.791 16.058	CJ/CJMAX  1.000000 0.390476 0.567282 0.011486 0.070932 0.015334 0.019082	1 2 3 4 5 6 7 8 9	4.098 8.197 12.295 16.393 20.492 24.590 20.409 32.787 30.885
AJ -J. 8340324E 04 -J. 2307452E 04 J. 620115E 13 -U. 221460E 04 J. 3782447E 03 -J. 477049E 03 0. 494236E 03 0. 494236E 03 -0. 6914432E 03	#UVEL AH->oA  #U  0.38072645 -0.16154076 -0.10020195 0.77510042 -0.1913676 0.24230900 -0.34181656 0.21033936 0.49314336 -0.100700000	04 0 04 0 02 0 03 0 03 0 00 0 00 0	CJ 0.4452957E 0 0.1730773E U 0.2526081E 0 0.3401E95E 0 0.446446E 0 0.446446E 0 0.2479423E 0 0.2479423E 0 0.4477321E 0 0.4477321E 0	PHIJC 4 121.241 4 2/1.008 4 204.801 3 11.059 3 202.736 3 124.902 3 354.925 3 62.328 2 144.525 3 11.195	PSIJC 121.241 145.834 68.237 2.910 40.547 21.650 51.418 7.791 16.058 31.120	CJ/CJMAX  1.000000 0.390476 0.567282 0.011486 0.070932 0.015334 0.019082	1 2 3 4 5 6 7 8 9	4.098 8.197 12.295 16.393 20.492 24.590 20.409 32.787 30.885
AJ -J. 8340324E 04 -J. 2307455E 04 J. 620115E J7 -U. 229146UE J7 -U. 229146UE J7 -J. 782447E 03 -J. 476647E 03	#UVEL AH->oA  #U  0.38072645 -0.16154076 -0.10020195 0.77510042 -0.1913676 0.24230900 -0.34181656 0.21033936 0.49314336 -0.100700000	04 0 04 0 02 0 03 0 03 0 03 0 03 0 03 0	CJ 0.4452957E 0 0.1730773E U 0.2526081E 0 0.3401E95E 0 0.446446E 0 0.446446E 0 0.2479423E 0 0.2479423E 0 0.4477321E 0 0.4477321E 0	PHIJC 4 121.241 4 2/1.008 4 204.801 3 11.059 3 202.736 3 124.902 3 354.925 3 62.328 2 144.525 3 11.195	PSIJC 121.241 145.834 68.237 2.910 40.547 21.650 51.418 7.791 16.058 31.120	CJ/CJMAX 1.000000 0.390476 0.56728 0.0 Eu.726 0.111486 0.0 /0432 0.043334 0.019082 0.04/960	1 2 3 4 5 6 7 8 9	4.098 8.197 12.295 16.393 20.492 24.590 20.409 32.787 30.885
AJ -J. 8340324E 04 -J. 2307455E 04 J. 620115E J7 -U. 229146UE J7 -U. 229146UE J7 -J. 782447E 03 -J. 476647E 03	#UVEL AH->oA  #U  0.38072645 -0.16154076 -0.10020195 0.77510042 -0.1913676 0.24230900 -0.34181656 0.21033936 0.49314336 -0.100700000	04 0 04 0 02 0 03 0 03 0 03 0 03 0 03 0	CJ 0.4452957E 0 0.1730773E U 0.2526081E 0 0.3401E95E 0 0.446446E 0 0.446446E 0 0.2479423E 0 0.2479423E 0 0.4477321E 0 0.4477321E 0	PHIJC 4 121.241 4 2/1.008 4 204.801 3 11.059 3 202.736 3 124.902 3 354.925 3 62.328 2 144.525 3 11.195	PSIJC 121.241 145.834 68.237 2.910 40.547 21.650 51.418 7.791 16.058 31.120	CJ/CJMAX 1.000000 0.390476 0.56728 0.0 Eu.726 0.111486 0.0 /0432 0.043334 0.019082 0.04/960	1 2 3 4 5 6 7 8 9	4.098 8.197 12.295 16.393 20.492 24.590 20.409 32.787 30.885
AJ -J. 8340324E 04 -J. 2307455E 04 J. 620115E J7 -U. 229146UE J7 -U. 229146UE J7 -J. 782447E 03 -J. 476647E 03	#UVEL AH->oA  #U  0.38072645 -0.16154076 -0.10020195 0.77510042 -0.1913676 0.24230900 -0.34181656 0.21033936 0.49314336 -0.100700000	04 0 04 0 02 0 03 0 03 0 03 0 03 0 03 0	CJ 0.4452957E 0 0.1730773E U 0.2526081E 0 0.3401E95E 0 0.446446E 0 0.446446E 0 0.2479423E 0 0.2479423E 0 0.4477321E 0 0.4477321E 0	PHIJC 4 121.241 4 2/1.008 4 204.801 3 11.059 3 202.736 3 124.902 3 354.925 3 62.328 2 144.525 3 11.195	PSIJC 121.241 145.834 68.237 2.910 40.547 21.650 51.418 7.791 16.058 31.120	CJ/CJMAX 1.000000 0.390476 0.56728 0.0 Eu.726 0.111486 0.0 /0432 0.043334 0.019082 0.04/960	1 2 3 4 5 6 7 8 9	4.098 8.197 12.295 16.393 20.492 24.590 20.689 32.787 30.885
AJ  -J. 8340324E 04  -J. 8340324E 04  -J. 2307455E 04  J. 0620115E J3  -J. 221746E J4  J. 378244F 03  -J. 476644E 03  -J. 476645E 03  -J. 476645E 03  -J. 476656 03  BLADE FIAP AT STA  HARMUNIC AMALYSIS	#UUEL AH->OA  0.38072645 -0.16154076 -0.10220195 0.77510042 -0.19136726 0.24230900 -0.24230900 -0.24314335 0.49314335 -0.100700000	04 0 04 0 02 0 03 0 03 0 03 0 03 0 03 0	CJ 0.4452957E 0 0.1730773E U 0.2526081E 0 0.3401259E 0 0.446446E 0 0.31585042 0 0.2579423E 0 0.2573452E U 0.2135043c 0	PHIJC 4 121.241 4 2/1.008 4 204.801 3 11.039 3 202.736 3 124.902 3 354.925 3 62.328 2 144.525 3 311.195  CTR 230 FL	PSIJC 121.241 145.834 68.237 2.910 40.547 21.650 51.418 7.791 16.058 31.120	CJ/CJMAX  1.000000 0.390476 0.567282 0.086726 0.111486 0.070932 0.08673330 0.019082 0.047960	1 2 3 4 5 0 7 8 9 10	4.098 8.197 12.295 16.393 21.492 24.590 26.689 32.787 36.885 43.984
AJ  -J. 8340324E 04  -J. 2307455E 04  J. 620115E J3  -U. 2291486E J4  J. 378244F 03  -J. 477644F 03  -J. 477647E 03  -J. 47764 03  -J. 11J. 478 03  -0. 6914435E 03  BLADE FIAP AT STA  HARMUNIC AHALYSIS	#UVEL AH-SOA  #U  0.38072645 -0.16154076 -0.1020195 0.77310042 -0.1913676 0.24230906 -0.34131656 0.24230906 0.21033936 -0.34131656 0.21033936 -0.10070006	04 0 04 0 04 0 02 0 03 0 03 0 03 0 SHIP	CJ 0.4452957E 0 0.1730773E U 0.2520081E 0 0.3401255E 0 0.341255E 0 0.31585042 0 0.2577043E 0 0.2577043E 0 0.2575043E 0 0.2575043E 0 0.2575043E 0 0.2575043E 0	PHIJC  121.241 241.068 204.801 311.039 3202.730 3129.902 3359.925 302.328 2144.525 3311.195  CTR 230 FL  PHIJC 114.589	PSIJC  121.241 145.834 68.237 2.910 40.547 21.650 51.418 7.791 10.058 31.120  T 503.0 1	CJ/CJMAX  1.000000 0.340476 0.567282 0.011486 0.010932 0.047354 0.053334 0.053334 0.014082 0.044760	1 2 3 4 5 6 7 8 9 10	4.098 8.197 14.295 16.393 21.492 24.590 26.685 32.787 30.885 40.904
AJ  -J. #34#32#E 04  -J. #34#52#E 04  -J. #35#452#E 04  -J. #35#452#E 04  -J. #35#452#E 04  -J. #35#452#E 03  -J. #37#24#F 03  -J. #37#24#E 03  -J. #37#24#E 03  -J. #37#24#E 03  -J. #37#24#E 03  BLADE FIAP AT STA  HARMUNIC AHALYSIS  -J. #32#104#E 03  -J. #32#104#E 03	######################################	04 00 04 00 03 00 03 00 03 00 04 00 03 00	CJ 0.4452957E 0 0.1730773E U 0.2520001E 0 0.3401055E 0 0.475440E 0 0.4757236E 0 0.257373043E 0	PHIJC 4 121.241 4 241.668 4 204.861 3 11.659 3 202.730 3 129.902 3 359.925 3 02.328 2 144.525 3 311.195  CTR 230 FL  PHIJC 4 114.589 4 116.140	PSIJC  121.241 145.834 68.237 2.910 40.547 21.650 51.418 7.791 16.058 31.120  PSIJC  114.589 58.090	CJ/CJMAX  1.000000 0.390476 0.567282 0.0020720 0.111486 0.070932 0.019082 0.019082 0.049080  IR 4  CJ/CJMAX  0.530341 0.040446	1 2 3 4 5 0 7 8 9 10	4.098 8.197 14.295 16.3 43 20.492 24.540 20.689 32.787 30.885 43.994
AJ  -J. 8340324E 04  -J. 2307452E 04  J. 620115E J3  -U. 221746E U4  J. 78244E 03  -U. 221746E U3  -U. 22126E U3  0. 1494236E 03  0. 1494236E 03  0. 1494236E 03  0. 140U293E 03  BLADE FIAP AT STA  HARMUNIC AHALYSIS  AJ  -0. 4221063E 04  -0. 6017347E 03  -3. 5212045E 04  -0. 6017347E 03  -3. 5212045E 04  -0. 6017347E 03  -3. 5212045E 04	### ### ### ### ### ### ### ### ### ##	04 00 00 00 00 00 00 00 00 00 00 00 00 0	CJ 0.4452957E 0 0.1730773E U 0.2526081E 0 0.3401855E 0 0.4764446E 0 0.4757236E 0 0.2757236E 0 0.2757256E 0 0.	PHIJC 4 121.241 4 2/1.668 4 2/1.668 4 2/1.668 3 11.659 3 2/1.273 3 124.902 3 359.925 3 02.328 2 144.525 3 311.195  CTR 239 FL  PHIJC 4 114.589 1 14.180 6 200.446	PSIJC  121.241 145.834 68.237 2.910 40.547 21.650 51.418 7.791 10.058 31.120  PSIJC  114.589 58.090 66.815	CJ/CJMAX  1.000000 0.340476 0.567282 0.0111486 0.070432 0.067354 0.053334 0.014082 0.044760  TR 4  CJ/CJMAX  0.530541 0.040446 1.000000	1 2 3 4 5 0 7 8 9 10	4.098 8.197 14.295 16.393 20.492 24.590 26.685 32.787 36.885 43.984 FREGUENCY 4.098 8.197 12.295
AJ  -J. 8340324E 04  -J. 2307455E 04  J. 0620115E J3  -U. 229146UE J4  J. 378244F 03  -J. 407604F 03  -J. 407604F 03  -J. 407604F 03  -J. 11J. 477E 03  -O. 6914435E 02  J. 140U598E 03  BLADE FIAP AT STA  HARMUNIC AHALYSIS	######################################	04 00 00 00 00 00 00 00 00 00 00 00 00 0	CJ 0.4452957E 0. 0.1730773E 0. 0.2526081E 0. 0.3401255E 0. 0.446446E 0. 0.31585042 0. 0.2579733E 0. 0.2173043E 0. 0.2135043E 0. 0.2135043E 0. 0.2135043E 0. 0.2135043E 0. 0.2135043E 0. 0.2135043E 0.	PHIJC  121.241  241.008  204.801  11.039  202.730  124.902  354.925  202.328  144.525  311.195  CTR 239 FL  PHIJC  114.589  110.140  207.446	PSIJC  121.241 145.834 68.237 2.910 40.547 21.650 51.418 7.791 10.058 31.120  7 503.0 1	CJ/CJMAX  1.000000 0.390476 0.567282 0.011486 0.010932 0.01932 0.019082 0.04960  IR 4  CJ/CJMAX  0.530541 0.040446 1.000000 0.138826	1 2 3 4 5 0 1 8 9 10	4.098 8.197 12.295 16.3 93 20.492 20.689 32.787 36.885 43.984 FREGUENCY 4.098 8.197 12.295 16.393
AJ  -J. 8340324E 04  -J. 8340324E 04  -J. 2307455E 04  J. 620115E J3  -U. 229148E J3  -J. 77644F 03  -J. 77644F 03  -J. 77644F 03  -J. 77649E 03  -J. 1132474E 03  -O. 6917435E 02  J. 1400593E 03  BLADE FLAP AT STA  HARMUNIC AHALYSIS	#UDEL AH-SOA  #U  0.38072645 -0.16154076 -0.1020195 0.77310042 -0.1913676 0.24230906 -0.34181686 0.21033936 -0.16070006  235  MOLEL AH-SOA  #U  0.14896276 0.11209926 -0.10787756 -0.30938655	04 0 04 0 03 0 03 0 04 0 03 0 04 0 03 0	CJ 0.4452957E 0.1730773E 0.1252001E 0.0 0.3du1e55E 0.3du1e55E 0.2479236E 0.0 0.2477040E 0.2477040E 0.0 0.2477040E 0.1249026E 0.12490	PHIJC  121.241 241.668 204.861 311.639 3202.736 3129.902 3359.925 362.328 2144.525 3311.195  CTR 230 FL  PHIJC 114.589 116.140 200.446 297.797 3219.199	PSIJC  121.241 145.834 68.247 2.910 40.547 21.650 51.418 7.791 10.058 31.120  7 503.0  1 503.0  1 503.0  1 503.0  1 503.0	CJ/CJMAX  1.000000 0.390476 0.567282 0.086726 0.111486 0.070932 0.067334 0.019082 0.019082 0.047960  IR 4  CJ/CJMAX  0.530341 0.040446 1.000000 0.1398260 0.189240	1 2 3 4 5 7 8 9 10	4.098 8.197 12.295 16.393 20.492 24.590 20.689 32.787 30.885 40.904 FREGUENCY 4.096 8.197 12.295 10.993 20.492
######################################	### ### ### ### ### ### ### ### ### ##	04 00 00 00 00 00 00 00 00 00 00 00 00 0	CJ 1.730773E U 1.730773E U 1.730773E U 1.2520081E 0 1.3401255E 0 1.31585042 0 1.2477236E 0 1.247726E 0	PHIJC 4 121.241 4 241.668 4 204.861 3 11.659 3 20.2.730 3 124.902 3 354.925 3 02.328 2 144.525 3 311.195  CTR 230 FL  PHIJC 4 114.589 110.140 4 200.446 2 277.747 5 219.199 1 37.040	PSIJC  121.241 145.834 68.247 2.910 40.547 21.650 51.418 7.7791 10.058 31.120  PSIJC  114.589 58.090 66.815 74.449 43.840 22.773	CJ/CJMAX  1.000000 0.390476 0.567282 0.0867282 0.111486 0.070932 0.067354 0.073334 0.079082 0.047900  IR 4  CJ/CJMAX  0.530541 0.040446 1.000000 0.189240 0.189240 0.189240 0.102000	1 2 3 4 5 0 1 8 9 1 U	4.098 8.197 14.295 16.3 43 20.492 24.5 40 20.689 32.787 30.885 43.784 43.784 8.197 12.2 75 16.3 43 20.492 24.599
AJ  -J. 8346324E 04  -J. 2307457E 04  J. 620115E J3  -U. 229146E U4  J. 378244F 03  -J. 477644E 03  -J. 477644E 03  -J. 477647E 03  -J. 477677E 03	### ### ### ### ### ### ### ### ### ##	04 0 04 0 03 0 03 0 03 0 03 0 03 0 03 0	CJ 0.4452957E 0. 0.1730773E U 0.2526081E 0 0.3401E95E 0 0.496446E 0 0.31585042 0 0.2479423E 0 0.2479423E 0 0.2135043c 0 1009	PHIJC  121.241  241.008  204.801  11.039  202.730  124.902  359.925  02.328  2144.525  311.195  CTR 230 FL  PHIJC  114.589  110.140  201.440  201.440  201.440  201.440  213.600	PSIJC  121.241 145.834 68.237 2.910 40.547 21.650 51.418 7.791 10.058 31.120  T 503.0  PSIJC  114.589 58.090 66.815 74.449 43.840 22.7/3 31.725	CJ/CJMAX  1.000000 0.390476 0.567282 0.086726 0.111486 0.070932 0.04073330 0.019082 0.047960  IR 4  CJ/CJMAX  0.530541 0.040446 1.000900 0.139826 0.189240 0.119240 0.102608	1 2 3 4 5 0 7 8 9 10	4.098 8.197 14.295 16.393 20.492 24.590 26.689 32.787 36.885 43.964 43.964 4.096 8.197 12.295 16.393 20.492 24.599
AJ  -J. 8340324E 04  -J. 2307455E 04  J. 620115E J3  -U. 221456E J4  J. 378244F 03  -J. 477664F 03  -J. 477664F 03  0. 1132474E 03  -J. 1132474E 03  -J. 1132474E 03  -J. 1132474E 03  -J. 123666E J2  -J. 123666E J2  -J. 123666E J2  -J. 123666E J2  -J. 1247E U3  -J. 1247E U3  -J. 1247E U3  -J. 12774E U3	######################################	04 00 00 00 00 00 00 00 00 00 00 00 00 0	CJ 0.4452957E 0. 0.1730773E 0. 0.2520081E 0. 0.3401855E 0. 0.340485E 0. 0.31585042 0. 0.2577043E 0. 0.2437043E 0. 0.2437046E 0. 0.2437046E 0. 0.2437046E 0. 0.244744E 0. 0.3177346E 0. 0.3177346E 0. 0.0898509E 0.	PHIJC  121.241  241.668  204.861  3 11.639  3 202.736  3 129.902  3 359.925  2 144.525  3 311.175  CTR 230 FL  PHIJU  114.589  116.180  200.446  297.797  3 219.199  3 17.640  223.472  3 330.054	PSIJC  121.241 145.834 68.237 2.910 40.547 21.650 51.418 7.791 10.058 31.120  7 503.0 1  PSIJC  114.589 58.090 60.815 74.449 43.840 22.173 31.125 41.982	CJ/CJMAX  1.000000 0.340476 0.567282 0.014486 0.070932 0.04790  TR 4  CJ/CJMAX  0.530341 0.040446 1.000030 0.131826 0.189240 0.189240 0.189240 0.189240 0.189240	1 2 3 4 5 0 7 8 9 1 U	4.098 8.197 12.295 16.3 43 20.492 24.590 28.689 32.787 36.885 43.984  FREUJENCY 4.098 8.197 12.2 29 16.3 43 20.4 92 24.5 99 28.6 99 28.6 99
AJ  -J. 8346324E 04  -J. 2307457E 04  J. 620115E J3  -U. 229146E U4  J. 378244F 03  -J. 477644E 03  -J. 477644E 03  -J. 477647E 03  -J. 477677E 03	### ### ### ### ### ### ### ### ### ##	04 0 03 0 03 0 03 0 03 0 03 0 03 0 03 0	CJ 0.4452957E 0. 0.1730773E U 0.2526081E 0 0.3401E95E 0 0.496446E 0 0.31585042 0 0.2479423E 0 0.2479423E 0 0.2135043c 0 1009	PHIJC  121.241 241.668 204.861 3 11.639 3 202.736 3 129.902 3 359.925 2 144.525 3 311.195  CTR 230 FL  PHIJC 114.589 116.140 201.446 297.797 3 219.199 3 137.660 3 335.054	PSIJC  121.241 145.834 68.237 2.910 40.547 21.650 51.418 7.791 10.058 31.120  T 503.0  PSIJC  114.589 58.090 66.815 74.449 43.840 22.7/3 31.725	CJ/CJMAX  1.000000 0.390476 0.567282 0.086726 0.111486 0.070932 0.04073330 0.019082 0.047960  IR 4  CJ/CJMAX  0.530541 0.040446 1.000900 0.139826 0.189240 0.119240 0.102608	1 2 3 4 5 0 7 8 9 10	4.098 8.197 14.295 16.393 20.492 24.590 26.689 32.787 36.885 43.964 43.964 4.096 8.197 12.295 16.393 20.492 24.599

#### HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 1 V= 154 KTS n= 1 g Reproduced from best available copy.

BLADE FLAP AT STA 270 MARMUNIC ANALYSIS MUDEL AM-DOA SHIP 1009 T 408 CTK 230 FLT 503.0 TK 26

AJ	8.1		CJ		PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
0. 1342303E 03									
J. 0747066E U3	-J. 2015645E	03	0.725 30UJE	03	343.371	343.371	0.207449	1	4.098
0.23074696 03	0.76914678	د٥	U. 8321147E	03	73.348	36.674	0.318170	2	8.197
-0.2443786E U4	-0.60237682	د 0	0.25232200	04	144.452	64.651	1.000000	3	12.245
-J. 130214JE UJ	-U. 6171912E	UJ	376+03100	03	257.554	64.389	0.250490	*	16.343
-0.2135469E 03	-0. 3647160E	03	0.4.26350E	03	239.650	47.930	U. 167498	5	20.442
-0.2/8607745 03	U. +011U+/L	دو	U. 530/4UZE	03	121.141	20.190	0.213512	U	24.590
-0.14914025 01	-0.2405525E	دن	U. 4276202F	03	215.209	10.744	0.164477	7	20.689
J. 1961249E UJ	-0.6702930E	03	U. UYHOZICE	0 5	204.374	35.797	0.216676	8	32.787
-U. 5313/34E U1	-0.22.71U3L	U3	0.22010416	03	268.544	24.838	0.090671	9	36.685
to scotters.	0.1604434F	00	0.2246820E	03	126.251	14.655	J. UN4046	10	40.984

*LADE CHORD AT STA 103 MARMONIC AVALYSIS MODEL AM-DOA SHIP 1009 T 408 CTR 230 FLT 503.0 TH 17

لد	i i	3J	دی		PHIJC	PSIJC	CJ/CJMAX	j	FREGUENCY
0.20132300 0	-								
-0. +1/0:01£ 0	4 0.491:	3/5JE 05	0.5002290E	05	100.796	100.796	1.000000	1	4.098
0. 469204HE J	3 0.448	12302 04	0.45848432	34	77.196	18.848	0.091655	4	8.197
-0. 333244+E U	4 -0.5361	00426 03	U. 3375488E	04	144.134	63.040	0.00/4/5	3	12.295
J. 4708557E U	3 -0.719	CLSCL UJ	U. 0 107942E	03	304.311	76.078	0.017406	4	16.393
U. 67924121 0	s -J.il.	17:75 04	0.13132176	04	301.102	60.232	0.026252	5	20.492
J. SZOLJULE U	3 3.622	40 a 0 3	0.01536748	03	47.014	0.302	0.010300	6	24.590
0.39111286 0	3 0.536.	14.00 03	3+459461.0	04	30.472	4.425	0.0-0310	7	25.689
0.5817464E 0	3 -0.194:	438E 02	0.50212336	03	358.382	44.750	0.011637	8	32.167
-U. Y131612E U	2 0.665	SE JOUL J2	J. 11/74066	US	145.044	10.183	0.002358	9	34.885
-J. 2490198E 0	1 -0.182	13058 03	0. 20902/00	0.1	216.244	21.629	0.000176	10	43.984

BLADE CHORD AT STA 174
HARMUNIC ANALYSIS MODEL AN-56A SHEP 2009 T 408 CTR 230 FLT 503.0 TR 42

4.J		ВJ		CJ		PHIJC	PSIJC	CJ/CJMAX	J	FREGJENCY
0.1540151E	05									
-U.5182750F	04	0.20428516	US	J. 2691189E	05	101.095	101.095	1.000000	£.	4.048
). 1043m3at	04	0. 22070218	04	U. 2441414E	04	64.688	32.344	0.090652	è	8.197
-0.1:05/Out	04	-0.1232205c	U 3	0. 1909000E	04	183.700	61.233	0.670908	3	12.295
J. 451 J. act	0,	-0.6000114[	د ن	0.7558398E	03	100.616	70.659	0.048065	4	16.393
-U. 5702871E	دن	-0.7453711E	0.5	0.93851456	03	232.500	40.510	0.034048	5	23.442
3.42202018	0.5	0. 4. 554545	40	0. 599381 oE	0.5	45.240	7.540	U. U22255	Ł	24.590
0. 9.101026		J. 58 1301 JE		0.1120/106	04	31.211	4. 459	U. 041236	7	28.689
-0.7065654E		J. buszudos		0./11719cE	03	174.604	21.920	0.024421	6	32.107
U.11170+1F		-0.142+374:	0.3	J. 1127066	04	352.580	39.176	J. 041549	9	35.885
0.40102JSE		0.25756450		0.4/07498E		34.543	3.254	U.017778	10	40.704

BLADE CHORD AT STA 235 HARMONIC ANALYSIS MOLEL AM-564 SHIP 1009 T 408 CTR 230 FLT 503.0 TR 22

A.J	47	CJ		PHIJC	PSIJC	CJ/CJHAX	J	FREQUENCY
-U. 201 Jarue 05								
-J. 152018st 04	0.06155596 0	0.6787967	E 94	102.941	102.941	1.000000	1	4.070
-3.89945048 33	0. 13/44346 0	0.1163500	E 04	140.068	70.334	0.171400	2	0.147
-0.5025//ot U3	0.5124413E 0	3 0.10212/0	0.5	131.257	43. 752	U.112278	3	12.295
46 3-010-E Us	-U. 22806762 Q	0.7035615	. 03	341.035	85. 471	J. 103648	4	16.393
0.70672305 02	-0.1689261F O	0.1831136	E 03	242.703	50. >41	0.020410	5	20.442
U.ZZ4TUONE OS	-U. 20695536 U	3 0. 34897/6	E 0 1	313.090	51.583	0.051411	U	24.599
-0.14400406 03	-0. 114000 Ji 0	2 0.1420022	د 0 ء	184.732	26.140	0.021302	7	28.089
-0.3513576E 03	0.3033035E O	3 0.5201301	E 03.	132.529	16.506	0.076625	8	32.107
0. 11dado.E 91	-0. 28365556 0	2 0.3239082	103	349.619	38.847	0.047718	4	30.805
-0.13925456 03	0.11049678 0	0.1449953	E 03	135.573	13.557	0.028727	10	40.984

PLADE TORSION AT STA 131.5 MARMUNIC ANALYSIS MUDEL AN-50A SMIP 1009 T 408 CTR 230 FLT 503.6 TK 44

AJ	b.J		CJ		PHIJC	PSIJC	CJ/CJMA K	j	FREWUENCY
J. 479 > 384E 03									
0. 1405443E U4	0.24274326	04	30+10801.0	04	51.871	51.871	1.000000	1	4.098
-0. 7941697E 05	0.109+1496	04	30000010	04	125.849	62.125	0.439395	2	8.1 +7
-0. 32605+0t 03	-0.485-0438	0.5	0.5847466E	03	256.110	18.103	0.1074/5	3	12.295
-J. 3213834E US	0.13774411	02	U. 3210824E	0.5	117.546	44. 387	0.104434	4	16.393
0. 034 1548E 03	-0.2711125E	03	0.47144776	0.3	342.011	68.402	0.284454	5	20.492
0.1380/426 03	-0.20116335		U. 24442 OJE	03	303. 157	50.620	0.000961		24.590
-U. Jd248348 OJ	U. 103/050E		U. 1902927E		104.830	43.247	0.148410	7	20.687
0.56810378 03	-0.73.05416	-	0.9216426E		307.033	38.479	0.100181	8	32.781
0.2431051E 02	-0.21150 LUC		0.32264/56		114.340	35.450	U.U10420	y	30.885
0. 50574065 42	-0. 98 104 900		0.1114617		299.922	19.912	0.030753	10	40. 484

### HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 2 V= 121.5 KTS n= 1 g Reproduced from best available copy.

BLADE FEATHER ANGLE MARAUNIC ANALYSIS MOCEL AM-SOA SHIP LUDY T 408 CTR 392 FLT 503.0 TR 31

ŁJ	BJ	CJ	PHIJC	PS 13C	CJ/CJMAX	J	FREQUENCY
0.80905355 01							
0.3835425E 01	-0.3549731E 01	0.52259796 01	317.216	317.216	1.000000	1	4.098
-3.8850C525-U1	-0.1494567F 00	0.21337JTE 03	246.111	123.050	0.041047	2	8.197
-0.5442.248-01	-0.50464878-61	0.73341428-01	220.103	73.308	0.014991	3	12.295
-0.2813286E-01	J.11265716-Cl	0.303355501	158.177	37.544	0.005799	4	16.393
0.4196 SECE-01	0.8746516E-C2	0.42871315-31	11.172	2.354	0.008203	5	20.492
-0.9248C44E-02	-0.7557842E-02	0.1220355E-01	220.712	36.785	0.002335	6	24.590
-0.8363418E-02	J. 2054228E-CZ	J. HullJJJE-02	106.203	23.143	0.001648	7	28.609
0.11291776-03	0.57133555-32	0.571++67=-02	84.868	11.108	0.001093	8	32.187
3 46 30 28UE-32	0.14400718-02	0.51747155-02	20.837	2.115	0.0003990	9	30.685
-0.52556726-03	-0.7123438E-G3	0. 13116976-03	235.971	23.597	0.000180	10	40.584
HAFT HOMENT							
			_				
ARMONIC ANALYSIS	MODEL AH-56A SH	IP LOUP T 408 (	TR 39" FL	T 503.0 T	R 36		

à J		61		c J	PH1JC	PS IJC	CJ/CJHAX	J	FREQUENCY
-0.53837385	04								
J.1119640E	05	0.52+86095	60	0. 2500 YJJE US	77.958	77.358	1.000000	1	4.098
-0.271455. 6	64	-0.13006J7F	C4	0.33+2+2/3 04	206.958	103.479	0.050745	2	6.197
-3.51566048		-0.13352286	65	0.14021035 05	245.951	81.384	0.272439	3	12.295
-3.33670176		0.15840545	<b>U3</b>	0.343143+5 03	152.664	14.171	0.006432	4	16.393
0.1717467F	0+	J.5241711E	34	U. 7217467E U4	11.560	14.372	J.102815	5	20.492
-0.224.3746	C4	-0.53219705	CS	C.23J6J523 04	193.496	12.649	0.042968	6	24.590
-0.31195665	Ú 4	-0.15592278	04	0.37327335 0.	205.238	24.370	J.064992	7	28.685
U.>>>UE4F	JJ	J. 1464142E	U.S	0. 42 43725 03	53.431	0.005	0.017317	d	32.181
U.190740.E	0.3	0.47120128	CS	0. LJ+4755E 04	68.126	7.570	0.019541	4	JO. 885
0.40260566	03	-0.19018155	03	0.10111106 01	246.666	33.099	0.009352	ΙO	40.584

PITCH LINK TENSION
HAFMONIC ANALYSIS MODEL AH-504 SHIP 1009 T 408 CTR 392 FLT 503.0 TR 11

2.3	Lo	CJ	PHIJC	PS IJC	CJ/CJMAX	J	FREQUENCY
-u.1527253F 03							
-0.22356108 03	-0.22556078 Cc	0.22+530+E U3	182.763	185.703	1.000000	1	4.09d
J.1507.550E 01	-0.11t58J8F 03	0.1441495 03	315.409	157.705	U.751757	2	8.197
-0.2345.105 02	-0. HIRIZUIE 02	50 3clorset.0	253.081	84.500	0.379485	3	12.295
-3.1337165E UZ	-0.40//3/sF C2	C. +173 134E 02	251.447	64.3/4	0.213277	4	16.393
-J.2556452E C2	-0.4C175105 C2	0.49+51216 02	234.304	40.001	0.220219	5	20.492
0.3525118E 01	-0.93731353 01	0.13347732 02	291.144	40.024	0.044/38	6	24.590
30 3116 CE 61.0	-0.4010/37E CI	0.222+3325 02	333.656	41.005	0.099021	7	28.685
J. 634. 152E OL	-0.1120891E C1	10 = 9.5 ( ( ( ( 0 . 0 . 0 )	353.097	43.837	0.033667	8	32.747
0.1255444E U1	0.300-78-E C1	0.3233311E UL	67.324	7.483	0.014447	9	36.882
0.25055728 01	0.15641+55 CZ	C. 13401035 62	02.122	8.212	0.300147	10	40.584

FIXED HUB FLAP AT STA 18 HARMONIC ANALYSIS MODEL AN

۱ ۸	FJ		CJ	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENC Y
-J.6620C63F 0+								
J. /Jet 10% J4	J. Le 154728	じン	C. LササはソJuミ Uo	51.024	51.324	1.000000	1	4.619
J.1:01-210 64	-J. 8466747F	U+	G. 40770 10 E O+	282.678	141.329	0.598114	4	8.177
-3.43133955 03	-0.15330275	(4	0.221+3335 04	106.665	80.300	0.156767	3	12.245
-U.1203/dyE 64	-0.44762455	( š	0.15/19035 04	212.212	53.052	0.129195	4	16.343
-01.643cE 02	-4.5431639	C 3	0. 1	261.104	23.422	0.037591	5	20.492
-0.35635605 03	-0.6524-135	د ن	0.7-135135 01	241.370	43.227	0.001340	L	24.590
-0.41423366 63	-J ? 1 7668(	e O	G.⇒⇒⇒1335€ U3	221.723	31.703	0.038424	7	68.685
0.03)201£ 03	-0.27186335	C 3	0.54717775 03	340.052	42.001	0.058472	8	3 787
0.24284306 02	ひょうりょうしつして	02	0. U+11711 UZ	67.746	1.563	0.004418	9	\$6.885
0.7146 7PHE 02	0.37134678	C2	C. duastage us	21.456	2.140	0.005559	10	46.484

FIXED HUR CHORD AT STA 18 HARMUNIC ANALYSIS MUDEL AN-50A SHIP LOUP T 408 CTR 392 FLT 503.0 TR 3

LA	43		CJ	PHIJC	PSIJC	CJ/CJMAX	١	FREQUENC Y
0.5322EC7E U5								
0.2601:3.8 05	0.40947535	05	0.7.75258 05	74.037	74.0.7	1.000000	1	4.098
0.39262205 04	0.10086485	05	0.11384316 05	64.027	34.913	0.120354	2	8.197
-0.3275745E 04	-J.6230258E	C+	C. 7318433E O4	242.265	84.755	J.U74411	٤	16.645
U. 6J+53EVE US	0. 3755547F	C3	0./115/246 01	11.050	1.462	0.00/524	4	16.393
0.6373 655 03	0.0657664F	03	C. 8/4 74 1JE 03	43.519	4.704	0.009292	5	20.492
-0.17/AcZUE U+	-0.91223J7=	63	0.11141146 0+	207.153	34.020	0.021131	6	24.596
-0.34643455 33	U.5650732F	03	0.00723276 03	121.515	11.359	0.007057	7	28.689
U.2900519E U3	-0.17573998	U3	0.34+33+JE 03	369.300	41.170	0.003645	8	32.787
-0.73>3153F U3	-0.48974318	03	CO 35+Feetbe.O	413.070	25.742	0.009341	9	36.885
-0.3054136F UJ	0.46306548	C3	0.22/09218 03	133.710	13.572	0.00>896	10	40.984

BLADE FLAD AT STA 130.5 HARMONIC ANALYSIS MODEL AH-DOA SHIP LOUM T 408 CTR 392 FLT 503.0 TR 19

LJ	8.3	رن	PHIJC	PS IJC	CJ/CJMAX	J	FREQUENC Y
0.9061530E 04							
U.30185.55 U4	-0.29749300 04	0.461.4388 04	323.575	320.575	1.000000	1	4.098
-0.120284oF C4	0.25178633 04	0.217J425E 04	112.535	57.768	0.595680	2	8.197
3.6971787E 03	J. 3453848E CJ	0.91641035 03	43.497	13.499	0.195714	3	12.295
0.616166ZE 03	-0.12L26805 C2	0.6163Ja7F 03	358.882	89.720	0.131564	4	16.393
3.3542576E 02	0.9625873E CZ	0.1325/JUE 03	69.795	13.959	0.021896	5	20.492
0.4865 40E C3	-0.1571704= 03	3.51134876 03	342.099	57.316	J.109159	6	24.590
0.2119520F 01	-0.3302512F 03	0. 31747756 03	302.225	43	J.U84851	7	28.687
0.29412165 03	U. 3461626E C3	0.47.24225 03	44.647	0.206	3.346908	8	32.787
10 301E 0426. C	0.1155010E CJ	0.11112235 03	85.557	9.206	3.022600	9	30.825
0.14953758 03	-0.1335205E 02	0.19313245 03	354.997	35.443	0.032049	10	40.584

BLADE FLAP AT STA 205 MARRIUNIC ANALYSIS MUDEL AM-50A SHIP LOUP T 408 CTR 392 FLT 503.0 TR 20

LA	8.1	CJ	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENC Y
-0.7337(12F 04							
-0.14422446 04	0.35635608 04	0.~J>1>23E 04	114.545	118.592	1.000000	1	4.648
J. 17343325 04	-U.1148208F C4	3.21701075 04	322.130	161.369	0.541273	2	8.197
-U.1132670E 04	-0.415582CF C3	0.12055435 0%	200.145	60.715	U. 497323	3	12.295
0.4244607E 03	0.6319221F C2	0.43+27905 03	8.301	2.093	0.1070/0	4	16.343
-0.12443136 03	-0.5115/5UL C3	0.52644025 03	250.329	51.260	0.129125	5	20.442
J.2101C45E J3	J.8998669E 02"	0.22370435 03	23.185	3.004	0.050317	6	24.590
J.9618532F 02	-U. 2151789F C2	0. 14553125 02	147.103	49.593	0.024307	7	28.685
-U . 1001 ( tot 0)	U. 1.01400F C3	10 3c116-01.0	130.055	10.261	3.040625	8	52.7E7
J. 439 7CE1E CZ	-0.3577343E CZ	SO Beleteor.C	320.809	32.652	0.013907	9	30.000
J.451J704F 02	0.36483446 02	0.2001126 02	34.051	3.+05	0.015-14	10	40.984

BLANE FLAP AT STA 235 MARMONIC ANALYSIS MOCEL AND DUA - SMIP 1009 - F 408 CTR 392 FLT 503.0 - TR - 4

AU -0.156030#F	.,	вJ		Cl	PHIJC	PSTJC	CJ/CJMAX	J	FREQUENCY
-0.1360:066	-	0.15480485	C+	C. 16230716 07	19.286	49.586	J.994870	1	4.098
0.15HY105E		0.1194170		0.1023184E 04	11.365	2.083	1.000000	2	8.197
-0.409003cF	J3	-0.28698215	CS	0. 22113376 03	215.010	71.6/2	U.3Cd555	3	12.295
J.7337417E	03	-0.4100613=	00	C. 73174175 Os	351.970	87.492	0.483526	4	16.393
0.17150545	0.3	-0.1104377E	0.3	0.20119325 03	\$21.221	63.44+	J.125850	5	20.492
J.1171140E	ۇ ن	J. 4202075E	02	0.1+0++545 03	30.100	0.360	0.051091	6	24.590
-0.20ch721F	02	-0.34446405	C J	C. 1+10=1+= U1	206.500	101.66	0.212100	7	28.685
0.586 15156	u 3	0.23800135	<b>U3</b>	0.63336742 03	22.1.2	2.768	U.39Jo68	8	32.107
0.22+3+016	32	-U. 75577.C5	01	C. 231337/6 02	344.409	31.833	0.014686	4	36.085
-0.4594348E		-0.1141873E	Co	0.12313227 63	248.061	24.300	0.075447	10	40.584

BLADE FLAP AT STA 270
HARMUNIC ANALYSIS MICEL AM->6A SHIP LJJ9 T 438 CTR 392 FLT 503.0 TR 26

L'A	вJ	CJ	PHIJC	PS IJ C	CJ/CJHAX	J	FREQUENCY
0.2745:325 04	0.5		F11130	73130	CJ/ CJ/IAA	•	I WE GOE INC 1
CO BIESTORE. C	-J.1/70235E C	2 0.83094255 03	358.869	358.469	0.991861	ı	4.698
U.57UH 771-E 03	0.1681801.0	3 0.01934922 03	15.839	7.944	J.679357	2	8.147
-0.81105256 03	-0.4730020° C		180.177	446.50	1.000000	٤	12.275
J.4080COVE US	-U.2345776E C		334.354	63.589	0.599358	4	10.393
3.5425543F CI	-0.3:074515 C		273.968	54.194	0.387916	5	20.492
-0.20919046 01	-3.56557771		195.129	32.,21	0.234634	6	24.590
-0.233,2328 03	-0.2341311F C		229.042	32.723	0.342836	7	28.685
\$0 76970174.C	-0.1341035F C		344.160	43.022	0.54+770	8	32.707
-3.33413448 02	-0.1563226E C		253.440	25.099	0.176107	10	30.885 40.984
0130413440 02	-0.17632202 0	3 0.(372377. 03	273.770	27.077	0.110101	10	49. 104
BEADE CHORD AT ST							
HAPMUNIC ANALYSIS		SHIP 1004 T 408	CTR 392 FLT	503.0	TR 17		
A.J	r p	ĊJ	PHIJC	PSIJE	CJ/CJ4AX	J	FREGUENCY
0.2155556 00					1 000000	,	4.098
J.7193554F C4	0.4595188F 0		81.103 90.483	81.103	1.000000	1 2	8.197
-0.305772c5 02 -0.5083371E 04	0.43387435 C		213.023	71.208	3.15/071	3	12.295
J.1883504E J4	-3.60309538 0		337.365	83.341	0.044350	- 1	16.393
-0.13541205 04	-0.10538Jp6 C		201.003	41.971	3.045000	5	20.452
-0.01157545 CJ	-0.41064495 0		233.172	30.002	0.021936	6	24.590
-0.25895468 03	-0.55750076 0		242.042	32.312	0.013217	7	20.609
0.61002305 03	-0.727ad31F 0		310.211	24.765	0.020501	8	32.101
J.3480CO7F 03	-0.3171484F C		317.650	35.295	0.010123	9	30.865
-J.4+78523E 03	-0.52085845 0	3 0.03012435 03	229.110	22.731	0.014769	10	40.984
	A 8 9 4						
BLADE CHORD AT ST HAR 4CMIC ANALYSIS		SHIP 1009 T 408	CTR 392 FLT	503.0	TR 42		
HĀR 40NIC ANALYSIS		SHIP 1009 T 408	CTR 392 FLT	503.0 PS IJC	TR 42	J	FRE QUENC Y
#ĀR 40NIC ANALYSIS ## 40NIC ANALYSIS ## 40NIC ANALYSIS ## 40NIC ANALYSIS	84C-HA 13CUP :	6.1	PHIJC	P\$ IJC	CJ/CJMAX		
AJ 0.2337:735 US 0.4018530E 04	8 JUJEL AH->6A	CJ 5 0.2341943€ 05	PH[JC 80.119	P5 1JC	CJ/CJMAX 1.000000	1	4.098
AJ 0.2337:735 US 0.40185306 04 -0.35522076 US	8J 0.23C72U8E 0 0.98293055 0	CJ CJ = C+1443E CO CJ = C+1449E CO	PHIJC 80.119 104.869	PS IJC 80.119 54.935	CJ/CJMAX 1.00000 0.044627	1 2	4.048 8.197
AJ 0.2337 c735 U5 0.4018 5306 04 -0.355 2276 U5 -0.4774 1456 04	8 J 0.23C72U8E 0 0.9824365 0 -0.9159331E C	CJ 5 0.23+1943€ 05 3 0.1045134E 06 3 0.4801903€ 06	PHIJC 80.119 109.869 193.937	PS IJC 80.119 54.935 63.636	CJ/CJMAX 1.00000 0.044627 0.207003	l 2 3	4.098 8.197 12.295
#ĀR 4 ÛNIC ANALYSIS A J 0 - 23 3 7 2 7 3 5 U5 0 - 40 1 8 5 3 0 6 U4 - U - 3 5 5 2 2 4 7 E U5 - U - 4 7 7 4 1 4 5 E U4 0 - 12 6 1 0 8 2 E U4	8J U.23C72U8E 0 U.9824305 0 -U.9159331E C -0.4400045 U	CJ  5	PHIJC 80.119 109.869 193.907 340.763	PS IJC 80.119 54.935 63.636 85.191	CJ/CJMAX 1.000000 0.044627 0.207003 0.057032	1 2 3 4	4.098 8.197 12.295 16.393
AJ 0.2337:735 U5 0.4018530E 04 -0.355227E U3 -0.4774145E 04 0.1261082E 04 -0.1743024E 04	BJ  U.23C72U8E 0 U.98243050 -U.915931E C -0.44005U45 U -U.7276223E C	CJ  D 0.23+19435 05  C 10451315 04  C 4801945 06  D 0.13450 06  C 13350 06  C 13350 06  C 13350 06	PH[JC 80.119 109.869 190.907 340.763 202.714	P\$ IJC 80.119 54.935 63.636 85.191 40.543	CJ/CJMAX 1,000000 0.044627 0.207603 0.057032 0.050684	1 2 3 4 5	4.098 8.197 12.295 16.393 20.492
AJ 0.2337:735 U5 0.40185306 04 -0.35522076 U3 -0.47741456 04 0.12610826 04 -0.17430246 04 -0.5819336F U3	8J U.23C72U8E 0 U.98243055 0 -U.9159331E 0 -U.9159331E 0 -U.7250225E 0 -U.7250225E 0	CJ  5	PHIJC 80.119 109.869 193.907 340.763 202.714 207.549	PSIJC 80.119 54.935 63.036 85.191 40.543 34.591	CJ/CJMAX 1,000000 0.044627 0.207603 0.057032 0.050684 0.028026	1 2 3 4 5	4.048 8.197 12.295 16.393 20.492 24.540
AJ 0.2337 c735 U5 0.4018 5306 04 -0.355 2276 U3 -0.4774 1456 04 0.126 10826 04 -0.1743 0246 U4 -0.581 4336 U3 -0.4129 6246 U3	8J U.23C72U8E 0 U.98493050 -U.9159331E C -0.4400045 U -U.72-6223E C -U.3C350765 G -U.13472876 C	CJ  0.23+1943 © 05  3.104513 E 04  3.0.480190 E 04  3.0.133+7/2 © 04  3.0.133+7/2 U 05  0.0033	PHIJC 80.119 109.809 193.907 340.763 202.714 207.549 198.008	PS IJC 80.119 54.935 63.636 85.191 40.543 34.591 26.295	CJ/CJMAX 1.000000 0.044627 0.207003 0.057032 0.05064 0.028026 0.018549	1 2 3 4 5 6	4.048 8.197 12.295 16.395 20.492 24.590 28.689
AJ  0.2337±735 U5  0.4018530E 04  -0.355±207E U5  -0.4774145E 04  0.1261682E 04  -0.1743624E 04  -0.581×336F U3  -0.4129624E 03  -0.4129624E 03	8J U.23C72U8E 0 U.98243055 0 -U.9159331E 0 -U.9159331E 0 -U.7250225E 0 -U.7250225E 0	CJ  0.23+1943E 05  3.1045153E 04  3.0.4801905E 04  3.0.1335000E 04  3.0.1335000E 04  3.0.03533E 03  0.434-133E 03  0.434-133E 03	PHIJC 80.119 109.869 193.907 340.763 202.714 207.549	PSIJC 80.119 54.935 03.036 85.191 40.543 34.591 26.292 26.402	CJ/CJMAX 1.000000 0.044627 0.207603 0.057032 0.050684 0.028026 0.016549 0.054418	1 2 3 4 5 6 7	4.098 8.197 12.295 16.393 20.492 24.599 28.699
AJ 0.2337 c735 U5 0.4018 5306 04 -0.355 2276 U3 -0.4774 1456 04 0.126 10826 04 -0.1743 0246 04 -0.581 4336 U3 -0.4129 6246 03	BJ  0.23C72U8E 0 0.9825305 0 -0.9159331E C -0.44005045 0 -0.7276223E C -0.3035076E 0 -0.13472876 0 -0.13472876 0	CJ  O.23+1943 © O> 3 O.104>103 © O4 3 O.4801000 © O4 3 O.133>00 O4 3 O.133>10 E O4 3 O.133>10 E O3 3 O.133>10 E O4	PHIJC 80.119 109.869 190.907 340.763 202.714 207.549 198.008 227.220	PS IJC 80.119 54.935 63.636 85.191 40.543 34.591 26.295	CJ/CJMAX 1.000000 0.044627 0.207003 0.057032 0.05064 0.028026 0.018549	1 2 3 4 5 6	4.048 8.197 12.295 16.395 20.492 24.590 28.689
AJ  0.2337:735 U5  0.4018530E 04  -0.3552207E U3  -0.4774145E 04  -0.1261082E 04  -0.1743024E U4  -0.581 9336F U3  -0.4129E24E U3  -0.4129E24E U3  -0.8055901E U3  -0.8784587E U3	BJ  U.23C72U8E 0 U.98243050 0 U.98243050 0 -U.9159331E 0 -U.7250223E 0 -U.3C350765 0 -U.3C350765 0 -U.3C350765 0	CJ  O.23+1943 © O> 3 O.104>103 © O4 3 O.4801000 © O4 3 O.133>00 O4 3 O.133>10 E O4 3 O.133>10 E O3 3 O.133>10 E O4	PHIJC 80.119 109.869 190.907 340.763 202.714 207.549 198.008 227.220 212.359	PSIJC 80.119 54.935 63.636 85.191 40.543 34.591 26.492 23.995	CJ/CJMAX  1.000000 0.044627 0.20703 0.057032 0.050684 0.028026 0.014549 0.054448 0.044405	1 2 3 4 5 6 7 8	4.048 8.197 12.295 16.393 20.492 24.596 28.689 32.781 30.885
AJ  0.2337±735 U5  0.40185306 04  -0.3552476 U5  -0.47741456 04  0.12610826 04  -0.17430246 04  -0.58143306 U3  -0.41296246 03  -0.41296246 03  -0.41296246 03  -0.41296246 03  -0.41296246 03	BJ  0.23C72U8E 0 0.9829305 0 -0.9169331E C -0.44000045 0 -0.7290223E C -0.3030765 0 -0.13472476 0 -0.55059305 0 -0.1373235E 0	CJ  O.23+1943 © O> 3 O.104>103 © O4 3 O.4801000 © O4 3 O.133>00 O4 3 O.133>10 E O4 3 O.133>10 E O3 3 O.133>10 E O4	PHIJC 80.119 109.869 190.907 340.763 202.714 207.549 198.008 227.220 212.359	PSIJC 80.119 54.935 63.636 85.191 40.543 34.591 26.492 23.995	CJ/CJMAX  1.000000 0.044627 0.20703 0.057032 0.050684 0.028026 0.014549 0.054448 0.044405	1 2 3 4 5 6 7 8	4.048 8.197 12.295 16.393 20.492 24.596 28.689 32.781 30.885
AJ  0.2337±735 U5  0.4018530E 04  -0.355240TE U3  -0.4774145E 04  -0.1743024C 04  -0.581 4330F U3  -0.4129624C 03  -0.4055041E U3  -0.8784587E U3  -0.8774221E U3	BJ  U.23C72U8E 0 U.98253050 0 -U.9159331E C -U.44005U45 U -U.7276223E C -U.3C350765 U -U.13472876 C -U.555593U5 C -U.1373235E 0	CJ  0.23+1943€ 05 3 0.104513#E 04 3 0.4345020€ 04 3 0.1335020€ 04 0.03353#E 03 3 0.43431#E 03 3 0.127443#E 04 3 0.133762 04 3 0.13431#E 03	PHIJC 80.119 109.809 190.907 340.763 202.714 207.549 198.008 227.220 212.359 192.935	PS IJC 80.119 54.935 63.636 85.191 40.543 34.591 26.295 26.402 23.595 14.293	CJ/CJMAX  1.000000 0.044627 0.207003 0.057032 0.05084 0.028026 0.018549 0.028026 0.018549 0.028026	1 2 3 4 5 6 7 8	4.048 8.197 12.295 16.393 20.492 24.596 28.689 32.781 30.885
AJ  0.2337±735 U5  0.40185306 04  -0.3552476 U5  -0.47741456 04  0.12610826 04  -0.17430246 04  -0.58143306 U3  -0.41296246 03  -0.41296246 03  -0.41296246 03  -0.41296246 03  -0.41296246 03	BJ  U.23C72U8E 0 U.98253050 0 -U.9159331E C -U.44005U45 U -U.7276223E C -U.3C350765 U -U.13472876 C -U.555593U5 C -U.1373235E 0	CJ  O.23+1943 © O> 3	PHIJC 80.119 109.869 190.907 340.763 202.714 207.549 198.008 227.220 212.359	PS IJC 80.119 54.935 63.636 85.191 40.543 34.591 26.295 26.402 23.595 14.293	CJ/CJMAX  1.000000 0.044627 0.20703 0.057032 0.050684 0.028026 0.014549 0.054448 0.044405	1 2 3 4 5 6 7 8	4.048 8.197 12.295 16.393 20.492 24.596 28.689 32.781 30.885
AJ  0.2337±735 U5  0.4018530E 04  -0.355240TE U3  -0.4774145E 04  -0.1743024C 04  -0.581 4330F U3  -0.4129624C 03  -0.4055041E U3  -0.8784587E U3  -0.8774221E U3	BJ  U.23C72U8E 0 U.98253050 0 -U.9159331E C -U.44005U45 U -U.7276223E C -U.3C350765 U -U.13472876 C -U.555593U5 C -U.1373235E 0	CJ  0.23+1943€ 05 3 0.104513#E 04 3 0.4345020€ 04 3 0.1335020€ 04 0.03353#E 03 3 0.43431#E 03 3 0.127443#E 04 3 0.133762 04 3 0.13431#E 03	PHIJC 80.119 109.809 190.907 340.763 202.714 207.549 198.008 227.220 212.359 192.935	PS IJC 80.119 54.935 63.636 85.191 40.543 34.591 26.295 26.402 23.595 14.293	CJ/CJMAX  1.000000 0.044627 0.207003 0.057032 0.05084 0.028026 0.018549 0.028026 0.018549 0.028026	1 2 3 4 5 6 7 8	4.048 8.197 12.295 16.393 20.492 24.596 28.689 32.781 30.885
### 40NIC ANALYSIS  #### 40NIC ANALYSIS  ##################################	BJ  U.23072U8E 0 U.98243050 0 -U.9159331E 0 -U.44005045 U -U.7250223E 0 -U.30356765 U -U.37359765 U -U.550593U5 U -U.570593U5 U -U.570593U5 U	CJ  5	PHIJC  80.119 109.869 193.907 340.763 202.714 207.549 198.008 227.220 212.359 192.935  CTR 392 FLT	PS IJC 80.119 54.935 63.636 85.191 40.543 34.591 26.295 26.402 23.595 17.293	CJ/CJMAX  1,000000 0.044627 0.207603 0.057032 0.050684 0.028026 0.014549 0.054418 0.054418 0.054418 0.054418	1 2 3 4 5 6 7 8 9	4.098 8.197 12.295 16.393 20.492 24.595 22.787 30.885 40.984
#ĀR 4 ÛNIC ANALYSIS  0.2337 £735 U5  0.4018 530E 04  -0.355 £207E U5  -0.4774 145E 04  -0.1743 024E 04  -0.1743 024E 04  -0.412 9 624E 03  -0.402 587E 03  -0.402 587E 03  -0.597 4221E 03  BLADE CHORD AT ST  HARMUNIC ANALYSIS	BJ  U.23C72U8E 0 U.9825305 0 -U.9159331E 0 -U.9159331E 0 -U.7276223E 0 -U.3C35076E 0 -U.13472876 0 -U.5353472E 0 -U.5353472E 0 -U.5353472E 0	CJ  5  0.23+1943 © 05  5  0.104513 © 04  3  0.434500 © 04  3  0.133500 © 04  3  0.43+13 © 03  3  0.43+13 © 03  4  0.10351 © 04  3  0.1274+13 © 04  3  0.10351 © 04  3  0.10351 © 04  3  0.10351 © 04  3  0.10351 © 04  5  0.10351 © 04  CJ	PHIJC 80.119 109.869 190.907 340.763 202.714 207.549 198.068 227.220 212.359 192.935 CTR 392 FLT	PSIJC 80.119 54.935 63.036 85.191 40.543 34.591 26.295 24.402 23.595 14.293	CJ/CJMAX  1.000000 0.044627 0.207003 0.057032 0.050644 0.028026 0.018549 0.05448 0.044405 0.028196	1 2 3 4 5 6 7 8	4.048 8.197 12.295 16.393 20.492 24.596 28.689 32.781 30.885
#ĀR 40NIC ANALYSIS  0.2337 £735 U5 0.4018530E 04 -0.355227E U5 -0.4774145E 04 -0.1261682E 04 -0.1743024E U4 -0.581 4336F U3 -0.4129E24E U3 -0.4129E24E U3 -0.8764587E U3 -0.5977422IE U3  BLADE CHORD AT ST HARMUNIC ANALYSIS	BJ  U.23C72U8E 0 U.982Y30Y5 0 -U.91S931E C -U.91S931E C -U.7276223E C -U.3C35076E C -U.3C35076E C -U.3472476 C -U.575597UE C -U.575597UE C -U.575597UE C -U.576597UE C	CJ  D 0.23+1943 © 05  C 1.1045131 E 04  D 0.1045131 E 04  D 0.004513 E 04  C 0.004513 E 04	PHIJC 80.119 109.809 190.907 340.763 202.714 207.549 198.008 227.220 212.359 192.935  CTR 392 FLT  PHIJC 78.803	PS IJC 80.119 54.935 63.636 85.191 40.543 34.591 26.402 23.595 14.293	CJ/CJMAX  1.000000 0.044627 0.207032 0.057032 0.050684 0.028026 0.014549 0.054418 0.044405 0.026196  TR 22  CJ/CJMAX 1.000000	1 2 3 4 5 6 7 8 9 10	4.098 8.197 12.295 16.393 20.492 24.596 24.695 32.787 30.885 40.984
#ĀR 4 ÛNIC ANALYSIS  AJ  0.2337 £735 U5  0.4018 \$306 04  -0.355 2276 U5  -0.4774 1456 04  -0.126 1682 04  -0.1743 0246 U4  -0.581 *3306 U3  -0.402 \$6246 U3  -0.402 \$540 \$16 U3  -0.402 \$10 U5  BLADE CHORD AT ST  HARRAUNIC ANALYSIS  -0.2550 6246 U5  0.1228 1416 U4  0.5705 2156 U3	BJ  U.23C72U8E 0 U.982Y3050 0 -U.9159331E C -0.44000045 U -U.7270223E C -U.3C350765 U -U.13472476 U -U.550599UE C -U.1373235E 0  A 235 MUDEL AH-56A  BJ  0.62365355 0 0.1774554E C	CJ  D 0.23-1943E 05  D 104513E 04  O 0.23-20-20-20  O 0.133-20-20-20  O 0.133-20-20  O 0.23-21-20  O 0.23-21-20  SMIP 1339 T 438  CJ  CJ  O 0.33-8273E 04  O 0.13-913E 04	PHIJC  80.119 109.869 193.907 340.763 202.714 207.549 198.008 227.220 212.359 192.935  CTR 392 FLT  PHIJC  78.863 72.177	PS IJC 80.119 54.935 63.636 85.191 40.543 34.591 26.295 26.402 23.595 17.293	CJ/CJMAX  1.000000 0.044627 0.207603 0.057032 0.050684 0.028026 0.018549 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418 0.054418	1 2 3 4 5 6 7 8 9 10	4.048 8.197 12.295 16.393 20.492 24.596 22.787 36.885 40.984
#ĀR 4 ÛNIC ANALYSIS  0.2337 £735 U5 0.4018 \$306 04 -0.355 £2476 U5 -0.4774 1456 04 -0.126 10826 04 -0.174 10246 04 -0.4129 £246 03 -0.4129 £246 03 -0.4129 £246 03 -0.597 #2216 03  BLADE CHORD AT ST HARRAUNIC ANALYSIS  AJ -0.2550 £245 U5 0.1228 1416 04 -0.5705 £156 U3 -0.5745 £156 U3 -0.5745 £156 U3	BJ  0.23C72U8E 0 0.9829305 0 -0.9169331E 0 -0.7290223E 0 -0.13492876 0 -0.13492876 0 -0.13492876 0 -0.13492876 0  6.05059305 0 -0.1377235E 0	CJ  D 0.23-1943 © 05  D 1045135 04  O 0.133500 © 06  O 0.133502 © 06  CJ  SHIP LJJ9 T 408  CJ  CJ  CJ  O 0.1338273 © 06  O 0.134311 © 06	PHIJC  du.119 109.869 193.907 340.763 202.714 207.549 198.008 227.220 212.359 192.935  CTR 392 FLT  PHIJC  78.863 72.177 266.525	PS IJC  80.119 54.935 63.636 85.191 40.549 26.402 23.993 14.293  503.0  PS IJC  78.863 36.389 88.842	CJ/CJMAX  1.000000 0.044627 0.207003 0.057032 0.050644 0.028026 0.018549 0.05448 0.044405 0.026196  TR 22  CJ/CJMAX 1.000000 0.293163 0.063340	1 2 3 4 5 6 7 8 9 10	4.048 8.197 12.295 16.393 20.492 24.596 32.787 30.885 40.984
#ĀE 40NIC ANALYSIS  AJ  0.2337£735 U5  0.4018530E 04  -0.355247E U5  -0.4774145E 04  -0.1743024E 04  -0.1743024E 04  -0.4129624E 03  -0.4129624E 03  -0.4129624E U3  BLADE CHORD AT ST  HAERJUNIC ANALYSIS  -0.2550624E U5  0.1228141E 04  J.5705215E U3  -0.424717E U3	BJ  U.23C72U8E 0 U.98253050 0 -U.9159331E 0 -U.9159331E 0 -U.7276223E 0 -U.3635076E 0 -U.3635076E 0 -U.373235E 0  TA 235 MUDEL AH-56A  BJ  0.62365355 0 0.1774554E 0 -U.4C19939E 0 -U.4C19939E 0 -U.4C19939E 0	CJ  D 0.23+1943E 05  D 1045153E 04  D 0.835152E 06  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  C	PHIJC  80.119 109.809 190.907 340.763 202.714 207.549 148.008 227.220 212.359 192.935  CTR 392 FLT  PHIJC  78.803 72.177 260.525 4.903	PS IJ C 80.119 54.935 63.036 85.191 40.543 34.591 26.402 23.595 17.293	CJ/CJMAX  1.000000 0.044627 0.207603 0.057032 0.050684 0.028026 0.014549 0.05448 0.044405 0.044405 0.026196  TR 22  CJ/CJMAX 1.000000 0.293163 0.026340 0.078567	1 2 3 4 5 6 7 8 9 10	4.048 8.197 12.295 16.393 20.492 24.576 28.685 32.787 30.885 40.984 FREWUENCY 4.098 8.197 12.295
### 40NIC ANALYSIS  #### 40NIC ANALYSIS  ##################################	BJ  U.23C72U8E 0 U.98243050 0 -U.98243050 0 -U.98243050 0 -U.724023E C -U.3C35676E C -U.3C35676E C -U.3C35676E C -U.373235E 0  (A 235 MUDGL AH-56A  BJ  0.6236535E 0 0.1774554E C -U.4C19439E C U.5444443E C U.5444443E C	CJ  D 0.23-1943 © 05  D 1045131 © 04  D 0.4801905 © 04  D 1131500 © 04  D 113150 © 04  D 0.50531 © 04  D 0.50531 © 04  D 0.50531 © 04  D 0.50531 © 04  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  C	PHIJC  80.119 109.869 190.907 340.703 202.714 207.549 148.008 227.220 212.359 192.935  CTR 392 FLT  PHIJC  78.863 72.177 260.525 4.963 131.245	PS IJC 80.119 54.935 63.636 85.191 40.543 34.591 26.295 14.293 503.0  PS IJC 78.863 36.389 88.842 1.246 20.249	CJ/CJMAX  1.00000 0.044627 0.20703 0.057032 0.050684 0.028026 0.014549 0.054418 0.054418 0.054418 0.054405 0.020196  TR 22  CJ/CJMAX 1.000000 0.293163 0.06340 0.095928	1 2 3 4 5 6 7 8 9 10	4.098 8.197 12.295 16.393 20.492 24.596 22.787 30.885 40.984 FREWUENC Y 4.098 8.197 12.295 16.373 20.492
#ĀE 40NIC ANALYSIS  A J  O .2337£735 U5  O .4018530E 04  -U .35522J7E U5  -U .4774145E 04  O .1201082E 04  -U .381 V330F U3  -U .482524E 03  -U .482524E U3  BLADE CHORD AT ST  HACHUNIC ANALYSIS  A J  O .1228141E U3  O .1228141E U3  O .244717E U3  O .4021189E U3  O .5514109E U3	8J  0.23C72U8E 0  0.98243050  -0.9149331E C  -0.44000445 U  -0.7240223E C  -0.13472476 C  -0.1347235E 0  (A 235  MUDGL AH-DOA  8J  0.62360355 0  0.1774504E C  -0.4C19439E C  0.4044337E 0  0.4044337E 0	CJ  D 0.23-1943E 05  D 104513E 04  O 0.83-1943E 04  O 0.133-20-E 04  O 0.133-20-E 04  O 0.23-18-E 03  O 0.43-13-E 03  O 0.124-4-1E 03  CJ  SMIP 1339 T 438  CJ  CJ  CJ  O 0.33-8273E 04  O 0.13-3-1E 03  O 0.127-1E 03  O 0.204-3E 03	PHIJC  80.119 109.869 193.907 340.763 202.714 207.549 198.008 227.220 212.359 192.935  CTR 392 FLT  PHIJC  78.863 72.177 260.525 4.943 131.245 8.493	PS IJ C  80.119 54.935 63.636 85.191 40.543 34.591 26.299 24.402 23.593 17.293  503.0  PS IJ C  78.863 36.389 88.842 1.246 26.249 1.415	CJ/CJMAX  1.000000 0.044627 0.207603 0.057032 0.050684 0.028026 0.018549 0.054418 0.054418 0.05418 0.05418 0.05418 0.05418 0.05418 0.05418 0.05418 0.05418 0.05418 0.05418 0.05418 0.05418 0.05418 0.05418 0.05418 0.05418 0.05418 0.05418 0.05418 0.05418 0.05418 0.05418 0.05418 0.05418 0.05418	1 2 3 4 5 6 7 8 9 10	4.048 8.197 12.295 16.393 20.492 24.592 24.593 32.787 30.885 40.984 FREWUENCY 4.098 8.197 12.295 16.393 20.492 24.590
AJ  0.23372735 U5  0.4018530E 04  -0.355227E U5  -0.4774145E 04  -0.1261682E 04  -0.1743024E U4  -0.5817330F U3  -0.4129624E U4  -0.4129624E U3  -0.4129624E U5  0.1228141E U4  -0.57155215E U3  -0.4021189E U3	BJ  U.23C72U8E 0 U.9825305 0 -U.9159331E C -U.9159331E C -U.7276223E C -U.3C35076E C -U.4C19435E C U.5644443E C U.5644443E C U.64464337E U -U.3167709E C	CJ  D 0.23-1943E 05  J 0.4901905E 06  O 0.23-1943E 06  O 0.430-10E 06  CJ  SHIP LJJ9 T 408  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  C	PHIJC  80.119 109.869 190.907 340.763 202.714 207.549 148.008 227.220 212.359 192.935  CTR 392 FLT  PHIJC  78.863 72.177 266.525 4.963 131.245 8.493 101.023	PS IJC  80.119 54.935 63.036 85.191 40.541 26.299 26.402 23.993  503.0  PS IJC  78.863 36.389 88.842 1.246 26.249 1.415 25.975	CJ/CJMAX  1.000000 0.044627 0.207603 0.057032 0.060644 0.028026 0.018549 0.054418 0.044405 0.026196  TR 22  CJ/CJMAX  1.000000 0.293163 0.08340 0.095928 0.086095	1 2 3 4 5 6 7 8 9 10	4.048 8.197 12.295 16.393 20.492 24.596 32.787 30.885 40.984 FREWUENCY 4.098 8.197 12.295 16.373 20.492 24.596 28.685
AJ  0.2337±735 U5  0.4018530E 04  -0.355220TE U5  -0.4774145E 04  -0.1261682E 04  -0.1743024C U4  -0.581 x 336F U3  -0.4129E24C U3  -0.4129E24C U3  BLADE CHORD AT ST  HACKJUNIC ANALYSIS  0.1228141E 04  0.5705215E U3  -0.2xx1C37E U3  -0.4021189E 03  -0.4021189E 03  -0.9952798E 02  -0.424322E 03	BJ  U.23C72U8E 0 U.98243050 0 -U.9159331E 0 -U.9159331E 0 -U.7276223E 0 -U.3C350765 0 -U.3C350765 0 -U.3472476 0 -U.550593U5 0 -U.570593U5 0 -U.177454E 0 -U.4C1933E 0  0.4586123F 0 0.4586123F 0 0.4586123F 0 -U.31679495 0 -U.31679495 0 -U.94826725 0	CJ  D 0.23-1943 © 05  C 1045 151 E 04  D 0.480 1005 E 04  D 0.480 1005 E 04  C 1045 151 E 05  C 1045 161 E 0	PHIJC  80.119 109.809 190.907 340.763 202.714 207.549 198.008 227.220 212.359 192.935  CTR 392 FLT  PHIJC  78.803 72.177 260.525 4.903 131.245 8.493 101.023.109	PS IJ C 80.119 54.935 63.036 85.191 40.543 34.591 26.492 23.595 14.293  SU3.0  PS IJ C 78.863 36.389 88.842 1.246 26.249 1.415 25.975 24.134	CJ/CJMAX  1.000000 0.044627 0.207032 0.057032 0.050684 0.028026 0.014549 0.024418 0.044405 0.026196  TR 22  CJ/CJMAX  1.000000 0.293163 0.063340 0.095928 0.095928 0.095928 0.095928 0.086095	1 2 3 4 5 6 7 8 9 10	4.098 8.197 12.295 16.393 20.492 24.596 32.787 30.885 40.984  FREWUENCY 4.098 8.197 12.295 16.343 20.492 24.596 28.685 32.787
AJ  0.23372735 U5  0.4018530E 04  -0.355227E U5  -0.4774145E 04  -0.1261682E 04  -0.1743024E U4  -0.5817330F U3  -0.4129624E U4  -0.4129624E U3  -0.4129624E U5  0.1228141E U4  -0.57155215E U3  -0.4021189E U3	BJ  U.23C72U8E 0 U.9825305 0 -U.9159331E C -U.9159331E C -U.7276223E C -U.3C35076E C -U.4C19435E C U.5644443E C U.5644443E C U.64464337E U -U.3167709E C	CJ  D 0.23-1943E 05  D 104513E 04  D 0.4801905E 04  D 0.1335030E 03  C133772E 04  D 0.0338273E 03  CJ  SHIP LJJ9 T 408  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  C	PHIJC  80.119 109.869 190.907 340.763 202.714 207.549 148.008 227.220 212.359 192.935  CTR 392 FLT  PHIJC  78.863 72.177 266.525 4.963 131.245 8.493 101.023	PS IJC  80.119 54.935 63.036 85.191 40.541 26.299 26.402 23.993  503.0  PS IJC  78.863 36.389 88.842 1.246 26.249 1.415 25.975	CJ/CJMAX  1.000000 0.044627 0.207603 0.057032 0.060644 0.028026 0.018549 0.054418 0.044405 0.026196  TR 22  CJ/CJMAX  1.000000 0.293163 0.08340 0.095928 0.086095	1 2 3 4 5 6 7 8 9 10	4.048 8.197 12.295 16.393 20.492 24.596 32.787 30.885 40.984 FREWUENCY 4.098 8.197 12.295 16.373 20.492 24.596 28.685

SHAPE TORSION AT STA 131.5
HARMONIC ANALYSIS MODEL AN-SHA SHIP 1007 T 408 CTR 392 FLT 503.0 TR 44

AJ	£1	CJ	PHIJC	PSIJC	CJ/CJMAX	j	FREQUENCY
U.1341396F US							
J. 1030148F U4	J. 1425133E U4	0.26617523 04	40.324	44.324	1.000000	Ł	4.098
-0.12703725 04	0.4470125E 03	0.13041305 0	158.633	79.316	3.512495	2	8.197
-0.5413262F 03	U. 1915457E C3	C. 6215/57E 03	102.052	54.017	0.233521	3	12.295
-0.2018c50F C3	-U.1840751E CI	0.20187345 03	180.524	45.131	0.075842	4	10.393
-0.15066535 CZ	-0.1713335F 02	0.22413535 02	228.073	45.735	J.008572	5	20.4+2
-U. oldevolf Us	-0.259655JE 61	C. 35/3/d+2 01	197.593	32.932	0.326744	6	24.54C
-0.4075313E U3	-U.1305152E C3	0.405.007= 03	195.598	27.942	0.182364	7	28.685
U.38656475 U3	-0.41453038 03	0.20030472 03	313.000	34.125	0.212944	8	32.787
U. 1065141E 02	-0.3309/815 CZ	0.34/09418 02	287.839	31.982	0.013063	9	30.885
0.8951261E UZ	0.7e87267F 02	0.1195291 E US	41.289	4.129	0.044306	10	40.584

BLADE FEATHER ANGLE
HARMONIC ANALYSIS MODEL AH-564 SHIP 1009 T 408 CTR 335 FLT 503.0 TR 31

à J	6.7	C.J.	PHIJC	PSIJC	CJ/CJMAX	J	FREWUENCY
0.5+246835 01							
J.20156345 UL	-0.2427973F OL	10 Botbbect.0	317.131	317.131	1.000000	1	4.C98
-3.2.2.C46F 30	-0.2167994F 00	0.121500.5 00	241.161	110-981	0.091209	2	8.197
-0.11275805 00	-0.894001 7F-C1	0.1-312386 00	219.399	72.803	0.040330	3	12.295
-0.282341-5 00	-0.16987305 00	0.3235U33E 00	211.033	52.758 44.218	0.092328	5	20.492
-0.63824065-01	-0.55654189-01 -0.5529657E-01	0.8+031175-01	239.202	34.710	0.032722	í	24.590
-0.13265575 00 -0.3367963F-01	-0.5527657E-01	0. +0024216-01	223.738	31.970	0.013073	ĩ	28.689
-0.62567965-01	-0.56217878-01	0.4412713E-01	221.931	21.141	0.023513	8	32.107
-0.3569777F-01	-0.15072025-01	0.11072935-01	202.369	22.401	0.011116	9	36.685
-0.30+2c31r-J1	-3.21796385-01	0.42449475-01	210.895	21.087	0.011894	10	40.984
SHAFT MOMENT							
HARMONIC ANALYSIS	MODEL AH- 56A SH	11P 1034 T 408	CTR 335 F	LT 503.0	TR 36		
۸J	и.		0	00.00		Ε.	
-U.7392656E C4	۲,4	Cl	PHIJC	21154	CJ/CJMAX	J	FREQUENCY
-0.33122348 05	0.1177285E Co	0.12152136 05	134.353	104,353	1.003000	4	4.098
-0.33073675 04	0.75522678 02	0. 1010110E 04	170.502	165.48	0.024772	Ž	8.197
0.37c0170F 04	0.11132085 05	0.1173725E 05	71.521	23.843	J.096566	و	12.295
0.9501553F UJ	-0.5002031F 03	0.13773735 04	332.384	83.396	C66800.0	4	16.393
0.11827658 05	-0.25760876 64	0.12133445 05	147.078	69.543	0.099575	5	20.492
0.113673_E 04	0.1359898E C4	C.17737355 04	50.058	8.343	J.U14596	6	24.590
0 - 1430420E 04	-0.20073115 04	0.27344316 04	313.861	44.040	0.022917	7	28.689
-0.12509578 04	0. 10.11300£ C4	0.22193046.04	124.307	15.558	0.010264	8	32.767
0.40377785 03	0.25036/1E C4 -0.5729590° 02	0.33371135 04	132.518	32.172	0.027955	3 10	30.825
0.403111112 03	-0.3727370- 02	0.45752252 03	331.724	37.172	0.003336	10	40.984
PITCH LINK TENSIO							
ZIZYJANA DIVOPRAH		[P 1994 T 408 (	TR 335 F	1 0.8%c T	TR 11		
		[P 100+ T 408 (	TR 335 Fi	PS IJC	TR 11	J	FREQUENCY
ANALYSIS  AU  AU  AU  AU  AU  AU  AU  AU  AU  A	MODEL AH-56A SH	Cı	PHIJC	PS TJC	CJ/CJMAX		
AJ -0.1045245 U3 -0.2319457F U3	9J 3.108721HF 02	0.295327£ 03	PHIJC 176.574	PS IJC 176.574	CJ/CJMAX	1	4.048
AJ -0.1045326F U3 -0.2819457F 03 U.2983C44F C3	9J 3.1087218F 02 -3.3045506F 03	CJ 0.28235315 U3 0.42531335 03	PHIJC 176.574 314.406	PS IJC 176.574 157.203	CJ/CJMAX 0.662511 1.00000	1 2	4.048 8.197
AU -0.10 ANALYSIS  -0.10452cF U3 -0.2819457F 03 U.2983C4FE 03 U.2983C4FE 03 U.89540c6E 02	8J  3.104721HF 02 -J.30455065 03 0.2496537E 02	CJ 0.2823531E U3 0.4253133E 03 0.4245427E 02	PHIJC 176.574 314.406 15.541	PS IJC 1/6274 157.203 5.197	CJ/CJMAX 0.662311 1.000000 0.21d060	ا 2 غ	4.048 8.197 12.295
AJ -0.1045245 U3 -0.23194576 U3 -0.23194576 U3 U.2383645 U3 U.2383645 U3 U.2383645 U3	BJ  3.1047218F 02 -3.5045506F 03 0.2496535E 02 -0.1274649F 03	CJ 0.2d23531E U3 0.42531335 03 0.42531275 02 0.14641072 03	PHIJC 176.574 314.406 15.591 240.181	PS TJC 1/6-2/4 157-203 2-197 60-045	CJ/CJMAX U.662311 1.000000 U.218060 U.344624	1 2	4.098 8.197 12.295 10.393
AU -0.10 ANALYSIS  -0.10452cF U3 -0.2819457F 03 U.2983C4FE 03 U.2983C4FE 03 U.89540c6E 02	8J  3.104721HF 02 -J.30455065 03 0.2496537E 02	CJ 0.2823531E U3 0.4253133E 03 0.4245427E 02	PHIJC 176.574 314.406 15.541	PS IJC 1/6274 157.203 5.197	CJ/CJMAX 0.662311 1.000000 0.21d060	1 2 3 4	4.048 8.197 12.295
AJ -0.104526F U3 -0.104526F U3 -0.2319457F 03 U.23437445 C3 U.3345060 U2 -0.3360764F 02	BU 02-14-56A SH 02-3-16-72-18-F 02-3-3-04-55-65 03-0-2-9-9-53-F 02-0-12-74-9-5-F 03-7-16-20-7-F 02	CJ 0.28235315 03 0.4253135 03 0.42531275 02 0.14641072 03 0.73345135 02	PHIJC 176.574 314.406 15.591 240.181 112.988	PSTJC 1/6->74 157-203 5-197 60-045 22-598	CJ/CJMAX  U.662311 1.00000 U.218060 0.344624 0.185042	1 2 3 4 5	4.098 8.197 12.295 10.393 20.492
AJ  -0.10452465 03  -0.28194576 03  0.28954646 02  0.8954646 02  -0.7305636 02  -0.33607645 02  0.41081535 02	BJ  3.1087218F 02 -0.3045506F 03 0.2495535E 02 -0.1274649F 03 0.7062071E 02 0.5553399E 02	CJ 0.28235318 U3 0.42531335 03 0.42431275 02 0.14641072 03 0.7344515 02 0.13423995 03	PHIJC 170.574 314.406 15.531 240.181 112.988	PS IJC 1/6-2/4 157-203 5-197 60-045 22-59d 11-371	CJ/CJMAX U.662311 1.000000 U.218080 0.344624 0.185042 U.244495 0.005690 0.020570	1 2 3 4 5 6 7 8	4.098 8.197 12.295 10.393 20.492 24.596 28.689
AJ  -0.104526F U3  -0.2319457F 03  U.234374457F 03  U.234374450 02  -0.3360764F 02  U.4169193F 02  -0.5727758F U1  -0.1151575F U2	BJ  0.104721HF 02 -0.30405005 03 0.24905306 03 0.24905306 02 -0.1274049F 03 0.7202071F 02 0.95033950 02 -0.24150335 01 -0.65002416 01 -0.14218116 02	CJ 0.2423501E 03 0.4253103E 03 0.4245127E 02 0.1464107E 03 0.7344515E 02 0.1042309E 03 0.2510412E 01 0.35465E 01 0.174645E 02	PHIJC 176.574 314.406 15.541 240.181 112.988 60.428 254.170 311.254 232.79J	PSTJC 1/6-2/4 157-203 2-197 60-045 22-998 11-071 36-310 36-3107 22-360	CJ/CJMAX  U.662311 1.000000 U.218060 0.344624 0.185042 0.244495 0.005050 0.020370 0.020370 0.041405	1 2 3 4 5 6 7 8	4.098 8.197 12.295 10.393 20.492 24.590 28.687 36.685
AJ -0.1045320F 03 -0.2313457F 03 0.2333544F 03 0.8954066 02 -0.7305630E 02 -0.336076_F 02 0.4106153F 02 -0.6544454E 00 0.5727456 01	0J 0.100721HF 02 -J.30455065 03 0.24965395 02 -0.1274649F 03 0.7262071F 02 -0.5303495 02 -0.24150335 01 -0.65305245 01	CJ  0.2823531E 03 0.42531335 03 0.4253127E 02 0.14641072 03 0.7334513E 02 0.134239E 01 0.251342E 01	PHIJC 176.574 314.406 15.541 240.181 112.988 60.428 254.170 311.254	PS IJC 1/6-2/4 157-203 2-197 60-045 22-598 11-371 36-310 38-907	CJ/CJMAX U.662311 1.000000 U.218080 0.344624 0.185042 U.244495 0.005690 0.020570	1 2 3 4 5 6 7 8	4.098 8.197 12.295 10.393 20.492 24.596 28.689
AJ  -0.104526F U3  -0.2319457F 03  U.234374457F 03  U.234374450 02  -0.3360764F 02  U.4169193F 02  -0.5727758F U1  -0.1151575F U2	BJ  0.104721HF 02 -0.30405005 03 0.24905306 03 0.24905306 02 -0.1274049F 03 0.7202071F 02 0.95033950 02 -0.24150335 01 -0.65002416 01 -0.14218116 02	CJ 0.2423501E 03 0.4253103E 03 0.4245127E 02 0.1464107E 03 0.7344515E 02 0.1042309E 03 0.2510412E 01 0.35465E 01 0.174645E 02	PHIJC 176.574 314.406 15.541 240.181 112.988 60.428 254.170 311.254 232.79J	PSTJC 1/6-2/4 157-203 2-197 60-045 22-998 11-071 36-310 36-3107 22-360	CJ/CJMAX  U.662311 1.000000 U.218060 0.344624 0.185042 0.244495 0.005050 0.020370 0.020370 0.041405	1 2 3 4 5 6 7 8	4.098 8.197 12.295 10.393 20.492 24.590 28.687 36.685
AJ -0.104526F 03 -0.2319457F 03 0.2319457F 03 0.2319457F 03 0.3305030E 02 -0.3050704F 02 0.4108193F 02 -0.5727755F 01 -0.1051575E 02 0.13477105 02	BJ  3.104721HF 02 -J.30455065 03 0.24965396 02 -0.12740495 03 0.7262071F 02 0.9593395 02 -0.24150435 01 -0.65305246 01 -0.1421811E 02 0.1226879E 02	CJ 0.2423501E 03 0.4253103E 03 0.4245127E 02 0.1464107E 03 0.7344515E 02 0.1042309E 03 0.2510412E 01 0.35465E 01 0.174645E 02	PHIJC 176.574 314.406 15.541 240.181 112.988 60.428 254.170 311.254 232.79J	PSTJC 1/6-2/4 157-203 2-197 60-045 22-998 11-071 36-310 36-3107 22-360	CJ/CJMAX  U.662311 1.000000 U.218060 0.344624 0.185042 0.244495 0.005050 0.020370 0.020370 0.041405	1 2 3 4 5 6 7 8	4.098 8.197 12.295 10.393 20.492 24.590 28.687 36.685
AJ  -0.104526F U3  -0.2819457F 03  U.2835C4F C3  U.88994066 U2  -0.7305636 U2  -0.3360766F 02  U.4168193F U2  -0.6544494 U0  0.5727755E U1  U.13477165 02	BJ  3.104721HF 02 -3.30455065 03 0.24965356 02 -0.12740495 03 0.7262071F 02 0.9593395 02 -0.24150335 01 -0.65305246 01 -0.1421811E 02 0.1226879E 02	CJ  0.2423501E 03  0.4253103E 03  0.424512FE 02  0.146410FE 02  0.1042309E 03  0.2510412E 01  0.3656546E 01  0.174645E 02  0.174645E 02	PHIJC 176.574 314.406 15.541 240.181 112.988 60.428 254.170 311.254 232.793 42.313	PS TJC 1/6-2/4 157-203 2-197 60-045 22-99 11-071 36-310 36-300 4-231	CJ/CJMAX  U.662311 1.000000 U.218060 0.344624 0.185042 0.244495 0.005040 0.020370 0.020370 0.041405 U.042751	1 2 3 4 5 6 7 8	4.098 8.197 12.295 10.393 20.492 24.590 28.687 36.685
AJ -0.104526F 03 -0.2319457F 03 0.2319457F 03 0.2319457F 03 0.3305030E 02 -0.3050704F 02 0.4108193F 02 -0.5727755F 01 -0.1051575E 02 0.13477105 02	BJ  3.104721HF 02 -3.30455065 03 0.24965356 02 -0.12740495 03 0.7262071F 02 0.9593395 02 -0.24150335 01 -0.65305246 01 -0.1421811E 02 0.1226879E 02	CJ 0.2423501E 03 0.4253103E 03 0.4245127E 02 0.1464107E 03 0.7344515E 02 0.1042309E 03 0.2510412E 01 0.35465E 01 0.174645E 02	PHIJC 176.574 314.406 15.541 240.181 112.988 60.428 254.170 311.254 232.793 42.313	PS TJC 1/6-2/4 157-203 2-197 60-045 22-99 11-071 36-310 36-300 4-231	CJ/CJMAX  U.662311 1.000000 U.218060 0.344624 0.185042 0.244495 0.005050 0.020370 0.020370 0.041405	1 2 3 4 5 6 7 8	4.098 8.197 12.295 10.393 20.492 24.590 28.687 36.685
AJ  -0.104526F U3  -0.2819457F 03  U.2835C4F C3  U.88994066 U2  -0.7305636 U2  -0.3360766F 02  U.4168193F U2  -0.6544494 U0  0.5727755E U1  U.13477165 02	BJ  3.104721HF 02 -3.30455065 03 0.24965356 02 -0.12740495 03 0.7262071F 02 0.9593395 02 -0.24150335 01 -0.65305246 01 -0.1421811E 02 0.1226879E 02	CJ  0.2423501E 03  0.4253103E 03  0.424512FE 02  0.146410FE 02  0.1042309E 03  0.2510412E 01  0.3656546E 01  0.174645E 02  0.174645E 02	PHIJC 176.574 314.406 15.541 240.181 112.988 60.428 254.170 311.254 232.793 42.313	PS TJC 1/6-2/4 157-203 2-197 60-045 22-99 11-071 36-310 36-300 4-231	CJ/CJMAX  U.662311 1.000000 U.218060 0.344624 0.185042 0.244495 0.005040 0.020370 0.020370 0.041405 U.042751	1 2 3 4 5 6 7 8	4.098 8.197 12.295 10.393 20.492 24.590 28.687 36.685
AJ  -0.104526F U3  -0.2819457F 03  U.2835C4F C3  U.88994066 U2  -0.7305636 U2  -0.3360766F 02  U.4168193F U2  -0.6544494 U0  0.5727755E U1  U.13477165 02	BJ  3.104721HF 02 -3.30455065 03 0.24965356 02 -0.12740495 03 0.7262071F 02 0.9593395 02 -0.24150335 01 -0.65305246 01 -0.1421811E 02 0.1226879E 02	CJ  0.2423501E 03  0.4253103E 03  0.424512FE 02  0.146410FE 02  0.1042309E 03  0.2510412E 01  0.3656546E 01  0.174645E 02  0.174645E 02	PHIJC 176.574 314.406 15.541 240.181 112.988 60.428 254.170 311.254 232.793 42.313	PS TJC 1/6-2/4 157-203 2-197 60-045 22-99 11-071 36-310 36-300 4-231	CJ/CJMAX  U.662311 1.000000 U.218060 0.344624 0.185042 0.244495 0.005040 0.020370 0.020370 0.041405 U.042751	1 2 3 4 5 6 7 8	4.098 8.197 12.295 10.393 20.492 24.590 28.687 36.685
AJ  -0.1045265 03  -0.23194576 03  0.2335045 02  -0.33607045 02  -0.33607045 02  -0.41081535 02  -0.57474555 01  -0.13477165 02  FIXEN HUR FLAN AT HARMUNIC ANALYSIS	BJ  3.1687218F 02 -0.30455665 03 0.24965356 02 -0.1274649F 03 0.7262071F 02 0.5303995 02 -0.24150339 01 -0.6530546 01 -0.14218115 02 0.1226879F 02  STA 18 MUDEL AM-DOA SH	CJ  0.28239318 03 0.4253135 03 0.42451275 02 0.14641676 03 0.7354913 03 0.29137125 01 0.3050505 01 0.17464358 02 0.13229175 02	PHIJC  170.574 314.406 15.591 240.181 112.988 00.428 254.170 311.254 232.784 42.313	PS IJC  1/6.3/4  157.203  3.197  60.045 22.598 11.071 36.310 38.307 22.3304 4.231	CJ/CJMAX  U.662311 1.000000 U.218060 0.344624 0.185042 U.244495 0.005040 0.020570 U.041905 U.042751	1 2 3 4 5 6 7 8 9	4.098 8.197 12.295 10.393 20.492 24.596 28.685 32.787 36.685 40.984
AJ  -0.1045326F 03  -0.2819457F 03  0.2835445F 03  0.2835445 02  -0.306076_F 02  0.4166154F 02  0.5727458F 01  -0.10215755 02  0.13477165 02  FIXEN HUR FLAN AT HARMUNIC ANALYSIS	BJ  3.104721HF 02 -3.30455065 03 0.24965356 02 -0.12740495 03 0.7262071F 02 0.9593395 02 -0.24150335 01 -0.65305246 01 -0.1421811E 02 0.1226879E 02	CJ  0.2423501E 03  0.4253103E 03  0.424512FE 02  0.146410FE 02  0.1042309E 03  0.2510412E 01  0.3656546E 01  0.174645E 02  0.174645E 02	PHIJC 176.574 314.406 15.541 240.181 112.988 60.428 254.170 311.254 232.793 42.313	PS TJC 1/6-2/4 157-203 2-197 60-045 22-99 11-071 36-310 36-300 4-231	CJ/CJMAX  U.662311 1.000000 U.218060 0.344624 0.185042 0.244495 0.005040 0.020370 0.020370 0.041405 U.042751	1 2 3 4 5 6 7 8	4.098 8.197 12.295 10.393 20.492 24.590 28.687 36.685
AJ  -0.104526F U3  -0.2319457F 03  U.2363C4F 03  U.2363C4F 03  U.3360704F 02  U.4169193F 02  -0.3067704F 02  U.4169193F 02  -0.5727759F U1  -0.1021579E U2  0.1347716F 02  FIXEN HUR FLAN AT  HAPHUNIC ANALYSIS	BJ  3.104721HF 02 -J.30455065 03 0.24965356 02 -0.12740495 03 0.7262071F 02 0.9503395 02 -0.24150435 01 -0.24505246 01 -0.14218116 02 0.12268796 02  STA 18 MUDEL AH-DOA SH	CJ  0.2423501E 03 0.4253103E 03 0.425312E 02 0.1464107E 02 0.134318E 02 0.10-2309E 03 0.2510-12E 01 0.365056E 01 0.1740-15E 02 0.1322517E 02	PHIJC  176.574 314.406 15.541 240.181 112.908 60.428 254.170 311.254 232.770 42.313	PSTJC  1/6-2/4  157-203  2-197  60-045  22-998  11-071  36-310  36-30  4-231	CJ/CJMAX  U.662311 1.000000 U.218060 0.344624 0.185042 0.24445 0.005650 0.020570 0.020570 0.041405 U.042751	1 2 3 4 5 6 7 8 9 10	4.098 8.197 12.295 10.393 20.492 24.595 22.787 36.635 40.984
AJ  -0.104526F 03  -0.2818457F 03  0.288564F 03  0.8899666 02  -0.3360766 02  0.4108193F 02  -0.4108193F 02  -0.4108193F 02  0.5727755F 02  0.1347716F 02  FIXEN HUR FLAN AT  HAFMUNIC ANALYSIS	BU  0.104721HF 02 -0.30455065 03 0.2495535 02 -0.1274649F 03 0.7262071F 02 0.9593395 02 -0.24150335 01 -0.65305245 01 -0.14218115 02 0.1226879F 02  STA 18 MUDEL AH-DOA SH	CJ  0.24235318 03 0.4253135 03 0.4253125 02 0.1464167 02 0.134513 02 0.13-2333 03 0.2513-128 01 0.3750056 01 0.1750-1550 02  CJ  CJ  C.24333336 05	PHIJC  170.574 314.406 15.541 240.181 112.988 00.428 254.170 311.254 232.74J 42.313  CTR 335 FL	PS IJC  1/674  157.203  5.197  60.045  22.598  1171  36310  3630  4231  PS IJC  8905	CJ/CJMAX  U.662311 1.000000 U.218080 0.344624 0.185042 0.244495 0.005090 0.020370 0.041405 U.042/51	1 2 3 4 5 6 7 8 9 10	4.098 8.197 12.295 10.393 20.492 24.595 22.787 36.695 40.984
AJ  -0.1045326F U3  -0.2819457F 03  -2.2819457F 03  -2.2839457F 03  -2.2839457F 02  -0.3050762F 02  -0.3050762F 02  -0.4168193F 02  -0.5247458F U1  -0.13477165 02  FIXEN HUR FLAN AT  HAPHUNIC ANALYSIS	######################################	CJ  0.28239318 03 0.4263135 03 0.4246127 02 0.1464167 03 0.7344913 03 0.2913712 01 0.3050908 01 0.17464328 02 0.13229175 02  CJ  CJ  CJ  C.24303378 03 0.2213378 03	PHIJC  170.574 314.406 15.591 240.181 112.908 254.170 311.254 232.793 92.313  CTR 335 FI	PS IJC  1/6	CJ/CJMAX  U.662311 1.000000 U.218060 0.344624 0.185042 0.244495 0.005640 0.041405 U.042751  1  CJ/CJMAX 1.000000 0.762440	1 2 3 4 5 6 7 8 9 10	4.098 8.197 12.295 10.393 20.492 24.596 28.685 32.787 36.685 40.984
AJ  -0.104526F 03  -0.2818457F 03  0.288564F 03  0.8899666 02  -0.3360766 02  0.4108193F 02  -0.4108193F 02  -0.4108193F 02  0.5727755F 02  0.1347716F 02  FIXEN HUR FLAN AT  HAFMUNIC ANALYSIS	BU  0.104721HF 02 -0.30455065 03 0.2495535 02 -0.1274649F 03 0.7262071F 02 0.9593395 02 -0.24150335 01 -0.65305245 01 -0.14218115 02 0.1226879F 02  STA 18 MUDEL AH-DOA SH	CJ  0.24235318 03 0.4253135 03 0.4253125 02 0.1464167 02 0.134513 02 0.13-2333 03 0.2513-128 01 0.3750056 01 0.1750-1550 02  CJ  CJ  C.24333336 05	PHIJC  170.574 314.406 15.541 240.181 112.988 00.428 254.170 311.254 232.74J 42.313  CTR 335 FL	PS IJC  1/674  157.203  5.197  60.045  22.598  1171  36310  3630  4231  PS IJC  8905	CJ/CJMAX  U.662311 1.000000 U.218080 0.344624 0.185042 0.244495 0.005090 0.020370 0.041405 U.042/51	1 2 3 4 5 6 7 8 9 10	4.098 8.197 12.295 10.393 20.492 24.595 32.787 36.695 40.984
AJ  -0.104526F U3  -0.2818457F 03  U.2983C49E C3  U.89894066 U2  -0.3060766F 02  U.4108193E U2  -0.4108193E U2  -0.4108193E U2  -0.4108193E U2  U.1347716E 02  FIXEN HUR FLAN AT  HAFHUNIC ANALYSIS  2  -0.4059154E U5  U.4742295E U3  U.347257F U4  U.31U2506E U4  -0.3942605E U4	BJ  0.104721HF 02 -0.30455065 03 0.24965395 02 -0.12746495 03 0.7262071F 02 0.9593395 02 -0.24150335 01 -0.65305246 01 -0.14218115 02 0.1226879F 02  STA 18 MUDEL AH-DOA SH  BJ  0.29046225 05 -0.2480569E 05 -0.2953767E 03 -0.8076516F 03	CJ  0.2423531E 03  0.4253135E 03  0.4253135E 03  0.1245147E 02  0.1464167E 02  0.12713712E 01  0.173655E 02  CJ  CJ  CJ  C.2435337E 05  0.21522517E 02	PHIJC  176.574 314.406 15.54 240.181 112.988 60.428 254.170 311.254 232.74J 42.313  CTR 335 FI	PS TJC  1/674  157203  2.197  60045 2298  1171  36107 2236 4231  PS TJC  8905  140061  116163	CJ/CJMAX  0.662311 1.000000 0.218060 0.344624 0.344624 0.244495 0.005570 0.02570 0.041405 0.042751	1 2 3 4 5 6 7 8 9 10	4.098 8.197 12.295 10.393 20.492 24.596 28.685 32.787 36.685 40.984
AJ  -0.1045326F 03  -0.2813457F 03  0.2835445F 03  0.2835445F 03  0.2835466F 02  0.4855466F 02  0.4668154F 02  0.5727755F 01  -0.10415756 02  FIXEN HUR FLAN AT  HARMUNIC ANALYSIS	######################################	CJ  0.28239318 03 0.42631335 03 0.42461275 02 0.14641672 03 0.27134125 01 0.3050968 01 0.17464328 02 0.13229175 02  CJ  C.24333318 03 0.213115 03 0.213115 03 0.3115 9078 04 0.23617 15 04	PHIJC  170.574 314.406 15.591 240.181 112.988 254.170 311.254 232.793 92.313  CTR 335 FI  PHIJC  89.005 280.121 354.488 191.665 12.120 337.159	PS IJC  1/6.374  157.203  2.197  60.1045  22.598  11.371  36.310  38.307  22.3303  4.231  27.303  PS IJC  89.005  140.001  118.163  47.316  2.424  2.424	CJ/CJMAX  U.662311 1.00UU00 U.218080 U.344624 U.344495 U.00000 0.020370 U.042/01  1  CJ/CJMAX 1.000UU0 0.762440 1.107296 0.137535	1 2 3 4 5 6 7 8 9 10	4.098 8.197 12.295 10.393 20.492 24.595 32.787 36.635 40.984  FREQUENCY 4.698 8.197 12.295 10.393
AJ  -0.104526F 03  -0.2313457F 03  0.2313457F 03  0.2313457F 03  0.2313457F 02  0.3050764F 02  0.4108134F 02  -0.5727755F 01  -0.1021575E 02  0.13477165 02  FIXED HUR FLAD AT  HARHUNIC ANALYSIS  -0.4050154E 05  0.4742295E 03  0.3412685F 04  0.3412685F 04  0.4205.315F 03	######################################	CJ  0.2423531E 03 0.4253135 03 0.4253125 02 0.1464167 02 0.1343165 02 0.132337 03 0.251371E 02 0.13225175 02  CJ  C2435337 00 0.2361731E 04 0.37734315 04 0.2361731E 04 0.2361731E 04 0.2361731E 04	PHIJC  176.574 314.406 15.541 240.181 112.988 60.428 254.170 311.254 232.74J 42.313  CTR 335 FL  PHIJC  89.005 280.121 354.488 191.865 12.120 337.154 323.567	PS TJC  1/6-2/4  157-203  2-197  60-045  22-998  11-071  36-310  4-231  T 503-0  PS TJC  89-000  140-001  118-163  77-916  2-924  20-193  4-62+	CJ/CJMAX  U.662311 1.000000 U.218060 0.344624 0.185042 0.244495 0.0050490 0.020370 0.041405 U.042751  1  CJ/CJMAX 1.000000 0.762440 0.137535 0.031988 0.055255 0.003790	1 2 3 4 5 6 7 8 9 10	4.098 8.197 12.295 10.393 20.492 24.595 32.787 36.695 40.984  FREQUENCY 4.698 8.197 12.245 10.373 20.472 24.596 48.685
AJ  -0.104526F U3  -0.2819457F 03  U.283264F C3  U.88999000 22  -0.3060704F C2  U.4108193F U2  -0.5727756 U2  0.5727756 U2  0.13477105 02  FIXEN HUR FLAN AT  HAFMUNIC ANALYSIS  -0.4055154E U3  U.34742295E U3  U.34742571F U4  U.31U2556F U4  U.31U2556F U4  U.31U2556F U4  U.31U2556F U4  U.31U2556F U4  U.31U3556F U4	BJ  0.104721HF 02 -J.3045505F 03 0.2496535E 02 -J.32496535E 02 -J.32496535E 02 -J.32496535E 02 -J.32496535E 02 -J.32496535E 02 -J.32496535E 02 -J.3245355 02 -J.325679E 02  STA 18 MUJEL AH-JOA SH  0.290.0225 05 -J.246059E 05 -J.246059E 05 -J.2953757E 03 -J.69576E 03 -J.69576E 03 -J.69576E 03 -J.69576E 03 -J.69576E 03 -J.695766E 03 -J.695766E 03 -J.695766E 03 -J.695766E 03	CJ  0.2423531E 03 0.4253135 03 0.4253125 02 0.14641672 03 0.73345185 02 0.13-23093 03 0.2513722 01 0.3750556 01 0.1750756 02 0.1750756 02  CJ  C.2935337 03 0.2361751E 04 0.2361751E 04 0.2361751E 04 0.2361751E 04	PHIJC  170-574 314-406 15-541 240-181 112-988 00-428 254-170 311-254 232-74J 42-J13  CTR 335 FL  PHIJC  89-J05 240-121 354-488 191-865 12-120 337-134	PS IJC  1/6	CJ/CJMAX  U.662311 1.00UU00 U.218080 U.344624 U.344495 U.000000 U.042/91  CJ/CJMAX  1.000UU0 U.042/91  1  CJ/CJMAX 1.000UU0 U.042/91  1  CJ/CJMAX 1.000UU0 U.042/91  1  CJ/CJMAX 1.000UU0 U.042/91  U.042/91  U.042/91  U.042/91	1 2 3 4 5 6 7 8 9 10	4.098 8.197 12.295 10.393 20.492 24.089 32.787 36.685 40.984  FREQUENCY 4.698 8.197 12.295 10.373 20.492 24.089 32.787
AJ  -0.104526F 03  -0.2313457F 03  0.2313457F 03  0.2313457F 03  0.2313457F 02  0.3050764F 02  0.4108134F 02  -0.5727755F 01  -0.1021575E 02  0.13477165 02  FIXED HUR FLAD AT  HARHUNIC ANALYSIS  -0.4050154E 05  0.4742295E 03  0.3412685F 04  0.3412685F 04  0.4205.315F 03	######################################	CJ  0.2423531E 03 0.4253135 03 0.4253125 02 0.1464167 02 0.1343165 02 0.132337 03 0.251371E 02 0.13225175 02  CJ  C2435337 00 0.2361731E 04 0.37734315 04 0.2361731E 04 0.2361731E 04 0.2361731E 04	PHIJC  176.574 314.406 15.541 240.181 112.988 60.428 254.170 311.254 232.74J 42.313  CTR 335 FL  PHIJC  89.005 280.121 354.488 191.865 12.120 337.154 323.567	PS TJC  1/6-2/4  157-203  2-197  60-045  22-998  11-071  36-310  4-231  T 503-0  PS TJC  89-000  140-001  118-163  77-916  2-924  20-193  4-62+	CJ/CJMAX  U.662311 1.000000 U.218060 0.344624 0.185042 0.244495 0.0050490 0.020370 0.041405 U.042751  1  CJ/CJMAX 1.000000 0.762440 0.137535 0.031988 0.055255 0.003790	1 2 3 4 5 6 7 8 9 10	4.098 8.197 12.295 10.393 20.492 24.595 32.787 36.695 40.984  FREQUENCY 4.698 8.197 12.245 10.373 20.472 24.596 48.685

FIXED HUB CHORD AT STA 18 HARMUNIC AMALYSIS MUDEL AN-564 SHIP 1009 T 408 CTR 335 FLT 503.0 TR 3

LA	BJ	Cl	PH1 JC	PS LJC	CJ/CJMAX	J	FRE QUENCY
0.5227957F 05		8 1 2 2		11		_	
-J.1470455E C5	0.10345456			98.059	1.000000	1	4.098
-0.1520275E 04	0.58533916			52.280	0.057650	2	8.197 12.295
-0.4113203F 04 -0.1254230F 04	-0.4722492E 0.2055415E			42.6/3	0.012117	,	16.393
0.22475475 04	-0.14735308			65.473	0.026038	5	20.492
0.11+365/6 04	-0.10:01:46			48.381	0.031369	6	24.590
0.20035108 02	-0.23C1925E			34.443	0.002204	7	28.489
0.130#291E 04	-0.15633536			40.040	0.021640	8	32.787
-0.42546046 03	-0.13544295			61119	0.013940	ÿ	36.885
0.4496169F 03	-0.79339945	G3 0.4123345E 0:	499.551	29.455	CP0600.0	10	46.584
BLACE FLAP AT STA							
HALADAIC WATAR	MOUSE AH-56A	SHIP 1007 T +UB	CTR 335 F	LT 503.0	TR 190		
LA	υJ	CJ	PHIJC	PSIJC	CJ/CJMAK	J	FREQUENCY
0.69936848 04							
90 316 FCOCH. C	-U. 2306974E			364.011	0.901475	1	4.098
-0.4513145E 03	O. SZCOUJUE			47.477	1.000000	2	8.197
-0.2717cC7F 03	-3.5526800E			81.272	0.11/861	3	12.245
J.1770194E J4	-0.68178305			84.735	0.364225	4	10.173
-0.73431675 03	0.39893826			30.298	0.124451	5	20.492
-3.33104176 03	0.41926035			18.301	3.100777	6	24.540
-0.2079543E C3	0.1172.665			25.253	0.039859	7	28.689
0.30917825 03 -0.1462139F 03	0.2476844F -0.2106436F			4.d37 20.911	0.075811	8	32.787
-0.11262435 03	-0.25313565			24.598	0.053036	10	36. 6d5 40. 984
-0.11202435 03	-0.23313300	C3 0.27714352 03	247.771	24.710	0.075030	10	40.964
BLADE FLAP AT STA	205						
HARMONIC ANALYSIS		SHIP 1004 T +08	CTR 335 F	17 503.0	19 20		
				,0,,,	IN 20		
ing totto mineral				2, 30310	1 20		
THE TOTAL STATE OF THE POST OF			, 51.11	. ,0,10	1 20		
THE TOTAL PROPERTY.					1 20		
AJ	ъ	ĉ.	PHIJC	P\$ 11C	CJ/CJHAX	J	FREQUENCY
AJ -0.9489449E 04	ыЈ	c.	PHIJC	PS 1JC	CJ/CJMA X	_	
AJ -0.9489449E 04 -0.2110544E 04	BJ 0.3d3743∂E	CJ 04 0.4373>3>E 09	PHIJC	PS IJC	CJ/CJMAX 1.00000	ı	4.098
AJ -0.9480449E U4 -0.2110544E U4 0.3107583F U3	U.3d37438E -U.14758>>E	CJ 04 0.4373>3>E 04 04 0.173>>23E 04	PHIJC 118.810	PS IJC 11d.810 140.352	CJ/CJMAX 1.00000 0.389431	l 2	4.098 8.197
AJ -0.9489449E U4 -0.2110544E U4 0.3167583F U3 -0.3205871E O4	U.3#3743∂E -U.1u798⊅7E -U.4u524∀oF	CJ	PHIJC 118.810 283.703	PS IJC 118.810 140.352 62.869	CJ/CJMAX 1.000000 0.389431 0.740351	l 2 3	4.098 8.197 12.295
AJ -0.9489449E 04 -0.2110544E 04 0.3107583F 03 -0.3205871E 04	0.3d3743dE -0.1u758>>E -0.4d525doF 0.14625d>F	04	PHIJC	PS IJC 11d.810 140.352 62.869 2.028	CJ/CJMAX 1.00000 0.389431 0.740351 0.269032	L 2 3 4	4.098 8.197 12.295 16.393
AJ -0.9489449E 04 -0.2110544E 04 0.3107583F 03 -0.3205471F 04 0.11664455 04 -0.3145007E 03	0.3#37438E -0.14758>>E -0.4#52948F 0.1662519F	04	PHIJC  118.810  280.703  188.008  8.112  3 loo.402	PS IJC 11d.810 140.352 62.669 2.028 33.232	CJ/CJMAX 1.00000 0.389431 0.740351 0.269032 0.075134	l 2 3 4 5	4.098 8.197 12.295 16.393 20.492
AJ -0.9489449E 04 -0.2110544E 04 0.3107583F 03 -0.3205871E 04 0.11064455 04 -0.3145007E 03 -0.2327c01F 03	0.3437438E -0.1475855E -0.4452946F 0.1662515F 0.7873666 0.64132Jcf	04	PHIJC  118.810  283.703  188.608  8.112  8.112  100.102	PS IJC 11d.810 140.352 62.669 2.028 33.232 1d.325	CJ/CJHAX 1.00000 0.389431 0.740351 0.269032 0.075134 0.155763	1 2 3 4 5	4.098 8.197 12.295 16.393 20.492 24.590
AJ -0.9489449E 04 -0.2110544E 04 -0.3167583F 03 -0.3205871E 04 -0.11664455 04 -0.3145007E 03 -0.2527c615 03 0.1259071E 02	BJ	CJ  04	PHIJC  118.810  283.703  188.608  8.112  100.102  100.102  277.755	PS IJC 11d.810 140.352 62.d69 2.028 33.232 14.325 34.679	CJ/CJMAX 1.000000 0.389431 0.740351 0.269032 0.075134 0.155/63 0.021306	1 2 3 4 5 6 7	4.098 8.197 12.295 16.393 20.492 24.590 28.685
AJ -0.9489449E 04 -0.2110544E 04 0.3107583F 03 -0.3205871E 04 0.11004455 04 -0.3145007E 03 -0.2327co15 03 0.1259071E 02 -0.49494881E 02	0.3837438E -0.1075855E -0.4852986F 0.1602535F 0.7870366E 0.6413206E -0.9245714E 0.4124854E	04	PHIJC  118.810  283.703  188.008  8.112  3.100.102  107.755  3.102.903	PSIJC 11d.810 140.352 62.d69 2.028 33.232 14.323 14.370	CJ/CJMAX 1.000000 0.389431 0.740351 0.269032 0.075134 0.155765 0.021306 0.076648	1 2 3 4 5	4.048 8.197 12-295 14.393 20-492 24.596 28.685 32.787
AJ -0.948949E 04 -0.2110544E 04 0.3107583F 03 -0.3205871E 04 0.11064455 04 -0.3175007E 03 -0.2327coff 03 0.1259071E 02 -0.9494581E 02 -0.1504895F 03	0.3437438E -0.14758>>E -0.485294>E 0.140253>F 0.7870366E 0.4132Ucf -0.9245714E 0.4124346 -0.1471202E	04	PHIJC  118.810  283.703  188.608  8.112  3.166.162  3.107.755  102.963  3.213.444	PS IJC 11d.810 140.352 62.d69 2.028 33.232 14.325 39.679	CJ/CJMAX 1.000000 0.389431 0.740351 0.269032 0.075134 0.155/63 0.021306	1 2 3 4 5 6 7 8	4.098 6.197 12.295 16.393 20.492 24.590 28.085 32.787 36.885
AJ -0.9489449E 04 -0.2110544E 04 0.3107583F 03 -0.3205871E 04 0.11004455 04 -0.3145007E 03 -0.2327co15 03 0.1259071E 02 -0.49494881E 02	0.3837438E -0.1075855E -0.4852986F 0.1602535F 0.7870366E 0.6413206E -0.9245714E 0.4124854E	04	PHIJC  118.810  283.703  188.608  8.112  3.166.162  3.107.755  102.963  3.213.444	PSIJC 11d.810 140.352 62.869 2.028 33.232 14.325 39.679 12.670 23.936	CJ/CJMAX 1.00000 0.389431 0.740351 0.269032 0.075134 0.155763 0.041306 0.046140 0.046178	1 2 3 4 5 6 7 8	4.048 8.197 12-295 14.393 20-492 24.596 28.685 32.787
AJ -0.948949E 04 -0.2110544E 04 0.3107583F 03 -0.3205871E 04 0.11064455 04 -0.3175007E 03 -0.2327coff 03 0.1259071E 02 -0.9494581E 02 -0.1504895F 03	0.3437438E -0.14758>>E -0.485294>E 0.140253>F 0.7870366E 0.4132Ucf -0.9245714E 0.4124346 -0.1471202E	04	PHIJC  118.810  283.703  188.608  8.112  3.166.162  3.107.755  102.963  3.213.444	PSIJC 11d.810 140.352 62.869 2.028 33.232 14.325 39.679 12.670 23.936	CJ/CJMAX 1.00000 0.389431 0.740351 0.269032 0.075134 0.155763 0.041306 0.046140 0.046178	1 2 3 4 5 6 7 8	4.098 6.197 12.295 16.393 20.492 24.590 28.085 32.787 36.885
AJ -0.948949E 04 -0.2110544E 04 0.3107583F 03 -0.3205871E 04 0.11064455 04 -0.3175007E 03 -0.2327coff 03 0.1259071E 02 -0.9494581E 02 -0.1504895F 03	BJ  0.3437438E -0.1475855E -0.4452986E 0.16625366E 0.6413206E -0.9245714E 0.41248546E -0.1371202E -0.9310182E	04	PHIJC  118.810  283.703  188.608  8.112  3.166.162  3.107.755  102.963  3.213.444	PSIJC 11d.810 140.352 62.869 2.028 33.232 14.325 39.679 12.670 23.936	CJ/CJMAX 1.00000 0.389431 0.740351 0.269032 0.075134 0.155763 0.041306 0.046140 0.046178	1 2 3 4 5 6 7 8	4.098 6.197 12.295 16.393 20.492 24.590 28.085 32.787 36.885
AJ -0.9489449E 04 -0.2110544E 04 0.3167583F 03 -0.3205171F 04 0.11664455 04 -0.3145007E 03 0.1259071E 02 -0.1259071E 02 -0.1504P955 03 -0.8546370F 02	0.3837438E -0.1475855E -0.4852940F 0.1602535F 0.78733666 0.44132466 -0.9457146 0.41248546 -0.10712928 -0.93101828	04	PHIJC  118.810  283.703  188.008  8.112  106.162  107.775  12.77.75  12.903  217.444  227.434	PS IJC 118.810 140.352 62.dby 2.028 33.232 18.325 19.074 12.670 23.938 22.744	CJ/CJMAX 1.00000 0.389431 0.740351 0.269032 0.075134 0.155765 0.021306 0.021306 0.042176 0.028862	1 2 3 4 5 6 7 8	4.098 6.197 12.295 16.393 20.492 24.590 28.085 32.787 36.885
AJ -0.9489449E 04 -0.2110544E 04 0.3107583F 03 -0.3205871E 04 0.11664455 04 -0.3145007E 03 -0.2527601E 03 0.1259071E 02 -0.949481E 02 -0.1504895F 03 -0.8546370F 02	0.3837438E -0.1475855E -0.4852940F 0.1602535F 0.78733666 0.44132466 -0.9457146 0.41248546 -0.10712928 -0.93101828	04	PHIJC  118.810  283.703  188.008  8.112  106.162  107.775  12.77.75  12.903  217.444  227.434	PS IJC 118.810 140.352 62.dby 2.028 33.232 18.322 18.322 18.322 18.322 18.323 19.670 23.938 22.744	CJ/CJMAX 1.00000 0.389431 0.740351 0.269032 0.075134 0.155765 0.021306 0.021306 0.042176 0.028862	1 2 3 4 5 6 7 8	4.098 6.197 12.295 16.393 20.492 24.590 28.085 32.787 36.885
AJ -0.9489449E 04 -0.2110544E 04 0.3107583F 03 -0.3205871E 04 0.11664455 04 -0.3145007E 03 -0.2527601E 03 0.1259071E 02 -0.949481E 02 -0.1504895F 03 -0.8546370F 02	0.3837438E -0.1475855E -0.4852940F 0.1602535F 0.78733666 0.44132466 -0.9457146 0.41248546 -0.10712928 -0.93101828	04	PHIJC  118.810  283.703  188.008  8.112  106.162  107.775  12.77.75  12.903  217.444  227.434	PS IJC 118.810 140.352 62.dby 2.028 33.232 18.322 18.322 18.322 18.322 18.323 19.670 23.938 22.744	CJ/CJMAX 1.00000 0.389431 0.740351 0.269032 0.075134 0.155765 0.021306 0.021306 0.042176 0.028862	1 2 3 4 5 6 7 8	4.098 6.197 12.295 16.393 20.492 24.590 28.085 32.787 36.885
AJ -0.9489449E 04 -0.2110544E 04 0.3107583F 03 -0.3205871E 04 0.11664455 04 -0.3145007E 03 -0.2527601E 03 0.1259071E 02 -0.949481E 02 -0.1504895F 03 -0.8546370F 02	0.3837438E -0.1475855E -0.4852940F 0.1602535F 0.78733666 0.44132466 -0.9457146 0.41248546 -0.10712928 -0.93101828	04	PHIJC  118.810  283.703  188.008  8.112  106.162  107.775  12.77.75  12.903  217.444  227.434	PS IJC 118.810 140.352 62.dby 2.028 33.232 18.322 18.322 18.322 18.322 18.323 19.670 23.938 22.744	CJ/CJMAX 1.00000 0.389431 0.740351 0.269032 0.075134 0.155765 0.021306 0.021306 0.042176 0.028862	1 2 3 4 5 6 7 8	4.098 6.197 12.295 16.393 20.492 24.590 28.085 32.787 36.885
AJ -0.9489449E 04 -0.2110544E 04 0.3107583F 03 -0.3205871E 04 0.11004455 04 -0.3145007E 03 0.1259071E 02 -0.4327001E 02 -0.1504P95E 03 -0.8546370F 02  BLADE FLAP AT STA	BJ  0.3837438E -0.1075855E -0.4852986E 0.1062535F 0.7873366E 0.6413236E -0.9245714E 0.4124854E -0.1071202E -0.9310182E	CJ  04	PHIJC  118.810  28J.703  188.608  8.112  3.105.102  3.107.775  1J2.993  3.217.454  227.459	PSIJC 11d.810 140.352 62.d69 2.028 33.232 1d.325 39.679 12.d70 23.93d 22.749	CJ/CJHAX  1.00000 0.389431 0.740351 0.269032 0.075134 0.155763 0.021306 0.04618 0.046178 0.028862	1 2 3 4 5 6 7 8 9	4.098 8.197 12-295 16.393 20-92 24-596 28-685 32.787 36-885 40-584
AJ -0.9480449E 04 -0.2110544E 04 0.3167583F 03 -0.3205871F 04 0.1166445F 04 -0.3145007E 03 -0.2327601F 03 -0.1259671E 02 -0.1504995F 03 -0.8546370F 02  BLADE FLAP AT STA	0.3837438E -0.1475855E -0.4852940F 0.1602535F 0.78733666 0.44132466 -0.9457146 0.41248546 -0.10712928 -0.93101828	04	PHIJC  118.810  283.703  188.008  8.112  106.162  107.775  12.77.75  12.903  217.444  227.434	PS IJC 118.810 140.352 62.dby 2.028 33.232 18.322 18.322 18.322 18.322 18.323 19.670 23.938 22.744	CJ/CJMAX 1.00000 0.389431 0.740351 0.269032 0.075134 0.155765 0.021306 0.021306 0.042176 0.028862	1 2 3 4 5 6 7 8	4.098 6.197 12.295 16.393 20.492 24.590 28.085 32.787 36.885
AJ -0.9489449E 04 -0.2110544E 04 -0.3107583F 03 -0.3205871E 04 -0.3145007E 03 -0.2527601E 03 -0.1259071E 02 -0.1504895F 03 -0.8546370F 02  BLADE FLAP AT STA	BJ  0.3837438E -0.1475855E -0.4852940F 0.1602535F 0.78733666 0.64132366 -0.9457146 0.41248546 -0.1671292E -0.9310182E  235 MODEL AH-96A	CJ  O4	PHIJC  118.810  280.703  188.608  8.112  106.462  107.755  102.963  217.755  102.963  227.439  CTR 335 F	PS IJC 118.810 140.352 62.869 2.028 33.232 18.325 19.079 12.670 23.938 22.749	CJ/CJMAX  1.000000 0.389431 0.740351 0.269032 0.075134 0.155/53 0.021306 0.042176 0.028862  TR 4  CJ/CJMAX	1 2 3 4 5 6 7 8 9	4.048 8.197 12.245 16.393 20.492 24.596 28.085 32.787 36.885 40.584
AJ -0.9489449E 04 -0.2110544E 04 0.3107583F 03 -0.3205871E 04 0.11064455 04 -0.3145007E 03 -0.2327co15 03 0.1259071E 02 -0.494581E 02 -0.1504895F 03 -0.8546370F 02  BLADE FLAP AT STA MAFHUNIC ANALYSIS	BJ  0.3837438E -0.14758>>E -0.485298E 0.160253>F 0.7870366E 0.64132U6E -0.9245714E 0.41248>=E 0.1071202E -0.9310182E  235 MODEL AH-96A	CJ  04	PHIJC  118.810  283.703  188.608  8.112  3.166.162  3.107.796  2.277.755  1J2.963  3.215.444  2.27.434  CTR 335 F	PSIJC 11d.810 140.352 62.869 2.028 33.232 14.325 39.679 12.670 23.938 22.749	CJ/CJMAX  1.00000 0.389431 0.740351 0.269032 0.075134 0.155763 0.041306 0.046176 0.046176 0.028862  TR 4  CJ/CJMAX 0.487933	1 2 3 4 5 6 7 8 9 1 0	4.098 8.197 12.295 16.393 20.492 24.596 28.685 32.787 36.885 40.584
AJ -0.9489449E 04 -0.2110544E 04 0.3107583F 03 -0.3205871E 04 0.1106445E 04 -0.3149507E 03 0.1259071E 02 -0.42327601F 02 -0.4394581E 02 -0.4504P95F 03 -0.8546370F 02  BLADE FLAP AT STA MAFHUNIC ANALYSIS	BJ  0.3837438E -0.1475855E -0.4852940F 0.1602535F 0.78733666 0.64132366 -0.9457146 0.41248546 -0.1671292E -0.9310182E  235 MODEL AH-96A	CJ  04	PHIJC  118.810  28J.703  188.608  8.112  3 166.162  3 177.755  1J2.993  3 213.444  227.439  CTR 335 F  PHIJC  94.1J2  71.991	PS IJC 11d.810 140.352 62.d69 2.028 33.232 1d.325 39.679 12.d70 23.43d 22.749  LT 503.0  PS IJC 94.122 35.975	CJ/CJMAX  1.00000 0.389431 0.740351 0.269032 0.075134 0.155763 0.021306 0.046176 0.028862  TR 4  CJ/CJMAX 0.487933 0.199611	1 2 3 4 5 6 7 8 9 10	4.098 8.197 12.295 16.393 20.492 24.596 24.685 32.787 36.885 40.584
AJ -0.9489449E 04 -0.2110544E 04 0.3107583F 03 -0.3205871E 04 0.11064455 04 -0.3145007E 03 -0.2327co15 03 0.1259071E 02 -0.494581E 02 -0.1504895F 03 -0.8546370F 02  BLADE FLAP AT STA MAFHUNIC ANALYSIS	BJ  0.3837438E -0.1075855E -0.4852986F 0.1662535F 0.7873666 -0.9249714E 0.41248946 -0.1071292E -0.9310182E  235 MODEL AH-96A	CJ  04	PHIJC  118.810  283.703  188.608  8.112  3.106.162  3.107.494  2.277.755  3.12.963  2.12.444  2.27.439  CTR 335 F	PS IJC 11d-810 140-352 62-869 2-028 33-232 1d-325 39-679 12-670 23-936 22-749  LT 503-0  PS IJC 94-132 33-975 43-082	CJ/CJMAX  1.000000 0.389431 0.740351 0.269032 0.075134 0.155763 0.021306 0.042178 0.028862  TR 4  CJ/CJMAX 0.487933 0.194611 1.000000	1 2 3 4 5 6 7 8 9 10	4.098 8.197 12.295 16.393 20.492 24.596 24.685 32.787 36.885 40.584
AJ -0.948949E 04 -0.2110544E 04 0.3167583F 03 -0.3205871F 04 0.1166445F 04 -0.3149007E 03 0.1259071E 02 -0.42527601F 02 -0.1504P95F 03 -0.8546370F 02  BLADE FLAP AT STA MARHUNIC ANALYSIS	BJ  0.3837438E -0.1075855E -0.4852986E 0.1662515F 0.78703666 0.6413206F -0.9245714F 0.41248546 -0.1071202E -0.9310182E  235 MODEL AH-96A  BJ  0.1641982E 0.7183320E -0.6081514F	CJ  04	PHIJC  118.810  283.703  188.008  8.112  3.104.490  2.277.73  3.122.903  3.212.444  227.439  CTR 335 F	PS IJC 118.810 140.352 62.869 2.028 33.232 18.329 19.679 12.670 23.938 22.749  LT 503.0  PS IJC 94.132 33.982 74.463	CJ/CJMAX  1.00000 0.389431 0.740351 0.269032 0.075134 0.155/63 0.0243/60 0.0243/76 0.028862  TR 4  CJ/CJMAX 0.487933 0.194611 1.00000 0.211037	1 2 3 4 5 6 7 8 9 10	4.098 8.197 12.295 16.393 20.492 24.59C 28.085 32.787 36.885 40.584
AJ -0.948949E 04 -0.2110544E 04 -0.3107583F 03 -0.3205871E 04 -0.11064455 04 -0.3147507E 03 -0.2327co15 03 -0.2327co15 03 -0.1259071E 02 -0.1504P95F 03 -0.8545370F 02  BLADE FLAP AT STA HAFHUNIC ANALYSIS  -0.3737373CF 04 -0.3735732F 04 -0.3747355E 03	BJ  0.3837438E -0.14758>E -0.485298E 0.140253>E 0.41320E -0.9245714E 0.4124894E -0.1071202E -0.9310182E  235 MODEL AH-96A  0.1141902E 0.7183320E -0.6081514E -0.7057148E	CJ  04	PHIJC  118.810  28J.703  188.608  8.112  3.166.162  3.107.796  277.755  1J2.963  3.213.444  227.434  CTR 335 F  PHIJC  94.132  71.951  189.246  297.930  191.002	PS IJC 11d-810 140-352 62-869 2-028 33-232 1d-325 39-679 12-670 23-936 22-749  LT 503-0  PS IJC 94-132 33-975 43-082	CJ/CJMAX  1.000000 0.389431 0.740351 0.269032 0.075134 0.155763 0.021306 0.042178 0.028862  TR 4  CJ/CJMAX 0.487933 0.194611 1.000000	1 2 3 4 5 6 7 8 9 10	4.098 8.197 12.295 16.393 20.492 24.596 24.685 32.787 36.885 40.584
AJ -0.9489449E 04 -0.2110544E 04 0.3107583F 03 -0.3205871E 04 0.11004455 04 -0.3147507E 03 -0.2327co15 03 0.1259C71E 02 -0.4949481E 02 -0.1504P95F 03 -0.854C370F 02  BLADE FLAP AT STA MAFHUNIC ANALYSIS  -0.3735732E 03 -0.3735732E 03 -0.3735732E 03 -0.4213101F 03	BJ  0.3837438E -0.14758>>E -0.4852940E 0.140253>>E 0.641320E -0.9245714E 0.41248>+E 0.1171202E -0.9310182E  235 MODEL AH-96A  BJ  0.1141902E 0.7183320E -0.608151+E -0.7757148E -0.815198	CJ  04	PHIJC  118.810  283.703  188.608  8.112  3 166.162  3 17.775  102.993  3 21.444  227.459  CTR 335 F  PHIJC  94.132  71.951  189.246  297.930  191.002  91.978	PSIJC 11d.810 140.352 62.d69 2.028 33.232 1d.325 39.679 12.d70 23.936 22.749  LT 503.0  PSIJC 94.132 33.975 43.082 74.463 38.200	CJ/CJMAX  1.00000 0.389431 0.740351 0.269032 0.075134 0.155/b3 0.042130b 0.04617 0.028862  TR 4  CJ/CJMAX 0.48793 0.199611 1.00000 0.211037 0.113397	1 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	4.098 8.197 12.295 16.393 20.492 24.596 22.787 36.885 40.584 FPEQUENCY 4.098 8.197 12.295 16.393 20.492 24.596
AJ -0.948949E 04 -0.2110544E 04 -0.3107583F 03 -0.3205871E 04 -0.11064455 04 -0.317507E 03 -0.4257061E 03 -0.4259071E 02 -0.4949481E 02 -0.450489370F 02  BLADE FLAP AT STA HAFHUNIC ANALYSIS -0.854°370F 03 -0.3735732E 04 -0.3735732E 03 -0.4713101F 03 -0.4713101F 03 -0.4713101F 03 -0.4713101F 03 -0.4713101F 03	BJ  0.3837438E -0.14758>E -0.485298E 0.160251>F 0.7873366E 0.6413206E 0.415202E -0.9210182E  235 MODEL AH-96A  0.1641902E 0.7183320E -0.6081519E -0.7183420E 0.718320E 0.7183320E	CJ  04	PHIJC  118.810  283.703  188.608  8.112  3.166.162  3.109.998  2.17.755  1.2.993  3.213.494  2.27.439  CTR 335 F  PHIJC  94.132  71.991  189.269  191.002  91.9102  91.9102  91.9102  91.9102  91.991	PSIJC 11d.810 140.352 62.d69 2.028 33.232 1d.325 39.679 12.d70 23.938 22.749  LT 503.0  PSIJC 94.132 35.975 63.082 74.463 38.203 15.246	CJ/CJMAX  1.000000 0.389431 0.740351 0.269032 0.075134 0.155763 0.021306 0.042178 0.028862  TR 4  CJ/CJMAX 0.487933 0.19461 1.000000 0.211037 0.113397 0.21397	1 2 3 4 5 6 6 7 8 9 10	4.098 8.197 12.295 16.393 20.492 24.595 32.787 36.885 40.584 FPEQUENCY 4.098 8.197 12.295 16.393 20.492
AJ -0.9489449E 04 -0.2110544E 04 0.3107583F 03 -0.3205871E 04 0.11064455 04 -0.3147507E 03 -0.2327co15 03 0.1259C71E 02 -0.4944581E 02 -0.1504P955 03 -0.8546370F 02  BLADE FLAP AT STA HAFAUNIC ANALYSIS  -0.3735732E 03 -0.3735732E 03 -0.4713101F 03	BJ  0.3437438E -0.14758>>E -0.4452940E 0.140251>E 0.641320E -0.9245714E 0.41248>=C -0.1071202E -0.9310182E  235 MODEL AH-96A  BJ  0.1641902E 0.7183320E -0.6081514E -0.77C57148E -0.914080E 0.978311>E 0.23055>>E 0.4981830E 0.4981830E 0.4981830E	CJ  04	PHIJC  118.810  28J.703  188.608  8.112  3.166.162  3.107.790  1.2.7903  3.217.454  227.459  CTR 335 F  PHIJC  94.132  71.901  189.246  297.900  191.002  91.478  139.169  17.499  140.727	PSIJC 11d.810 140.352 62.d69 2.028 33.232 1d.325 39.679 12.d70 23.936 22.749  LT 503.0  PSIJC 94.132 35.975 43.082 74.463 38.203 15.246 19.361 0.937 16.303	CJ/CJMAX  1.00000 0.389431 0.740351 0.269032 0.075134 0.155763 0.021306 0.046178 0.028862  TR 4  CJ/CJMAX  0.48793 0.199611 1.00000 0.211037 0.113397 0.29803 0.093085 0.103855 0.103855	1 2 3 4 5 6 7 8 9 10	4.098 8.197 12.295 16.393 20.492 24.596 32.787 36.885 40.584 FPEQUENCY 4.098 8.197 12.295 16.393 20.492 24.596 26.685
AJ -0.948949E 04 -0.2110544E 04 -0.3107583F 03 -0.3205871E 04 -0.11064455 04 -0.317507E 03 -0.4257061E 03 -0.4259071E 02 -0.4949481E 02 -0.450489370F 02  BLADE FLAP AT STA HAFHUNIC ANALYSIS -0.854°370F 03 -0.3735732E 04 -0.3735732E 03 -0.4713101F 03 -0.4713101F 03 -0.4713101F 03 -0.4713101F 03 -0.4713101F 03	BJ  0.3837438E -0.14758>E -0.485298E 0.160251>F 0.7873366E 0.6413206E 0.415202E -0.9210182E  235 MODEL AH-96A  0.1641902E 0.7183320E -0.6081519E -0.7183420E 0.718320E 0.7183320E	CJ  04	PHIJC  118.810  28J.703  188.608  8.112  3.165.162  3.107.790  1.2.77.755  1.2.790  3.217.434  227.437  CTR 335 F  PHIJC  94.132  71.951  189.246  297.900  191.002  91.478  139.104  71.499  140.727	PSIJC 11d.810 140.352 62.dby 2.028 33.232 1d.325 39.674 12.d70 23.738 22.744  LT 503.0  PSIJC 94.132 35.975 43.382 74.463 38.203 15.246 17.861	CJ/CJMAX  1.000000 0.389431 0.740351 0.269032 0.075134 0.155/63 0.021306 0.042176 0.028862  TR 4  CJ/CJMAX 0.487933 0.199611 1.000000 0.211037 0.113397 0.255503 0.093085	1 2 3 4 5 6 7 8 9 1 0 1 0 1 2 9 4 5 6 7 8	4.098 8.197 12.295 16.393 20.492 24.596 28.085 32.787 36.885 40.584
AJ -0.9489449E 04 -0.2110544E 04 0.3107583F 03 -0.3205871E 04 0.11064455 04 -0.3147507E 03 -0.2327co15 03 0.1259C71E 02 -0.4944581E 02 -0.1504P955 03 -0.8546370F 02  BLADE FLAP AT STA HAFAUNIC ANALYSIS  -0.3735732E 03 -0.3735732E 03 -0.4713101F 03	BJ  0.3437438E -0.14758>>E -0.4452940E 0.140251>E 0.641320E -0.9245714E 0.41248>=C -0.1071202E -0.9310182E  235 MODEL AH-96A  BJ  0.1641902E 0.7183320E -0.6081514E -0.77C57148E -0.914080E 0.978311>E 0.23055>>E 0.4981830E 0.4981830E 0.4981830E	CJ  04	PHIJC  118.810  28J.703  188.608  8.112  3.166.162  3.107.790  1.2.7903  3.217.454  227.459  CTR 335 F  PHIJC  94.132  71.901  189.246  297.900  191.002  91.478  139.169  17.499  140.727	PSIJC 11d.810 140.352 62.d69 2.028 33.232 1d.325 39.679 12.d70 23.936 22.749  LT 503.0  PSIJC 94.132 35.975 43.082 74.463 38.203 15.246 19.361 0.937 16.303	CJ/CJMAX  1.00000 0.389431 0.740351 0.269032 0.075134 0.155763 0.021306 0.046178 0.028862  TR 4  CJ/CJMAX  0.48793 0.199611 1.00000 0.211037 0.113397 0.29803 0.093085 0.103855 0.103855	1 2 3 4 5 6 7 8 9 10	4.098 8.197 12.295 16.393 20.492 24.596 24.685 32.787 36.885 40.584 FPEQUENCY 4.098 8.197 12.295 16.393 20.492 24.596 28.685 32.787 30.885

BUADE FLAP AT STA 270
HARMONIC ENELYSIS MODEL AN-564 SHIP 1009 T 408 CTR 335 FLT 503.0 TH 26

AJ		e j		CJ	PHIJC	PS IJC	CJ/CJMAX	j	FREQUENCY
-0.1031186E				1					
0.139556E 0.1395E		-U.97675345 U.1360375F		0.3803012E 03 0.1373-31E 04	45.558	342.362	0.115174	1 2	4.098 8.197
-0.33465308		0.2435945E		0.33557912 04	175.037	58.612	1.000000	3	12.295
-0.1073720E		-0.54692096		0.55/36ILE 03	258.893	64.723	0.166089	4	16.393
-0.2010:30E	33	-0.23833+85		0.3534356 03	222.345	44.479	0.105336	5	20.492
0.1/261CLE	v.	3-6-62208€	03	0.54506323 03	70.214	13.036	0.252120	6	24.590
30660646.0-		U.513377CE		C. 01855JJE U3	123.905	17.701	0.184323	7	28.685
0.23376326		0.10229515		0.301634+= 03	19.824	2.478	0.089886	ď	32.767
-J.3210:24E		U. 1439798F		0.35183238 03	155.844	17.316	0.104843	10	36. 885 40.984
-U.2956641E	03	0.13029305	03	0.32336372 03	155.252	13.727	0.0 7/010	10	40.704
BLADE CHORD AT	T STA	103							
HARADYIC ANALY				HIP 1009 T 408	CTR 335 F	LT 503.0	TR 17		
L.A.		8.1		CJ	PHIJC	PS IJC	CJ/CJMAX	J	FREQUENCY
0.20988558	Co							-	
-0.1244435E	05	U. 4877797E		C. 5043/35E U5	104.050	104.356	1.000000	A	4.098
-3.71972298		0.16207518		0.17/0555 04	115.692	51.840	0.035624	2	8.197
-0.2364548F		0.21791308		0.21888345 04	95.412	31.604	0.043355	3	12.295
0.9283653F 0.1126461F		-0.507,350E		0.1057464E 04	331.344 330.231	66.046	0.020955	5	16.393
0.92004936		-0.72823785		0.11/333JE 04	321.037	53.006	0.023241	6	24.590
0.06.95028		-0.46/30,05		0.00+53935 03	355.964	50.853	U.J.104	7	28.685
-0.7497100E		0. 5075504F		0.7J53oJdF U3	145.932	18.238	0.017932	8	32.767
-0.347US62E	03	0.45649226	03	0. 273452LE US	127.218	14.130	0.011306	9	36.685
-0.1360752E	J4	0.1/293/58	C3	0.137-7765 04	170.741	17.074	0.021200	10	40.484
BLADE CHORD AT HARMONIC ANALY			S	HIP 1004 T 408	CTR 335 FL	.t 503.0 t	R  42		
0.216.214.5	4.5	R.J		LS	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
0.2142186E -0.542932Uf		J. 2639836E	05	C.2709609E 05	102.059	102.054	1.005000	1	4.098
-0.51931938		3.11042378		0.12232545 04	115.188	57.594	0.045101	2	8.197
-U . 474 6 CU6E		U. 1775035F		0.183540JE 04	104.985	34.995	0.067839	3	12.295
0.21797036		-U. 3EJJU43F		0.22125416 04	350.109	87.527	0.081778	4	16.343
-0.6217414F	02	-0.46505078	د0	0.473152.6 03	202.406	52.492	0.017517	5	20.492
0.1299376E		-0.10110335		0.200971+8 03	308.168	51.481	0.007050	6	24.590
0.4234683E		-0.3213302F		60 26/8618c.0	322.705	40.109	3.014659	7	20.609
-U./13668/E		0.55/41316		0.1114110= 04	126.701	15.838	0.044136	8	32.707
0.1935 c2cE -0.9540459E		0.11423828		0.115dno+ê 04 0.1205+55E 04	83.383 139.276	8.931 13.928	0.042825	10	36.885 40.984
BLADE CHORD AT			,	ufa 1333 7 .36		* 6.13 A *	6 12		
HARACHIC WATA	313	HUU'CE AN-JUA	3	HIP 1007 T 408	CIK 335 PL	T 503.0 T	N 22		
-0.25682C2E	V5	DJ		Cl	PHIJC	PS IJC	CJ/CJMAX	J	FREQUENCY
-0.1177779E		J. 66665865		0.67698243 04	177.014	100.019	1.000000	1	4.098
U.5009711E		-U. 1435451E		0.13233596 03	289.239	144.019	0.022458	2	8.197
9183000816		-0.22898313		0.64221516 03	339-112	113.037	0.094864	,	12.295
0.61930036		-0.84532+55		0.1347905± 04 0.6399136E 03	300.227	76.557	J.154791 U.097405	4 5	16.393
-0.1488299E		-0.6423787	-	(.6)74130E 03	250.956	51.391	0.097405	6	20.492 24.590
0.10732768		-0.103/213E		0.19579315 03	303.242	43.448	0.028921	7	24.546
-0.43036695		-0.85356095		0.44+6102E 03	191.094	23.357	0.000076	Ü	32.781
-0.18324726		0.48216UYE		0.5170vd5E 01	110.810	12.312	0.076192	9	36.885
-0.2491526E	03	-0. +35/1+4E	C2	0.25297326 03	193.918	18.792	0.037368	10	40.584

BLADE TORSION AT STA 131.5 HARMONIC ENGLYSIS MUDEL AH-56A SHIP 1009 T 408 CTR 335 FLT 503.0 TR 44

۲.۱		Le		CJ	DLIHE	PSIJC	CJ/CJMAX	J	FREQUENCY
0.55855456	<b>J3</b>								
U.167149UF	04	J. 2464049E	C4	0.29779315 04	55.855	55.455	1.000000	L.	4.098
-J.1831c7sE	04	0.17873015	04	0.2559235E 04	135.702	07.451	0.859386	2	8.197
-J.8748L7cF	03	0.97922596	OL	0. 47+80237 03	179. 159	54.786	0.293777	3	12.295
-U.2070 200F	U3	0.37731348	03	0.4025404E D3	125.349	34.337	0.155339	4	16.393
0.13001956	C4	-0.544C698F	C3	0.1409437F 04	337.243	07.454	0.473267	5	20.492
U.3337544E	UJ	-3.88310405	UJ	0. 14+001+6 01	240.703	48.451	0.31/016	6	24.596
-0.18445625	U3	0.1668933E	03	0.24475138 03	131.002	19.695	0.083530	7	20.689
0.73756268	03	0.57913435	C2	C. 7431530E 03	4.449	0.561	0.248542	8	32.787
-U.2071C30E	U.S	0.3748401E	03	0.42324335 03	110.921	13.213	0.143505	y	36.885
-0.8347525E	C2	0.1384531F	03	0.1510732 03	121.086	12.109	0.054289	10	46.584

BLADE FEATHER ANGLE
HARMONIC ANALYSIS MODEL AN-SOA SHIP LODY T 394 CTR 367 FLT 481.0 TR 31

AJ	ВЈ	CJ	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
0.7080332E 31							
0.2887794E OL	-0.361066JE 01	0.45234456 01	308.653	308.053	1.000000	1	4.065
-0.2239363E 00	-0.2547259E CO	0.33916478 00	228.080	114.340	0.073358	2	8.13C
-0.109224JE 00	-0.6323U31E-C1	0.12020002 00	210.067	10.022	0.027297	3	12.195
-0.1228452E-02	-0.15345518-01	0.14334476-01	266.366	66.592	0.004193	4	16.26C
-J.5467(66F-UJ	-U. 25311355-CI	0.2531725E-01	208.762	53.752	0.005476	5	20.325
-0.1532835E-CL	0.37045486-02	0.15/5905 =-01	160.413	21.130	0.003411	6	24.390
-0.2951503F-C1	0.2523686E-CL	0.1666-036-01	139.279	19.897	0.008367	7	28.455
-J.1199191E-JL	0.21337175-01	0.33773135-01	112.938	14.117	0.006655	8	32.520
0.1170071F- J1	-0.4 tJul 35E-02	0.12003755-01	331.544	37.000	0.002738	9	30.585
-0.6025512E- 02	-0.1824723E-02	0.0277144E-02	190.848	19.685	0.001362	10	40.65C

SHAFT MOMENT HARMUNIC ANALYSIS MODEL AM-56A SHIP 1309 T 394 CIR 367 FLT 481.0 TR 36

LA	d J	LJ	PHIJC	PSIJC	CJ/CJMAX	j	FREQUENC Y
-0.4332557E C4	0.1 (228635 06	0.10 17254E 00	133.905	133.405	1.000000		4.065
-0.1170574E 00	0.1 (22003E 00	0.23479805 04	177.662	84.431	J.013834	į	8.13C
-0.1337c59E C5	-0.26734865 C5	0.2947+535 05	243.414	01.140	0.176135	3	12.195
0.79467458 03	0.12C35u5E C4	0.1+450005 04	50.399	14.100	0.008514		16.26C 20.325
0.7353C74E 04	0.44950J8E 04 -3.1692925E 03	0.001810+004	31.438 194.922	5.288	0.050777	6	24.340
-0.26870275 04	J. 12014J7E C4	0.24033735 04	154.653	22.1.2	0.017489	7	28.455
0.5213220F 03	J. 1389325 C4	0.14+391+6 04	09.432	8.679	0.008743	8	32.520
0.1+321338 0+	J. 1835170E 04	0.2327343E 04	52.032	5.781	0.013715	Ģ	36.585
0.4449C43E US	0.3174349E C3	0.5405+17± 03	35.508	3.051	0.003220	10	40.656

PITCH LINK TENSION
MARHONIL ANALYSIS MUDEL 4H-564 SHIP 1007 T 394 CTR 367 FLT 481.0 TR 11

۸J	8.J	CJ	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENC Y
-0.2904353F C3							
-0.1702500E 03	-0.13552036 02	0.173787LE 03	184.551	184.551	0.497565	1	4.065
J.2245436E US	-0.2550100F 03	0.34324735 03	\$10.657	155.428	1.000000	2	8.13C
-J. 614U400F 02	-0.24509765 03	0.25243136 63	250.155	82.385	0.735416	3	12.195
-J.6689744E 01	-0.44919726 02	0.43+15135 02	261.529	62.382	0.132309	4	16.260
-3.20464605 02	-0.4913136E CZ	C.53388735 02	240.001	47.370	0.155540	5	20.325
-0.2+J9518E U2	J.450+619E 02	0. 21 18 7405 02	118.140	19.091	0.148835	6	24.39C
0.12434HoF 02	-0.21001575 02	0.25044505 02	299.699	42.814	0.073120	7	28.455
-J.3455 Eluc Ul	-0.26127733 C2	0.28339235 02	262.995	32.074	0.082562	8	32.520
-0.9532CloE 01	-3.15791615 00	J. 3533323E UL	180.949	20.105	0.027774	9	36.585
J.1.20164F 0J	-0.18e0001E 02	J. 135 )J 178 02	273.370	27.338	0.054191	10	40.650

FIXED HUR FILM AT STA 18
HARMONIC ANALYSIS MCDEL AH-364 SHIP 1007 T 394 CTR 367 FLT 481.0 TR 1

A J	B <b>J</b>	Cl	PHIJC	PSTJC	CJ/CJMAX	J	FREQUENC Y
-0.2303542E C5							
-J.2024782E U5	U.25652798 US	U. 3433411E 05	131.368	131.508	1.000000	i.	4.005
10 318cc+6.0	-0.11375+1E G5	0.11413016 05	274.501	127.251	0.287844	2	8.13C
-J.21427816 J4	-0.55992275 04	0.57743318 04	244.055	87.018	0.151241	3	12.195
-0.3540 F205 03	-U.1224015F C4	0.12741145 04	253.058	03.417	0.032199	4	16.260
0.1251713F U+	-0.3/3145E C3	0.13301+38 04	3+3.400	600.60	0.032955	5	20.325
J.3/15557F C3	-0.247094F CZ	0.37426373 03	356.594	54.432	0.009544	6	24.390
-U.87346856 U3	J. 3705405E G3	C. 148312JE 01	157.013	22.430	0.023940	7	28.455
0.67021128 63	-0.7031414. 03	0.1334634 04	310-039	30.051	.0 20100	3	32.520
U.2369537F U3	0.3525820F C3	0. +0445256 03	39.584	6.620	0.010316	9	36.585
-0.2400584E U3	0.08742UZE 02	0.2983411E 03	100.067	10.007	0.007521	I U	40.65C

FIXED HUB CHORD AT STA 18 HARMONIC SMALYSIS MODEL AM-SAA SHIP 1009 T 394 CTR 367 FLT 481.C TR 3

LA	NJ.	CJ	PHIJC	95110	CJ/CJHAX	J	FREQUENC Y
0.2742519E 05			20.00				
-J.2362136E 04	0.83807195 0		91.410	91.410	1.000000	1	4.065
-0.830+5ueE U4	-0.6204246E 6		326.008	76.815	0.132580	2	8.13C 12.195
-0.33408648 03	0.11484478		104.492	27-123	0.124417	4	16.260
U.2103227E 04	0.10051235 0		25.543	5.109	0.027606	5	20.325
0.32355668 03	-0.16561136 0		330.132	55.022	0.064451	6	24.396
0.91715535 03	0.53118925 0		33.078	4.297	0.012643	7	28.455
0.23412246 63	-0.1625349E C		278.147	34.77>	0.019589	ė	32.520
-0.48>4192E U3	-0.115/38/E U		247.246	27.+72	0.014971	9	36.585
0.8157581E 03	0.24358378 0		19.168	1.917	0.010302	10	40.65C
B1 405 54 40 47 474							
BLADE FLAP AT STA HARMONIC ANALYSIS		SHIP 1009 T 394	CTR 367 FL	T 481.0	TR 19		
0.1218521E C5	6.1	CJ	PHIJC	PS IJC	CJ/CJMAX	J	FHE QUENCY
0.1836560E 04	-0.2562963E 0	4 0.3154217E 04	305.654	305.654	0.682273	1	4.065
-U.1781731E 04	0.4265964E D		112.668	56.334	1.000000	2	8.13C
0.6032c20F 03	U. 1467607E G	4 0.1534400E U4	67.027	22.542	4.346823	3	12.195
0.37024075 03	0.1C82856E 0.	2 0.37339895 03	1.075	0.419	0.080119	4	16.260
-0.5740 eluf 03	- U. 24680255 C.	2 0.5/983135 03	182.954	30.591	0.125421	5	20.325
-3.4075CYUE 03	0.2C82122E C	3 0.45/61955 03	152.936	25.489	0.098985	٥	24.39C
-U.6011379F JZ	-0.2014508E C	3 0.21533633 03	253.761	30.252	0.046513	7	28.455
0.5/3UCH5E U3	-0.8364045E C	1 0.57300458 03	359.104	44.895	0.123958	B	32.526
-0.28/4585F UJ	0.5640Ju9F 0.		168.517	10.724	U.063458	9	30.585
-0.13054315 03	-0.15511565 0	0.20273748 03	229.917	22.992	0.043853	10	40.650
BLADE FLAP AT STA HARACNIE ANALYSIS		SHIP 1309 T 394	CTR 367 FL	.T 481.0 1	'A 50		
	L4	CJ	PHIJC	PS tuc	CJ/CJMAX	J	FREQUENC Y
∧J J.6705C56E C3		63	PHIJC	73130	COTCOMA	•	LINE ACCIDE A
4.22004028 04	-0.4759281E 0	0.52198718 04	294.636	244.030	1.000000	1	4.065
-0.11845495 04	J. 41933525 C		105.779	52.040	0.82>315	į	8.13C
J.1774489E 04	0.16548JE C		10.115	3.372	0.341391	۔ د	12.195
-0.1843219E C3	0.94637175 C		152.775	38.194	0.039262	4	10.260
0.2/212975 03	0.364941410		48.625	4.123	U.U11476	5	24.325
6.5095511F 02	0.3451484£ C.		81.601	13.600	0.066079	6	24.340
-0.24667425 03	0.5751769F C		117.280	10.754	0.123422	7	28.455
-U.2226121E U3	-0.5269+d25 C		247.157	10.095	0.100707	8	32.52C
0.1074500E U3	-0.62882007 01	0.10/63715 03	357.875	39.764	0.032123	9	36.585
J.2338576E U3	u.21/00835 G	60 30501130E 03	42.803	4.206	0.060430	10	40.620
BLADE FLAP AT STA	205						
HAF 4 ONIC ANALYSIS		SHIP 1007 T 194	CTR 367 FL	T 481.0 T	# 50		
-	6						
Δ.J.	ВJ	C.J.	PHIJC	h2 ITC	CJ/CJMAA		FREQUENCY
-U.9497C74F 04	0.4	- J			30100-44	•	A HE A OF ISE A
-0.20774698 04	U. 44261+1F C4	0.43674363 04	115.144	115-144	1.000000	1	4.C65
0.223.1186 04	-0.26842856 C4		109.745	154.673	0.714307	2	8.13C
-0.23996296 04	-0.5303300E C.	3 0.24377235 04	192.401	64.154	0.502661	3	12.195
0.1022245F U3	0.78959+1F C.	0.12117618 03	31.600	4.420	0.025419	4	16.260
-0.4405427F U3	-0.1.45028E C.		195.579	39.116	0.094811	5	20.325

0.1022345F 03 -0.4465427F 03 -0.1033167F 03 0.7565529F 02 0.1526544F 03 -0.1671F52F 02 -0.1703520E 02

-0.1245028E C3 0.7786907F 02 -0.2520703F C3

0.13505180 03

-0.48553108 02 -0.14614085 03

BLADE FLAP AT STA 235
HAR UNIC ANALYSIS MUDEL AM-50A SHIP 1004 T 394 CTR 367 FLT 481.0 TR 4

A.J	ьЈ	c J	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
-0.2706270E C4 -0.6116572F C3	0.24578425 0	6 0.2532835E 06	103.979	103.979	1.000000	ı.	4.065
3.23381198 04	-0.11107975 04		331.051	165.525	0.906040	ž	8.130
-0.2-69447F 04	- 0.408165CE C		107.212	63.104	0.995947	3	12.195
c0 3tb>cc11.0-	-0.16710746 C.		240.849	50.707	0.101290	4	16.266
-U.6013536E U3	-0.1346951 C	3 0.01024306 03	192.024	38.025	0.243318	>	20.325
-0.30316756 03	0.4048602E U.	\$ 0.50931645 03	120.491	21.082	0.201281	6	24.390
-0.49614488 03	-0.4020435E C		219.019	31.288	0.252123	7	28.455
0.39++C55E C3	-0.243-6515 0.		323.348	40.419	0.194092	8	32.520
-0.1364738E 03	-3.1238660F C		221.713	24.634	0.073499	10	30.585 40.65C
-0.19255856 03	0.2310740° C.	0.30030422 03	129.803	12.960	0.118/61	10	76.836
SLAPE FLAP AT STA	- ' '		2400 105 - 1		-00.0200		
HAFMONIC ANALYSIS	MUDEL AH-56A	SHIP 1009 T 394	CTR 367 F	LT 481.0	TR 26		
A J	8.J	CJ	PHIJC	PS IJC	CJ/CJMAX	ن	FREQUENC Y
0.8150£21F 03	. 1. 1. 1. 1		240 544	2.0 .0.	0 12000.		4 04 5
0.6441500E 63	-0.26161118 0		339.501	339,501	0.3 40906	1 2	4.065 8.130
0.1322338E 04 -0.1324536E 04	-0.4689092E C		340.475	170.238	1.000000	5	12.145
-0.5682.05 03	-0.3266404E C		204.693	52.473	0.334187	4	16.260
-3.473115ut C3	-0.2594517E 0		208.740	41.748	0.275123	5	20.325
to iclinets.o-	0.13252016 C		125.709	20.951	0.208680	6	24.376
-0.50868558 03	J. oly/dist C.	2 0.51249125 03	173.053	24.722	0.261287	7	28.455
-0.3203279E 02	-J.520J352E C		266.515	33.314	0.266710	8	32.520
-3.8417CE7E 02	-0.1479283E 0		240.360	20.707	0.066780	9	36.585
-0.7884526F 02	0.1625488E C	3 0.10360135 03	115.876	11.586	0.042115	10	4C.65C
BLADE CHORD AT STA		SHIP 1007 T 394	CTR 367 F	LT 481.0	TR 17		
HĀRĀDNĪC ANALYSIS		SHIP 1007 T 394	CTR 367 F	LT 481.0	TR E7	J	FREQUENC V
MAR CONTC ANALYSTS  AJ  U-22782725 06	MODEL AH-36A	ÇJ	PHIJC	JUI 24	CJ/CJMAX		
##R 4 ON IC #NAL YSTS  A J  U - 227 R 272 F U6  - 0 - 225 4 4 96 E U4	MODEL AH->6A bJ 0-39379405 0	CJ 5 0.1946217E 05	PH1JC 93.712	P\$ 1JC 95.712	CJ/CJMAX	i.	4.065
AJ U.22782725 Ub -0.25544965 04 U.6724C785 04	hJ 3.19379405 0 -0.17919286 0	CJ 5 0.1946217E 05 4 0.7723503E 04	PHIJC 93.712 330.567	PS IJC 95.712 105.283	CJ/CJMAX 1.000000 0.195645	1 2	4.065 8.13C
##R 4 ON IC #NAL YSTS  A J  U - 227 R 272 F U6  - 0 - 225 4 4 96 E U4	MODEL AH->6A bJ 0-39379405 0	CJ 5 0.J940217E 05 4 0.7720503E 04 6 0.9735%JdE 04	PH1JC 93.712	P\$ 1JC 95.712	CJ/CJMAX	i.	4.065 8.13C 12.195
##R 4 DNTC #NALYSTS  AJ  U.22782725 06  -0.25544565 04  -0.67246786 04  -0.78145476 04	hJ 0.39379405 0: -0.37939486 0: -0.58061725 0:	CJ 5	PHIJC 93.712 330.567 210.012	PS 1JC 93.712 105.283 72.204	CJ/CJMAX 1.00000 0.195645 0.246703	i 2 3	4.065 8.13C
AJ U.22782725 Ub -0.2554406 04 U.6724C785 04 -0.7614572 U4 0.30177025 04 -0.18173165 04 0.6277CU4E 03	6J 0.39379405 01 -0.37939286 01 -0.58061725 01 -0.27441906 01	CJ 5 0.3940217E 05 4 0.7720503E 04 4 0.4735434E 04 0.4378327E 04 2 0.1d14514E 04 2 0.0242691E 03	PM1 JC 93.712 330.567 210.612 317.718	PSTJC 93.712 105.283 72.204 79.430	CJ/CJMAX 1.00000 0.19565 0.246703 0.103360	1 2 3 6 5 6	4.065 8.13C 12.195 16.26C
##R 4 DNTC #NALYSTS  ### 4 DNTC ### 4 DNTC #NALYSTS  ### 4 DNTC ### 4 DNTC #NALYSTS  ### 4 DNTC #NALYSTS  ### 4 DNTC ###	bJ  0.39379405 0: -0.37939286 0: -0.58001725 0: -0.2744406 0: 0.60021705 0: 0.27149226 0: -0.37609725 0	CJ 5	PH1 JC 93.712 330.547 210.012 317.718 177.919 2.480 196.201	PS IJC 95.712 105.283 72.204 79.430 35.584 0.413 26.040	CJ/CJMAX 1.000000 0.195645 0.246703 0.103360 0.040082 0.015921 0.033996	1 2 3 4 5	4.065 8.13C 12.195 16.26C 20.325 24.39C 28.455
AJ  0.22782725 06 -0.25544565 04 0.67246786 04 -0.76145476 04 -0.30177026 04 -0.18173166 04 0.62776046 03 -0.12877655 04 -0.83097126 03	6J  0.39379405 00  -0.37939246 00  -0.58001725 00  -0.5801725 00  0.66021705 00  0.67189226 00  -0.37609725 00  -0.15473526 00	CJ 5	PHIJC 93.712 330.567 210.012 317.718 177.919 2.480 196.201 193.189	PS IJC 93.712 105.283 72.204 79.430 35.584 0.413 26.040 24.149	CJ/CJMAX 1.00000 0.195645 0.246703 0.103360 0.040082 0.015921 0.033998 0.021628	1 2 3 4 5 2 7 8	4.065 8.135 12.195 16.26C 20.325 24.39C 28.455 32.52C
AJ  U.22782725 06  -0.25544665 04  U.6724C785 04  -0.76145476 U4  0.30177025 04  -0.1817365 04  -0.12877655 04  -0.83U47126 03  -0.83U47126 03	hJ  0.39379405 00 -0.37939286 00 -0.58061725 00 -0.27491906 00 0.27189226 00 -0.37609729 00 -0.37673526 00 -0.311390636 00	CJ  5	PHIJC 93.712 330.567 210.012 317.718 177.919 2.480 196.201 193.189 181.193	PS IJC  95.712 105.283 72.204 79.430 35.584 0.413 26.343 24.149 20.132	CJ/CJMAX  1.00000 0.19565 0.246703 0.103360 0.040082 0.015921 0.033998 0.021628 0.011869	1 2 3 4 5 2 7 8	4.065 8.135 12.195 16.26C 20.325 24.39C 28.455 32.32C 36.525
AJ  0.22782725 06 -0.25544565 04 0.67246786 04 -0.76145476 04 -0.30177026 04 -0.18173166 04 0.62776046 03 -0.12877655 04 -0.83097126 03	6J  0.39379405 00  -0.37939246 00  -0.58001725 00  -0.5801725 00  0.66021705 00  0.67189226 00  -0.37609725 00  -0.15473526 00	CJ  5	PHIJC 93.712 330.567 210.012 317.718 177.919 2.480 196.201 193.189	PS IJC 93.712 105.283 72.204 79.430 35.584 0.413 26.040 24.149	CJ/CJMAX 1.00000 0.195645 0.246703 0.103360 0.040082 0.015921 0.033998 0.021628	1 2 3 4 5 2 7 8	4.065 8.135 12.195 16.26C 20.325 24.39C 28.455 32.52C
AJ  U.22782725 06  -0.25544665 04  U.6724C785 04  -0.76145476 U4  0.30177025 04  -0.1817365 04  -0.12877655 04  -0.83U47126 03  -0.83U47126 03	hJ  0.39379405 0: -0.47949405 0: -0.58001725 0: -0.58001725 0: 0.60021705 0: 0.60021705 0: 0.47189422 0: -0.37009725 0: -0.1139063E 0: 0.60435765 0:	CJ  5	PM1 JC  93.712 330.567 210.012 317.718 177.919 2.480 196.201 193.189 181.193 20.638	PSIJC 93.712 105.283 72.204 79.430 35.584 0.413 26.340 24.149 20.132 2.064	CJ/CJMAX  1.00000 0.19565 0.246703 0.103360 0.040082 0.015921 0.033998 0.021628 0.011869	1 2 3 4 5 2 7 8	4.065 8.135 12.195 16.26C 20.325 24.39C 28.455 32.32C 36.525
AJ  U.22782725 06  -0.2554456 04  U.6724C785 04  -0.30177025 04  -0.18173165 04  U.6277CU46 03  -0.12877655 04  0.83097126 03  -0.13642585 03	hJ  0.39379405 0: -0.47949405 0: -0.58001725 0: -0.58001725 0: 0.60021705 0: 0.60021705 0: 0.47189422 0: -0.37009725 0: -0.1139063E 0: 0.60435765 0:	CJ  5	PM1 JC 93.712 330.567 210.012 317.718 177.919 2.480 196.201 193.189 181.193 20.638	PSIJC 93.712 103.283 72.204 74.430 35.544 0.440 24.149 20.132 2.064	CJ/CJMAX 1.000000 0.195645 0.245703 0.103360 0.040082 0.015921 0.033996 0.021626 0.013666	1 2 3 4 5 2 7 8	4.065 8.135 12.195 16.26C 20.325 24.39C 28.455 32.32C 36.525
AJ  U.22782725 06  -0.25544665 04  U.6724C785 04  -0.76145476 04  -0.1817365 04  -0.1817365 04  -0.83U47126 03  -0.12877655 04  -0.83U47126 03  -0.13642595 03  BLADE CHORD AT STA	hJ  0.39379405 01 -0.37939286 01 -0.58061725 01 -0.27441906 01 0.66021705 01 0.27189226 01 -0.37809728 01 -0.11390638 01 0.66435766 01	CJ 5	PHIJC  93.712 330.567 210.012 317.718 177.719 2.460 146.201 143.169 181.143 20.638	PS IJC  95.712 105.283 72.204 79.430 35.584 0.413 26.040 24.149 20.132 2.064	CJ/CJMAX  1.00000 0.195645 0.246703 0.103360 0.04082 0.015921 0.033996 0.021628 0.013869 0.003868	1 2 3 4 5 6 7 8 9	4.065 8.13C 12.195 16.26C 20.325 24.39C 26.455 32.52C 36.525 40.65C
AJ  U.22782725 06  -0.2554456 04  U.6724C786 04  -0.76145476 04  -0.30177026 04  -0.18173166 04  0.6277046 03  -0.12877655 04  -0.83097126 03  -0.13642586 03  BLADE CHORD AT STA	6.39379405 0: -0.37939246 0: -0.58001725 0: -0.58001725 0: -0.58001725 0: -0.60021705 0: -0.60021705 0: -0.15973526 0: -0.11390636 0: -0.15973526 0: -0.174 MODEL AH->6A	CJ  5	PHIJC  93.712 330.507 210.012 317.718 177.919 2.480 196.201 193.189 181.193 20.038  CTR 367 FI	PS IJC  93.712 103.283 72.204 74.30 35.584 0.413 26.044 24.149 20.132 2.064	CJ/CJMAX  1.000000 0.195645 0.246703 0.103360 0.040082 0.015921 0.033996 0.021628 0.013868  CK 42  CJ/CJMAX	1 2 3 4 5 6 7 8 9 10	4.065 8.13C 12.195 16.26C 20.325 24.39C 28.455 32.32C 36.525 40.65C
AJ  U.22782725 Ub -0.25544965 04 -0.6724C785 04 -0.7614572 U4 -0.30177025 04 -0.18173165 04 -0.12877655 04 -0.8307725 03 -0.12877655 03  BLADE CHORD AT STA	hJ  0.39379405 01 -0.37939286 01 -0.58061725 01 -0.27441906 01 0.66021705 01 0.27189226 01 -0.37809728 01 -0.11390638 01 0.66435766 01	CJ  5	PHIJC  93.712 330.507 210.012 317.718 177.919 2.480 196.201 193.189 181.193 20.638  CTR 367 FL	PS IJC  95.712 105.283 72.204 79.430 35.584 0.413 26.040 24.149 20.132 2.064	CJ/CJMAX  1.00000 0.195645 0.246703 0.103360 0.04082 0.015921 0.033996 0.021628 0.013869 0.003868	1 2 3 4 5 7 8 9 10	4.065 8.13C 12.195 16.26C 20.325 24.39C 26.455 32.32C 36.525 40.65 C
AJ  U.2278272F 06  -J.25544965 04  U.6724C78F 04  -J.7614547E 04  -J.1617316F 04  J.62776U4E 03  -O.128776JF 04  -J.8304712E 03  -J.5471634E 03  J.1754159F 03  BLADE CHORD AT STA  HAKHUNIC ANALYSIS	bJ  0.39379405 0: -0.37939286 0: -0.58061725 0: -0.27491406 0: 0.60021705 0: 0.27189220 0: -0.37609724 0: -0.11390636 0: 0.60435766 0:  174 MODEL AH->6A	CJ  5	PHIJC  93.712 330.507 210.012 317.718 177.919 2.480 196.201 193.189 181.193 20.038  CTR 367 FI	PSIJC  93.712 105.283 72.204 79.430 35.584 0.413 26.340 24.149 20.132 2.064	CJ/CJMAX  1.00000 0.195645 0.246703 0.103360 0.04082 0.015921 0.033996 0.021628 0.013869 0.021628 0.013869	1 2 3 4 5 6 7 8 9 10	4.065 8.13C 12.195 16.26C 20.325 24.39C 28.455 32.32C 36.525 40.65C
AJ  U.2278272 06  -0.2554466 04  U.6724C78E 04  -0.761454E 04  0.3017702E 04  -0.1617316F 04  0.6277CU4E 03  -0.1287765F 04  -0.8304712E 03  -0.1364359F 03  BLADE CHORD AT STA  MAKHUNIC ANALYSIS  AJ  U.1734154E 04  U.3317544E 04	hJ  0.39379405 0' -0.37939286 0' -0.58061725 0' -0.27491926 0' 0.60021705 0' 0.27189226 0' -0.37609724 0' -0.11390636 0' 0.04935766 0'  174  MODEL AH-26A	CJ  5	PHIJC  93.712 330.567 216.612 317.718 177.719 2.480 146.201 143.189 181.183 20.638  CTR 367 FI	PSIJC  93.712 105.283 72.204 79.430 35.584 0.413 24.149 24.149 24.142 2.064  T 481.0 T	CJ/CJMAX  1.00000 0.195645 0.240703 0.103360 0.015921 0.033996 0.021628 0.013869 0.003868  R 42  CJ/CJMAX 1.000000 0.251942	1 2 3 4 5 2 7 8 9 10	4.065 8.13C 12.195 16.26C 20.325 24.39C 26.455 32.32C 36.525 40.65C
AJ  U.2278272F 06  -J.255~456E 04  U.6724C78E 04  -J.7614547E 04  -J.8317702F 04  -J.8317702F 03  -O.128776J9E 03  -J.54776J9E 03  D.1364359F 03  BLADE CHORD AT STA  HAKHUNIC ANALYSIS  AJ  J.1754159F 04  U.3317549E 04  -J.6495250E 04  -J.6495250E 04  -J.6475920E 03	MODEL AH-36A  bJ  0.39379409 00 -0.37939286 00 -0.58061725 00 -0.27491906 00 0.27189226 00 -0.315909729 00 -0.11390638 00 0.60435768 00  174 MODEL AH-36A  BJ  0.23676716 05 -0.49638486 04 -0.10249968 04 -0.10249968 04 -0.10249968 04	CJ  5	PHIJC  93.712 330.507 210.012 317.718 177.78 176.201 193.189 181.193 20.038  CTR 367 FI  PHIJC  92.802 303.749 100.455 315.080 140.911	PSIJC  93.712 103.283 72.204 77.430 33.584 0.413 26.340 24.149 20.132 2.064  T 481.0 T	CJ/CJMAX  1.00000 0.195645 0.246703 0.103360 0.046082 0.015921 0.033996 0.021626 0.013869 0.002668  R 42  CJ/CJMAX  1.000000 0.251942 0.294073 0.142506 0.053042	1 3 4 5 2 1 8 9 10	4.065 8.13C 12.195 16.26C 20.325 24.39C 28.455 32.32C 36.525 40.65C
AJ  U.2278272 06  -0.2554466 04  U.6724C78E 04  -0.761454E 04  0.3017702E 04  -0.1617316F 04  0.6277CU4E 03  -0.1287765F 04  -0.83U4712E 03  -0.1364359F 03  BLADE CHORD AT STA  MAKHUNIC ANALYSIS  AJ  U.1754154E 04  U.317544E 04  -0.089525UE 04  0.2392CU3E 04  -0.975920UE 03  U.11030370F 04	MODEL AH-36A  bJ  0.39379405 0  -0.47439286 0  -0.58061725 0  -0.27441406 0  0.60021705 0  0.27189220 0  -0.37609724 0  -0.11390635 0  174  MODEL AH-36A  BJ  0.23676716 C5  -0.49658486 04  -0.10249966 C4  -0.23676556 C4  -0.75240646 03  -0.39334186 03	CJ  5	PHIJC  93.712 330.567 210.012 317.718 177.719 2.480 146.201 143.189 181.143 20.638  CTR 367 FI  PHIJC  92.802 303.749 100.455 315.080 140.911 339.106	PSIJC  93.712 105.283 72.204 77.430 35.584 0.413 24.149 24.149 24.142 2.064  T 481-0 T	CJ/CJMAX  1.00000 0.195645 0.246703 0.103360 0.040082 0.015921 0.033996 0.021628 0.013868  R 42  CJ/CJMAX 1.000000 0.251942 0.294073 0.142506 0.053042 0.053042 0.053042	1 2 3 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4.065 8.13C 12.195 16.26C 20.325 24.39C 28.455 32.32C 36.525 40.65C
AJ  0.22782725 06  -0.25544565 04  0.67246785 04  0.30177025 04  -0.18173165 04  0.62776046 03  -0.12877655 04  0.62776046 03  -0.12877655 03  BLADE CHORD AT STA  MAKHUNIC ANALYSIS  AJ  0.17541595 04  0.33175465 04  0.33175466 04  0.33175466 04  0.33175466 04  0.33175466 04  0.33175466 04  0.23926106 04  -0.97592006 03  0.10303706 04  -0.94062186 03	BJ  0.2307671E C5 -0.2382355F C4 -0.2382355F C4 -0.2382355F C4 -0.2382355F C3	CJ  5	PHIJC  93.712 330.567 216.612 317.718 177.919 2.480 146.201 193.189 181.193 20.638  CTR 367 FI  PHIJC  92.802 303.749 166.455 315.080 140.911 339.106 153.865	PSIJC  93.712 103.283 72.204 74.30 35.584 0.413 26.149 24.149 24.149 24.149 21.132 2.064	CJ/CJMAX  1.0 00000 0.1 95645 0.2 46703 0.1 03360 0.0 45082 0.0 15921 0.0 33994 0.0 21628 0.0 13869 0.0 21628 0.0 13869 0.0 21628 0.0 13869 0.0 25040 0.0 53042 0.0 46526 0.0 15146	1 3 4 5 7 8 9 10	4.065 8.13C 12.195 16.26C 20.325 24.39C 20.455 32.52C 36.525 40.65C 40.65C 12.195 16.26C 20.325 24.39C
AJ  U.2278272 06  -0.2554466 04  U.6724C78E 04  -0.7614547E 04  -0.3017702E 04  -0.1817316F 04  0.627704E 03  -0.1287765F 04  -0.8309712E 03  0.1364259F 03  BLADE CHORD AT STA  HARMUNIC ANALYSIS  AJ  J.1724154E 04  U.3317544E 04  U.3317544E 04  -0.3406218E 03  U.130374F 04  -0.3406218E 03  -0.3406218E 03	6J  0.39379405 0: -0.37939286 0: -0.58001725 0: -0.58001725 0: -0.27441406 0: -0.27441406 0: -0.37609724 0: -0.11390636 0: -0.11390636 0: -0.11390636 0: -0.494966 0: -0.494966 0: -0.23673556 0: -0.10249966 0: -0.10249966 0: -0.10249966 0: -0.10249966 0: -0.10249966 0: -0.10249966 0: -0.10249966 0: -0.10249966 0: -0.10249966 0: -0.15261476 0: -0.15261476 0:	CJ  5	PHIJC  93.712 330.507 210.012 317.718 177.919 2.480 196.201 193.189 181.193 20.038  CTR 367 FL  PHIJC  92.802 303.749 100.455 315.080 140.911 339.100 159.805 151.102	PSIJC  93.712 103.283 72.204 79.430 35.584 0.413 26.343 24.49 20.432 2.064  T 481.0 T	CJ/CJMAX  1.0 00000 0.1 95645 0.2 46703 0.1 03360 0.0 45082 0.0 15921 0.0 33994 0.0 21626 0.0 13869 0.0 03868  R 42  CJ/CJMAX 1.0 00000 0.2 51942 0.2 94073 0.1 42506 0.0 53042 0.0 051746 0.0 042853	1 2 3 4 5 7 8 9 10	4.065 8.13C 12.195 16.26C 2U.325 24.39C 28.455 32.52C 36.585 40.69C FREQUENCY 4.065 6.13C 12.195 16.26C 20.325 24.39C 28.455 32.52C
AJ  0.22782725 06  -0.25544565 04  0.67246785 04  0.30177025 04  -0.18173165 04  0.62776046 03  -0.12877655 04  0.62776046 03  -0.12877655 03  BLADE CHORD AT STA  MAKHUNIC ANALYSIS  AJ  0.17541595 04  0.33175465 04  0.33175466 04  0.33175466 04  0.33175466 04  0.33175466 04  0.33175466 04  0.23926106 04  -0.97592006 03  0.10303706 04  -0.94062186 03	BJ  0.2307671E C5 -0.2382355F C4 -0.2382355F C4 -0.2382355F C4 -0.2382355F C3	CJ  5	PHIJC  93.712 330.567 216.612 317.718 177.919 2.480 146.201 193.189 181.193 20.638  CTR 367 FI  PHIJC  92.802 303.749 166.455 315.080 140.911 339.106 153.865	PSIJC  93.712 103.283 72.204 74.30 35.584 0.413 26.149 24.149 24.149 24.149 21.132 2.064	CJ/CJMAX  1.0 00000 0.1 95645 0.2 46703 0.1 03360 0.0 45082 0.0 15921 0.0 33994 0.0 21628 0.0 13869 0.0 21628 0.0 13869 0.0 21628 0.0 13869 0.0 25040 0.0 53042 0.0 46526 0.0 15146	1 3 4 5 7 8 9 10	4.065 8.13C 12.195 16.26C 20.325 24.39C 20.455 32.52C 36.525 40.65C 40.65C 12.195 16.26C 20.325 24.39C

BLADE CHORD AT STA 235
HARAUNIC ANALYSIS MODEL AM-DAA SHIP LUUF T 394 CTR 367 FLT 481.0 TR 22

LA	b.J	ć J	PHIJL	PSIJC	CJ/CJMAX	J	FREQUENC Y
-0.21342525 05							
-0.5/305918 03	U.OCSSALLE C4	0.63//6/18 04	94.909	44.404	1.000000	ı	4.065
0.94223618 03	-0.1029220E 04	40 2ceffeel 10	312.474	150.237	0.229591	2	8.13C
-0.1754CBUS 04	-J. 8525548E C3	0.17502962 04	205.922	08.041	0.320894	3	12.195
J.10036665 04	-0.86259335 03	0.13320155 04	\$22.948	00.131	U. 214164	4	16.260
-0.7672:29F 03	0.2358365E C3	0.43266146 03	102.413	32.563	0.132067	5	20.325
O. LUIDANDE UI	-0.4628520E U2	0.10/20112 03	3-1.905	51.327	0.021510	U	24.546
-0.4763105F U3	0.3C33760E C3	0.30472335 03	147.506	21.072	0.052417	7	28.455
-0.1992676F 03	0.2241105F C3	0.33033738 03	131.017	10.452	0.049367	8	32.520
J. 10897135 03	U. 2547627E C3	0. 31422336 03	64.128	7.748	0.051701	9	36.585
-0.1170577E 03	U.1882856E C3	0.22113198 03	121.809	12.101	0.036479	10	40.65C

BLADE TORSION AT STA 131.5 HAF-HONIC ANALYSIS MODEL AH-DOA SHIP LOUP T 394 CTR 367 FLT 481.0 TR 44

A.J	A.J.		c J	PHIJC	PS IJC	CJ/CJMAX	J	FREQUENCY
0.75025201 03								
J.2509897E U4	0.16490145	04	0.13514038 04	32.687	32.687	1.000000	1	4.065
-0.9996 111E 03	U.17575085	04	0. 2316 1095 04	114.383	54.091	0.660552	2	8.13C
-U.1-02310E J2	U. 3543416F	C3	0.35 Journe 03	92.235	30.745	0.117769	3	12.195
-0.27131C>E J3	0.13424145	Cl	0.27131378 03	179.717	44.929	J.J88854	4	16.26C
J. 69HOFISE OF	J.5C413833	02	40 3+FFEFF 0.0	4.131	0.826	0.224215	5	20.325
U.4585CIUE UZ	-U. 24COBULE	CJ	ひ・とゃっというしき ひょ	283.777	40.740	0.000304	6	24.370
-0.2204686F C3	0.56093928	C3	0. 246 7387F OS	113.772	16.253	0.179121	7	28.455
0.2+336576 02	-0.75340058	0.3	O. Tousueste us	214.125	34.200	0.247379	8	32.526
0.11522545 02	0.34607386	CZ	J. 79+32J+E 02	25.860	2.873	0.026030	9	16.585
-J.8572694E 02	-0.10249495	UZ	0.8633771E UZ	166.018	18.682	0.328275	10	40.050

BLADE FEATHER ANGLE
HARMONIC ANALYSIS MODEL AM-56A SHIP 1009 T 394 CTR 377 FLT 481.0 TR 31

AJ	BJ	Cl	PHIJC	PS IJC	CJ/CJMAX	· J	FREQUENCY
0.747423JF 01							
0.29303405 01	-0.3541785F CL	0.45768635 01	339.603	309.603	1.000000	4	4.032
-J.2551535E 00	-0.23+0738E 00	0.1+024025 00	222.528	111.204 54.345	0.075331	3	8.065 12.097
-0.8621C25E-01 0.1648233E-01	0.408/9365-C2 -0.62121265-02	0.17614176-01	339.349	84.837	0.003832	4	16.125
3.2.576605-31	0.7472724F-02	0.2509733=01	16.912	3.382	0.005588	5	20.161
0.51-46205-03	-J.14658172-0s	0.57230118-03	345.080	57.014	0.000129	6	24.194
-0.1187C33F-01	0.2144195E-C1	0.2.538E-01	118.969	10.196	3.005332	7	28.226
0.3+040+86-02	0.13075128-01	0.13513#73-01	75.407	9.420	0.002439	8	32.258
-U.3/UY40cE-UZ	0.22/0401E-C1	C. 211121+E-UI	49.274	11.031	0.005005	9	36.24C
-0.27318536-02	-0.11599745-02	0.29337825-02	203.714	20.371	3.000649	10	40.323
SHAFT MOMENT HARAGNIC ANALYSIS	MCDEL AH- SOA SH	[P 1009 T 394 (	CTR 377 FI	T 481.0 1	R 36		
			0.11.10	05.146	C		FOR MENERAL MENERAL
-0.7236477F C4	La	Ü	PHIJC	PS IJC	CJ/CJMAX	J	FREQUENCY
-U.100 + 231F 06	0.12e00988 C6	C.2052+++£ 06	141.414	141.414	1.000000	1	4.032
-0.5159c61F U3	U.4306350E C3	0.675722+5 03	134.701	64-880	0.003293	2	8.065
-3.183798bE 05	-U. 2720478F C5	0.32431+2 = 05	230.015	78.672	0.160206	3	12.097
0.4806541E 03	3.331:3705 (4	0.14104028 04	81.588	20.472	0.016597	4	16.129
0.6090C12F 04	0.50018USE C4	U. 1275422E 04	42.019	8.524	0.043322	>	20.161
-0.31796205 03	0.12401075 04	0.15:15:00	104.378	17.390	0.030237	6	24.194
-0.2540 760E 04	0.1335634E C4	0.2013-51= 0+	152.270	21.753	0.01.786	7	24.226
0.53551648 63	0.9072345F C3	0.1053.948 04	54.448	7.431	0.005133	8	32.258
-3.13526565 03	0.13358008 64	0.13.26913 04	95.782	10.642	0.000542	9	36.290
J.13434828 U4	0.00032285 03	0.14767376 04	26.174	2.517	0.007294	10	40.323
PITCH LINK TENSION							
HAMMONIC ANALYSIS	MAINEL AND MAIN BLA						
tid to ate mane tata	MUDEL AN- 304 311	IP 1009 T 394	CTR 377 FL	.T 481.0 T	R 11		
1111 10116 11115	MUDEL AN- 30A 3H	IP 1007 1 394 1	CTR 377 FL	.f 481.0 T	R= 11		
The togeth and the	HUUCL AN- JOA 311	[P [009 T 394 ]	CTR 377 FL	.T 481.0 T	R 11		
13412 3442 1313	HUUTE AN- JOA SIT	IP 1007 1 394 (	CTR 377 FL	.T 481.0 T	R 11		
AJ	BJ	CJ	CTR 377 FL PhlJC	.Y 481.0 T	R 11	J	FREW WENCY
						J	FRE w UENCY
AJ -U.3970C2bF 03 -0.11C6122E VJ	HJ -0.71175025 02	CJ 0.1315304E 03	PHIJC 212.759	PS 1JC 212.759	CJ/CJMAX U.358558	ı	4.032
AJ -0.3970C2bE 03 -0.11661e2E 03 0.2203541E 03	HJ -0.7117502E 02 -0.26d1052E 03	CJ 0.1315304E 03 0.36044dtE 03	PHIJC 212.759 313.043	PSTJC 212.759 150.522	CJ/CJMAX U.358558 1.000000	1 2	4.032 8.005
AJ -J.3970C26F O3 -O.11G61e2E J3 J.25J354LE J3 -J.9422EG3E J2	HJ -0.7117502E 02 -0.26d1052F 03 -0.2231927E 03	CJ 0.1315304E 03 0.36034dtë 03 0.2422033E 03	PHIJC 212-759 313-043 247-111	PSTJC 212-759 150-522 82-370	CJ/CJMAX U-358558 1-000000 U-660405	1 2 3	4.032 8.065 12.097
AJ -0.3970C2bE 03 -0.11661e2E 03 -0.2003541E 03 -0.9422E63£ 02 -0.31111604E 02	HJ -0.7117502E 02 -0.26d10>2F 03 -0.2231927E 03 -0.4092160F 02	CJ 0.13153045 03 0.3603461	PHIJC 212.759 313.043 247.111 232.751	PSTJC 212.759 150.522 82.370 58.188	CJ/CJMAX U.358558 1.000000 U.660405 U.140134	1 2 3 4	4.032 8.005 12.697 16.125
AJ -0.3970C2bE 03 -0.11661e2E 03 0.203541E 03 -0.9422E63E 02 -0.311160E 02 -0.3280761E 02	HJ -0.7117502E 02 -0.26d1032F 03 -0.2231927E 03 -0.4692160E 02 -0.4575165E 02	CJ 0.1315304E 03 0.36099d1E 03 0.514312E 02 0.514312F 02	PHIJC 212.759 313.043 247.111 232.751 234.357	PSTJC 212.759 150.522 d2.370 58.188 46.371	CJ/CJMAX U.358558 1.000000 U.660405 O.140134 O.153405	1 2 3 4 5	4.032 8.005 12.697 16.125 20.101
AJ -0.3970 C2bE 03 -0.11661e2E 03 0.2503541E 03 -0.9422663E 02 -0.3111604E 02 -0.3270 761E 02 -0.3250 759E 02	HJ -0.7117502E 02 -0.26d1052F 03 -0.2231927E 03 -0.4092160E 02 -0.4575105E 02 0.5110332E 02	CJ 0.1315304E 03 0.360994E 03 0.242203E 03 0.51438JE 02 0.302943E 02	PHIJC 212-759 313-043 247-111 232-751 234-357 117-177	PSIJC 212-759 150-522 d2-370 58-188 40-371 19-356	CJ/CJMAX U.358558 1.000000 U.660405 O.140134 O.153405 U.1595/y	1 2 3 4 5	4.032 8.005 12.097 16.125 20.101 24.194
AJ -U.3970C26F 03 -0.1166122F U3 -0.2203541E U3 -0.9422603F U2 -0.3111204F 02 -0.3240701F U2 -0.23395482F 01	HJ -0.7117502E 02 -0.2641052F 03 -0.2231927E 03 -0.4092100F 02 -0.4575105F 02 0.5110332E 02 -0.27197785 02	CJ  0.1315304E 03 0.360948LE 03 0.242203E 03 0.514382E 02 0.502943E 02 0.383413LE 02 0.2747591E 02	PHIJC 212-759 313-043 247-111 232-751 234-357 119-197 278-159	PSIJC 212-759 150-522 62-370 58-188 40-371 19-366 39-737	CJ/CJMAX U.358558 1.000000 U.660405 O.140134 O.153405 U.153579 O.074097	1 2 3 4 5 6 7	4.032 8.065 12.697 16.125 20.101 24.194 26.226
AJ -0.3970C26E 03 -0.11661e2E 03 0.2003541E 03 -0.9422E63E 02 -0.3111E04E 02 -0.3280761E 02 -0.3495482E 01 0.3495482E 01	HJ -0.7117502E 02 -0.26d1032F 03 -0.2231927E 03 -0.4092160F 02 -0.4573165F 02 -0.51103326 02 -0.2719776F 02 -0.1502002E 02	CJ  0.1315304E 03 0.36094d1C 03 0.242203E 03 0.5140802E 02 0.352943E 02 0.2747591E 02 0.2747591E 02	PHIJC 212-759 313-043 247-111 232-751 234-357 117-177 278-159 291-203	PSIJC 212.759 190.522 d2.370 58.188 40.371 19.300 39.737 30.40d	CJ/CJMAX U.358558 1.000000 U.660405 O.140134 O.154565 U.15457 O.074097	1 2 3 4 5 6 7 8	4.032 8.005 12.697 16.125 20.161 24.174 28.226 32.258
AJ -0.3970C2bE 03 -0.11661e2E 03 0.203591E 03 -0.9422E63E 02 -0.3111604E 02 -0.3280761E 02 -0.3295759E 02 0.349540ZE 01 0.7401424E 01 -0.730938TE 01	HJ -0.7117502E 02 -0.26d1052E 03 -0.2231927E 03 -0.4092100E 02 -0.4575165E 02 0.5110332E 02 -0.2719778E 02 -0.1502002E 02 0.0050199E 01	CJ  0.1315344E 03  0.3649481E 03  0.514383E 02  0.3529443E 02  0.2447591E 02  0.244759E 02	PHIJC 212-759 313-043 247-111 232-751 234-357 117-177 278-159 291-203 137-670	PSIJC 212-759 150-522 82-370 58-188 46-871 14-306 39-737 30-408 15-248	CJ/CJMAX U.358558 1.000000 U.660405 O.140134 O.154465 U.1545/9 O.07497 O.055634 O.02448	1 2 3 4 5 6 7 8 9	4.032 8.005 12.697 16.125 20.101 24.174 28.226 32.258 36.270
AJ -0.3970C26E 03 -0.11661e2E 03 0.2003541E 03 -0.9422E63E 02 -0.3111E04E 02 -0.3280761E 02 -0.3495482E 01 0.3495482E 01	HJ -0.7117502E 02 -0.26d1032F 03 -0.2231927E 03 -0.4092160F 02 -0.4573165F 02 -0.51103326 02 -0.2719776F 02 -0.1502002E 02	CJ  0.1315304E 03 0.36094d1C 03 0.242203E 03 0.5140802E 02 0.352943E 02 0.2747591E 02 0.2747591E 02	PHIJC 212-759 313-043 247-111 232-751 234-357 117-177 278-159 291-203	PSIJC 212.759 190.522 d2.370 58.188 40.371 19.300 39.737 30.40d	CJ/CJMAX U.358558 1.000000 U.660405 O.140134 O.154565 U.15457 O.074097	1 2 3 4 5 6 7 8	4.032 8.005 12.697 16.125 20.161 24.174 28.226 32.258
AJ -0.3970C2bE 03 -0.11661e2E 03 0.203591E 03 -0.9422E63E 02 -0.3111604E 02 -0.3280761E 02 -0.3295759E 02 0.349540ZE 01 0.7401424E 01 -0.730938TE 01	HJ -0.7117502E 02 -0.26d1052E 03 -0.2231927E 03 -0.4092100E 02 -0.4575165E 02 0.5110332E 02 -0.2719778E 02 -0.1502002E 02 0.0050199E 01	CJ  0.1315344E 03  0.3649481E 03  0.514383E 02  0.3529443E 02  0.2447591E 02  0.244759E 02	PHIJC 212-759 313-043 247-111 232-751 234-357 117-177 278-159 291-203 137-670	PSIJC 212-759 150-522 82-370 58-188 46-871 14-306 39-737 30-408 15-248	CJ/CJMAX U.358558 1.000000 U.660405 O.140134 O.154465 U.1545/9 O.07497 O.055634 O.02448	1 2 3 4 5 6 7 8 9	4.032 8.005 12.697 16.125 20.101 24.174 28.226 32.258 36.270
AJ -0.3970C2bE 03 -0.11661e2E 03 0.203591E 03 -0.9422E63E 02 -0.3111604E 02 -0.3280761E 02 -0.3295759E 02 0.349540ZE 01 0.7401424E 01 -0.730938TE 01	HJ -0.7117502E 02 -0.26d1032E 03 -0.2231927E 03 -0.4092160E 02 -0.4575165E 02 -0.5110332E 02 -0.271977d5 02 -0.1502002E 02 -0.6096149E 01 -0.144365d5 02	CJ  0.1315344E 03  0.3649481E 03  0.514383E 02  0.3529443E 02  0.2447591E 02  0.244759E 02	PHIJC 212-759 313-043 247-111 232-751 234-357 117-177 278-159 291-203 137-670	PSIJC 212-759 150-522 82-370 58-188 46-871 14-306 39-737 30-408 15-248	CJ/CJMAX U.358558 1.000000 U.660405 O.140134 O.154465 U.1545/9 O.07497 O.055634 O.02448	1 2 3 4 5 6 7 8 9	4.032 8.005 12.697 16.125 20.101 24.174 28.226 32.258 36.270
AJ -U.3970 C2bE 03 -0.11661e2E 03 0.203541E 03 -0.9422 EC3E 02 -0.3111e04E 02 -0.3280 701E 02 0.349 5 482F 01 0.7401424E 01 -0.7304 387F 01 0.2314 e545 01	HJ  -0.7117502E 02 -0.2641052F 03 -0.2231927E 03 -0.4092100F 02 -0.4575103F 02 -0.5110332E 02 -0.2719778F 02 -0.1502002E 02 0.0050199E 01 -0.144365d5 02	CJ  0.1315304E 03 0.360946E 03 0.242203E 03 0.51438J2E 02 0.302943E 02 0.2747591E 02 0.2747591E 02 0.2743436E 02 0.474345 02 0.474345 02	PHIJC 212-759 313-043 247-111 232-751 234-357 117-177 278-159 291-203 137-670	PSIJC 212-759 150-522 d2-370 58-188 46-371 19-300 39-737 30-40d 15-290 27-911	CJ/CJMAX  U.358558 1.000000 U.660405 O.140134 O.153405 U.15397 O.074897 O.074897 O.055634 O.026948 O.039856	1 2 3 4 5 6 7 8 9	4.032 8.005 12.697 16.125 20.101 24.174 28.226 32.25 36.270
AJ -U.3970C26F 03 -0.1166122F U3 0.2003554E U3 -0.9422E03F U2 -0.3111204F 02 -0.3280701F 02 -0.2355759F 02 0.3395482F 01 0.7401424F U1 -0.7309387F U1 0.23146545 01	HJ  -0.7117502E 02 -0.2641052F 03 -0.2231927E 03 -0.4092100F 02 -0.4575103F 02 -0.5110332E 02 -0.2719778F 02 -0.1502002E 02 0.0050199E 01 -0.144365d5 02	CJ  0.1315304E 03 0.360946E 03 0.242203E 03 0.51438J2E 02 0.302943E 02 0.2747591E 02 0.2747591E 02 0.2743436E 02 0.474345 02 0.474345 02	PHIJC 212-759 313-043 247-111 232-751 234-357 119-197 278-159 291-203 137-070 279-109	PSIJC 212-759 150-522 d2-370 58-188 46-371 19-300 39-737 30-40d 15-290 27-911	CJ/CJMAX  U.358558 1.000000 U.660405 O.140134 O.153405 U.15397 O.074897 O.074897 O.055634 O.026948 O.039856	1 2 3 4 5 6 7 8 9	4.032 8.005 12.697 16.125 20.101 24.174 28.226 32.258 36.270
AJ -U.3970C26F 03 -0.1166122F U3 0.2003554E U3 -0.9422E03F U2 -0.3111204F 02 -0.3280701F 02 -0.2355759F 02 0.3395482F 01 0.7401424F U1 -0.7309387F U1 0.23146545 01	HJ  -0.7117502E 02 -0.2641052F 03 -0.2231927E 03 -0.4092100F 02 -0.4575103F 02 -0.5110332E 02 -0.2719778F 02 -0.1502002E 02 0.0050199E 01 -0.144365d5 02	CJ  0.1315304E 03 0.360946E 03 0.242203E 03 0.51438J2E 02 0.302943E 02 0.2747591E 02 0.2747591E 02 0.2743436E 02 0.474345 02 0.474345 02	PHIJC 212-759 313-043 247-111 232-751 234-357 119-197 278-159 291-203 137-070 279-109	PSIJC 212-759 150-522 d2-370 58-188 46-371 19-300 39-737 30-40d 15-290 27-911	CJ/CJMAX  U.358558 1.000000 U.660405 O.140134 O.153405 U.15397 O.074897 O.074897 O.055634 O.026948 O.039856	1 2 3 4 5 6 7 8 9	4.032 8.005 12.697 16.125 20.101 24.174 28.226 32.258 36.270
AJ -0.3970C2bE 03 -0.1166122E 03 0.2003541E 03 -0.9422E03E 02 -0.3111604E 02 -0.3280761E 02 -0.3495482F 01 0.7401424E 01 -0.7309387F 01 0.23146545 01	HJ -0.7117502E 02 -0.26d1002E 03 -0.2231927E 03 -0.4092160E 02 -0.4575160E 02 -0.5110332E 02 -0.2719776E 02 -0.1532002E 02 3.6056149E 01 -0.144365dE 02  STA 18 MCCEL 2H-56A SH	CJ  0.1315304E 03 0.36094d1E 03 0.242203E 03 0.51438J2E 02 0.329443E 02 0.2747591E 02 0.2747591E 02 0.2747592 02 0.4443753E 02 0.1402375E 02	PHIJC 212-759 313-043 247-111 232-751 234-357 117-177 278-159 291-203 137-670 279-109	PSIJC 212-759 150-522 82-370 58-188 46-371 19-306 39-737 30-408 15-298 27-911	CJ/CJMAX  U.358558 1.000000 U.660405 O.140134 O.159577 O.07497 O.055634 O.029948 O.039856	1 2 3 4 5 6 7 7 8 9 7 10	4.032 8.005 12.697 16.125 20.101 24.174 28.226 32.258 36.276 40.323
AJ -U.3970C26F 03 -0.1166122F U3 0.2003554E U3 -0.9422E03F U2 -0.3111204F 02 -0.3280701F 02 -0.2355759F 02 0.3395482F 01 0.7401424F U1 -0.7309387F U1 0.23146545 01	HJ  -0.7117502E 02 -0.2641032F 03 -0.2231927E 03 -0.4092160F 02 -0.4575163F 02 -0.5110332E 02 -0.2719776F 02 -0.1502002E 02 0.6696149E 01 -0.1443656F 02  STA 18 MCCEL AH-56A SH	CJ  0.1315304E 03 0.3005401E 03 0.514383E 03 0.514383E 02 0.2047591E 02 0.2047450E 02 0.2047450E 02 0.2047450E 02 0.2047450E 02 0.1402775E 02	PHIJC 212-759 313-043 247-111 232-751 234-357 119-197 278-159 291-203 137-070 279-109	PSIJC 212-759 150-522 d2-J/0 58-188 46-371 19-300 39-737 30-40d 15-290 27-911	CJ/CJMAX  U.358558 1.000000 U.660405 O.140134 O.153405 U.15397 O.074897 O.074897 O.055634 O.026948 O.039856	1 2 3 4 5 6 7 8 9	4.032 8.005 12.697 16.125 20.101 24.174 28.226 32.258 36.270
AJ -0.3970C2bE 03 -0.116612E 03 0.203541E 03 -0.9422E63E 02 -0.3111604E 02 -0.3280761E 02 -0.3495432E 01 0.7401426E 01 -0.7309387E 01 0.23146545 01  FIXED HUR FLAP AT -0.2195447E 05 -0.3195447E 05 -0.3177500F 05	HJ  -0.7117502E 02 -0.2601052F 03 -0.2231927E 03 -0.4092100E 02 -0.4575105E 02 0.5110332E 02 -0.2719778F 02 -0.1502002E 02 0.0050199E 01 -0.144365d5 02  STA 18 MCCEL AH-50A SH	CJ  0.1315304E 03 0.30094d1E 03 0.242203E 03 0.51438J2E 02 0.24247591E 02 0.2447591E 02 0.2447591E 02 0.1402J7JE 02	PHIJC 212-759 313-043 247-111 232-751 234-357 117-177 278-159 291-203 137-670 279-109  CTR 377 FL	PSIJC 212-759 150-522 d2-370 58-188 46-371 19-306 39-737 30-40d 15-296 27-911	CJ/CJMAX  U.358558 1.000000 U.660405 0.140134 0.154455 U.1545/4 0.07497 0.075634 0.024448 0.034856	1 2 3 4 5 6 7 8 9 10	4.032 8.005 12.697 10.125 20.101 24.174 28.226 32.258 36.276 40.323
AJ -0.3970C2bE 03 -0.11C61e2E 03 0.2003541E 03 -0.9422E03E 02 -0.3111C04E 02 -0.32807C1E 02 -0.3495482F 01 0.7401424E 01 -0.7304387E 01  EIXED HUR FLAP AT -0.23146545 01	HJ  -0.7117502E 02 -0.26d10025 03 -0.2231927E 03 -0.4092100E 02 -0.4575100E 02 -0.2719776 02 -0.1502002E 02 -0.15020049E 01 -0.144305d5 02  STA 18 MCCEL 2H-96A SH	CJ  0.1315304E 03 0.3609481E 03 0.242203E 03 0.514382E 02 0.3229443E 02 0.2747591E 02 0.2747591E 02 0.2747592E 02 0.1402333E 02	PHIJC 212.759 313.043 247.111 232.751 234.357 117.177 278.159 291.203 137.670 279.109  CTR 377 FL	PSIJC 212.759 100.522 d2.370 50.188 40.371 19.300 39.737 30.40d 15.290 27.911	CJ/CJMAX  U.358558 1.000000 U.660405 0.140134 0.159577 0.074897 0.074897 0.02998 0.039856	1 2 3 4 5 6 7 8 9 10	4.032 8.005 12.097 16.125 20.101 24.194 28.226 32.258 36.296 40.323
AJ -U.3970C2bE 03 -0.11G61e2E 03 0.2003541E U3 -0.9422EG3E U2 -0.3111E04E 02 -0.3280701E 02 0.3495482F 01 0.7401424E 01 -0.7304387F 01 0.23146545 01  FIXED HUR FLAP AT AA-4 DVIC ANALYSIS  AJ -0.2195447E 05 -0.3747500F 05 0.3112144E 04 -0.615612E 04	HJ  -0.7117502E 02 -0.26d1052E 03 -0.2231927E 03 -0.4092160E 02 -0.4777165E 02 -0.27197765 02 -0.150002E 02 0.6050199E 01 -0.1443656E 02  STA 18 MCCEL 2H-56A SH	CJ  0.1315304E 03 0.360948E 03 0.360948E 03 0.514382E 02 0.302943E 02 0.302943E 02 0.2747591E 02 0.2747591E 02 0.404375E 02 0.1462375E 02  IP 1009 T 394  CJ  0.1221142T 05 0.1221142T 05 0.1221142T 05	PHIJC 212.759 313.043 247.111 232.751 234.357 117.177 278.159 291.203 137.070 279.109  CTR 377 FL  PHIJC 1+1.229 244.895	PSIJC 212-759 150-522 d2-370 50-188 40-371 19-30-39-737 30-40d 15-290 27-911  T 401-0 T  PSIJC 141-229 142-302 80-965	CJ/CJMAX  U.358558 1.000000 U.660405 0.140134 0.1595/7 0.074997 0.05634 0.026948 0.039856	1 2 3 4 5 6 7 8 7 10 10 10 10 10 10 10 10 10 10 10 10 10	4.032 8.005 12.097 16.125 20.101 24.194 28.226 32.258 36.290 40.323
AJ  -0.3970C2bE 03 -0.11661e2E 03 -0.203541E 03 -0.9422EC3E 02 -0.3111606E 02 -0.32807C1E 02 -0.32807C1E 02 -0.3295759E 02 0.3496482E 01  -0.7304387E 01  -0.7304387E 01  -0.2314c545 01  FIXED HUR FLAP AT -0.2314c545 01  -0.312146545 05 -0.3142146E 04 -0.3112144E 04 -0.311444E 04 -0.1194070E 04	HJ  -0.7117502E 02 -0.26d1052E 03 -0.2231927E 03 -0.4092160E 02 -0.4575165E 02 0.5110332E 02 -0.2719778E 02 -0.1502002E 02 0.6050199E 01 -0.144365d5 02  STA 18 MCCEL 2H-56A SH  BJ  J.3010036E 05 -0.1180819E 05 -0.1180819E 05 -0.1180819E 05 -0.1180819E 05	CJ  0.1315304E 03 0.3009md1E 03 0.4022003E 03 0.5140H32E 02 0.3029H43E 02 0.4047430E 02 0.2140430E 02 0.404735E 02 0.1402373E 03 0.1221142E 03 0.512000E 04 0.443373E 04	PHIJC 212-759 313-043 247-111 232-751 234-357 119-197 278-159 291-203 137-070 279-109  CTR 377 FL  PHIJC 1-1-229 204-705 242-896 217-397	PSIJC 212.759 150.522 d2.370 58.188 46.371 14.300 39.737 30.40d 15.290 27.911  PSIJC 141.229 142.382 80.905 59.349	CJ/CJMAX  U.358558 1.000000 0.660405 0.140134 0.159579 0.07697 0.055634 0.026948 0.039856	1 2 3 4 5 6 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	4.032 8.005 12.097 10.125 20.101 24.174 28.226 32.258 30.270 40.323
AJ -0.3970C2bE 03 -0.11661e2E 03 0.2003641E 03 -0.9422E63E 02 -0.3111604E 02 -0.3280761E 02 -0.3496487E 01 0.7401426E 01 -0.730938T 01 0.23146545 01  FIXED HUR FLAP AT -0.2195447E 05 -0.31775000 05 0.3112144E 04 -0.015612E 04 -0.1194070F 24 0.64165235 03	HJ  -0.7117502E 02 -0.2601052E 03 -0.2231927E 03 -0.4092160E 02 -0.4575165E 02 0.5110332E 02 -0.2719776E 02 -0.1502002E 02 0.0056149E 01 -0.144365d5 C2  STA 18 MCCEL 2H-56A SH  BJ  J.3010036E 05 -0.1180819E 05 -0.1180819F 05 -0.1180819F 05 -0.1180819F 05 -0.44976E 03	CJ  0.1315304E 03 0.36094d1E 03 0.242203E 03 0.51438J2E 02 0.2424131E 02 0.2747591E 02 0.24437435E 02 0.1402J35E 02  0.1402J35E 02  0.1221142E 05 0.1221142E 05 0.1241373E 06 0.1443373E 06	PHIJC 212-759 313-043 247-111 232-751 234-357 117-177 278-159 291-203 137-670 279-109  CTR 377 FL  PHIJC 171-229 204-765 242-896 217-397 307-995	PSIJC 212-759 150-522 82-370 58-188 46-371 19-306 39-7-37 30-406 15-296 27-911  PSIJC 141-229 142-382 80-965 59-349 61-579	CJ/CJMAX  U.358558 1.000000 U.660405 O.140134 O.15495 U.15497 O.07497 O.055634 O.026448 O.034856	1 2 3 4 5 6 7 8 9 10 J	4.032 8.005 12.697 10.125 20.101 24.174 28.226 32.258 36.276 40.323
AJ -U.3970C2bE 03 -0.11C61e2E 03 0.2003F41E U3 -0.9422E03E U2 -0.3111C04E 02 -0.32807C1E 02 -0.3295759E 02 0.3495482F 01 0.7401424E 01 -0.7309387E 01 0.2314c54F 01  FIXED HUR FLAP AT AA.41V1C AVALYSIS  AJ -0.2195447E 05 -0.3747506F 05 0.3112144F 04 -0.615C12E 04 -0.1194070F 03 0.547651E 03	HJ  -0.7117502E 02 -0.26d10025 03 -0.2231927E 03 -0.4092100E 02 -0.4575100E 02 -0.5110332E 02 -0.2719776 02 -0.1502002E 02 -0.150200349E 01 -0.144365d5 02  STA 18 MCCEL AH-96A SH  BJ  0.3010036E 05 -0.1160819E 05 -0.1160819E 05 -0.11609348E 04 -0.9001319E 03 -0.4246976E 03 -0.1444612E 03	CJ  0.1315304E 03 0.3609481E 03 0.242203E 03 0.514382E 02 0.3229443E 02 0.2747591E 02 0.2747591E 02 0.1462333E 03  CJ  0.1462333E 02  0.1221142E 03 0.1221142E 03 0.1221142E 03 0.1443371E 04 0.1443371E 04	PHIJC 212.759 313.043 247.111 232.751 234.357 117.197 278.159 291.203 137.670 279.109  CTR 377 FL  PHIJC 1-1.229 244.896 217.307 307.395 340.179	PSIJC 212-759 150-522 d2-370 58-188 46-371 19-366 39-737 30-908 17-291 27-911  PSIJC 141-229 142-382 80-965 54-349 61-579 57-679	CJ/CJMAX  U.358558 1.000000 U.660405 0.140134 0.159577 0.074897 0.074897 0.02948 0.039856  R. 1  CJ/CJMAX  1.000000 U.254048 U.119409 U.021742 U.021742 U.012794	1 2 3 4 5 0 T 8 7 10	4.032 8.005 12.097 16.125 20.101 24.194 28.226 32.258 30.296 40.323
AJ -U.3970C2bE 03 -0.11661e2E 03 0.2003541E U3 -0.9422E63E U2 -0.3111604E 02 -0.3280701E 02 -0.3295709E 02 0.3495482F 01 U.7401424E U1 -U.7304387F U1 0.23146545 01  FIXED HUR FLAP AT RA-4 DVIC AVALYSIS  AJ -0.2195447E U5 -0.3747506F 03 0.3112144E 04 -0.1194070F 04 U.641673F 04 U.641673F 03	HJ  -0.7117502E 02 -0.264002E 03 -0.2231927E 03 -0.409210CF 02 -0.4575103E 02 -0.27197705 02 -0.1502002E 02 -0.090199E 01 -0.14436505 02  STA 18 MCCEL 2H-56A SH  BJ  J.3010030E 05 -0.1180019E 05 -0.1180019F 05	CJ  0.1315304E 03 0.360541E 03 0.242203E 03 0.514382E 02 0.302943E 02 0.302943E 02 0.2747591E 02 0.2747591E 02 0.2747591E 02 0.1462375E 02  IP 1009 T 394  CJ  0.1221142E 02 0.5737605E 04 0.1473374E 04 C.1043318E 03 0.442413E 03	PHIJC 212.759 313.043 247.111 232.751 234.357 117.159 291.203 137.070 279.109  CTR 377 FL  PHIJC 1+1.229 204.705 242.896 217.397 307.395 340.174	PSIJC 212-759 150-522 d2-370 50-188 46-371 19-306 39-737 30-40d 15-290 27-911  T 401-0 T  PSIJC 141-229 142-302 80-965 54-349 61-579 57-679 23-442	CJ/CJMAX  U.358558 1.000000 U.660405 0.140134 0.153405 U.15957 0.074997 0.05634 0.026948 0.037856  R 1  CJ/CJMAX 1.000000 U.254048 U.119409 U.031006 U.02142 U.012594 U.012594 U.012594 U.012594 U.012595	1 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	4.032 8.005 12.097 16.125 20.101 24.144 28.226 32.258 36.270 40.323 FREQUENCY 4.032 4.005 12.097 16.125 20.101 24.144 29.220
AJ -0.3970C2bE 03 -0.11661e2E 03 0.2003641E 03 -0.94226C3E 02 -0.3111604E 02 -0.32807C1E 02 -0.32807C1E 02 -0.32957594 02 0.3495482F 01 0.7401424E 01 -0.7309387F 01 0.2314c54F 01  E1XED HUR FLAP AT dA-43VIC PNALVSIS	#J  -0.71175025 02 -0.2640325 03 -0.22319275 03 -0.40921005 02 -0.45971655 02 -0.51103326 02 -0.27197785 02 -0.15020026 02 -0.15020026 02  STA 18  MCCEL 2H-56A SH   BJ  J.30100365 05 -0.11808195 05 -0.11808195 05 -0.11808195 05 -0.42509785 03 -0.42509785 03 -0.42509785 03 -0.43623895 03	CJ  0.1315304E 03 0.30094d1E 03 0.4022003E 03 0.51408J2E 02 0.2029445E 02 0.2040430E 02 0.2040430E 02 0.1402J35E 02  IP 1009 T 394  CJ  0.1221142E 05 0.1221142E 05 0.1221142E 06 0.1443333E 06 0.1443333E 06 0.1423333E 06	PHIJC 212-759 313-043 247-111 232-751 234-357 119-199 291-203 137-070 279-109  CTR 377 FL  PHIJC 191-229 204-705 242-896 217-307 307-395 340-194 104-094 311-313	PSIJC  212-759 150-522 d2-370 58-188 46-371 19-300 39-737 30-908 15-290 27-911  T 481-0 T  PSIJC  141-229 142-382 80-965 59-349 61-579 57-679 23-942 30-914	CJ/CJMAX  U.358558 1.000000 0.660405 0.140134 0.154455 U.15457 0.076947 0.076948 0.020448 0.039856	1 2 3 4 5 6 7 8 4 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 8 7 7 7 7 8 7 7 7 7 8 7 7 7 7 8 7 7 7 7 7 8 7 7 7 7 7 7 7 7 7 7	4.032 8.005 12.097 10.125 20.101 24.144 28.226 32.258 30.290 40.323 40.323 40.32 6.005 12.097 16.125 20.101 24.144 25.226 32.258
AJ -0.3970C2bE 03 -0.11661e2E 03 0.203541E 03 -0.9422E63E 02 -0.3111604E 02 -0.3280761E 02 -0.3280761E 02 -0.3495482F 01 0.7401424E 01 -0.7309387 01 0.23146545 01  ETYED HUR FLAP AT -0.2195447E 05 -0.3142144E 04 -0.15612E 04 -0.1194030E 04 0.6416235 03 0.5476931E 03 0.745663E 03 0.745663E 03 0.745663E 03	#J  -0.7117502E 02 -0.26d1002F 03 -0.2231927E 03 -0.4092160E 02 -0.4575160E 02 -0.5110332E 02 -0.2719778E 02 -0.1502002E 02 0.6000149E 01 -0.144365d5 02  STA 18  MCCEL 2H-56A SH   BJ  J.3010036E 05 -0.1180819E 05 -0.1180819F 05 -0.4180819F 05 -0.4180819F 05 -0.4180819F 05 -0.4180819F 05 -0.4180819F 05 -0.431644E 03 -0.431644E 03 -0.431644E 03	CJ  0.1315304E 03 0.36094d1E 03 0.242203E 03 0.514382E 02 0.322943E 02 0.2747591E 02 0.2747591E 02 0.1402393E 02  IP 1339 7 394  CJ  CJ  0.1221142E 05 0.5737003E 04 0.1473313E 06 0.1473313E 06 0.1473313E 03 0.473213E 03 0.473213E 03 0.473213E 03 0.473313E 03 0.473213E 03 0.473213E 03	PHIJC 212-759 313-043 247-111 232-751 234-357 117-177 278-159 291-203 137-670 279-109  CTR 377 FL  PHIJC 1-1-229 244-765 242-896 217-97 307-99 340-174 164-094 311-313 1-695	PSIJC 212-759 150-522 82-370 58-188 46-371 19-306 39-737 30-408 15-298 27-911  PSIJC 141-229 142-382 80-965 54-349 61-579 57-079 23-442 30-916	CJ/CJMAX  U.358558 1.000000 U.660405 O.140134 O.159579 O.074897 O.05634 O.029948 O.039856  R. 1  CJ/CJMAX  1.000000 U.254048 U.119409 U.031036 U.021742 U.012594 U.012594 U.012594 U.012595 U.023495 U.023495	1 2 3 4 5 6 7 8 9 10	4.032 8.065 12.097 16.125 20.101 24.194 28.226 32.258 30.296 40.323 FREQUENCY 4.032 4.065 12.097 16.125 20.101 24.194 28.226 32.258 30.296
AJ -0.3970C2bE 03 -0.11661e2E 03 0.2003641E 03 -0.94226C3E 02 -0.3111604E 02 -0.32807C1E 02 -0.32807C1E 02 -0.32957594 02 0.3495482F 01 0.7401424E 01 -0.7309387F 01 0.2314c54F 01  E1XED HUR FLAP AT dA-43VIC PNALVSIS	#J  -0.71175025 02 -0.2640325 03 -0.22319275 03 -0.40921005 02 -0.45971655 02 -0.51103326 02 -0.27197785 02 -0.15020026 02 -0.15020026 02  STA 18  MCCEL 2H-56A SH   BJ  J.30100365 05 -0.11808195 05 -0.11808195 05 -0.11808195 05 -0.42509785 03 -0.42509785 03 -0.42509785 03 -0.43623895 03	CJ  0.1315304E 03 0.30094d1E 03 0.4022003E 03 0.51408J2E 02 0.2029445E 02 0.2040430E 02 0.2040430E 02 0.1402J35E 02  IP 1009 T 394  CJ  0.1221142E 05 0.1221142E 05 0.1221142E 06 0.1443333E 06 0.1443333E 06 0.1423333E 06	PHIJC 212-759 313-043 247-111 232-751 234-357 119-199 291-203 137-070 279-109  CTR 377 FL  PHIJC 191-229 204-705 242-896 217-307 307-395 340-194 104-094 311-313	PSIJC  212-759 150-522 d2-370 58-188 46-371 19-300 39-737 30-908 15-290 27-911  T 481-0 T  PSIJC  141-229 142-382 80-965 59-389 61-579 57-679 23-942 30-914	CJ/CJMAX  U.358558 1.000000 0.660405 0.140134 0.154455 U.15457 0.076947 0.076948 0.020448 0.039856	1 2 3 4 5 6 7 8 4 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 5 6 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 8 7 7 8 7 7 7 7 8 7 7 7 7 8 7 7 7 7 8 7 7 7 7 7 8 7 7 7 7 7 7 7 7 7 7	4.032 8.005 12.097 10.125 20.101 24.144 28.226 32.258 30.290 40.323 40.323 40.32 6.005 12.097 16.125 20.101 24.144 25.226 32.258

FIXED HUB CHORD AT STA 18 HARMONIC ANALYSIS MODEL AH-56A SHIP LOUP T 394 CTR 377 FLT 481.0 TR 3

				05.1.6	£14£1MAV		FREQUENC
0.1766 E58F C5	81	Cl	PHIJC	PS IJC	CJ/CJMAX	J	PREQUENC
0.3/48 6648 0+	J. 1734-138E C5	CO 500Eut11.0	83.512	83.512	1.000000	1	4.03
0.94375448 44	-0.9729231E C4	0.13+3/619 35	115.608	157.804	0.170605	ż	8.06
-0.111247HE U5	-0.1127526E 45	0.10414195 05	245.386	75.129	0.203418	3	12.69
-3.10046545 03	0.8253U29E 03	60 3cuSt 1+6.0	101.404	25.351	0.010812	4	16.14
J.1614 EBIE 04	0.9366465£ C3	C.146abj4E 04	30.114	6.023	0.023975	5	20.16
0.81205926 03	-0.14009366 03	CO SESTETER O	350.880	58.480	0.011350	6	24.19
0.7202 E54E 03	0.57264+86 03	0.724716JE 03	30.257	5.463	0.011878	7	26.22
0.131 6 C43E 03	-0.5677403E C3	C. 9/>31/16 03	275.941	34.479	0.012525	8	32.25
-0.20000208 03	0.18C1427E 02	0.20062928 03	176.037	19.560	0.003347	9	36.29
0.4113496E U3	0.36150248 03	0.54732438 03	41.310	4.131	0.00.333	10	40.32
LADE FLAP AT STA	130.5						
AFTUNIC ANALYSIS		HIP 1004 T 394	CTR 377 FL	T 481.0	TR 19		
A.J	Lo	c.i	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENC
0.13545146 05		••			007 00.1.2.1	•	THE GOLING
0.160951UE 04	-0.2780282E 04	0.32127323 04	300.073	300.071	0.609552	1	4.03
+0 3c5 7 5 25E O+	0.48618036 04	0. >2706135 04	114.164	57.082	1.000000	Ž	8.00
0.7617545F 03	0.1631143F C4	0.13077328 04	64.335	21.445	0.243358	3	12.09
3.63684556 03	U.1266287E C3	0.01775736 03	11.805	2.951	0.117624	4	16.14
-0.3445 544F 03	-0.13ca0575 C3	0.37537235 03	201.374	40.275	0.071217	5	20.10
-3.35571048 03	0.1390014E C3	0.36110416 03	150.656	26.443	0.072458	6	24.19
-0.16436442 03	-J.190m996E U3	0.25190035 03	229.271	32.753	0.047794	7	28.22
J.61J5444E 03	-0.655+UUdE 02	0.61413425 03	353.873	44.234	J.116504	8	32.25
-0.1257720E 63	0.8500861E 05	0.15+5/+16 03	144.456	10.051	0.029327	9	36.29
-0.2731195E 02	-0.1436971E C3	0.14026455 03	254.238	25.924	0.027752	10	40.32
ADE FLAP AT STA	174						
ARAUNIC ANALYSIS	MODEL AH-56A SI	41P 1009 T 394	CTR 377 FL	T 481.0	TR 50		
0.8106270F UJ	hJ	СЛ	PHIJC	PS IJ C	CJ/CJMAX	J	FREQUENC
0.2219478F 44	-0.5114418F 04	0.25750365 04	293.455	293.455	1.000000	1	4.00
-0.11225231 04	J.4911051F C4	0. 20177115 00	102.875	51.438	0.903610	ž	H. 06
0.187423.E U4	0.348385CF C3	C. L . J. 11 JE 04	10.5.0	1.510	0.141918	3	12.07
-0.3332 cl2E U3	0.3254560E 01	0.33327/15 03	179.443	44.863	0.059780	4	16.12
J.94522J4E 02	0.24229746 03	0.20205-28 03	67.609	13.522	0.047005	5	20.10
-0.13024708 03	0.46460445 01	0.42164375 03	103.752	17.292	0.075640	6	24.19
-0.2100171F 03	0.7224009F C3	0.77644255 03	111.874	15.982	0.134624	7	20.22
-0.3128369E 03	-0.5763000E C3	0.65717756 03	2-1-276	30.159	0.117878	8	32.25
0.1/36451E 03	0.51475465 02	0.14571725 03	16.074	1.706	0.033348	. 9	36.29
0.1039520E Cs	0.36821756 03	0.34711JBE 03	61.990	0.199	0.062620	10	40.32
AUC FLAP AT STA	205						
	MCDEL AH-5GA SH	IIP 1037 T 394	CTH 377 FL	T 481.0 T	'R 20		
AJ -0.1026564F 05	вЈ	CJ	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENC

BLADE FLAP AT STA 235
HAF-TUNIC ANALYSIS MUDEL AN-56A SHIP 1009 T 394 CTR 377 FLT 481.0 TH 4

LA	8.1		CJ	PHIJC	PS IJC	CJ/CJMAX	j	FREQUENCY
-0.1228502F C4								
-0.9354331F 03	J. 3CQuodoE	04	0.31034/48 06	108.147	108.147	1.000000	L	4.032
J.1364325F 04	-0.16330355	04	0.24744395 04	318.743	159.392	0.783321	2	8.005
-U.23864UIE 04	-U. 7302698E	C3	0.24480276 04	196.498	65.660	0.789521	3	12.097
0.7023E70E 02	-0.58472535	05	C. 1171773E 02	314.478	74.144	0.020108	4	16.125
-U.4392640E 03	-0.216,009E	03	0.48730305 03	200.053	41.131	0.154016	5	20.161
-3.276333318 03	0.14004115	CS	0.31402JIE 03	152.209	23.308	0.044438	U	24.194
-0.4044001 03	-U.1088492F	63	0. +1435135 03	192.003	27.800	0.132381	7	20.226
0.3546240F 03	-0.3180012E	C3	0.503377746 03	323.744	40.099	0.159002	8	32.258
-3.1026440F U3	-3.31030318	02	0.1650 1115 03	191.005	21.223	0.052368	9	30.290
-0.123957JF 03	0.2115877F	43	0.24522335 03	123.304	12.030	0.077505	10	40.323

BLACE FLAP AT STA 270
MARMONIC AVALUSIS MODEL AH-264 SHIP 1009 T 394 CTR 377 FLT 481-0 TR 26

AJ 0.12756746 04	8.1		CJ	PHIJC	PSIJC	CJ/CJMAX	j	FREW UENC Y
0.60103256 03	0.20004746		0.05728328 03	23.017	23.877	3.341168	1	4.012
0.10954666 04			0.1277J376 04 0.2J32617E 04	320.226 186.508	164.114	0.635677	5	9.065 12.697
-0.35513048 03			0.44653545 03	217.325	54.331	0.219710	4	16.125
-J.+37J791E 03			0. +0111111 01	199.373	37.875	0.227434	5	20.161
-0.2929387E 03			0.3474471E 03	137.162	22.360	0.196541	6	24.194
-U.8512580E 02			0.50453+05 03	201.953	32.744	1.242021	é	20.226 32.258
-0.85557CJE J2			0.10411/18 03	214.732	23.059	0.051223	9	36.290
-0.10036656 03	0.15566196	03	0.145047E 03	122.151	12.215	0.042789	10	40.323

BLADE CHORD AT STA 103 HAR-40VIC AVALYSIS MCDEL AM-56A SHIP 1009 T 394 CTR 377 FLT 481.0 TR 17

AJ		8.1		CJ	PHIJC	PSIJC	CJ/CJHAX	J	FREQUENCY
0.2241650E	40								
0.32867278	04	0.3637570E	95	0.30>234+6 05	84.837	84.837	1.000000	ı	4.032
0.700239RE	04	-U. 6512551F	C+	0.93025565 06	317.074	158.537	0.261816	2	8.065
-0.13575dyE	05	-0.76528528	C4	0.1271521E 05	213.009	71.233	0.348134		12.097
0.30143316	U·	-J. 1154490E	64	0.410/03/2 04	343.755	85.166	0.112502	4	16.125
-0.1032015F	04	-0.69H4226F	03	0.12478478 04	212.842	42.208	0.035260	5	20.161
0.82165946	JS	0.93649805	C3	0.12-1-838 04	48.548	8.07:	0.033991	6	24.194
-0.37975598	Ci	0.31940396	02	C. 7303222E 03	177.907	25.424	0.024650	7	28.224
-U.5548220E	03	-0.06164725	03	0. 8623535ê 63	233.124	28.766	0.023011	ы	32.250
0.45471176	03	0.45147115	03	0.04112875 01	44.021	4.901	0.017554	9	10.240
0.35455475	03	0.47506418	C 3	0. 29+0+LE U3	53.145	5.31+	0.010415	10	40.323

BLADE CHORD AT STA 174
HAPMONIC ANALYSIS MODEL AM-56A SHIP 1009 T 394 CTR 377 FLT 481.0 TR 42

AJ	Lu	c	ı	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENC Y
0.1555C55E C5				W	W95			
J.1315402F C4			33E 05	86.554	86.354	1.000000	4	4.032
J.3314449F 04	-0.72179185 0	0.74.2	215 D4	297.006	147.333	0.162902	2	8.065
-0.7405 6375 04	-0.14131175 (			193.134	63.374	0.360Y38	3	12.097
J.2954145F U4	-0.16036438 0	C4 0.3437	135 O4	327.843	01.175	0.159350	4	16.129
-0.1122744F 04	J. 3005652F (	C3 C.1154	373E 04	104.633	32.427	0.053201	5	20.101
3.7034360F U3	0.2125045F 0	0.1037	317E U3	1.294	J.206	U.U 34845	6.	24.144
-0.4407024E 03	0. 3228487E (	Cs 0.54.15	1)2E 03	143.770	20.533	0.024462	7	28.226
-0.2461E84E 03	U.34C1450° (	0.41 /8	true Ul	125.890	15.737	0.019185	8	32.258
0.3635360E U3	0.27842295 0	0.4579	to Etol	37.448	4.101	0.040922	9	36.29C
U.5/24451E UZ	U.3544000E 0	C3 0. 1811	16E 01	81.742	0.174	0.018209	10	40.323

BLADE CHORD AT STA 235
HARMUNIC ANALYSIS MODEL AH->64 SHIP 1JU9 T 394 CTR 377 FLT 481.0 TR 22
DVERALL CYCLIC LOAD # 0.922113E C4

ZEAD POSITION	USED	4.42		LCAD/IN USED	-	63300.00				
LA		8.1		CJ		PHLJC	PS IJC	CJ/CJMAX	J	FREUUENCY
-0.2047:05E	US									
3.237 ± 1958	د ن	0.53243796	C+	9.5324001E	04	87.447	47.447	1.000000	1	4.032
J. 1J01142F	04	-0.1443926E	C4	0.17919115	04	300.312	153.150	0.336214	2	8.005
-0.2274407F	04	-3.5717871F	0 4	0.23+50666	UY	194.159	44.720	0.440115	3	12.097
0.1321:8UF	U+	-0.7025059F	63	0.14150108	04	332.003	100.68	0.280790	4	10.12
-0.7JuotezL	03	-0.59263555	02	0.70110995	03	184.835	30.961	0.131935	5	20.161
0.360 VC21E	0.3	-0.13672163	02	0.30210176	US	354.670	59.112	010830.0	6	24.194
-0.3843545E	<b>C3</b>	0.1598474F	03	0.42334345	03	157.079	22.520	0.078971	7	28.226
-0.1107t76E	3.3	-0.81350465	42	0.14233445	03	214.078	20.000	0.020106	8	32.256
0.234490.E		0.20021+96	UJ	U. 3533330cc	U.S	41.983	3.331	0.005/32	9	36.290
-0.20497238	3 ت	U.118403CE	0 3	0.23271256	03	149.987	14.444	0.044414	10	40.323

BLADE TORSION AT STA 131.5
HARAUNIC ANALYSIS MUDEL AM-50A SHIP 1009 T 394 CTR 377 FLT 481.0 TR 44
UVERALL CYCLIC LOAD = 0.567778E C4

ZEPO POSITION	USED	1.49		LCAD/IN USED	12530.00				
AJ		8.3		CJ	PHIJC	PSIJC	CJ/CJHAX	J	FREQUENCY
U.6777244E	0.3								
J. 2691 706F	04	0.17127216	C4	0.3190+368 04	32.468	32.468	1.000000	1	4.032
-0.1160976F	04	0.1851249E	04	0.21451748 04	122.093	61.047	0.684420	2	8.065
J.7011540E	G2	0.23779635	دن	0.24468235 03	12.253	24.003	0.078260	3	12.097
-0.2477146E	03	-0.1114054F	CS	0.27163776 03	204.227	51.057	0.085142	4	10.125
3.61992385	03	0.3189195E	01	0.01993176 03	0.295	0.059	0.19-311	5	20.161
-0.1089505F	02	-U.288+558E	C۵	0.200661.00	267.037	44.039	0.090478	6	24.194
-0.17984678	03	0.38571085	0.3	0.42/21316 03	114.172	10.390	0.134532	7	28.226
-0.1150 P71E	03	-0.75322395	03	0.70176535 03	261.313	32.664	0.238830	8	32.25€
J.98552C8E	02	U.5573621E	62	0.11322122 03	24.440	3.211	0.035488	9	36.290
-0.69894648	02	0.1290009E	02	0. /1356626 02	169.490	16.949	0.022281	10	40.323

BLADE FEATHER ANGLE
MARAUNIC ANALYSIS MUDGL AM-56A SMIP 1007 T 394 CTR 383 FLT 481.0 TR 31

AJ	Lh	CJ	PHLJC	PSIJC	CJ/CJMAX	J	FREQUENCY
0.8397724E 01							
0.2714504E 01	-0.3e444ulf Cl	O. +>++3Uuf UL	306.042	300.642	1.000000	1	4.115
-J.3J91517 0J	-0.28592320 00	0.421103+E 00	222.764	111.302	0.092585	2	8.23C
-0.11403148 00	0.25057+2t-C2	0.11436335 03	178.711	59.570	0.025078	3	12.340
0.04491046-01	-0.63444735-01	10-25667+64.0	315.471	76.868	J.019891	4	16.461
-J.1346 744E-01	-0.12531486-61	10-24106455.0	214.635	42.857	0.005047	>	20.576
-0.1564C57E-01	0.9020/385-02	0.18272+85-01	150.417	22.373	0.004017	6	44.691
-J.1417429E-01	-0.84771-4E-02	0.10010825-01	213.882	33.120	0.003631	7	20.801
-J.1271100E-U1	U. 162236UF-62	0.13.1JJ2E-01	164.364	20.541	0.002948	8	32.422
-J.0360.12F-02	-0.57421795-63	30-34675	185.154	20.573	0.001405	9	37.037
0.4067572E-03	-0.55785035-02	0.55474746-02	274.183	27.478	0.001231	10	41.152

SHAFT MOMENT HARMCNIC ANALYSIS MODEL AH-JOA SHIP LOOP T 394 CTM 383 FLT 481.0 TH 36

AJ		ы		CJ	PHIJC	PS IJC	CJ/CJMAX	j	FREQUENCY
-0.4084FOLF	04								
-J.2001C42E	Co	U. 1343379E	06	0.2421471E 06	152.685	152.685	1.000000	L.	4.115
-3.1147042F	U4	0.18918483	04	0.2212+165 04	121.229	60.614	U.U07557	2	6. 4 3 C
-0.3425733E	05	-0.35701746	05	0.++52253: 05	226.231	75.410	0.169165	3	12.346
-3.920-11-5	C3	0.51350705	C4	U.5217455E U+	100.227	25.057	0.017824	4	10.461
J. DESCLAUF	03	0.88743455	C4	0.91)109.3 04	83.595	17.119	0.030404	5	20.576
0.730 + 760F	ون	-0. 14021526	C2	0.13107528 03	372.064	58.771	0.002518	6	24.091
-0.33356165	04	-0.39926906	U3	0.30314130 04	187.568	20.795	0.010355	7	28. 807
3.723762UE	Cs	0.43359765	C3	0.84373335 03	33.925	3.800	3.002082	8	32.922
J.1101291F	0.	J. 155/5818	Ç4	0.11.21306 04	53.240	2.161	J.000037	9	37.637
J.5949495E	03	0.63023618	03	G. 8713643E 03	40.921	4.042	0.002975	10	51.152

PITCH LINK TENSION
HARMONIC AVALYSIS MOUSE AH-564 SHIP 1309 T 394 CTR 383 FLT 481.0 TR 11

A.J.	ВJ	CJ	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENC Y
-0.4722CA7F UJ							-
J. 3769150E JZ	-0.29C103CF C	J. 242541 1F 03	277.403	277.403	0.643252	1	4.115
J.2331558E 03	- U. 3964698f ()	U. 45 + 78 + 7E 01	300.045	153.421	1.000000	2	8.236
-0.22977176 63	-0.25247115 03	C. 3+17320E 03	227.619	15.940	0.749151	3	12.340
-0.317-CdeE 02	0.50535965 CL	0.32143115 02	170.383	42.721	0.070666	4	16.461
-0.87731275 02	-J.2788976E 02	0.33163533 02	147.600	37.453	0.206615	5	20.576
-3.4212133E 31	J. 15500 + OF 32	J. 10+2+7+6 UZ	104.533	11.412	0.036181	6	24.091
-0.3762580E 30	-U.42C9483F C2	0.42375518 02	264.458	35.478	0.092564	7	∠8.807
-0.1/J4114E UZ	-0.9621594E CL	J. Lyonador UZ	207.457	20.245	0.043249	8	34.522
-J. TJHECT-E OI	-3.454a9206 Cl	0.1.216248 01	212.678	23.031	0.018518	9	37.637
-0.1/2052UE UZ	0.13052935 02	0.42342076 02	141.167	14.117	0.048577	10	41.152

FIXED HUB FLAP AT STA 18
HAPMONIC ANALYSIS MODEL AND SHIP 1007 F 394 CTR 383 FLT 481.0 TR 1

AJ	ρJ		CJ	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
-0.4/37477E U	4							
-0.62107945 0	5 0.3010138E	05	0.04118336 05	154.142	154.142	1.000000	1	4.115
0.23011255 0	4 -0.136HUL9E	05	0.13872385 05	279.548	134.774	0.260996	2	8.230
-0.4743E71E U	4 -0.52015625	C4	0.12133235 04	226.217	15.400	0.164509	3	12.346
-0.15714598 0	4 -J. 64471 HJE	C3	0.1110/138 04	200.361	50.040	0.028730	4	14.461
-3.14433925 3	4 0.53208925	C2	0.144.3735 04	177.009	33.578	0.020427	5	20.570
J.3257:735 J	3 0.41157545	CS	0.2/11/10/2 05	50.102	4.204	0.000316	6	24.641
-J.53501246 0	3 0.26434075	03	0.5/1/5-26 01	152.413	21.775	0.000270	7	28.607
J.250:33F 0	3 -0.2/03000	CB	0.102112+2 01	313.905	39.238	0.005537	8	32.522
0.300 16648 0	3 0.64585443	CZ	0.11353+2= 03	4.411	0.491	0.013092	4	37.637
0.6559174E 0	2 -0.29232256	02	3.12123378 02	335.303	33.030	J.001054	10	41.152

FIXED HUR CHORD AT STA 18.
HAFMONIC ENALYSIS MODEL AH-56A SHIP 103+ T 394 CTR 383 FLT 481.0 TR 3

AJ 0.1d6d164E 05	ßJ	CJ	PHIJC	PS IJC	CJ/CJMAX	J	FREQUENCY
J.4313C14F 05	0.21238295 0	5 0.4407575E 05	26.217	26.217	1.000000	1	4.115
3.20743045 05	-J. 256J8475 C		315.150	157.575	0.755298	ž	8.23
-0.151556YE U5	-0.1761718F C	0.23231116 05	224.295	76.432	0.483387	3	12.346
J.1342L23F 03	J. 5540337F C		91.993	27.428	0.020040	4	10.40
-2.43306326 32	-0.22243056 0		200.884	41.378	0.001023	5	20.57
- , . A ( ) 9 3 3 1 LE 0 3	-0.133.0.62 (		233,660	39.277	0.033556	6	24.691
0.1325046 03	U.9052037E U		81.917	11.989	0.020275	7	28.80
3.31976228 03	-0.5701750° C		299.03/	3/.380	0.013/13	a	32.92
3.1114360E 34	-0.1-700-05		307.126	34.125	0.038576	9	37. C3
0.1501566E 03	-J.6770335F (	3 0.67+37316 03	282.494	28.249	0.014437	10	41.154
BLADE FLAP AT STA		5u10 1 1 2 1 10/	678 JOS 5		- X . X		
MARMONII ANALYSIS	ALUEL AH-36A	SHIP 1009 T 394	CTR 383 F	LF 481.0	TR 19		
L.A.	н	CJ	PHIJC	PS 1JC	CJ/CJMAX	J	FREQUENC Y
0.1494332E US	17.0	• • • • • • • • • • • • • • • • • • • •	34,1130	13136	CUPCUMAN	•	T NEW DE INC T
0.01345708 03	-0.3639529E C	6 0.3573857E 04	279.567	271.567	0.535130	1	4.115
-0.28996278 04	0.6258038E 0		114.001	27.430	1.000000	ž	8.230
3.1249990F U4	0.1434225E C		57.147	14.042	0.333904	3	12.346
0.7345181E C3	0.1444320E C		11.051	2.763	0.109247	4	10.461
0.8J64551E CZ	-0.58137075 0		277.897	22.579	0.085100	5	20.576
0.95191705 02	-0.30534+4E C.		331.028	50.171	0.013574	6	24.691
-0.1146571E 03	-0.4674097F C		250.207	34.601	0.072767	7	28.807
0.3-270806 03	-0.1393132E C		337.878	42.235	0.053637	8	32.522
-0.1234672F 03	-J. JC570196 0.	2 0.12+11325 03	194.183	41.5/0	0.016040	4	31.637
-0.10306506 62	-0.6499049E 0.	C. 6733415E 02	255.915	25.591	0.009715	ſο	41.152
BLACE FLAP AT STA				. 688	.0012		
HARM INTO ANALYSIS	MUNEL AH->6A	SHIP 1007 T 394	CTR 383 F	LT 481.0	TR 50		
A.J	Ld	CJ	PHIJC	PS 1JC	LJ/CJMAK	ı	FREQUENC Y
J.1300167E 04	D.J	<b>.</b> .	F/// 3 C	13130	UU, UUMAA	J	THE WOLKE T
0.22148416 04	-0.58402276 04	0.02728758 04	290.637	290.007	0.956647	ı.	4.115
-J.1631553F U4	0.6372504E C		104.301	52.181	1.000000	į	a.23C
J.2187.47E 04	U. 4714304E 0		12.163	4.054	0.340150	3	12.340
tu 3+0t0c++.0-	J.1/41855E 0		150.096	34.5.4	0.073016	4	16.461
-0.15078338 03	J. 4570310F D.		138.239	21.052	0.073162	5	20.576
-3.3-694738 03	J. 4219205F C		129.431	21.572	J.0 = 304 L	6	24.091
-0.1710177E J3	U.4650175F 0.		110.239	15.748	0.075445	7	28.807
-J.8397575F G2	-3.3576370E U		250.705	32.099	0.055847	8	32.922
J.501557cF 02	-0.11165446 C.		290.659	32.962	J.J14027	y	31.437
0.32732018 02	-0.0010/14# C.	2 0.05541475 02	292.210	24.261	0.013164	10	41.152
4							
LADE FLAP AT STA		fula (100) 7 104 /	eT6 143 54	T 401 41 T	0 20		

BLADE FLAP.AT STA 205 HAPAUNIC ANALYSIS MOJEL AH-56A. SHIP 1009 T 394 CTR 363 FLT 481.0 TR 20

LΛ		6.1		CJ	PHIJC	PS IJ C	CJ/CJMAX	J	FREHUENC Y
-4.4045 6446	C4								
-0.24147115	U+	J. 5755461E	C4	0.64871338 04	110.699	110.649	1.000000	1	4.115
3.24120445	J4	-0.47078+46	04	0.533.42372 04	300.417	153.208	0.850202	2	8.23C
-0.21105til	U-	-U. BU41213F	63	0.2314/335 04	200.342	06./81	0.356350	٤	12.346
J. 655 / eU3E	0.5	-0.38695602	02	50 EFF 21.9 CO	356.623	89.100	0.101265	4	10.401
3.26124128	U3	-0.40142316	C3	0.02100475 03	300.058	40.312	0.080400	5	20.516
U.31016eUE	U.S	-0.35592446	02	0.31223145 03	353.454	58.407	0.048126	6	24.691
3-1444.348	03	-0.35674448	C3	0. +2221306 03	290.003	41.429	0.065085	7	28. BC7
J.485555JE	02	-0.21217015	Cl	0. + 103171= 02	350.792	44.579	0.007497	8	32.522
-0.15556536	02	0.25992136	42	C. 3329135 02	120.901	13.433	0.004670	y	31.631
-0.7-13411F		-0.33613A2E	CL	0.7421324€ 02	102.546	14.560	0.011440	10	41.172

BLADE FLAP AT STA 235
HAR-HUNIC ANALYSIS MODEL AH-56A SHIP LOUP T 394 CTR 383 FLT 481.0 TR 4

FREQUENCY	J	CJ/CJMAX	PS TJC	PHIJC	CJ		ВJ	A J
								0.1198116E U3
4.115	1	1.000000	111.649	111.049	0.41111525 04	O~	0.14211945	-U .1517:05E 04
8.23	2	0.864224	154.002	304.324	0.15540518 04	04	-0.21419435	0.2252 1408 04
12.340	3	U.492563	67.792	203.375	0.2320330F 04	0 3	-0.803651 HE	-0.1H5979#= 04
10.461	4	0.161435	64.084	336.351	0.00+3148 03	CB	-0.20030355	0.63621246 03
20.57	5	0.169848	52.241	261.441	tu Brosost us	0.5	-J.6400762F	-0.10316976 03
24.691	6	0.059706	40.29+	243.562	0.24337075 03	CJ	-J. 4151054E	-0.109344JE Cs
28.80	7	0.120368	34.403	220.821	U. ++>11>12 Os	0.3	-U. 361045dc	-J.3337 COSE U3
32.926	8	J.0c0143	41.279	333.632	0. 33433332 U3	CJ	-0.17546+75	3.3375774F G3
37. C3	9	0.004264	32.081	294.132	0.23440825 01	CJ	-0.26CUUBLE	0.1164E4JE 03
41.154	10	0.029406	13.140	131.397	0.12395575 01	02	J. 9673508E	-0.79983998 02

BLADE FLAP AT STA 270
HARMUNIC ANALYSIS MODEL ANDOA SHIP LOUD T 394 CTR 383 FLT 481.0 TR 26

ĀJ.		HJ		CJ.	PHIJC	PS IJC	CJ/CJMAX	ز	FREQUENCY
0.26747875 0	4								
0.25310435 0	13	U. 1016474E	04	0.10+75115 04	70.018	76.018	0.552019	1	4.115
J.1510+72E U	14	-0.1140435E	C4	0.18+/6335 04	323.059	101.230	1.000000	2	8.23C
-0.1413531F 0	14	-0.43881476	C3	0.1430+298 0+	197.242	65.747	0.780175	3	12.346
0.868024UE U	12	-0.47708538	Cs	J. 4825J73E U3	283.299	73.375	0.255854	4	10.401
-0.233-555E C	:3	-U. 413644UE	0 5	to Joct free.0	244.143	40.810	0.242256	5	20.576
-J.4734778E 0	) }	0.17622763	03	C. > Stechte us	100.416	20.736	0.207631	٥	24.641
-J.4166570E U	3	-0.22843575	C3	0.47513725 03	208.734	21.319	0.250405	7	28.E07
J.93JU191E J	1	-0.40400+01	CS	0.+4+0+115 03	271.148	33.494	0.244571	8	32.522
-0.5121597E U	12	-0.2/648755	CJ	O. 232221JE Os	257.594	28.344	0.149426	9	37.637
0.15035716 0	2 (	-0.64400292	01	0.16913978 02	337.017	31.702	0.008913	10	41.152

BLADE CHORD AT STA 103
HAPAUNIC ANALYSIS MODEL ANDDO SHIP 1003 T 394 CTR 363 FLT 481.0 TR 17

A J		٥J		CJ	PHIJC	PSTJC	CJ/CJMAX	j	FREQUENCY
0.2265564F 0	0								
0.2295322F 0	15	36670+17.0	C4	0.24338325 05	17.281	17.281	1.000000	ı	4.115
3.158267.F U	35	-0.17/91185	05	0.23140775 05	312.408	150.234	0.975142	2	8.236
-0.17005Cof J	25	-0.94370795	C+	0.23323235 05	408.132	69.317	0.032645	3	12.346
0.44+36555 0	9	0.2544912E	CJ	C.++>28312 U4	3.792	3.448	0.1E5238	4	16.461
-0.13404705 0	)4	0.13920298	03	0.19433415 04	150.116	31.623	J.082510	5	20.576
-0.904032JF 0	٤ (	30.46831908	U3	J. 137103+2 04	154.104	27.084	0.044580	6	24.691
-0.184354JE U	) 4	-0.79256445	02	0.43752+15 04	102.397	26.357	0.078843	7	28.807
-U.9375670E 0	3	-0.1652865c	Ç3	0. 14310+12 03	185.085	23.261	0.041316	8	32.922
J.4133C75E 0	3	0.78698855	C3	0.3323713= 03	02.301	6.922	0.036694	9	31.637
-J.lobocise J	3	-J. 15226705	03	0. 40 13 3 11 0 03	238.174	45.017	173660.0	10	41.152

BLADE CHORD AT STA 176
HARMONIC ANALYSIS MCDEL AM->0A SHIP 1009 T 394 CTR 383 FLT 481.0 TR 42

AJ		ិមិប		CJ	PHIJC	PS IJC	CJ/CJMAX	j	FREQUENC Y
0.1028465F	05								
0.7502565F	<b>34</b>	0.71570596	4	0.10376745 05	43.808	43.808	0.612725	ı	4.115
0.9351563E (	04	-0.14333165	C5	0.16 vod 34 £ U5	302.358	151.179	1.000000	2	8.23C
-0.12823745	U5	-0.22470885	C4	C. 13319135 05	167.439	01.113	0.767274	3	12.346
0.4347278E	<b>0</b> •	-0.80716256	Cs	0.412/3335 04	348.719	87.180	0.243222	•	10.401
-0.11d6t21F v	4	0.21615152	04	0.2+l30>lE 04	119.448	63.693	0.142247	5	20.576
0.3310352t (	0 5	0.111.822F	04	C. 11617/+E O+	73.448	12.641	U.U6846U	6	24.691
-0.1834575E (	04	0.1107915E	04	0.21175338 04	148.452	21.207	0.124796	7	28.807
-U.4331787F (	U 3	0.14CJU41E	64	0.14040148 04	107.000	13.300	U.080317	8	32.522
-0.5545 £ 79F (	0.5	0.131014BE	C4	U. 13/720/E 04	92.310	10.257	0.001168	9	37.037
3.34341856	٤٥	9.24603126	02	0.34203428 03	4.307	0.431	0.023281	10	41.152

BLADE CHORD AT STA 235
HARMONIC ANALYSIS MODEL AH-56A SHIP 1009 T 394 CTR 383 FLT 461.0 TR 22

Aj	(1)	CJ	PHIJC	PS IJC	CJ/CJMAX	j	FREQUENCY
-0.20746125 05							
3.237354JE C4	0.88a19175 U3	0.2013958E 04	20.471	20.471	0.544785	1	4.115
3.326352JE C4	-0.33138255 C4	0.40513318 04	314.565	157.283	1.000000	2	8.23C
-0.33767CTE 04	-0.1387433E C4	0.41114JZE 04	199.683	66.501	0.885645	3	12.346
J. 1323 CEYF U4	-0.2844202F 03	O. Libbiecki. O.	347.073	hu.9ud	0.291076	4	16.461
-0.8292524F C3	J. 5487117F 03	0.12530495 04	131.150	20.251	0.270402	5	20.5/6
J.1041560F 01	0.4340111E C1	0.46720138 03	67.525	11.567	0.100892	6	24.691
-0.89194925 03	0.12C1519E C2	0. 47233335 03	177.228	20.004	J.191781	7	20.607
-0.331 7455E U3	0.51103876 63	0.511111356 03	120.531	15.066	0.12/104	ಕ	32.922
-0.642JC74E UZ	J. 6117351t 03	3.01203016 03	90.454	10.717	0.132358	9	37.037
-3.2784490E UZ	-U.14823085 G3	C. 1503271E 03	259.354	25.435	0.032+27	10	41.152

BLADE TORSION AT STA 131.5
HAPMONIC PNALYSIS MUDEL AH-364 SHIP 1009 T 3/4 CTR 383 FLT 481.0 TR 44

L.A.	LH		LJ		PHIJC	PS IJC	CJ/CJMAX	J	FREGUENCY
0.19552118 03	.,,				1.11100		007 001141	•	7 7 2 4 01 110 7
J. 2974 200F U4	0.2825078F C	C4	0.41321846 (	34	+3.525	43.523	1.000000	1	4.115
-J.5001102E U1	0.24300 OF 6	C4	0.23J10JdE 0	14	102.938	51.461	0.609824	2	8.236
0.5391.45E 03	-J. 2907742E C	0.3	J. GOOGHISHE C	3	333.730	111.243	0.160153	3	12.346
-J.9126149E 03	-3.3466914E C	0.3	0.47043515 (	3	200.797	50.199	0.230028	4	16.461
0.1351772F US	U. 7674634E C	C 3	0. /lulu0.2 u	11	61.312	10.262	0.174585	5	20.576
-0.23811106 03	0.24245JOF 0	J.	0.3194 1875 0	33	130.583	21.764	0.077982	6	24.691
J.2031765F 03	U. 3411462E C	£ C	0.31151548 0	3	54.261	8.467	0.096418	7	28.807
0.3540C15E 03	-J. 1036581E 0	ů3	0. 343331725 0	3	245.178	10.047	0.205704	8	32.922
-0.9261322E 02	-0.12801736 C	C 3	0.158337528 0	) 5	234.116	20.311	0.038517	9	37.037
0.114/0405 02	-0.16255375 0	02	0.1454+1JE U	12	335.208	33.521	0.004850	10	41.152

BLADE FEATHER ANGLE HARMONIC ANALYSIS MODEL AN-50A SHIP 1009 1 394 CTR 392 FLT 481.0 TR 31

FREWUENCY	J	CJ/CJMAX	PS IJC	PHIJC	CJ	H.J	A.J
							U.8196277E OL
4. C82	I.	1.000000	307.305	307.305	0.4812124E 01	-0.3827657E C1	0.29164358 01
8.103	2	0.073416	109.015	210.031	CO BEOFFECE OF	-0.21705335 00	-0.2782773E UJ
12.245	3	0.02/058	>>.152	105.433	0.13339378 03	0.33424916-CI	-0.1286.82F 00
16.327	4	0.017753	78.419	315.077	0.85431526-01	-0.59090a0E-01	0.6111-146-01
20.408	5	0.005767	42.028	213.138	0.27752018-01	-0.1517126E-01	J. 232 JE 87E-01
24.490	6	0.007409	8.349	40.294	0.1507JJJE-01	0.24615336-01	0 . 2371 tous - 01
28.571	7	0.014027	20.360	182.422	0.07+10126-01	-0.26524>3E+02	-0.6743 £6JE-01
32.653	8	0.009919	13.749	109.989	0.477333dE-01	J.4485811E-01	-J.16317C2E-01
30. 735	9	0.605030	U. 738	8 - 4 34	0.2.232376-01	0.355641 CE-02	0.2390508F-U1
40.816	10	0.005226	27.212	272.125	0.25147332-01	-0.2512471E-01	0.93236228-03

SHAFT MOMENT
HARRIDNIC ANALYSIS MODEL AH-DOA SHIP 1009 T 394 CTR 392 FLT 481.0 TR 36

4.0		8 J		CJ	PHIJC	PS IJC	CJ/CJMAX	J	FREQUENCY
-0.13098816	04								
-3.2985 6755	JO	0.11516436	C6	0.31072336 05	153.245	158.245	1.000000	Ł	4.082
-J. 3501842F	03	-0.35240865	C4	0.362737+€ 04	250.313	128.157	0.011673	2	8.163
-0.4+371716	US	-0.42279035	Co	0.01303425 05	223.004	74.535	0.197290	3	12.245
U.1719527F	Û4	0.1963530E	04	0.26393576 04	40.007	12.202	0.008398	4	10.327
0.8763714F	04	0.12353198	じつ	0.1514039= 05	24.047	10.724	3.040744	5	20.408
U.1510.0/E	04	-0.10296965	60	0.15237035 04	354.234	51.040	0.004904	6	24.490
J.1557319E	U4	0.47251022	04	0.4 1782585 04	71.049	10.236	0.010021	7	28.571
0.8517675	03	0.1563403=	C3	0.87+10398 03	12.900	1.023	0.002813	d	32.653
3.13714.15	04	-U.1244653E	04	0.182513.6 04	110.645	35.411	0.002874	4	30.133
-0.5774495E	03	0.26923075	03	U. 6371287E U3	155.003	15.500	0.002050	10	40.816

PITCH LINK TENSION
HAR-MONIC ANALYSIS MODEL AM-56A SHIP 1009 T 394 CTR 392 FLT 481.0 TK 11

A.J	41	Cl		PHIJC	PS IJC	CJ/CJMAX	J	FREQUENCY
-0.44144146 03								
J.5576616E 0/	-0.4474937E 0	3 0. +51952	13 03	277.104	277.104	1.000000	1	4.082
J.1552670F 03	-0.3853616F 0	3 0.41,400	3 U3	291.945	145.473	0.921301	2	4.163
-0.32096946 03	-0.1671474F C	1 0.361/93	7E 03	207.516	64.172	0.802263	3	12.245
-0.538U432F OL	0.1830758E C	Ctetec.O 1	75 01	loi.iol	43.288	0.012607	4	16.327
-0.5906223E 02	-U. 6396248E C.	2 0.3/3021	1E UZ	221.202	45.450	0.153063	5	20.408
-0.7+24565F 02	-0.7241909E C	1 0.745171	6F 02	185.571	33.928	0.165422	6	24.490
-J.7501 CC1E J2	-0.02503+25 0.	2 0.4703/1	₹ 02	214.803	51.400	0.216514	7	20.571
-0.20354830 02	0.5454603F 0	1 0.215003	LE GZ	105.240	20.455	0.04/024	8	34.653
-3.33392128-01	0.2340976F C	2 0.23.317	75 02	90.008	10.313	0.051912	9	30.735
0.2819726F 02	<b>0.16320036</b> 0.	2 6 000 12	25 02	52.233	5.220	0.102020	LU	40.016

FIXED HUB FLAP AT STA 18
HARAUNIC ANALYSIS MODEL AN-504 SHIP LUGA T 394 CTR 392 FLT 481.0 TR 1

L A .	ВJ	CJ	PHIJE	PS IJC	CA/CAMAX	,	FREQUENCY
0.3-20194F 04		33		, 5 , 5 0	007 00	•	
-J. 67 E 4 S Ja E J5	0.27905415 05	0.7+35850E 05	157.408	157.908	1.000000	1	4.052
0.11027445 04	-0.1451321E 05	0.14522215 05	211.003	100.501	J. 196640	2	8.163
-0.7347E32E 04	-U.33C45653 C4	** 0. 33557213 U+	204.215	40.072	0.108350	š	12.245
-U . 1072540E U4	0.41671393 03	0-17-33315 04	100.100	41.520	0.023448	4	10.321
J.4565789E 03	U. 16611205 C	0. 34-13/35 03	51.047	11.419	0.011454	5	26.408
U.1105507E 04	0.10:1823E C4	.0 -2107235 O.	24.430	4.738	0.024140	6	24.490
0.7104275E 01	U. F2218735 Cs	0.32341772 03	84.505	12.780	J.U110c0	7	20.571
-J.1172742F JJ	-0.8540125E C	0.3023.236 03	202.181	32.115	0.011604	8	32.653
0.44946275 03	-0.16220266 C4	0.11251535 0+	244.049	32.737	0.015131	9	36. 735
0.63J545ZE 02	-0.46017144 01	0.40+77125 03	270.000	21.505	3.000250	10	40.0lb

FIXED HUB CHORD AT STA 18 HARMONIC ANALYSIS MODEL AH-56A SHIP 1009 T 394 CTR 392 FLT 481.0 TR 3

A J	8 J	CJ	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
0.1409263F 05	• •		211130	73130	007 00 112 1	•	PREVOCACT
0.5194 E4UE 05	-0.14192966 05	0.53852306 05	344.719	344.714	0.973621	ı	4.082
0.3953103E 05	-0.3868655F C5	0.55J11+1E 05	315.618	157.809	1.000000	2	0.163
-3.2231575E 05	-0.1844532E C5	0.241,5156 05	219.571	73.193	0.523493	3	12.245
0.35921165 0+	0.418667CE 03	0.30252326 04	1.141	1.937	0.065542	•	16.327
0.3351446E C4	0.2856249F C4	0.4423430E 04	40.833	8.167	0.060083	5	20.408
J.1787221E 04	-0.11240775 04	0.21139956 04	327.717	54.620	0.038220	6	24.490
0.3111490F 04 -0.2285645E C4	0.2390898E G3 0.4C58003E G3	0.31213662E U4 0.2121363E 04	4.394 169.932	21.242	0.056420	7	28.571 32.653
-0.13397755 04	0.34176906 03	0.13424305 09	107.732	14.410	0.071789	9	30.735
-0.5036 EO4F 03	-0.0047050E C3	C.1000105 04	239.100	23.9/8	0.010092	10	40.016
	***************************************	***************************************	237110			••	
HARADE FLAP AT STA		4PE T 60C1 91H2	CTR 392 FI	LT 481.0	TR 19		
MARTUTE MARETSES	HOUSE AN- JOH	MIP 1307 1 374	CIR 372 F	-1 401.0	15.47		
AJ	3.1	CJ	PHIJC	PS IJC	CJ/CJMAX	J	FREQUENCY
J.154479UE 05		• •				_	
0.42UJ 374E U3	-0.4143734E 04	0.41097055 04	275.788	275.788	0.573172	L	4.682
-3.3179C75E 04	0.65341995 04	0.72065166 04	115.444	57.972	1.000000	2	8.163
0.2028C52E 04	0.18346475 C4	0.2734762E 04	42.134	14.045	0.370351	3	12.245
0.97237288 03	-0.2668472E C3	0.100101.5	344.650	80.162	0.138723	4	16.327
-U.7514622E 03	-0.108JC61E C4	J. Histoppie 04	235.168	47.334	0.181180	5	20.40€
-0.13261808 04	-U.1737229E 03	0.10-07815 06	189.609	31.001	0.143230	6	24.490
-0.80065828 03	-0.6838025E 03	0.1052414E 04	220.499	31.500	0.144900	7	28.571
0.2305/018 03	-0.25732 165 63	0.1405-11= 03	314.275	39.784	0.053209	8	32.653
0.1365C23E 03	-3.591-2815 02	0.15162LJE 03	330.859	37.429	0.020728	9	36.735
0.74224555 02	-0.13558398 03	0.15733345 03	300.244	30.030	0.321610	10	40.816
BLADE FLAP AT STA	174						
HARMUNIC ANALYSIS		MIP 1009   394	CTR 392 FI	LT 461.0	FR 50		
HĀRĀŪNĪĒ ANALYSIS		CJ	CTR 392 FE	LT 461.0 1	TR 50 CJ/CJMAX	J	FREQUEIK Y
##EMINIT ANALYSIS  AJ  0.1306395E 04	MUDEL AH->6A S	CJ	PHIJC	PSIJC	CJ/CJMAX		
AJ 0.1306395E 04 0.2621ed1E 04	MUDEL AH->6A S  J -0.61241885 04	CJ 20 30666030	PHIJC 293.074	P5 IJC 293.074	CJ/CJMAX 0.909047	ı	4.082
AJ 0.1306395E 04 0.2621ed1E 04 -0.24975655 04	#UDEL AH->6A 5	CJ 40 30tcetco.0 40 3120Eit7.0	PHIJC 293.074 109.844	PS IJC 293.074 54.722	CJ/CJMAX 0.909047 1.000000	l 2	4.082
AJ 0.13063958 04 0.2621ed18 04 -0.24978655 04 0.23594068 04	#UDEL AH->6A S #J -0.61>+1885 C+ 0.6921004F 04 0.7139392E C3	CJ 0.6039330E 04 0.7333621E 04 0.2403057E 04	PHIJC 293.074 109.844 10-835	PSIJC 293.074 54.922 >.612	CJ/CJMAX 0.909047 1.00000 0.334909	l 2 3	4.082 8.163 12.245
AJ 0.1306395E 04 0.2621ed1E 04 -0.2497965E 04 0.2359406E 04 -0.6107312E 03	BJ -0.61541885 C4 0.6921004F C4 0.7134345 C3 0.37614425 C3	CJ 0.6039330E	PMIJC 293.074 109.844 10.835 148.237	PSIJC 293.074 54.722 5.612 37.059	CJ/CJMAX 0.909047 1.000000 0.334989 0.097415	1 2 3 4	4.082 8.163 12.245 16.327
AJ 0.1306395E 04 0.2621ed1E 04 -0.2979655 04 0.2559406E 09 -0.6107312E 09 0.2078135E 03	#UDEL AH->6A S  #J  -0.61>+1#85 C+ 0.6921au# 04 0.7139494E C3 0.37d1.425 C3 0.57+790+6 U3	CJ 0.6039330E 04 0.733621E 04 0.2403057E 04 0.7163135 03 0.6112047E 03	PHIJC 293.074 109.844 10.835 148.237 70.123	PSIJC 293.074 54.922 5.612 37.059 14.025	CJ/CJMAX 0.909047 1.00000 0.334989 0.097015 0.083060	1 2 3 4 5	4.082 8.163 12.245 16.327 20.438
AJ 0.1306395E 04 0.2621ed1E 04 -0.2977655 04 0.255400E 04 -0.6107312E 03 0.3452283E 03	#UDEL AH->6A S  #J  -0.61>41885 C4 0.6921446 04 0.7139302E C3 0.3761-925 C3 0.57479046 03 0.4809617E C3	CJ  0.6039330E 04 0.7133621E 04 0.2405057E 04 0.7143135 03 0.61120×7E 03 0.61120×7E 03	PMIJC 293.074 109.844 10.835 148.237	PSIJC 293-074 54-322 5-612 37-059 14-025 9-055	CJ/CJMAX 0.909047 1.000000 0.334989 0.097415	1 2 3 4 5	4.082 8.163 12.245 16.327 20.438 24.490
AJ 0.1300395E 04 0.2021ed1E 04 -0.24975e55 04 0.2359400E 04 -0.6107312E 03 0.3452233E 03 0.3452233E 03	#UDEL AH->6A S  #J  -0.61>+1#85 C+ 0.6921au# 04 0.7139494E C3 0.37d1.425 C3 0.57+790+6 U3	CJ 0.6039330E 04 0.733621E 04 0.2403057E 04 0.7163135 03 0.6112047E 03	PHIJC 293.074 109.844 10.835 148.237 70.123 54.330 89.026	PSIJC 293-074 54-322 5-612 37-059 14-025 9-055 12-604	CJ/CJMAX 0.909047 1.000000 0.334989 0.097415 0.083060 0.08055 0.074508	1 2 3 4 5 6 7	4.082 8.163 12.245 16.327 20.408 24.49C 28.571
AJ 0.1306395E 04 0.2621ed1E 04 -0.2977655 04 0.255400E 04 -0.6107312E 03 0.3452283E 03	#UDEL AH->6A S  #J  -0.61>+1885	CJ  0.6039330E 06 0.7333621E 06 0.2403057E 04 0.7183137E 03 0.6112047E 03 0.7123379E 03	PHIJC 293.074 109.844 10.835 148.237 70.123 54.330	PSIJC 293-074 54-322 5-612 37-059 14-025 9-055	CJ/CJMAX 0.909047 1.000000 0.334989 0.097615 0.083060 0.080455	1 2 3 4 5	4.082 8.163 12.245 16.327 20.438 24.490
AJ 0.1306395E 04 0.2621ed1E 04 -0.2979406E 09 -0.6107312E 03 0.3952285E 03 0.3957942FE 01 -0.297949FE 01	#UDEL AH->6A S  #UDEL AH->6A S	CJ  0.6639336E 04 0.7359621E 04 0.2465057E 04 0.7163135E 03 0.6112047E 03 0.512359E 03 0.5487163E 03 0.7839033E 03	PHIJC 293.074 109.844 10.835 148.237 70.123 54.330 89.026 247.837	PSIJC 293.074 54.722 5.612 37.059 14.025 9.1355 12.604 30.780	CJ/CJMAX 0.909047 1.000000 0.334989 0.097415 0.083060 0.080-55 0.074568 0.107331	1 2 3 4 5 6 7	4.082 8.163 12.245 16.327 20.438 24.49C 28.571 32.653
AJ  0.1306395E 04  0.2621ed1E 04  -0.2977655 04  0.2554406E 03  0.207312E 03  0.3452233E 03  0.3579427E 01  -0.277447E 03  -0.3371404E 03	#UDEL AH->6A S  #J  -0.61>+1#85	CJ  0.6049330E 04 0.7153621E 04 0.2405057E 04 0.1181315E 03 0.6112077E 03 0.5120359E 03 0.5487163E 03 0.781303E 03	PHIJC 293.074 109.844 10.835 148.237 70.123 54.330 89.026 247.837 230.327	PSIJC 293-074 54-722 5-612 37-059 14-025 4-055 12-604 30-380 24-254	CJ/CJMAX 0.909047 1.000000 0.334989 0.097615 0.083060 0.080~55 0.074568 0.107331 0.082633	1 2 3 4 5 6 7 8	4.082 8.163 12.245 16.327 20.438 24.490 28.571 32.653 30.735
AJ  0.1306395E 04  0.2621ed1E 04  -0.2497565E 04  0.2359406E 04  -0.6107312E 03  0.345223E 03  0.3579427E 01  -0.2974497E 03  -0.3371404E 03  -0.4152429E 03	#UDEL AH->6A S  #UDEL AH->6A S	CJ  0.6049330E 04 0.7153621E 04 0.2405057E 04 0.1181315E 03 0.6112077E 03 0.5120359E 03 0.5487163E 03 0.781303E 03	PHIJC 293.074 109.844 10.835 148.237 70.123 54.330 89.026 247.837 230.327	PSIJC 293-074 54-722 5-612 37-059 14-025 4-055 12-604 30-380 24-254	CJ/CJMAX 0.909047 1.000000 0.334989 0.097615 0.083060 0.080~55 0.074568 0.107331 0.082633	1 2 3 4 5 6 7 8	4.082 8.163 12.245 16.327 20.438 24.490 28.571 32.653 30.735
AJ  0.1306395E 04  0.2621ed1E 04  -0.2497965 04  0.2559406E 03  0.36107312E 03  0.3452283E 03  0.3579427E 01  -0.297447E 03  -0.4152429E 03  BLADE F'AP AT STA	#UDEL AH->6A S  #J  -0.61>41885	CJ  0.6049330E 04 0.7353621E 04 0.2405057E 04 0.7183135E 03 0.6112047E 03 0.7487103E 03 0.7487103E 03 0.7819039E 03 0.0333067E 03 0.4103244E 03	PHIJC 293.074 109.844 10.835 148.237 70.123 54.330 89.026 247.837 230.327 183.514	PSIJC 293-074 54-7-2 5-612 37-059 14-025 4-055 12-604 30-380 20-259 1d-351	CJ/CJMAX 0.909047 1.000000 0.334989 0.097615 0.083060 0.080-955 0.074508 0.107331 0.082633 0.056536	1 2 3 4 5 6 7 8	4.082 8.163 12.245 16.327 20.438 24.490 28.571 32.653 30.735
AJ  0.1306395E 04  0.2621ed1E 04  -0.2497565E 04  0.2359406E 04  -0.6107312E 03  0.345223E 03  0.3579427E 01  -0.2974497E 03  -0.3371404E 03  -0.4152429E 03	#UDEL AH->6A S  #J  -0.61>41885	CJ  0.6049330E 04 0.7353621E 04 0.2405057E 04 0.7183135E 03 0.6112047E 03 0.7487103E 03 0.7487103E 03 0.7819039E 03 0.0333067E 03 0.4103244E 03	PHIJC 293.074 109.844 10.835 148.237 70.123 54.330 89.026 247.837 230.327 183.514	PSIJC 293-074 54-7-2 5-612 37-059 14-025 4-055 12-604 30-380 20-259 1d-351	CJ/CJMAX 0.909047 1.000000 0.334989 0.097615 0.083060 0.080~55 0.074568 0.107331 0.082633	1 2 3 4 5 6 7 8	4.082 8.163 12.245 16.327 20.438 24.490 28.571 32.653 30.735
AJ  0.1306395E 04  0.2621ed1E 04  -0.2497965 04  0.2559406E 03  0.36107312E 03  0.3452283E 03  0.3579427E 01  -0.297447E 03  -0.4152429E 03  BLADE F'AP AT STA	#UDEL AH->6A S  #J  -0.61>41885	CJ  0.6049330E 04 0.7353621E 04 0.2405057E 04 0.7183135E 03 0.6112047E 03 0.7487103E 03 0.7487103E 03 0.7819039E 03 0.0333067E 03 0.4103244E 03	PHIJC 293.074 109.844 10.835 148.237 70.123 54.330 89.026 247.837 230.327 183.514	PSIJC 293-074 54-7-2 5-612 37-059 14-025 4-055 12-604 30-380 20-259 1d-351	CJ/CJMAX 0.909047 1.000000 0.334989 0.097615 0.083060 0.080-955 0.074508 0.107331 0.082633 0.056536	1 2 3 4 5 6 7 8	4.082 8.163 12.245 16.327 20.438 24.490 28.571 32.653 30.735
AJ  0.1306395E 04  0.2621ed1E 04  -0.2497965 04  0.2559406E 03  0.36107312E 03  0.3452283E 03  0.3579427E 01  -0.297447E 03  -0.4152429E 03  BLADE F'AP AT STA	#UDEL AH->6A S  #J  -0.61>41885	CJ  0.6049330E 04 0.7353621E 04 0.2405057E 04 0.7183135E 03 0.6112047E 03 0.7487103E 03 0.7487103E 03 0.7819039E 03 0.0333067E 03 0.4103244E 03	PHIJC 293.074 109.844 10.835 148.237 70.123 54.330 89.026 247.837 230.327 183.514	PSIJC 293-074 54-7-2 5-612 37-059 14-025 4-055 12-604 30-380 20-259 1d-351	CJ/CJMAX 0.909047 1.000000 0.334989 0.097615 0.083060 0.080-955 0.074508 0.107331 0.082633 0.056536	1 2 3 4 5 6 7 8	4.082 8.163 12.245 16.327 20.438 24.490 28.571 32.653 30.735
AJ  0.1306395F 04  0.2621ed1E 04  -0.2497565E 04  0.2359406F 04  -0.6107312F 03  0.345223F 03  0.3579427E 03  -0.5579427E 03  -0.3371404E 03  -0.4152429E 03  BLADE FIAP AT STA  MAPMONIC ANALYSIS	#UDEL AH->6A S  #J  -0.61>41885	CJ  0.6049330E 04 0.7353621E 04 0.2405057E 04 0.7183135E 03 0.6112047E 03 0.7487103E 03 0.7487103E 03 0.7819039E 03 0.0333067E 03 0.4103244E 03	PHIJC 293.074 109.844 10.835 148.237 70.123 54.330 89.026 247.837 230.327 183.514	PSIJC 293-074 54-7-22 5-612 37-059 14-025 9-055 12-604 30-380 20-259 1d-351	CJ/CJMAX 0.909047 1.000000 0.334989 0.097615 0.083060 0.080-955 0.074508 0.107331 0.082633 0.056536	1 2 3 4 5 6 7 8	4.082 8.163 12.245 16.327 20.438 24.490 28.571 32.653 30.735
AJ  J.13U6395E 04  J.2621ed1E 04  -J.2497965 J4  J.2559406E 03  J.2078135E 03  J.3457283E 03  J.3579427E 01  -J.2974497E 03  -J.3371404E 03  -J.4152429E 03  BLADE F'AP AT STA  MAHMUNIC ANALYSIS	#UDEL AH->6A S  #UDEL AH->6A S  -0.61541885	CJ  0.6039330E 04 0.7333621E 04 0.2405057E 04 0.7183135E 03 0.6112047E 03 0.7487103E 03 0.7487103E 03 0.7819039E 03 0.61100244E 03	PHIJC  293.074  109.844  10.835  148.237  70.123  54.330  89.026  247.837  230.327  183.514  CTR 392 FL	PSIJC  293-074  54-3-22  5-612  37-059  14-025  9-055  12-604  30-380  20-259  1d-351  T 481-0 T	CJ/CJMAX 0.909047 1.000000 0.334989 0.097615 0.083060 0.080-95 0.074508 0.107331 0.082633 0.056536	1 2 3 4 5 6 7 8 9	4.082 8.163 12.245 16.327 20.408 24.49C 28.571 32.653 30.735 40.816
AJ  0.1306295E 04  0.2621ed1E 04  -0.2979655 04  0.2559406E 04  -0.6107312E 03  0.3579427E 03  0.3579427E 03  -0.2974497E 03  -0.3371404E 03  -0.4152429E 03  BLADE FTAP AT STA  HAPMUNIC ANALYSIS	#UDEL AH->6A S  -0.61>+1885	CJ  0.6639336E 04 0.7353621E 04 0.745135E 03 0.6112047E 03 0.5120359E 03 0.5487163E 03 0.7813035E 03 0.7813035E 03 0.6130244E 03  MIP 1009 T 394	PHIJC 293.074 109.844 10.835 148.237 70.123 54.330 89.026 247.837 230.327 183.514  CTR 392 FL PHIJC 119.077	PSIJC 293.074 54.922 5.612 37.059 14.025 9.055 12.604 30.980 20.259 18.351  T 481.0 T	CJ/CJMAX 0.909047 1.000000 0.334999 0.097615 0.083060 0.060~55 0.074568 0.107331 0.042633 0.056536	1 2 3 4 5 6 7 8 9 10	4.082 8.163 12.245 16.327 20.408 24.49C 28.571 32.653 30.735 40.816
AJ  0.1306395E 04 0.2621ed1E 04 -0.2979655 04 0.2559406E 04 -0.6107312E 03 0.39579427E 01 -0.2979497E 03 -0.3371404E 03 -0.4152429E 03  BLADE F'AP AT STA HAPHUNIC ANALYSIS	#UDEL AH->6A S  -0.61>+1885	CJ  0.6639336E 04 0.7339621E 04 0.2405057E 04 0.71631352 03 0.61120×7E 03 0.5427163E 03 0.5487163E 03 0.0333067E 03 0.0333067E 03 0.4160244E 03  CJ  0.7117743E 04 0.6247503E 04	PHIJC 293.074 109.844 10.835 148.237 70.123 54.330 89.026 247.837 236.327 183.014  CTR 392 FL  PHIJC 119.077 300.433	PSIJC  293.074  54.322  5.612  37.059  14.025  4.055  12.604  30.380  20.259  18.351  T 481.0 T	CJ/CJMAX 0.909047 1.000000 0.334989 0.097815 0.083080 0.080455 0.074568 0.107331 0.042633 0.056536  R 20  CJ/CJMAX 1.000000 0.883358	1 2 3 4 5 6 7 8 5 10	4.082 8.163 12.245 16.327 20.408 24.490 28.571 32.653 30.735 40.816
AJ  0.1306395F 04  0.2621ed1E 04  -0.2497965E 04  0.2559406F 04  0.3559406F 04  0.3579427E 03  0.3579427E 03  -0.371404E 03  -0.4152429E 03  BLADE F'AP AT STA  HAPHUYIC ANALYSIS  AJ  -0.88428750F C4  -0.3459643E 04  -0.1963282E 04	#UDEL AH->6A S  #UDEL AH->6A S  -0.61541885	CJ  0.6039330E 04 0.7353621E 04 0.2405057E 04 0.7183135	PHIJC 293.074 109.844 10.835 148.237 70.123 54.330 89.026 247.837 230.327 183.514  CTR 392 FL  PHIJC 119.077 300.433 205.709	PSIJC  293.074  54.322  5.612  37.059  14.025  4.055  12.604  30.380  20.259  16.351  T 481.0 T	CJ/CJMAX  0.909047 1.000000 0.334989 0.097615 0.085050 0.0107558 0.107331 0.042633 0.056536  R 20  CJ/CJMAX 1.000000 0.883358 0.109249	1 2 3 4 5 6 7 8 9 10	4.082 8.163 12.245 16.327 20.438 24.49C 28.571 32.653 30.735 40.816
AJ  0.1306395E 04  0.2621ed1E 04  -0.2977625 04  0.2557906E 03  0.3577927E 01  0.3579427E 01  -0.2977457E 03  -0.4152429E 03  BLADE F'AP AT STA  MARMUNIC ANALYSIS  -0.3459243E 04  0.3164 PBIE 04  -0.1862242E 04  0.8192252E 03	#UDEL AH->6A S  #U  -0.61>+1885	CJ  0.6649336E 04 0.7333621E 04 0.2465057E 04 0.1183135E 03 0.6112047E 03 0.787163E 03 0.78733467E 03 0.78733467E 03 0.4160244E 03  CJ  0.7117743E 04 0.6247563E 04 0.6247563E 04 0.6247563E 04	PHIJC  293.074  109.844  10.835  148.237  70.123  54.330  89.026  247.837  230.327  183.514   CTR 392 FL  PHIJC  119.077  300.433  205.709  324.521	PSIJC  293.074  54.922  5.012  37.059  14.025  9.055  12.604  30.980  20.259  1d.351  T 481.0 T	CJ/CJMAX  0.909047 1.000000 0.334999 0.097615 0.083060 0.060~55 0.074568 0.107331 0.042633 0.056536  R 20  CJ/CJMAX 1.000000 0.883358 0.309249 0.156519	1 2 3 4 5 6 7 8 9 10	4.082 8.163 12.245 16.327 20.438 24.490 28.571 32.653 30.735 40.816 FREQUENC Y
AJ  0.1306395E 04 0.2621ed1E 04 -0.2975e55 04 0.2559406E 04 -0.6107312E 03 0.397233E 03 0.3579427E 01 -0.2974457E 03 -0.3371404E 03 -0.4152429E 03  BLADE FTAP AT STA  MAHMUNIC ANALYSIS  0.3164 PHIE 04 -0.1963282E 04 -0.8192452E 03 -0.81246CHE 03	#UDEL AH->6A S  -0.61>+1885	CJ  0.6639336E 04 0.7353621E 04 0.2465057E 04 0.7183135E 03 0.61120×7E 03 0.5487163E 03 0.783934E 03 0.633367E 03 0.4160244E 03  MIP 1009 T 394  CJ  0.7117745E 04 0.6247563E 04 0.6247563E 04 0.7133936E 03 0.1132263E 04	PHIJC 293.074 109.844 10.835 148.237 70.123 54.330 89.026 247.837 236.327 183.514  CTR 392 FL  PHIJC 119.077 300.433 205.709 324.521 2-1.446	PSIJC  293.074  54.322  5.012  37.059  14.025  4.055  12.604  30.380  20.259  1d.351  T 481.0 T	CJ/CJMAX  0.909047 1.000000 0.334949 0.097615 0.083060 0.060455 0.074568 0.107331 0.056536  R 20  CJ/CJMAX 1.000000 0.883358 0.109249 0.136419 0.162959	1 2 3 4 5 6 7 8 7 8 7 10	4.082 8.163 12.245 16.327 20.408 24.490 28.571 32.653 30.735 40.816 FREQUENC Y 4.082 8.163 12.245 10.327 20.408
AJ  0.1306395F 04  0.2621ed1E 04  -0.2977625 04  0.2359406F 04  -0.6107312F 03  0.345223F 03  0.345223F 03  -0.3579427E 03  -0.3579427E 03  -0.4152429E 03  BLADE FIAP AT STA  MAPHUNIC ANALYSIS  AJ  -0.8428750F C4  -0.3459243E 04  -0.1963242F 04	#UDEL AH->6A S  #UDEL AH->6A S  -0.61541885	CJ  0.6039330E 04 0.7333621E 04 0.2405057E 04 0.7183135E 03 0.6112037E 03 0.512339E 03 0.783303E 03 0.0333067E 03 0.4100247E 03  CJ  0.711779E 04 0.6287503E 04 0.72201173E 04 0.7133203E 04 0.7102263E 04 0.7102263E 04 0.7102263E 04	PHIJC 293.074 109.844 10.835 148.237 70.123 54.330 89.026 247.837 230.327 183.514  CTR 392 FL  PHIJC 119.077 300.433 205.709 329.521 2-1.946 206.715	PSIJC  293.074  54.322  5.612  37.059  14.025  4.055  12.604  30.380  20.259  1d.351  T 481.0 T	CJ/CJMAX  0.909047 1.000000 0.334989 0.097015 0.083060 0.060455 0.074568 0.107331 0.04633 0.056536  R 20  CJ/CJMAX 1.000000 0.883358 0.309249 0.136819 0.162959 0.107137	1 2 3 4 5 5 6 7 8 5 10 J	4.082 8.163 12.245 16.327 20.408 24.490 28.571 32.653 30.735 40.816 FREQUENC Y 4.082 8.163 12.245 16.327 20.408 24.490
AJ  0.1306395E 04  0.2621ed1E 04  -0.2497965E 04  0.2559406E 04  -0.6107312E 03  0.3579427E 01  -0.4152427E 03  -0.4152429E 03  BLADE F'AP AT STA  MAPMUNIC ANALYSIS  AJ  -0.8164891E 04  -0.1963282E 04  0.819282E 04  -0.611753E 03  -0.3951648E 03	#UDEL AH->6A S  #UDEL AH->6A S  -0.61541885	CJ  0.6049330E 04 0.7353621E 04 0.7353621E 04 0.7453557E 04 0.7183135E 03 0.5112047E 03 0.7839345E 03 0.6133067E 03 0.6130244E 03  CJ  0.7117745E 04 0.6247503E 04 0.6247503E 04 0.7131700E 03	PHIJC  293.074 109.844 10.835 148.237 70.123 54.330 89.026 247.837 230.327 183.514  CTR 392 FL  PHIJC  119.077 300.433 205.709 329.521 2-1.446 206.715 234.591	PSIJC 293.074 54.922 5.612 37.059 14.025 9.055 12.604 30.980 20.259 18.351 T 481.0 T	CJ/CJMAX 0.909047 1.000000 0.334989 0.097615 0.083060 0.080-55 0.07508 0.107331 0.082633 0.056536  R 20  CJ/CJMAX 1.000000 0.883358 0.309249 0.136819 0.162959 0.107137 0.05624	1 2 3 4 5 6 7 10 5 6 7	4.082 8.163 12.245 16.327 20.43E 24.49C 28.571 32.653 30.735 40.816 FREQUENCY 4.082 8.163 12.245 10.327 20.490 20.571
AJ  J.13U6295E 04  J.2621ed1E U4  -J.2621ed1E U4  J.2621ed1E U4  J.2621ed1E U4  J.2621ed1E U4  J.2621ed1E U4  J.3621ed1E U3  J.3621ed1E U4  J.3621ed1E U4  J.3621ed1E U4  J.3621ed1E U4  J.3621ed1E U4  J.3621ed1E U4  J.3621ed1E U3  J.6621ed1E U3  J.6621ed1E U3  J.6621ed1E U3  J.6621ed1E U3  J.6621ed1E U3  J.6621ed1E U3	#UDEL AH->6A S  -0.61>+1885	CJ  0.6639336E 04 0.7353621E 04 0.2455057E 04 0.1183135E 03 0.6112037E 03 0.532359E 03 0.5487163E 03 0.6333067E 03 0.6130244E 03  MIP 1009 T 394  CJ  0.7117793E 04 0.6287563E 04 0.2201173E 03 0.1302263E 04 0.7623779E 03 0.1243751E 03	PHIJC  293.074 109.844 10.835 148.237 70.123 54.330 89.026 247.837 230.327 183.514  CTR 392 FL  PHIJC  119.077 300.433 205.709 324.521 2-1.946 206.715 234.591 109.640	PSIJC  293.074  54.922  5.012  37.059  14.025  9.055  12.604  30.980  20.259  1d.351  T 481.0 T	CJ/CJMAX  0.909047 1.000000 0.334999 0.097415 0.083060 0.060~55 0.074568 0.107331 0.042633 0.056536  R 20  CJ/CJMAX 1.000000 0.883358 0.309249 0.1156319 0.162959 0.107137 0.045624 0.017477	1 2 3 4 5 6 7 8 5 6 7 8	4.082 8.163 12.245 16.327 20.43E 24.49C 28.571 32.653 30.735 40.816 FREQUENC Y 4.082 8.163 12.245 16.327 20.408 24.490 26.571 32.653
AJ  0.1306395E 04 0.2621ed1E 04 -0.26979655 04 0.255990E 03 0.367312E 03 0.3679427E 01 -0.2979427E 01 -0.2979427E 03 -0.3371904E 03 -0.4152429E 03  BLADE FIAP AT STA HAPMUNIC ANALYSIS  AJ -0.8164891E 04 -0.1963242E 04 0.8392852E 03 0.3614891E 04 -0.1963245 03 -0.4278452E 03	#UDEL AH->6A S  #U  -0.61>+1885	CJ  0.6039330E 04 0.7333621E 04 0.2405057E 04 0.71631352E 03 0.61120×7E 03 0.5783103E 03 0.783934E 03 0.0333067E 03 0.4103244E 03  HIP 1009 T 394  CJ  CJ  0.7111773E 04 0.6287503E 04 0.723173E 04 0.713370dE 03 0.1302743E 03 0.1302743E 03 0.1302743E 03	PHIJC  293.074 109.844 10.835 148.237 70.123 54.330 89.026 247.837 236.327 183.514  CTR 392 FL  PHIJC  119.077 300.433 205.709 324.521 2-1.446 206.715 234.991 109.860 75.621	PSIJC  293.074  54.422  5.612  37.059  14.025  4.055  12.604  30.780  20.259  1d.351  T 481.0 T	CJ/CJMAX  0.909047 1.000000 0.334989 0.097615 0.083060 0.060455 0.074568 0.107331 0.056536  R 20  CJ/CJMAX 1.000000 0.883358 0.309249 0.136819 0.156524 0.017477 0.042366	1 2 3 4 5 6 7 8 5 6 7 8 9	4.082 8.163 12.245 16.327 20.408 24.490 28.571 32.653 30.735 40.816 FREQUENC Y 4.082 8.103 12.245 10.327 20.408 24.490 20.571 32.653 30.735
AJ  J.13U6295E 04  J.2621ed1E U4  -J.2621ed1E U4  J.2621ed1E U4  J.2621ed1E U4  J.2621ed1E U4  J.2621ed1E U4  J.3621ed1E U3  J.3621ed1E U4  J.3621ed1E U4  J.3621ed1E U4  J.3621ed1E U4  J.3621ed1E U4  J.3621ed1E U4  J.3621ed1E U3  J.6621ed1E U3  J.6621ed1E U3  J.6621ed1E U3  J.6621ed1E U3  J.6621ed1E U3  J.6621ed1E U3	#UDEL AH->6A S  -0.61>+1885	CJ  0.6639336E 04 0.7353621E 04 0.2455057E 04 0.1183135E 03 0.6112037E 03 0.532359E 03 0.5487163E 03 0.6333067E 03 0.6130244E 03  MIP 1009 T 394  CJ  0.7117793E 04 0.6287563E 04 0.2201173E 03 0.1302263E 04 0.7623779E 03 0.1243751E 03	PHIJC  293.074 109.844 10.835 148.237 70.123 54.330 89.026 247.837 230.327 183.514  CTR 392 FL  PHIJC  119.077 300.433 205.709 324.521 2-1.946 206.715 234.591 109.640	PSIJC  293.074  54.922  5.012  37.059  14.025  9.055  12.604  30.980  20.259  1d.351  T 481.0 T	CJ/CJMAX  0.909047 1.000000 0.334999 0.097415 0.083060 0.060~55 0.074568 0.107331 0.042633 0.056536  R 20  CJ/CJMAX 1.000000 0.883358 0.309249 0.1156319 0.162959 0.107137 0.045624 0.017477	1 2 3 4 5 6 7 8 5 6 7 8	4.082 8.163 12.245 16.327 20.43E 24.49C 28.571 32.653 30.735 40.816 FREQUENC Y 4.082 8.163 12.245 16.327 20.408 24.490 26.571 32.653

RLADE FLAP AT STA 235
HAF-HONIC ANALYSIS MULEL AH-DOA SHIP LOUG T 394 CTR 392 FLT 481.0 TR 4

AJ	8.1	Cl	PHLJC	PS IJC	CJ/CJMAX	J	FREQUENC Y
J.676943dE 03							
-U . 2142COZE L4	0.44476J9F C4	0.4130237E 04	115.716	115.710	1.000000	1	4.082
0.2616530F 0+	-U.3428126E U4	4.43125732 04	307.353	153.676	0.873603	2	8.163
-U-1725262F U4	-0.1250791E 04	0.21:0903= 04	215.942	71.981	0.431672	3	12.245
0.6016236 01	-0.7140151E Cs	0.93335216 03	313.149	77.532	0.184172	4	16.327
-0.8315633E 03	-0.1151545E C4	0.1.502578 04	232.504	40.513	0.253780	5	20.408
-0.901/Luve 03	-0.18022+66 03	0.1011010 04	140.382	21.730	0.202589	. 6	24.490
-0.7207261F U3	-0.3927923E C3	60 3c11805e.0	244.540	29.793	0.160273	7	20.571
0.87165376 02	-0.90748UJE 03	0.91165706 03	275.487	34.436	0.184675	A	32.653
-3.52604085 02	-0. 41 5441 7F US	0.4117,416 03	202.183	24.190	0.00-028	ų.	36.735
-0.2364230F 02	0.6593701E CZ	0. 7004/++5 02	139.726	13.473	0.014190	10	40.816

READE FEAR AT STA 270 HARMONIC ANALYSIS MULEE AH-50A SHIP EQUP T 394 CTR 392 FET 481.0 TR 26

ن ۵	BJ	CJ	PHIJC	PS IJC	CJ/CJMAX	J	FREQUENC Y
0.334432AF C4		A 1 12 11 14 5 111	101 112				4 001
-0.543139'E 02	0.1361241E C4	0.13724468 04	102.153	102.153	0.618435		4.082
J.102962.E 04	-U.15945U3E C4	0.225150+6 0+	310.337	150.101	1.000000	2	W. 163
-3.127951df U4	-0.96759462 Cs	0.10945JOE 04	217.089	72.363	U.712618	3	12.245
U.ZIULICIE U3	-0.651/14CE C3	0.1236133 03	280.760	71.690	0.323630	4	16.327
-J.5770471F 03	-0.73328982 C3	0.733111oc 03	231.830	40.360	3.414428	5	20.408
-3.779+5431 03	60 300BCE21.0	0.40313245 03	100.003	27.675	0.350700	6	24.496
-0.3713746F 03	-J.1450026E C3	0.6JattosE Os	193.784	21.683	0.270441	7	28.571
-0.1749056E 03	-0.8422573E 03	0.40755016 03	255.208	32.284	J.382057	8	32.053
-0.1++1591E 03	-0.5833333E C3	0. P174111 03	250.115	28.457	0.266877	4	36. 735
-0.2301861E 03	-0.2312db0E 03	0.35031175 03	222.137	22.514	0.144926	10	43.816

BLADE CHORD AT STA 103 HARMONIC ANALYSIS MUDEL AH-GOA SHIP LUUY T 394 CTR 392 FLT 481.0 TR 17

						041.16	05115	C. 1 C 1 M 4 W		ENE COM AND W
A J O . 22 36 C54 F	114	87		Cl		PHIJC	PS IJC	CJ/CJMAX	J	FREQUENCY
				0.110.00.00	۵.		2 1 101	A 100 CO.		
0.28403436	05	-0.4501+06	04	0.2495043E	US	341.504	341.504	0.870366	1	4.082
J.2447207E	05	-0.24142165	05	C. 3441137E	05	312.354	157.065	1.000000	2	8.163
-0.2393c51E	۵>	-0.824790>E	C4	0.2531 TodE	05	199.013	66.338	0.735736	3	12.245
U . 8972 H2-E	J -	-0.21609125	C4	0.41304228	04	340.140	80.248	0.265520	4	16.327
-0.121224UE	03	0.11154438	C4	0.1331334E	04	123.103	24.021	0.030046	5	20.408
U.1425505E	04	0.16560505	CS	J. 143554 JE	04	0.024	1.104	0.041717	6	24.496
-0.82543488	03	0.6563955F	03	0.1J34732E	04	141.499	20.214	0.030651	7	28.571
-0.29291488	33	U. 4654121E	02	0.1JYJ01/E	03	101.390	20.175	186606.0	8	32.651
0.1956 6768	04	-0.51520565	C 3	0.20525duč	04	345.403	38.385	0.059648	9	30.735
-0.1162248E	03	-0.25944788	C3	9.244241JE	03	240.009	24.587	J.008262	10	40.616

BLADE CHORD AT STA 174
HARMUNIC ANALYSIS MODEL AM-56A SHIP LOUP T 394 CTR 392 FLT 481.0 TR 42

£.J		вл		Cl	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
0.15095016	U5								
J.9148566E	0+	-0.32552478	C3	0.92J4324E 04	357.973	351.973	U. 194864	1	4.082
0.1414736E	<b>U</b> 5	-0.1852605E	05	0.23313136 05	307.367	103.663	1.000000	2	8.163
-0.1001501E	J5	-0.2045U99E	04	0.15743392 05	187.017	02.339	U.718159	3	12.245
0.70356516	C4	-U.14400/dE	04	0.721J833F 04	344.454	80.115	0.311919	4	16.327
-0.6363610E	03	0.12863328	C4	0.1422855E 04	115.300	23.060	0.061040	5	20.408
0.20311575	14	0.15689045	0.3	0.20J61375 O.	4.312	0.719	J.086093	6	24.490
-0.7433300E	33	0.40677028	C4	0.221)1225 04	110.075	12.011	0.054814	7	28.571
0.17443246	C4	-0.10195udč	0.5	0.1191214 04	350.748	44.593	0.077100	8	32.053
0.2230C18F		-0.11910815	04	0.252d+35 7 04	331.881	30.070	0.108470	9	30.735
0.1137189E	-	-0.61435345		4.6244U81E 03	5.5.0 1.077.0	20.041	3.027002	10	40.816

BLADE CHORD AT STA 235 MARKONIC ANALYSIS MODEL AM-56A SHIP LUUV T 394 CTR 392 FLT 481.0 TR 22

AJ		8 J		CJ	PHIJC	PS IJC	CJ/CJMAX	j	FREQUENC Y
- 1.21125UUF	J5								
J.2040630E	04	-0.1854071E	C4	0.3231332E 04	324.972	324.972	0.461176	Ł	4. C82
0.489ac12E	04	-U.501J254E	04	0.73356522 04	314.351	157.175	1.000000	2	8.103
-J.5071590E	04	-0.10193615	C4	0. >7682276 04	190.371	45.457	0.823250	3	12.245
J.2421657F	04	-0.0249305E	CS	0.25J1225E 04	345.531	46.383	0.356979	4	16.32 1
-J.3373457E	C3	0.12026396	04	0.12419736 04	105.656	21.131	3.178256	5	20.408
0.93102745	03	0.6082035	03	0.11111275 04	33.078	5.513	0.158682	6	24.490
-3.3494 E TUE	ون	0.10123285	04	0.10/3/50= 0+	109.045	15.5/0	U.152848	7	28.571
0.91655208	0.5	0.16750985	03	0. 111733+6 03	10.357	1.295	0.132978	8	32.653
0.12714235	Ú4	-0. JE43015E	03	0.13292335 04	343.182	161.66	0.189567	9	36.735
-0.0897150E	02	-U. 3003337E	03	0.13093695 03	259.721	25.412	J.055167	10	40.616

BLAPE TORSION AT STA 131.5 HAF-FONIC ANALYSIS MODEL AH-50A SHIP 1307 T 394 CTR 392 FLT 481.0 TR 44

Ł.J	b. <b>J</b>		CJ	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
-0.2388214E 03	1							
J.3470844E C4	J.3163742F	C4	0. 1139945E 04	47.404	47.404	1.000000	1	4.082
-3.1176574E UI	U.2113700F	04	J. 2117334 = 04	93.187	40.594	0.411879	2	8.103
0.5830589E 03	-U.6489336E	C3	0.87242148 03	311.941	103.980	0.169734	3	12.245
-0.1344527E 04	0.35171445	CS	0.11J9814E 04	101.179	40.295	0.215725	4	16.327
0.1317C12E 04	0.106-772F	64	0.19514.15 04	58.579	11.710	0.374245	5	20.408
J.1348C74E 04	0.21943775	C3	0.1303dlu= 04	9.245	1.541	3.265726	6	24.49C
U.2565725E 03	0.25522436	C3	C. Jol 3 197 € 03	44.850	0.407	0.070409	7	48.571
-0.1255e83E 03	-0.12964 FUE	64	C.1332558 04	264.467	33.058	0.253419	8	34.053
-0.2081 F2 SF 03	-0.1864814F	Cl	0.23017372 03	180.513	20.057	0.040504	y	36. 735
U.1430234E US	0.145054 VE	02	0.14435448 03	5.769	0.511	0.028085	10	+0.816

# RMONIC COMPONENTS OF FLIGHT 1E.S. CASE 8 V= 204.5 KTS n= 1.06 g Reproduced from available copy. HARMONIC COMPONENTS OF FLIGHT TEST DATA

BLADE FEATHER ANGLE HARAUNIC AMALYSIS MODEL AM- 564 SHIP 1009 1 472 CTR 522 FLT 609.0 TR 11

ΛJ	11.3	LJ	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
0.59770756 61							
U.1855364F 01	-0.647c053f (C	0.15652CBE 01	343.753	340.753	1.000000	1	4.050
-0.15727652 63	-6.11963246 66	U.1970(68F 0J	217.200	108.629	0.100553	2	4.191
3.2633.242-01	0.11c3728t CC	0.1212667F 0J	11.450	25.019	0.061/6/	5	12.695
-J.4 + 123 icE-01	-0.230511 / -(1	0.45575276-01	238.243	56.361	0.025432	4	16.393
-0.43711423-01	J.540C351F-(1	0.701007eE-01	123.576	25.715	0.0356/1		20.442
-0.14532355-61	0.10c177nf -01	J. 2377602F-01	121.678	21.240	0.014018	(9	24.590
-0.12+7343E-C1	C. 20225171-61	J. 2376474E-01	121.050	17.380	0.012043	7	28.689
J. 10051/6-61	C.24658(1:-11	0.22906236-01	61.114	7.635	0.011657	9	32.167
J. 65J0/331-62	C.duukaell-tz	3.1137.055-31	53.435	5.934	J. 005034	9	34.665
0.22234726-02	C. /oll+121 - C.	0.61202766-02	74.132	7.413	0.004112	10	40.584

#### SHAFT MOMENT

HERMONIC /1414515 MOSEL 60-308 SHIP 1009 T 472 CTF 522 FLT 609.0 TR 36

(A.;	9.1	CI	FHIJC	PSIJC	CJ/CJMAX	J	FREQUENC Y
-0.01654205 (B)	J. Iliatuse Co	0.15/23635 05	133.024	130.024	1.000000	1	4.098
-J.440), CyF 144	0.2816325F 04	0.51111175 0.	147.903	73.952	0.034804	2	8.197
-0.1752.125 02	0.2259.710 05	0.20,14116 05	127.609	42.603	J.187797	3	12.245
J. 42 J. S. C. 15 04	J. 21922 J.E. C4	0.4/++9345 04	27.517	6.879 4.591	0.031158	4	16.393
-J. 9/42 (5) £ 03	0.40/35318 04	6.4/Julia F 04	100.767	16.794	0.030905	6	24.590
\$ 60 36469E 03	- L. 11/6.72 64	3.10/2.22 00	204.332	41.190	0.012302	7	28.689
-0.6 s us	-0.15/1145 04	0.71141.65 04	240.949	30.075	0.013752	8	32.707
-0.175=159 04 -0.72, 910 03	-0.16675528 03 0.12027065 04	0.1770117= 04	100.448	10.045	0.011665 0.009011	10	36.885 40.584

#### PITCH LINK TENSION

HARMUNIC ANALYSIS MUCEL AIM SUA SHIP 1609 T 472 CTR 522 HET 609.0 TR 11

		,	اما داللا				***
LA.	٠,	Ú J	PHIJC	PSIJC	CJ/CJMAX	J	FRIGULT.CY
-J.>564074- CZ							
-0.14009326 C1	0.43310511 32	0.1470250[ 03	162.990	164.990	0.353657	1	4.050
0.3.34545 03	-0.23796105 (3	3.4156b07t 33	125.018	102.531	1.333300	2	6.197
-0.24170333 02	0.16161536 63	0.16341275 03	44.530	12.635	0.393121	3	16.645
3.90J5932E C2	-0.13977:5 (1	0.1513509E US	292.556	73.139	0.304104	4	10.393
-0.0033278c C.	C. 2013466 Ca	J.66572392 02	134.775	33.999	J. 163153	5	64.442
-0.6385602= 62	6.10029391 63	1.12422278 03	117.335	19.839	0.210142	6	24.590
-0.2431110E 02	-C.140537CF (1	0.24377435 02	183.336	26.101	0.11666	1	20.604
-3.1116t of 02	C.IC247Clc Ca	0.15157215 02	137.404	17.163	J.036464	3	52.761
U.15/09536 C1	-0.32842155 (2	U. 3281515E U2	212.134	33.304	J.679399	4	30.005
-5.2111.32E C2	0.17031056 02	J. 3258050E 05	1+3.+34	14.090	0.073376	10	40.784

TIMED HIR FLAR AT STA 18 HARM SHIP 1009 T 472 CTR 522 511 609.0 TH 1

Au	ل ن		C 🐷	PHIJC	PSIJC	CJ/CJ44X	J	FREUDLISCY
-3.5212350° C5								
-1./3-1+15e 35	6.3311970	Ct	0.1523J58E C5	122.320	1,5.350	1.000000	1	4.055
3.10172730 05	-0.21272820	U.S.	0.2350CC1E 05	215.51	147.779	0.400733	2	6.157
0.9475918: 63	C. nt 640 C 7'	(4	3.6d10527£ U+	12.012	21.351	0.175074	3	12.295
-0.12390966 64	- C. cct - 1 Pm	60	0. 35337375 04	210.422	53.006	J. 100378	4	10.353
J. 214 1775 C4	v.i. 17.70	1 4	J. 12307545 04	.3.338	3.000	0.082335	5	20.442
U. tule idle C+	U.31536.7	61	0.164/3546 34	11.016	1-014	0.041164	ė	24.59)
1.21482556 64	6.24.314651	()	0. 1581147E 01	37.01*	4.445	0.009132	1	21.009
J.1233341: 04	G.117:3675		0.1/015656 J.	+3.07	5.162	J. L. + 1375	ь	54.707
-3.17333116 03	(.17.31 9	12	0.21555795 01	143.717	15.945	13.005494	9	36.665
-J. 01+5583E C2	0.136 . 21	(3	0.34261(86 33	1)3.753	10.315	0.600/16	10	40.504

## HARMONIC COMPONENTS OF FLIGHT 7 I DATA CASE 8 V= 204.5 KTS n= 1.1 g

FIXED HUB CHORD AT STA 18
HARMCHIC AHALYSIS MODEL AH-56A SHIP 1909 T 472 CTR 522 FLT 609.0 TR 3

AJ	ну	CJ	PHIJC	PSIJE	CJ/CJMAX	و	FREQUENCY
J. 5464+63F C5							
-0.2330943L Co	6.8645263F C5	J. E379569E U5	106.150	106.150	1.000000	1	4.098
-0.39+2083= 64	-0.41414565 63	U.3464657E U.	186.038	43.004	0.047311	2	t.191
-3.24834035 04	-0.41352C3F C4	U. 4523665E U4	211.013	19.671	0.057561	5	12.295
-0.4462/64L C3	-0.16244226 64	0.102+7558 04	254.620	63.655	0.020115	4	16.393
0.14121525 04	C.73831106 C1	0.15436698 04	27.595	> 120	0.017018	5	20.492
0.15c24c6= C4	-0.53293754 CJ	C. 1815749F 04	324.153	54.300	J.021715	6	24.590
0.25775555 (3	-C.616376+6 C3	0.83548550 03	312.556	44.651	0.010018	7	26.607
J.12361755 C3	-0.1013746E L2	U.1247557E US	301.471	43.934	0.001492		32.101
0.34/65/16 63	-0.23274615 (3	J. 41 18 tzot UJ	320.151	1219	U-604107	9	36.865
0.43015636 02	-0.9110074F (2	0.16277586 01	211.192	25.174	0.001229	10	40.984

MEANTE FEAR AT STA 174
HANGE FEAR AT STA 174

AJ	E4		CJ	PHIJC	PSIJC	KAPLONLO	J	FREQUENCY
-3.6751016= 62								
0.24424542 04	-C.34614436	(4	J.42756256 04	310.044	310.644	0.826036	1	4.098
-3.9331.935 03	C. 5 . 365 . 31	64	J. 55 35 238E U4	47.074	44.637	1.000000	2	8.197
J.17315298 (4	0.23473236	(3	J. 1757586F 04	7.004	2.555	U. 324753	3	12.295
J.5420636E C3	-0.1546520F	C 3	C. 5165 E57E 03	340.240	85.062	0.1341 ot	4	10.393
0.14141.65 03	C.44270615	C 3	3.4648665 03	72.237	14.457	0.083571	5	20.442
J.2214+100 (3	0121005	CJ	0.41616646 03	61.135	13.184	0.625037	6	24.590
-3.1761150c C3	-0.15341478	C3	U.23165COF 03	220.531	31.500	J.041851	7	20.069
3.5/306425 33	U. CittoCit	6.2	6.164/3456 04	20./15	1.314	J. 184214	d	36.141
-J.603/151F ()	3.23419636	(2)	1.0001/6/2 11	177.541	11.721	0.119927	4	36.205
-0.2805547E C3	-6.42407232	C:	0.506+763t 03	216.512	21.651	0.691162	10	40.564

BLAUE CHORD AT STA 174
HARMONIC AMALYSIS MODEL AH-56A SHIP 1009 T 472 CTR 522 FLT 409.0 TP 42

AJ		. BJ		C.J		PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
0.7654573L -0.5220373c		(1970544)	0.5	0.20472218 0	5	104.774	104.774	1.000000	,	4.098
-0.07147535		-0.1074771£		0.1417236E C		224.444	114.722	0.069227	2	8.147
-0.26709445	() 3	0.10190016	04	0.10534256 64	•	104.688	34.896	0.051456	3	12.295
0.15714355	C 4	-0.236.9764F	04	0.30194131 04	4	308.299	77.075	0.147498	4	16.393
-0.23845+2E	03	-0.2049144E	04	0.2082760E U	4	243.426	52.635	0.101741	5	20.492
-0.7363764E	03	-0.13410441	04	0.15692331 64	4	242.431	40.405	0.076652	6	24.440
C.1248574E	04	0.62545466	03	C. 13469048 1	4	26.621	3.803	0.068237	7	28.469
0.54240235	0.3	-0.7023446	0.2	0.54712968 63	3	352.624	44.078	0.026725	8	22.757
-0.54471248	0.3	0.72093218	0.3	C.114435 LE 04	4	140.951	15.661	0.055898	Q	36.645
-0.41555748	03	-0.87830571	0.2	0.42473756 0	3	191.934	19.193	0.020747	10	40.984

READE TORSION AT STA 131.5 HARMONIC ANALYSIS MODEL AH-SAA SMIP 1009 T 477 CTR 522 FET 609.0 TP 44

L A		31		CJ		LH17C	PSIJC	CJ/CJMAX	J	FREQUENCY
0.4:645245		0.1369906	04	C.1924531F	04	42.997	42.897	0.411567	,	4.099
-0.17721 CE	94	0.1147515E	0.4	0.21112738	04	147.076	73.538	1.000000	2	8.197
-0.1016521t		-0.6956011F		0.90135476		263.522 196.068	67.841 44.022	0.426933	3 4	12.295
0.156057.0	UH	0.1543277L	03	0.15ec184E	04	5.646	1.130	0.742761	5	10.492
0.114(1196		-0.5341517E		0.125905HL 0.2724197E		284.895	55 Jle	0.129033	6 7	24.590
0.36474904	0.3	C.011954CE	0.3	0.89662378		45.807	8.226	0.431566	8	32.787
-0.43488745		-0.051P126E		0.43541956		192.627 252.826	25.283	0.7(4239	10	3A.605 4().584

## HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 9 V= 204.5 KTS n= 1.11 g

BLADE FEATHER ANGLE
HAPMORIC ANALYSIS MODEL AP-50A SHEP 1009 T 472 CTR 527 FLT 609.0 TR 31

AJ 0.63233337 01	b <b>J</b>	Cu	PHIJC	P\$11C	CJ/CJ44X	J	FREUDENCY
J.19445902 CI	-0.165(7246 16	J. 2120654E 01	336.022	336.022	1.00000	1	4.058
-0.18146125 03	-6.25.4122 26	J.31295201 0J	234.501	117.280	0.147316	2	0.147
0.5135.323-01	0.532146361	3.73553151-01	+6.019	15.343	0.034741	3	12.295
-0.210/941:-01	-0.36614566-01	0.42253586-01	240.074	60.014	0.019850	4	16.393
-0.19163709-61	0.251(3555-01	0.31582551-01	127.357	22.971	0.014337	5	20.492
3.73463395-02	C. L2C513oF - CL	U.1411589E-JL	23.422	4.144	J.606643	٥	24.590
0.3541,7163	0.26360 61 -68	0.20563111-32	32.337	11./62	0.001248	1	26.604
-0.1107/183-02	5.2125721E-Ca	0.25432106-02	112.113	14.314	U.CU1383	9	32.181
U.4322447F-C2	0.262691502	J. 46605738-J2	21.215	3.324	0.002233	9	36.665
3-34361332-02	-0.1613070 -62	0.18414861-02	315.151	31.710	0.001005	10	40.464

#### SHAFT MOMENT

HAR 10110 MALYSIS MODEL AN- 36A SHIP 1007 T 474 CTH 327 FLT 609.0 TR 36

7.3		٤٥		C J	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENC Y
-3.47151217	Ju								
-J.1173.556	C6	0.12330206	CG	0.16153765 05	131.016	131.016	1.000000	1	4.098
J. " 346456E	94	U.51.2.37F	04	0.0+15415 06	52.740	26.370	0.034354	2	8.197
-3.1535.135	US	U.1458434F	C	U. 21648-15 U	111.142	45.414	0.132620	3	12.295
3.127er19f	C4	0.45-00725	C4	0.47318752 64	74.431	18.008	0.027130	4	16.393
0.0340.31.	J4	0.33400537	C+	C. 1382372 05	18.596	3.719	0.063487	5	20.492
-3.4430 1545	03	-0.11562145	()4	C. [ 1.14 5 > 5 U.	253.570	42.103	0.311669	6	24.540
0.03047246	دن	-0.24/86811	C4	0.29286121 04	280.595	40.005	0.017908	7	28.689
-J.1912419E	U3	-3.1757115F	33	0.26243315 03	221.220	27.902	0.001605	8	32.787
-J.1320-15F	64	0.3372517F	€ 3	0.11557114 04	160.902	18.545	U.303240	4	36.685
1.2128.545	€3	-0.039305F	CI	0.27211046 01	358.656	37.300	0.001669	10	40. 484

#### PITCH LINK TENSION HARMDUIC AGALVSIS METEL AMBELO SMIP 1009 T 472 CTR 527 FLT 609-0 TR 11

AJ	LB.	CJ	PHIJO	PSIJC	C F/CJHAX	J	FREQUENCY
-0.6372235# C2							
-3.15Ja75J. C3	3.67045461 61	3.15132428 03	177.455	1/1.452	J. 363905	1	4.09-
J.33692171 03	-0.242 10391 C	J.4150054E 03	324.132	162.691	1.000000	2	8.197
-0.1001954= C2	C. 130,525F C.	0.136/3700 03	14.315	31.407	0.315025	3	12.245
0.++15169F 02	-6.1475000t c3	J. 1554740E JJ	238.+10	12.107	J. 374631	4	16.393
-J.1547335E C2	C. Selfacet Ca	G. E370197F 02	154.347	10.0/d	0.201039	5	20.442
-0.5321346. 62	0.1135964E C	U.1245 155E UJ	113.773	19.465	J. 300154	6	24.5.0
J. + 1/6:5+6 C1	Caliboutse Ca	J.1195447F J2	14.675	10.585	0.3-1763	7	26.689
-0.1177.6-1 C2	C. 1 + 1 49 2 5 C &	J. 21615360 UZ	172.979	15.372	0.052133	8	36.161
-U.19961336 CI	-6.22521765 Ca	0.23J1460E UZ	c05.014	29.441	7.055450	9	30.665
-0.5474615E CS	G. 2036363F CZ	0.31551131 02	134.803	13.500	0.016026	LO	40.984

#### FIXED HUR FLAP AT STA 18 HARMONIC ANALYSIS MCCEL AM-564 SHIP 1009 T 472 CTH 527 FLT 609.0 TR 1

AJ	6.1		CJ	PHIJC	PSIJC	CJ/CJMAx	J	FREQUENCY
-0.2311257E C5	0.34253131	c ·	0.4342582E 05	123.178	123.178	1.000000	1	4.058
0.1104764c Cs	-0.22412651	CS	U.2498731E 05	296.239	144.119	3.610551	į	6.197
0.42214848 G3 -0.37183168 C4	0.55372895		G. 6CC8473F 04	81.172 217.720	27.057 54.430	0.146814	3	12.295
0.23E5741E C+	G.1413/67E	(4	0.25812111 04	29.0+3	5.470	3.012444	5	20.452
0.5167742t C3	-C.17d55c3t (	-	0.26741118 04	353.050 53.142	59.175 7.592	0.051050	7	24.590
0.71913363 03	0.93518151		0.11797458 64	52.4.9	6.555	3.3288 26	8	32.787
-0.19409615 03 -0.61672566 02	-0.33260561 (		0.1595078E J3 0.1178320E 02	237.324	26.369	0.038784 0.031510	10	36.685 40.984

#### HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 9 $V = 204.5 \text{ KTS} \quad n = 1.11 \text{ g}$

FIXED HUB CHORD AT STA 18
HARPONIC ADALYSIS NOTEL AN-SEA SHIP 1009 1 472 CTC 527 FLT 609.0 TH 3

AJ	1.7	(.	PHIJC	PSIJC	CJ/CJ*Ax	J	FREQUENCY
0.52780545 05							
-J. 32450all (5	C.751:1531 C5	0.65525946 05	112.303	112.303	1.00000	ı	4.698
-0.6025344 04	0.25298428 64	J. 65 34 675E UT	157.224	73.012	0.076405	2	0.147
3.13737521 C+	-0.5531816' 64	0.57455/48 04	283.075	94.625	0.067223	3	16.645
0.57233645 63	-0.1504949 (4	0.1507/065 04	246.130	71.684	J. 623257	4	10.393
-0.15137-30 03	0.36646756 64	9.306/Flot 04	92.823	18.206	J. 035048	5	20.492
J.17463412 64	C. 6263945F 63	J.1902941E 04	19.219	3.203	0.022249	6	24.590
0.4520+796 63	-0.05943751 (3	C.5/10715E 31	211.743	42.235	0.011154	7	26.669
3.54.50075 03	0.1472ml15 cs	0.53344485 03	4.462	1.198	0.011177	8	32.181
J.110:/105 C4	0.3379526: (3	J.121,544E J4	16.119	1.790	0.014224	4	36.865
0.4 lutudyt C3	0.2:193636 63	J. 54 J+ & CZE US	30.100	3.016	0.306319	10	40.984

BLADE FLAP AT STA 174
HAT TONIC ANRIVSTS MINULE AMERICA SHIP 1009 - 1 472 CFP 527 FLT 609.0 FF 50

	AJ	ri J		CI		PHLIC	PSTJC	CJ/CJM4X	J	FREGUENCY
	17537 03 - 574425 04 -	-3.35918295	04	0.4652156	U4	349.633	309.433	0.822534	1	4.398
-3.43	35 + 3H t - 33	1.56104455	34	0.56553520	34	94.366	41.133	1.000000	1	8.197
0.1-	315345 0.	3.14906516	0.3	J. 143/1116F	04	5.967	1.990	0.254486	.3	12.295
0.15	4343 15 133	-0.42315631	2,	3.11561446	J4	334.471	74.45)	0.204415	16	14.303
-3.20	15-11 33	3.33331115	0.3	0.53/32768	93	1.10.663	21.733	0.112633	5	20.492
0.17	481845 03	-0.15545805	u i	3.20211331	33	307.714	51.624	0.015978	6	24.530
0.18	76753-33	-).17453FJC	32	J. 1 do / 145F	7.5	354.135	57.662	0.033466	7	18.184
0.10	131111 35	0.60231481	UJ	0.02+12156	03	75.317	4.311	0.110333	6	12.781
-1).55	31 121 03	3.45738926	J.2	7.55037755	13	171.201	19.022	0. 119197	9	35 . ha 5
-).57	38, 7-6 34	-3.31152335	03	0.62 1.1.5	13	217.493	21.249	0.119836	10	40.494

BLADE CHORD AT STA 174
HAFMCNIC ANALYSIS MODEL AH-56A SMIP 1009 T 472 CTR 527 FLT A09.0 TR 42

AJ					PHIJC	PSIJC	CJ/CJMAX		FREQUENCY
0.25603718 05									
-0.7EC164'F (4	0.14462416	05	( . 20.967958	05	111.244	111.844	1.000000	1	4.09
-0.3147477E 03	-0.10004570	0.3	0.4260543E	03	206.059	103.030	0.0.0415	2	6.197
-0.fc90273E 63	0.25618365	03	0.46696566	03	153.239	51.0F0	0.027175	3	12.245
0.2.F19474 04	-0.1588912E	0.4	0 8/3:776	04	326.294	81.574	0.136555	4	16.393
-0.634246FE 02	-0.13.905AL	04	U. 474797E	04	244.313	48.863	0.670336	5	20.492
0.3647852t UZ	-C.71 16956L	03	0./1493701	0.3	272.941	45.490	0.034097	6	24.590
C. 5444AC46 ( ?	-0.4072766f	0.2	0.50066138	00	355.761	50.823	0.026277	7	28.639
0.14985245 04	-C.1518393E	04	C.2140459E	04	314.435	39.304	0.162082	8	32.797
-0.17175921 04	0.10.14591	04	0.19970316	4.4	149.013	16.557	0.095271	9	36.865
-0.25815438 63	-0.15034108	03	0.29876591	03	210.223	21.022	0.014249	10	40.584

BLADE TORSION AT STA 131.5 HARMINIC ANALYSIS MODEL AN-56A SMIP 1009 T 472 CTR 527 FLT A09.0 TR 44

ĹA		B.J.	_			PH1JC	PSIJC	CJ/CJMAX	J	FREQUENCY
0.29459476	0.3									
0.15097"(F	04	0.13894358	04	0.2052142E	04	42.634	47.634	0.918309	1	4.098
-0.1970396E	94	0.1054232E	04	0.22346968	0.4	151.652	75.926	1.000000	2	8.197
0. 44861HEF	0.2	-0.6503657E	0.3	0.6519324E	0.3	273.948	91.316	0.291732	3	12.295
-0.4799753F	6.3	-0.970849AF	0.2	C.4977478E	0.3	190.862	47.721	0.21826	4	16.393
0.13834458	C 4	0.2621211E	0.3	G.1416056E	04	12.319	2.464	- 0.633665	5	20.492
0.11559301 (	04	-0.34777941	Ü3	0.119A:UPE	04	341.210	57.202	0.530948	6	24.590
0.75541145	0.2	-0.2518730F	0.3	0.26296246	03	286.699	40.957	0.117473	7	PA. APO
0.14725935	03	0.9720771E	03	0.9831680E	0.3	61.386	10.173	0.439956	8	32.787
-0.3-065808		-0.10957521	03	0.3"785648	0.3	197.530	21.981	0.160136	9	36.685
-0.1134436F	-	-0.1600546E	03	0.19418498	03	234.673	73.467	0.087790	10	40.984

#### HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 10 V= 200.5 KTS n= 1.35 g

#### BLADE FEATHER ANGLE

4454 (MIC AT MEVSIS MODEL AND A SHIT 1009 T 472 CIP 532 FLT 609.0 TR 31 TVE-ALL CYCLIC LUAD = 0.274766F 01

71. 1031. 1035			10.40				
LA 35193013.5	ну	cı	5411C	PSTJC	CJ/CJMAX	J	FFEQUETCY
3.23555516 01	-0.114635c+ C1	0.26243428 01	334. 358	334.058	1.000000	1	4.078
-3.2934377E JO	-0.21901355 00	0.3662024E UJ	215.733	138.356	0.137538	2	8.197
3.43153146-31	7, 14373831-32	0.43173/95-01	1.969	0.623	0.016451	3	12.295
0.88367115-07	-0.55+34121-01	0.5612 1445-01	219.062	69.750	0.021386	4	16.393
-3.10171011-01	-0.205.277 -01	7. 310 21 - 35 - 21	213.5-5	41.179	J. 311843	4	20.492
-3.5446-81:-12	0.25529 171 -34	1.005 11946-12	154.031	25.677	0.032308	6	24.593
3.23103935-03	U. 305UR 125-02	0.30471845-02	34.26.5	12.324	0.001176	7	28.49 €
0.25502451-02	-3.21303576-07	2.43331245-32	317.213	34.452	0. 111536	8	32.747
-0.35512955-02	-0.134.935+-02	0.4184685F-02	198.806	22.393	0.031595	9	36.885
-0.1221500 -02	0.16359641-32	0.26621076-12	125.424	12.593	0.030773	10	40.046

#### SHAFT MOMENT

THAT TOTAL CALLESTS ACCIC AMEDICA SHIP 1307 T 472 CIP 332 FLT 639.0 TR 36 TVC-441 CYC-1C 1047 = 0.208812F Co

TO DESCRIPTION OFFI	4.88	LCAD/IN USED	-215359.80				
20	t is	CJ	DHIJC	PSIJC	CJ/CJMAX	j	FREQUENCY
-0.64/62305 04							
-J.1+Jetlur Ju	0.12150521	Co 0.1876193€	05 139.358	139.358	1.000000	ı	4.098
-3.23307145 04	-0.2069+132	0.28/25236	0. 226.253	113.135	0.015254	2	8.197
-J. HJF 28 4 1 5 34	0. 15: 17775	64 0.10336195	05 143, 36	41.861	0.053044	3	12.295
-2.2112 15 04	3.22 441230	0.33752573	0% 133.481	33.343	0.016218	4	16.393
J. 534 46 1 04	0.35107345	* 11 Hot 0 + 0	0. 22.807	4.501	0.047763	5	20.492
~U.73#32315 J2	-0.4661046F	03 0 7 16 . 1 . 2	U\$ 260.684	43.447	0.002503	6	24.590
0.21514636 04	-0.1234025	04 0.20073575	(. 332.33)	41.470	0.014314	7	28.689
-0.1248162F Js	-0.11704045	0.1.357733	0. 234.401	29.373	0.007577	8	32.781
-J.1313 / 55 Ja	0.1:500 105	03 0.1030517	U. 107.605	10.0+5	0.000435	9	36.985
0.115561.5 05	0.13(59635	0.1743655	03 40.475	4.444	0.000920	10	40.554

#### TITCH LINK TENSION

Sten by 211, in n2 to	0.52	( , 4.5\1.A 02L)		2195.00				
AJ	41	CI		титис	ps + Jc -	CJ/CJ"AX	,	Frequency
-1.1135737 31								
-0.126177 H 03	-0.5713767F	12 0.13654198	1) 5	234.382	214.352	0.201707	l	4.098
0.3/12.53 03	-0.322,741	01 0.4 #161826	.) 5	317.035	159.517	1.000000	2	6.197
-1.22934734 32	3.40744 751	0. 1.52+32145	2	111.534	37.178	0.126933	3	12.295
3.1621681F UL	-0.132,9165	0.132+7155	)3	270.102	67.675	0.259318	4	16.393
-0.755-3-1° J?	0.1613411	0. 0.1125-nle	12	167.934	33.541	1.157143	5	27.472
-0.4(517415 02	0.10236757	0: 0.11244.25	0.3	114.438	14.373	0.223716	6	24.590
-0.21.139.1 32	6.21105511	02 0.3024 /88F	02	100.226	19.319	0.051531	1	70.685
3.33847.51 31	0.1001-19	J1 0.1248317c	JI	11.915	2.247	0.335/37	J	32.787
U. 75742631 31	-0.2650J71F	20 2.27013125	0.5	265.923	11.769	0. 056162	9	36.635
-0.94887315 31	C. 182-3985	0.2 0.20581796	02	117.453	11.745	0. 041965	10	40.434

FIXED MUB FLAM AT STA 18

432 MUNIC ANALYSES MODEL AH-56A SMID 1009 T 472 CIF 537 FLT 609.0 TO 1

VECALL CYCLIC FIAU - 0.4741395 DE

Zero ensite e oseo	7.40	DECEMBER 1	94830.00				
7.1		Ĉ J	04176	P51JC	CJ/CJMAX	j	FFEGUENCY
-0.13357374 05							
-0.32327716 35	7.34248 146 09	0. +(3 +46 +2 35	133.085	133.385	1.000000	1	4.093
0.121 - 121 - 05	- 1.266 1853 3	0.24351458 05	274.513	147.215	J. 625911	2	8.197
1.135 16 or 04	0.2111550- 0.	0.22800348 01	63.813	21.273	0.050110	5	12.275
-3.31466576 34	-J.2781455 N	J. 41357170 94	216.234	54.159	0.100346	4	15.393
7.15+3:015 34	3.23514715 3	1 7.1~)3777= 014	1.373	1.476	0.0,420)	5	20.492
J. 1562 dlut 0.	-0.32776E15 J	0.1533534- 0+	350.731	58.455	0.342411	5	24.510
c. 40700 11 03	U. 8-15/145" U	0.9455 (11 )3	14.110	9.157	0. 010951	7	78.131
0.8:0726 37	0.1041147r 34	0.10547-61 0.	65.151	10.645	0.722709	6	32.131
-U.2500c 101 33	-0.235282.5 01	0.3.0 ->12° 03	211.203	24.245	0.032113	4	10.886
-0.15792910 33	-0.321161 DE J	0.35749555 33	243.415	24.141	0. )17/ 32	10	40.034

## HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 10 V= 200.5 KTS n= 1.35 g

FIXED HUB CHORD AT STA 18
HAE MINIC ANALYSIS MODEL AH-COA SMED 1009 T 472 CTH 832 FLT 609.0 IF 3

٨J	PJ	C1		PHIJE	PSTJL	CJ/CJ4AX	J	FORGUEFCY
7.4531 77 35								
-C.2-412811 05	0.8817600° 05	0.91514316	05	105.472	105.472	1.000003	1	4.099
-0.558771 16 04	-0.8131941 32	J. 55db316E	)4	183.839	90.419	0.041065	2	8.197
-0.22648795 04	-0.78301725 C4	0.8151148F	04	253.867	84.622	0.084070	3	12.295
-0.13875730 04	0.73635365 02	0.1385/305	34	176.952	44.238	0.015144	4	16.393
0.28473444 34	10 1+25+0FA.0	3.25181416	14	12.545	2.524	0.031887	5	20.442
3.31376245 94	-2.2021/95= 03	J. 31942745	04	350.354	59.393	0. 634905	6	24.590
J. 134-75 JF 34	0.53353675 03	J. 1959375E	() -	11.718	2.245	0.321523	7	28.649
2.449173/ ( 03	0.79556205 03	0.1178/465	04	47.468	5.10)	0.012876	9	12.767
0.40040416 03	0.65932231 03	2.7/164116	03	53.695	6.522	0.009432	9	36.885
0.55105005 07	-U.495 5781 32	0.74184775	12	318.376	31.638	0.000411	10	10.444

READE FEAD AT STA 174
HAS MOSTIC AVAILYSTS MODEL AM-SOA SHIP 1009 T 472 CTR 532 FET 509.0 FF 50

A,I	ij .		PHIJC	P\$1.J	CJ/CJMAX		FUCULIFNCY
0.908234 15 03							
3.383967-6 34	-3.437:575 64	0.557JL17E 04	313.076	313.075	0.891311	1	4.648
-0.16596335 04	0.60392727 09	0.02503328 34	105.374	52.18	1.000000	2	6.197
J. 16123017 04	U.1507349E 04	0.2237173F 34	43.373	14.358	3, 3526 18	3	12,295
0.50010577 02	-0. 20510111 03	0.50643171 03	273.163	68.2 11	0.144644	4	16.393
0.14034316 02	0.45617198 01	0.456 11775 03	EH . 247	17.647	0.012925	5	20.497
-J.25)471 pt 32	-0.15/25 Def 33	0.15923296 33	24),44)	43.592	0.025443	6	14.590
0.219(68)6 03	0.37548/85 03	0.43451901 03	54.735	8.541	3.009433	7	26.689
-0.35940215 03	0.54513216 03	U. 15 17531F 03	121.762	15.220	0.121240	В	32.707
-).42345931 33	3.53525E2F 02	J. 483700 Jr 01	173.553	19.294	0.311332	4	36.085
-3.50127915 03	-0. +0552541 03	U. 05/6/1356 (13	224.005	22.409	0.111510	10	:0.494
	-						

BLADE CHORD AT STA 174
HARMONIC ANALYSIS MODEL AH-56A SHIP 1009 T 472 CTR 532 FLT 609.0 TR 42

A.J	BJ		CJ		PH1JC	PSIJC	CJ/CJMAX	J	FREQUENCY
0.24362101 05									
-0.E0374CAE 04	0.22913968	0.5	C.2426269E	0.5	109.329	109.329	1.000000	1	4.09*
-0.1236127t 02	-0.23#1554E	04	0.23815868	04	269.702	134.851	0.096077	2	0.197
-0.26677178 03	C.4979656E	0.3	0.56493978	03	116.176	39.343	0.023265	3	12.295
U.2503393E 04	-C.1950A35E	C 4	0.3419634E	04	325.054	81.265	0.140834	4	16.393
-0.2256955E 03	-0.4844673E	03 .	0.5344778E	03	245.022	44.004	0.622011	5	20.472
-0.1262431L 04	-0.137161DE	04	0.1864184E	04	221.375	37.896	0.076770	6	24. 40
0.1001001E C4	0.1624925F	04	0.15768350	04	40.474	5.782	0.065019	7	28.449
-0.64512265 03	0.492183AE	0.3	0.8122310E	0.3	142.702	17.838	0.633449	3	32.727
-0.4014 14 03	-0.29149581	0.3	0.95360265	03	167.744	11.978	0.634271	4,	31665
-0.472.073L 03	-0.3145135E	0.3	0.52645608	63	216.710	21.671	0.021669	10	40.984

PLADE TORSION AT STA 131.5
HARMONIC ANALYSIS MODEL AH-56A SHIP 1009 T 472 CTR FR2 FLT 609.0 TR 44

0.36942951 03	ь	C1 == =	от о	CJ/CJMAX	J	FREQUENCY
0.188276 NE 04		0.27062156 04	45.956 45.956	1.000000	1	4.048
-0.24055125 04		0.26826016 04	153.792 76.896	0.400542	2	F.197
0.11490 895 0.	-0.42684385 03	0.43694498 03	271.507 90.502	0.161359	3	17.795
-0.266454hE 03	-0.1868431E 03	0.3258"218 03	214.995 53.749	0.120331	4	16.393
0.115t625E 04	0.332447ct 03 -	0.12054UOL 04 =	16.012 3.202	0.445090	5	20.492
0.12564756 04	CO 30004094.0-	0.1238400F C4	356.FOP 50.4AB	0.457275	6	24.590
0.45270125 02	0.10f182dE C3	0.14481518 03	48.335 6.405	0.053473	7	28.489
-0.30142048 03	0.71382456 03	C.7746545E 03	112.893 14.112	0.286113	8	22.7 7
-0.24331998 03	-0.1850524F 03	0.30569418 03	217.254 24.139	0.112677	9	36. 665
0.171240HE UZ	-0.6027357E UZ	0.4245492F C2	285.860 28.586	0.623137	10	40.464

#### HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 11 V= 199 KTS n= 1.62 g Reproduced from best available copy.

BLADE FLAP AT STA 174 HAPMONIC ANALYSIS MODEL AN-HOAD SHIP 1009 T 472 LIF 538 FLT 609.0 TO 50

A.	3H   3J	-	( )	-	entür	PSIJC	XAPLUNLS		FPEUUFF.CY
0.51567535 03								-	
0.45050045 04	-0.50619531	04	J.5779301F	04	111.646	311.646	0. 446676	1	4.115
-0.16715448 04	U. 74007705	04	1.76457274	J4	102.629	51.314	1.000000	2	8.230
0.1962/516 04	0.13693621	3.	3.22349255	34	28.377	9.526	0.297313	3	17.346
-3.21349896 01	-0.3677.17	0.3	0.45110246	03	234.248	54.312	0.059011	4	16.461
-C 71 16 7 15 32	3.120.2551	01	0.12937101	0 1	111.457	22.211	1.316924	5	17.575
3.34324326 33	-0.12150dbc	0.3	0.4021626-	0 1	342.354	57.059	0.052500	6	24.691
0.31925695 01	0.169.3175	0.4	0.59815486	US	.9.155	1.022	3.643347	7	19.001
-6.3357#3/- C1	J. 82117044	0.3	J. 4211744E	33	93.269	11.794	0.1)74)4	P.	32.922
-J.7CGF157- 33	30.20118300	03	6.7:43176	0.1	164.112	18.235	0.076118	19	17.017
-0.5372 1350 31	-0.2003934	0.3	0.543474 1F	0.3	201.577	20.158	0.071141	1.0	41.152

FIXED HUB CHORD AT STA 18 HATCHIANTE ANALYSIS MODEL AN-THA SHIP 1009 1 472 CT2 538 FLT 609.0 TF 3

- AJ		CJ	PH! JC	PSTJC	CJ/LJ4AX	J	FEROUTICY
U.43823017 05							
-1.1762195 35	1.484480 F U)	3.1J)5591E On	100.173	133.173	1.330333	ı	4.115
-0.662216+5 74	-0.10710525 C+	J. 8683434F 04	137.081	93.541	0.046393	2	8.230
-0.2.15741" 04	-U.1225400F 01	0.12474436 05	254.201	86.493	0.174049	3	12.346
-1,153551 0-34	0.23997915 35	7. Le171775 04	171.453	42.862	0.015983	4	16.461
(.64.0001: 3)	U.15013011 01	J. 7123127F J3	12.683	2.537	0.03/080	•	20.576
3.155679+5 34	-0.1173228 04	J. 228155Jr 34	324.144	54.457	J. 227647	1,	24.691
0.117.1325 03	-0.42424278 03	3.44204585 03	255.378	40.768	0.714344	7	28.607
3.16305210 03	0.37158508 03	0.+25/8/110 33	61.309	6.289	0. 314035	8	32.922
0.+6781910 33	3.63379475 32	0.4/1565 OE 33	7.287	3.313	0.334713	9	57.037
3. 27321356 32	-0.85056toF 72	C. 4314158E 05	243.913	29.397	0.000025	10	41.152

BLADE CHORD AT STA 174 HARMONIC ANALYSIS MODEL AN-SEA SHIP 1009 T 472 CTR 538 FLT A09.0 TR 42

LA		_ BJ		C.J		PHIJC	PSIJC	CJ/CJMAX _		FRECUENCY
0.24411636	0.5									
-0.6600438F	04	0.2515026E	05	0.2A06195E	0.5	104.705	104.705	1.000000	1	4.115
-0.19: 29495	04	-0.1219463E	04	0.23569028	04	214.044	107.022	0.090643	2	8.230
0.23714031	03	-0.2975870E	04	0.2985304E	04	274.656	91.519	0.114811	3	12.346
0.302739CE	04	-0.60545486	03	G.30H7329F	04	349.190	97.173	0.118735	4	16.461
-0.45210868	03	-C.95C5581E	02.	O.105259EE	.04	244.563	48.913	_ 0.040461	5	20.576
-0.9882541E	0.3	-0.5692334E	03	0.11404716	04	209.94?	34.940	0.043861	6	24.691
0.13321126	0.4	0.32747BRE	0.2	0.1332514E	04	1.408	0.201	0.051247	7	28.867
0.13772346	04	-0.5378333E	03	0.1432000	C4	337.941	42.243	0.055075	8	32.922
-0.1-70-19E	64	-0.3511956E	0.3	0.15127/91	64	143.580	21.569	0.0"#174	9	37.037
-C.1964102E	0.3	-0.3101980E	03	U. 3841929E	6.3	239.253	23.925	0.014776	10	41.152

SLADE TORSION AT STA 131.5 HARMONIC ANALYSIS MODEL AH-56A SHIP 1009 T 472 CTR 538 FLT 609.0 TR 44

A.J		EJ				PHIJC	PSIJC	CJ/CJHAX	J	FPEQUENCY
0.61766146	63									
0.24458716	0 4	0.22615321	04	0.3349580F	()4	43.097	43.097	1.000000	1	4.115
-0.2605151E	04	0.17840608	04	G.3157490E	(4	145.596	72.798	0.942649	2	8.230
-0.76220916	0.2	-0.524279RE	03	0.5297413E	<b>G</b> 3	261.728	97.243	0.158166	3	12.346
-0.32#23176	03	-0.12670E1E	03	0.35133948	03	201.108	50.277	0.105040	4	16.461
0.94/19:05	03 _	C.9292712E	02	0.95172955	03	5.604	1.121	0.284137	5_	20.576
0.12291026	0.4	-0.4200435E	03	0.17468956	04	341.132	54.855	0.287778	6	24.691
0.2994766E	0.3	C.1213526E	03	0.3231296E	03	22.059	3.151	0.696469	7	28.807
-0.60AG519E	0.2	0.8957837E	03	0.8973325E	03	93.973	11.734	0.267994	£	37.922
-0.2316654E	03	-0.1624967E	0.2	0.2324411E	03	184.033	20.448	0.150344	9	37.037
-0.1779443F	0.2	-0.10036366	0.3	0.10192846	03	259.946	25.995	0.030430	10	41.152

# RMONIC COMPONENTS OF FLIGHT 1ES. CASE 11 V= 199 KTS n= 1.62 g HARMONIC COMPONENTS OF FLIGHT TEST DATA

#### BLADE FEATHER ANGLE

HAT MONTO ANALYSTS MODEL AHATOM SHIT 1009 T 472 CTC 538 HLT 609.0 TF 31

AJ	,,	CJ	PH! JC	05116	CJ/CJYAX		EU E DITENCA
3.61632711 31							
3.30292347 01	-0.12830177 01	0.32347416 01	337.049	137.045	1.000000	1	4.11
-0.231e1,cc 00	-0.2344 a tire (0)	1.31322776 33	228.473	114.235	3. 395213	2	8.733
-3.24046731-01	0.56332461-02	0.24693091-01	166.817	23.636	U. 307538	3	17.346
-0.1707016E-02	-0.5/51323F-C1	3.67593376-01	2-7.200	56.800	0.020547	4	14.691
-). 196 111/4-11	-3.11794 13"-01	3. 754 36 322 - 01	231.413	41.532	0.007721	5	20.576
-0.435731002	0.45 No 661 F = 92	G. L.)86+7F-31	107.623	16.270	0.003366	6	74.691
-3.67677777-02	-0.13 27075-02	C. 5 10 12 - 6F - 02	111.304	21.329	3. 1)2)98	7	28.837
-3.54447JJL-J2	7.10:40751-07	0.55454/16-02	149.148	21.143	2.0016 36	8	32.522
-0.335,5411-02	-3.13914371-02	0.36326951-02	202.572	22.002	0.001194	9	31.631
-1.34 Fre 0-1-0/	0.70106075-02	J. 4.541 1 1 1 - 12	1-0.870	1 . 149	3.331354	10	41.152

#### SHAFT HOMENT

MARM NIC ENALYSIS MICEL AM-SEE SHIP 1007 T 472 CTH 538 FLT 609.0 TR 36

1.3	t.J	Su	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENC Y
-6.44922025 04							
-3.19244946 30	U.13306925 C6	0. 2238214 E US	143.895	143.895	1.000000	L	4.115
-1.11341 cat 0-	-U.17616015 C+	0.20304014 04	237.043	118.521	0.008991	2	8.23C
0.12671745 04	0.162/6348 04	0.23/52/25 04	21.006	17.222	0.009190	3	12.346
-3 . 186 mil Us	0.20136355 04	0.3701155= 06	134.725	33.681	0.017537	4	16.461
0.63.27115 04	0.2073170. 04	C. usanass 04	13.430	3.187	0.028290	5	20.576
J.1105 CLOF C4	-U. /51560/5 C3	3. Lanuts # 2 04	335.107	55.851	0.008328	6	24.691
J.27950755 U.	-0.11037098 04	0.3027011: 04	337.396	48.199	0.013407	7	28.607
-U.IJISIBIE U.	-0.63 00 14E C3	0.1342719 0+	203.499	20.362	0.000124	8	32.922
-J.6437432E US	0.76676198 03	0. 18709715 63	134.912	14.990	0.00+383	9	37.037
3.36403.75 03	-0.3093712F C3	0. +9752725 03	321.550	32.155	0.002203	10	41.152

#### PITCH LINK TENSION

HAR 175 TO ATTRESTS MODEL AH-TEA SHIP 1009 1 472 CTF 438 FLT 609.0 TS 11

	AJ		4		CJ		L 41 1L	PS'JC	CJ/CJMAX	J	FREQUENCY
-0.3	844437	32									
-0.1	6363137	92	-0.12477/	31	J. 1947420F	13	21 + . 134	219.114	0.344253	1	4.115
11.3	5312185	33	- 1.41151 44	11	J. 540 H 159F	0.5	317.762	155.331	1.000000	1	8.237
·) . '	311293-	72	0.305348"1	21	9. 33272097	07	57.849	17.616	0.0/0765	3	12.345
-1.4	644 [47	22	-J.13645 666	23	3.14575175	33	25).447	62.661	3.271342	40	16.461
- 4	15454.5	25	3.17/03505	37	3.4403.05	62	154.172	31.034	0.072088	5	20.516
-J. 4	-301- /·	22	0.031 110"	U.	0.10002240	03	121.557	20.200	0.197144	Α.	14.611
-3.1	9125175	32	0.29442341	3.2	J. 15157930	0.2	123.071	17.582	7.365077	7	28.607
: . 3	142831F	υL	J. 135 45 da"	JL	0.3713358=	0.1	21.324	2.606	0.036913	a	52.577
-3.2	77519-	01	-7.30877721+	CF	1. 3011548-	32	244.993	29 44	0.057310	9	37, 217
٥.٠	3163653	32	0.10:5957	U.	0.22141621	02	16.525	2.453	1.042434	10	41.02

FIXED RUB FLAP AT STA 18 HATHRIDGE AT ALVSTS MOLEL AND 1039 T 472 CIR 538 FLT 609.0 TR 1

L.A. ===				CJ	-	PHIJC	25176	CJ/CJHAX	J	FFE JUST CY
-U.2910!17F	)·									
-1.39183145	)5	3, 36111305	0 >	J. 5328329E	) (	137.314	137.334	1.000000	1	4.115
JF 535401.U	J5	-1.31593655	05	0.33263518	U5	230.243	144.132	0.624391	,	R.230
0.15333900	U÷	0.9871 -795	33	0.17715503	40	30.053	13.018	1. 333248	3	12.346
-3.43)4:016	34	-0.15340154	04	U. 4272340F	04	233.937	50.234	C. 0H9566	4	16.461
3.18427745	1)4	-0.11036215	04	U. 21+143JE	Ú4	124.061	05.011	0. 140312		64.571
0.16715-56	04	3.33291765	C 4	0.19313186	14	13.384	1.641	3. 335683	6	24.691
0.13489000	04	9.56714195	0.3	0.1504951	04	25.323	3.760	0.026244	7	28.837
0.32975615	0.3	0.1147103	J.	J. 11386225	)4	73.918	7.2.0	U. C223UR	27	32.427
-2.572111SF	33	3.11895525	33	3.53434546	33	1/8.254	18.695	0.010967	€,	37.037
-0.54545941		-0.3853379°	G i	0.30967.5	0.3	261.953	26.195	0.007313	10	41.152

## HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 12 V= 204.5 KTS n= 1.23 g

BLADE FEATHER ANGLE
HAMMONIC ASSETS MODEL AF-50A SHIP 1009 T 472 CTR 404 FET 609.0 TR 31

AJ	FJ	CJ	PHIJE	P\$1JC	CJ/CJMAX	J	FREQUENCY
15 fr711et.0	-0.23646275 CI	U.4650752E 01	325.044	325.044	1.000000	1	4.062
-0.1761418 00	-0.37104138 ((	0.52915516 00	224.610	112.305	0.113747	;	8.163
0.15257265-61	0.34556151-01	0.0556336E-01	21.849	1.550	0.316398	3	12.245
-0.56301318-61	-0.1161325 ()	0.12506C3E 0J	244.130	61.034	0.027150	4	16,327
-0.45201758-02	0.23423552-01	0.25247626-01	112.137	22.427	J. 0054 17	5	20.460
0.15103995-31	6.12064596-(1	0.2358502E-01	.1.430	8.330	0.005072	6	24.490
0.52139392-02	0.53212305-02	0.74541461-32	47.016	6.517	0.001603	7	28.571
0.1245773E-01 0.1594153E-02	0.55565445-02	0.1382580F-01	25.134	9.090	0.002973	8	32.653
0.17341275-01	0.1110022[ - 0.1 -0.114355ct - Cz	0.1122215F-01 0.1782543F-01	346.501	34.656	J. 00 34 J4	10	40.010
SHAFT HOMENT							
HERMONIC WILARIS	MODEL THE JOA SH	19 1307 T +72	CTF 404 F	LT 609.0	TP 36		
1J -0.57heet975 64	۴J	C.J	PH1 JC	PS IJC	CJ/CJMAX	J	FREQUENCY
-0.7710(13: 05	J. 1430704F Co	0. Ludddu+5 06	114.237	118.237	1.000000	1	4.082
-3.7.44 44 725 05	0.10m1202E 04	U.12 ++ 112F 64	125.245	62.623	0.00/468	2	8.163
-0.40201235 03	0.147153HE C5	U. 1474217E 05	91.564	30.521	0.090396	3	12.245
	-9.1724.275 03	0.1213335 0.	156.109	47.042	0.007440		16.327
0.000000000000000000000000000000000000	0. 1/ 01/608 C4	0.7.1.11.15 0.	32-145	5.260	0.045449	5	20.406
1.12204805 04	-0.50.3359f 03 -0.15/2/65F 04	0.747711203	302.436	51.414	0.003435	16 7	24.490 28.571
J.41/4((:F 0)	-0.71/2255 03	0.32765728 03	294.091	37.486	3.005375	. 8	32.053
-J. 343E11. E U4	-J. 25251745 C3	0.3454 1155 0.	145.070	20.052	0.621197	9	30.735
0.87132196 03	-0.85143040 03	C.1213235 0%	315.661	31.506	J.0U7470	10	40.616
PITCH LINK TENSION HARMUNIC ANALYSIS		(P 1009 1 472 (	CTR 404 F	LT 60910	7R 11		
٨٦	на	CJ	PHEUC	PS1JC	XAPL3\L3	J	FREQUENCY
-0.1359.Jac 33 -0.20263555 C3	U.35643515 CZ	0.26504718 03	17. 57.	172 )7.	3 601531		063
0.402/3E36 03	-0.28960386 63	0.54585116 03	172.272 327.959	172.272	3.485531 1.000000	L 2	4.0F2 8.163
0.03473046 02	C. 4000250t (2	U. 77545CEE 02	24.230	0.079	0.1/0/91	3	12.245
0.23550096 02	-6.1765ac3' ()	0.17014635 33	277.579	67.395	0.327773	4	16.327
-U.3763U77E 02	-0.1672CE5_ Cz	0.4123143E 02	233.525	40.185	0.075530	5	20.468
-0.53/893sE 02	0.72666 at C2	C. EB62E42E 02	154.401	20.025	0.162407	b	24.490
0.57.403/5 01	0.13630736 62	J. 1476576E 32	57.233	9.000	0.02/046	7	28.571
0.77730575 C1	0.155105 A C. -0.1465855E C.	0.2160156E 02 0.2269053E 02	03.278 323.130	8.535 35.576	0.3354/3	8	32.653
-0.4/380799 31	-0.1463636 61	U.4530E02E 01	153.010	14.445	0.041932 0.008300	10	30.735 46.816
FIXED HUB FLAR AT		IP 1005 T 472 C	14 404 FL	1 0,460 1.	R I		
-0.40113146 C5	<b>6</b> J	Cl	PHIJC	PSTUC	CJ/CJMAX	J	FREQUENCY
-J.1. de C5	C. tobudant 65	0.4244140E 35	110.065	110.005	1.000000	1	4.082
J.13' 10E 05	-C. 25492501 C5	J.2144517E 05	291.162	145.691	0.646754	2	1.101
0.41387535 04	C. 12549524 [4	U.5631715E 04	43.171	14.190	0.132/41	3	12.245
-0. N. S 1/125 C4	-C.21. GC/L C4	3.4621150F 34	211.025	24.263	J.106930	4	16.327
0.21152323 04	C.11//447 C4	J.2420863F 04	27.132	5.82U 53.616	0.057040	5	20.406
0.65130325 01	C.C.11151f C:	J.1.5/742F 04	30.430	5.231	0.12649	7	24.490 24.571
0.95010+65 63	6.16(27621 64	U.14/1704F 04	47.368	5.941	0.014076	8	32.613
-0.01214446 02	-0.40994701 C!	0. 1832131 03	253.516	20.124	0.009356	ÿ	36.735
-0.27326516 03	-J.1255559 (3	0.30244098 03	205.372	20.537	0.001126	10	90.816

## HARMONIC COMPONENTS U FLIGHT TEST DATA CASE 12 V= 204.5 KTS n= 1.23 g

FIXED HUD CHORD AT STA 18
HARMONIC ANALYSIS HOCEL AM-56A SHIP 1009 T 472 CTR 404 LT 609.0 TR 3

A.J	BJ		CJ		PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
J.541692CE C5									
-J.144JJO9E C5	0.11024765 (	CL	1.1119914E	06	99.978	99.978	1.000000	1	4.082
-0.25158415 04	-0.7261035F .	13	U. 2614527E	04	140.044	48.349	0.023382	2	8.163
-C. 1085959E C4	-0.720725Ut	(4	0.81405706	04	2+3.134	81.035	0.072/01	3	12.245
-U.172357ue C4	0.14569515 (	(4	J.2206#19E	3.	131.910	34.946	0.020152	4	16.327
3.90633345 03	0.72436105 (	(4	J. 2424335F	0:	63.055	13.611	0.0/1648	5	20.408
0.1240934E C4	-0.39375UJE (	( )	0.13495C2E	04	343.059	51.176	0.012050	6	24.490
-3.57/23312 03	-0.1CC76618 (	(4	0.12142448	Ú4	230.132	33.729	U.01CR42	7	28.571
-0.35295197 01	-0.1164.641	(4	3.12216595	0%	253,218	31.651	0.010909	8	34.653
0.3864395E C3	0.36865626 (	62	0.03547291	0.5	1.935	0.221	0.66/142	y	36.125
0.5152500E 03	-6.21/55.01 (	63	0.55945148	U.S	317.071	33.707	0.004995	10	40.016

BLADE FLAP AT STA 174
HARMUNIC ANALYSIS 40LEL AM-SUA SHIP 1009 T 472 CTR 404 FLT 609.3 TH 53

AJ J.1335JJZ⊑ C4	ıs <b>J</b>	(1	PHIJC	PSIJC	KAPLJYLJ	J	FREQUINCY
J. 34/526 15 34	-0.36265436 64	0.53822246 04	317.011	317.611	0.893634	1	4.,103
-3.21143150 0+	0.56 146 175 64	0.6022926F 04	110.551	55.270	1.000000	2	8.163
0.12314005 04	0.43933018 63	0.1269218E 04	10.015	6.212	0.210731	3	12.245
J.2564345E 03	-J. 5745555 (3	0.100/169E 0+	23+.103	71.131	J.167339	4	16.347
-0.97.95-16 02	-0.41+61+00 Ca	0.1018761E U3	230.433	41.206	0.010077	5	20.408
J.2+164996 C3	0.13515456 (3	U.27EL194E UJ	30.025	5.004	0.046131	6	24.440
-0.32635 02	-0.43555568 (3	0.41747346 03	205.235	37.399	0.072635	7	26.571
J. 1034+112 Cs	0.56154427 (3	0.11124036 04	30.312	3.139	0.184728	8	32.653
-0. + P 13C-2 03	-0.18625420 (3	J. 52227CBE 03	200.011	22.371	J. LEL714	4	34.135
-3.2451501= 03	-C. 21027215 (2	0.4444505E U3	236.434	23.043	0.0/3870	10	40.016

BLADE CHORD AT STA 174
HARMONIC ANALYSIS MODEL AH-56A SHIP 1009 T 472 CT9 404 FLT 609.0 TR 42

AJ		. EJ		C1		PHIJC	PSIJC	CJ/CJMAX		FREQUENCY
0.27120518	C.									
-0.60675436	<b>34</b>	C.2697790F	05	0.27838296	0.5	104.282	104.282	1.000000	1	4.082
0.14113626	62	-0.8548528E	03	0.8545592E	03	270.946	135.473	0.030712	2	8.163
-0.04202161	0.3	-0.8605471E	0.	0.12913486	04	221.789	73.430	0.046387	3	12.245
0.3"660026	04	-0.6638311E	0.3	0.3427347E	04	349.455	87.364	0.130300	4	16.327
0.35827226	0.3	-C.101771CE	.04	0.16769315	04	269.394	57.679	0.028757	5	20.428
0.57171826	0.3	-0.2967977E	0.2	0.57301220	6.3	35A.040	59.348	0.020585	6	24.490
0.752685* €	0.3	-0.33065626	03	0.62219316	( B	336.271	48.039	0.029135	7	28.571
0.6534543E	u.3	-0.1 41204E	0.3	0.700511CE	C 3	347.296	43.412	0.025174	. 8	32.653
-0.16779691	04	0.28735068	0.3	0.15946636	04	171.078	19.031	0.068067	9	36.715
0.28837186	0.2	-0.26934946	0.3	0.38717291	0.3	318.143	31.914	0.013908	10	40.hle

PLANE TORSION AT STA 131.5
HARMONIC ANALYSIS MODEL AH-56A SHIP 1009 T 472 CTR 404 FLT 609.0 TR 44

AJ	L3		CJ		PHIJC	PSIJC	CJ/CJMAX	- 4	FREQUENCY
0.26091055 03	0.18:66346	04	C.281071PE	64	40.586	40.586	0.899527	1	4.082
-0.2650075E 04	0.16343576		0.31246/18		148.355	74.178	1.000000	2	0.163
-0.4659041 03	-0.53543941	0.3	0.70469/36	03	228.978	76.326	0.227129	3	12.245
-0.4946503E C3	-0.1402274E	0.3	0.40142920	03	193.493	48.371	0.192479	4	16.327
0.11260875 04	0.31553CUE	03	0.1169457E	GA.	15.653	3.121	0.374267	5	20.408
0.11245666 64	-0.39265876	0.3	C.1195HAGE	64	340.632	54.605	0.382720	6	24.490
0.1+349526 03	-0.10261116	0.3	0.21901926	63	332.063	47.438	0.070094	7	78 - 171
0.3-318-31 63	0.446F#74E	0.3	0.1010A13E	U 4	69.544	8.473	0.323431	8	32.653
-0.347224AL 03		03	0.51541678	63	227.648	25.244	0.164951	4	36.715
-U. 475372E 01	-0.1075143E	0.3	0.1074536E	03	267.094	26.709	0.034453	10	40.816

## HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 13 V= 204.5 KTS n= 1.44 g

#### SLADS FEATHER ANGLE

	CASE 1	V = 204.	5 KTS	n= 1.4			
BLADS FEATHER ANGL	.E				Les,	roduced availed	
HARMINIC AMALYSIS	WULEL AIMSOA S	HIP 1009 1 472	CTR 413 FI	LT 609.0 1	TK 31	gelie	le rom
							~~~×. <b>€</b>
٧.	اد ق	C	PHIJS	PSIJC	FAMUDICO	J	FREQUENCY
0.83,57156 01						•	
0.36372635 01	-0.21608540 C1	0.45473618 01	322.443	322.490	1.000000	1	4.082
-0.2/252397 00	-0.13143581 _60	J.4494563F UU	232.615	116.337	0.091839	2	8.163
-0.67690135-01	0.32315895-61	0.15CCE45E-J1	154.430	51.493	0.010495	3	12.245
10-79268666	-0.84311498-01	J.9J69C30E-31	241.012	72.900	0.019741	4	16. 127
3.37573548-01	-C.26135642-C1	0.40222355-01	317.475	63.455	0.039645	5	26.438
-0.15577 185-01	6.214/3391-(1	J. 315/569E-J1	119.556	14.420	0.000945	6	24.490
-0.11957685-02	J.35245 for -(1	0.15663691-31	91.719	13.103	0.001766	7	26.571
-0.46273563-02	0.42759050-03	U.4647(69E-02	179.721	21.340	0.001322	е	32.653
-0.3715/776-01	-0.36244061-02	0.37334126-01	145.571	20.019	0.008210	4	36.735
0.41151055-02	-0.02073615-03	0.41625545-02	351.340	35.134	0.000915	10	40.816

SHAFT HOMENT

HAR INTE ANALYSIS MODEL AND DOS SHIP BOOK THE CTF 413 FLT 60940 TR 36

/ 3	E J	e J	PHIJC	PS IJC	CJ/CJMAX	j	FREQUENC Y
-0.10325-2F U5	0. 1	6 1 1001 of 0	120 046	130.969	1.000000		4.082
-0.12261756 06	0.14119345 Co	0.18700197 00	130.969	150.463	0.004872	,	8.163
0.4602125F 03 -0.8210305F 04	-0.7815181E C3	0.11(03435 63	300.926 218.136	72.712	0.055820	2	12.245
-3.57762575 03	0.7974137° C3	0.11.002.5 03	125.918	31.479	0.005266		16.327
3.04126311 04	0.1/1.335F C5	0.40178-15 44	14.599	3.000	U.U3>507	5	20.408
-3.439565+5 33	-0.16005100 03	C. 54 3105 UJ	221.749	35.905	0.002937	6	24.490
0.3276 6546 04	-0.20327565 04	3. 18. 11. 13 : 04	325.197	40.384	0.020621	7	28.571
-0.75557715 03	-0.12912575 34	0.1440J44F 04	234.060	24.958	0.000000	8	32.653
-U.13578445 U4	-0.417,040; 03	C. 11:4/+35 U.	203.647	22.627	0.006362	9	36.735
-0.2487525F US	-0.3656510- 03	0.4723004 = 03	230.761	23.376	0.002526	10	40.816

PITCH LINK TENSION

HARMONIC ANALYSIS MODEL AH-56A SHIP 1609 T 472 CTR 413 FLT 609.0 TK 11

LA	(L)	C.	PHIJC	PSIJC	CJ/CJMAX	J	FREGUENCY
-0.19326546 03 -0.15590646 03	0.26567506 62	J.1581550E 03	1/0.331	170.331	0.265771	1	4.082
0.4871JJ15 C3	-0.3232310° C3	J. 5862566E US	326.541	163.270	1.000000	ž	6.163
-0.11773830 C2	-0.12291315 c3	J.1234754E 03 J.1341182E 03	2/3.933	68.177	0.210617	3	12.245
-0.654C+94F 02	-0.5761566: (2	0.6717EBBF 32	221.339	44.218	0.148734	5	20.408
-0.1154617E 02	C.73508355 C2	C. 63025C4E J2	117.732	19.617	0.141619	6	24.440
-0.57663153 02	0.1431255F C2 0.4455855 C1	0.3573859E 02 0.8666CCTE 01	131.595	22.421	0.061046	7	26.571
0.12445255 62	-0.2442912E CZ	0.2141c53E 02	290.590	33.000	3.046/65	9	36.735
-0.22814648 02	-0.16560441 62	J. 2514021E J2	234.030	20.404	0.042683	10	40.116

FIXED HUB FLAP AT STA 18
HARMONIC AMALYSIS MCCEL AMMSEC SHIP LCGS T 472 CTR 413 FLT 609.0 TR 1

AJ -3.32190905 05	61	c.	PHIJC	PSIJC	KAPLONLO	J	FREQUENCY
-J.257123e3 C5	0.397051al C5	J. 4671750E 05	123.343	123.393	1.000000	1	4.062
3.13547642 05	-3.2310165c C5	0.26651306 65	300.336	150.153	0.574759	2	6.163
-3.13733898 64	-0.1-002581 (4	U.1/6/134E U4	232.132	17.517	0.037826	3	12.245
-0.22557635 04	-0.25936956 64	U. 34C7469E 04	220.547	57.157	0.072938	4	16.347
3.19113318 04	-0.3574146F C3	0.1944137E 04	347.406	49.441	0.341615	5	20.408
0.1648937E C4	0.95006151 03	0.15/35166 0+	30.428	5.016	0.442188	- 6	24.440
0.6226345c C3	C.5578857 C3	J. 6632156E 03	43.838	6.263	0.016477	7	26.571
0.3727793E C3	0.13232191 64	0.13747266 04	74.256	5.283	3. 325426	3	32.653
-J. J. 797 11E UJ	0.4 £ 7 2 £ 41 Ci	0.35136146 03	172.028	19.114	0.007521	č	36.735
-0.2234119E CJ	-0.55741874 63	J. 5554 JUZE 03	240.419	24.442	0.012031	10	40.416

HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 13 V= 204.5 KTS n= 1.44 g

FIXED HUB CHORD AT STA 18

HAR-JUIC MUALYSIS MEDEL AM-56A SHIP 1035 T 472 CTR 413 FLT 609.0 TR 3

DVENALL CYCLIC ECAD = 0.1218455 U6

ZEPO PUSTTICA USED	t.31	LCAC/IN USED	317779.81				
4.1	PJ	C .	PHIJC	PSIJC	CJ/CJMAX	J	FREQUELCY
3.51076138 35							
-0.12/64565 05	0.13:73:41 (6 0.1C452CEE	06 77.015	57.015	1.000000	1	4.C82
J.37+91635 69	- Jet Sunzz S. L	4 11. 733477UE	6. 330.140	153.370	U.C7C175	2	0.163
-0.7018620c C4	-0.12557350 C	1442C12E	05 241.375	44.247	0.137970	3	12.245
-0.13246723 C4	0.1162542E C	4 1762CCbt	04 133.717	34.674	0.316858	4	16.327
3.22725125 64	G.11361777 C	4 0.25416505	34 20.033	5.321	3.024318	5	20.4JH
0.2560+62= 04	-C.8163854F C	2 0.25E1752E	04 353.133	31.698	3.024/31	L	24.490
0.24255551 03	-0.86030c62 C	3 J. 45 18 4 E 6 E	33 235.746	40.021	0.000552	1	26.571
0.39225103 03	-6.24368565 C	3 J. 4025232E	323.032	41.000	J.C.4425	8	32.653
U.1741335E C4	0.9604844E C	J . 1986667E	U4 23.83U	3.204	0.019326	4	36.735
0.61439928 03	0.5086543E C	0.10956766	04 55.935	5.543	0.010494	10	40.816

BLADE FLAP AT STA 174
HARMINIC ANALYSIS MIDEL AM-56A SHIP 1009 T 472 CTR 413 FLT 609.0 TR 50
CVERALL CYCLIC LOAD = 0.1161365 U5

ZEKA FUSITION USEL	1.46	LCAD/IN USED	41340.00				
A.	d.J	(PHIJC	95110	KAMLO\L3	ذ	FREQUELLY
0.17046516 64							
0.33636C2E C4	-C.331E447E	14 0.54324736	04 315.333	215.323	0.716304	1	4.002
-0.35475425 04	3.6671613F	14 0.75E4C35E	04 117.179	59.590	1.000000	2	8.163
0.21439555 04	G. 1613135	4 J.26E3C50E	04 36.958	12.319	3.153//6	3	12.245
J. 7740//6E CZ	- 6.106444ct	4 J.1067359E	04 274.606	64.567	0.140743	4	10.327
0.13023262 63	J. 24679 (¿E	C3 0.23C94E5F	03 62.334	12.417	0.037445	5	20.408
0.39494158 00	-0.66851675	3 U.66E>1C/E	03 210.034	45.006	0.088147	L	24.450
J.2379619F 63	C. 28/CCLIF	0.4065747E	03 44.432	6.415	0.053609	7	28.571
-0.4+609d>= C2	0.43536716	13 0.46835548	33 70.930	12.123	0.053050	8	32.653
-J.2150012E C3	-0.50038.76	0.29587138	05 13.000	21.067	0.635540	4	36.735
-0.3737219E C3	-0.32405510	3 0.4564421E	03 220.552	22.055	0.065/23	10	40.010

BLADE CHORD AT STA 174
HARMONIC ANALYSIS MODEL AH-56A SHIP 1009 T 472 CTR 413 FLT 609.0 TR 42
OVERALL CYCLIC LOAD = 0.374422F 05

Stau bullium	USER	1.42	1	LOADZIN USED	•	127699.94				
AJ		EJ				PHIJC	PSIJC	CJ/CJMAX		 FREGUENCY
0.20348596	C 5									
-C.1030352F	0.5	0.1673033E	05	0.1964647E	05	121.627	121.627	1.000000	1	4.082
0.5505U51E	04	-0.1116084E	05	0.12444ABE	05	29€.255	148.127	0.632366	2	8.163
-0.31847578	04	-0.2429760E	04	0.40057978	04	217.341	72.447	0.203873	3	12.245
0.18652016	04	-0.7142:44E	03	0.20165778	04	334.256	94.814	0.102630	4	16.327
-0.10420925	04	0.5466531E	62	0.1226434E	U4	145.179	29.636	0.062418	5	20.408
-0.3585433e	0.2	0.45351738	03	0.95419126	0.3	92.154	15.359	0.048563	6	24.490
0.33435086	0.3	-0.2053770E	03	0.39239046	03	328.439	46.920	0.019971	7	28.571
C.470443E	0.3	-0.11042238	04	0.1200457E	04	293.098	36.637	0.061097	8	32.653
-0.30596 POE	0.3	-0.464155PE	03	0.55592968	0.3	236.667	26.290	0.028294	9	36.735
0.2112175€	C 3	0.50231816	03	0.5449195E	03	67.194	6.719	0.027733	10	40.P16

DEATE TORSION AT STA 131.5
HARMONIC PRALYTTS MODEL AH-56A SHIP 1009 T 472 CTR 413 FLT 409.0 TR 44
OVERALL CYCLIC LOAD = 0.725450E 04

ZERO POSITION USER	2.12	FUVUNIN	USED	-1	2470.00				
AJ	5 5J		CJ 🗀		PHIJC	PSIJC_	CJ/CJMAX	J	FREQUENCY
-0.1649764F 02									
0.23652146 04	0.16145688 0	4 0.25	63755E	04	34.319	34.319	0.970762	1	4.082
-0.2552164E 04	0.1479530E 0	4 0.29	50004E	04	149.898	74.949	1.000000	2	8.163
-3.7192915E 01	0.14405278 0	3 0.14	42322E	03	92.659	30.953	0.048692	3	12.245
-0.4-117-35 03	-0.3794E78F 0	3 0.58	19326E	03	220.701	55.175	0.197265	4	16.327
0.11850755 04	0.36215676 9	3 0.12	40637E	C4	. 16.9L1	3.376	0.420350	5	20.408
G-1109246F C4	-0.2696787E 0	3 0.11	76268E	04	340.653	56.776	0.348734	6	24.490
0.76413706 03	0.60691621 0.	0.27	10196E	03	12.440	1.849	0.041871	7	28.571
0.15269575 03	G.7130330E D	3 0.72	91447E	03	77.913	9.739	0.247186	8	32.653
-0.17470e1L 03	-0.1400805L 0	3 0.40	00339E	03	200.498	22.278	0.135604	9	36.735
-0.44792805 02	-0.2013696E 0		74344E	0.3	256.111	25.611	0.070317	10	40.816

HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 14 V= 199 KTS n= 1.61 g

BLADE FEATHER ANGLE

HARMONIC ANALYSIS TOPEL AMBOUR SHIP 1009 T 472 CTR 434 FLT 609.0 TH 31

LA	91	CJ	PHIJC	PSIJC	CJ/CJ4AX	J	FREQUENCY
0.6146029E 01 0.8520534E CI	-0.14953511 (1	J. 31 94 265E 01	332.016	312.006	1.000100	1	4.054
-J.22409535 CJ	-3.133/2541 (0	J. 2897825E JJ	219.147	104.673	0.093719	Ž	8.197
-).82616251-02	C. E 193/13: -C1	J. 6+46162E-UL	97.363	32.454	0.020132	3	12.295
J. 01197233-32	-0.50123316-61	U. :645547E-U1	210.223	67.056	3.017674	4	16.343
-0.20003_25-01	0.61.43155-(2	J.2098095E-01	142.445	32.439	0.006568	5	20.492
-3.27105536-01	0.20113695-01	J. 1375344E-UI	143.423	23.934	J.010507	6	24.593
-3.21434436-31	3.3210412 - (1	J. 3063C25F-J1	121.741	11.617	0.012105	7	26.004
-0.832/11/02	0.25941557-61	0.21245298-01	137.777	13.475	0.008529	8	32.701
-0.51377035-02	0.13155195-61	0.1412280E-JI	111.332	12.570	0.004421	9	36.805
3.19515,18-02	0.54774445-02	U.6260154E-J2	71.913	7.191	0.001568	10	46.984

SHAFT HOMENT
HERMONIC PARLYSIS MODEL AND DUA SHIP 1007 T 472 CTP 454 FLT 609.0 TR 36

٠, ٦	Ll	CJ	FH1 JC	PS IJC	CJ/CJMAX	j	FREQUENC Y
-0.77373335 04							
-3 -17471COF US	U.1277533F 06	0.21043063 05	143.925	143.925	1.000000	1	4.698
3.1053396 04	-0.2210993[C+	0.24J54J7E 04	275.212	147.006	0.011393	2	8.197
-0.11102575 05	0.4=500788 04	0.12131788 05	150.229	52.076	0.056052	3	12.295
0.0035.955 03	3.08137407 03	0.11236875 07	37.328	9.332	0.005172	4	16.393
0.51236476 04	J. 60654.3F 63	0.61/5427= 04	7.505	1.501	0.028535	5	20.492
-3.11E (45E U4	-0.07719319 C3	0.14092305 04	210.658	30.113	0.00.788	,	24.590
0.29236645 04	-0.1000014: 04	0.31752736 04	130.030	47.147	0.015595	7	28.689
J.653634 iF 01	-0.21526725 04	0.21526325 0+	210.174	33.772	0.007746	8	32.787
-0.14793615 04	0.47670145 02	C. 14831292 64	178.154	19.795	0.000339	9	36.885
J.⊃5453205 03	0.1213/135 04	0.13.4.5.5 0.	64.229	6.423	0.006212	10	40.984

PITCH LINK TENSION

HAPMONIC AMALYSIS MICEL AM-SEA SHIP 1009 T 472 CTR 454 FLT 609.0 TK 11

71	вJ	C .	PHIJC	PSIJC	KAMLD\LD	j	FREQUENCY
-0.315-7265 63							
-J.115357cE C3	-C.3943050L (2	G.14/1554E U3	217.424	217.424	J. 27297C	1	4.098
3.3433075 03	-01566ali 63	J.5351C4UE U3	334.574	154.777	1.030300	4	8.197
-0.1204657= 62	0.1643419[62	J. 7013773E 02	(booker	49.563	0.130045	3	12.295
-0.199/3692 02	-0.12540151 (3	0.1309403E 03	261.226	00.106	0.242635	4	16.343
-0.74578527 02	C.1114972E C2	J. 30 1472 02	172.019	34.464	0.148963	5	20.492
-U. +/UunloE Cl	C.1007765F (3	J. 1871406F 03	15.146	15.000	0.1.0750	٤	.4.590
-0.10+5000 62	0.25.01/35 (2	0.4CC11J3E UZ	131.600	19.951	0.074219	7	28.669
-0.17162563 CL	J.34109515 (1	J.1140036F 02	132.743	16.393	1.021258	8	32.737
U.18227400 Cz	-0.3:5.118F C2	J. BELOCALE JZ	273.243	32.172	0.676746	4	30.065
-J.00/59JJE UL	6.933151E CI	0.11-70025 02	125.570	12.557	0.021288	10	40.584

FIXED HUB FLAP AT STA 18 HAPPING ANALYSIS MOTEL AM-50A SHIP 1009 T 472 CTR 456 FLT 609.0 TR 1

7.7	ri J	C.J.	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
-0.2491220E C5		. Harris and .					_
-u.3301213° C5	0.35/20111 (5	C.5216175F C5	136.761	136.781	1.030000	1	4.058
O. HITLICAS Co	-0.2556637 (5	U.3160141E U5	211.011	145.805	0.609669	2	6.147
-0.52165578 02	0.22460566 (4	0.22466815 04	91.351	30.450	0.043371	3	14.295
-J.452c33cE C4	-C.22161216 (4	U. 512 + 134F 04	235.595	51.119	0.048343	4	16.343
0.20032193 09	-0.8/22/25% C3	J. 210 . #50E 04	330.413	61.294	0.041057	5	20.442
0.2373244F C4	C.2426422F C3	U. 2383353F U4	5.173	0.053	J. 045642	6	24.590
0.47367953 03	G. 1 36442 JE 14	0.10545246 04	27. ol	1.566	0.012494	7	20.004
0.19755595 03	C.76155735 C3	0.73715092 03	15. 65	9.433	0.015331	8	32.757
-0.335a973E C3	-0.35.93336 62	0.3063864E 03	187.:43	20.753	3.605036	4	30.865
-0.24723545 01	-0.265cles(Cs	U.2050335E 33	209.324	40.432	0.004019	10	40.904

HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 14 V= 199 KTS n= 1.61 g

FIXED HUB CHORD AT STA 18
HARMONIC ANALYSIS ACCEL AM-50A SHIP LCUS T 472 CTR 454 FLT 609.0 TR 3

Ä.J	a a	CJ	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
U.41950565 Co							
-0.615 12 34 5 04	G. Ludewert (1	0.10C#355E 06	43.505	93.505	1.000000	1	4.078
-0.56+21645 C+	-0.46560596 64	0.7553344E O+	210.076	105.338	0.0748 34	2	8.197
-0.35223423 C4	-0.63464641 64	J. 6 159348E 34	234./85	77.928	0.069413	3	12.295
-0.1428321E C4	-0.05912451 03	J.1718526F 04	235.973	21.495	0.015754	4	10.393
0.97340957 03	0.15938587 (3	0.50643122 03	9.214	1.660	0.009783	5	20.492
U.01/0554E C3	-0.24729655 63	U. 004/634E 03	338.161	56.360	J. Cue513	b	24.590
-0.25761625 01	-0.57578516 6:	U. 63C75.5E US	2+5.896	35.128	0.006256	7	28.664
0.936-3155 61	-0.10161245 (3	0.1022511E 03	213.345	34.443	0.001014	8	32.767
0.64341545 02	0.29474788 63	J. 3C25CE3E 03	76.494	8.505	0.603030	9	30.885
-J. 4602008E 02	0.15579418 (3	0.2183350E 03	110.207	11-627	0.002165	10	40.584

BLACE FLAP AT STA 174
HARMONIC ANALYSIS AUCEL AF-SEA SHIP 1009 T 472 CTK 45+ FLT 609.0 TK 50

LA	BJ	CJ	PHIJC	P\$1JC	CJ/CJMAX	J	FREQUENCY
J.131921JE C4 J.42607845 C4	-0.475E52UE C4	J. 6421 156E U4	311.043	311.643	0.635359	1	4.098
-3.10510420 04	6.74534575 64	C. 7416654E 04	134.242	52.121	1.000000	2	A.197
3.23476755 04	0.945034 /F C3	0.2291610E G4	24.305	3.118	0.298127	3	12.295
-J.1255126 C3	(1) 10Elv120.0-	0.644257bE US	233.100	64.091	U. JL 3315	4	16.393
-0.40019415 62	-0.1555657(()	J.162+314E J3	253.233	50.651	0.021138	5	20.492
3.2217.79E 03	-C. 72634301 Ci	0.21332795 01	3.1.657	56.576	0.030355	6	24.590
0.414/1395 02	0.1/035216 Cz	J. 4317050E JZ	11.035	1.5/6	0.012124	1	28.689
0.2347522E C3	0.23107201 63	J.5118CS38 UJ	15.631	9.385	0.110622	8	32.767
-0.09041:15 03	0.23841956 C3	0.72693195 03	163.339	13.149	3.054510	9	36.885
-J.04/0215E CJ	-3.13917955 ()	J. 4740 E 73E 03	176.234	19.628	0.007//3	10	40. 164

BLADE CHORD AT STA 174
HARMONIC ANALYSIS MOUEL AH-56A SHIP 1009 T 472 CTR 454 FLT 609.0 TR 42

AJ		8.1	-			PHIJC	PSIJC	CJ/CJMAX	4	FREQUENCY
0.23818465	05									
-0.51744610	0 4	0.2436223E	05	0.2490AL3E	0.5	102.004	102.004	1.000000	1	4.098
-0.3640730F	C3	-0.81830105	03	0.895437GE	03	246.015	123.008	0.035959	2	8.197
-C.1273317L	04	-0.20A9054E	04	0.24294731	04	238.391	79.464	0.097542	3	12.295
0.37-63548	0.4	-0.44(66(65	0.3	0.32761306	(,4	352.270	88.057	0.131535	4	16.393
-C. 67171(OL	23	-0.8242207E	Ω.	0.1277431E	04	220.476	44.095	G.C5128L	5	20.492
-0.328621 NE	0.3	-0.75450C7E	0	0.82754818	03	246.602	41.100	0.033226	6	24.590
0.457:77FE	0.3	0.73469498	0 7	0.4572339E	63	0.296	0.042	0.018358	7	28.639
0.9370615E	0.3	0.10028978	04	0.1372540E	64	46.443	5.568	0.055107		32.797
-0.119h2/1E	04	-0.559146UE	0.	0.13204716	04	205.655	22.744	0.052016	9	36.885
0.1785220E	6.2	-0.13660D1E	0:	U.1320128E	03	277.772	27.777	0.005300	10	40.994
0.110 17.101		-0.13000016	υ.	0.132.11.00	,,,	211.112	. , . , , ,	0.001300	10	40.414

BLAMF TORSION AT STA 131.5 HARMONIC ANALYSIS MODEL AN-56A SHIP 1609 T 477 CTR 454 FET 609.0 TR 44

AJ		.E.J				PHIJC _	PSIJC	_CJ/CJHAX	JF	REQUENCY
0.48525175	0.3									
0.2392710E	04	0.21530466	0.4	0.32232776	0.4	41.911	41.911	1.000000	1	4.098
-0.7559;461	64	0.17769616	04	0.31155778	64	145.226	72.613	0.966587	2	8.197
0.25325646	02	-0.4039704[0.3	0.4046643E	03	273.590	91.197	0.125544	3	12.295
-0.55072395	()	-0.24776376	03	0.62137651	03	205.526	51.381	0.192773	4	16.393
0.11720905	04	-0.1031872E	03	_ 0.1176/23E	C4	354.969	7L.994	-C.365030	5	20.492
C.1170474F	04	-0.6710212E	0.3	0.13491425	04	330.174	55.029	0.41656?	6	74.500
0.40253391	0.3	0.20-41748	03	0.4514444	63	26.923	3.846	0.140064	.7	.'8.689
0.16649318	nà.	0.75601988	03	0.7786E14E	U 3	76.143	9.518	0.241581	P	32.787
-0.26027275	C 3	-0.1:078191	32	0.26064775	63	183.074	20.342	0.090864	9	36.885
-0.84097175	o a	-0.72617178	0.1	0.84411806	0.2	184.949	18.445	0.074188	10	40.934

HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 15 V= 119.5 KTS n= .96 g Reproduced from available copy

BLADE FEATHER ANGLE MANY IT ANALYSIS HILE EM-SUA SHIP 1005 T 469 CTE 755 FIT 604.0 TR 31:

0.0	100	CJ	FFIJC	FSTUC	CJ/CJMAX	J	FPECLEPCY
C. e : 1 + 5 C + c							
C. 1777774 C1	-4.35357215 71	J.5175538E JI	214.063	316.863	1.337333	1	4.115
-6.07/1771-05	-0.10047171 00	0.11774428 00	277.541	116.298	0.026614	Z	P. 7 31)
-0.525 (5295-01	-0.5464505-01	0.76615256-01	724.248	75.116	0.014847	?	12.346
C-33251341-C1	-1.36256265-31	3.51868435-31	215.652	76.913	1. 11 1122	4	14.461
-P.149 18215-CT	-0.840437PF-02	0.1/(20255-01	210.200	47.076	0.003211	•	20.576
-C.14E 1561F-C1	0.15 4 6725-01	0.21646761-01	177.256	22.219	0.004173	ŧ	24.651
C-11746745-01	9.16754378-01	3.1:94 361F-J1	42.427	6. 16 1	3.733393	7	20.637
-0.25059271-02	-0.54514565-07	0.5464116-02	257 . 215	31.690	0.001914	•	37.572
-(.4177257-03	0.77171785-02	0.7/234/28-02	49.647	10.344	0.001497	5	17. 617
-C.1 !! EC52 -C2	0.64410385-03	0.16455196-17	157.542	15.754	7. 311376	10	41.152

SHAFT MOMENT

HERMONIC ANALYSIS MODEL AIM-SOA SHIP 1009 T 469 CTR 755 FLT 604.0 TR 36

t.J.	H.J		c s	PHIJC	PSIJC	CJ/CJHAK	J	FREQUENC Y
-0.6.53152 04								
J. Laur 1/28 65	U.51211537	Co	0.23310135 05	73.543	73.590	1.000000	1	4.115
-3.17407.5E Ja	-U. 9 56+017F	C'S	0.14311963 0.	211.355	105.078	0.033795	2	8.230
-3.21/14-35 04	-0.247.2015	05	3.2.413304 05	265.044	88.365	0.404793	3	12.346
-J.1312713F C+	0.23545175	C3	0.10,57753 04	103.579	40.895	0.019776	4	16.461
-0.12407372 33	0.71213-15	4	J. 71222135 06	91.044	18.239	0.133416	5	20.570
J.12017516 33	-0.3795000	O's	0. 11//0 20 01	281.577	40.130	0.016310	4	24.691
-0.71776205 03	-0.14651375	C4	C. 10003325 C.	244.220	34.089	0.0 10914	7	28. 807
-2.45#3Ciof 24	0.5477446	03	0. 701 35 J35 G3	123.071	15.354	0.013141		32.522
J.E1705241 03	0.22268256	C4	C.24 11 1725 C.	73.129	7.192	0.045330	9	37. C37
v.5736526E 03	0.24-1919:	-	0.01.77.25 01	21.345	2.134	0.011537	10	41.152

PITCH LINK TENSION

MI. HT. IT "TILVETS PITEL AH-561 CHIP LONG T 440 ITF TO FLT 604.0 TR 11

		٠. دا	PETUC	PSIJC	CJ/CJMAX	J	FRIOLFACY
C.2014412" CT						_	
-0.1530166: 03	-0.31327936 02	0.19554256 03	140.715	105.219	0.092282	1	4.115
3.1145921 33	-1.76353745 12	0.11044026 03	375.475	142.817	0.637547	2	P. 230
C. PC 1 1CP74 CL	-0.21900245 63	0.21414386 03	523.666	SC. AGR	1.000000	•	12. 146
-C.945 155% CC	-0.57327645 02	0.57335498 02	76° . C* 1	£7.263	0.261628	4	16.461
-3.21020327 32	~). CC 7 \$251C 32	3.4 * 74655F 07	251.7/1	\$0.352	0.31/2/1	•	20.176
-C.LETTECAF CZ	-0.28456625 01	0.18592450 62	184.617	71.436	0.036665		24.651
C.1417723F C2	0.76377405 01	0.15785676 02	21.447	3.778	0.072050	'n	28.637
-3.14451415 32	1.1150572F 12	J. 1477757E 37	140.719	17.540	0.085684	•	32.177
-C. ? E E E I 2 IF 0?	-0.1552255 02	0.73104575 02	216.267	24.030	0.151040	•	37. (27
-C.26:45671 G7	-0.778F455F OL	0.2157/125 02	200.758	20.076	0.100275	10	41.152

FIXER HUB FLAP AT STA 18

MATHERET SALLASTS MITTE THATCH SHIP ICES T 460 CTH 755 FLT 604.0 TH 1

		CJ ==	P+ IJC	PSTJC	CJ/CJMAY	J	FREQUENCY
-1.44423316 34							
C.5722753f C4	7.54401456 64	0.11039417 05	56.774	SP. 774	1.000000	1	4.115
C	-7.4000651° C4	0.41573988 04	202.514	141.257	0.371161	2	6.23)
-5.22367417 34	-1.4 325771F 14	C.4 F G 6 7 P 3 F C 4	241.254	60.431	0.416100	•	12.345
-C.6??!!53! C?	-1.44030255 03	0.7/503545 03	214.618	\$3.655	C.0702CL	4	16.461
C.9476754# C2	-7.3(46563) 03	0.57676538 03	394.548	56.914	0.034125		23.576
-1.12465261 33	19 37144F 33	3.4144514F (**	225.415	30.237	0.046600	Ĺ	24.751
-C.LEC2455 C3	J. 3283414" C3	0.37757575 03	114.540	17.030	0.034158	7	28. 607
C.0451145+ C3	7.42997195 (3	0.71601905 07	27.427	4.205	U.77725P		32.527
2.15226375 32	1.155 E # 75F 13	3.22279376 33	P4.50*	5. 380	0.014129	5	37.527
0.97416691 C2	1.261 10515 03	0.2/76:445 03	70.750	7.025	0.025150	10	41.152

HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 15 V= 119.5 KTS n= .96 g

FIXED HUB CHORD AT STA 18 HANDLEY ANALYSIS HONEL AND SEE LOOK T 469 CTF 755 FLT 604.0 TR 3

		CJ		" 25 1J? "	PSIJC	CU/CJMAX	J	FREDLENCY
C. /4171397 C5								
C. seciaçes ce	11.0127/26F C	9 0.F505800E	05	72.514	72.765	1.000000	1	4.115
C. 4746 9875 C4	0.74444135)	4 3.05544478	34	50.754	28.371	3.112380	2	6.230
C.71"61 56" C1	- 1.1075501+ 0	5 0.10#1000F	05	:77.00	51.270	9.127194	•	12.746
-C.15/1273F 04	-9.4254493F C			182.71?	45.678	0.073984	4	16.401
-0.14/05030 04	-0.11712405 6	2 3.14815538	14	16 3 45 2	76.371	3. 16 74 37	•	130:14
-C.2746333+ C3		1 0.6720552 8	03	259.456	41.743	0.007902	i	24-191
-C.06323606 C3	0.211/ 6115 0			144 -642	23.578	0.010552	7	28.007
C-11772441 C4	0.50656726 ()		-	27.267	3.421	3. 315 3 32	ė	32.527
2.78527645 01	-1. CALCEGGE A		-	209.766	34.374	0.014625	č	37. (37
-C. 124F935F 91	-9.4137845E C		-	231.076	23.184	0.0061 #1	16	41.152

		()	- 0+ IJC	PSIJC	CAPCINAN	J	FREGLENCY
C.21679616 C4							
C. 14174297 C4	- 1.96191487 04	0.47695436 04	320 - 192	323.192	1.111111	1	4.115
-1.7:75413F C4	1.578/9756 03	0.31251155 04	170.007	115.041	17.663577	,	8.270
C.546777C' CT	1.14556906 04	0.15884905 04	66.750	27.263	0.337767	?	12.74%
-C.21746711 C7	-1.10226395 03	0.20027107 03	221.486	55.37)	1. 161635	4	16.401
3.1135744F 33	1.14728445 61	0.1 #00400 F 03	127.091	75.576	0.0 11 225	•	20.514
-(. "Se " 766" 03	-J.462555 F 03	9.67458C6 - 07	291 189	18.431	0.132620	•	24.131
C.14/4743c C3	-0.75828775 02	0.16727067 03	330.725	47.247	2.034668	7	28.137
3.25148255 32	1.87178758)3	0.87727688 03	HP . 15;	11.019	0.195206	F	12.722
C.5441876F C7	0.3(522575 C3	0.36526156 03	111.575	9.058	0.078407	¢	37.637
-C.42666791 C1	-0.35771145 01	0.44334376 01	219.621	71.962	0.001176	13	41.152

HARMONIC ANALYSIS MODEL AM-Sea SHIP 1009 T 469 CTR 755 FLT 604.0 TR 42

AJ .		CJ	PHIJC	PSIJC .	_ CJ/CJNAX		FREQUENCY
0.30614416 05							
0.34034426 04	0.20272636 05	0.2055636E US	80.469	80.469	1.00000	1	4.115
0.14254546 04	0.3137358E 04	0.3444003E 04	64.565	32.783	0.167637	2	8.230
0.65719676 03	-0.5046727E 04	0.51483056 04	270.547	93.182	0.251421	3	12.346
0.81049518 02	0.1134636E 04	0.1294382E 04	54.461	13.615	0.067632	4	16.461
-0.551237tL 02	-0.7025211E 02	C.9137495E 03	164.605	36.619_	_C.C47856	5	20.576_
-0.3266M3RE 03	0.648C129E 03	0.77570198 03	116.754	19.459	0.025303	6	24.691
0.246:630E 03	0.57521486 03	0.6.67415E C3	66.605	9.515	0.030489	7	28.807
0.53278206 02	-G. tee#3136 03	U. P6F5171E G3	273.517	34.190	0.042251	8	32.922
0.57153646 02	-0.77911456 02	0.57692286 03	352.237	39.137	0.028061	•	37.037
0.32567656 03	-0.62076716 02	0.3317263E 63	349.215	34.921	0.016139	10	41.152

BLADE TORSION AT STA 131,5
HARMONIC ANALYSIS MOTEL AH-56A SHIP 1009 T 469 CTR 755 FLT 604.0 TR 44

A.J	BJ.		cJ		PHIJC	_ PSIJC	CJ/CJMAX	spinger in	FREGUENCY
-0.4487381F 03									
0.17145446 04	0.14940106 0	4 0	3.2274143F	04	41.066	41.068	1.000000	1	4.115
-0.1124984E 04	0.321-46491 0	3 0	0.1190325E	04	160.926	90.463	0.523421	2	8.230
-0.35442606 03	0.42622961 0	3 0	.5A25293E	03	129.055	43.018	0.247359	3	12.346
-0.179200UE 03	-0.3152419E C	2 0	-28050BEE	03	164.754	46.186	0.167320	4	16.461
-0.40777275 03	_ 0.4064104E.0	-	- 731134EE	•	146.236	29.244	G-221499	5	20.576
-0.13196 6 02	-0.3066240F 0		30490000		267.551	44.492	0.135834	6	24.691
-0.7850635E 02	-0.3465442E 0		-3944358E		258.519	36.931	0.173444	7	28.807
-0.1277127E 03	0.70202646 0		36542617.C		160.311	12.539	0.313766	À	32.922
-0.12909305 03	0.13-12041 0	-	1297952E		174.037	19.337	0.057674		37.077
-0.46459416 02	0.10197826 0		-1120626E	-	114.493	11.449	0.049277	10	41.157

HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 16 V= 120.5 KTS n= .93 g

BLADE FEATHER ANGLE
HAT MINIS SMALL VSTS MINISE ANDSEA SHIP EDIS T 469 CTR 925 FLT 604.0 TR 31

6.97443263 (1	41		PHIJC	PSIJC	CJ/CJMAX	- 1	FREGUENCY
	-0.311/6056 01 -J.1361/316 J) -1.8672/716-01 -1.5661496-01 -1.5661496-02 -1.2595215-02 -0.7854965-02 J.1616J776-01 -0.66646796-02	0.5043572E 01 J. 1431J82E J3 0.0717304F-01 J. 2745J75F-32 C. 113170F-01 0.82406965-02 J. 1767749F-31 0.6057190F-02 0.4340455F-02	371.895 274.225 264.860 271.492 114.443 193.662 117.668 262.426 275.572	321.905 114.612 69.287 60.373 27.269 21.236 41.236 14.238 15.160 27.553	1.000000 0.027786 C.014267 0.000161 0.000544 9.007187 0.001644).003505 0.001201	1 7 6 7 8 6	4.115 8.230 12.346 16.441 20.576 24.651 28.607 32.522 37.637 41.152

SHAFT HOMENT HARMING PULLYSIS HUNSE AH-SEA SHEP 1007 T 669 CTR 925 FLT 604.0 TR 36

-J.62157F1F 34		£1	PHIJC	PS IJC	CJ/ CJMA x	J	FREQUENCY
3.27600053 34 -3.13270405 34 0.59807475 03 -0.47084775 03 -0.27146175 03 3.43387115 03 -3.24344745 03 -0.21271645 04	0.4705057 05 -0.87214267 C3 -0.21431278 C5 -0.277733F 03 0.407310F 04 -0.11609127 04 -0.200463F 04 -0.2101917F 05 -0.7401593F 03	0.4715342E 05 0.15737545 04 0.2225110E 05 0.371142E 03 0.371142E 04 0.1447657E 04 0.213545 04 0.2254755 03	#6.376 212.734 285.593 211.250 123.885 233.713 281.874 240.836	80.370 100.392 95.198 22.513 24.177 38.952 40.208 27.404	1.00000 0.033377 0.471893 0.012177 0.12448 0.033703 0.044720 0.0064720	1 2 3 4 5 6 7 8	4.115 8.230 12.346 16.461 20.576 24.691 24.607 32.922 37.037
3.31440728 03	U. /2175121 U3	0.74/2010E 01	00.461	6.040	0.016697	10	41.152

MITTH LINK TENSION

MAKENING ANALYSIS MICHE AND SHIP IGGS T 460 CTO 025 FLT 634.3 TA 11

C-144C9FCF C3	·	C1	רו וור	PSIJC	CJ/CJMAX	J	FRECLENCY
-C.12870747 C3 C.1267647 C3 C.1241648 C2 -C.121738C0 C1 -C.17172785 02 C.122777 C2 -C.17177778 32 -C.17175777 02	-0.22554085 02 -0.83326350 02 -0.83326350 02 -0.2557845 02 0.157787 02 0.167787 02 0.167787 02 0.5148935 01 -1.28518478 02 0.5148935 01	0.1658709E 03 0.1615425F 33 0.7260721F 03 0.7861346E 02 0.2650725F 02 0.4151309F 02 0.343234F 02 0.1047240F 02 0.34607652F 03 0.3607652F 03	197.78C 324.854 278.17C 761.841 237.444 153.105 71.518 150.794 233.278 150.344	167.780 163.427 42.723 67.719 47.29) 25.518 10.274 16.749 25.024	0.744747 0.734233 1.000000 0.344041 0.170244 0.142001 0.150476 0.154175 0.097750	1 2 7 4 5 6 7 8	4.115 8.23) 12.746 16.461 23.576 24.661 28.607 32.522 37.637 41.162

FIXED HUB FLAP AT STA 18 HALFY TO AWALYSIG MOTAL AND SEA SHIP BODS T 469 CTR 975 FLT 604.0 TP 1

-C.1251740° C*		==63 =	PETUC	PSTJC	KAPLONET	J	FPENLENCY
1.39776121 34 C.11746221 C4 -C.116C61137 C4 -1.41873645 33 C.176736257 C7 C.176C5677 07 -2.2326243 31 C.37677277 C1 -C.3665744 C1 -3.77377647 37	-1.40115437 74 -0.4276415 C4 -1.41475316 73	J.0.344747E 04 0.416H104E 04 0.4641730F 04 3.1327E)7F J4 0.6741465F 03 3.6387211E 03 3.2277197F J3 0.6753494F 03 0.171957EE 03 J.134730F 33	44.592 785.656 247.692 232.806 337.690 4457.690 44.535 42.694	64.942 147.828 92.364 58.201 66.408 47.982 23.710 6.017 10.243 13.760	1.000000 0.460940 0.513157 0.113027 0.015541 0.070575 0.070575 0.017265 0.017267	1274	4.115 8.740 17.346 16.461 26.576 24.651 28.617 37.622 47.637

HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 16 V= 120.5 KTS n= .93 g

FIXED HUB CHORD AT STA 18
HEROUNIC PRELNSIS MIDEL ANDSAM SHIP LOCK THER THE SES FLT 604.0 TR 3

*,	aj		CJ	PETIC	PSIJC	KAPLOLLO	· J ·	FRESUFACY
C. CCC !? 48° C5								
Caricefler ce	C.7+ 445004	CS	C. #1424C4# 05	70.411	70.611	1.00000	1	4.115
C. 6 45 445 71 04	0.86370475	69	0.10439158 05	52.841	26.520	0.134019	2	8.230
-C.6147467 07	-0.11C*153E	05	7.11 362996 35	766 . 81€	ER. 939	3.135639	•	12.346
-C-25464245 C4	0.97474465	03	0.30767655 04	162.450	40.672	0.037688	4	16.461
-6.84163366.63	70.131 15ECF	04"	0.14217028 04	112.60?	22.521	C. 017437		20.476
3.61:65 6F 12	-).1727P19F	34	3.1239362E 14	212-054	45.407	0.014816	ŧ	24.651
-0.1741564 63	0. 1857594F	03	0.42473606 03	152.141	21.734	2.010104	7	24.507
C.1574949' C4	0.57521C9F	03	0.1/54540* 04	31.971	3.004	0.022720	E	32.572
2.54)(331F 33	-1.862#194"	23	1.1018735E 34	312.003	33.564	0.012476	4	37.037
-C.16CC011E C3	-0.24495935	01	0.24245950 03	236 . 636	23.684	0.003563	10	41.152

BLADE FLAP AT STA 174
HAVING FLAP AT STA 174
HAVING FLAP STA 174
HAVING FLAP STA 174
HAVING FLAP STA 174
HAVING FLAP AT STA 174
HAVING FL

- 1)			- c,	PF LJC	PSIJC	CI/CJMAX	J	FREGLINCA
1.25523245 34								
C. 3146760F C4	-U.301175PF	C4	0.45171338 04	217.208	317.808	1.000000	1	4.115
-6.12010515 04	0 - 1 52 78505	C3	0.77125288 04	177.274	88.637	0. 7111 67	2	8.730
C.2434214E 37	3.1615152E	34	J.1632587E 34	81.534	27.176	3. 76151C	•	12.746
-0.22116155 02	-0.3444075	03	3.41431578 03	236.751	57.180	9.091721	4	16.441
-1.16561997 07	-0.1675416C	03	0.40512725 03	204.263	40.877	0.032544	•	20.1.16
-0.25166326 33	-1.56982425	23	3.61966358 33	245.453	43.915).1371E)	*	24./51
0.15129055 03	-7.31786477	63	0.35197306 03	245.457	42.208	0.077921	7	28.407
7.15 *C*C\$ C2	9.53573075	C3	0.53534925 03	48.262	11.045	0.113648		12.522
-C.141C51FE C3	4.27531765	23	3.3293845F 33	117.126	13.714	1. 167467	c	37.537
C+13160464 C3	0.1C?7007F	03	0.20C1649E 03	10.865	3.097	0.044312	10	41.152

BLADE CHORD AT STA 174
HARMONIC ANALYSIS MODEL AM-56A SHIP 1009 T 469 CTR 925 FLT 604.0 TR 42

AJ				CJ	PHIJC	PSIJC	CJ/CJHAX		-FREQUENCY
0.30144471	05								
0.27567378	64	0.1970215E	G5	0.19894CRF 05	\$2.636	92.036	1.000000	1	4.115
0.14270096	04	0.2515143E	04	0.2995555 04	57.102	28.551	0.150576	2	8.230
0.64217676	e 3	-0.5595GAAE	04	0.56337731 04	274.714	92.239	0.283187	3	12,346
C.793! SFEF	03	0.14540078	04	0.1656:19F C4	61.408	15.252	0.083153	4	16.461
-0.14942186	24	-0.2252612L	03	0.63134136 03	200.404	-4C-16L	_G.C31737	5	20.576
-0.45253sef	CI	0.48769735	03	0.48271656 03	90.237	15.000	0.074265	٨	24.641
0.37497376	03	C.2747384E	03	0.4647300F C3	36.241	5.177	0.023360	7	28.207
0.42078208	03	-0.664582CE	03	0.7914863E G3	302.951	37.669	0.039610	8	32.922
0.24200696	03	0-47140416	03	0.55486211 03	58.246	4.472	0.027891	9	37.037
0.30614725		-0.14427746	03	0.43404771 03	312.349	33.340	0.021821	10	41.152

BLADE TORSION AT STA 131.5 HARMCNIC ANALYSIS MODEL AM-56A SMIP 1009 T 469 CTR 925 FLT 604.0 TR 46

LA	8.1				PHIJC	PSIJC_	CJ/CJMAX.		FREQUENCY
-0.48074itt U	3								
0.14780746 0	4 0.14494546	04	0.22304556	04	41.212	41.712	1.000000	1	4.115
-0.1105015E C	4 0.3297756E	03	C.1153173E	04	163.283	81.642	0.516966	2	8.230
-0.3474432F 0	1 0.3675377E	03	0.52064506	03	131.923	43.974	0.233494	3	12.346
-0.37982166 0	3 -0.1671515E	03	0.41497496	03	203.753	50.938	0.106033	4	16.461
-0.5C36370E C	3 0.2725C44E	03	C.5731099E	03	151.495	_30.299	0.256925	5	20.576
0.64102471 0	-0.4069456E	03	0.4145457E	03	201.677	46.946	0.156269	6	24.691
-0.11390-31 0	2 -0.38447341	03	0.31514181	U3	248.306	30.329	0.172659	7	20.007
-0.7023461F G	2 0.6578457E	03	0.66151338	03	96.093	12.012	0.296587		32.922
-0.2105427E C	3 -0.2947281E	02	C.2127144E	03	186.100	20.900	0.195360	9	37.037
-0.14-9115F 0	2 0.54126716	0.2	C.1546FLGE	03	159.521	15.952	0. (49346	10	41.152

RMONIC COMPONENTS OF FLIGHT IES. CASE 17 V= 121 KTS n= 1.13 g CA HARMONIC COMPONENTS OF FLIGHT TEST DATA

BLADE FEATHER ANGLE					L
HE . OF T. BUSEVETS MITTE PROSER	able foca	7 469	CTF	763 FLT 604.0	** 31

	···· • • • • • • • • • • • • • • • • •	C.J	PETUC	PSIJC	#AMLD\LD	1.1	FPEQLENCY
C. 54742465 31				- 3140	COFCORMA	•	17.0466.00
Castingerer Cl	-C.24555755 01	0.53797228 01	178.478	328.478	1.000000	1	4.1??
-C-337C51701	-7.1225177 00	0.12712276 00	254 . 531	127.206	1. 325327	2	8.264
-3.56475655-31	-1.65328765-01	0. 143 496 4-01	220.020	76.009	0.017715	•	12. 157
-6.21160965-01	-0.63554895-01	0.47770956-01	251.676	47.919	0.017264	4	16.579
- (.00 1 55 2 11 - 62	-0.25261595-01	0.20516195-01	251.207	\$3.257	0.096087	•	23.661
2.2:769555-31	-1.1423576F-31	0.25236726-01	375.387	54.231	0.004965		24.793
-C.2241e155-C1	-3.31478567-01	0.17611776-01.	234.510	33.501	9.637602	7	28.576
-C-11:C2e75-C1	0.731952CF-G3	0.1532C16E-01	1/7.262	22.15#	0.001016	E	33.358
3.37613536-32). 665:1615-32	J. P. 63416E-02	87.400	9.722	0.001706	5	37.150
- C. 4 7/ 18 FOF - C7	-6.10622296-01	0.11664776-01	248 . 070	24.903	0.002257	10	41.377

SMAFT HOMENT MARYONIC PULLYSIS MODEL AN-564 SMIP 1009 T 469 CTR 763 FLT 604.0 TR 36

AJ	• 1	CI	PHIJE	PS IJC	CJ/CJMAX	J	FREQUENCY
-3.423ce75F C4							
-3.231741st 05	0.5517571 05	0.54149345 05	110.034	110.034	1.000000	ı	4.132
-J.1-355116 64	-0.1442030F C4	0.21435425 04	221.402	113.701	0.0 37028	2	8.264
3.10306345 05	-0.1545976 C5	0. 2141330 .05	247.359	99.120	0.372064	3	12.397
-9.3740 8:35 02	-3.25724125 03	0.2717404= 03	261.726	05.431	0.304414	4	16.525
-3.57445c6 34	J. 25718487 C4	0.00131402 05	152.632	30.266	0.110600	5	20.661
-5.61136475 03	C. 2521 9802 C3	0.5032377 03	136.788	26.131	0.011294		24.793
3.2759272F 06	-0.31 tul >12 64	0.40361128 04	505.702	44.109	J.064386	7	28.926
-5.29491046 03	-3.6755273E Ca	0.4235130= 03	251.443	31.430	0.015083		33.050
-J.17477(of 34	U. 12200495 C4	C. 2021 794 = 06	1+1.520	15.724	0.034332	9	37.190
0.00370358 02	0.43016677 03	0. 4351.0445 03	81.357	6.130	0.00/389	10	41.322

PITCH LINK TENSION HAS PROPERTY OF THE SHIP ICOS T 460 CTP 767 FLT 604.0 TE 11

£J.		~ J		CJ	PF TJC	PSTJC	'J/CJPAY	J	FREQUENCY
0.11224388 2	33								
-0178575 (-0.51405715	0.7	0.17446146 03	211.251	211.251	0.478951	1	4.132
C.12C47595 C		-0.7205345	63	0.14971415 03	231.062	165.542	0.724382	2	P. 764
C. 36077597 3)/	-3.17712145	3.3	3.1/375876 33	281.212	53,238	1.711111	?	12.157
-C.1172018F 0	30	-4.3F73575F	65	0.40355478 02	257.709	67.427	0.273259	4	16.529
~~~~.? C . ? C . 4 4 4 7 # C		-0.50064515	CS	0.43441975 02	250.59#	50.200	0.250976	•	20./61
C-4411255F C	1	-1.13013726	27	1.1449F12E 92	297.714	47.052	1. 13 17 37	•	24.743
C.1 FFEECPF C	:7	0.10087015	0.2	0.14737908 67	34.474	4.925	0.196406	7	70.426
-C. re 106142 C	: 1	C.1C578C45	CZ	0.174346CF C2	127.148	15.269	0.068751	E	33.058
-C.17775C7F 0	12	-0.1433191F	17	3.224)773F 32	219.762	24.418	1.173965	\$	37.150
-0.13436805 0	.5	-0.21623175	()	0.40C7110E 02	217.704	21.270	0.221406	10	41.122

#### FIREN HUB FLAP AT STA 38 HAR PCHIC AP STEE TOSS T 469 CTF 767 FLT 604.0 TR 1

		" )		_ CJ	PHIJC	PRIJE	CJ/CJ4AY	J	FREGUERCY
-C.1:32479F	C4								
3.5:508456	33	J.1341955F	35	3.1347832E 35	87.215	67.215	1.000000	1	4.137
C.7472542F	C4	-0.367C#9FE	04	0.44847858 04	305.054	152.527	0.427955	2	8.764
- C. 86 754745	-	-0.31254145	C4	0.32475456 64	254.458	24.833	0.307930	•	12.757
-C.7C1865 JF		-1.7726375E	13	J.13438416 34	227.748	56.937	). 39761P	4	16.429
202423252		-0.:466777		C.2551904E C2	330 - 156	16.032	0.028172	•	20.661
-6.24250715		-0.8585365		C. 57C6870E C2	254.846	42.483	0.098920	ŧ	24.753
-C.111276CF	~ ~	J. 1386 61 CF		3.22345C5E 33	141.215	23-146	3. 321 343	7	28.426
C.441 106 16		0.52640976		0.4871925E C?	5C.C17	£.252	0.065574	E	33.058
-0.10120976		0.21450175		0.21665815 03	97.593	10.884	0.020672	9	37.190
-C.1/6(150F		C. 36364035	-	3.39992756 33	114.527	11.453	1. 338167	15	41. 222

## HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 17 V= 121 KTS n= 1.13 g

FIXED INUB CHORD AT STA 18
HAS YOUR CANALYSIS WOLL FROSER SPEED ICCS T 465 CTF 763 FLT 604.0 TR 3

	- FJ	:J	PF 130	PSIJC	CJ/CJMAY	J	FREULI NCY
C.7CICTTAT CE		100000000000000000000000000000000000000	1100000	2000 2012			
:	C. 276575GE 05	0.50242915 05	1.6.247	66.342	1.000000	1	4.132
C-2291194" C4	0.70210125 64	0.74178165 04	71.245	75.633	0.082154	2	8.264
C.1127542F C4	-0.9577402F C4	0.00840786 04	27e . 511	c2.17)	1.117666	•	12.357
-3.1356743F 34	0.1667674F C4	0.21752595 04	179.546	32.487	0.774105	4	16.529
C. 2 * 1 C476 * C1	N.2247774F C3	0.34076045 03	41.215	8.243	0.003772	•	20.661
-0.42725766 63	-0.4566525 03	0.75671985 C3	210.566	36.433	0.319823	(	24.793
-0.1362144F 33	J.2852612F UT	0.31411608 03	115.525	16.504	0.003503	7	28.4.26
C-14254245 C4	0.52030277 03	0.15177158 04	20.116	2.515	0.016763	F	33.658
-0.3414000= 03	-0.52777496 03	0.17162176 04	247.241	27.487	0.011261	٠,	37.193
1.23558275 33	-3.15553156 01	3.7095374F 03	320.832	22.083	0.003430	10	41.722

BLADE FLAP AT STA 174
HAFPINGE ANGLYSES MODEL ANDSEA SPEE 1005 T 469 CER. 769 FLT 604.0 TH 50

A.J	"J		(1)	PETUC	PSIJC	CANCHARA	J	FREGLENCY
C.16172565 C4								
C.7171775F C4	-0.30316696	04	0.49197196 04	2.1.920	121.920	1.000000	1	4.132
-0.24477636 64	1.766-14928	33	3.26835768 34	174.25€	47.148	3,545356	7	e. 764
-c.p.ccest. cl	0.143 COLF	04	0.14790766 04	00.247	10.114	0.291748	•	12.247
-C.136C830F C3	-0.23611326	C3	0.25454125 03	232.288	58.321	0.059882	4	16.529
-C.3155044F C7	-0.00514365	32	3.34512350 33	103.556	19.712	3.373165		20.061
C.745E9715 02	-0.5647412F	03	0.56579965 03	271.505	45.584	C. 11503C	ŧ	74.753
C-1 575C77E 07	-0.16377617	CF	0.24*14.86 03	218.094	45.442	0.049822	7	28.526
C.7148249F C1	C.5/25309E	03	J. 6 J752HPE 33	69.112	2.634	1.177457	Ε	23.158
-C.+ 156447= C2	0.21746395	03	0.21567118 03	103.768	11.530	0.058076	5	37.150
-C.2626555 C2	0.27216935	r3	0.23441878 03	41.526	9.693	0.047656	10	41.322

BLADE CHORD AT STA 176
HARMONIC ANALYSIS MODEL AM-F6A SHIP 1009 T 469 CTR 763 FLT 604.0 TR 42

AJ		cu	PHIJC	_251JC_	_CJ/CJMAX_		FREGUENCY.
0.31217626 65							
0.42293791 04	0.2040ASPE 05	0.2084005E US	74.294	78.294	1.000000	1	4.132
.C.1235746E C4	0.25267836 04	0.28145718 04	63.956	31.978	0.135056	2	8.264
0.86270345 03	-C.4572191E 04	0.4653051E 04	262.697	93.566	0.223274	3	12.397
0-10127496 04	0-10-66475 04	0.1492744E C4	47.278	11.819	0.671429	4	16.529
-0.77343Zet 03	-0.4217727E 03	D. 6809597E_C3.	208.605	41.721_	_0.042272_	5	20.661.
-0.5534507E 02	0.22054401 03	0.2273945E 03	164.160	17.350	C.010911	6	24.793
0.38998638 03	-0.45962516 02	0.39837356 03	347.538	49.648	0.019116	7	28.926
C.6455652E G3	-C.4481604E 03	0.7885898E 03	325.368	40.671	0.037840		33.058
-C.2142247E 03	0.09770736 03	0.7298545E C3	107.669	11.097	0.035022	•	37.140
-0.1295540E 02	0.2179125F G3	0.21829736 03	93.402	9.340	0.010475	10	41.322

DLADE TORSION AT STA 131.5 MARMONIC AMALYSIS MONTE AM-SAA SHIP 1009 T 469 CTR 763 FLT 404.0 TR 44

						JHTJC	PSIJC	CJ/CJMAX		-FREQUENCY-
-0.2893416E	03									
0.16772946	04	0.1744540E	04	0.2435940[	04	44.485	46.485	1.000000	1	4.132
-C.1195112E	64	0.1244433E	03	0.1209262E	04	171.226	85.613	0.496415	2 .	8.264
-0.22756125		C 2990 75E	03	0.36855186	03	128.130	42.710	0.151794	2	12.397
-0.27824636	-	-0.63584048	-	0.26542098		192.072	48.218	0.117168	4	16.529
0.648:176L	-			0.6679761E	C3	166.C3C	33.206 _	_0.274211	5	20.661
0.15074748		-0.4257754E		0.4542014F		286.952	47.825	0.268557	6	24.793
0.10319446		-0.3371362E		0.35257626		287.019	41.003	0.144736	7	28.926
-6.178736EF		0.4566331E		0.4903677E	_	111.377	13.922	0.201301	ė	33.058
		0.37673696		0.1791449E	-	167.86C	12.651	0.673541	ë	37,190
-0.17513£7E								0.070570	10	41.322
-0.17136048	03	0.1345044E	OΖ	0.1719674E	6.7	175.512	17.551	0.00000	10	41.322

## HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 18 V= 118.5 KTS n= 1.12 g

BLADE FEATHER ANGLE
MANNING ANALYSIS MOUTE AN-56A SPEE LOCK T 449 CTR 534 FLT 604.0 TR 31

				" "PSIJC "	CJ/CJMAX TO	· J · · · ·	FREQUENCY
C. 946 5845F C1						-	III. I AND SECTION
C.+1C4976F CL	- 1.263534 JF 31	7.487777RE 31	327.207	327.297	1.333333	1	4.098
-0.1204269# 00	-0.1106868ª OO	0.14.35671# 06	222.587	111.293	0.033573	2	8.197
-6.54518936-61	-0.64475708-01	0.8545c1CF-91	240.C11	76.470	0.017520	2	12.295
·. 9174966F-CZ	-0.2586819F-JL	3.2746 /28E-31	209.922	72.381	2. 225631	4	16.353
""C.3162165E-C1	0.1254159F-CL	0.3608/195-01	20.405	4.081	0.007398	5	20.492
C.1271727F-C1	-0.36477675-02	0.17597478-01	345.502	57.650	0.022572	6	24.550
-6.13c35cae-61	0.157/4245-01	3.73768716-31	125.657	17.993	1. 1/4973	7	28.199
C.7C775555-C7	-0.315-5715-02	0.77176768-02	375.515	41.939	0.001562	£	37. /87
-1.62654675-02	-9.81 856 785-04	0.62900005-02	180.746	20.083	0.001290	ę	36.005
r.77446C7 - C7	-1.2651446F-C2	0.36600815-32	314.824	33.882	3.333753	13	43.584

#### SHAFT HOMENT HAFMONEC ANTUSES MODEL AHMUGA SHEP LOUD T 469 CTR 93% FLT 604.0 TR 36

-J.74876725 U4	FJ	C.J	PHLJC	PS IJC	CJ/ CJMAX	J	FREQUENC Y
-0.1643E75F 05 -0.1695590E 04 J.1171FLEF 06 -0.887U4.05F 02 -0.8983E54F 03 J.323654F 03 J.323654F 03 -3.845171F 03 -3.8577E61E 03	0.55791 486 C -0.140767MS 0 -0.2127013F C 0.4657355F C 0.31074775 0 -0.1759423F 0 0.146_001F 0 0.1381871E C	0.1337/152 04 0.2132434E 05 0.2777135E 03 0.6133017E 04 0.72377.2E 03 0.202434E 04 0.1551655E 04	106.434 234.302 273.150 108.056 143.641 354.222 274.417 108.500 104.904	1.06.434 117.151 91.050 27.015 28.728 59.870 39.202 13.562 11.056	1.00000 0.031145 0.367061 0.014814 0.106598 0.072333 0.072532 0.072532	1 2 3 4 5 6 7 8	4.098 8.197 12.295 16.393 2J.492 24.590 28.685 32.785
-0.33065-76 03	o.sciaolsf c	C.5d.49/113 US	120.928	12.393	0.010068	10	40.584

#### PITCH LINK TENSION PARMINIC ANALYSIS MITTEL ANDSON SHIP LOGS T 469 (FF 574 FLT 604.0 TP 11

	-	· · · · · · · · · · · · · · · · · · ·	61	PH IUC	SLIZE	CJ/SJM4x	J	FREGLENCY
-1.17522485	רט						-	
-0.14578455	C3	-0.10004555 03	0.17577146 03	213.635	213.835	2. 91 32 80	1	4.258
1.12:33115	C3	-1.7366607F 07	0.14517738 03	329.554	164.777	0.736335	2	8.197
-1.27771455	CS	-0.15650218 03	0.1974735F 03	26 2.096	#7.6.99	1.000000	3	12.245
-C.2474510F	CZ	-0.415C7C7F C2	0.40324156 02	235.155	55.000	7.244762	4	16.353
-3.26261216	25	-3.515:8518 32	0.9749696€ 02	247.076	48.605	0.293246	•	20.412
-0.16574570	C?	0.216451GF G1	0.16/4745F 02	170.846	28.474	C-994928	ŧ	24.550
0.10602602	0.2	0.10206745 02	0.14717095 02	43.510	6.273	0.074542	7	28.489
3.26643345	31	J.136931JF J?	1.1701126F 02	78.560	9.870	0.070466	į.	12.757
-0.11920270	CS	-0.20053365 02	0.25714798 32	222.442	24.716	0.153510	Ç	16.885
-C.4162359F	Ç?	-0.#31c157F 01	0.47641198 02	191.728	15.124	0.215977	16	40.584

#### FIXED HUB PLAP AT STA 18 HAR COURT AMPLYSIS MINEL ANDSAUS SHEP LODG T 469 CTR TO FLT A34.3 TR 1

	nj ·	CJ	PHTJC	PSIJC	CI/CJMAX	J	FREGUENCY
-3.4976715F C4							
C.4371221F C1	9.10148005 05	O.ICITECTE OF	P++.477	P9.973	1.000000	1	4.018
C.27266455 C4	-0.24706445 04	0.31794938 44	117.820	158.913	3. 16 18 32	2	8.147
-J.LESE737 74	-0.40171178 C4	0.44265465 04	245.101	81.727	C.43410C	•	12.245
-C.OICFISIC CT	-11.85464145 (1	0.1.40001F 04	227.177	64.774	0.122474	4	16. 103
C. 15468105 02	~7.83367995 03	0.17555298 03	297.047	59.609	0. 119935	•	23.552
-3.1/274765 31	-).44r4C42F 03	0.44023745 03	249.428	41.571	0.047999	ŧ	24.590
C. G. e cacle C?	11.4625496F 03	0. \$ 12144 75 03	74.311	11.187	0.246317	7	28.449
C.975F520+ C2	1.327/619" 03	0.14060135 03	74.15¢	9.270	0.033355		32.787
2.144:5775 32	1.35152535 32	0.14832345 03	11.709	1.523	0.014544	Š	16. **5
-0.447666CC 07	0.45744145 02	0.1047774# 03	154.114	15.411	0.010274	10	40.544

## HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 18 V= 118.5 KTS n= 1.12 g

PIXED HUB CHORD AT STA 18
MAS WE'RE ANALYSIS MIJEL AP-564 SPIP 1335 T 469 (TR 924 FLT 634.2 TR 3

		61	- PI 1JC -	PSTJC	CJ/CJ4LY		PHEQUENCY
C.557288CF C5							
C-11C1146F C5	1.7611131F C5	0. + 4816136 35	67.045	41.065	1.0000C	1	4.058
C. 1845228F 34	1.74355358 34	3. C1 17551E 14	01.456	33.628	). 195593	2	4.157
C-265C732# C4	-U.19H54778 05	0.11102765 05	20 1.527	54.641	0.131847	•	12.255
-C-11249CTE 04	1-1775 CO# C4	C.2105438F 04	122.292	70.473	0.024824	4	16.763
TOTAL PROPERTY	-7.211 11 19 19F 35	3. ?7673455 33	211.325	" (2.2)6"	" ). ))3256		70.452
0.51747355 02	-9-10377145 C4	0.16391366 04	272.566	45.494	0.012251	6	24.550
-C-1(12951F C4	-0.11767715 04	0.15491786 94	224.122	12.733	C. 014253	7	28.109
-C. ( 10 10 10 4 C2	1.13626636 34	3.1 15 1475E 14	47.242	11.655	). )12856	•	32.787
C-1461838F G?	-0.3187646F 03	0.15656586 23	244.676	32.737	C.004125	Č	36.005
-C.2501731F 02	-0.1414C76E 03	0.14436136 03	754.262	25.838	0.001702	10	40.546

BLADE FLAP AT STA 176
HAF WONED ANALYSIS WINEL AN-564 SHEP LIBS T 469 CTP 934 FLT 634.0 TR 50

3.1		'a <b>j</b>		PI-13C	PSIJC	KAMLOVES	J	FRECUI N. Y
C. 7405557E C	4							
5.354C3576 C	4 -7.346	4 56 85 C4	0.40654656 04	315.762	315.762	1.0000CC	1	4.058
-2.76553325 2	4 7.634	6699E 33	J. 2578667F 14	167.727	£1.663	0.599344	2	8.197
C.58444265 C	2 0.167	15/18 04	0.1/220551 04	74.677	23.124	0. 146645	2	12.295
-C-3644669F C	3 -0.230	19218 61	0.41114045 03	212.794	53.075	0.086766	4	16.753
- 3-32442485 3	9 -1.117	14434E 31	3.3491 118F 33	194.735	39.947	3.070255	•	20.442
-C.14055774 C		SHOSE CT	0.52201/16 01	257.276	42.230	0.135206	i	24.570
C. 36643256 C		1514F C3	0.70160025 01	347.022	49.689	0.076751	7	. 28.489
C. 14+(676+ 3		5.176F 33	3.76762395 33	61.772	7.472	3.158452		32.797
CALECECASE C		7734E 03	0.46573925 03	61 . 194	7.355	0.094525	ć	36.895
C.6C##1C7F C		1201F 63	0.23397226 03	14.025	7.497	0.047082	ŧċ	40.584

BLADE CHORD AT STA 174
HARMONIC ANALYSIS MODEL AM-56A SHIP 1009 T 469 CTR 934 FLT 604.0 TR 42

			. 19		CJ	PHIJC	PSIJC_	CJ/CJMAX	J	FREQUENCY
	0.24120406	05								
	0.49709846	04	0.14246861	05	0.100FF12E 05	75.576	75.526	1.000000	1	4.048
	3.100047FE	04	0.2231264E	04	0.3CA5393E 04	49.509	24.755	0.154132	2	8.197
	-0.1473962F	03	-C.4893531E	04	0.46957506 04	268.275	84.425	0.246165	3	12.295
	0.14035750	04	0.13050216	04	0.18695746 04	42.028	10.507	0.095008	4	16.393
	-0.1102165E	04	-0.3CAASSOE	02	0.11024968 04	182.061_	36.412	0.C55455		20.492
. 45	0.67942156	02	-0.20319778	02	0.70915436 62	343.349	57.225	0.003566	6	24.590
	0.2425024E	03	-0.25771806	02	0.3534431F 63	355.418	50.431	0.017772	7	28.689
	C.1002014F	04	-C. 9214604E	0:	0.12956968 04	320.655	40.082	0.005149	3	32.797
	-0.2030234E	C 3	C.4701843E	03	0.53675278 03	119.223	13.247	0.0276.69	9	36.005
	-9.36611a6E	0?	0.8?31310€	62	C.9106-273E UZ	113.723	11.372	0.064576	10	40.964

BLADE TORSION AT STA 131.5 HARMONIC ANALYSIS MODEL AM-50A SHIP 1009 T 469 CTR 934 FLT 604.0 TR 44

. 43						PHIJC	PSIJC	_C1/CJMAX	4	FREQUENCY
-0.+019707E	03									
0.15546636	04	0.1467644E	04	0.2138128E	04	43.347	43.347	1.000000	1	4.008
-C.1189447E	C4	0.28541758	03	0.12236986	04	166.512	83.256	0.572322	2	8.197
-0.16050595	03	C.4147170E	03	0.4446936E	03	111.158	37.053	0.207983	3	12.295
-0.3324A52E	63	0.41198998	02	0.33516726	63	172.936	43.234	0.156729	4	16.393
-0.5269360E	03	0.36356336	03	0.6403577E	.03	145.374	_29.075	0.299495	5	20.492
-0.1703451£	03	-0.6246553E	03	0.64747886	03	254.742	42.457	0.302825	6	24.590
-0.31493065	02	-0.32013626	03	0.2224559E	03	243.124	37.589	0.150812	7	28.689
C.1534840E	03	0.57152640	03	0.59190656	62	74.921	9.365	0.276834	1181	22.767
-0.10277100	03	0.1277:016	03	0.16395726	03	128.816	14.313	0.076663	•	34.665
-0.9131516E	62	0.119520YE	03	0.15041186	03	127.380	12.738	0.070347	10	40.984

# RMONIC COMPONENTS OF FLIGHT TEST DISTRIBUTION CASE 19 V= 121.5 KTS n= 1.26 g Reproduced from available copy. HARMONIC COMPONENTS OF FLIGHT TEST DATA

BLADE FEATHER ANGLE MARMONTO AMELYSIS MODEL ANDSEA SHIP LOGS T 469 (TF 77) FLT 634.3 TF 31

2.97151145 C1	- 0,1	e.	PFIJC	PSIJC	C1/C16V#	1	CREDLIACA
C.+?ICES#F CI	-0.23434345 .01	0.45305426 01	230.555	330.959	1.000000	1	4.112
-3.8 / 5 16 LET - C1	-0.56#2974F-01	0.12787645 00	229.222	114.611	1. 125934	2	8.264
-2.23467716-01	1.47450946-02	0.2/92962[-0]	171.009	57.001	0.095644	•	17.357
-C.411FAS2F-C2	-2.21115215-01	0.21517076-01	250.564	+4.741	0.004364	4	16.529
-0.46289665-07	0.166631 00-01	0.17821845-01	100.466	21.293	). ))3615	•	20.461
3-14314565-31	0.3524 6585-01	0.37951405-01	60 . 229	11.300	0.007697	•	24.753
C.2474427C2	0.27875500-01	0.27535108-01	84.518	12.131	0.005666	7	28.526
-C-12**5C#4-C1	0.16604535-61	0.76819565-61	127.102	15.888	1. 114223	£	33.259
-3.25766146-32	1.1243575F-01	0-12777298-01	103.256	11.477	0.002552	č	37.190
C. 574f669f-C3	0.11162146-01	0.11177145-01	A7.05?	8.705	0.002747	10	41.322

SHAFT POMENT MARMONIC AMERICA MODEL AM-SAA SHIP 1000 T SAS CTR 770 PLT 604.0 TR 36

AJ	<b>HJ</b>	CJ	PHIJC	PS IJC	CJ/CJMAX	J	FREQUENC Y
-0.71265-35 04							
-J.336/621F US	0.40C4#/4ª Co	0.71-2-177 05	122.705	122.785	1.000000	1	4.132
J.2277C63F 03	-U.1115602F C4	U.1118-145 UF	291.536	143.768	0.015941	2	8.264
J.4945259F 04	-0.1727463F 05	0.16,91417 05	291.926	97.309	0.260409	3	12.397
-0.1141:65 03	3.4623062F 02	0.12292658 03	160.897	43.224	0.001721	4	16.525
-0.72035 50F U4	J.1.41741F C3	G. 72043375 UT	179.007	35.861	0.100568	5	20.661
0.78875J9F 03	-0.21874U7F 02	0.73123428 03	353.412	59.735	0.011050	6	24.793
0.23/36JGE C4	-0.3040352F C4	0.33314315 04	307.424	43.987	0.054068	7	28.926
-5 . 1274 4 745 04	-J. 646065CE C2	0.1228375 00	183.018	22.877	0.317198	8	33. €5 €
-3.2360214F U4	0.14716778 04	0.2031 3036 00	144.401	10.351	0.035447	9	37.19C
-3.124213/1 05	0.3110282F C3	0.31/234.2 03	108.237	10.321	0.000566	LO	41.322

PITCH LINK TENSION
HAS 47010 AVAILASTS MODEL 4M-56A SELE 1005 T 469 CTP 77G FLT 604.0 TR 11.

LA	41.		ć J	PHIJC	PSIJC	CJ/CJHAY	J	FREGLANCY
2,76945761 32								
-0.11507735 07	-0,1255421F	03	0.11026798 03	227.504	227.504	0.951665	1	4.132
0.15775557 03	-0.85374715	C2	0.17641595 03	231.517	165.758	1.007000	2	9.244
1.18494537 31	-1.14535755	33	3.14536595 33	273.744	50.250	9.710764	?	12.357
-0.24161725 02	-9.25553578	02	0.35612917 02	225.544	56.486	0.199048	4	16.529
-7:47475568 CT	-0.6104004	CZ	0.6321629F 02	265.656	53.139	0.353341	•	20.661
2.12475526 02	-).15486506	32	J. 7124031E 12	365.20	45.073	0.119761	e	24.151
C-156- 67	9.07073006	91	0.11750165 62	35.269	5.610	0.076853	7	78.526
-C.1(?1172° C2	-0.1587119F	20	0.1021 366F 02	101.115	22.639	0.057086	E	33.058
-0.15123507 32	-1.330 355CF	32	3. 16 377335 32	238.332	26.448	3.231642	5	37.190
-0.15434685 C2	-9.81911626		0.36369098 07	147.016	19.302	3.207215	10	41.122

FIXED HUB FLAP AT STA 18
HIS WON IN ANALYSIS MOTEL AND MAKE SHIP LOSS T 469 CTR 770 FLT 504.0 TR 1

			. (1.	OF LUC	PSIJC	CAMUDILI	J	FACOLENCY
04								
C4 0	.1131701F	05	0.11850348 05	107.250	107.250	1.000003	L	4.132
34 - 3	3785897F	34	0.514#285E 04	370.895	140.447	C.436111	,	2.764
C? -?.	25758324	C4	0.2654767E 04	755.552	65.331	0.224015	2	12.757
c) -0.	3361455E	63	0.13096588 04	100.562	45.891	0.035217	4	16.529
33 -3.	467332 DF	23	3.51275685 07	207.822	58.766	0.044955	•	20.(61
	400/0795	03	0.40077706 03	272.627	45.439	0.040565	ė	24.753
C3 0	55F1577F	C2	0.24294855 03	19.796	2.028	0.023878	7	28.526
	56353165	13	2.7745 21 75 23	48.977		9.065354	E	33.650
	.22025676	C?		48.521		0-024807	Ġ	37.150
			0.314373CF 01	155.282	15.538	0.020215	10	41.322
	34 -3 C? -6 C3 -0 32 -3 C? -0 C3 0 C3 0	0.1131701F 34 -J.3785878 C7 -0.25758395 C3 -0.33814555 33 -J.487337.)F C7 -0.48623978 C9 -0.55738767 C3 -0.22625675	0.11317A1F 05 34	04 04 04 0.1131701F 05 0.1185034E 05 04 07 07 07 07 07 07 07 07 07 07 07 07 07	04 C4	04 C4	04 C4	04 C4

## HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 19 V= 121.5 KTS n= 1.26 g

FIXEN HUB CHORD AT STA 18 HARPY TO ANALYSIS MIDEL AF-568 SHIP ICCS T 469 CTP 77C FLT 604.0 TR 3

AJ		r s	P+1JC	rstuc	CJ/CJ4AX	J	FFEGLENCY
C.715*636* C*							
C-35027665 05	J.8711450F C5	0.55457756 05	1.5 67	(5.867	1.000000	1	4.177
-C.5142749F 03	0.36856565 64	0.3423104F 04	90.407	49.203	0.04115C	2	8.264
Careesale C4	-0.10467535 05	0.1107221F 35	200.023	56.341	7.115951	?	12.757
-U.2316724F C4	U-434013EL CJ	0.27557405 04	164.605	42.407	0.074674	4	16.579
-1.47017676-64		0.8000CS4F C3	177.967	34.593	7.009215	•	20.111
-0.43:0771F C3	-0.141561CL 04	0.1403935 04	257.99)	42.165	0.015508	•	24.753
-3.51673245 03	-0.10166975 64	0-11601055 04	741.205	34.459	0.012157	7	29.576
C.721C45EF C3	0.91567576 03	0.11654536 04	51.707	6.473	0.017211	E	33.058
C.6764465F 02	-0.11533767 04	0.17478238 04	297.696	33. 177	1. 114121	5	37.19)
3.619759JF 33	0.47711575 07	0.75472725 03	34.392	7.579	0.007966	10	41. 722

BLADE FLAP AT STA 174 HERMINIC ANALYSIS MG EL AM-56A SPIP 1005 7 449 (TP 770 FLT 604.0 TR 50

· AJ	1-1	nj	•	CJ	P+1JC	rstuc	CAMPACA	J.	PHEGUE NCY
C.24524PCF	C4								
1.34844685	34	-1.2987427F	04	0.45776298 04	227.175	323.175	1.00000	1	4.132
-C.21527495	C4	J.25010748	03	0.20637416 04	174.990	+7.495	0.575377	7	8.764
-C.37227015	63	0.13255645	64	0.12490656 04	103.625	34.542	3.274843	3	12.357
-1-1306122F		-1.15119555	0.2	9.13547448 07	Inc . 225	46.556	0.020012	4	16.529
" -C. 2e 8 1528"		-0.401 124 90	03	0.4126(ATE 03	236 . 250	47.250	0.046966	•	20.661
C.1266685*		-0.42263615		0.50727615 02	307.796	10.633	7.117923	•	24.753
3.12312789		-1.2333204F		0.26458136 03	205.610	42.801	0.053154	7	78.576
C-1625051*	_	0.6754787E		0.67568656 07	39.446	11.056	0.135745	E	33.758
-C.17772475		0.3C49458F		0.15266625 03	120 - 126	13.348	0.070838	5	37.193
J. 1612653F	-	1.2697698E		3.2422925E 03	82.46	P.247	0.058721	10	41.322

BLADE CHORD AT STA 174
HARMONIC ANALYSIS MODEL AN-SAA SHIP 1000 T 460 CTR 770 FLT A04.0 TR 42

AJ			PHIJC	_PSIJC_	CJ/CJHAX_		FREQUENCY
0.2945 ?? \$ 05							
0.62107421 04	0.2101800E US	C.2191642E 05	73.538	73.538	.000000	1	4.132
0.1107972E C4	C-1732496E 04	C.2056489E 04	57.400	28.700	0.093833	2	8.264
0.7764626E C3	-0.47199225 04	G.4783688E 04	279.365	93.122	0.218270	3	12.397
0.45308301 03	0.16166516 04	C-1675941E 04	74.344	18.586	0.076607	4	16.529
0.4890504E 02	0.5557036E 02	G-7402544E-G2	48.650	9.730	_0.003378		20.661
-0.24293311 03	0.9197378E 03	0.9556218[ 03	105.971	17.662	0.043673	6	24.743
0.12519538 04	0-2049462E C2	0-12521212 04	0.938	0.134	0.057132	7	28.926
0.4085142E 03	-0.4449121E 03	0.1011e05E 04	333.908	41.739	0.046157		33.058
-0.5604321E 03	C.1162666E 03	0.57236948 03	168.278	18.698	0.026116	•	37.190
0.75813546 02	-0.2311704E 03	G.2442362E 03	288.626	28.863	0.011144	10	41.322

3

BLADE TORSION AT STA 131.5 HARMONIC ANALYSIS MODEL AM-SAA SHIP 1000 T 460 CTR 770 FLT A04.0 TR 44

	84		PHIJC	JL129	CJ/CJHAX_		FREQUENCY
-0.3780571E 03							
0.1469592E 04	0.17661206 04	0.2312990F 04	50.553	50.553	1.000000	1	4.132
-0.1352908E C4	-C.2764734E 02	0.1353194E 04	181.179	90.590	0.585041	2	8.264
-0.1655986E G3	0.15430396 03	0.22634628 03	137.022	45.674	0.097859	3	12.397
-0.236526FE 03	-0.1433657E 03	G. 2769255E 03	211.178	52.795	0.119726	4	16.529
-0.04.02617E 03_	-0.1352477L 03	0.6739714L 03	_191.576_	30.315	0.291385	5	20.661
0.29333816 03	-0.7535164E 03	0.8086001E 03	291-271	48.545	0.349591	6	24.793
0.1341623E C3	-0.2654U97E 03	0.3153699E 03	295.177	42.168	0.136347	7	28.926
-0.16228245 03	0.24132316 03	0.29001326 03	123.920	15.490	0.125730	ė	33.058
-0.1410161F 03	-0.1957338E 02	0.14236ROE 03	187.902	20.878	0.061552	•	37.190
-0.1754921E G3	-0.4103973E 02	0.13703236 03	198.109	19.811	0.057083	10	41.322

## HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 20 V= 117.5 KTS n= 1.22 g

BLADE FEATHER ANGLE
HARMONIO EN LYSES 40051 AN-505 SHIP 1007 THOSE CTR. 960 FLT 606.0 TR 31
DV-271_ CYCL TO LUAD = 0.494041- 01

Z	11 538111 " NP' 1	1.97	LUVANIA AZEJ	4.00				
		aj -	c)	PHIJE	PS IJC	CJ/CJMAX	(4)	FREQUENC Y
	1.45el?eu~ 31							
	3 . 4 3 3 4 4 3 2 31	-0 271398" CL	3 17[ ][[ 3]	336.663	332.213	1.003030	1	4.115
	3 - 4+346717-63	1 - 1 - 2 3 3 7 00	0.15152315 03	270.155	135.774	0.033155	2	8.23C
	-0.25433671-31	-J. + 710475 - 42	0.24134725-61	141.043	65.061	3.006104	3	12.346
	J. 15P 4 95 3' -UL	-0. (0520) 1 -02	10- 5-101-2:-01	349.745	47.444	J.JJ7059	4	16.401
	-3.1d3v2.9"-01"	J. 1202951" -CL	0.22311331-01	142.524	24.135	3.004580	5	20.576
	- 2 - 20 1 2 20 2 - 01	-3.217022731	U-33374577-JL	217.//1	36.240	3.007303	6	24.691
	-3.19434457-61	-3.442:020 -02	0.2333+3+1-31	1+2.655	21.320	3.00-168	7	26.807
	-1-11-03-1-02	-U. 20030 +3" -CL	1.247111=-01	255.524	31.441	1.0000111	B	12.962
	-0.2404 326" -01	0.1406304 -01	り。シャとチレン・ゲーリレ	145.010	10.112	0.03/339	9	37.057
	- ) . hino 12 ul	-0.111.11:-02	0.3223133:-02	254.106	2017	c da (C 0. v	10	41.152

SHAFT HOMENT
HARMONIC ANTLYSIS MODEL ANTENA SHIP 1009 F 469 CTR 940 FLT 604.0 TR 30
OVERALL CYCLIC 1070 = 0.9557048 05

ACES BOSITION	USED	1.40	ı	CAD/IN USED	-2	13944.88				
A.I	=.	1,1		CJ		PHI JC	PS IJC	CJ/CJMAX	J	FREQUENC Y
-7-17-2401										
-1.61622144	45	0. 24001 026	62	0.02-11 14-15	のっ	110.326	110.120	1.000000	ı	4.115
-J.6345f i4F	(1)	3.34044196	CZ	C. 4731 1573	Us	172.452	86.226	0.010174	2	8.230
7.6+63 to3F	C4	-0.214413PF	CS	0.22344255	05	200.776	95.542	0.355422	3	12.346
ころりょうしゅ こうから	03	- J. 7017n7or	U3	0.117+1153	3.	223.453	55.113	3.018061	4	16.461
שניהו כחלכ. ל-	4	J. 239 +121t	C4	C. 63/1/345	G+	1>0.000	31.360	0.090584	5	20.576
J.2517C3cf	66	-0.17740845	G3	C. 3.142307 €	03	324.747	54.124	0.004899	6	24.691
J.3124174F	04	-0.26419907	04	0. +3/49255	04	117.973	45.710	0.064844	7	28. 207
3.53477616	0.3	0.12759555	C4	0.12/61:05	04	61.131	19.461	0.020745	ø	32.422
-0.24778166	C4	0.51857065	Us	0.25511345	0.	100.265	15.090	0.040546	9	37.037
-3.53733.37	33	3.33748345	03	3.57324135	ÜB	144.781	14.878	0.009429	10	41.152

PITCH LINK TENSION

H. 2178/12 AND 4515 1011 LINH-504 SHIP 1007 TINGS OFF 940 FLT 604.0 TH 11

TV-2712 CYCLIC LUAD = 0.450388F 03

2 % 3 938 ! 11 1 USE 2	2.47	FCC 1VL (12.2)	5141.30				
	٠	:3	PHLIC	PSIJC	CJ/CJ44X	J	FREQUENC Y
-0.25675404 Va -0.12526115 03	- 1.11.505.01 03	0.1200157 03	220.157	243.157	J.851906	1	4.115
3.1233.5 32	-4.66.4963		111.50	161.250	0.406511	ż	B. 230
-0.22006250 02	- J. 1 5005 32" C3	3.141.101E U3	200.013	≥7.07L	1.000000	3	12.346
1.11:11:00	-J. Dahaa217 02		_ 273.239	67.552	J.241460	•	10.461
-3.1-57-6-1 02	-n. 474777, Ar		271.113	261.126	0.450254	,	20.576
0.47464 715 01	-0.5 -054 5 05		241.203	40.14.)	0.173531	Ų	24.691
0.13445/16 02	0.15-4701. 02		21.624 5.666	7.373	U.11+472 U.0 11562	45	28.607 12.522
1.577517 5 01	J. 54+757 1 -01 -J. 2225615. Ga		221.012	22.297	J.164764	6	37.037
-0.2305540 32	-0.2703013. 02		421.012	22.134	3.252762	10	41.152

Te-1 b34111 . 15	5.64	LUNIVIN USED	חפירנגינ				
-0.7310.915 03	··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··	VI	- bulli	PSTUC	A APLUS NUS	u	ENEQUENCY
0.1:01:01:00	1046215	55 0.119.1123 gs	44.14	:1.797	1.03.1333	1	4.115
Jan State Late of the	- 3.17 Jour	or detection of	550 . 100	164.150	J.427H50	2	8.23C
-2.219251: 04	3160506	C+ 0. + 1/1/11: 67	230.715	70.103	3.376946	3	12.346
	- 10-41130247	U1 G. 2001321" US	235.376	51.331	0.050703	4	16.441
-J. divse ! " Oc	- J. /2-1271	03 C. 7-1-37 12 03	201.472	33.476	0.072682	5	23.510
-0.7/41c/c" cc	1070902	Co C L/ 1.15 CS	6510636	43.205	3.33300	6	24.691
3.119/1611 33	J. 2274732"	6.5 J. J. J. J. J. J. G.	44.355	7.351	0.32/558	7	28. EJ7
e - 33 - 4135 Us	U. 4. 43+.25	Ga - 0. 221245 US	50000	4.423	J.0 411392	•	32.442
-1.5053294" 64	Jet 1. 1031 1	ue Oculoteda. Le	92.212	13.151	0.068270	9	37.037
-1.1.4/592 33	0.1122210	03 3.55.411. 03	150.354	13.305	0.020643	10	41.152

## HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 20 V= 117.5 KTS n= 1.22 g

FIXED HUB CHORD AT STA 18 MAG 41/12 AM-504 SHIP 1337 T 509 CTR 940 PLT 604.0 TP 3

: 3		4.0		6.3	PHIJC	e3136	AAPL3\L1	J	FREQUENCY
1.5577104"	62								
J. 4JJ 1264	US	J. 74658734	US	J. 4// 1/417 05	02.X+5	64.443	1.000000	1	4.115
1.4-4270.5	3-	J. 6410371"	0+	3. 11 13 77 2 44	52.263	20.134	1.142500	2	6.230
J -2/7 - 1-9:		-0.4675737	0.	0.13334372 65	233.957	45.321	0.114750	3	12.346
-3.1173410	U-	-d. 52111-3"	O.	0.117.274 0.	132.103	43.033	J.013392	4	10.401
-7.6333667	-	-Jestlaler"	13	" to selete us	440.00	41.303	104010.0	5	20.016
-J. olbued:	-	-0.732.5u75	0.3	2. 33 27 33 67 63	230.045	-9.441	0.0106#1	•	24.691
-1.1293(22)		-4.63.3145-		0.1.)1111: 0.	482.284	20.341	J.015153	7	28.607
0.23313705	-	Jalue Julio"		0.132 00	70.109	7.21+	1.012022		34.524
- 1 . 1 . 5 . 1 . 4 . "	-	-3.2861765		C 12 1 1 17 01	411.415	24.166	J.0U5248	9	37-017
J. Wienzer!		U. 2274935		U. 237+111 US	73.305	7.331	J.U027U7	10	41.452

BLADE FLAP AT STA 174 HIS 4 NIC SHILVELS MINST ANDDO SHIP LOOP THUS CIP SHO FLT LOOP TO SO

73	47	cJ.	PHIJE	PSTIC	CJ/CJM6 X		FREQUENCY
0 . 2244 211: 34							
0.30930327 04	-3.31418347 (4	J. +# 11 1 703 64	317.464	314.160	1.000000	1	4.115
+C "#117 #15.C-	J. 3241434 G3	3. 33 1+3714 04	173.837	40.101	0.015004	2	8.230
J.dloolelf ud	J.143/368" U4	U. 144 10335 04	du. fol	44.454	0.3051/3	3	12.346
-1.275+730 33	-0.1669221" 01	3. 3 2 1 4 3 2 33	211.241	22.313	J.066726	4	16.401
-1.2743747 35	-3.7249976: 03	3. 3.73 3	204.910	40.745	J.005U72	5	20.5/6
-0.1550.00 03	-3.5622631: 63	3. 34.24.61: 43	253.00	42.216	3.111703	6	24.691
3.61256455 02	-U.12/2726: 03	2.12)2113: 01	302.550	43.222	1.030935	7	24.897
J.146453J. UJ	J. 6566209. 03	J. 6 7 3 412 3 5 63	74.013	1.252	3.139067	8	32.444
-3.3244615= 22	U. 21 002 17 63	J. 226 J. 37: US	44.442	10.734	3.045283	4	37.037
0.2150357F UZ	J. 4124434 C3	01 30.065 05	37.007	0.701	9.06+612	10	41.452

BLADE CHORD AT STA 176 HARMONIC ANALYSIS MOLFL ANDSAA SHIP 1000 T 440 CTR 040 FLT 604.0 TR 42

AJ			Cd	PHIJC		CJ/CJMAX	J	- FREQUENCY
0.24529281								
0.5300000	04	0.70070538 05	C.2078170E 65	74.467	74.967	1.000.000	1	4.115
0.2184184	64	0.328C108E 04	0.3940783E C4	56.341	28.170	0.109628	2	0.230
0.34014608	03	-0.5018156E 04	U.5033301E 64	274.446	91.432	0.242199	3	12.346
0.44744536	3	0.1837410E 04	0.20191.636 04	A5.101	16.295	0.097147	4	16.461
-0.20175706	03	-0.2015112E 03	0.2851530E U3	224,06	44.993	0.013721	5	20.576
-0.5:646416		0.10570958 03	0.6945762E 03	171.246	78.541	0.033422	6	24.691
0.41215876	03	-0.1943467E 03	0.64226868 03	342.386	46.412	0.030905	7	28.807
0.46178446	03	C.7256189L 02	0.44443636 03	4.184	0.523	0.047852	2	32.922
0.55456166	02	C.5065354E 03	0.50956?38 03	83.752	9.306	0.024520	9	37.017
0.13627416	03	-0.4F12f04E 02	G.1464698E 03	340.810	34.081	0.007045	10	41.152

BLADE TORSION AT STA 131.5 HARMINIC ANALYSIS MODEL AM-SOA SHIP 1000 T 460 CTR 440 PLT 604.0 TR 44

AJ		LS		L2		PHIJC	PSIJC.	_CJ/CJMAX	J	FREQUENCY
-0.4737276F	03									
0.15253236	C4	0.15196596	04	0.21531316	04	44.093	44.873	1.000000	1	4.114
-C.12CP685E	C4	G.3052808E	03	0.12466418	04	165.825	22.913	0.578990	2	8.210
-C . 1705661E		0.373:5616	03	0.3736455E	G3	92.616	30.272	6.173536	3	12.346
-0.3425977E		0.1753094E		0.34259776	03	179.971	44.993	0.159116	4	16.461
-0.5299414L	U3	0.53L5354L	03	. 0.7534250E	03	134.592	26.918	0.349921		20.576
-C.16154266	03	-0.7231831E	03	0.74562166	03	255.408	42.451	0.346294	6	24.691
-0.1661147E		-0.1343373E	03	0.13536050	03	262.951	37.564	0.062867	7	24.807
G. 2190264E		0.47330868		0.521530CE	03	65.167	E.146	0.242219	8	32.922
-0.1159598E		0.20566096	-	0.23627405	03	119.392	13.266	0.164735	9	37.037
-0.12445.86		0.11083416	-	0.16665476	-	138.311	13.831	0.077401	10	41.152

#### HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 21 V= 119.5 KTS n= 1.43 g

SLADE FEATHER ANGLE HOSEL AN-564 SHIP INCS T 469 (TR 779 FLT 604.0 YE 31

		current	FFIJC	rstuc	CI/CIMEX	J	FREGLEICY
Calitates Cl							
C.4( 7127F C1	-0.21842315 01	0. 1436	354.673	334.873	1.000000	1	4.132
-:-1 11 63 155-31	-1.17576176 33	0.12695445 00	361.466	130.998	C.0246P7	?	2.764
-(.314(7075-01	-0.27576465-62	0.31574795-31	124.005	61.670	0.005125	:	12.757 16.529
-(.77674567-61	0.1919615-01	0.70644265-01	140.015 263.548	75.005 52.710	0.601665		20.(1)
- C*4 L C 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	" '-).8223254F-J2 -).8F58044F-03	0.17755675-07	221.553	36.999	0.000259	-	24.741
C.14C30ECF-C1	0.4595566=-12	0.16677715-01	14.011	2.297	0.033242	,	20.526
:. 34 36 #46 - 32	1.178757-5-31	1.14165415-11	65.36?	6.170	0.002755	F	33.658
C.7"C5746F-C7	1.64461505-02	0.ch445516-05	40.451	4.517	0.001974	5	37.150
C-55614C4E-CS	0.406-4738-07	0.4711558F-0?	59.640	5.964	0.000916	10	41.722
SHAFT HOMENT	MELTER ALL AND CH	17 1007 T 464	**** //A E	LT 604.0 1	70 14		
THE COURT MANEETS	401-5 2:1-302 30	12 1007 1 907	GIE		- 30		
ŁJ	u j	CJ	PHIJE	PS IJC	CJ/CJ4AX	ı,	FREQUENC Y
J.1147 244 US	-					-	
-3.4781e31F 05	3.64710305 05	J. 7+153032 US	120.302	120.302	1.00000	1	4,132
-3.76611r7F Us	-U.1418767- 04	0.23nol1.E 04	240.629	124.115	0.027567	2	8.264
-0.74541:75 04	-0.22 EuU+7F C5	0.2.155416 05	251.661	83.954	0.320959	3	12.397
-J.75564-if Us	0.1337HOZF 04	0.12414725 04	119.743	29.946	0.020566	•	16.525
-d. signification	0.495147/6 64	0.13291025 09	131.464	27.444	0.097729	5	20.661
3.70647445 03	-3.119443F 04	0.11/25734 04	JUJ.487	27.061	0.018579		24.793
-3.64785311 02	-0.31520775 C4	0. 10100128 04	204.974	38.425	0.052029	7	28.426
J.64596 156 65 J.42144346 C5	V. G JYJIF UJ	C. 9265/91 1 03	47.741	2.200	0.012363	9	33.056
3.7342544 03	J.1969445F C4 U.6242620E U3	0.231+0325 04 0.3576032E 03	77.921	8.658	0.026872	10	37.19C
3.13-244-7 03	0.61420105 03	J. 75765J2C US	40.178	4.018	0.012910	10	41.322
PITCH LINK TENSION	ř –						
PALL T. IC ANALYSIS	PROFU AN-SEA SE	IP 1035 T 460	CT 8 779 FL	7 634.3			
		2.1	1877.1	S44.014.1	11.11.		
	4 )	Cl	UFIJC	PSIJC	KAPLOYLO	J	FREQUEICY
-c.2<631355 C3 -c.14315256 C3	-0.23114307 03	0.27189875 02	230.231	216.231	1 000000		4 122
C.1724974F CT	-0.1253344F 33	3.2132354F 13	224.335	162.332	1.000000	1 2	4.132 8.264
C . \$ 15 12 4 15 C2	-0.16722505 03	0.11649256 07	250.PPC	43.627	2.794135 £.650950	•	12.757
C.2617648F C1	-0.25527745 01	0.46556348 01	204 . 8 26	74.959	0.015063	4	16.529
-C.61555CEF CZ	-C.3561753F 32	3.7161 3575 32	212.627	42.525	3.273728	-	23.661
-0.25511475 C2	-0.1197471F 02	0.3566295 02	202.525	13.754	0.117521	ě	24.193
Catelessie cz	0.111CC35# 02	0.15424426 02	41.024	6.575	0.056729	1	24.526
-c.2507215F 02	-n.3050120F 02	3.34705368 32	233.946	28.868	J.146361	E	31.158
-C.217675FF C2	0.11001646 02	0.70491966 07	1.7.216	17.468	0.117843	•	37.190
-C-3645616F 05	-G.8446177F C1	_ 0.37421786 02	143.044	15.304	C.177631	10	41.722
FIXED HUB FLAP AT							
HARPENIC AMALASTS	MAPL AN-SAA SE	TP LCCS T 469	(TP 779 FL	.7 604.0 1	P 1		
and the same of	12.0	200	20.00				20220000
C.05112275 34	<b>"</b> J	Ci	Pt tuc	rsiuc	CJACJMAX	J	ESEOUS NOV
-0.1417377 64	3.54124066 04	0.10546776 05	114.027	114.937	1.000000	t	4.177
C.4ECESTRE C4	-0.27445677 04	0.51497815 04	734.004	167.002	9.488064	2	3.264
-C.267799C! G4	- 1.28264535 34	J.4)318155 J4	224.483	74.828	1.348323	?	12.34
-0.9112261 (1	-0.161 1754F 64	0.13501857 04	771.024	56.796	0.124833		16.529
-C.1442Cbr CS .		0.627AP165 03	764.581	57.716	0.057284		23./61
(.3)642525 63	-9.47983236 33	3.5A775135 33	335.275	5).879	3.35362?	(	24.173
C.7(*2474 C!	0.46974765 67	0.51655115 03	37.587	4.798	0.077238	- !	28,576
C.21574295 C3 C.37C50145 O3	1.378554F 03	0.7104893E 63 3.5371653F J3	60.276	6.541	7.05664E ). )+9))8	Ę	33.658
0.31213765 01	-9.35345777 02	0.35541846 02	275.409	5.148 27.541	0.003666	10	37.19) 41.322
		AT STREET OF			TO THE POST		71.766

## HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 21 V= 119.5 KTS n= 1.43 g

FIXED HUB CHURD AT STA 18 HAND THE ANALYSIS MUSEL ANALYSI MUSEL ANALYSI MUSEL ANALYSI MUSEL ANALYSI MUSEL ANALY

=		٠,		cu	P+:JC	PSIJC	CJ/CJMAX	j	FREQUENCY
1.04462		1.04710315	05	0.10016272 06	57.176	57.176	1.000000	1	4.112
4 ! 201	144 64	3.67774345	04	0.75103245 04	55.256	27.628	0.07553)	2	8.264
2.22144	105 34	- 1.111714 00	^5	0.11497498 05	240.215	43.405	9.114420	?	12.267
-0.159 ic	11 64	0.20270135	0.2	0. 11 #7004E 04	171.940	44.745	0.015022	4	14.129
	24F 77	-0.7055625	13	0. 17225965 01	294.213	59.843	0.008652		23.001
1.21536	46. 23	~J.9.707.3F	3 5	J. 61542555 03	294.502	47.430	0.009523	ŧ	24.793
- 1.11147	CE C4	11.40664755	C3	0.1070 2305 04	161 . 718	23.760	0.019632	7	20.476
1.6 2461	12: 63	1. 61457275	12.3	0.10305355 34	54.051	6.761	0.010272	•	43. 159
7.45764	4 JE 32	1.15326300	32	2.45793366 03	1.516	C.213	0.074567	5	37.190
0.23006	275 67	-0.55445345	CI	0.00030650	247.575	75.254	0.000001	10	41.122

BLADE FLAP AT STA 174
HAFF MIT ANALYSI: NOWEL ANSAGA SPIF 1005 T 469 CTP 779 FLT 604.0 TR 50

4,1	٧.	<b>C</b> J	PFTJC	PSTUC	VAMLOLLO	J	FREDLENCY
3.26623517 34							
C. TEGCCPAT C4	-1).3761540F C4	0.51487705 04	219.241	315.741	1.000000	1	4.132
- ( 5 5 6 5 6 3 0 4	1.4655339F CT	0. 2074 2388 04	172.164	FL.OR2	0.577675	?	8.264
2.44665657 33	1-14(C162F 34	0.1541e57F 04	77.375	24.176	0.277430	?	12.257
-C.1-117ce" 01	-0.10418908 03	0.1415448F 03	214.548	53.637	0.635648	4	16.579
-C.4174370" CT	""" 1.328C146F 63	0.51450628 03	210.242	43.869	0.103636	•	73.661
2.94724391 12	-1.56354176 33	3.57174416 12	275.485	46.581	C. 11104P	E	24.793
Calfafiller Cl	0 . P455CC25 C2	0. 74 17:398 63	17.401	1.772	0.016465	7	79.176
Calefellas Ca	U.PC?"510E 03	0.67090705 03	78.197	9.775	0.159437	) F	33.658
3.11146631 32	J. 168#2916 33	3. 19321526 33	P* .012	9.448	0.075864	•	37.150
C.14471445 C3	0.31440075 02	0.19761355 17	10.627	1.067	0.039379	10	41.322

BLADE CHORD AT STA 174 HARM'INTC ANALYSIS MODEL AN-SOA SHIP 1009 T 469 CTR 779 FLT A04.0 TR 42

AJ		tJ.	ga	CJ	. <u></u> .	CHIJC	PSIJC	CJ/CJMAX		FREQUENCY
0.29319076	05									
0.11135275	0:	0.2012557E	05	0.2300069E	05	41.045	61.045	1.000000	1	4.132
0.30306458	04	0.1575740E	04	0.34159416	04	27.470	13.735	0.146517	2	8.264
-0.15497436	04	-0.5934023E	04	0.61329346	04	255.366	85.122	0.266641	3	12.397
0.21336568	04	0.10F2#63E	04	0.23927596	04	26.908	4.727	0.104030	4	16.529
-0.e503796E	03	0.9:43203E	03	0.1154Ft at	04	124.275	24.655	0.050210	5	20.661
P.2564033F	03	0.414532CE	03	0.50747058	03	55.690	9.240	0.022645	6	24.793
0.10470000	04	-0.141946AE	03	0.10565788	64	352.279	50.326	0.045937	7	28.976
0.4691965	03	-0.10C5024E	C4	0.11913200	04	293.194	36.649	0.051795	8	33.05€
-0.52111796	03	0.6325254E	03	G.6241836E	03	129.219	14.358	0.035833	4	37.190
0.6:470751	02	-0.97447A3L	02	0.12836626	03	310.266	31.027	0.005581	10	41.322

READE TORSION AT STA 131.5 HARHONIC ANALYSIS MODEL AM-SEA SHIP 1809 T 469 CTR 779 FLT 604.0 TR 44

A.J				CJ		PH1JC		XAML3\L3		FREQUENCY
-0.36912045	03									
0.15561526	04	0.20398516	04	0.2565657E	04	52.661	52.661	1.000000	1	4.132
-0.1380457E	04	0.2945599E	CZ	0.13867646	04	178.763	89.391	0.540512	2	8.264
0.72362756	02	0.2640715E	03	0.2754587E	03	73.468	24.489	0.107364	3	12.397
-0.2700375E		-0.1c00162E	03	0.313986FE	03	210.649	52.642	0.122342	4	16.529
-2.6'00720E		0.22396346	03	0.69409576	03	161.231	32.246_	0.271309	5	20.661
U.74+34:9F		-0.6463284E		0.64063306	63	276.745	46.124	0.253671	6	24.793
0.25014636		0.92103348		C.ZAASASAE	02	26.213	2.886	0.010390	7	28.426
-0.15258695		C.6239648E		0.64235116	03	103.742	12.968	0.250365		33.058
-0.9474635F		0.19463226		0.2144684E		115.957	12.874	0.684371	9	37.190
-0.1251517E		0.7464621E		0.14572736		149.186	14.919	0.056797	10	41.322

## HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 22 V= 120.5 KTS n= 1.45 g

BLADE FEATHER ANGLE
MEEV." IC ANGLESIS MIDEL AF-56A SELP 1006 T 469 (TF 548 FLT 634.0 TP 31

5 000 to 10	")	C.J	- OFTUC	USIJC	CINCIMIX		FREQUENCY "
C.4404588 GL	-7.2424552F CL	0.50287718 91	331.145	331.149	L. nonnec	1	4.149
-0.3616261-C1	-0.19745655 CC	0.1623233# 13	256.365	128.164	1. 132215	į	8.259
-0.45141005-01	-0.83492725-01	0.4 28150F-01	240.027	60.009	7.019166	,	12.448
-0.70843545-01	-11.79505745-02	0.22133655-01	201.076	50.269	2.024401	4	16.503
-2.78999417-22	-0.4/44C34F-07	0.54756495-02	230.326	47.635	1. 111 185		23.747
-3.27!7851:-02	-1.21253675-01	0. 2:46 /68 01	207.100	41.783	0.004269	ė	24.696
-0.21079714-02	-7.1544926F-C1	0.15531775-01	267.245	37.464	0.023161	,	29.646
C. 198CL147-02	U.3095743=-C1	0.31137405-91	75.153	9.394	1. 1/61 57	ė	33.195
2.5 16 11 6 7 6 7 7 7 7 7	7.74517645-07	0.17287375-01	17.745	4.149	0.002443	5	37.744
C.5FE1755'-C2	-0-65514818-65	0.85423695-02	313.767	31.327	0.001701	10	41.454

SHAFT HOMENT HAFTUREL AM-504 SHIP 1009 T 669 CTH 948 FLT 604.0 TR 36

14	FJ	CJ	PHILIC	PSIJC	CJ/CJMAX	J	FREQUENC Y
-3.7606524 04	0.675048BF 05	0.2.21.120.0			2 - 2 - 2 - 2 - 2 - 2 - 2		
		0.76211118 05	110.401	110.901	1.000000	ı	4.145
ים וייושטיייני	-0.8444133F CS	C. 5434334 03	184.420	94.410	0.007702	2	8.299
-J.786 1105 04	-7.509128: 62	C. 27101143 US	203.103	84.348	0.350450	3	12.448
-0.84512e7f 03	-J. 21211 40F C4	0.2293355 0.	149.277	62.369	0.029961	4	16.598
-Jdletyel u-	U-3524157E C4	0.62384JoC UF	141.198	28.238	0.082119	5	20.747
0.29667141 02	J. 9757-4CF C3	C. 97013245 U3	48.293	14.715	0.012809	6	24. 696
-3.06726ac 03	-0.3962#326 04	0.40146175 04	260.442	37.236	0.052730	7	29.046
-3.7032CHF 03	-0.23451350 CS	C. 1412/075 05	192.443	24.305	0.009727	a	33.195
J.1154C231 03	U. inbucodf U4	0.1461 +325 04	85.447	9.640	0.019176	¥	37.344
-3.1542:141 03	J.1201913t C4	0.17159516 0-	43.715	9.871	0.015955	10	41.444

PITCH LINK TENSION SHIP INGS T 460 CTF 548 FLT 634.2 TP 11

	13	CJ	76149	FSTUC	CJ/CJMAX	j	FRF JUENCY
-C.17442717 CT	-9.18417645 03	0 30034010 40	*** ***				
		0.20074016 03	241.920	241.920	0.834670	I	4.149
C.14745217 07	- 1. PS41 SSSE C2	0.14825256 03	327.865	163,934	0.672011	2	6.259
-1.12775655 63	-0.2145102F CT	0.25003666 03	239.262	15.754	1.000000	•	12.448
-C.23(7179F 02	+0.669(6365 02	0.72785768 02	247. 61	e1.890	C.289515	4	16.554
-C.5C410444 CS.	-0.5764779F CZ	0.159650E 03	242.121	48.524	1.439756		23.747
2.969f4315 C1	-0.359-543F C2	0.3/296798 02	245.377	47.563	0.149140	ŧ	24.196
C. PIRPORTS C2	0.5153C03F 01	0.72245228 02	9.196	1.314	7.128962	7	25.646
-C-1209436F C2	-7.31206525 62	0.334635CF 02	748.808	11.111	J.133H34	•	33.155
-3.34168378 32	-).6747H29F 00	0.34774528 02	181.12?	20.125	C.13/4FO	•	37.344
-6.54644356 05	-0.14345425 02	0.28444698 02	210.242	21.034	0.113762	10	41.454

FIXED HIR FLAP AT STA 18 LACK WITH ANALYSIS WITH AMARKA SPIR LOCS T 469 CTP 548 FLT AG4+0 TP 1

#J Captifeter C4	f J	cu .	PELIC	PSIJC	KAPLOVI.)	1	FREQUENCY
-0.42562715 C4	0.12004655 05	0.1 737568 05	109.531	109.531	1.000000	1	4.149
C.4447507 C4	-0.14316527 04	9. 5 129 EUSE 04	145.445	177.729	0.449835	į	8,299
-0.75105427 04	-0.1721716F C4	0.51194416 34	2.4.712	75.571	3.431956	•	12.440
-L. se-116de Cs	-0.11827315 04	0.14048478 04	277.740	59.335	0.110292	i	16.558
-0.410(2070 63	-7.60644558 63	7.74544/55 03	214.083	46.017	0.050838		20.747
C.14176575 C3	-9.8777440F 03	0.5:030715 03	274.793	44.637	1. 369856	ė	24.146
2.61713058 03	0.48646215 02	0.11505767 03	4.526	0.648	0.048287	,	29.146
C. Jan Jelan Ca	C.A. CAPUDE C3	0.46442026 02	55.664	6.751	0.045667	i	33.195
C.11187777 CI	0.65572955 01	0.65573905 03	85.174	5.964	1. 151755	è	37. 344
-0.41663730 02	0.7657175F C3	0. 1005 1108 03	105.771	10.5/7	0.023594	10	41.454

## HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 22 V= 120.5 KTS n= 1.45 g

FIXED HUB CHORD AT STA 18 HARPINIC ANALYSIS MODEL AND THE SPIR 1000 T 469 CTR 948 FET 404-8 TR 3

	rJ	·	PHIJE	PSIJC	CJ/CJMAV	·	FPECUENCY.
C. 442(834F 35							
C.541*251F C5	1.75672718 05	0.47657445 05	54.412	54.417	1.000000	1	4.149
C.Fr14441 C4	C.4059359 04	0.05212416 04	25.710	12,605	0.102321	2	8.790
3.25514417 34	- 1.12352735 75	J.1765703F 35	241.662	£7.P87	C.1759PF	•	12.449
-C.9eC1215: 02	0.47679136 03	0.479-1761 03	95.640	23,512	0.010483	4	14.598
C. 34 346797 C2	-0.10672765 C4	0.19678925 04	271.548	54.389	0.011476	5	20.147
-2.5135337F 03	- ).36574575 34	3.3543415F 34	261.671	43.605	0.042346	ě	74.196
-C.2(C*46*F C4	-7.14417377 C4	0.24578265 04	216.671	30.953	0.026843	7	25. 646
-C-10005130 C4	0.42510201 03	C-1144277F C4	157.528	19.742	0.212297	Ē	33.155
-6.35474124 33	- 3.61276645 :2	3.36683895 33	192.721	21.415	1. 103963	•	37. :44
-C.71448C75 01	0.5741 C454 C3	0.41/05426 03	141.179	14-118	0.007855	16	41.494

PLADE FLAP AT STA 174
HALMIN IC SMALVSIS MINEL ANDSCA SHIP 1035 T 469 CTR 948 FLT 634.3 TH 50

<del></del>		c ₁		- 11.11	PSIJC	CJ/CJMAX	3	FRENLE NCY
C.24!1474F C4								
C.3322211F C4	-0.37545465 04	0.50136458	04	211.501	311.501	1.000000	1	4, 149
-0.4:355371 34	J.1756476# 34	3.34#1924E	14	149.716	74.858	). A94REP	2	8.299
C.C127524" C1	0.114C716F C4	0.14606296	04	51.250	17.117	0.291331	1	17.440
-C.31745814 C7	-0.7742220E C2	0.7"571176	0.3	122.847	48.212	7.064965	4	16.578
-6.52882745 31	70.10882125 00	1.55474198	33	162.215	22.463	3.11 3647	•	20.147
-C. 75047767 07	-1.44354925 03	2.51501626	03	231.711	30.618	0.112815	é	24.096
-C.625C511: C2	- 1.25157507 (3	0.10450406	03	257.3€€	26.057	2.06.1015	1	29.646
C. * e 7 c 1 1 1F C !	-1.24212115 33	3.61/3538*	33	336.895	42.112	3.123363	E	33.195
C.32424COC G3	-9.77671715 67	0.71775425		747.155	30.578	0.066320	5	37, 244
C.265E754F C1	-1.1652C32F 03	0.31515315		327.520	22.753	0.062855	10	41.494

BLACE CHARD AT STA 176
HARMINIC ANALYSIS MIDEL AM-56A SHIP 1009 T 469 CTR 948 FLT 604.0 TR 42

٨	EJ				PH1JC	PSIJC_	_ CJ/CJMAX	J_	FREQUENCY.
0.28438946 05									
0.12912016 05	0.1691116E	05	0.21276926	05	52.638	52.630	1.000000	1	4.149
9-42245435 04	0.3241780E	03	0.4236961E	04	4.380	2.194	0.199134	2	8.299
-0.34306726 04	-0.53254RPE	04	0.43894486	04	234.455	78.018	0.300310	3	12.448
G-19131c0t 04	0.1642386E	03	0.1920368E	04	4.966	1.242	0.090256	4	16.598
-C -0520051E 02	C.1113004E	04	0.14250316	04	131.297	26.279		5	20.747
0.325CA1GE 03	0.53065626	03	0.4140967F	63	59.783	9.964	0.028862	•	24.894
C.31607-6 03	-0.7:2032UE	U 3	C. 6436414E	63	292.041	41.770	0.034653	7	29.046
-0.8261812F 03	-C.6031479E	03	0.101t 084t	04	21e.330	27.041	0.047849	e	33.195
0-720-946F 03	0.80751766	03	0.11194476	(4	45.797	5.089	0.052614	•	37.344
-0.4374697E 0?	-0.40t Posne	01	0.43748F3E	03	186.535	18.054	0.070562	10	41.494

BLANE TORSION AT STA 131.5 MARMONIC ANALYSIS MONEL AM-SOA SHIP 1009 T 469 CTR 948 FLT 604.0 TR 44

LA	61		PHIJC .	PSIJC_	CJ/CJMAX		FREQUENCY
-0.5236523E 03							
0.18282975 04	0.16052936 64	0.2433023E 04	41.284	41.284	1.000000	1	4.149
-0.107e 375E 04	0.5:31152E 03	0.1196759E G4	154.060	77.040	0.491881	2	8.249
0.3455R7AE 03	0.31364036 03	0.46682678 03	42.244	14.001	0.191271	3	12.448
-0.2919114E 03	0.6767236E 02	0.2899199E G3	166.502	41.625	0.119160	4	16.598
-0.359562CE 03	0.81446546 03	0.89466426 03	113.692	_ 22.730	0.367809		20.747
-0.72475ABE 03	-0.3456445E 03	0.80295876 63	205.497	34.249	0.320025	•	24.896
-0.16570536 03	-0.1061852E 03	C.2139234E 03	209.760	29.966	C.027925	7	29.046
O. + 12EnGle G3	0.3m33580E 02	0.6140779E 03	3.579	0.447	0.252393		33.195
0.29751596 03	0.60673498 02	0.30363946 03	11.526	1.281	0.124799		37.344
0.14945448 03	0.15t 7556E 03	0.218173PE 03	46.690	4.669	0.089672	10	41.494

## HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 23 V= 122.5 KTS n= 1.66 g

6 B					2.2.		
41	*J	CJ	PI LUC	PSIJC	LINCHAX	J	FFEGU-ACY
C.445(USA4 G1							
3.1272749F 31 -C.1C27491: CC	-1.25022005 01	0.12674052 00	730.205	110.209	1.000000	!	4.167
-C. 18C1985"-C1	-0.72678155-61 0.54671155-01	0.10361675 00	215.127 148.155	107.564	0.025066	3	8.333 12.533
-5.91474444-31	1.57558425-02	0.04157116-01	114.474	44.114	0.018695	i	16.667
-2.46767595-61	* 4.10350727-01	0.41731745-01	154.223	31.845	0.010272	•	20.433
-C. 37350567-C1	-1.10151095-01	11.3 1552324-01	197.258	32.900	0.006742	é	25.233
-3.461*812*-32	-1.14413845-14	1.44 05 849 6-07	140.270	25.748	2.731930	ì	25.167
C. 3154219 -C1	1.26-77.05-07	0.5707554 '-01	1.193	7.390	0.010331	ě	33. 113
-0.17174274-01	-9.11535767-02	0.1.231675-01	195.553	23.617	0.002424	•	37.533
-3.36347347-31	1.14457441-12	1.76376728-31	177.70	17.770	0.007163	10	41.167
		-					
SHAFT HOHENT	WORES AND BUILDING	IP 1005 T 469	(Tu 340 E		TA 14		
Wa-40-00 14-00 15-15	ACTIVITY STATE OF	11 1007 1 407	CIA 109 F				
					A . 6 A . 11 A 11		
#J	4,1	Cl	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
-0.1301.664F 05	A 5121.116 A6	0.42235135 05	141 044	141 164	1.000000		4.167
-0.89466346 05	0.51714115 05 -0.4015000F 04	0.47272435 06	2 24 . 161	141.346	0.057470	į.	0.333
-3.52353F7E U4	-0.4047#ubf 05	0.41411075 05	202.672	07.557	0.496157	3	12.500
-2.17033.7F 04	-J. 2818361F U4	C. 3.+0516E U	231.231	54.383	0.040611	4	16.667
-3.110+1415 05	0.1915-03F G4	0.11204745 05	170.161	34.032	0.130/67	5	20.033
3.14160551 04	D. CLLLYTIF C4	0.21113455 01	+7.163	7.860	0.034260	i i	25.00C
J. 1/62: 9UF U4	-3.66561215 04	C. 70773 +5 = 04	244.647	44.801	0.093071	7	29.167
-1.1122444 04	U. in7471 of Us	0.20424741 04	171.879	21.487	0.024836		33.333
-3 . 3503 Lit 04	J.341J9136 C4	0.41407735 06	147.801	14.200	0.050436	9	37.50C
-3.413045'F UJ	U. 2CE35425 04	0.21243496 04	131.213	10.121	0.025823	10	41.067
		CJ	DE140	PSTJC	CAICIMAY	J	FREGLENCY
-C.1 ? ( C P P C P							
6.15:53631 35	-3.25737336 33	J.2C?92Jef J3	276.258	276.756	1.00000	1	4.167
C.12765*2* C3	-).8537520F 12	0.15354816 02	126.242	162.121	0.522591	,	8,173
-C.1 Secrett C?	-0.16337647 03	0.2/842495 01	223.075	74.358	0.913584	•	12.500
-0.14536771 32	1.14764645 31	1,3P9H 136F 32	177.337	44.325	1.132666	•	16.647
-6.7375975 65	-3.64700000 02	0.65847035 07	250.255	50.051	0.234316	•	20. 533
C.99194CC! C2	-3.40721295 02	0.10707598 07	?*7.875	56.313	0.364476	ę	25.000
C.50841357 C2 -C.13673595 C2	-0.2523253E 02	J. 5875F475 J?	233.635 157.568	47.658	). 1931 74	?	29.167
-C.547C4C4F 07	-0.13972965 C2	0.1655215F 02	211.040	19.696 23.538	0.124540	Ę	33.323 37.500
-0.25229550 02	0.130176F 02	3. 3/ 32 /BEE 32	155.872	15.587	1.139135	13	41.667
FIXED 'NUR FLAP AT	CTA 10						
HICKO IC MATTARIS		TP 1335 T 469	(TR 789 FI	.T 634.0 1	r• 1		
aj			<b>A.</b> 1.40	nee.e	e 1 48 144 14		*****
CALEPTION CS	×1	ć.	DF 1 JC	. PSIJC	(1)(14) 4	J	EBECOENCA
-C. 6221669F C4	0.8272602E C4	0.11756436 05	135.290	175.290	1.00000	1	4.167
C. ** ? 1719F G4	1.15944675 )4	3.5758339E 34	347.683	171.941	).48967E	2	4, 133
-C.49671377 C4	-0.30854078 04	9.5144 ( CBE 04	211.868	70.623	0.496985	•	12.500
-C.1476412F C4	-0.17779655 04	0.2145CORE 04	214.675	12.656	0.199507	4	14.667
-C.1693746E C4-	"=0.7122451E CT	3.1836547E 34	2)2.014	43.563	). 1567 LP	•	10.833
-0.7414840 03	-3.14602005 03	0.96056645 01	191.410	31.902	0.081689	e	25.000
C.13C7151F 04	-0.5205371F C3	0.17404216 04	343.005	45.001	0.151454	7	25.167
0.25571171 03							
	0.78409185 63	0.P394717E J3	64.381	0.635	). )713fe	Ę	33. 133
C.4CCESTIF CT	U.7C474P6E 03	0.81691305 03	60.367	6.707	0.068954	•	37.500
		• • • • • • • • • • • • • • • • • • • •					

## HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 23 V= 122.5 KTS n= 1.66 g

FIXED HUB CHORD AT STA 18
HAS 40HIC ANALYSIS MINEL AF-56A SPEE 1019 T 465 (TR 789 FLT 604.0 TR 3

1,0		11 Table 1 (2) 123 22	PETJC	SIJC	CJ/CJMAX	J	FREDLENCY
C.SAEFLTTF CS							
C. # 45 2C 19C 05	1.57201476 05	0.10205038 06	34.077	34.077	1.000000	1	4.167
3.2:211320 35	1.1845116 34	3.2035547E 05	5.712	7.604	0.199377	2	R. 113
C.2C754507 C4	-7.16756717 05	0.18334755 05	277.Ce1	\$2.354	1.165390	•	12.500
C. 2 10 el 11 C C 3	-3.11554314 63	0.12532025 03	251.665	27.917	0.0080*4	4	16.467
-3.12343477 34	-).2769219F 34	3.4761442F 04	220.528	44.106	3.041742	•	20.431
-C.2512542F C4	-0.17574777 04	0.7.289884E C4	215.595	?5.933	0.030266	•	25.CCC
-C. 'er 6727" C4	0.12718115 C4	0.49652226 04	117.597	23.226	0.040016	7	29.167
2.123*738* 33	1.1 35 24765 34	3.1357773F 34	93.455	10.432	0.010361	F	33.333-
C.1472558F C4	0.28157605 03	0.16561115 04	4,555	1.062	C.010614	٩.	37.1CO
C.287CE337 03	0.9C744245 03	0.45525798 03	70.742	7.074	0.038378	10	41.667

BLADE FLAP AT STA 174 HAT HE' TO ANALYSIS MITEL AND SHIP LOGS T 469 OTR 769 FLT 604.0 TR 50

6.3		16.0		c.,	PFIJC	PSIJC	CJ/CJMAY	J	PREULENCY
C.2674 1675	C4								
2.26667296	34	-3.35/ 53395	24	0.52505/65 04	217.322	317.322	1.000000	1	4.167
-5.3136757	C4	1.975/3125	03	U. 71 67 047 04	10.0 . 20 5	F2.683	0.734272	2	9. ? " 1
100110110	63	2.18117765	C4	0.1545 7266 04	74.05€	26.353	C. 350851	•	12.500
-F. 6 cee231c	0.2	-0.23615376	13	3.7:78:095 13	190.664	47.671	1.14 12 75	4	16.661
-(.01177616	Co.	"-0. F254554F	02	0.01762975 03	144.226	27.067	0.160714		20. 633
-0.24224745	63	-0.452791CF	C3	0.41707108 03	241.826	40.304	2.097550	ŧ	25.C00
C.45460701	_	-0.24001005		3.5536653F 33	334.16)	47.737	1.124653	7	25.167
C.9472479"	-	2.1206-1-5		0.15434766 04	51.477	6.479	0.293461	F	13.313
C. 16 124445		0.4591 ( 95		0.5[ 84+ 70# 03	51.206	5.710	C-111665	5	37. 00
C.4592134F	_	-0.17765214		0.4 55 3568 03	157.52)	35.792	3.393375	15	41.667

BLADE CHORD AT STA 17% HARMONIC ANALYSIS MODEL AM-56A SHIP 1009 T 469 CTR 759 FLT 604.0 TR 42

AJ	8J	CJ	PHIJC	_PSIJC	. CJ/CJMAX		FREQUENCY
0.24019136 05							
0.16734729 05	0.15291658 05	0.72662298 05	42.401	42.401	1.000000	1	4.167
0.7942543E 04	0.2749838E 04	0.8255063F 04	15.015	7.908	0.364264	2	0.333
-0.12359256 04	-C. 90 7745E 04	0.977f082E 04	262.737	37.579	0.431381	3	12.500
0.16796458 04	0.25004476 04	0.30126276 04	56.114	14.029	0.132936	4	16.667
-0.19132( 3E .04_	C.3614345E 03	0.1450657E.C4	168.725	33.745	0.086084	5	20.833
-0.1136527E 04	C.4369861E 03	0.12561046 04	154.749	25.792	0.055546	6	25.000
0.20682675 04	0.64471116 01	0.20682776 04	0.178	0.025	0.091265	7	20.167
0.1160571E 03	-0.1627305E 04	0.1626451F C4	274.092	34.261	0.071769		33.333
-0.15547146 04	-0.4045261E 03	0.16064858 04	194.585	21.620	0.070000	•	37.500
0.63832626 03	-0.3056599E 03	0.707734LE 03	3?4.413	33.441	0.031230	10	41.667

BLADE TORSION AT STA 151.5 HARMONIC ANALYSIS MODEL AM-56A SHIP 1009 T 469 CTR 789 FLT 604.0 TR 44

	AJ				C.J		PHIJC	PSIJC	. CJ/CJMAX		FREQUENCY
-0.1	4170516	03									
0.1	492763E	04	0.2012606E	04	0.3184194E	04	62.043	62.043	1.000000	1	4.167
-0.1	330493F	03	0.43300276	03	0.85180716	C3	149.305	74.692	0.767511	2	2.333
0.1	3012736	03	0.9207051E	02	0.74393628	63	7.106	2.349	0.233603	3	12.500
-0.4	4902598	03	-0.6955C91E	03	0.95129716	03	226.980	56.745	0.298756	4	16.667
-0.1	709241E	04	0.3290587E	02	0.170955EE	04	178.897	35.779	0.536289	5	20.933
-0.1	1704776	04	-0.4204971L	03	0.12427146	04	199.761	33.273	0.390591	6	25.000
0.5	142C41E	02	0.24971928	03	0.25579506	03	77.487	11.070	0.080333	7	20.167
0.4	3406496	03	0.18161686	04	0.1879512E	04	75.075	9.384	0.590263		33.333
0.1	445292F	03	0.24090286	03	0.2809321E	03	59.038	6.560	0.008227	•	37.500
	57976 BE		0.7216822		0.11211418		139.931	13.993	0.035210	10	41.667

#### HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 24 V= 121 KTS n= 1.57 g

BLAGE PEATHER ANGLE MET LANTOCK SHIP LOUD THOSE CIP MODERLE BOOK OF THE ST

3.55-553 . 9F	٠.٠	CI	PHIJC	PSÍJÉ	CJ/CJM4X	J	FREQUENC Y
J. 497425C 01 -3.53443727-02 -3.61491647 30 -2.5376227.2927 3.62976317-02 3.42095957-04 -0.621649.7-02 3.44165777-02 -3.2446757-02 J. 72536647-02	-J. 2-72530° Q1 -J. 21949_16 O1 -J. 21949_17 O1 -J. 219437-02 -J. 4929437-02 -J. 4929437-01 -J. 1929533:-61 -J. 1920575-03 -J. 114936-C1	0.1121167 01 0.21797312 03 0.1232225 03 0.123225 01 0.1343045 01 0.1217225 01 0.1210000 100 0.121721 16 01	33.606 269.036 147.409 407.653 74.141 321.732 32.921 82.979 192.939 301.910	33.606 13+.50+ 62.+70 52.+63 14.42e 53.622 53.622 53.622 53.621 10.372 21.392 50.171	1.009000 u.u43030 J.u25576 J.008364 J.003940 J.010479 J.005947 J.005947 J.00584	1 2 3 4 5 6 7 8 9	4.132 8.264 12.357 16.525 20.601 24.793 28.926 33.056 37.196 41.322

#### SHAFT HOMENT

HIPMUNIC ZAFLYSIS 400EL AM-SOA SHIP 1009 T 469 CTR 953 FLT 604.0 TR 36

AJ -0.3314110F 04	83	CJ	PHIJC	PSIJC	CJ/ CJMAX	J	PREQUENC Y
-0.40311411 U5 -0.6031050417 U5 -0.41350407 U5 -0.41350407 U5 -0.41047047 U4 -0.401474197 U4 -0.40174271 U4 -0.40274571 U4 -0.40274571 U4	0.7241/77F C5 -0.1823241F C6 -0.7002478E U5 -0.155357E C3 0.5613147F C4 0.2144752F U3 -0.5017/15F C4 0.1311024F C4 0.8002724F O3 0.1152255F U4	0.8101046E 05 0.1424525 06 0.32335123 05 0.2402056 03 0.71 192545 06 0.1343975 06 0.1317276 06 0.2514255 06 0.15471345 06	116 - 629 250 - 886 235 - 417 317 - 665 126 - 121 168 - 105 231 - 626 92 - 919 17 - 753 46 - 224	116.629 125.443 78.472 79.916 25.024 24.017 33.118 11.615 1.773 4.822	1.000000 0.023819 0.399191 0.003039 0.088078 0.012845 0.014382 0.016204 0.034665 0.019373	1 2 3 4 5 6 7 8	4.132 8.264 12.397 16.525 20.661 24.793 28.926 33.056 37.190 41.322

#### PITCH LINK TENSION

Missist Systems ( America Community Chief 1904 Tabb CTR 953 FLT 604.0 TR 11

: ا ون تايونونونونون	e)	CJ	PHEJC	PS IJC	CJ/CJMAX	J	FREQUENCY
-0.42/35/7.02 1-10/11/7.03 -0.11/9-22.03 0.42/35/2.01 -0.10-10/17/17/02 0.930/914/7.02 0.930/914/7.02 0.42/31/09/06/7.02	-9-23-3551	2	262.8n2 26.02n 237.02n 270.428 210.425 240.02 240.02 202.020 204.019	262.365 103.327 73.270 67.110 51.277 59.821 2.370 25.331 22.009	1.00J000 U.7U4d1U U.94J713 J.U89722 U.359J76 U.252777 U.11J571 U.111J14 U.26J00U	2 3 4 5 6 7 1 9	4.132 8.264 12.397 16.525 20.661 24.793 26.926 33.078
-4.1515117 05	- gergeniane C	9-+914551- 05	210.7.5	21.271	0.17:13:	10	41.322

FIXED HUR FLAP AT STA 18
HITCH THIS EVALUATION HOTEL SHIP LUBRE T +69 CTR 453 FLT 604-0 TR 1

7 g 3 - 6 + 8 z 7 + 6 1   114	FJ	:,	PHIJC .	b2 Inc	CJ/CJ48X	j	FHEQUENCY
-J. 53 boltob' U. 100 17 0 5 201 UJ. 53 0 4 2 1 1 UJ. 53 0 4 2 1 UJ. 53 0 4 2 1 UJ. 53 0 4 2 1 UJ. 53 0 5 1 UJ. 53 0 5 1 UJ. 53 0 5 1 UJ. 53 2 7 5 7 4 UJ. 53 2 7 5 7 4 U.	0.10/2004 0 -0.4511-36 0 -0.2502814 0 -0.2502814 0 -0.250272 0 -0.2502702 0 -0.25022 0 -0.25024 0 -0.25024 0 -0.45024 0 -0.4502713 0	### ##################################	41.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10	117.30 \\ 1/a.197 74.221 24.115 4/.160 44.317 2.363 9.151 6.356 11.30	1.000000 0.531192 0.427313 0.141299 J.097903 J.071703 J.084322 J.082102 0.041411 J.042427	1 2 3 4 5 6 7	4.132 (8.264 12.397 16.525 24.601 24.733 28.926 33.036 37.120 41.322

#### HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 24 V= 121 KTS n= 1.57 g

FIXED HUB CHORD AT STA 18

HAT THE TOTAL THE BOOK SHIP LOUP THOU CTR 950 PLT 604.0 TR

? J	8.3		:,	PHIJC	PSTJC	LJ/CJMAX		FFFOUE IN
0.234781.5 35							-	
3.6700453" 35	J. 7877+3U"	US	J. Lusaffate Up	49.337	44.337	1.000000	1	4.132
J.#14uE/2: .4	0.1632305	C+	J. 3413+012 04	7.050	3.363	0.0 au 46 d	2	8.464
J. 24155764 JA	-0.1385444°	C5	J. 1+1135+: US	201.507	93.430	0.135673	3	12.397
-3.2265CHFc U4	3.9.1261.95	23	0.2+01211 : 44	151.001	34.405	J.073542	4	14.529
-0.175-4331 34	3.15720 447	03	0.17.52.00 Co	174.841	34.970	J.0 Lu49+	5	20.661
-3.23637247 03	-J. t 392 701.	UJ	0. 11.7217: Us	224.671	44.375	J.008344	U	24.793
-3.1327727 04	J. 6465912"	c i	0.1+10/17 U4	164.000	66.422	0.010045	7	20.946
-3.1152551, 15	J. 24 120 30"	0+	0.2.73/3/* 04	43.207	11.203	J.023015		J3. U5 8
0.173-514- 04	-J. 1224722°	63	0.17n+12a? 0+	3++.452	38.56B	0.016985	9	37.190
1.63929207 33	-J. ¿Cole¿s.	CJ	J. #11416LE 03	140.070	34.086	3.006741	10	41.322

BLADE FLAP AT STA 174

HAT WHIT THE HOLE AN-SOL SHIP LODE THOSE CTR. 953 FLT GOOD TR. SU

	27	6.1	PHIJC	PSTIC	SJ/CJMAX	J	FREQUENCY
3.24255.11 04							
1.3470274 UP	-0. 1963525 30	1. 1.27.14: 04	304.000	304.455	1.000000	ı	4.132
-11.62444443 34	3.2423023" 64	0.1/201125 00	131.745	64.012	0.7/5446	4	8.264
3.476915J. C.	G. M. Jan 17" CJ	3.1123322 60	24.051	4.117	0.351248		12.397
-2.33117674 03	J. Juny3 147 03	0.4712333: 03	133.343	32.085	J.U80056	4	10.529
-2.0597623" 03	0.291+311 03	0. 1212124: 35	130.100	31.234	0.12107	5	20.661
-3.52446205 03	-3.3859834. CZ	0. 52 15/147 03	143.554	J46. LL	0.113303	6	24.743
-3.21+36 *** 33	-J.6714715 Os	0.73/2227- 05	440.513	33.210	J.135015	7	28.526
3.4267245 03	- 3. 4647204 33	0.11120135 04	242.233	30.704	U.180703	4	33.05E
c. 21020cec.1	-0.4003070. 03	0. 2502 . 25 . 63	100.567	14.3.3	0.104472	3	37.190
-0.000105/7 02	-J. 15871 75° C1	3. 30+2 112 63	200.057	20.30 .	0.00536	10	41.322

BLADE CHORD AT STA 174 HARMONIC ANALYSIS MODEL AM-56A SHIP 1009 T 469 CTR 953 PLT 604.0 TR 42

AJ		BJ		E1		PHIJC	_PSIJC	_CJ/CJMAX_	4	FREQUENCY .
0.29666875 0	5									NO SERVICE
0.1753744E C		0.12469006	05	0.21518316	05	35.413	35.413	1.000000	1	4.132
0.55528A3E U	4	-0.1245361E	04	0.56908016	04	347.359	173.680	0.764463	2	8.264
-0.62197816 0	4	-0.45930016	04	0.7732313f	04	214.449	72.150	0.359336	3	12.397
0.1052583E O	4	-0.50962946	03	0.11690316	04	334.209	83.552	0.054327	4	16.529
0.2094076E C	4	C. 9154756E	63 .	0.2276286E	04	23.714	4.743	0.105784	5	20.661
0.25632356 0	3	-0.166G465E	03	0.3054075E	03	327.064	54.511	0.014193	6	24.793
-0.63839318 0	3	0.13499488	03	0.6525103F	03	168.060	24.069	0.030323	7	70.976
-0.193015AE 0	4	0.1247529E	04	0.2369174E	04	146.708	10.338	0.107312	8	33.C!8
0.13641401 0	4	-0.7495654E	03	0.1556510E	04	331.212	36.801	0.072334	9	37.190
0.18379276 0	3	-0.1404574F	02	0.18432986	03	355.630	35.563	0.007566	10	41.327

PLANE TURSION AT STA 131.5
HARMONIC ANALYSIS MODEL AM-BAA SHIP 1009 T 469 CTR 953 FLT 604.0 TR 44

LA				PHIJC _	PSIJC_	_ KAMLONLO_		- FREQUENCY -
-0.46695836 03								
C.2179070E 04	0.1797450F	04 0.2324704E	04	39.519	39.519	1.000000	1	4.137
-0.9393472E 03	0.71404328	03 0.1122961E	C4	142.567	71.283	0.418791	2	8.264
0.41700111 03		02 0.41627466	03	357.620	119.007	0.148060	3	12.397
-0.6227502E C3		02 0.62907458	03	172.534	43.134	0.272350	4	16.579
-0.23440 **E 03			03	101.084	21.017		5	20.661
-0.8549561E 03				172.660	28.761	0.305152	6	24.793
0.141545 36 03			03	294.520	42.074	0.120742	7	28.926
0.8903467E G3				323.402	40.425	0.392605	8	33.058
0.24352476 03				315.533	35.059	0.120804	9	37.190
0.12012510 03				19.851	1.985	0.045213	10	41.372

## HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 25 V= 111 KTS n= 1 g

BLANE FRATHER ANGLE MAINTAINS MICE AM-504 SHIP LOST THOSE CTN LOU FLT 500.0 TR 31

10 36754166.0	8,		PHIJC	PSIDE	CJ/CJMAX		FREQUENCY
0.03147315E 01 0.4857336E 01 -0.53215232-01 -0.4874.77E-01 0.1350356E-02 -0.3520562E-01 0.1362336E-01 -0.1352336E-01	-U.411U741F Ob -U.350U62F UU -U.4U31411E-C1 0.81C3538F-G1 -U.1234233F-O2 -U.81341F-O2 -U.80U4C44F-C2 0.1373347-O1 0.7652U4CF-O2	0.63633135 UL 0.43.03765 00 0.10.03066 00 0.81049145-01 0.10226077-01 0.103235-01 0.30223377-01	319.759 261.355 243.274 88.942 154.946 194.656 192.932 42.739	319.799 130.678 81.091 22.230 31.999 32.443 27.502 5.342	1.00000 0.055645 0.017052 0.012737 0.00569 0.001734 0.005677	1 2 3 4 5 6 7	4.098 d.197 12.295 16.393 20.492 24.589 32.787
Su-Jackiler.	-J. 6456770E-02	0.1530+34E-01 0.30>/113E-02	152.563	16.951	0.002405	10 6	36.885

SHAFT MOMENT HARMONIC ANGLE ANGLE ANGLE ANGLE SHIP 1009 T NOS CTR 180 FLT 500.0 TR 36

-0.87755Jaf	04	MJ	CJ	PHIJE	PSTJC	CJ/CJMAX	J	FREQUENCY
0.4624514F -0.286470F -0.246213F -0.2460103E -0.2460103E 0.776144H5 0.124605 -0.1737426 0.2350120F 0.39024660	05 0.64 04 -0.11 04 -0.21 03 0.12 03 0.10 01 0.10 04 -0.17 03 0.52 04 0.12	94419E U5 59201E 04 603609E 05 63614E 04 U4566E 04 63295E 03 54568E 04 60606E 02 67809E 03	0.73726735 U 0.33786376 U 0.22467146 U 0.15176775 U 0.97112176 U 0.74476076 U 0.217316076 U 0.13734335 U 0.33734335 U	201.944 5 254.612 123.748 92.715 7.347 306.338 163.342 22.966	54.246 100.472 84.871 30.437 16.243 1.224 43.763 20.416 2.552 32.243	1.00000 0.038740 0.281827 0.019061 0.074143 0.004841 0.027320 0.002276 0.038826	1 2 3 4 5 6 7	4.098 8.197 12.295 16.393 20.492 26.590 28.685 32.707 36.885 40.984

PITCH LINK TENSION
HASSINIC PRALYSIS MCHEL AH-504 SHIP 1017 T 405 CTR 160 FLT 500.0 TR 11

-0.4>11.05	CO.			·· ·· · · · · · ·	-	PHIJC	PSTJC	CJ/CJMAX	J	FREUUENCY
-0.2235402E 0.11036125 -0.9942402E -0.7375520F -0.7324283F -0.4651792F 0.60612855 0.1702472E -0.11245225	01 01 03 03 03	-0.8482150F -0.414327E -0.142491F -0.2673853E -0.2670690F 0.1416446 -0.140449E	02 02 01 02 01 02 01	0.23713336 0.12924019 0.15954027 0.79150377 0.79150396 0.19730+96 0.0239180F 0.238777-96 0.12724373	03 02 02 03 04 05	200.775 340.257 247.223 201.288 175.044 103.756 340.220 50.697	20J.775 1/0.129 82.408 50.322 35.J19 17.293 49.317 6.337	1.00000 0.515375 0.646254 0.331006 0.328385 0.02506 0.02500 0.112393 0.053227	1 2 3 4 5 6 7	4.098 8.197 12.295 16.393 20.492 24.590 28.689 32.767 36.885
0.581050ef	91	-0.39838335	01	0.70.53915	OT	322.204	32.250	0.029460	10	40.984

FIXED HUB FLAP AT STA 18 HARMONIC ANGLESIS NODEL AM-DEL SHIP LOUD T 405 CTR 180 FLT DJO.O TR 1

0.17793285 05	91	ć.j	PHIJC	PS IJC	KAMLD/LD	J	FREQUENCY
0.23077575 04	U.4776770E 04	C.5432227E 04	54.029	54.029	1.000000	1	4.098
-0.32394575 04	-J.2345634F 04 -J.4468977F 04	0.32705535 04	314.533	157.267	0.557510	2	8.197
-0.2660307F G+	0.3053535F C3	0.26/11/1+E 0+	173.452	43.363	0.453689	•	14.295
-0.23001156 74	U.13505J6E C4	0.26783816 06	149.568	24.314	0-453741	5	20.492
-0.39943625 02	0.7357640F C3	0.7358533E 03	93.107	13.301	0.102141	,	24.590 28.689
0.1154193E 04 50 7c517855.0-	0.48423006 03	0.15232628 04	40.544	>.074	0.257574	ė	32.787
0.2/85125 03	U.9251465E 03	0.12)51 17E 04 C.4031432E U3	92.657	10.275	0.20-194	10	36.885

## HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 25 V= 111 KTS n= 1 g Reproduced from systems copy.

FIXED HUB CHORD AT STA 18 MARKUNIT ANALYSIS MCCEL AM-56A SHIP LUDY T 405 CTR 180 PLT 500.0 TR 3

11		8,1		Çj	PHIJC	PS IJC	CJ/CJMAX "	J	FREU JENCY
6.73805445	35								
3.6144404	05	0.82462095	05	0.10297755 06	53.376	53.376	1.000000	1	4.098
3-12373075	J5	0.17019755	C>	0.2117V3JE 05	33.337	21.768	0.207486	2	8.197
-3.71003766	00	-0.110#3315	C5	0.11105+7E 05	266.299	88.700	0.107832	3	12.295
0.57676725	02	U.5667122F	03	しいういつもうきいろ	84.169	21.342	J.005531	•	16.393
-U.0+U7:39F	72	U. 131762 3F	Ca	0.14653275 05	115.429	23.166	0.014227		20.492
0.3500546E	US	-0.1267591F	04	0.11141116 04	205.211	47.>35	0.012955	•	24.590
J.643+620F	UJ	2Pbatect.0	US	0. 73+39u7E US	2+.2+7	4.185	0.007130	7	28.689
-0.38112716	02	J.150-052F	04	0.13JubjeE Ov	91.453	11.431	0.014627		32.787
0.95985168	03	-0.27070921	C4	0.23121336 04	284.519	32.164	0.047892	9	34. 885
3.39255348	02	-3.60609018	03	0. 31733715 03	273.706	27.371	0.005497	10	40.984

BLADE PLAP AT STA 130.5 HERMUNIC ANALYSIS MODEL AN-SOA SHIP LOJO T 405 CTR 180 FLT SOU.O TH 19

Ay				PHIJC	PSIJC	CJ/CJMAX	<del>-</del> <del>-</del> <del>-</del> -	FREQUENCY.
3.127-3035 05								
J.4516727E U4	-0.27910095	04	0. 33265034 04	128.400	324.400	1.000000	1	4.098
-0.1u092657 04	0. 19477376	03	0.11484115 04	154,540	77.270	0.347100	2	8.197
0.28227205 03	U.13095UJF	C4	0.1339581 04	77.336	25.945	0.251494	3	12.295
U.4769.36" 01	-0.34342306	C3	40 :16+4/EC.D	344.211	01.053	0.110360	4	16. 191
0.87676925 02	-0.7CC3602F	03	0.70533336 03	277.136	55.427	0.132513	5	20.492
-J.1731754F UZ	-0.1100415	02	0.20101233 02	214.293	35.715	0.001935	•	24.590
U.972466UF 02	-0.4011632E	CZ	0.13/6935E 05	334.691	47.314	0.020257	7	28.669
40 50862087	U.5438613c	40	C. 614 + 422 5 03	62.911	7.064	J.115741		32.767
-0.13331305 03	0.26746845	C3	60 2+131 avs U3	116.448	12.939	0.056194	9	36.885
0.84542146 02	0.47384925	02	0.1011072= 03	26.378	2.586	0.018847	10	40.984

BLADE FLAP AT STA 174 HIGHOMIC ANALYSIS MODEL AM-SOA SHIP LOUP T 405 CTR LBO FLT 500.0 TR 50

7		6.3		CJ	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENC Y
0.1094793F	4								
J.3100C57F	04	-0.39048145	04	0.49872391 04	308.500	308.500	1.000000	1	4.098
-3.33549646	04	U. 50416525	CS	0. 33 1/032 04	170.534	85.267	0.620719	2	8.197
0.593952LF	33	0.1021161	C+	0.11313344 04	57.810	19.939	0.236764	3	12.295
-0.3756C74E	03	0.17534595	02	0. 1700150 : 03	177.400	44.317	0.075305	4	16.393
-0.35653321	UJ	U. 342/224!	CJ	0.93342148 03	132.635	20.441	0.106307		20.492
-0.77143575	04	0. 16701236	0.3	0.232317aE U3	112.430	14.738	0.040549	•	24.590
0.37055575	03	-0.58094245	02	0. 14274725 03	351.275	50.182	0.076759	7	24.689
J.100/11-L	14	-0.04649105	63	0.17910036 00	334.635	44.454	0.360640	•	32.707
0.71863875	33	0.25859215	CZ	0. 71 213135 03	2.001	0.229	0.144123	9	36.885
0.06004275		0.12317186		0.1317+21= 03	61.814	6.181	0.028007	10	40.984

SLADE FLAP AT STA 205 HANNONIC AVELYSIS MODEL AM-SOA SHIP 1009 T 405 CTR 180 FLT 500.0 TR 20

	-	· · · · · · · · · · · · · · · · · · ·	• ~:	I 67		PHIJE	PSIJC	CJ/CJHAX	J	PREQUENCY
-0.64074448	Co									
-0.14604846	4	0.334283WE	C4	0.19115176	*	120.349	120.349	1.000000	1	4.098
U.3610204F	14	-0.15193405	U3	0. Jol9374E	*	357.594	175.797	0.450241	2	8.197
U.0200?14E	02	-0.95085u7F	03	0. 95287495	3	273.734	41.245	0.242365	3	12.295
0.451.6546	03	-0.35439505	C3	0.92305243 0	3	337.169	84.494	0.234931		16.393
0.2318213L	27	-0.55246415	05	J. obstutes	3	291.356	>8.271	0.161914	5	20.442
-U.5173450E	02	-0.22203ueE	C3	0.22778+33 0	3	250.444	42.814	0.057988	6	24.590
-J.1651 13CE	J3	-J. 956377UE	CS	0.23337435	1	207.363	24.018	0.052996	7	28.645
-0.4324C7UF	03	0.13278528	CJ	0.42374335 0	3	101.736	20.217	0.10/780	•	32.767
-0.16411865	03	-0.7213636°	CZ	0.1/927228	3	203.727	22.030	0.045598	9	30.845
0.80404305	92	-0.52/68145	CZ	0.46002115	2	J26.870	32.688	0.024571	10	40.984

## HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 25 V= 111 KTS n= 1 g Reproduced from best evailable copy.

BLADE PLAP AT STA 235 MANAUNEC ANALYSIS MUDEL AN-364 SHIP 1009 F 405 CTR 180 PLT 500.0 TR 4

•	0.12200065	04		-		" PHIJC"	PSIJC	CJ/CJMAX	5	FREQUENC Y
	0.40466826		0.1407024		0.19042228 04	48.549	88,589	0.673601	ı	4.094
	3.56191911		-0.14021376	C3	0.24213+12 04	357.042	174.546	1.000000	2	8.197
	101666.0	U	-0.46505795	63	10 361 16869.0	311.169	103.730	0.225506	Ĭ	12.295
	0.10972975		-0.35050345	03	0.1152+136 0+	142.294	82.574	0.344426	T.	16.393
-	-0.2520206	02	-0.6051855E	C3	C. eesse .24! 03	207.430	23.200	0.227415		20.492
	-0.14025415	03	0.20111335	03	0.2.52121: 03		20.817	U-043921		24.540
	U.3463207F	03	0.01500816	uZ	0. 332/4715 03		1.492	0.121744		
	0.13733356	40	U. 1 800034F		U. LJau+/45 0+		1.236	0.371834		28.LA9
	0.5528CB1E		0.14539725		C. 18032505 03	*****			1	32.787
	U.1101564E		U. 1 d 349/4E		0.21191146 01		2.103	3.200663	. 9	36.005
	4111013007		0.10334345	03	0.21393345 03	59.009	5.401	0.073216	10	40.984

BLADE FLAP AT STA 270
HAPMONIC AVALYSIS MODEL AH-56A SHIP LOUM I 405 CTR 180 FLT 500.0 TR 26

A.J		RJ.		C.J.	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
-0.25361435	04							_	
0.11693416	04	0.158804JE	03	0.11831225 04	7.736	7.736	0.727367	1	4.098
0.16615755		U.3954779E	02	0.16224576 00	1.397	0.698	1.000000	ž	8.197
J.531727cf		-U. 20541+JE	C3	0.5/108135 03	334.880	112.960	0.351369	3	12.295
U-110-207E		0.10025445	C3	0-11393.00 00	5.185	1.296	0.683744	4	16.393
-U.104517UF		-U. 5508712E	03	0. 276347+7 03	252.846	50.574	0.355244	5	20.492
-0.120re7aF	-	3.75274045	Cs	Eu Ebosture.0	113.309	14.398	J.213828	6	24.590
0.6501C5UF		0.2351411F	C3	C. 61016155 03	14.717	2.417	0.421576	7	28.685
J.127574cf	0.4	U. 24258005	U3	0.1532230: 04	33.629	4.204	0.944393		32.707
J.6310371E		0.123/4388	C3	0.6+135546 01	11.095	1.233	0.390347	9	36.845
-0.32737455	23	-0. al50773t	01	0. 327.736 7 03	181.426	18.143	0.201840	10	40. 984

BLADE CHORD AT STA 103 HER FUNIC EVELYSIS MODEL AH-364 SHIP LUJ9 T 435 CTR 180 FLT 500.0 TR 17

·		· · · · · · · · · · · · · · · · · · ·	-	CJ	PHIJC	PSIJC	CJ/CJMAX	<u>-</u>	FREQUENCY
0.17325455	36							•	
9.55911416		J. 14602145		0.21135825 05	12.556	12.250	1.000000	1	4.094
-0.22101675		D. eflouct		0.71033315 04	107.479	53.790	0.263869	2	4.197
+J.764>1JYE		-0.91732345	9	C・ 4477177: 07	203.540	88.504	0.030115	3	12.295
3.27475615	Ú4	J. 103967CF	C3	0.27471275 04	2.167	3.542	0.101339	4	16.393
J.057JU51F	03	-J. PUL44-6"	CJ	0.13110235 04	307.254	61.451	0.040118	5	20.492
3.1235.055	U	0.3119906F	<b>J</b> 3	0.33553136 03	68.400	1100	0.012366	Ĭ.	24.590
J.243046FF	03	3. Jlebbojs	UZ	G. 2 >> 1 3 3 7 € 03	7.428	1.061	0.004032	7	28.689
-1.2013281	02	-J.2504740L	0.5	0.21/63035 03	200.122	33.265	0.010969	-	32.747
-0.10136445	04	0.16527085	04	0.1931491= 06	121.527	13.503	0.071452	3	36.895
0.21470055	03	0.53115975	03	0. 27+42+18 03	07.020	6.162	0.021169	10	40.564

BLADE CHORD AT STA 235
HATMONIC ANALYSIS MODEL AN-56A SHIP LUDY T 605 CTR 180 FLT 500.0 TR 22

AJ		63		CJ -	PHIJC	PSIJC	CJ/CJMAX	- J	FREQUENCY
-0.24804765					400	10			
0.42184536		0.5807644		0.71740+12 0+	54.007	54.307	1.00000	l l	4.098
3.14516216		0.1824196F		0.2342113E 04	45.125	22.502	U.354724	2	8.197
-0.04466725		-0.17523176		0.140711JE 04	249.803	63.268	J.260115	3	12.255
3.676 c 384L		-0. 31663143		0.7556643 03	133.597	83.399	0.105274	4	16.393
3.03475008		0.53408286	u3	0.23/8423= 03	23.222	10.044	0.074929	5	20.492
0.34506675	03	35456899.0	C3	0. 7450116: 03	62.412	13.412	0.104313	6	44.59C
0.55007845		-0.2916547	C3	0.52261325 03	332.067	47.438	0.044719	7	28.085
0.132>2378	33	-0.1104424E	64	C. 1115725 04	276.443	34.035	0.15-900	. 8	32.787
-0.13475765	40	3.24424478	64	0.31.67.15 04	115.345	12.822	U.438415	9	36. 685
-0.25155316	45	0.18833756	C3	Controller 03	143.367	14.337	0.043973	10	40.984

PLANE TORSION AT STA 131.5
HAPMONIC ANTUSIS MODEL AM-SEA SHIP LOUP T 405 CTR LEO FLT SOULO TR 44
CVSHALL CYCL IC LOAD = 0.43953CE 04

ZELO POSITION	USE	1.49		LOAD/IN USED		12705.00				
AJ .				CJT-		PHIJE	PSTJC	CJ/CJMAX	J	PREQUENCY
0.24546245	03									
U.2071021F	04	0.16660705	04	0. 26283498	04	37.721	37.721	1.000000	I.	4.098
-0.93350745	CS	0.47321176	03	0.104654/5	-	153.119	70.559	0.390196	4	0.197
0.12040095	03	0.29561+38	C3	0.32339499	03	67.0+6	22.349	0.123804	3	12.295
-0.14636546	43	U. 234955 SE	C3	0.27789163	03	122.275	30.569	0.105729		16.393
- 0.22496805	03	0.51106239	03	0.5543400	03	66.247	13.244	U.212445	5	20.492
-0.70901640	02	-0.1Cu46 7st	02	0.770 7450	02	167.876	31.313	J.029560	•	24.590
J . 202 7850#	23	0. 33450985	01	0.2328134	43	0.956	0.137	0.077164	1	28.689
J.1204550E		0.100.0116	03	C. 14398 .59	U	5.135	0.642	0.460306	ė	32.747
0.26341066		0.10564700	CJ	0.31116258	03		3.574	0.116388	•	36. 885
0.7748C30ë		-0.31799156					33.769	0.031805	10	40.964

RLAPE FEATHER ANGLE
HAFMONIC ANALYSIS MODEL AM-DOA SHIP LOOP THOSE CTR 252 FLT SODIO TRISL

,,	6.7	C.J	PHIJC	PSIJC	CJ/CJHAX	J	FREQUENCY
J. 631944JF C1						-	
U.402>39JE 01	-0.4441025E 01	U. 6023537E UL	311.934	311.434	1.000000	1	4.167
-3.33565665 00	-U. 35387+65 CU	0.40/10101 03	224.161	114.591	0.077629	2	0.333
-0.5,146496-01	0.9658235E-C2	0.54273509-01	169.706	50.569	0.009010	3	12.50C
0.33570552-01	-0.50509431-01	0.59+>1326-01	300.944	73.230	0.009870	4	10.667
0.413.0546-02	10-31011016-01	0.41+12105-01	2/4.505	50.701	C46300.U	5	20. 433
U.5407C65F-02	0. 3303406F-C1	0. 33473055-01	83.704	13.451	0.00557	6	25.00C
-0 -30+74125-03	-0.1/017695-01	0.17322035-01	268.705	38.386	U.0U2826	7	29.167
-0 -12557695-31	-0-12109296-01	0.17.45375-01	223.959	21.495	0.062496		33.333
-0 -92745355-02	-0.46750511-43	C. 12103147-02	142.884	20.321	0.001542	9	37.50C
-0.41576446-02	0.37135+15-62	0. 11328/21-02	157.929	15.793	0.001641	10	41.667

SMAFT MOMENT MARKETS MODEL AM-DOA SHIP 1009 T 405 CTR 252 FLT 500.0 TR 36

		8.7		CJ =	PHIJC	" PS IJC	CJ/ CJMAX		FREQUENCY
-J.5770C55f	64							•	
-3.34982745	05	U. 11705J6E	06	0.1242337F 06	100.770	108.770	1.000000	1	4.167
-0.9166.06	03	-0.13790825	C4	0.13559176 04	236.340	118.195	0.013326	2	8.333
-0.75578166	04	-0.20019345	C5	0.21323735 05	254.934	84.768	0.233551	3	12.500
J.977227LE	02	U.1358692E	C4	0.14313755 04	80.125	21.531	0.011282	4	16.667
J.5070535E	04	- 0. 4455996F	<b>C3</b>	U.5141219E 04	9.514	1.902	0.041375	5	20.833
0.22381926	03	-0.10842505	C4	C. 1130513E 04	201.511	46.914	0.008905	•	25.006
-0.32543218	04	-0.41673298	03	0.324535+6 04	187.200	26.755	0.02444	7	29.167
-U.5163E5:F	CJ	J. 1 C347 J65	C4	0.1161//0: 04	116.500	14.503	0.009350	3	33.333
-0.J1+1710F	33	-3.45654107	43	0.5375857= 03	257.678	26.409	0.004729	9	37.50C
J.1282700F	U.3	-0.98;33935	05	0.16202158 03	322.343	32.234	0.001304	10	41.667

PITCH LINK TENSION
HAMMONIC ANALYSIS MODEL AN-564 SHIP 1009 T 405 CTR 252 FLT 500.6 TR 11

	7,				PHIJC	PSIJC	CJ/ CJMAX	Ĵ	FREQUENC Y
-0.22016-06 03									
-0.310ctb2f 03	-0.25203035	C2 0	. 1116 ju3E	03	185.377	185.377	0.683304	1	4.167
O. Bancas: Os	-0.3107478E	03 0	thillote.	03	117.054	154.527	1.000000	2	8.333
-0.9249445 01	-0.23412085	U3 U	.2323U5JE	<b>U3</b>	267.718	84.239	0.509327	3	12.500
-0.50686928 02	-U. 6640657F	CZ C	. 33540355	02	232.646	58.102	0.183162	4	16.667
-J. 3c+5+00 '02"	-0.15016197	C2 - 0	. 37 3 72 1 15	U2	202.112	40.422	0:087465	5	20.833
-0.403766UF 02	0.53250205	02 0	. 6682828	02	147.172	21.195	0.146520	6	25.00C
-U.8920423E 31	-0.21807215	02 0	. collects.	02	440.051	35.436	0.051738	7	29.167
U-134345aF 02	-J. J466850	C2 0	1 +051175	02	293.119	30.265	U.085620		33.333
-3.257uC25E 00	J. 7476581E	01 0	72411105	UI	94.023	10.225	0.015964	9	37.500
0.1059COVE 02	-0.18372115	01 0	.166915JE	02	353.081	35.368	0.036596	10	41.667

FIXED HUB FLAP AT STA 18
HARMONIC ANALYSIS MODEL AH-56A SHIP 1009 T 405 CTR 252 FLT 500.0 TR 1

	A.J	BJ		\$J	PHIJC	PS IJC	CJ/CJMAX	·- ·	FREQUENC Y
	-U.1473546E 05								
	-3.2+32:2ef U4	0.2800700F	CS	0.23789955 05	94.841	94.847	1.000000	1	4.167
	J. 2256 72JE 04	-0.18074-11	CS	U. 14414275 0>	270.489	138.444	0.653500	2	0.333
	-0.7700514" 33	-0.66C248GF	C+	0.60480338 0+	261.291	87.764	0.230914	3	12.500
	-0.1520595F J4	-0.59022905	C3	0.14145475 04	213.075	53.200	0.063029	4	16.667
	3.1551143F 04	" "J. 4803677E	C2	0.15342345 06	1.016	0.723	0.053985		20.833
	0.17536597 03	-0.51329425	CZ	C. 23543254 03	344.754	57.472	3.037136	4	25.000
	-0.655712ut 33	J. 4186544"	03	0. 1710/243 03	147.433	21.061	0.02/026	7	24.167
	CO 16824 COC. U	-U.520/841E	C3	0.76374149 03	317.355	37.669	0.026702	À	33.333
	0.10456145 03	J. 36400545	C3	C. +J12583 = Os	74.151	8.239	0.013937	9	37.50C
_	U.2088485E 03	-0.1544014"	03	0.2621233 03	128.526	32.262	0.009105	LO	41.667

FIXED HUB CHORD AT STA 18
HARMONIC ANALYSIS MODEL AH-56A SHIP 1009 Y 405 CTR 252 FLT 500.0 TR 3

		* ** FJ		· · · · c.j		PHIJC	PS IJC	KAMLD \LD	7	FREQUENCY
J.52J71J2E	05									
0.14297315	05	U. 115504 GE	66	0.116450JE	06	84.948	82.948	1.000000	1	4.167
36030ful.U	45	0.33105165	C+	J. 1140721E	J5	16.741	8.390	0.098645	2	0,333
-U.1251778F	05	-0.15011 385	C5	0.17545 102	05	230.176	76.725	0.167848	3	12.500
0.1545 C415	03	0.15402145	04	0.12234142	40	84.244	21.073	0.011144	4	16.667
3.10624325	33	J.18C791JE	04	0.13155.16	04	84.745	10.949	0.015591	5	20.833
3.12284116	04	-0.19372635	04	0.22743345	04	302.383	53.397	0.019700	6	25.000
0.13335276	40	U. 12 = 16UJE	63	0.13345385	40	11.446	2.521	0.009314	7	29.167
-U.444 C20E	U3	-0.33251296	C3	0.10110163	04	199.389	24.924	100800.0		33. 333
-3.55454945	03	-0.3431374!	C3	0.00236132	U3	211./34	23.524	0.000602	9	37.50C
-0.18/53565	43	-0.2749566	00	0.14773605	03	180.084	18.303	0.00,010	10	41.667

BLADE FLAP AT STA 130.5 HAR-FINIC ANALYSIS MUDEL AH->6A SHIP LUDY T 405 CTR 252 FLT 500.0 TR 19

AJ E		. Lu		c)		PHIJE	PSIJC	CJ/CJMAX	- · · · · · ·	FREQUENCY
J.984J2625	3-									
0.48633916	04	-0.28767176	04	C. 54504923	04	329.396	329.396	0.917795	1	4.167
-3.23756158	0+	0.56748315	04	0.01505776	04	112.698	50.344	1.000000	2	4.333
0.24534515	03	U.1822600F	04	0.18400503	04	80.457	26.452	0.259850	3	12.50C
0.75245176	03	0.20148052	CJ	C. 40124443	0.	20.542	5.130	0.130525	4	16.667
0.783+3425	93.	3.4444412	22	" U. 750027JE	03	173.100	34.621	3.127770	5	20.833
-0.59395227	03	0.40069185	03	0. 7>2+2+12	03	141.762	23.027	0.122214	6	25. OUC
-J.2307412F	33	-0.24672526	C3	Phoentet.0	03	225.965	32.201	0.055788	7	29.167
0.2385349	33	-0.17540695	C3	C. 33/007+2	03	328.703	41.088	0.054847	8	34.333
-0.1201C25E	0.5	-0.17977357	03	0.21727146	43	234.452	26.100	0.0.5668	9	37.50C
0.2023105F	03	-J. 1 9045 98E	C3	0.21185647	03	316.728	31.673	0.045132	10	41.667

BLADE FLAP AT STA 174
HARMONIC ANALYSIS MODEL AM-56A SHIP 1339 T 405 CTR 252 FLT 500.0 TR 50

A.J.	• • • • •	63		CJ -	PHIJE	PSTJC	CJ/CJMAX	· · · · · ·	PREGUENC Y
J.16036716	04								
U.4J47510F	04	-0.488366CF	C4	0.63429060 0	4 309.651	309.65 L	1.000000	1	4.167
-0.2364517L	04	0.44554.85	04	0. jj2343+E O	115.423	57.712	0.870332	2	8.333
U.2.6543.E	04	U-1742834E	C4	0. 24515035 0	4 38.694	12.403	0.449558	3	12.50C
-J.68144075	U3	-0.76400825	02	0.68611366 0	3 180.393	40.598	0-108170	4	16.667
3.650668.6-	95	0.30343765	CJ	O. JLundance U	3 100.444	21.300	0.044954	5	20. 833
-0.2314550F	03	0.231300lt	C3	0. 36433-25 0	1 140.591	23.432	0.057440	6	25.00C
-0.6734712E	33	U.55250U2F	C3	0.46317145 0	140.531	23.076	0.137030	7	29.167
-0.3027 6445	33	-0.46714476	CJ	0. 22 101 11E U	\$ 234.672	24.134	0.082552		33.333
-J.31355745	43	0.65496795	CL	0.31352575 0	174.803	17.867	0.049445	9	37.50C
-U.2350672E	33	0.18929442	03	U. 33238626 D	3 141.244	14.124	0.047673	10	41.667

SLADE FLAP AT STA 205 HAR-HONIC ANALYSIS MODEL AM-SOA SHIP 1009 T +05 CTR 252 FLT 500.0 TR 20

AJ	E.J	CJ -	PHIJC	PSIJC	CJ/CJMAX	-	FREQUENCY
-0.659225/F U4					1.000000		
-3.32154475 04	0.51007035 04	0.63276133 04	122.227	122.227	1.000000		4.167
0.20104508 04	-9.5041101E 94	0. 27334+8: 04	314.194	157.097	0.622502	- 2	0.333
-3.321110/5 04	-U.1506635E C4	0.35+/71>2 04	205.167	68.384	0.588415	,	12.500
0.569246dE UJ	0.13699956 63	0. 27092+2: 03	17.510	4.379	0.098999		16.667
-3.2491841F 03	"-0.13324+16 C3	0.20257135 03	208.134	41.627	0.046864	5	20.833
-3.2760:485 03	0.67554948 02	C. 244/444 U3	166.277	21.713	0.047231	•	25.00C
0.1928212E OJ	-0.27439316 03	0.11:10/17 03	305.096	43.585	0.055020	7	29.167
0.10694905 03	-0.66507275 62	0.14924467 03	339.767	42.471	J.U 33044		33.333
U.1877515E OJ	0.34750+95 02	0.1414041 OJ	11.024	1.314	0.032100	•	37.50C
0.1492210 03	-U.1665229F 03	0.2245641 - 03	304.430	30.443	0.037907	10	41.007

BLADE FLAP AT STA 235 HAF HIMTG AMALYSIS MCDEL AM-56A SHIP LUGG T 605 CTR 252 FLT 500.0 TR 6

-0.5006-01 0-	61	c)	PHIJC	PS 11C	CJ/CJMAX	J	FREQUENC Y
-0.650e531F J3 -2.21e6.5=# U4 -0.3507:35F U6 -0.3577:130E U3 -3.5577:130E U3 -3.5578:130E U1 -3.5578:130E U3	0.9187449E 04 -0.7724102F 03 -0.1022270F 04 -0.19134255 03 -0.1029642E 03 -0.64748403 03 -0.4817932F 03 -0.4817932F 03 -0.4817932F 03 -0.4817932F 03	0.23313372 04 0.36313755 04 0.36771755 03 0.5606565 03 0.46722.00 03 0.72403105 03 0.46236116 03 0.46202745 03	340.340 196.258 330.428 190.470 133.268	105.J43 170.195 65.419 82.007 J6.J94 22.211 27.783 33.390 30.324	0.903922 0.630321 1.000000 0.106184 0.155189 0.245531 0.193290 0.132109 0.036156	1 2 3 4 7	4.147 8.337 12.500 14.667 20.433 25.000 25.167 31.333 37.500

BLADE FLAP AT STA 270 AN UNUC ANALYSIS MODEL AM-SAA SHIP LUDG T +05 CTR 252 FLT SUULU TR 26

-0.13965495		. La		c)	PHIJC	PS IJC "	CJ/CJMAX	1	FREJUENCY
	04 03 03 03 03 03 03 03	0.13823636 	C3 C3 C3 C3 C3	0.10-15-0: 0: 0.16-40-11-0: 0: 0.30-07-4: 0: 0.52-41-1: 0: 0.52-41-3: 0: 0.07-41-3: 0: 0.42-42-3: 0: 0.7-49-1: 0: 0.4-4-14-0: 0: 0.4-4-14-0: 0:	7.647 19.949 191.271 205.266 240.623 127.138 195.320 242.906 251.054 215.419	7.627 9.465 03.757 51.322 97.365 21.190 27.903 33.363 27.362 21.372	0.342541 0.5585// 1.000000 0.07875 0.1/1275 0.223341 0.2/1121 0.259441 0.163352 0.0441/6	1 2 3 4 5 6 7	4.167 #.333 12.500 16.667 20.433 25.400 29.167 33.333 37.500 41.667

BLADE CHORD AT STA 103 HANNONIC ANALYSIS MCDEL AM-DMA SHIP 1004 T 405 GTR 252 FLT 500.0 TR 17

J.2057:115		CJ	PHIJC	PSIJC	CJ/CJHAX	3	FREQUENC Y
	4 -0.16501025 3 -0.376220; 5 -0.52604145 5 -0.13191737 0.4893835	03 0.7333393 06 04 0.12711572 09 04 0.30061442 04 03 0.94101222 03 04 0.94332332 04 05 0.13239723 04 06 0.72127123 04	90.734 1.490 227.217 343.663 -330.792 241.851 245.427 272.638 42.727 146.737	90.734 J.745 72.759 85.416 67.359 40.309 35.361 34.380 ~.747 14.674	1.00000 0.13040 B 0.225340 0.103991 0.016681 0.016681 0.023410 0.012786 0.010522	1 4 3 4 5 7 7	4.167 4.333 14.500 10.667 40.83 45.000 29.167 33.333 37.500 41.667

BLADE CHORD AT STA 235 HAFMONIC ANALYSIS MODEL AN-503 SHIP 1000 T 405 CTR 252 FLT 500.0 TR 22

-0.276otCot us		CJ	PHIJC	PSIJC	K AMLD \LD	J	FREQUENCY
U.1418546 02	03 04 03 03 03 03 03	C.4010075 Op 0.14257405 Op 0.26623605 Op 0.1935375 Op 0.21330031 U3 C.25132165 U3 0.74346902 U3 0.72137403 U3 C.31340035 U3 J.15173725 U3	49.920 359.393 209.503 343.544 29.938 29.938 198.999 198.999 107.487 325.513	49.920 177.177 67.846 95.886 94.142 24.350 37.364 1.943	1.00000 0.100345 0.301701 0.21969 0.023996 0.028320 0.084285 0.081150 0.04850 0.017065	1 2 3 4 7 6 7	4.167 8.333 12.50C 16.667 40.833 25.00C 49.167 33.332 37.50C

READE TORSION AT STA 131.5 HAS 4UNIC ANALYSIS MODEL AN-SOA SHIP EQGI T 405 CTR 252 FET 500.0 TR 44

AJ		6J		· · · · · · · · · · · · · · · · · · ·	PHIJC	PSIJC	CJ/CJMAX	-	FAEQUENCY
U.5734316F	03								
0.247##045	40	J. 2237934F	C4	0. 1725640E 04	36.919	30.719	1.000000	1	4.167
-U . IHO 1 494F	04	0.20257A4F	04	0.27109375 04	131.646	65.623	0.727642	2	0.333
-0.23634275	0.1	J. 23645JOE	03	J. 33-3137E 03	135.100	45.060	0.090169	3	12.500
-0.1-73597	U3	-0.26591567	C3	0.25323348 03	234.404	50.601	0.067970	4	16.667
J.7763826E	03	-0.95231225	CS _	0. 74411005 05	353.025	70.605	0.210483		20.433
0.2967 304F	03	-0.47010336	03	0. >>>==243 03	302.210	5.1.370	0.149145	6	25.00C
-C . 5343 EUOF	03	0.2803237E	03	0.63446425 05	152.495	21.705	0.162922	1	29.167
34691805.0	40	-0.178601 95	4.0	0.43237138 04	294.802	37.350	0.115967		33, 333
0.62316966	_	-0.5252406		0.52471456 02	274.700	30.752	0.014197	•	17.500
J. 4327 740E		-3.44823076		0.13135116 03	291.008	29.101	0.027/60	10	41.667

ALADE FEATHER ANGLE MARY JMIC AVALYDES MUDEL AM-DOA SHEP LOUD TOUS CER 200 FET 500.0 THE SE

AJ		CJ -	PHIJC	PSIJC	CJ/CJMAX	j	FREULE NC Y
0.0444C54F WL							
0.4257663" 01	-0.43417025 CL	O. 6381344 F UL	314.441	314.441	1.000000	1	4.132
-3.317-4175 00	-0.29-90#75.00	O. SCILLLE.O	222.498	111.749	0.071259	2	8.264
-3.69417445-31	0.33335263-61	0.77.57015-01	154.509	51.503	0.012737	3	12.397
-J. 6987 J595-C2	0.1-2571 75-02	C. 71313275-02	108.408	42.117	0.001173	•	16.525
3.27254335-01	0. +2541556-02	0.2736+3+3-01	4.872	1.774	0.004536	5	20.661
-0.2144:454-01	0.2967717CL	10-E16118et.0	126.418	41.070	0.000004	•	24.793
0.51956697-03	0.1C16259E-C1	0.131/54/2-01	61.3/3	12.+39	0.001473	7	20.526
-3.93547221-02	0.67532376-03	0. 43743335-02	175.847	104.12	0.001542		33.05€
-0.229272+6-02	U. 86C3133E-C2	0. 14431312-02	104.6/3	11.030	0.001462	Y	37.196
0.10072511-01	-0.86517145-02	0.13714113-01	320.971	32.497	J.0U2259	10	41.322

SHAFT MOMENT
HER SHIP END CTR 200 FET 500.0 TR 36

11				CJ	PHIJC	PSIJC	CJ/CJHAX	j	PREQUENCY
-0.7436644F	04								
-U.6987731F	US	0.1119656F	Co	0.131##1of Ou	121.968	121.968	1.000000	ı	4.132
-0.83+05626	45	-0.14417925	C4	C. 21354J4F 04	243.542	122.771	0.016180	2	0.264
3.11342462	04	-0.27695595	05	0.2771#315 Up	272.345	90.782	0.210020	3	12.397
-J.120 0 1347	04	U. 16651156	04	0.2173492 00	143.750	40.934	0.016449	•	16.525
0.359-1710	04	- J. 4775174?	C4 "	0> 9 3 4 6 1 = "00	37.013	7.235	0.034405	5	40.661
3+0E c t dc . U-	03	-0.41824666	C3	0.55402+35 03	229.019	38.170	0.004198		24.793
-0.31161656	34	-0.11100013	04	J. 34131507 04	197.609	28.216	0.025040	7	28.924
3.14526528	02	0.47699085	03	0.47257232 03	45.120	10.665	184600.0		33.058
-0.114025UE	04	-0. 7544COSE	0.3	0.1107/286 04		43.719	0.010363	9	37.13C
J.2206430F		0.51696395		0. 55497073 03	60.000	6.608	0.004235	10	41.322

### PITCH LINK TENSION

MACHINIC ANTLYSIS MODEL AM-DOL SHIP 1000 T 405 CTR 250 FLT 500.0 TR 11

			cj	PHIJC	PSTJC	CJ/CJMAX"	1	FREQUENCY"
-0.25652505 03								
-U.3UZ > 792F US	-U. \$471945F	02	0.31ude723 03	147.393	197.393	0.677658	1	4.132
0.33042505 03	-0.32474225	03	0.40/> 1103 03	310.012	158.306	1.000000	2	8.264
J.1141584F 01	-J.2298426E	C3	0.22469545 03	270.234	90.095	0.491659	3	12.397
-3.6706Ctuf 04	-0.45458965	CZ	0. 6552.Jo : 02	210.410	54.102	0.178203	•	16.525
-3.3145c10" 32	- 0.9501342F	CO T	0.31+7103= 02	178.197	32.039	0.007306		20.661
-0.49904347 02	1.51385439	C2	0. 13313125 02	133.070	24.176	0.156287	•	24.793
-0.1063739# 04	-0.19169306	02	0-22321115 02	243.519	34.360	0.047095	7	20.926
U.1338407F U		02	0.31.13.7E 02	287.332	30.103	0.067186	i	33.050
-3.21671676		CZ	0.21/34daE UZ	95.239	10.542	0.050760	i	37.19C
3.1134718F C			0.11100115 02	37.486	3.749	0.030583	10	41.322

FIXED HUB FLAP AT STA 18
HARMONIC PRACESS MORE AM-SEA SHIP 1009 T 405 CTK 256 FLT 500.0 TR 1

AJ	100	8,1		CJ		PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
-0.994477JF	04									
-0.07108448	40	0. 20542636	05	36655665.0	05	103.242	103.242	1.000000	1	4.132
3.21465405	4	-0.20519845	C>	0.23532355	US	275.474	137.487	0.703630	2	8.264
-0.27345645	LO	-0.6347207E	G4	0.61414055	04	247.365	89.122	U.218058	3	12.397
-0.1953644F	04	-0.10536335	0+	0.22109196	04	209.240	52.310	0.076355	4	14.525
0.10326306	34	-0.58153216	01	C. Lo 120+J:	-	3>7.742	71.754	U.054636	. 5	20.661
0.74835405	03	-0.70923453	C2	0.40153315	03	354.924	59.154	0.027335	6	24.793
-0.10907715	34	U. 39710335	G3	J. 1166 107 5	04	100.044	22.671	0.034781	7	28.526
3.30105248	J3	-0.77642193	C3	0. 32 35 1228	01	244.416	36.472	0.029211		33.454
-0.1302 i9LE	03	-0.2156769F	CS	0.13191116	03	189.378	21.342	0.004501	9	37.196
U.2281414F	43	U.25812676	CJ	U. 34 ++ 181?	UJ	44.529	4.853	0.011749	10	41.322

FIRED HUB CHORD AT STA 18
HAR-46WIC MALEYSIS WEDLE AH-SOA SHIP 1007 T 405 CTR 256 FLT 500.0 TR 3

	. The same		ΐο	OHIJC	PSIJC	CJ/CJMAX	J	FREQUENC Y
J. 524 78 vf J. 524 78 vf J. 1839 4 185 J. 115 v4 715 J. 22 v 76 75 vf J. 22 v 76 76 vf J. 14 50 73 25 J. 14 50 73 25	0.104903E 0.465298UE 0.465298UE 0.1728818F 0.2662477E 0.26624736 0.40156357C	C4 C5 U+ C4 C+ C2	0.1353715 06 0.13523293 09 0.23415335 09 0.2745315 00 0.2745315 00 0.13515335 00 0.13515335 00	80.240 26.799 236.131 71.811 42.149 309.571 358.636	80.240 13.399 78.717 17.453 8.430 51.595 51.234	1.00000 0.095085 0.191790 0.025239 0.028342 0.01781 0.017050	1 2 3 4 5	4.132 8.264 12.397 16.525 20.661 24.793 23.526
-0.9252150E -0.1110£03f -0.9075208F	14 0.43500835	65	0.11147165 0+ 0.11147165 0+ 0.1057-1+2 U3	153.417 175.185 334.471	19.465	0.010271	10	17.19C 41.322

BLADE PLAP AT STA 130.5 HIS GONIC ANALYSIS MODES, AM-SUA SHIP LOGP T 605 CTR 206 PLT 500.0 TR 19

		c.j	PHIJC	PS IJC	CJ/CJMAX -	J	FREQUENC Y
3.1037550E G5 0.5140483F 04 -0.27875121 04 0.844391E 02 0.8544107F 03 -0.6219550F 03 -0.5605784F 03 -0.47557E0F 02 0.4368873F 03 -0.3151584F 00	-U.2754552 Co 0.565623C Uo U.16627UUF Uo U.2336937U O3 0.1524465 O2 U.9777922E O3 -U.377592E O3 -U.377592E O3 -U.651279F O3 -U.16697USF C3 -U.1730494F O2	0.3433471 04 0.63083078 04 0.60383078 04 0.6042431 03 0.6424421 03 0.7335442 03 0.46490772 03 0.13477137 03 0.13477137 03	331.086 116.224 87.049 15.339 178.596 134.562 255.512 348.469 348.469	331.686 29.203 3.835 35.717 23.200 36.502 43.521 23.982	0.934619 1.000000 0.263612 0.141361 0.098623 0.116758 0.061814 0.070527 0.017274	1 2 3 4 5 6 7 8 9	4.132 8.264 12.397 16.525 20.661 24.793 28.926 33.058 37.190 41.322

AJ	8J	ÇJ	PHIJC	PS IJC	KAMLO/LO	J	FREQUENC Y
J.1037450F J		0.66259136 04	412.639	312.039	1.000000	ı	4.132
J.46237425 0		0.33106646 04	114.640	>4.820	0.807316	2	8.264
J.1585147E U		0.22114918 04	44.423	14.808	0.325157	3	12.39
-U.525888-F 0		0.77+3>37= 03	227.230	50.809	0.113473	: -	16.52
-1.9-12-016 0		0.16/7547 03	124.131	24.626	0.024577	- 2	24.79
-7.18405576 0		0.21147345 03	177.414	23.345	0.118248	7	28.42
-J.8383336 U		0.43304145 03	276.153	34.519	0.063535		33.05
-0.20474635 0		0.31292375 03	217.324	24.147	0.048773	9	37.19
-J.2124248: U		0.21160116 03	514.010	21.907	_ 0.040084	10	41.32

A BJ	C1 .	PHIJC	PS IJC	CJ/CJMAX	7	PREQUENC Y
-J. 83548686 U4 -O. 34 70254F U4 -O. 34 70254F U4 -O. 307705365 U4 -O. 30770506 U4 -O. 3077050 U5 -O. 3	0.6436124 00 0.347371uf 00 0.3219834 00 0.6314324 13 0.324000 03 0.134075 03 0.4278725 03 0.3141441 03 0.1242943 03	123.6v1 317.650 209.000 22.936 237.501 103.276 346.255 27.402 37.358	123.641 154.925 69.667 5.734 47.503 27.213 49.465 3.400 4.151 34.507	1.00000 0.554858 0.561405 0.103465 0.056234 0.024482 0.06830 0.054146 0.027370 0.020161	1 2 3 4 7 7	4.132 8.264 12.397 16.525 20.661 24.793 28.926 33.056 37.196 41.322

BLADE FLAP AT STA 235 MARMONIC ANALYSIS MUDEL AH-56A SHIP 1007 T 405 CTR 256 FLT 500.0 TR 4

			. CJ	PHIJC	" PS IJC "	CJ/CJHAX	J	FREQUENCY
-0.22247435 04								
-0.70975152 03	0.14152326	C4	0. 3520+252 04	102.631	102.651	0.921437	1	4.132
0.175-7801 04	-0.43679540	CJ	0.23324725 04	347.404	173.702	0.524264	2	0.264
-0.30004225 34	-0.10042985	04	ひ。」はとりょうとき 〇4	195.2+0	45.480	1.000000	3	12.397
0.453H376E J3	- J. 148042 JE	03	0.47157303 03	341.859	42.465	J.125001	4	16.525
-0:4480315F 03	-0.17629935	C3	0.48223531 03	- 201.701	43.340	0.120213	5	20.661
-0.45614236 03	0.65549936	0.3	0. dJidfo7 = 03	144.670	20.774	U.209863	6	24.793
-0.54917446 03	-U. 221920CF	CS	0.6371.235 03	200.317	46.617	0.107289	7	28. 926
SO 1765 6066.0	-4.20675495	CJ	0.20403432 03	278.337	34.742	0.070566		33.054
-0.7832 CBSF U2	-0.18505400	C3	0.23147316 03	241.127	27.459	0.052740	9	37.19C
-6.92896846 02	J. 11081+92	C3	0.1.05.15: 03	130.870	13.007	U.0 38356	10	41.322

BLADE FLAP AT STA 270
HARMONIC ANALYSIS MUNCL AM-SOA SHIP 2007 T 405 CTR 250 FLT 500.0 TR 26

AJ	91		CJ		PHIJC	PSIJC	CJ/CJMAX		FREQUENCY
-J.21052235 J4								-	
U.1/253455 U4	0.17153425	G4	0.24324725	04	44.033	44.833	0.880368	1	4.132
U.13666155 04	0.1C41177	40	0.17421045	0.	36.361	19.180	0.6 30380	2	8.264
-0.20154715 04	-0.85141155	CJ	C. 2703514F	04	190.014	60.273	1.000000	3	12.397
-0.73172625 02	-3.13366245	C3	0.1+204756	03	250.814	64.203	0.124005	4	16.525
-0.112-513("03"	-0.45441175	40	0. +07/012	20	250.084	51.217	U.169259	5	20.661
-J.4077725 U3	0.34131435	03	0. 3953325	03	145.018	44.173	0.215420	6	24.793
-J. 662/543F U.S	-0.40424195	C3	C. 43718045	0.5	215.010	30.716	0.292801	7	28.926
J.7100754E 02	-0.07509145	C3	210066600	US	275.469	34.496	U.247280	8	33.05€
-3.7613 C42" 02	-0.40474175	CJ	C. +1342225	03	200.097	24.766	0.170415	9	37.190
-3.4/4007-1 02	-0.06102005	04	U. 1643204:	UZ	231.474	43.147	0.027827	10	41.322

BLADE CHORD AT STA 103 MANAGE ANALYSIS NEGGE AM-SUA SHIP 1009 T NOS CTR 250 FLT 500.0 TR 17

	-		-		J	PHIJC	PSIJC	CJ/ CJMAX	J	FREQUENCY
J.234757JE	06									
11112568.0	34	U. 5241094F	C>	3. 5249	3+35 O	66.907	86.907	1.000000	1	4.132
0.6000 4225	U-	J. 7640128F	CJ	0.64+6	+U56 U	6.048	3.424	0.122804	2	9.264
-0.79533445	34	-3.1038453°	C>	6.1339	426 U	432.565	77.522	U.249255	3	12.397
0.53271645	U+	-11.54159495	C3	0. 5414	944F 0	344.500	87.390	0.103191	4	16.525
0.1317747	64	-3.26/8//45	LS	0.1324	ששונ טיינ ני	344.235	146.60	0.020185	5	40.661
J.3/53510F	0.3	-0.5-144755	02	0.3712	7125 U	351.755	51.020	0.007225	6	24.793
-0.13971446	L+	-0.57404755	03	0.1733	AJZE O	215.010	30.710	0.0 22496	7	28.426
0.211112/1	65	-J. LCZ58J6F	CS	0. 3241	4125 U.	284.741	15.591	0.015810		33.05€
0.67735065	<b>J3</b>	-3.3294475	CS	0.0711	734" U	3 357.217	37.691	J.0 12919	9	37.196
-0.4636390	03	_0.1110825£	U.S	0.4107	ulJ: 0.	100.527	10.003	0.009082	10	41.322

BLADE CHORD AT STA 235 HE-MUNIC ANALYSIS MUSTER - STA SHIP LUGG T 405 CTR 256 FLT 500.0 FR 22

>

	BJ .		··· CJ	PHIJC	PS IJC -	CJ/CJMAX		FREQUENC Y
-0.2730004 05								
3.41290251 02	U. 8567297F	04	0.45578445 0	6 89.349	87.349	1.000000		4.132
J.108055JF U4	0.32482575	03	0.1717477± W	13.849	5.449	0.200514	2	8.264
-U.1814CJ2F J4	-U.1403265°	C4	0.23335136 0	214.891	72.964	0.272018	3	12.397
J.196059dF Je	-0.35/31340	LZ	0.1 +50du76 0	355.959	64.743	0.224504	4	16.525
-3.13956901 33	-3.26201282	03	0.211+001: 0	442.008	44.402	0.034712	- 5	40.661
-3.1078185C 02	-0.21435665	0.5	C. 22159292 0	205.637	44.273	0.025747	6	24.793
-J.7204192F 03	-0.5600142°	<b>C3</b>	Q. 411125 IF Q.	210.844	31.471	0.104934	7	48.926
3.43066215 33	-0.5450270	3	C.673231JE U.	3 333.714	34.589	0.081526	8	33. C5 E
J.34477106 UJ	0.70835360	C2	0.35203115 0	11.015	1.291	0.041093	9	37.19C
-3.366141-5 02	-0.11170046		C. 05 110 Ju: U		24.474	0.010035	10	41.322

BLARG TORSION AT STA 151.5 HAPTONIC ANALYSIS MODEL AM-56A SHIP LULY T 405 CTR 256 FLT 50G.0 TR 46

				£3		PHLJC	PETIC	CJ/CJMAX	J	FREQUENC Y
0.497015#8	JB									
J.247342UF	40	0.243541 05	04	0. 14473256	0+	42.556	42.550	1.000000	L	4.132
-0.21926505	-	U. 14277778	C4	0.24519895	04	130.718	49.359	0.749715	2	6,264
-3.21776776	33	J. 108367JF	C3	0.24324115	03	153.544	51.101	0.042412	3	12.397
J.5824C95F	02	-U.4C77959E	03	0.+119437	03	278.13>	67.534	0.105698	4	14.525
3.70466335	3	-0.528-257E	Cl	0. 10 .02103	UJ	357.004	71.421	0.140141	5	20.661
0.379 # 500E	03	-0.46279545	03	0.5987236	03	304.379	51.563	0.153624	•	24.793
-3.57052-76	03	-0.50140676	02	J. > / 32 + UJE	US	165.620	20.517	0.147098	7	20.926
J. 334 1650F	03	-0.4552664F	02	U. 15 > 241JE	03	355.880	44.485	0.091161		33.050
-0 .1912205	02	0.4 441 3845	02	0. 524 191 15	02	111.>96	12.400	0.013471	•	37.190
0.6622085F		-0.15042835		30101010	02	340.543	34.054	3.017471	10	41.322

BLADE FEATHER ANGLE
HAFTUNIC ANALYSIS NICEL AH-DOA SHIP 1009 T 405 CTR 301 FLT 500.0 TR 31

0.0051200E J1		CJ	PHLJC	PS IJC	CJ/CJMAX"	<del></del>	FREQUENC Y
0.11-06401-01	-0.46332735 01 -0.4159>33^000 -0.6006518-02 0.3324972E-01 0.23427085-01 0.13879100-01 0.1385305-01 0.41896100-02 -0.1318105E-01	0.66236/39 UL 0.48439235 UJ 0.6871639E-01 C.44253435-01 0.2765436-01 0.3426575-01 0.13441075-01 0.12343145-01 0.1434335-01	312.655 238.205 182.016 133.457 46.352 122.153 <1.351 265.887 17.462 244.339	31.055 119.102 01.072 33.304 92.70 20.359 30.050 33.230 20.140	1.000000 0.073830 0.010367 0.005168 0.004174 0.004174 0.0021296 0.001916	1 2 3 4 5 6 7	4.115 8.236 12.346 16.461 20.576 24.691 28.807 32.922 37.037

SMAFT MOMENT
MARK DATE ANGLYSIS MODEL AND SAA SHIP 1994 THUS CTR BULL FLT SOUND TR 36

-1.6.01.01	U4			CJ	PH1 JC	PSIJC	CJ/CJMAX	·	FREQUENCY
-U. # / 4 3 2 75f -J. 11 3 2 455f -J. 67 4u 245f -J. 63 4u 3 645f -J. 39 55 f 65f -J. 251 2 49 1t -J. 49 45 70 f -J. 12 95 70 f -J. 12 95 70 f -J. 50 1 y 3 2 4	0+ 0+ 03 04 03 04	U.1121558E -U.10532055 -U.3040536E -U.208174E -U.2031315 -U.6378879F -U.2244416E -U.7157176 -U.2243229F -U.2031823F	04 C5 C3 C3 C3 C4 O3	0.1420#016 06 0.20334462 06 0.31144793 03 0.341730#1 03 0.40730#1 06 0.6355855 03 0.542734735 03 0.1316525 06 0.2022927	127.875 235.584 257.490 317.640 192.408 248.502 204.218 304.111 189.693 103.676	127.475 117.792 45.630 79.410 38.442 41.417 29.174 37.764 21.J77	1.00000 0.014104 0.219196 0.002724 0.002702 0.004825 0.034164 0.005947 0.009252 0.001473	1 2 3 4 5 6 7 8 9	4.115 8.23C 12.346 16.461 20.576 24.691 28.807 32.922 37.037 41.152

PITCH LINK TENSION
HANMUNIC ANALYSIS NOBEL AN-SEA SHIP LOOP T 405 CTR 301 FLT 500.0 TR 11

	BJ		Cl	PHIJC	PSIJC	CJ/CJMAX		FREUUENC Y
-J.3440137F 03							•	
-0.2159430: 03	-0.26#7402"		0.34.75326 03	231.217	231.217	0.704423		4.115
9.304 A E 146 03	-0.37953885		0.45 3404ZE 03	309.149	154.574	1.000000	5	0.23C
-0.36446495 02	-0.22071958		0.22371555 03	200.612	86.471	0.457114	3	12.346
-J. 9734501F UZ	-4.43673286		0.10009725 03	20+-162	51.341	0.218013	-	10.461
-7.0105331F OS	0.241-14eF		O. (LEUSSSE OF	100.355	32.311	0.146/15	- 3	20.576
-0.1710te75 02	0.43731815		C. +0+>8>7F 02	111.364	16.561	0.495950		24.691
0.3369 6075 02	-0.2116711F		0.37244315 02	325.413	40.444	0.076191	7	28.807
0.11634418 02	-0.2311703F		20 3816/452.0	297.119	37.139	0.053064	•	32.922
3.13331136 05	-0.1+3+4356		C. 1707749E 02	307.762	33.474	0.030120	•	37.037
-0.07744515 01	-0.16715508	02	0.143,46+6 02	247.902	24.796	J.0 36491	10	41.152

FIXED HUB FLAP AT STA 18 "HALM SHIP 1009 T 605 CTR 301 FLT 500.0 TR 1

-0.1234 F#5	U. 20576635 05						FREQUENC Y
0.30571046 u3 -0.2502045 04	-0.23283965 C5 -0.61082465 04 -0.74632235 C3	0.29335432 u5 0.23338543 05 0.61158315 04 0.261171-3 04	114.422 273.921 272.635	114.922	1.000000	1 2 3	4.115 8.23C 12.346
-0.64927945 02 -0.33674226 03 -0.6424:265 03	-0.7314525E G2 -0.1802911E 03 -0.3884468E 03	0.25tt/143 04 0.47442.5E 02 0.4554327E 03 0.7537433E 03	190.061 224.425 210.445 211.159	49.165 45.685 35.074	0.015141		20.576 24.691
3.33305515 03 3.47101765 03 0.33446165 03	-0.38C+707E C3 0.22432915 C2 -0.7792393E C2	0.5036433E 03 0.371693E3 03 0.3430934E 03	310.942 3.4e0 34>.#20	38.868 0.384 34.582	0.025618 0.017187 0.012683	,	28.807 32.922 37.037

FIXED HUB CHORD AT STA 18
HAS WON'T ANALYSIS MODEL AM-SOA SHIP LOOP F GUS CIR 301 FLT SUD.U TR A

	-			C.J		PHTUC	PSTIC	CJ/CJHAX	<del></del>	FREQUENCY
J.4776476F	US									
0.5075 #168	05	0. 78245 756	05	0. 933065	JE O	5 57.044	57.048	1.000000	ı	4.115
J. 1955 178F	05	0.7/197705	0+	0.213482	1º 0	21.516	10.758	0.225585	2	8.230
-0.99498520	3.	-0.2350882	CS	0.2>>277	0 PC	247.060	82.353	0.273540	3	12.346
J.110468JF	04	0.10366416	C+	0.200323	15 0	4 33.081	1.520	0.022166	•	16.461
3.14205476	03	J. 4421434E	24	0. 202040	0	3 73.282	14.717	J.005387	5	20.576
-0.23073605	02	-0.16140503	C4	0.1.1422	4E 0	4 269.139	44.460	0.01/100	6	24.641
-J.165123st		U. 1713732F	64	C. 257767	JE O	4 133.938	19.134	0.025506	7	28.807
3.5224C65F				0.05215.	25 0	3 323.207	40.401	0.006992		32.922
-3-4-076208		0.11178805		0.12336+			12.420	0.012402	9	37. C37
J.2143650F		0.02647573	-	0.261420			1.280	0.001010	10	41.152

BLADE FLAP AT STA 130.5 HAFMONIC ANELYSIS MODEL AN-564 SHIP LOOP T 405 CTR 301 FLT 500.0 TR 19

			CJ	PHIJC	PSIJC	CJ/ :JMAK	J	FREQUENCY
0.1152419F US								
U.SOJYEUJE U4	-0.3374282#	4	0.65/4544E 04	329.070	324.070	U.935804	4	. 4.115
-J.2431c0cF 04	0.63847465	C4	0.70256131 04	114.063	57.331	1.000000	2	8.23C
-0.1270C21F U3	0.1853215e	04	0.14575024 04	93.920	31.307	0.264398	3	12.346
0.10#2141E 04	U.36042#2E	04	0.13427426 04	1.910	0.470	0.154114	4	16.461
-0.20161455 03	J. 400086 dE	01	0. 20165 #23 05	170.863	35.113	0.028703	5	20.576
-U.1+951265 03	J. 52 07117F	03	0.5+144533 03	105.790	17.632	U.U76200	6	24.691
0.24405425 03	-0.15e432 @F	C3	0. 1111414: 01	323.616	45.259	0.047455	7	20.607
0.35625105 02	-0.12387095	CJ	0.37720+72 03	440.829	42.604	0.053691	•	32.922
U.16482575 C3	-0.25312a4E	03	J. 3302 71 3 = US	294.349	43.261	0.047866	•	37.017
to 3-0:00:00E 03	-0.1599556	C3	0.20191345 03	301.512	30.757	0.028725	_ 10	41.152

BLADE FLAP AT STA 174 MAR MONIC ANALYSIS MODEL AN-56A SHIP LOUP I 405 CIR 301 FLT 500.0 TR 50

AJ	8,1			PHIJE	PSIJC	CJ/CJMAX	1	FREQUENC Y
J.1490552E C4								
0.5361.66.5 34	-0. 557957CF	CA	0.72405/32 04	312.324	312.324	1.00000	1	4.115
-J.2>285C46 U4	U. 41 940UUF	04	0. 00 FC150f 00.0	112.200	50.101	0.886523	2	0.23C
U.1117504F 34	U. 1740984E	04	0.23649706 04	57.295	19.048	0.274163	3	12.346
-0.1121852F C4	-0.2681685	C3	0.11234536 04	193.444	45.361	0.152845	•	16.461
-3.1332576 34	-J. 4040+ Ju!	0.2	3.1311735 04	182.208	34.454	0.136987	- 5	20.576
-0.64675565 03	-J. 23440555	<b>C3</b>	0.0178442E U3	199.464	33.311	0.091412		24.691
-J.5J28514E 03	-0.14023995	C3	0.51 ++8245 03	194.540	47.788	0.066637	7	28.807
J.2034 2805 US	-0.18466555	Cs	0. 12342405 01	144.309	40.546	0.042460	À	34.922
0.10371125 02	J. 447482 SF	02	0.4/044//6 02	69.905	1.161	0.006114	9	37.037
U .8001184F U2	0.55301 47E		0.10-45275 03	31.405	3.197	0.013841	10	41.152

BLADE FLAP AT STA 205 HARMONIC ANALYSIS MODEL AM-SOA SHIP 1309 T 405 CTR 301 FLT 500.0 TR 20

AJ			cj		PHIJC	PSIJC	CJ/CJMAX		FREQUENCY
-0.71675748 04	- 557					20.00			
-3.3770799£ 04	0.56664465	C4	0.04//1325	04	122.773	122.773	1.000000	1	4.115
0.28448346 04	-0.33210546	C4	0. 43759543	04	310.616	155.309	0.627192	2	0.230
+0 .20232.10F 0+	-0.13394018	04	0.29427325	0+	207.076	69.025	0.421773	3	12.346
J.13>440F C4	346 346 6.0	C3	0.11100/04	4	17.469	4.367	0.159188	4	10.461
J.5010667F 03	J. +C01>01F	25 .	0.56251733	1)5	4.101	0.832	U.08J628	5	20.574
J.2065615E U3	0.27670215	03	0.18+21223	03	46.069	7.676	0.055068	•	24.691
0.3918C67E U3	-0.25457145	CZ	0. 14541505	03	355.700	50.814	0.056315	7	20.007
0.25724736 03	0.57440 126	CZ	0.20350235	03	12.587	1.573	0.03777#		32.922
0.16992556 03	-0.91476375	62	0.14244345	03	341.705	30.056	0.027660	9	37.037
0.15006510 03	-0.59633562	CZ	0.161/1712	0.5	322.529	32.253	0.023473	T O	41.152

BLADE FLAP AT STA 235
MAFMUNIC ANALYSIS MUDEL AM-SOA SHIP LOUG T 405 CTP 301 FLT 500.0 TR 4

Aj		91		C.J	PHIJC	PSIJC	CJ/CJMAX	J	FREUUENCY
-U . 446 JEOYE	03								
-0.11397170	C4	U. 4037525E	C4	0.42091636 04	106.410	106.418	1.000000	1	4.115
4.22214525	C	-U. #319110E	UJ	0. 237239JE 04	339.473	164.737	0.563673	2	0.23C
-0.3366 (545	0.	-0.12030936	C4	0. 13237461 04	202.708	67.569	0.769646	3	12.346
J.7462366C	03	-0.4C219b36	03	0.81235135 33	333.201	83.300	0.211931		16.461
3.10414206	02	-0. 3444172t	0.5	to ?ttot. tt.	272.820	54.564	0.041439	>	20.576
-J.7720117F	02	0.488#764E	C3	0. + 14+165E US	98.9/4	16.496	0.117586	•	24.691
-0.44594405	0.	-0.19504225	03	0. 11577278 03	214.068	31.295	0.075258	7	28.807
3.47594955	0.5	-0.13468926	J2	0. 47 .13 775 03	358. 379	44.797	0.113132		32.922
J.1893191E	03	-0.30254835	C3	0.35937115 03	302.036	33.560	0.084791	9	37.C37
166666660				0.13990405 03	17.332	1.933	0.025066	10	41.152

BLADE PLAP AT STA 278
HAFMUNIC ANALYSIS MOGEL AN-364 SHIP 1009 T 405 CTH 301 PLT 500.0 TR 26

AJ		. 41		CJ	PHIJC	PS IJC	CJ/CJMAX	- 3	FREQUENCY
0.1-347533	C4								
0.13676315	04	0.1146-77E	C4	0.153436/5 06	47.049	47.089	0.545671	1	4.115
0.44114921	C4	0.8408376	CJ	0.2103126 04	21.673	11.836	0.733954	2	0.23C
-U .2765 783F		-0.77994455	0.5	0. 28730445 04	195.740	65.249	1.000000	3	12.346
0.23301275	. 03	-U.6557422F	03	0. 095 71145 03	204.502	72.391	0.244170	•	16.461
-0.49047234	34	-0.53c3old!	Ca	C. > \$404445 03	204.716	52.943	0.18>348	5	20.576
-0.74+#25+8	_	0.56117296		0. 1857744: 03	175.705	29.294	0.273859	6	24.691
-4.50191040		-4.37299265	-	0.07441346 03	211.5/2	30.510	0.434688	7	28.607
U.1+51c30F		-00101016		0.> JII/14E 03	294.914	36.015	0.174402	à	32.922
J.6479C47F		-0.21634065		0.22775045 03	280.528	11.010	0.074255	ğ	37.017
-0.40026598		3cr0491.0		0.173+9/+6 03	101.349	10.335	U.000375	LO	41.152

BLADE CHORD AT STA 103 MANNINIC ANALYSIS MODEL AM-SOA SHIP 100 / THOSE CTR 301 FLT 500.0 TA 17

13. 13. B.	C.J	PHIJC	" PSTUC"	CJ/CJMAX		FREQUENCY
3.23639228 00						
J.188813UF US 0.3877501F	C5 0.+3127	775 05 64.03	6 64.036	1.000000	L.	4.115
0.1213373F 35 0.3441643F	04 9.12012.	J7: 05 15.83	6 7.718	0.292443	2	8.23C
-0.8133 E4UF U4 -0.1 1083445	C5 0.10295	157 05 2-3.07	80.326	0.376693	3	12.346
J.745531 1F U+ 0.1217845"	C4 0. 334/4	15 04 8.70	4 4.176	0.186608	4	16.461
3.3617656F C3 -0.11400-9E	04 0.11 750	73: 04 281.60	5 57.541	0.027733	3	20.576
-0.49282715 03 -U.12005555	C3 0.51015	+## U# 193.01	1 34.269	0.011849	6	24.691
-J.835-963F 03 -0.16501275				0.047370	7	24.807
-U.1212832F U4 -J.1119804F				0.028437	i i	32.922
-J.13736405 C3 -0.31462301				0.000491	•	37.037
-J.32596955 03 J.10e2266E				0.025764	10	41.152

SLADE CHORD AT STA 235
M44 TRIC ANGLYSIS MOLFL AM-364 SHIP LOG9 T 405 CTR 301 FLT 500.0 TR 22

ħ

-0.21/36571F	46	. PJ		CI	PHIJC	PSIJC	CJ/CJMAX	F	FREQUENCY
0.2733449F 0.30311845	04	0.61068525		0.00306315 04	65.887	45.887	1.000000	ı,	4.115
-0.33311845	-	-0.25201656		0.17394335 04	9.U92 231.927	77.309	0.458809	3	8.230 12.346
J. 2357.651E		-0.1544240E		0.20598175 04 -	274.424	34.990	0.307063		20.576
0.63449716	02	0.41633795	C3	0. 42312215 03	d1.376	13.563	0.063240	•	24.691
-0.476715cF -J.465585##	0.1	-0.7062117		0.45203205 03	235.474	33.711	0.127349	7	28.807
-0.27697055	-	-0.24640456		0.14711115 01	218.991 105.230	24.332	0.057107	10	37.G37 41.152

DEADE TORSION AT STA 131.5 HAPMING ANALYSIS MODEL AND SOA SHEP 1009 F 405 CTR 301 FLT 500.0 TR 44

13			0-4	C)		PHIJC	PSIJC	CJ/CJMAX	J	PREQUENCY
0.22802576	03									
3.31.057546	34	J. 353471 0E	64	0. +/+51+86 (	140	44.151	44.151	1.000000	1	4.115
-0.156762F	34	0.27433465	C4	0.31716375	94	119.395	59.498	0.00000	2	8.236
J.3351426F	0.5	-0.10017658	03	0. 14747535 (	US	331.429	110.476	0.073220	3	12.346
-0.27903306	03	-0.76469655	C3	0.314014JE (	Cs	244.953	62.488	0.171547		16.461
-3.6-272436	32	-0.3414656	CJ	0.1499144E (	LC	259.415	51.043	0.073743	5	20.576
-0.4997468E	03	-0.4387120E	4	0.60499248 (	03	221.279	36.480	0.140142	•	24.691
JFFE 0 6 34 34 9E	JB	U. 24454 435	CJ	0.42114/25 (	03	140.210	20.030	0.088762	7	28.807
0.760559+F	03	0.15690405	03	U. 77031435 (	20	11.656	1.457	0.163065		32.922
0.10306435	43	-0.15350695	03	0.25152615 (	4	309.706	34.412	0.053007	•	37.037
-0.2520C47F	02	-0.11150235	C3	0.11434255 1	4	257.413	25.127	0.024107	10	41.152

### HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 29 V= 170.5 KTS n= 1.62 g Reproduced from available copy.

BLADE FEATHER ANGLE HAPMINITE ANALYSIS MINDEL AM-564 SHIP 1939 1 435 CTA 337 FLT 533.3 TA 31

A.J		AJ	CJ	PHIJC	PSIJC	CJ/CJPAR	J	FPERUENCY
C.647??C7F	Cl							
C.455F641F	01	-0.4839Cc9F Q1	0.65264 15 8 01	315.779	315.779	1.000000	1	4.115
-0.21746595	CC	-0.34556875 00	). 44 J46 17E JJ	231.764	1.5.482	1. 263591	2	8.73)
-0.10957695	CC	0.33666505-01	0.11496155 00	162.972	54.324	0.01659#	?	12.346
-0.55986465	- (1	0.21 0541 25-02	0.59543105-01	177.509	44.377	0.008654	4	16.461
C.2574424		-0.2754050F-C1	0.17359176-31	212.5.19	62.532	1.235394		23.576
0.64727574		-0.21 708571-02	0.24026175-02	284.401	47.400	0.000376	•	74.151
-2.65573657	-0"	-9-55999/15-01	0.55593178-01	269.788	38-470	0.008084	7	20.007
-0.2221262"	-CI	2-10417952-01	0.2 4466 . 16-01	144.799	18.11)	3. 334112		32.522
3.1471157"	-01	0-16545416-01	0.74453366-01	25.485	2.932	0.005552	5	37.037
C.32711025		-0.2276654-62	0-22538305-02	278-097	27.410	0.000331	10	41.152

SHAFT HOMENT MERMANIC MALVETS MATEL AM-564 PHIS 1335 T 435 CTR 337 FLT 500.0 TR 36

	e.j	cı -	PHIUC	PSIJC	CJ/CJMAX	J	FREQUENCY
-C.6 141776F			124 204	114 704	1.000000	•	4.115
-0.11107234			136.704	136.704	0.004077	;	8.230
-C.1715116"			247.155	80.065	0.226634	į	12.346
-0.64460217			137.450	34.412	0.905848	4	16.461
-3.35548125	34 3.72545135		115.50)	?3.196	0.053175	•	2C.576
C.3771557	0.2(117372	17 0.47757196 03	79.094	4.645	0.002801	e	24.691
-0.51935096	C4 0.5-??C/P"	CV 0.76207611 04	132.440	13.994	0.049937	7	29.607
C.11169775	34 - 3.1 3422939	14 3.155-2385 14	315.971	19.488	). )19161	F	32.522
-0.3651560=	C7 -0.427572HF		229.190	25.466	0.003707	5	37.637
C-10151535	C4 0.10570(AF.	C3 _ 0.101 *785F 04	5.933	0.593	0.006565	. 10	41.152

*ITCH LINK TENSION MARMONIC AMALYSIS MIDEL AH-564 SPIP 1936 1 495 CTC 307 FLT 500.0 TR 11

	nj .	CJ	11149	PSIJG	CTACTMEX	J.	FPFOULACY
-C.41526114 07							
-C.17542377 G3	-0.45300245 07	0.49579217 73	244.931	248.831	1.000000	l	4.115
J.7368277C 33	-3.37351756 33	3.47636775 33	794.313	147.156	0.897697	2	9. 230
-C.14710755 03	-0.15777788 07	0.21270° 1E 03	227.719	75.906	0.437867	2	12.346
-C.0215576F C2	-0.1545340F C2	0. 8:5464 15 02	190.653	47.663	0.172086	4	16.461
-3.47543246 32	3.2643556: 12	).543097 if J?	151.924	30.195	0.111982		7C.576
-C.2336684F C2	-0.75287796 67	0.457074.# 02	719.255	39.876	0.044091	e	24.491
-C.1786554F C2	-0.64723145 02	0.65919418 02	258.757	36.765	0.135041	7	28.807
-3.24356266 32	-3.12457675 32	3.27113735 32	237.451	25.931	0.055808	ŧ	37.522
-C.389C155F C2	0.78207538 01	0.346794)# 62	168.634	10.737	0.081687	5	37.C37
-C.5533068L 05	0.345 1643E CS	0.43392615 02	125.699	12.570	0.089325	10	41.152

FIXED HUB FLAP AT STA 18 HAPMANIE ANELYSIS MARE SHESSA SHESSOO T 405 CT 307 FLT 500.0 TR 1

t.

		. AJ		C a "		PHIJE	PSIJC	CJ/CJMAK	3	PREDUTACY
C.127C167F	C 5									
-0.15431509	C5	J.2198401F	CS	0.24407134	35	131.619	131.617	1.000000	1	4.115
-3.82647375	33	-3.23 124 15°	15	3.233349AE	05	267.937	137.966	0.783445	2	9.230
-0.32727465	64	-0.47515PCF	64	0.5341 1448	04	737.755	77.585	0.181634	2	12.346
-0.20427155	C4	0.07177#FF	C3	0.25585606	94	163.907	40.772	0.100620	4	10.461
	32	J.27855H3F	34	3.2792/138	)4"	HH.726	17.745	0.094884		2 C. 176
-C.12241656	G ?	0.6/ 05405	03	0.67401196	03	101.229	14.288	0.022922	é	24.651
-C.A209039F	01	0.1+039524	63	0.6461 46E	03	163.790	23.379	0.021974	7	129.65
3.11219194	34	- ). 3f 9377 JF	13	3.11 A7 371F	)4	343.872	42.609	0.042377		32.522
-0.19634798	C?	-0.50967315	0,0	0.5461 40F	03	248.531	21.659	0.018572	•	37.637
C.1137166F	01	-0.35: 44295	C3	0.5052 .195	03	308. 311	30.071	0.017161	10	41.152

FIXED HUB CHORD AT STA 18
HARMCHIC SHALVEIS MODEL AM-568 SHIP ICCS T 405 CTP 307 FLT 500.0 TR 3

AJ							
			-				FPEQUENCY
	N.J	C.	SFINA	-51JC	CAPEDATA	•	************
C.437C5545 C5			23 414	30.614	1.000000	1	4.115
3.74465255 35	3.44374767 35		7.297	3.646	0.301930	ž	A.230
0.24933147 C5	0.33165635 04		237.217	79.072	0.349202	2	12.346
-C.1612110F G5	1.23357245 34		57.159	14.265	0.027614	4	16.461
3.12005636 34	2.441381/5 (4		94.824	19.765	0.051180		29.576
-C.1724P446 C.	0.13232625 (3		6.092	1.015	0.036164	6:	24.691
C.2717467 C4	1.24972775 )4		48.396	6.714	3.313500	7	28.667
0.10185425 63	-0.1579870- 04		272.021	34.128	0.022316	Ę	32.572
C.1115545E C4	-0.11763735 04		314.834	34.487	0.019166		37.037
-C.27414233 03	-).4356111f J		237.441	23.744	).))5977	16	41.157
BLADE FLAP AT STA		\$61 P 1009 T 405	(TF 307 FI	LT 500.0 1	IR 19		
							10.567
AJ	6.1	C J	ווואם	PSIJC	KAMLOVED	J	FREQUENCY
C.1277ASAC CS			443	324 /50	0.994079	ī	4,115
1.56548581 14	- 3.41531215 34		324 -653	324.650 57.110	1.000000	į	0,230
-C.25474565 C4	0.65575735 14		114.219	25.581	0.2342 7	2	12.346
C. sertseer C3	0.1(384737 04		34 3.657	85.214	3.200328	4	16.461
C.1 355755= 24	-3.4715543: 37		255.142	51.028	0.174485		29.576
-C. ? 2076 E1 . C?	-0. F/ 75P6 10 113		237.577	39.548	0.064989	6	24.691
-C.2507039F G3	-0.34143585 ^3		269.477	38,497	1.114927	7	2 A. FC7
-C.7676493+ 31	-3.8435345 31		2.933	7.167	0.093613		35.055
0.50946797 07	-0.4255 F7CE 22		193.674	21.519	0.025079	5	37.037
-0.175C845F 03	).15)53145 )3		44.862	4.786	3. 1274 15	10	41.152
BLADE FLAP AT STA		SHIP 1079 T 405	CFP 307 F	LT 500.0	TP 20		
	43	CJ	PHIJC	esiuc	CJ/CJMAX	J	FREOUPICA
-C.7:41777* C4	4.5						
4j -c.7(472775 C4 -u.38258245 J4	<b>#</b> .j 0.67935846 04	0.7372820F 04	121.297	121.327	1.000000	1	FREGUENCY 4.115 8.730
-0.7(47777# C4 -0.7(47777# C4 -0.7(258245 )4 -0.1(4547) 04	9.67939840 04 -0.37859565 04	0.7372870F 04 0.40542 15E 04	171.797	121.357	1.000000		4.115
-0.7147777F C4 -0.7258824C 34 -0.14541F 04 -0.224446F 64	0.67939846 0 -0.3785956 0 -0.14279847 0	0.7372820F 04 0.4054245E 04 0.2661927E 04	171.397 310.166 212.442	121.327 155.083 70.414	1.000000	1 2	4.115 8.230
-0.7647777F C4 -0.7858824C 34 -0.784547F 04 -0.7244467F G4 -0.146557F 34	0.67939446 04 -0.3785956 04 -0.84275847 04 -3.31905666 01	0.7372820F 04 0.40542 15E 04 0.2661977# 04 0.1458479F 04	171.397 310.166 212.442 347.158	121.357	1.000000 0.671966 3.361346	1 2 3	4.115 8.730 17.246 16.461 20.576
43 -C.7:47777 C4 -J.78:5824C J4 C.114:547: G4 -O.2246467 G4 J.146:5577 J4 -C.241357: C3	9.67939946 04 -0.3785956 04 -0.14279847 04 -3.3195664 04 -0.16264676 04	0.7372870F 04 0.4054245E 04 0.2661977E 04 0.1458479F 04 0.6023043F 03	171.397 310.166 212.442 347.158 288.091	121.327 155.063 70.414 66.769	1.007000 0.671966 ).361346 0.203744	1 2 3	4.115 8.730 17.246 16.461 20.576 24.651
43 -C.7(41777F C4 -J.7825824C J4 -C.114541F C4 -0.7246460F G4 J.1461550F J4 -C.2441357F C3 -C.1147957 G3	9.62939846 0 -0.3785956 0 -0.14279847 0 -3.319066 0 -0.1626467 0	0.7372870F 04 0.4054715E 04 0.2661977E 04 0.1458474F 04 0.0023017F 03 0.371871FE 03	171.397 310.166 212.442 347.158 288.091 252.503	121.3°7 155.083 70.414 66.769 57.618	1.002000 0.671966 ).361346 0.203244 0.128820	1 2 3 4 5 6 7	4.115 8.730 17.346 16.461 20.576 24.651 24.651
-C.7(41727# C4 -C.7(41727# C4 -C.7(41727# C4 -C.3145547# 04 -C.2446467# G4 -C.244137# C7 -C.1147457# 07 -C.11734357# 33	9.67938846 0 -0.3785856 0 -0.14278847 0 -3.31905666 0 -0.16264676 0 -3.31415507 0	0.7372820F 04 0.4054245E 04 0.2661927E 04 0.1458479E 04 0.07373047E 03 0.3718217E 03	121.397 310.166 212.442 347.158 248.991 252.503 305.929	121.357 155.063 70.414 66.769 57.618 42.084	1.007000 0.671966 3.361346 0.203244 0.13820 0.051788 0.039396 0.027233	1 2 3 4 5 6 7	4.115 8.730 17.346 16.461 2C.576 24.651 7P.FC7 37.522
43 -C.7:41727* C4 -3.16:5824C 34 C.114:541* 04 -0.2246460F 34 -0.241357* C3 -C.1141957* 03 C.1714357* 33 C.471757* C2	9.62939940 00 -0.3795956 00 -0.14279847 00 -0.10264076 00 -0.10264076 00 -0.31415507 00 -0.27515315	0.7372820F 04 0.4054245E 04 0.2661927E 04 0.1458479E 04 0.023047E 03 0.371821E 03 0.2404548E 03 0.2404548E 03	121.397 310.166 212.442 347.158 248.791 252.503 305.929 76.346	121.397 155.083 70.814 P6.789 57.618 42.084 43.704 9.543 11.869	1.007000 0.671966 0.341346 0.203244 0.138820 0.051788 0.037396 0.077233 0.043075	1 2 3 4 5 6 7 8 9	4.115 8.230 12.346 16.461 20.576 24.651 2P.FC7 32.522 37.637
-C.7(41727# C4 -C.7(41727# C4 -C.7(41727# C4 -C.3145547# 04 -C.2446467# G4 -C.244137# C7 -C.1147457# 07 -C.11734357# 33	9.67938846 0 -0.3785856 0 -0.14278847 0 -3.31905666 0 -0.16264676 0 -3.31415507 0	0.7372820F 04 0.4054215E 04 0.2661927E 04 0.1458479E 04 0.0723013F 03 0.371821FE 03 0.2704548E 03 0.2707847E 03	171.997 310.166 212.442 347.158 268.091 252.503 305.999 76.346 107.004	121.327 155.063 70.814 96.769 57.618 42.084 43.704 9.543	1.007000 0.671966 3.361346 0.203244 0.13820 0.051788 0.039396 0.027233	1 2 3 4 5 6 7	4.115 8.730 17.346 16.461 2C.576 24.651 7P.FC7 37.522
43 -0.71472775 C4 -0.38388245 J4 -0.3845431 04 -0.2246866 G4 0.24413577 G7 -0.11474577 G7 -0.17143577 G7 -0.4717577 G7 -0.4717577 G7	9.62939940 00 -0.3785956 00 -0.427987 00 -0.3785666 00 -0.70264676 00 -0.3641550 00 -0.37515515 0.37372950 00 3.11983395 00	0.7372820F 04 0.4054215E 04 0.2661927E 04 0.1458479E 04 0.0723013F 03 0.371821FE 03 0.2704548E 03 0.2707847E 03	17:.397 310.166 212.442 347.158 268.091 252.503 305.029 76.346 167.664	121.397 155.083 70.814 P6.789 57.618 42.084 43.704 9.543 11.869	1.007000 0.671966 2.361246 0.207244 0.128820 0.051788 0.077233 0.043075 0.016957	1 2 3 4 5 6 7 8 9	4.115 8.230 12.346 16.461 20.576 24.651 2P.FC7 32.522 37.637
43 -C.7(41727# C4 -3.7825824C 34 -3.7825824C 34 -0.7246460F G4 -0.7246460F G4 -0.146256F 34 -0.147367F G7 -0.1147957F G7 -0.1734357F J3 -0.4736757 G7 -0.5286064E G7 -3.747473GT J7  PLADE FLAP AT STA HAR MONIC ANALYSIS	9.62939940 00 -0.3785956 00 -0.427987 00 -0.3785666 00 -0.70264676 00 -0.3641550 00 -0.37515515 0.37372950 00 3.11983395 00	0.7372820F 04 0.4054245E 04 0.2661927E 04 0.1498479F 04 0.023047F 03 0.391821FE 03 0.2904548E 03 0.2907047E 03 0.3176143F 13	17:.397 310.166 212.442 347.158 268.091 252.503 305.029 76.346 167.664	121.397 155.063 70.814 P6.769 57.618 42.084 43.704 9.543 11.889 10.705	1.007000 0.671966 2.361246 0.207244 0.128820 0.051788 0.077233 0.043075 0.016957	1 2 3 4 5 6 7 8 9	4.115 8.230 12.346 16.461 20.576 24.651 2P.FC7 32.522 37.637
AJ  -C.7:47777 C4  -J.36:5824C J4  C.316:547: C4  -0.224486F G4  J.146:5597 J4  C.2401357: C3  -C.1147957 G3  C.471777 C2  -C.52860C47 C7  -J.34747257 J7  BLADE FLAP AT STA  HAR MOM IC ANALYSIS	#3  0.62939840 00 -0.3785956 00 -0.14279847 00 -0.31375666 00 -0.31415507 00 -0.31372950 00 3.11983396 30	0.7372820F 04 0.4054245E 04 0.2641927E 04 0.1458479E 04 0.070730476 03 0.3918214E 03 0.2007847E 03 0.2007847E 03 0.31761430 13 3.1753129E 03	171.397 310.146 212.442 347.158 248.951 252.503 305.029 76.346 107.052	121.397 155.083 70.814 86.789 57.618 42.084 43.704 9.543 11.889 10.705	1.007000 0.671966 2.361246 0.203744 0.128820 0.051788 0.051788 0.077233 0.043075 0.016957	1 2 3 4 	4.115 8.230 12.346 16.461 2C.576 24.651 2P.FC7 32.522 37.522 37.632
AJ  -C.7147277 C4  -3.7635824C J4  C.1165547 G4  -0.2246467 G4  J.1463577 G7  C.1174357 J3  C.4713577 C2  -C.52860C47 C7  -J.34747257 J2  RLADE FLAP AT STA  HAR MONIC ANALYSIS  AJ  C.1125566 C4  -3.97411113 G7	9.62939946 00 -0.3785956 00 -0.427984 00 -0.3190566 00 -0.3190566 00 -0.3141550 00 -0.37355315 00 -0.37372950 00 -0.3737290 00 -	0.7372820F 04 0.4054215E 04 0.2641927E 04 0.1458479E 04 0.0023013F 03 0.391821FE 03 0.2007857E 03 0.31761126 13 1.1753129E 03	17: .397 310.146 212.442 347.158 248.951 25.503 305.029 76.346 107.052  CT# 307 F	121.397 155.083 70.814 P6.789 57.618 43.704 9.543 11.869 10.705	1.007000 0.671966 3.361346 0.207244 0.128820 0.051788 0.077233 0.043075 0.016957	1 2 3 4 1 6 1 7 1 1	4.115 8.730 17.346 16.461 2C.576 24.651 2P.FC7 37.522 37.C37 41.152
###	9.62939846 04 -0.3785956 04 -0.14279847 04 -0.31305666 04 -0.31415507 01 -0.31415507 01 -0.31372950 01 0.31372950 01 0.31372950 01 0.31372950 01 0.31372950 01 0.31372950 01	0.7372820F 04 0.4054215E 04 0.26619/78 04 0.1458479E 04 0.07073017F 03 0.371871FE 03 0.20078*7E 03 0.3176143E 13 0.3176143E 13 0.3176143E 13	17:.397 310.166 212.442 347.158 248.991 252.503 305.929 76.346 107.052  (TP 307 F	121.397 155.063 70.814 86.769 57.618 42.084 43.704 9.543 11.889 10.705	1.007000 0.671966 3.361346 0.207244 0.128820 0.051788 0.027233 0.043075 0.016957	1 2 3 4 5 6 7 6 7 6 7 6 7 1 C	4.115 8.230 12.346 16.461 2C.576 24.651 2P.FC7 37.522 37.037 41.152
### ##################################	9.67939846 04 -0.3785956 04 -0.14275847 04 -0.14275847 04 -0.16264676 07 -0.36415507 01 -0.37372950 01 0.37372950 01 0.37372950 01 0.37372950 01 0.37372950 01 0.37372950 01 0.37372950 01 0.37372950 01 0.37372950 01 0.47734535 01 -0.47734575 01 -0.47734575 01 -0.47734575 01 -0.47734575 01 -0.47734575 01 -0.47734575 01 -0.47734575 01	0.7372820F 04 0.4054245E 04 0.2661927E 04 0.1458459E 04 0.07073017E 03 0.3718217E 03 0.2104548E 03 0.2107847E 03 0.3176143E 13 1.174129E 03	17:.397 310.166 212.442 347.158 248.367 252.569 305.929 76.346 107.052  CT# 307 F	121.397 155.083 70.814 96.769 57.618 42.084 43.704 9.543 11.889 10.705	1.007000 0.671966 3.361346 0.207244 0.128820 0.051788 0.027233 0.043075 0.016957 7P 4	1 2 3 4 6 7 6 7 6 7 1C	4.115 8.730 17.346 16.461 2C.576 24.651 2P.FC7 37.522 37.C37 41.152
AJJ -C.714727F C4 -J.3636824C J4 -J.165647 G4 -J.165547 G7 -C.1147457 G7 -C.1147457 G7 -C.174357 J2 -C.52860C47 G7 -J.367472G7 J2  PLADE FLAP AT STA HAR MONITO ANALYSIS  AJ -C.112555CF C4 -J.9741113 G7 -C.24C77647 D4 -C.24C77647 D4 -J.9574578F J2	9.62939846 00 -0.3785956 00 -0.427984 00 -0.31305666 00 -0.3141550 00 -0.31312950 00 -0.31372950 00 -0.47734535 00 -0.47734535 00 -0.47734546 00 -0.47734546 00	0.7372820F 04 0.4054245E 04 0.2661927E 04 0.1458479E 04 0.07073047 03 0.371824F 03 0.2007847E 03 0.3176143C 13 0.1753429F 03 0.4771728E 04 0.4771728E 04	171.397 310.146 212.442 347.158 248.961 252.503 305.029 76.346 107.052  CT# 307 F	121.397 155.083 70.814 P6.789 57.618 42.084 43.704 9.543 11.889 10.705	1.007000 0.671966 2.361246 0.207244 0.19820 0.051788 0.077233 0.043075 0.016957 7P 4 CJ/CJMAK 1.000000 9.590506 3.5637181 0.224811	1 2 3 4 7 e 7 1C	4.115 8.230 12.346 16.461 2C.576 24.651 2P.FC7 32.522 37.522 37.522 41.152 FREQUENCY 4.115 8.230 12.346 16.461 2C.576
### ##################################	9,62939946 00 -0.3765956 00 -0.427984 00 -0.31905066 00 -0.31905066 00 -0.319155075 00 -0.31372950 00 -0.31372950 00 -0.3197395 00 -0.3197395 00 -0.3197395 00 -0.395166216 00 -0.1290346 00 -0.1290346 00 -0.1290346 00 -0.1290346 00	0.7372820F 04 0.4054215E 04 0.26619/78 04 0.1458479 06 0.07073011F 03 0.391821FE 03 0.20078 06 0.31761126 13 0.31761129F 03 0.31761129F 03 0.4771/28E 04 0.4771/28E 04 0.2771124F 04	17:.397 310.166 212.442 347.158 248.259 76.346 107.052  (T# 307 #  FHIJC 101.534 334.836 208.187 312.860	121.397 155.083 70.814 86.789 57.618 43.704 9.543 11.889 10.705 ELT 500.0 PSIJC 101.534 169.916 69.916 79.215	1.007000 0.671966 2.361246 0.203244 0.19820 0.051788 0.077233 0.043075 0.016957 TP 4 CJ/CJMAK 1.000000 0.500506 2.563719 0.273811 0.273811 2.76971	1 2 3 4 7 e 7 1C	### ##################################
### ##################################	9.67939840 04 -0.3785956 04 -0.14279847 04 -0.14279847 04 -0.31415507 03 -0.31415507 03 -0.313737950 03 -0.313737950 03 -0.11980395 03 -0.11980395 03 -0.12903468 03 -0.12903468 03 -0.12375007 03	0.7372820F 04 0.4054245E 04 0.26619/78 04 0.1458479E 04 0.0703047E 03 0.371824E 03 0.21078-7E 03 0.3176142F 13 0.1753129E 13 4.0.4771/28E 04 0.2731724E 04 0.2731724E 04 0.119207RE 04	171.397 310.166 212.442 347.158 248.2593 305.929 76.346 107.052  (TF 307 F  FHIJC 101.534 339.836 200.187 312.660 255.800 196.062 234.002	121.397 155.083 70.814 P6.789 57.618 42.084 43.704 9.543 11.889 10.705 ELT 500.0 PSIJC 101.534 169.918 69.396 78.215 51.160 32.677 73.479	1.007000 0.671966 2.3A1246 0.207244 0.128620 0.051768 0.077233 0.043075 0.016957 7P 4 CJ/CJMAX 1.000000 9.570506 3.563719 0.273817 0.244811 3.776971 0.157749	1 2 3 4 5 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 7 8	4.115 8.230 17.346 16.461 2C.576 24.651 2P.FC7 37.522 37.C37 41.152 FREQUENCY 4.115 8.230 12.346 16.461 2C.576 24.691 28.FC7
### C.112759CF C4  -0.7647277F C4  -0.785824C J4  -0.7246467F G4  -0.7246467F G4  -0.2441357C C3  -0.147957F C3  -0.147957F C2  -0.5286064T C7  -J.17757F C2  -0.5286064T C7  -J.17757F C4  -2.776724F C4  -2.9741111 G7  -2.776724F C4  -2.9741111 G7  -2.776724F C4  -2.9741111 G7  -2.776724F C4  -3.97417167 D3	9.62934946 04 -0.3795456 04 -0.14274847 01 -0.31315666 01 -0.3244676 01 -0.314155075 01 -0.37372450 01 -0.37372450 01 -0.37372450 01 -0.37372450 01 -0.37372450 01 -0.37372450 01 -0.37372450 01 -0.37372450 01 -0.47734534 01 -0.47734534 01 -0.1237500 01 -0.1237500 01 -0.1237500 01 -0.1237500 01 -0.1237500 01 -0.1237500 01	0.7372820F 04 0.4054215E 04 0.26619/78 04 0.1458479 01 0.1458479 03 0.307878 78 03 0.307878 78 03 0.307878 78 03 0.31761136 13 0.31761136 13 0.31761137 13 4 0.47717282 04 0.47717282 04 0.47717282 04 0.1192078 04 0.1192078 04 0.1192078 04 0.3749513E 04	17:.397 310.166 212.442 347.158 248.991 252.503 305.029 76.346 107.052  CT# 307 F  FHIJC 101.534 334.836 203.187 312.860 255.800 196.062 234.402	121.397 155.083 70.814 86.789 57.618 43.704 9.543 11.889 10.705 ELT 500.0 PSIJC 101.534 169.916 69.916 79.215 51.160 32.677 73.629 40.936	1.007000 0.671966 3.361346 0.207244 0.128820 0.051788 0.077233 0.043075 0.016957 7P 4 CJ/CJMAK 1.000000 0.570506 3.503719 0.273817 0.24481 3.76971 0.157749 0.255105	1 2 3 4 5 6 7 E	4.115 8.230 17.346 16.461 2C.576 24.651 2P.FC7 37.522 37.627 41.152 FREQUENCY 4.115 8.230 12.346 16.461 26.576 24.691 28.PC7 32.522
### ##################################	9.62939840 04 -0.3785956 04 -0.14279847 04 -0.14279847 04 -0.31415507 03 -0.31415507 03 -0.313737950 03 -0.313737950 03 -0.11980395 03 -0.11980395 03 -0.12903468 0 -0.12903468 0 -0.12903468 0 -0.12375007 0	0.7372820F 04 0.4054245E 04 0.2661927E 04 0.1458479E 04 0.07073017F 03 0.3918717E 03 0.2007854E 03 0.2007854E 03 0.3176143C 13 3.1753129E 03 4.0.4771728E 04 4.0.2731724E 34 4.0.2731724E 34 4.0.2731724E 34 7.11757193E 04 7.11757193E 04 7.11757193E 04	17:.397 310.166 212.442 347.158 248.091 252.503 305.929 76.346 107.052  CTR 307 F  FHIJC 101.534 334.836 208.187 327.660 196.062 274.002 277.487 297.648	121.397 155.083 70.814 P6.789 57.618 42.084 43.704 9.543 11.889 10.705 ELT 500.0 PSIJC 101.534 169.918 69.396 78.215 51.160 32.677 73.479	1.007000 0.671966 2.3A1246 0.207244 0.128620 0.051768 0.077233 0.043075 0.016957 7P 4 CJ/CJMAX 1.000000 9.570506 3.563719 0.273817 0.244811 3.776971 0.157749	1 2 3 4 5 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 7 8	4.115 8.230 17.346 16.461 2C.576 24.651 2P.FC7 37.522 37.C37 41.152 FREQUENCY 4.115 8.230 12.346 16.461 2C.576 24.691 28.FC7

BLADE FLAP AT STA 270
HAFMONIC ANALYSIS MODEL AM-564 SHIP 1005 T 405 CTR 307 FLT 500.0 TR 26

	4)	- ċ,	PHIJC	PSIJC	VIMLDIL)	J	FPEQUENCY
3.15569791 34							
C. 97449581 C7	0.12107445 (	0.12143936.04	P5.563	85.561	0.419544	1	4.115
C.1367049F C4	0.21653165 0	0.13791575 04	7.033	4.516	0.476469	2	8.23)
-3.26582328 34	-3-1:47778F J	3. 74545703 114	201.222	67.074	1.000000	3	12.346
-C.6354711F C2	-7.8176344= C	C. 4701 199E 03	265.578	66.382	0.203340	4	16.461
-C.#275823" C3	-0.830E016F 0		224.767	14.953	0.407576		23.576
-3.12179215 34	3.5255510E 3		175.640	29.273	0.420602	e.	24.651
-C.98925517 C?	-0.4752853F C		208 . 224	29.761	0.349001	7	28.407
C.4655121F 03	-0-64718335 0	0.96478.36 03	299-016	37.377	0.334654		32.522
3.3612964" 32	-1.85465365 1		272.554	30.284	0.295627	ě	37.037
C.17072C55 C2	-0.3107112F C		295.098	29.510	0.145241	10	41.152

BLADE CHORD AT STA 103 HARMONIC ANALYSIS MIDEL AH-564 SHIP 1009 T 405 CTR 307 FLT 500.0 TR 17

4.5	- 13	CJ .	PHIJC	PSTÚC	CJ/CJMAX	·	FFFQUENCY
C.2056377º C6							
C.3251119r C5	0.27273555 65	0.40000228 35	34.783	34.763	1.373777	1	4.115
C.leeseer os	0.57853378 03	0.16698375 05	1.749	0.774	0.409271	2	8.230
-C.1286672" C5	-0.13192275 05	0.14785765 05	223.940	74.647	0.477676	3	12.346
C. SF7(SP8" 04	-0.45665756 113	0. 46 97770F 04	357.797	69.324	1.237444	4	16.461
-3.41867678 G3	9.67856308 03	0.70777478 03	121.672	24.334	0.019553		20.576
-0.35562505 03	0.20227675 04	0.20537515 04	99.971	14.667	0.050338	ŧ	24.691
-C.1PCZ644F C4	-9.3/55546F C3	0.133942; 5 04	191.477	27.354	1. 345 384	7	28.137
2.12313215 34	0.46575:55 113	0.13012316 04	19.708	7.464	0.033854		37.527
-C-111275C5 04	0.74339575 (3	0.13382745 04	141.254	16.250	0.032800	5	37.537
-C.876C1376 03	_ 0.6F44190F 63	0.109506EE 04	141.101	14.339	1. 326943	13	41.152

BLADE FLAP AT STA 174 HAFMIN IC ANTINSTS NOTEL SHIP 1035 1 405 CTF 307 FLT 500.0 TR 50

	7.1	CJ	PHIJE	PSIJC	CJ/CJMAX	j	FREULTACY
C.187(750F C4							
0.5496902: 04	-3.6026P(3" 04	0.31504.0E 64	312.315	312.315	1.333333	1	4.115
-3.26119747 34	0.6272789" 04	0.0102536 24	112.762	55.391	0.434628	2	8.230
C.16415551 04	0.161715TT C4	7. 2 3184 196 04	44.973	14.974	0.284459	?	12.346
-0.4337100 03	-0.315*00** 93	0.85187.55 03	700.807	50.202	1.119427	4	16.461
-3.72144621 33	1.6635736# NA	0.54755.28 03	137.706	27.557	0.171171		20.576
-C. ? 746454' C?	50 31920FF 03	0.57230405 03	134.612	22.530	0.064083	e	24.651
-C.4715254' 03	0. 14227017 02	0.4/717/75 03	171.172	24.453	0.055546	7	26.(37
3.541293)= 33	-2-6(272715 23	0.45695,55 03	309.754	10.568	0.195143	e	32.522
C.170F769" 02	-0.5:192826 61	0.51213:65 03	271.773	10.197	0.001750	ç	37.C37
-C.245C541F DI	-0.54019765 03	0.54017125 03	265.740	26.974	0.066279	10	41.152

BLADE CHORD AT STA 235
HARMONTC ANALYSIS MODEL 4H-5/1 SHIP 1005 F 405 CTR 307 FLT 500.0 TR 22

. AJ	• .1	£ J	PHIJC	PSIJC	KAPLOLLO	J	FREDUENCY
-0.27050737 35							
C.4#259765 C4	0.37348245 64	0.610855! : 04	37.751	37.751	1.000000	1	4.115
0.42956175 C4	-0.47915/A: U3	0.4126214: 04	351.640	176.920	0.708225	2	0.230
-C.33243325 C4	-).271949eF 34	3.46115495 34	216.137	72.346	1.754921	2	12.346
0.2547540" C4	0.36104505 03	0.247315 = 04	8.084	2.021	0.431230	4	16.461
-C-3C\$\$0\$2" 01	0.70812285 02	0.72001.41 03	145.548	33.110	0.052392	•	20.576
-C.1472244 01	0.6651146 11	3.7259711133		17. 367	1.112298	ě	24.691
-C-1253227 C4	0-44130815 03	0-1128676: 74		22.943	0.21 7507	7	28.807
C.5236833- C1							32.522
C. 36173297 97						4	37.237
		0.27293185 03				ıċ	41.152
	-C.27C50737 35 G.487C9767 G4 G.497C9767 G4 -C.37C40755 C4 G.25475407 C4 -C.3C590527 03 -C.12737277 C4	-C.27C5777 35 C.467C5777 35 C.467C5777 C4 C.47C5777 C4 C.47C577 C4 C.37C5777 C4 C.37C5777 C4 C.37C5777 C4 C.37C5777 C4 C.47T277 C4 C.37C5777 C4 C.47T277 C4 C.47T2	-C.27C57737 25 C.48759767 04 O.47759176 04 O.47759177 04 O.47759177 04 -C.37543775 04 -C.37543777 04 -C.37543777 04 -C.37543777 04 -C.3754377 04 -C.3764377 04 -C.3764441 04 -C.376441 04 -C.3764	-C.27C5777 25 C.467C5777 25 C.467C5777 25 C.467C5777 25 C.467C5777 25 C.477C5777 25 C.477C5777 25 C.477C577 27 C.477C57 27 C.477C5	-C.27C5777 25 C.467C5777 25 C.477577 25 C.47757 25 C.47757 25 C.47757 25 C.477577 25 C.4	-C.27C5777 25 C.467C5777 25 C.477C577 25 C.477C57 25 C.477C57 25 C.477C57	-C.27C50737 35

SLADE TORSION AT STA 131.5
HARPINEC ANALYSIS MIDEL AF-564 SHIP 1005 " 405 CTR 307 FLT 500.0 TR 44
CVCNALL CYCLIC LOAD = 0.863293" C4

780C -05171C4 (	firu	1.44	L	CADVIA LI 10	12735.33				
LA	· • • • • • • • • • • • • • • • • • • •	PJ T		17	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
-C.2632659F									
C. 234 14 FO :	C4	0.4647651	64	0.577" AZ4F 34	54.235	54.235	1.333333	1	4.115
-0.70151405	C.J	0.27541766	04	0.28678385 04	105.622	52.411	0.500685	2	8.230
C.512755P4	CT	-3-6/141605	63	0. 3761 4704 03	309.502	103.194	0.14076#	7	12.346
-C.76FC17H"	Cl	-0.50G4730E	CS	0.7691 4/ 53 03	163.728	45.932	0.134370	4	16.461
-C-26576641	12	3.99738946	23	3.95751593 33	91.713	18.352	3.167169		20.576
C-1476665E	0.3	0.6458554	03	0.4424 7596 03	77.497	12.916	0.119261	£	24.651
C.1797652"	02	0.42746556	C2	0. 19574468 63	15.055	2.151	0.037428	Ž	28.697
C.1137174°	0.4	-3.7771230	:3	3.1 144 JCBE 34	327.313	43.914	J. 235 Je 3		32.572
-G-1264559	23	-9-37551 *55	CB	0. 3447 /226 03	249.717	27.635	0.061 065	•	37.637
C. 3764771F		0.77931306		0.74CI 133E 07		8.747	0.012920	10	41.152

### HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 30 V= 122.5 KTS n= .99 g Reproduced from evallable copy

BLADE FEATHER ANGLE
ME-HOVE ANTENNES TO LEAN-BOX SHEP EUR FRANCH AND HOTE SHO FET SOUND THEM

	NJ	* * #	PHILIC	"FS IJC"	CJ/FJHAX	J	FREQUENCY
0.0753377 01							
11.40456 01	-3.36501347 01	3.34741137 01	310.225	314.222	1.000000	ı	4.115
-2.12.3674 00	-0.610-0- 501	0.23011005 03	230.312	101.600	J.U3/656	4	8.23C
-3.7130625' -62	-0.24074165-C1	0.27:57677-01	250.210	65.403	J.005464	3	12.346
J.4+331717-01	-0.141647.5-62	G. ++>5+275-01	354.180	49.545	0.004132	•	16.461
" 0.135 /m ?-81	-0.5121301"-03"	" J. L J. v + i 1 - T. ["	351.270	11.463	5.001763	5	20.576
3.13:40655-01	-0.3328145 -44	10-: 1110411.0	3-5.744	57.032	J.002475		24.691
U.1. 12 Can =-UE	- 1.25421114-61	10-20-4310-01	272.018	33.124	0.004045	7	28.807
-3.32955741-02	-0.27520265-62	0.37/11/4:-06	234.054	25.252	J.001204	8	32.422
20-21050010-05	-3.35152327-02	0.4273+74 02	301.123	33.478	U.000H35	9	37.037
-3 .0 . 60 704! -02	J. 1012775"-01	0.17.311101	111.355	11.165	0.003177	10	41.152

### SHAFT HOMENT

HI--. W. A. LYSIS MI. 1 PH-Sha - SHIP LULY TOUS FIR SHE FLT 500.0 TH 35

	—				PHIJE	" PS 116"	XAPL3 \LD	5	FREQUENC Y
-1.5124 14.									
~ • • 7 \$0 \$75.	<b>J</b> ~	J. 71 LUJJU!	133	9.7111a13° 00	80.767	bu.167	1.000000	1	4.115
-3.630360.1	U-	ーいっしんりゅうシップ	C+	3.2333332' 00	61 00 140	107.495	0.040573	2	4.23C
-0.9249514	04	-0.1-11373"	Co	0.1641141: 05	430.065	74.150	J.237070	3	12.346
*********		3.11/22.00	C.	O. Lettaton de	14.444	17.114	U.U 19448	4	10.401
-5.13 alci	3.	J. 4425055	3	0.11:15:15: 64	150.406	16.16	0.015110	5	20.576
3.375133.0	U.B	-0.26776.3.	J	0.1/27354: 03	134.481	50.583	0.004115	6	24.691
-3 .2-324231	11-	-J.?L#1671'	4	0. 12 . 11 11 00	224.243	31.744	11.042632	7	24.837
-3.474365.1	35	0.5413662	CD	Eu teettee	42.140	11.033	0.013823		32.522
-6.14010177	LJ	-0. 36715535	CZ	7.1114vol : 05	141.243	21.207	U.002585	9	37.C37
7.2097506	60	-0.32770335	03	0132370 03	3.19.399	30.440	1.4600.0	. 10	41.152

### PITCH LINK TENSION

MACHINE FIREFALL ALL CONTRACT SHIP LODGE FOR CERTAIN LES DOUGS TRAIL

TAJ TELEFICE		**		PHIJC	- PS IJC	CJ/CJ4AX	- ,	FREQUENC Y
-3.2474156' 1.3								
-3.2361924 01	-3.3612.17	CZ	3.2111123 01	170.740	170.740	1.300000	1	4.115
J.1++0492: US	-J. 12+J1 345	Cs	0.1111.32: 01	314.490	154.245	J. 4 dusol	2	8.23C
-0.2215 6.257 02	· U. 7163733:	CZ	3. 1.23 120 : 02	250.384	400.00	3.444336	3	12.346
-0.32995861 02	-0.27021097	26	9. 12311115 02	211.315	54.429	0.263240	*	10.401
-3.2571845" 32 "	-3.66578751	95	0.21.121. 02	232.811	43.202	100001	5	20.570
U.2342526 UZ	-0.7C137+J	CL	de descente De	3+2.234	51.222	J.11055	6	24.641
0.13.5254 - 02	-U. 172564C	CZ	0.2275+215 02	317.747	45.390	392221.0	7	26. 607
0.7645 6245 01	9. e Ca222 01	CI	0.11151/+: 02	41.155	>.1.+	J.046199	8	32.522
-J.159-6750 02	3.21+3858"	01	3.1011+11. 02	172.340	11.149	J.076653	7	37. C3 7
-3.32648301 61	U.1412535	02	0.10011007 02	440.015	10.101	0.069091	10	41.152

### FIXED WE FLAP AT STA 13

ľ

missibile of EVSES NOT E AN-pas . Sold Eggs 1 ado 1877 ada FET Sudio The E

			PHIJC	PSIJC	CJ/CJMAX		FREQUENC Y
1.3231635 04							
J.51437657 U4	3.1592233" 05	J. 15/32/37 US	74.047	72.097	1.000000	l l	4.115
J. 2715:01" U4	-J. e54-100 15 Um	3.41141142 04	244.446	144.4/4	3.540240	2	8.23C
-J.1265742" J4	-0.2471907" 04	0. 11444645 04	240.215	32.972	0.167564	3	12.3+6
-3.1400063 04	-J. 0 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5	0.13501215 06	197.3-1	47.835	J.110545		16.461
de - 1 % Us	3.246351 4" 33	0. 3/33130: 03	134.2.4	21.300	0.022609	5	20.576
-J.5300777 Ja	-J.9889497" US	0.1141100- 04	234.348	37.371	0.044702		24.691
-3.3541735 03	-1.4074573 03	U311 103 : UJ	234.239	33.443	0.035929	7	28.607
J.1234511: UP	-0.11300047 03	0.12114145 04	320.969	44.371	0.011064	d:	32.422
0.9277530 02	U.165742 C: UJ	0.1317514: 03	60.724	6.148	0.011340	9	37.037
3.1.5421.5 01	-J. 14-482 18 C1	0.2357353 : 63	110.392	31.536	0.012294	10	41.152

### HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 30 V= 122.5 KTS n= .99 g

BLADE FLAP AT STA 270 HE SHEDUL SHIP LIBY THID CTR DOD FLT 500.0 TR 26

	- · - 41 - 125-12	C)	PHIJO	PŠIJC	CJ/CJMAX	J	FREQUENCY
-0.3177350° (+	3.43202211 03	0.1327332 04	24.159	21.159	1.000000	1	4.115
3.4944342" 61	3.3919909 33	U. 531317J? Us	40 30	20.315	J.560+10	4	6. £3C
-3.5307603. 03	-J.1co7735: 03	7.25.26.11. 02	100.445	64.064	0.496016	3	12.346
1.52.53349 33	J.1152539' C3	1. 11/101: 41	14.705_	4.414	_ 0.5 31437	. •	16.401
3.2213647- 65	-3.2567622' 03	6.3.3.112: 63	110.5 23	62.100	0.322113	5	20.514-
- !	J. 64018 15" 02	3. 11 155 (1)	101.04	27.143	6.546947	•	24.641
3.3556 760° US	-0.1422335 03	0.+1144723 03	333.530	47.547	0.3667/1	7	28.897
J. Wirrert us	3. /2 -11 3/ 62	4. / 3323337. 63	2.771	0.144	0.662242	3	32.422
-3.2472641- 33	J. J. Watt S' CJ	J. +J 1 1 1 1 + 7 1 1 5	120.4.1	14.347	U. 300062	4	37.037
3.1 ./ 0 (6.5 0)	J. 34+3/50° CJ	0. 12 22 15.	63.746	0.145	0.414574	10	41.152

BLADE CHORD AT STA 103 National and void Not 10 AM-Sul Ship 1037 THOSE CTH 330 FLT 500.0 TR 17

AJ			PHIJC	PSIJC	KAMLONLO	J	FREGUENCY
J.2103.00 00	1.4517637" 35	0.51+25+35 05	77.214	77.214	1.000000	į.	4.115
-3-22-30-	-0.25e0941, 94 0.2240042, 04	0. 17/1/27 01	235.646	34.075	0.110572	š	8.23C 12.346 10.461
- J. 132 1370 - J.	-0.1843055 63	0.1374107: 00	321.707	55.499 01.341	0.025807	3	23.276
-3.24170147 Jz	-3.4623610° 02 0.46727425 02	0.3417111 02 0.3447111 03 0.13.5377 05	230.047 6.313 20.772	0.359 7.346	J.007710	7	28.637
0.0170c1~103 0.0113c35103 -0.5707445102	0.11507135 0. 0.10936027 04 -0.41771956 03	0.11/11/00	61.4/3	7.714	0.023265	_ 10	37.637 41.152

BLADE CHORD AT STA 235
HE EVIT PRILYSTS 1000L SH-504 SHIP LOUP T +05 CTR 350 FLT 500-0 TR 22

100	N Faj S	C) PHIJC	PSIJC	EJ/CJMAx	j	PHEQUENCY
-0.2057e134 d9	3. 4676555F C4	0.01/53217 06 72.091	72.391	1.00000	Ļ	4.115
J.392-204* 03	0.10795145 64	3.11.0 11:00 61.450	34.725	1-01-01-0	3	8.23G 12.346
Jeffenchauf Ja	-0.1949A452 63 -0.47379717 03	0. 4072041: 03 347.004	A6.751	0.123946	:	20.5/6
-3.100+212F 03F 0.123475/F 03	** 13ckel. 03	0.72 192 14 : 01 334.577	59.729	1.032653	•	24.691
-0.34014205 J2 J.644958J7 WL	-3.3593027- 63	3.35031472 US 204.430 3.170333. 03 273.008	31.177	0.021030	4	20.60 <i>1</i> 32.922
J. 4544 Luys UZ	0.488/613F 63	3.44331914 03   34.461 03   34.461 03   213.121	78c.e	0.142002	10	41.152

1

### BLADE TORSION AT STA 151.5 MINE WIT PRITYELS MODEL AM-56% SMIR 1009 T 405 CTR 436 FLT 500.0 TR 44

	r J		64	PHIJC	PSTAC	CJ/CJMAX	J	PREQUENCY
3.5766771		64	0.27234525 09	15. +20	35.920	1.000000	1	4.115
7.22332*15			3.1.22019: 09	100.107	61.054	0.522109	2	8.23C
3.4444665.	J1 J.2550214	42	0.27-17-12 02	68.977	186.72	0.010225	3	12.346
-1.157+3+1			0.1112007 01	187.610	45.974	0.023647	3	20.576
-3.69601447	••		J. 7 . 1 7 1 15 ° U3	:34.7.0	34.478	0.272697		24.691
-7.24+5667			0. 31210557 01	145.00L	27.952	0.112424	1	28.607
1.30554631			0.03039235 03	29.758	3.306	0.234536		34.922 37.037
0.1354335*			0.15333777 03	24.194	2.419	0.048099	10	41.152

# RMONIC COMPONENTS OF FLIGHT 1ES. CASE 30 V= 122.5 KTS n= .99 g Reproduced from valiable copy. HARMONIC COMPONENTS OF FLIGHT TEST DATA

FITTO HUS CHORD AT STA 18

than 117 to 19515 White the Sale Blog I bud IT bud ITP bou fet boot IR &

·			cu-	PHIJE	25 IJC	CJ/CJHAX	j	FREQUENCY
d. 5433684, CP								
J.3342tt4' J5	J. L 00003 /5	Cu	0.13547111 05	71.52/	71.527	1.00000	L.	4.115
dedonation do	4. > > > 44 > 7:	C-0	0. 112/07+2 0.	73.440	27.503	0.094096	2	9.236
-3.33134507 04	-11. FEUL+05"	U-	0. 17:21135 04	247.755	62.595	U.062900		12.346
-J.956 2361F U.	U.1103545	04	O. Leoord J. 10	131.204	12.401	0.013403		16.461
	Jelliusss	C4	0.1++9272 14	127.302	() dt. C)	0.013699	5	20.576
-1.7711004 US	- N. et 77506	0.3	0.1102000 00	221.700	39.29%	0.011022		24.641
-J.1720 E767 U+	U. 46741 10	US	U. L /5 1 / / ) : US	121.124	21.000	U.018578	7	20.407
co Harretten	-3.1667411	Cs	G. Zalindat Us	343.034	40.300	0.002375	8	34.422
-2.31-5:60: 02	-0.2(60014	04	J. 2163253 : 04	204.128	24.403	J. J 190J4	9	37.057
-0.3323750" 03	-11. 31 74607	33	9.421.377: 03	223.007	22.309	0.00+357	10	41.152

BLADE FLAP AT STA 130.5 Htt 4 \10 // \2\55 MCCC \AH=961 \ SHEP LIDE T +95 CCP | 330 FLT 960.0 TA 19

	- 11 ·	c.,	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
0.17925317 Up 3.43208447 34	-3.2914757: C4	3. + 7 1 1 1 4 7 04	323.+05	323.000	1.000000	1	4.115
-1.1.73236 04	J. 4354034 C+	0.2142711 00	125.342	62.571	U.567496	ž	8.23C
0.5254154- 05	-0.1001707 03	3.10.111115 05	192.490	23.177	0.214341	3	12.346 16.461
3.13144075 35	-7.1094981- 01	נט : נינונוניניניני	1111-102	Loo.tu	0.051385		20.5/6
3.473650 US	-0.7807100 01	0.1474422 04	359.110	201.102	J.107211 0.037605	7	24.691 28.807
3.3243/5/ 03	J. 415/017' U.S	0. 12 10100- 01	51.723	6.703	0.106281	a	32.422
-3.15+16455 da 3.63+05577 d2	0.16305/# Co 0.1170114. Cd	C. 4.121/2 63	94.912	17.540	0.036:66	10	37.037 41.152

-3.1144574 34		:1	PHIJC	PSLIC	CIVCIMAX	· ;	FREJUENCY
-1.2174-14" 34	J. 1014314" JY	J. v. 11+00; Ur	120.000	123.860	1.000000	1	4.112
3 - 21 354 14, 34	- Jelloully Je	J. 2 . / / 123 UT	1100011	Lub. 158	J.5043U1	2	8.45C
-c.d.40775 Us	-U. 7. 6040 PT 63	0.11077#17 64	263.030	73.036	3.273429	3	12.340
3.77573685 33	J. 531 1777. CL	0. 1227233 US	13.423	0.135	0.171191	4	10.401
Jallonast 131	-0.5724576 10	0.1 *	142.154	44.591	1 . 3 4604 7	>	20.516
S.sl'iducs" Us	U.1752277 03	0.+1+2+13: 03	25.309	4.213	0.094892	6	24.691
J. 10 10 45 6: 115	U.Lelloso CJ	0 4/1175 - 43	23.374	4.136	3.04/433	7	48.607
-3.1164071" 113	J. 2472934 Gs	U. 11 12 . 15 US	111.310	13.023	0.075301		32.427
-0.1/61524 35	0.30051 33, OS	3.133371: 03	101.034	19.020	0.042538	q	37.C37
3.29.25296 11	3. +181.2 15 C2	1. e.l. 122 : Oc	42. 1+1	3.29.	1.011-13	. 10	41.122

C

÷ J	ال د	∺ Fou	24172	PS 116	CJ/CJMAX	J	FREQUENCY
-2.72264147 33	3 1213411 34		98.709	.4 804	1		4 116
-1.21-142: . 13	0.1457201 04			14.101	1.000000		4.115
Columbia 34	-0.11474C3F C.		101.066	177.450	3.802323	2	8.23C
-1.0261476" JS	-0.4429640 6:		203.0.1	406.69	3-404535	3	12.346
0.1007140 0.	J. 72220551 Ca		3.071	N. 168	U.550573	4	10.461
c.31865627 "C3	-3.12-7131-3	C. 16+1710 T C3	324.011	63.615	0.120030	>	20.516
J. 1658 -73" US	3.2721536° d.	0.16 (11517 03	7.510	1.323	J. UP6537	6	24.691
0.2251527 01	-J.171s732= U	0.2415341.03	322.044	40.042	0.145834	7	28.601
J.6356157 US	U. ++ JJUSF C	0. 41 14 2 14 , 11 3	32.141	4 . 13 16	0.421673	8	34.462
6.2014737" 02	J. 1 543 JG3 C	0.14515+2:03	31.927	4.103	ひ・ひらうはよう	*	37. 637
0.300140 ic 35	0.3577745" 02	300011101:02	03.336	6.33.	0.03++33	10	41.152

THE ANGLANDA STRAIGHT

### HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 31 V= 123 KTS n= 1.11 g Reproduced from evallable copy.

BLADE FEATHER ANGLE

HE A THE ANTENNES METEL METER THE BODY I HAS FEE BAS FEET SOULD TA SE

		s	PHLIC	PSIJC	CJ/CJMAX	- ,	FREQUENCY
0.73.45367 CL 0.43042317 JL	-3.54723541 01	0.55333254 01	121.104	321.100	1-000000	1	4.096
-0.1025271 00	-7.165.74401	0.1111103: 01	205.700	102.450	0.0 1261 7	į	3.197
-3.3574626*-31 5.65.366*-31	-0.1215437°-02	0.01:135:-01	328.374	89.725	J.010927 U.011-34	- 1	12.295
J. 2707 CC7 -31		0.15/10123-01	354.504	10.918	U.JU-004	5	20.492
-J.1173463'-01 -J.25351845-J2	0.16877195-02	0.1111117-01	173.501	29.477	0.002149	;	24.540
-0.5464.351-75	- 3. 2152523 -01	0.233333-01	247.340	114.66	0.004224	i.	34.781
-J. 1105 74c1 - UZ -J. c 187 7551 - GZ	-0.3645100-02	0.5227755*-02	210.271	21.361	0.000746	10	30.885 40.984

SHAPT HOMENT HAR SHEW LOUD THUS CTR SHEW BOOK THE SA

	- •		-	0 2 1 1 1 0 1	PHIJL	PSIJC	CJ/ CJMAX	J	PREMUENCY
-J.70UJ?7.	04							_	A
-1.6359027	34	3. / . 5.3.3.1	C>	1.76.5+645.05	40.66d	tob. Ct	1.00000	1	4.099
-1.23635441		- 3. 1434744	03	13.2.7.1025 0.	197 .und	40.741	0.034591	4	4.197
-J. 1 Jac 13el	45	- 3. 20372 35	Co	0.2.23110: 00	215.913	74.038	U. 334274	3	12.245
3.736 45345	4	0.1659/42.	C+	J. 12.13.217 04	53.028	14.757	0.014010	4	16.393
1.196 ,527r	34	3.100+2+7	04	U. 2231394" U+	153.332	30.066	J.031270	5	20.472
-J.bd71Cn7'	33	- 3.5016036	03	J. 1 10 17.2" 04	213.249	35.542	J.J14827	6	24.590
-1.1237221		-3.2442500	C+	C. 1143576: 06	447.443	15.165	0.044456	7	28.685
) -456134.:	32	U.3C27755	0.5	3. 3121 370: 03	73.440	12.105	0.00+363		32.787
J. Luz 70%5"	١.	-3.1022891	4	J. 1	315.140	35.313	0.023261	9	36. 695
J. 158 474.	34	3. /1054 13	0.5	3.1/333++? ++	44.343	2.434	0.02.254	10	40. 484

PITCH LINK TENSION

HARPINE ANTLYSES HOTE ANODE SHIP BOUR THOSE CTR 145 FLT SULLO TR 11

		7,7	PHIJC	PRIJE	CJ/CJHAX	<b></b> J	FREGUENCY
-0.3172tpa03							
tu lincolou-	-0.7600407" 62	3.111061 03	210.001	210.007	1.000000	1	4.094
194 1 149. U.	-U.1120840° CJ	0.17151745 63	366.012	101.330	J.944U26	2	8.197
-0.617/771 02	-U. L279335" US	0.1+136337 03	244.315	H1.438	U.740670	3	12.295
L.22+734" OL	-J. wallabay: Ca	3. 4.11.11 17 02	272.191	64.144	0.240630	4	16.373
-0.3013414. 0.	- 1. 6326.333 02	0. 12 13 1: 02	212.000	46.577	J. 22450 3	,	20.492
3.271216/1 02	J. LZel7L" UL	J. 271 JL 135 UZ	2.706	J.451	J.1-1005	•	24.546
0.227:501F UZ	J. 4723766" 09	C. 22 1Jos 1: UZ	2.191	0.313	4.110475	7	28.685
-0.3714361 01	0.16474515 61	U. 36/130 UL	163.397	20.3h7	0.014164		32.787
-3.1133574- 02	J. 1497539F 01	0.11136317 02	172.272	19.141	0.354167	9	36.585
-0.69190717 01	0.1639639 UL	O. Littari." Ve	111.631	11.774	4 64640.0	10	40.964

1

FIXED HUB FLAP AT STA 18 HOTEL SHEED SHEET \$339 F \$35 CTR 345 FLT 500.0 TP 1

13	* PJ	C1	PHIJC	PSIJL	LJ/CJMAX	J	FRÉQUENC Y
J. [137451 35	0.1994424 09	de la facala da	12.204	72.301	1.000000	1	4.098
Poulsanty un	- 3. 3043202' 04	00 : reltitte	246.534	143.254	0.555630	Ž	8.197
-0.2.30.31 04	-3.3275898° C+	J. + 1/4 /Li " vi	231.431	17.310	J.250755	3	12.295
-3.115926- 00	-J.1117964 G4	7.21,2332 04	211.673	25.453	0.132317	4	16.391
-3.0345030 32	de lockeinist	0.1122426 03	122.003	33.40L	J.U4/454	>	20.472
-( . 1 14 1 444 " 03	-(·. 74.5955] (3	0.1314337:03	220.415	42.744	J.4769H	6	24.59C
0.1.2447.5 03	- U. 10 CH CCC C. U.	J. 3715131- US	ad 1.333	41.333	0.022841	7	28.645
0.11.443. 04	-0.39cilia C3	3. 14 11 113 : 05	341.164	42.045	3.06/042	4	32.107
Laluszerie Ul	J. 2457018- Cs	7 3 + 1 3 L 3 = 03	61.615	3.737	3.020859	9	36.615
3.2.34142. 03	-0.1423403" 03	0.2.13.11 03	333.128	33.5/3	0.015269	10	40. 484

Reproduced from eveilable copy. FIXER WAR CHORN AT STA 18
HILL MIT MIT MITTER NOT L AND DOG THE SOUTH FOUR CIR 145 FLT 200-0 TH 3

	-				PHIJC	Pilic	CJ/CJMAX	· 7	FREJUENCY
J.+ 100 f 34F	UD								
J. +211 Leaf	33	3.4242322	0,	U. 1-12 + /54 : U	10 03./36	65.150	1.000000	A.	4.698
3.31144111	64	0.4758017	12-	0.14.31.17	5 oH. 210	14.104	0.102546	2	4.197
*U . 4400 FEU*	14	-0.4176172"	04	0.13.13914 0	D 241.011J	HJ.547	0.101838	3	12.275
-3.2117447	U-	-0.154-7 121	C+	0. 2021120: 6	4 216.175	34.144	ひゅひとうちりゅ	4	16.393
-3.2310:625	.94-	-0.1359535"	"C4"	3.24 14 117° T	4 211.033	42.607	J.U24338	- 5	20.492
-J.1351c33"	1)4	-3.742-0145	0.5	J. 4 > +2 1 + 3" J	4 434.745	34.719	0.015051		24.59C
-3.12 11 454	4	0.1.03AU65	de	O. Leinana L		20.174	0.01/504	7	28.645
3.210.2531	-	-J. 20290002		0.2141102: 6		44.162	3.021285	a:	32.747
3.43124644	-	-4.21942471		3.21.21.20		32.001	U.U23340	ă	36.885
3.92453241		3.1654353		0.14322315 (		1.313	U.JU0923	LÚ	40.784

PLANE FLAP AT STA 130.5
HER SIE MINISTER MINISTER AND SHEP BOOM THOSE CTR. 345 FET SOUND TR. 19

	LJ		PHIJE	PSTJC	CJ/CJ44x	J -	FREQUENCY
J. Iliales di							
J. 4634644 U4	-0.29614135 U	ou steelate of	364.140	324.143	1.000000	1	4. 098
-4.1991323" 34	J. 24101 13' U	0. 312535/= 06	121.265	64.782	0.617673	2	6.197
7 . 6 × + 2 U 4 11 33	J. 1 C63435" C	0.12	57.642	19.351	0.244428	3	12.295
C.3117525 J3	U. 25728901. C.	2 0.1122712 05	2.541	3.033	0.163541	4	10.393
J.2130135 TJ	-J.1 " 328 31: 0	U. 2 4 1 4 0 1 3 2 U 2	din.clo	63.183	ひ.いかもりょう	>	20.492
J. 3.41 45:5 U.	J. 17293 ,9" 0	i Jescotte O	20.372	4.343	J.076704	•	24.590
U.lelatodi Ud	-U.43C34Jol C.	2 0.10/110/7 03	347.074	44.276	0.033014	7	20.685
Salfflehe Ja	0.24109445 0	3 0. +2 /2 ++2 * U)	65.006	4.133	11666.6	8	32.787
-J.104F84": 03	3. +1517+35 0	2 7.11032.32 03	1+3.431	15.937	J.027932	9	16.885
J. dare Trai at	J. >> > > > / 1! L.		33.096	1.301	0.020155	10	40. 984

BLADE FLAP AT STA 205 HATTL AH-904 SHIP 1309 F 405 CTK 345 FLT 50040 TP 20

		bj		- CJ	PHIJC	PSIJC	CJ/CJMAX		FREQUENC Y
-3.73792031	14							•	
-1.2513571	114	6.34010-55	0+	C. 42 )71 7ac C+	121.304	123.36+	1.003030	1	4.098
J . 6 77 / UL'S.	4	- 4. 126.411.	U	de l'usest" de	132.144	Luvelde	U.541762	2	8.147
-2 . 1.7 +5 21cf	0-	-J. 606066 4º	0,	3.12Jdad+ 34	213.126	13.043	J.262326	3	12.445
".6753467"	JJ	0. 1200414	CS	0.54/50/34 05	24.307	1.0//	0.149230	4	16.393
2.3361 0375	33	0.7614713"	U.	J. 31 31 12 " "	341.234	04.421	0.07-951	•	20.492
3.2362565	40	0.2713037	03	C. 16 14 193 T US	49.610	8.113	0.070321	•	44.540
3.2343474?	03	0.10590725	CI	1.23137+0= 03	0.444	3.003	0.051453	7	24.489
-0.120-3406	U3	J. 1337434'	1.1	0.1701112: 03	432.003	16.207	U.U 17065	4	32.767
-4.3314257	0.	-J. 4313628°	U.	3. 2 . 1 112 . : 02	434.464	42.424	10-011-07	ě	36.435
5/4 6 7571	UZ	1.5852707	36	0. 11 19791 : 32	45.244	1.724	0.017798	LĴ	40.544

BLADE FLAP AT STA 235
MARA 1912 PARLYSIS ACORD AND MARA 1914 TODAY TODAY CTA 145 FLT SOUND THE A

	77	<u> </u>	OHIUC	PSTUC	CJ/CJMAX	- 7	FREQUENCY
CC -1564401.							
-) - october of	U. 2560484" U4	けっとつうってょくこ ロケ	101.3/1	101.321	1.000000	1	4.099
J. 17101215 Um	-0-1414734" C3	3.1/2/5/3: 07	271.413	1/4.100	U.675/37	2	4.197
-0.6640410- 03	-U. 4 1449555 CJ	0.7+17394 03	213.436	71.145	0.311231	3	12.245
J.9J3777c J3	0.5271331: 03	0.11.3005 04	30.272	7.568	U.+04945	•	10.393
J. 1414710: "UJ"	-0.1789204 07	3.3.222335 03	343.55/	65./11	4.1.1103	•	24.492
J. 2747Cost UJ	0.43582576 CZ	0.24573127 03	12.855	2.147	0.112226	Ĭ.	24.596
0.32307325 03	-0.1470470 03	0.371.2215 03	324.620	40.440	0.148010	7	28.689
J.5715F2: " U3	0.4943694° Ca	0. / 1 1 1 1 1 2 0 3	+3.511	2.064	0.29+449		32.787
0.23545795 03	3.414491 b: C2	0.23114516 01	11.450	1.344	0.042070		30.005
-0.13175756 03	-0.4275548: 07	0.113.21.	232.117	40.243	0.043189	10	40.784

BLADE FLAP AT STA 270 HILLSHIP LIBER TO CTR 349 FLT 500-0 TR 26

		· · · cJ	PHIJC	PSIJC	CJ/CJMAX	ij	FREQUENCY
0.1101730	0.40254427 03 0.1184110 03 -0.4126740 03 0.40380417 02 -0.1571340 02 0.3315455 02	0.1133337" 00 0.67 (7435" 03 0.4343431 03 0.43723712 03 0.43723712 03 0.4343431 02	20.001 13.031 253.222 2.409 3.527	20.001 2.310 40407 21017 3.702	1.000000 0.594755 0.382586 0.825732 0.267361 0.073409 0.275273	1 4 5 6 7	4.048 8.147 14.295 16.393 20.494 24.590
3.17344547 33 3.72344067 33 3.12531747 33 3.61441977 32	-0.25%50101 03 0.35414117 03 0.20095005 03 -0.64130.57 02	0.31232765 U3 0.33762075 U3 0.26437775 U3 0.134323 U3	304.734 26.334 31.344 34.734	43.387 3.251 5.709 33.464	0.273273	4 9 10	32.787 36.465 - 40.95\

SLADE CHORD AT STA 103

MELANYTE SATEMENT AND THE SHE SHE SHE SHE SHE THE STATEMENT THE 17

	61	SI E	PHIJC	P5 14C	LJ/CJMAA	1	FAE WUFNC Y
3,2377199 60 3,1305744 32 3,334062 44 -0,3540616 04 -0,374715 04 -2,5317777 03 -3,4197075 03 0,473725 03 0,473725 03 0,473725 03 -0,473725 03	U. 4614115" U5 U. 5033110" U4 -U. 612645" U3 -U. 412645" U3 -U. 4441915" U3	0.403/713= 05 0.636332+ 09 0.7346119= 09 0.3163131 09 -0.147271 03 0.5274339= 03 0.1231371 03 0.5263371 03	71.115 50.J22 234.U56 352.U50 151.335 223.U49 J24.124 76.U58 120.494	71.115 28.311 77.360 dd.314 30.267 38.303 40.303 9.596 14.277	1.000000 0.123448 0.155109 0.061560 0.019341 0.012419 0.024002 0.030031	2 3 4 2 6 7 8 9	4.09d a.197 12.295 10.393 20.492 24.596 28.685 32.747 30.665
-3.1425241 33	-3.3024337° CS	co filltett.	244.100	24.411	0.000426	10	40. 934

BLADE CHORD AT STA 235

HE WINES MINES AND LANGE THE PROPERTY LANGE TO SEE 149 LILE 1997 LIE 149 LEL 20019 LA 55

		<u> </u>	PILLUC	PSIJC	. KAMLOVEO	J	FREQUENCY
-0.20415t25 02 0.2410007 00 0.6430150 00 -0.8375501 03 0.7427470 03 -0.3204511 02 -0.3204511 04 -0.4402367 03 -0.3071446 02 -0.4402367 03	0.64576+8" 0+ 0.64745145 0- -0.76169335 0- -0.2760377 0- -0.4150042 0- 0.1711127 0- -0.4252595 0- 0.42770374" 0- 0.40330315 0-	0.33/23/12 00 0.12/1017 00 0.11103/47 00 0.7/155047 03 0.2/13/23 02 0.2/13/23 03 0.2/13/23 03 0.2/13/23 03 0.2/13/23 03	67.534 57.179 223.312 339.977 272.330 134.935 253.632 175.371 110.476 172.933	67.534 24.590 /4.43/ 84.994 54.471 23.322 30.976 22.047 12.275 17.273	1.000000 0.145003 0.161097 0.116094 0.013295 0.0003057 0.042787 0.043997 0.152292	1 2 3 4 5 6 7 8 9	4.094 H.197 12.295 10.393 20.492 24.590 28.685 32.787 36.885

BLADE TORSION AT STA 151.5 MARKET TO ANALYSIS MORE AND SEA SHIP 1005 T 405 CTR 345 FLT 500.0 TR 44

E E 222 .	9.1	CJ	76140	P\$1.1C	CANCAMAR	j	FREDUFACY
C.4F916F7E C? C.2C41772F C4 -3.1191718F 34 C.6F9774FF C7 -C.37996C4F C7 -C.5F9314F C3 -C.17A5011F C7 -C.8176C41F C7 -C.817C45CF C7	0.16717007 C4 3.78393675 33 0.19439407 C3 0.64574676 C2 3.61944135 32 -3.67641317 C3 -0.27149527 C3 3.12757615 37 0.65270516 C2	0.76772/AF 04 3.154573145F 34 3.1546741C 03 0.3653AL65 03 3.7677619E 32 0.77916:7F 03 0.21217.00 03 3.479663E 33 0.12624c3E 03	30.630 145.762 13.539 159.639 170.625 216.090 205.627 7.355 42.487	39.639 72.861 21.170 67.410 25.725 36.013 37.047 3.519 4.721	1.00000 0.520355 0.057756 0.163045 ).)?!!45 0.272354 0.272354 0.006719 ).317735 0.04/155	1 2 2 4 4 6 7 5	4.000 8.197 12.299 16.303 20.409 24.590 24.689 32.747 34.884
C.72751771 07	J'21 Ualack Ca	0.01573-8F 07	17.765	7.777	10.014704		400

BLADE FEATHER ANGLE MARNUNIC ANALYSIS MODEL AM-DOA SHIP 1309 T 405 CTR 351 FLT 500.0 TR 31

AJ			CEDI	HI CANCEL			
J.7100453F 01	43.	CJ	PHIJC	PS IJC	CJ/CJMA X	J	FPEQUENCY
0.4715574E 01 -0.7227124C-01	-0.3C14045E C1	0.55405546 01	347.415	327.415	1.000000	1	4.115
-0.57633626-01	-0.16132748 00	0.154+6316 00	234.502	117.251	0.022239	Ž	U.23C
0.75065146-01	0.1644446-01	0-547212/5-01	110.026	56.675	0.010492	3	12.346
-0 -2314330E-u1	-0.16789ust-01	0.2403253E-UL	# · 206	2.051	0.013552	•	16.461
10-34034666-01	u. 53366046 -03	0.20032335-01	41>.901	47-180	0.002110	>	20.576
U-1077250E-UL	-0. 84757405-02	0.14772473-01	178.999	29.433	0.005456	6	24.691
-0 -2-328358-01	-U. 4358296E-CI	0. 34161915-01	333.191	47.59+	0.003358	7	20.007
-0.1-417036-01	-J. 01 J350cF-C2	10-2485101.0	202.353	28.074	J.006104		32.422
-0.3239486E-C2	-6.635U348E-U4	0. 11247438-42	242.473	44.484	3.002832		31.031
	1/22/2012/2012		6466413	44.297	0.001274	10	41.152
SHAFT MOMENT							
HARMUNIC AVALYSIS	MOULL AH-SAA SI	417 LODY T +05	CTR 351 F	LT 500.0	TR 74		
AJ	6.3	CJ	PHIJC	95 1 10	£ 14£ 144 4		A114 C 170
-J.40>027LE 04			PHIJC	PS IJC	CJ/CJMAX	J	FREQUENCY
-0.1024582F U5	0.7233Calf C5	0. /4133638 05	102.002	102.662	I Amana		
-0.1>#14UE 04	-0.25/200E C4	0. 10204222 04	234.345	119.194	1.900000 0.040750	ř	4.115
-0.1334571F US	-0.2310291E C5	0.276-0245 00	236.04	78.000	0.375622	2	8.230
0.1352592F 03	0.57433155 C3	C. Sasschaf us	14.015	19.704	U.UU7876	3	12.396
-9.40100114 04	-0.1C4654JE 04	C. 41610535 04	142.272	39.354	0.050150		16.461
0.42134016 01	0.21346425 03	C. 34HUZ7+= U3	14.509	2.928	0.011447	•	20.576
-0.12616825 04	-J.52756USE 04	0. 244Julus U4	233.410	30.2/3	0.0/4065	7	24.691
9.5100clot 03	-0.72551735 Ca	0.757JUULE US	280.584	35.823	0.010211	i	20.60 <i>1</i> 32.922
J. 1044 304F U4	-0.11713855 04	40 SCHEETUS 04	32 > 34	16.059	0.027433	9	37.637
-0.2038673E 03	0.5/lloube us	0.030+0146 03	101.645	10.100	1.000181	10	41.152
PITCH LINK TPASION HARMINIC AVALVALS		IP LUUY T 405	CTR JOL PL	.T 500.0 1	TR 11		
AJ	HJ	CJ	PHIJC	25116	CJ/CJMAX		£1.50151.01
-1.36273546 63						J	FREQUENCY
-J.1595245E G3	-J. Iclooude us	O 34 PTC 1 55 . O	225.371	225.311	1.000000		4.115
J.1225446E UJ	-0.1134401E C3	CO 356 FF 101.0	317.201	158.601	0.735001	į	6.230
-0.95268715 02	-U.1243453E Cs	0.13040455 03	232.586	77.529	0.650529	3	12.346
-0.27026045 02	-9.46239005 02	0.44)10[45 05	220.014	62.055	4.215811	4	16.461
3.4210101F U2	-U.4340724E C2	0.21114215 MS	238.090	47.610	0.225184	5	40.516
J.2375e5cE u2	-U.12177518 GZ	0.4773535 02	343.876	50.813	0.210215	6	24.091
U. LUSSETVE UZ	U. 45ec 3545 CL	C.2+Jubjp: 02 G.1244477: 02	329.601	4/.386	0.105977	7	28.607
-0.14375925 02	0.1736400F CI	0.1443415 02	21.455	3.144	0.054404	8	34.962
10 3161 UCBC. C	J. 585/322E DI	0.13361705 01	173.413	13.532	3.363/68	9	37.037
	•	00 1300 110 2 01	4>.230	4.523	0.036581	10	41.152
FIXED HUB FLAP AT							
HARMINIC ANALYSIS		IP 1004 T -05					
THE TOTAL PROPERTY.	WEDEL WESTER 34	17 1007 1 403	CTR JOL FL	1 500.0 1	K I		
٨٠	_ BJ	CJ	PHEJC	PS LJC	CJ/CJMAX	J	FREQUENC V
U.2069769E 05		M (281, 1772 777					
0.271#371E 04	0.150000E C5	C. 161124UE US	80.236	87.438	1.000000	ı	4.115
-0.334UC#2F G4	-U. 3243939F U-	C. 4145541E 04	245.379	147.690	0.569164	5	8.23¢
-u.2036710F J4	-0.32659096 09 -0.10407446 L4	0.40114142 04	224.357	74.786	0.291367	3	12.346
-0.10626555 64	0.253C864F 02	0.1002J909E 04	214.441	54.748	0.163441	•	16.461
-0.30685926 02	-U irrusticu-	0.1002436: 04	170.636	35.727	0.04.299	5	20.576
0.20206206 03	-0.5146442F 03	0.3529147= 03	291.428	41.033	0.000/65	•	24.691
U.1534eusf G4	-0.111779ef 03	0.1334137: 03	355.834	44.474	0.055970		20.667
1.2404311 01	J. 14403756 C3	0.24333333 U3	JJ. 245	3.366	0.017970	8	32.522
0.2374377E G3	-0.1707105E 02	C. 21109++= U3	3>>.743	35.5/4	0.017859	10	37. (3 <i>7</i> 41. 152
					-1011930		71.176

TOTAL SE

FIXER WAR CHORN AT STA 18 HARMONIC ANALYSIS MUCEL AM-564 SHIP 1000 T 405 CTR 351 FLT 500.0 TR 3

LA			C.J	_ PHIJC .	PSIJC	CJ/CJMAX		PREQUENCY
-0.4921491E US			. ••	_ PHI SC	. 73130	COT COM A	•	THE WOENE T
0.5821659E C5	0. 45747045	44	0.1036440E @	55.825	55.425	1.00000	1	4.115
PU 36164168. U	0.1042693E	-	0.10424056 05	74.936	37.468	0-104483	ż	8.23G
-U.433540VE 04	-0. 10741 36E		0.1154336E 05	244.019	84.673	0.111761	3	12.346
0.16871716 04	0.14850445	03	0.14/37145 04	5.030	1.258	0.016342	4	10.461
-0.244985UF 04	-4.52659068	03	0.25026036 04	192.131	38.420	0.024177	5	20.574
-U .llloclet U-	-U. 501516JE	CJ	0.144921/4 04	202.746	33.141	4.017461	•	24.691
-0.151#735£ 04	0.9672361E	63	C. LUJOSJUE OF	147.508	21.073	0.017373	7	24.807
0.1025754E G4	-0.65114366	03	0.1751343E 04	330.173	42.272	U.016497		32.522
0.3000 122F 01	-0.51621896		0.21114614 04	277.694	30.455	0.026377	9	37.637
-0.537655#E C2	0.1C67135E	U3	0.1134345E 03	110.742	11.674	0.001153	10	41.152
BLADE FLAP AT STA	130.5							
HARMONIC ANALYST		SI	HIF 1009 T 405	CTR 351 F	1 500.0	TR 19		
4J	нJ		CJ	PHIJC	PS IJC	CJ/CJMAA	J	FREUUENCY
U. LLOALJUE CO							_	
U.4545CO4E 04	-0.3CC7631E	C4	0.54533352 04	346.506	320.506	1.00000	1	4.115
-0.1751254t Je	U. 22651 UAF	04	U. 2803143E 04	127.709	63.855	0.525344	2	8.23C
0.457241E 07	0.114C3CHE	C4	0.15305415 04	52.192	17.397	0.276455	3	12.346
0.8517898F 03	U. 1794792F	C3	C. 8/J4934E 63	11.899	2.975	0.159723	4	10.401
J.440#587F 03	-0.33175665	03	0.351773+ë 03	323.040	64.604	0.101242	5	20.516
CO SIC. IF OF	4.17647146		C. Under 21 F US	14.012	4.335	U.1 18974	•	24.691
0.145073UE U3	U. 56675a5E		0.20371226 03	16.740	2.392	0.037374	7	28.807
0.2476459[ C3	U.40500>2E		0. 22702403 43	160.50	7.750	0.036610	a a	32.922
0.02436748 02	-0.2551743E		0.62898515 02	357.675	34.742	0.011539	9	37.C37
0.70443701 32	-3.23691845	CS	0.74179446 02	341.863	34.186	0.013611	10	41.152
BLADE FLAP AT STA								
HARMUNIC AMPLYSIS	MOCEL AH-56A	Se	11P 1309 T 405	CTR 351 FI	LT >00.0 1	18 20		
AJ	NOCEL AM-56A	St	riP 1309 T 405	CTR 351 FI	PS 1JC	CJ/CJINX	,	FHEQUENCY
LA PG 3ulletso.D-	FJ.		CJ	PHLJC	PSIJC	CJ/CJIV.X		
AJ -0.0213356 04 -0.23914216 C4	RJ U.4423436E	C4	CJ 0.5323457E 06	PHIJC	PS IJC 114.397	CJ/CJ#4X 1.00000	1	4.115
AJ -0.023338E 04 -0.237122E 04 0.2377127E 04	RJ U.44237J6E -U.1C3J#37E	C+ C+	CJ 0.3224975 06 0.25910925 06	PHIJC 114.347 330.556	PSIJC 119.397 166.278	C3/C3/6.X 0.00()00 0.515276	L 2	4.115 8.23C
AJ -0.023336E 04 -0.2391421E 04 -0.2377157E 04 -0.7545186E 03	RJ -u.44237J6E -u.163J457E -u.68470J4E	C4 C4 O3	CJ -0 37c+65Ci.0 -0 35+019655.0 -4 F6868101.0	PHIJC 114.347 330.556 222.423	PSIJC 115.397 166.278 74.074	CJ/ CJ/W.X 1.000/00 0.515/76 0.2020/23	1 2 3	4.115 8.23C 12.346
AJ -0.023336E 04 -0.2391421E 04 -0.23914715 04 -0.7345180E 03 0.90246785 03	RJ U.4423~16E -U.163U837E -U.6887034E U.2558557E	C4 C4 03 C3	CJ 0.323457F 04 0.2391042E 04 0.1014440F 04 C.6333144E 03	PHIJC 114.397 330.5% 222.443 13.820	PSIJC 119.397 164.278 74.074 3.755	CJ/CJHAR 1.000/00 0.515276 0.202023 0.186641	1 2 3	4.115 8.23C 12.346 10.461
AJ -0.0233336E 04 -0.2391421E 04 -0.2377157E 04 -0.7545186E 03 0.9024678E 03 0.5552278F 03	RJ U.4423~14E -U.1631437E -U.6047034E 0.255057E -U.1555555	C4 C4 03 C3 03	CJ 0.3323497E 04 0.2391042E 04 0.1014480E 04 0.5774221E 03	PMIJC 118.347 330.556 222.223 13.820 344.003	PSIJC 119.397 164.2/8 /4.076 3.355	CJ/CJ/WX 1.000/00 0.515/74 0.2026/23 0.106061 0.114831	3 4 5	4.115 8.23C 12.346 10.461 20.576
AJ -0.023338E 04 -0.2391421E 04 -0.2377157E 04 -0.7545180E 03 0.902478E 03 0.555278F 03	RJ -U.4423-J6E -U.1630437E -J.6097034E -U.155367E -U.1565565	C4 C4 03 C3 03 03	CJ 0.323457E 06 0.2391042E 06 0.1014480E 06 0.37342E 03 0.377422E 03	PHIJC 118.397 330.556 222.423 13.820 344.003 20.566	PSIJC 119.397 166.2/8 /9.076 3.955 64.813 4.428	CJ/CJIPAX 1.000000 0.515274 0.202023 0.186641 0.114831 0.094556	3 4 5	4.115 4.23C 12.346 10.461 20.576 24.691
AJ -0.023336E 04 -0.2391421E 04 -0.2377157E 04 -0.7545180E 03 0.9024678E 03 0.452240E 03 0.452240E 03	RJ -U.4423~J6E -U.163J437E -U.6847034E -U.155565 -U.155565 J.2477838E	C4 C4 03 C3 03 C3	CJ 0.323457E 06 0.2391042E 06 0.1014480E 03 0.37742E 03 0.4756712E 03 0.4756712E 03	PMIJC 11d.347 330.556 222.423 13.820 344.003 26.364 37.498	PSIJC 114.397 164.278 79.076 3.355 64.813 4.628 5.357	CJ/CJ/MX 1.000/00 0.515/76 0.202023 0.186641 0.114851 0.094556 0.044280	1 2 3 4 5	4.115 4.23C 12.346 10.346 20.576 24.691 28.607
AJ -0.023,336E 04 -0.2391421E 04 -0.2377157E 04 -0.7545180E 03 0.9024678E 03 0.555278F 03 0.425246E 03 0.1426094E 03 -0.1546015E 03	RJ -U.4423~J6E -U.1C3U437E -U.0047034E -U.25545>7E -U.15155C52 -U.1477838E U.4321007E	C4 C3 C3 C3 C3 C3 C3	CJ 0.3323457F 04 0.2391042E 04 0.1014480T 04 0.377422T 03 0.377422T 03 0.4754712E 03 0.4754712E 03	PHIJC 118.397 330.556 222.423 13.820 344.003 26.566 37.498 152.462	PSIJC 114.397 166.278 74.074 3.775 68.813 4.428 2.327 19.008	CJ/CJHAN 1.000/00 0.515/76 0.202023 0.186641 0.114831 0.094556 0.046280 0.035795	1 2 3 4 5	4.115 8.236 12.346 10.461 20.576 24.691 28.607 32.522
AJ -0.023336E 04 -0.2391421E 04 -0.2377157E 04 -0.7545180E 03 0.9024678E 03 0.4252240E 03 0.425240E 03	RJ -U.4423~J6E -U.163J437E -U.6847034E -U.155565 -U.155565 J.2477838E	C4 C4 C3 C3 C3 C3 C3 C4	CJ 0.323457E 06 0.2391042E 06 0.1014480E 03 0.37742E 03 0.4756712E 03 0.4756712E 03	PMIJC 11d.347 330.556 222.423 13.820 344.003 26.364 37.498	PSIJC 114.397 164.278 79.076 3.355 64.813 4.628 5.357	CJ/CJ/MX 1.000/00 0.515/76 0.202023 0.186641 0.114851 0.094556 0.044280	1 2 3 4 5	4.115 4.23C 12.346 10.346 20.576 24.691 28.607
AJ -0.023J36E 04 -0.2391421E 04 -0.2377157E 04 -0.7545180E 03 0.555278F 03 0.425240E 03 0.1426094E 03 -0.1417580E 03	RJ -0.4423-06E -0.1630437E -0.0047034E -0.25565-7E -0.2140565E -0.2140565E -0.214067E	C4 C4 C3 C3 C3 C3 C3 C4	CJ 0.33234975 04 0.23910426 04 0.10184803 04 C.53331846 03 0.3774221 03 0.477424 03 0.2447724 03 0.174433 03 0.1747376 03	PMIJC 114.397 330.556 222.423 13.820 344.003 26.366 37.498 152.462 180.983	PSIJG 119.397 166.2/8 /4.074 3.375 68.813 4.424 5.357 19.08 20.109	CJ/CJ+V.X 1.000:00 0.515:276 0.20223 0.186041 0.114831 0.094556 0.048280 0.035795	1 2 3 4 5 6 7 8 9	4.115 8.236 12.346 10.461 20.576 24.691 28.607 32.922 37.637
AJ -0.023336E 04 -0.2391421E 04 -0.2377157E 04 -0.7545180E 03 -0.555278F 03 0.425240E 03 -0.1426094E 03 -0.1417581E 03 0.1100026E 03	RJ U.44234J6E -U.1630437E -U.00470J4E 0.255057E -U.1555057E J.2120505E J.1477838E J.1477838E -U.241467E -U.601229E	C4 O3 C3 O3 C3 C4 C1	CJ 0.323497E 04 0.2391042E 04 0.10144803 04 0.5331404E 03 0.373422E 03 0.4754712E 03 0.2427724E 03 0.174473E 03 0.1417/3/E 03	PMIJC 118.397 330.556 222.443 13.820 34.003 20.708 37.498 152.443 319.415	PSIJC 119.397 166.2/8 /9.076 3.955 64.813 4.426 5.357 19.058 20.109 31.322	CJ/CJ+P+X 1-000000 0-515-276 0-202-0-23 0-146-41 0-114-41 0-094556 0-046-280 0-035-79-0-02-05 0-02-045-9	1 2 3 4 5 6 7 8 9	4.115 8.236 12.346 10.461 20.576 24.691 28.607 32.922 37.637
AJ -0.023338E 04 -0.2391421E 04 -0.2397157E 04 -0.7545180E 03 0.555278F 03 0.425246E 03 0.1426094E 03 -0.1441580E 03 0.1406226E 03	RJ U.44234J6E -U.1630437E -U.00470J4E 0.255057E -U.1555057E J.2120505E J.1477838E J.1477838E -U.241467E -U.601229E	C4 O3 C3 O3 C3 C4 C1	CJ 0.323497E 04 0.2391042E 04 0.10144803 04 0.5331404E 03 0.373422E 03 0.4754712E 03 0.2427724E 03 0.174473E 03 0.1417/3/E 03	PMIJC 114.397 330.556 222.423 13.820 344.003 26.366 37.498 152.462 180.983	PSIJC 119.397 166.2/8 /9.076 3.955 64.813 4.426 5.357 19.058 20.109 31.322	CJ/CJ+P+X 1-000000 0-515-276 0-202-0-23 0-146-41 0-114-41 0-094556 0-046-280 0-035-79-0-02-05 0-02-045-9	1 2 3 4 5 6 7 8 9	4.115 4.236 12.346 10.461 20.576 24.691 28.607 32.922 37.637
AJ -0.023336E 04 -0.2391421E 04 -0.2377157E 04 -0.7545180E 03 0.5552278F 03 0.425240E 03 -0.1426094E 03 -0.1417580E 03 0.100028E 03	RJ U.44234J6E -U.1630437E -U.00470J4E 0.255057E -U.1555057E J.2120505E J.1477838E J.1477838E -U.241467E -U.601229E	C4 O3 C3 O3 C3 C4 C1	CJ  CJ2407E 00 0.2591042E 04 0.101440J 04 0.401742L 03 0.7754712E 03 0.40174745 03 0.1741747E 03 0.10174745 03 0.10174745 03	PMIJC 11d.347 330.556 222.423 13.820 344.003 26.766 37.498 152.402 180.403 319.415	PSIJC 119.397 160.278 79.076 3.355 4.428 5.357 19.058 20.104 31.322	CJ/CJ+P+X 1-000000 0-515-276 0-202-0-23 0-146-41 0-114-41 0-094556 0-046-280 0-035-79-0-02-05 0-02-045-9	1 2 3 4 5 6 7 8 9	4.115 8.236 12.346 10.461 20.776 24.691 28.607 32.922 37.637 41.152
AJ -0.023336E 04 -0.2391421E 04 -0.2377157E 04 -0.7545180E 03 0.5552278F 03 0.425240E 03 -0.1426094E 03 -0.1417580E 03 0.100028E 03	RJ U.44234J6E -U.1630437E -U.00470J4E 0.255057E -U.1555057E J.2120505E J.1477838E J.1477838E -U.241467E -U.601229E	C4 O3 C3 O3 C3 C4 C1	CJ 0.323497E 04 0.2391042E 04 0.10144803 04 0.5331404E 03 0.373422E 03 0.4754712E 03 0.2427724E 03 0.174473E 03 0.1417/3/E 03	PMIJC 118.397 330.556 222.443 13.820 34.003 20.708 37.498 152.443 319.415	PSIJC 119.397 166.2/8 /9.076 3.955 64.813 4.426 5.357 19.058 20.109 31.322	CJ/CJ+P+X 1-000000 0-515-276 0-202-0-23 0-146-41 0-114-41 0-094556 0-046-280 0-035-79-0-02-05 0-02-045-9	1 2 3 4 5 6 7 8 9	4.115 8.236 12.346 10.461 20.576 24.691 28.607 32.922 37.637
AJ  -0.0233336E 04  -3.2391421E 04  -3.2391421E 05  0.9024678E 03  0.505276F 03  0.425246F 03  0.1246094E 03  -0.1241756E 03  0.100626E 03  BLADE FLAP AT STA  HARMUNIC AMALYSIS  -0.2677615E 03  -0.2677615E 03	RJ -U.4423-06E -U.1630437E -U.6947034E -U.25565-7E -U.1945565E -U.1477830E -U.491467E -U.6649229C	C4 C4 O3 C3 O3 C3 C3 C4 C1 O2	CJ  0.323457E 06 0.2391042E 06 0.1014483E 06 0.377422E 03 0.377421E 03 0.427726E 03 0.174433E 03 0.1427456 03 0.132456 03	PHIJC  114.347 330.556 242.443 13.820 344.063 37.498 152.462 150.763 319.415  CTR 351 PI	PSIJC  119.397 160.278 79.079 3.999 68.813 4.928 20.109 31.322  .T \$00.0	CJ/CJ+M-X 1.000000 0.515274 0.202023 0.186041 0.114831 0.094556 0.046280 0.035795 0.020195 0.020439	1 2 3 4 5 6 7 8 9 10	4.115 8.236 12.346 10.461 20.776 24.691 28.607 32.922 37.937 41.152
AJ -0.023336E 04 -0.2391421E 04 -0.2397157E 04 -0.7545180E 03 0.5552278F 03 0.425240E 03 0.1426094E 03 -0.1417580E 03 0.100628E 03 BLADE FLAP AT STA MARMUNIC AMALYSIS	RJ  U.4423-06E -U.1630437E -U.6957034E 0.2558057E 0.2120505E 0.1477838E 0.4921667E -U.441467E -U.6669229C  238 MOUFL AH-50A  RJ  U.3689639E -U.24373225E	C4 C4 O3 C3 C3 C3 C4 C1 O2	CJ 0.323457E 06 0.2391042E 06 0.1014480T 06 0.3774221E 03 0.37754712E 03 0.4427726E 03 0.174473E 03 0.141777E 03 0.1324450E 03	PHIJC  114.397 330.556 222.423 13.820 344.003 26.766 37.498 152.462 180.983 319.415  CTR 351 PI	PSIJC  119.397 160.278 79.079 3.353 4.428 3.357 19.058 20.109 31.322  PSIJC  94.953 173.995	CJ/CJHAX 1.000000 0.515274 0.202023 0.186641 0.114831 0.094556 0.046280 0.035795 0.026195 0.026439	1 2 3 4 5 5 6 7 8 9 10 J	4.115 8.23C 12.346 10.461 20.776 24.691 28.607 32.922 37.637 41.152 FREQUENCY 4.115 8.23C
AJ -0.023J336E 04 -0.2391421E 04 -0.2391421E 04 -0.7245180E 03 0.525278F 03 0.422246E 03 0.1426094E 03 -0.1417580E 03 0.100620E 03 BLADE FLAP AT STA MARAUNIC AMALYSIS  0.52677612E 03 0.1006498E 04 -0.4671479F 03	RJ  U.4423-J6E -U.1C3U437E -U.6047034E 0.25545-7E -U.1555C5-1 0.21205C5E U.19778382 U.1921047E -U.231467E -U.605229C  835 MOUCL AM-50A  0.3C84639E -U.3273225E -U.3273225E -U.3778225E	C4 C4 C3 C3 C3 C4 C1 C2 C1 C2 C4 C3 C3 C3 C3 C4 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5	CJ  0.3323975 06 0.25910926 06 0.10184805 06 0.51314806 03 0.97547126 03 0.97547126 03 0.1794935 03 0.1794935 03 0.1329950 03	PHIJC 114.347 330.556 222.223 13.820 344.003 26.366 37.402 180.403 319.215  CTR 351 PI PHIJC 94.953 351.990 230.291	PSIJG  119.397 166.2/8 /9.074 3.375 68.813 6.426 5.377 19.08 20.109 31.722  PSIJC 94.953 175.995 76.764	CJ/CJ+V-X  1.000:100 0.515:276 0.2020:23 0.186041 0.116831 0.094556 0.046280 0.035795 0.026195 0.026195 0.026439	1 2 3 4 5 6 7 7 8 9 10	4.115 8.236 12.346 10.461 20.776 24.697 32.922 37.637 41.152 FREQUENCY 4.115 8.236 12.346
AJ -0.023336E 04 -0.2391421E C4 -0.2397157E 04 -0.7545180E 03 0.555278F 03 0.425240E 03 0.1426094E 03 -0.141756E 03 0.100626E 03 BLADE FLAP AT STA MARMUNIC AMALYSIS -0.2677615E 03 0.1006458E 03 -0.4751479E 03 0.115223GE 04	RJ  -U.4423-J6E -U.1C3U437E -U.0907034E -U.25565-7E -U.155565-1 -U.16778382 -U.431467E -U.2431467E -U.6624229C  RJ  RJ  -U.3C84639E -U.2173225E -U.2173245E -U.3173047E -U.5173146E	C4 C4 C3 C3 C3 C3 C4 C1 C2 C1 C2 C1 C2 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4	CJ  0.323457E 04 0.2391042E 04 0.1014480T 04 0.5333144E 03 0.4754712E 03 0.4754712E 03 0.147475E 03 0.147475E 03 0.132455E 03	PHIJC  114.347 330.556 242.443 13.820 344.003 26.768 37.498 152.443 319.415  CTR 351 Fi	PSIJC  119.397 166.2/8 /9.074 J.953 4.428 5.357 19.058 20.109 J1.722  PSIJC  94.953 175.995 76.764 J.804	CJ/CJ+PAX  1.000100 0.515276 0.202023 0.186041 0.114831 0.094556 0.04280 0.035795 0.020195 0.020439  TR 4  CJ/CJMAX 1.000000 0.54916 0.239814 0.389036	1 2 3 4 5 4 7 8 9 10	4.115 #.23C 12.346 10.461 20.716 24.691 28.607 32.522 37.637 41.152 FREQUENC V 4.115 #.23C 12.33C 12.346 10.461
AJ  -0.023336E 04  -3.2391421E C4  -3.2391421E C5  0.2377157E 04  0.555240E 03  0.1240694E 03  -0.1215603E 03  0.1300620E 03  BLADE FLAP AT STA  MARMUNIC AMALYSI  0.5554812E 03  0.1000450E 04  -0.471474F 03  0.115223GE 04  0.33119524E 03	RJ  U.4423-J6E  -U.1030437E  -U.0097034E  U.25505-7E  -U.192505-5C  J.1477838E  U.321007E  -U.44146/E  -U.604229E  U.320439E  -U.323425E  -U.3233425E  -U.323364E  -U.320328E	C4 C4 C3 C3 C3 C4 C1 C2 C2 C2 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3	CJ  0.323457E 06 0.2391042E 06 0.1014403E 06 0.377422E 03 0.377421E 03 0.47742E 03 0.1754712E 03 0.141747E 03 0.1324450E 03  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  C	PHIJC  114.347 330.556 242.443 13.820 344.063 37.498 152.462 1319.415  CTR 351 FI  PHIJC  94.953 351.990 430.291 13.244 313.305	PSIJC  119.397 160.278 79.076 3.999 68.813 4.628 9.397 19.098 20.109 31.322  PSIJC 94.953 179.999 76.764 4.404 62.061	CJ/CJ+M-X 1.000100 0.515274 0.202023 0.186041 0.114831 0.094556 0.046280 0.035795 0.026195 0.026439  TR 4  CJ/CJ*MAX 1.000000 0.549163 0.239814 0.389036 0.141956	1 2 3 4 5 5 6 7 8 9 10 J 1 2 3 4 5	#.115 #.23C 12.346 10.461 20.776 24.691 28.607 32.922 37.G37 41.152 FREQUENCY 4.115 8.23C 12.346 10.461 20.576
AJ  -0.0233336E 04  -0.2391421E 04  -0.2391421E 04  -0.7345180E 03  -0.535240E 03  -0.1290615E 03  -0.1290615E 03  -0.1300626E 03  BLADE FLAP AT STA  MARMUNIC AMALYSI  -0.2077615E 03  0.1006458E 04  -0.4751479E 03  0.1152236E 04  0.3319527E 03	RJ  U.4423-06E -U.1630437E -U.0607034E -U.1959697  U.1959697  U.1979805  U.14778365  U.14778365 -U.441467E -U.66072295  RJ  RJ  U.3604039E -U.24734245  U.31330465 -U.31330478 -U.32134285 -U.32134285	C4 C4 C3 C3 C3 C4 C1 C2 Sr	CJ  0.323457E 04 0.2591042E 04 0.1014480T 04 C.5333164E 03 0.377422E 03 0.4427724E 03 0.1447747E 03 0.1324456E 03  CJ  CJ  0.3131223E 04 0.1733174E 04 0.1733174E 04 0.1733174E 04 0.17437146E 03 C.14433415E 03 C.4433415E 03	PHIJC  114.347 330.556 242.423 13.820 344.003 26.366 37.498 152.462 180.983 319.415  CTR 351 PI  PHIJC 94.953 351.990 230.291 13.214 313.305 9.421	PSIJG  119.397 166.278 76.076 3.775 68.813 6.426 5.327 19.058 20.107 31.722  PSIJC  94.953 175.995 76.766 J.606 62.061 1.570	CJ/CJW.X  1.000:00 0.515:276 0.202:23 0.186:61 0.116:83 0.094556 0.045:795 0.026:495 0.026:495 0.026:495 0.026:495 0.026:495 0.026:495 0.026:495 0.186:306:306 0.141956 0.157371	1 2 3 4 5 6 7 8 9 10 J 1 2 3 4 5 6	4.115 8.236 12.346 10.461 20.776 24.691 28.607 32.922 37.637 41.152 FREQUENCY 4.115 8.23C 12.346 10.461 20.576 24.691
AJ -0.023J336E 04 -0.2391421E 04 -0.2391421E 04 -0.2391421E 04 -0.7245180E 03 -0.425240E 03 -0.120624E 03 -0.121/580E 03 -0.120620E 03 BLADE FLAP AT STA MARAUNIC ANALYSIS -0.2077615E 03 -0.405476 03 -0.415236E 04 -0.301927E 03 -0.461550E 03 -0.461550E 03	RJ  U.4423-J6E -U.1C3U437E -U.0047034E 0.25585-7E -U.15955C51 J.41205C5E J.4121607E -U.2431407E -U.2431407E -U.3624039E -U.3778245E 0.313304E -U.32030285 -U.32030285 -U.32030285 -U.32030285 -U.33549745	C4 C4 C3 C3 C3 C3 C4 C1 C2 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3	CJ  0.323497E 04 0.2591042E 04 0.1014403E 04 0.5331404E 03 0.47742EE 03 0.47742E 03 0.174435E 03 0.17473E 03 0.1324450E 03  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  C	PHIJC 114.347 330.556 222.423 13.820 344.003 26.366 37.498 152.462 180.483 319.415  CTR 351 PI  PHIJC 94.953 351.990 230.291 13.214 313.305 9.421 322.104	PSIJC  119.397 166.2/8 /4.074 3.375 68.813 6.426 5.377 19.08 20.104 31.722  PSIJC  94.953 175.499 76.764 3.804 62.061 1.770 46.323	CJ/CJ+V-X  1-000100 0-515-276 0-202023 0-186041 0-116831 0-094556 0-035795 0-040280 0-035795 0-020195 0-035795 0-020195 0-035795 0-03919 0-03910 0-385036 0-141956 0-157371 0-178364	1234567	#.115 #.236 12.346 10.461 20.576 24.697 32.722 37.637 41.152  FREQUENC V 4.115 8.23C 12.346 10.461 20.576 24.691 28.807
AJ  -0.023336E 04  -0.2391421E C4  -0.2377157E 04  -0.75478E 03  0.425240E 03  0.1426094E 03  -0.141756E 03  0.100026E 03  BLADE FLAP AT STA  MARMUNIC AMALYSI  0.2677615E 03  0.1000436E 04  0.3119524E 03  0.4614550E 03  0.4614550E 03	RJ  -U.4423-J6E -U.1630437E -U.0907034E -U.255657E -U.1555657E -U.212057E -U.2431467E -U.6624229E  RJ  MQUEL AH-50A  RJ  -U.3684639E -U.2431467E -U.373245E -U.373246E -U.373246E -U.373246E -U.3740438E -U.3740438E	C4 C4 O3 O3 G3 G3 C4 C6 O2 O2	CJ  0.323457E 04 0.2391042E 04 0.1014403T 04 0.533148E 03 0.77422E 03 0.4754712E 03 0.4754712E 03 0.14774E 03 0.132455E 03 0.132455E 04 0.7437146E 03	PHIJC  114.347 330.556 242.443 13.820 344.093 26.768 37.498 152.403 152.403 319.415  CTR 351 FI	PSIJC  119.397 168.2/8 /9.074 J.955 64.428 5.357 19.054 20.109 J1.722  RSIJC  94.453 175.495 76.764 J.604 62.061 1.570 46.J2J	CJ/CJ+V-X  1.000100 0.515276 0.202023 0.186041 0.114031 0.094556 0.046280 0.035795 0.020195 0.020439  TR 4  CJ/CJMAX 1.000000 0.54963 0.23961 0.34963 0.141956 0.157371 0.178364 0.312185	1 2 3 4 5 6 7 8 9 10	# 115 # 23C 12.346 10.461 20.776 24.697 32.522 37.537 41.152 FREQUENC V 4.115 8.23C 12.346 10.461 20.576 24.691 28.807 32.922
AJ  -0.023J36E 04  -0.2391421E 04  0.2377157E 04  -0.7945180E 03  0.90242785 03  0.425240E 03  0.1920694E 03  -0.191580E 03  0.1920620E 03  BLADE FLAP AT STA  MARMUNIC AMALYSI  0.1000420E 03  0.1000450E 04  -0.401479E 03  0.1000450E 03  0.4014599E 03  0.4014599E 03  0.4701020E 03	RJ  U.4423-J6E -U.1030437E -U.6907034E 0.2550576 -U.19550575 J.1477838E U.83210076 -U.6012295  338 MODEL AH-50A  0.3233-448E 0.3233-448E 0.3233-448E 0.3233-448E 0.3233-448E 0.3233-448E 0.3247-548-548-548-548-548-548-548-558-548-558-548-54	C4 C4 O3 C3 C3 C4 C1 O2 Sr C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3	CJ  0.323457E 06 0.2591042E 06 0.1014403E 06 0.577422E 03 0.477424E 03 0.1754712E 03 0.141747E 03 0.1324456E 03 0.1324456E 03 0.1733074E 06 0.1733074E 06 0.1733074E 06 0.7437144E 03 0.132445E 03 0.463341E 03 0.461536E 03	PHIJC  11d.347 330.556 242.443 13.820 344.003 26.768 37.498 152.402 1319.415  CTR 351 FI  PHIJC  94.953 351.990 430.291 15.214 313.305 9.421 322.104 354.040	PSIJC  114.397 164.278 74.074 3.393 64.813 4.428 3.327 19.058 20.104 31.322  PSIJC  94.953 173.995 76.764 34.061 1.570 46.023 4.927 39.338	CJ/CJ/W.X  1.000/00 0.515/76 0.202e23 0.186641 0.114831 0.094556 0.046280 0.035795 0.026195 0.026439  FR 4  CJ/CJ/MAX  1.000000 0.549163 0.239814 0.389036 0.141956 0.157371 0.178364 0.312165 0.029948	123 + 5 + 7 # 9 10 J 123 + 5 + 7 # 9	# 115 # 23C 12.346 10.461 20.776 24.691 28.607 32.922 31.637 41.152 FREQUENCY 4.115 8.23C 12.346 10.461 20.576 24.691 24.691 24.691 24.691 24.692 32.922 37.C37
AJ  -0.023336E 04  -0.2391421E C4  -0.2377157E 04  -0.75478E 03  0.425240E 03  0.1426094E 03  -0.141756E 03  0.100026E 03  BLADE FLAP AT STA  MARMUNIC AMALYSI  0.2677615E 03  0.1000436E 04  0.3119524E 03  0.4614550E 03  0.4614550E 03	RJ  -U.4423-J6E -U.1630437E -U.0907034E -U.255657E -U.1555657E -U.212057E -U.2431467E -U.6624229E  RJ  MQUEL AH-50A  RJ  -U.3684639E -U.2431467E -U.373245E -U.373246E -U.373246E -U.373246E -U.3740438E -U.3740438E	C4 C4 O3 C3 C3 C4 C1 O2 Sr C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3	CJ  0.323457E 04 0.2391042E 04 0.1014403T 04 0.533148E 03 0.77422E 03 0.4754712E 03 0.4754712E 03 0.14774E 03 0.132455E 03 0.132455E 04 0.7437146E 03	PHIJC  114.347 330.556 242.443 13.820 344.093 26.768 37.498 152.403 152.403 319.415  CTR 351 FI	PSIJC  119.397 168.2/8 /9.074 J.955 64.428 5.357 19.054 20.109 J1.722  RSIJC  94.453 175.495 76.764 J.604 62.061 1.570 46.J2J	CJ/CJ+V-X  1.000100 0.515276 0.202023 0.186041 0.114031 0.094556 0.046280 0.035795 0.020195 0.020439  TR 4  CJ/CJMAX 1.000000 0.54963 0.23961 0.34963 0.141956 0.157371 0.178364 0.312185	1 2 3 4 5 6 7 8 9 10	# 115 # 23C 12.346 10.461 20.776 24.697 32.522 37.537 41.152 FREQUENC V 4.115 8.23C 12.346 10.461 20.576 24.691 28.807 32.922

	CASE 32	V= 123	KTS n=	1.24	E ~		
					Ren	duced from	
					/ besto	ducad	
PLADE FLAP AT STA 2	70					valled fre	000
HARMONIC ANALYSIS M			CTR JOS PLT	>00.0	TR 46	- D/e	-
OVER WIT CACFEC FCWG	• G. 171330E C4						Sepy. Co
ZERO PUSTITION USEC	8.10 LC	AD/IN USED	17863.00				
TE-O POSTITION USED	••••	#0/IN U3EU	1,003.00				
A.J	6.1	CJ	PHIJC	PS IJC	CJ/LJMAX	J	FREQUENCY
0.40404748 04			172 22		. 140.140.04	_	
o.lloctfot de to Joëseebb. C	0.16201#1E 04	0.15013416 04	42.633 46.103	42.433	1.000000	Ļ	4.115
	-U.3C4uOoft C3	0.73035918 63	40.103	68.145	0.461864	3	8.23C
J. 6461 169F 03	0.14211346 03	0.1>>14415 03	31.253	7.813	0.>00726		10.461
	-0.+36,0436 02	0.9+66+445 02	243.063	20.133	0.042717	5	20.576
	-U. dc3>l+4E C2	0.4006085E 03	192.259	32.043	0.204425	•	24.091
U.1624C74F 03 .	-0.2162283E G3	0.32631036 03	304.U93 14.233	2.404	0.216186	4	28.607 32.922
0.29#1:165 03	U.12655UJE C3	C. 3234970E 03	22.499	2.555	0.214568	Ş	37.037
-0.5136530E 02	-0.+74>343E 02	0.0914507= 02	222.742	22.212	U.046340	10	41.152
BLADE CHORD AT STA 1	44						
HARMONIC ANALYSIS NO		CL+ T +001 41	CTR JS1 FLT	50U.0	TH 17		
OVER ALL CYCLIC LOAD					-		
	Lambert 1	الأقعالية فا				•	
SEAU PUBILION USED	7.44 10	10/IN LSE0 -2	37209.88				
6.3	eJ.	CJ	PHIJC	PSIJC	CJ/ LJMA X	3	FREQUENCY
0.201327-5 00					Antonio		1100
0.21-25708 05	J.4687419E 05	C. 51545072 US	65.433	65.434	1.000000	Ī	4.115
0.38676996 U4 -	J.>161371E 04	0.64143235 04	52.688 2-1.2-1	20.344	U.124435 U.198737	2	8.23C
40 308679	0.2311412E CJ	0.15611246 00	3.692	0.923	0.069646	- 1	16.461
	0.8340277E C2	C. 46318702 04	354.501	70.916	0.017134	>	20.576
	0.30400076 33	0. 40141595 03	193.793	33.124	J. U 1 466 L	•	24.641
	0.51406156 03	0.52017026 03	257.684	36.812	0.010208		28.607 32.922
0.2682:45F 03 -	0.2132717E 03 0.11327696 C4	0.3+2/Jude 03	321.514 123.834	43.189	U.025594	્યું	37.037
-J.6486740E 03	U. 271490JE C3	0.7327476: 03	157.370	15.137	0.013639	10	41.152
PLADE CHORD AT STA							
HARMONIC ANALYSIS M			CTR 351 FLT	500.0	TR 22		
GVERALL CYCLIC LGAD	. C.110748E CS						
ZENJ PJSTTICH USED	0.JL LC	AJ/IN USED -	-64488.00				
• •					# 14 # 1 WA W		
-0.2752574F US	. 8J	CJ	PHIJC	PS IJC	CJ/CJMA X	J	PREQUENCY
0.34#Ucuae 04	U. 63C8004E 04	0.7234551E 04	61.111	61.111	1.00000	A.	4.115
0.64793416 33	0.16423658 04	0.12240036 04	54.200	29.104	0.170709	ž	8.23C
	-0.1225000F C4	0.10240396 04	224.739	76.246	0.550101	3	12.344
	-0.1326930F C3	0.10370005 00	352.792	44.148	0.146797	•	10.461
-0.13606038 03 -	-0.31C6752E	C. 76741045 02	246.003	19.811	J.047210 J.01J428	5	20.576
	-U. >235945E CJ	0.52363435 03	270.707	30.474	0.072081	ī	20.007
	-U. 31500slE 03	0.63342475 03	209.571	20.196	0.088615		34.922
-0.2437C14E 03	0.11277218 64	0.116>1196 64	104.540	11.022	0.161750	. 9	37.C37
-0.2727544E U3 .	-0.43C#42CE C2	0.27613406 03	184.976	14.898	0.038328	10	41.152
BLADE TORSION AT STA	131.5						
HARMONIC MALYSIS HO		IP 1009 T +05	CTR 351 FLT	500.0	TR 44		
UVERALL CYCLIC LGAD	. 6.3083186 64						
ZERO POSITION USED	1.49 LC	AD/IN USEC	12705.00				
0.1573257E 04	es	CJ (CH)	_PHIJC .	PillC	CJ/CJMAX	1	FREQUENCY
0.12>5473£ C4	J. 10+0624E 04	0.16564332 04	40.720	40.72-)	1.000000	1	4.115
-0.40008346 43	O. BELOATSE CA	40 SESCIBOR.0	131.359	62.079	0.>48239	2	8.236
-0.301554/6 03	0.5244710E CZ	0.36537445 03	1/1./47	51.249	0.220574		14.346
	·0.1731028E 03	0.17+14245 03	264.042 142.562	110.00	0.105067	•	10.461 20.576
- 60 3000 606 03 -	.0.5665414F C3	0.14744027 03	224.153	30.026	0.2 27073		24.691
0.3231C4UE 03 -	0.45523615 03	0.291Jle2c 03	303.121	43.343	U.356969	ī	20.007
0.7392329E G3	0.1262533E C3	0.74991686 03	4.645	1.212	0.452720		32.422
U.1355442F 03	U.ZICJOJCE CJ	0.23342466 02	63.351	7.039	0.142085	10	37.037
-0.3151431E 02 -	-0.2256216F C2	3.3377E 49E VE	216.078	21.608	0.063737	. 0	41.152

1

BLANE FEATHER ANGLE
MARMUNIC ANALYSIS MODEL AM-DOA SHIP 1039 T 405 CTR 366 FLT 500.0 TR 31

LA	*1	c.	PHI JC	PSIJC	CJ/CJMAX	J	PREGUENCY
0.67685708 01					.,		
U.45U5 326E G1	-0.3208065E 01	0.55307098 01	324.547	324.547	1.000000	ı	4.132
-0.1564492F 00	-0.9293807E-CL	0.14197216 00	210.712	105.350	0.032403	2	8.264
-0 -48 10 741E-01	0.8568074E-CL	C. 9643731E-01	119.250	34.752	0.017798	3	12.397
0.470226UF-01	-0.2562373E-GL	0.91450316-01	341.201	85.300	0.010051	•	46.525_
0.12127956-02	-0.1C37802E-02	0.15762556-02	319.444	.1.344	0.000289	5	20.661
-0.70621106-02	-0.2003150E-C1	0.54074075-01	455.018	42.503	0.00>159	6	24.793
-0.1161174e-01 -0.1215835t-01	-0.14252346-01	0.18513/15-01 C.1217/435-01	230.344	12.407	0.003347		28.926 33.658
-0.1110505f-01	-0.10048831-01	10-5610661.0	223.744	44.867	0.002782	Ş	37.196
-0.1307C17E-01	-U. 252062 7F-G2	0.1038005-01	194.053	19.405	0.001677	10	41.322
	***************************************						
SHAFT HOMEHT MARYUNIC ANALYSIS	MI. O.E. AM. A.A	10 1110 7 415			••••		
Hardwice Surfaces	MINER WILLDAW SIL	11 1304 1 405	CIN 300 PL	. 1 300.0	IN 30		
AJ	BJ	CJ	PHIJC	PSIJC	CJ/CJMAX	J	FREUUENC Y
-0.545941UF U4	THE PERSON NAMED IN	12 22 12 0 10 1 20 1			1.0000000000000000000000000000000000000	12/1	11 192
-0.2111100E 05	0.7224994E C5	0.75304345 05	100.260	100-280	1.000000	1	4.132
-0.24103JUE U4 -0.4487346E U5	-0.1592876E 04	0.11224546 04	208.643	104.322	0.044124	2	0.264
			204.416	64.139	0.435636	3	12.397
0.14722828 04	0.50585482 03 0.1332642E C4	0.15507632 06	16.962	4.740	0.020672	•	16.525
-U.7633C90E 04 U.18714U9E 03	-0.1221007E C2	0.2005492E 03	170.097	34.019	0.162490	•	20.001
-0.4072G59E G4	-J.3520124F 04	0.20073722 03	779.400	56.483		* 7	24.193
0.80736936 03	-U. 8218381F C2	0.6711072E 03	354.70H	31.260	0.083035	4	28.426
0.89251668 03	-0.1461185E C4	0.1/124146 04	301.429	13.492	0.022738	4	33.65 <b>0</b> 37.190
0.9007778 02	-0. E3>>542E C2	U. 12++004E 03	319.781	31.978	0.022738	10	41.322
<b>****</b>							
PITCH LINK TENSION							
MARMUNIC ANALYSIS		IP 1004 T 405	CTH 366 FL	T 500.0	TR 11		
		IP 1035 T 405	CTH 366 FL	.7 500.0	TR 11		
		IP 1035 T 405	CTH 366 FL	.T >00.0	TR 11		
	MCDEL AH-SeA \$H	2 1721 1 172		2000	- 102		
MARMONIC ANALYSIS		CJ	CTH 366 FL PHIJC	PS 1JC	TR 11	J	fre quenc y
MARMONIC AVALVSIS -0.5273107E 03	MCDEL AH-DA SH	CJ	PHIJC	PS IJC	CJ/CJMAX		
AJ -0.5273107F 03 -0.1053244E 03	BJ -0.2256813E 03	CJ CJ	PHI JC 244.480	PS 1JC 244.98J	CJ/CJMAX	4	4.132
AJ -0.5273107E 03 -0.1053344E 03 0.102258UE 03	#CDEL AH->=A SH ### ### ### ### #### ################	CJ 0.2690330E QA 0.1407733E Q3	PHIJC 244.980 310.608	PS IJC 244.98J 15J.304	CJ/CJMAX 1.000000 0.505245	i z	4.132
AJ -0.9273107E 03 -0.1053344E 03 -0.1022540E 03 -0.1714133E 03	#CDEL AH->aA \$H	CJ 0.2490330E W 0.1407753E 03 0.154574E 03	PHIJC 244.480 310.608 201.986	PS IJC 244.98J 154.304 67.329	CJ/CJMAX 1.00000 0.505245 0.702241	1 2 3	4.132 4.264 12.397
AJ -0.527,107F 03 -0.1053,244E 03 -0.1022,504E 03 -0.1714,134E 03 -0.1714,134E 03	## ## ## ## ## ## ## ## ## ## ## ## ##	CJ C.14903330E UJ C.1407753E O3 C.149776E O4 C.4492223E O2	PHIJC 244.980 314.608 201.986 223.979	PS IJC 244.98J 154.304 67.329 55.245	CJ/CJMAX 1.00000 0.565245 0.792819	1 2 3	4.132 4.264 12.347 16.525
AJ -0.527J107F 0J -0.1053244E 03 -0.1022540E 03 -0.171413-E 03 -0.262455E 02 -0.27252025 02	### ### ##############################	CJ 0.2690330E 04 0.1407753E 03 0.4902223E 02 0.4902223E 02	PHIJC 244.980 310.608 201.986 220.979 220.043	PS IJC 244.983 154.304 67.329 55.242	CJ/CJMAX 1.000000 0.565245 0.742241 0.192819	3 6 5	4.132 4.264 12.397 16.525 20.661
AJ -0.5270107F 03 -0.1053344E 03 0.1022540E 03 -0.1714135E 03 -0.36452623F 02 0.7200849E 02	### ### ### ### ### ### ### ### ### ##	CJ 0.2490330E UA 0.1407733E 03 0.1349576E 04 0.4802223E 02 0.749273E 02 0.749273E 02	PHIJC 244.480 310.608 201.980 223.979 220.043 335.429	PS 1JC 244.98J 154.304 67.329 59.249 44.UU 59.305	CJ/CJMAX 1.000000 0.565245 0.772241 0.192819 0.122834 0.320919	1 2 3 4 5	4.132 4.264 12.397 16.525 20.401 24.793
AJ -0.927J107F 03 -0.1053344E 03 0.1022540E 03 -0.1714153E 03 -0.362545E 02 -0.2342023* 02 0.2342023* 02	## ## ## ## ## ## ## ## ## ## ## ## ##	CJ  0.2490330E W 0.1407753E 03 0.15+4576E 03 0.4802225E 02 0.30572245 02 0.7442775 02 0.3552536E 02	PMI JC 200.008 201.986 223.979 220.043 335.629 336.020	PS 1JC 244-980 154-304 67-329 55-242 44-043	CJ/CJMAX 1.00000 0.505245 0.702241 0.192819 0.122834 0.320919 0.221462	1 2 3 4 5	4.132 4.264 12.397 16.525 20.661 24.793 28.526
AJ -0.527J107F 0J -0.1053344E 03 0.1022540E 03 -0.171413E 03 -0.362555E 02 -0.23420235 02 0.720849E 02 0.5746430E 02	##CDEL AH-5eA \$##  #################################	CJ 0.2490330E UJ 0.14907757E 03 0.1544576E 03 0.4802225E 02 0.3057223F 02 0.7742575 02 0.55525336 02 0.18327776 02	PHIJC 244.48U 314.6UB 201.986 220.979 220.043 J35.429 J36.J2U 61.67>	PS IJC 244-980 150-304 67-329 55-245 44-009 50-705 46-709	CJ/CJMAX 1.00000 0.505245 0.702241 0.192819 0.122834 0.320919 0.221862 0.074393	1 2 3 4 5	4.132 8.264 12.397 16.525 20.661 24.793 28.526 33.058
AJ -0.527J107F 0J -0.1053244E 03 -0.1053244E 03 -0.1714135E 03 -0.362545E 02 -0.2342023* 02 0.2342023* 02 0.726684E 02 0.534823E 02 0.4740475E 01 -0.2341150F GL	## ## ## ## ## ## ## ## ## ## ## ## ##	CJ  0.2490330E W 0.1407753E 03 0.15+4576E 03 0.4802225E 02 0.30572245 02 0.7442775 02 0.3552536E 02	PHIJC 244.98U 310.008 201.98U 223.979 220.043 335.429 336.020 61.675 205.962	PS 1JC 244.98J 150.304 67.329 52.445 52.405 44.005 46.005 7.709	CJ/CJMAX 1.00000 0.505245 0.702241 0.192819 0.122834 0.320919 0.221462	1 2 3 6 5	4.132 4.287 12.397 16.525 20.461 24.793 28.526 33.058 37.190
AJ -0.527J107F 0J -0.1053344E 03 0.1022540E 03 -0.171413E 03 -0.362555E 02 -0.23420235 02 0.720849E 02 0.5746430E 02	##CDEL AH-5eA \$##  #################################	CJ  0.2690330E QA  0.1407193E Q3  0.1407197E Q2  0.3023229E Q2  0.3023229E Q2  0.3023229E Q2  0.1492579E Q2  0.1492577E Q2  0.1892777E Q2	PHIJC 244.48U 314.6UB 201.986 220.979 220.043 J35.429 J36.J2U 61.67>	PS IJC 244-980 150-304 67-329 55-245 44-009 50-705 46-709	CJ/CJMAX 1.00000 0.565245 0.792241 0.192819 0.12234 0.320919 0.221862 0.074393 0.166786	1 2 3 4 5 6 7 8	4.132 8.264 12.397 16.525 20.661 24.793 28.526 33.058
AJ -0.527J107F 0J -0.1053244E 03 -0.1053244E 03 -0.174135E 03 -0.3742459E 02 -0.2342023* 02 0.7240448E 02 0.5034630E 02 0.4740475E 01 -0.2341150F G2 -0.23470577E 01	## ## ## ## ## ## ## ## ## ## ## ## ##	CJ  0.2690330E QA  0.1407193E Q3  0.1407197E Q2  0.3023229E Q2  0.3023229E Q2  0.3023229E Q2  0.1492579E Q2  0.1492577E Q2  0.1892777E Q2	PHIJC 244.98U 310.008 201.98U 223.979 220.043 335.429 336.020 61.675 205.962	PS 1JC 244.98J 150.304 67.329 52.445 52.405 44.005 46.005 7.709	CJ/CJMAX 1.00000 0.565245 0.792241 0.192819 0.12234 0.320919 0.221862 0.074393 0.166786	1 2 3 4 5 6 7 8	4.132 4.287 12.397 16.525 20.461 24.793 28.526 33.058 37.190
AJ -0.527J107F 0J -0.1053244E 03 -0.1053244E 03 -0.1714135E 03 -0.2342023* 02 0.2342023* 02 0.726684E 02 0.504823C 02 0.474047E 01 FIXED NUB FLAP AT	## ## ## ## ## ## ## ## ## ## ## ## ##	CJ 0.2490330E QA 0.1407737E QA 0.1549576E QA 0.4502222E QA 0.3502726 QA 0.7942775 QA 0.26532736 QA 0.16027177 QA 0.2653277 QA	PHIJC 244.480 310.608 201.986 223.979 220.043 335.429 336.320 61.675 205.462 119.623	PS IJC 244.98J 154.304 67.329 55.445 55.445 55.705 44.303 7.709 44.303 11.702	CJ/CJMAX 1.00000 0.56545 0.7 < 224 1 0.192819 0.122834 0.320919 0.221862 0.074393 0.166786 0.049191	1 2 3 4 5 6 7 8	4.132 4.287 12.397 16.525 20.461 24.793 28.526 33.058 37.190
AJ -0.527J107F 0J -0.1053244E 03 -0.1053244E 03 -0.174135E 03 -0.3742459E 02 -0.2342023* 02 0.7240448E 02 0.5034630E 02 0.4740475E 01 -0.2341150F G2 -0.23470577E 01	## ## ## ## ## ## ## ## ## ## ## ## ##	CJ  0.2690330E QA  0.1407193E Q3  0.1407197E Q2  0.3023229E Q2  0.3023229E Q2  0.3023229E Q2  0.1492579E Q2  0.1492577E Q2  0.1892777E Q2	PHIJC 244.480 310.608 201.986 223.979 220.043 335.429 336.320 61.675 205.462 119.623	PS IJC 244.98J 154.304 67.329 55.445 55.445 55.705 44.303 7.709 44.303 11.702	CJ/CJMAX 1.00000 0.56545 0.7 < 224 1 0.192819 0.122834 0.320919 0.221862 0.074393 0.166786 0.049191	1 2 3 4 5 6 7 8	4.132 4.287 12.397 16.525 20.461 24.793 28.526 33.058 37.190
AJ -0.527J107F 0J -0.1053244E 03 -0.1053244E 03 -0.1714135E 03 -0.2342023* 02 0.2342023* 02 0.726684E 02 0.504823C 02 0.474047E 01 FIXED NUB FLAP AT	## ## ## ## ## ## ## ## ## ## ## ## ##	CJ 0.2490330E QA 0.1407737E QA 0.1549576E QA 0.4502222E QA 0.3502726 QA 0.7942775 QA 0.26532736 QA 0.16027177 QA 0.2653277 QA	PHIJC 244.480 310.608 201.986 223.979 220.043 335.429 336.320 61.675 205.462 119.623	PS IJC 244.98J 154.304 67.329 55.445 55.445 55.705 44.303 7.709 44.303 11.702	CJ/CJMAX 1.00000 0.56545 0.7 < 224 1 0.192819 0.122834 0.320919 0.221862 0.074393 0.166786 0.049191	1 2 3 4 5 6 7 8	4.132 4.287 12.397 16.525 20.461 24.793 28.526 33.058 37.190
AJ -0.527J107F 0J -0.1053244E 03 -0.1053244E 03 -0.1714135E 03 -0.2342023* 02 0.2342023* 02 0.726684E 02 0.504823C 02 0.474047E 01 FIXED NUB FLAP AT	## ## ## ## ## ## ## ## ## ## ## ## ##	CJ 0.2490330E QA 0.1407737E QA 0.1549576E QA 0.4502222E QA 0.3502726 QA 0.7942775 QA 0.26532736 QA 0.16027177 QA 0.2653277 QA	PHIJC 244.480 310.608 201.986 223.979 220.043 335.429 336.320 61.675 205.462 119.623	PS IJC 244.98J 154.304 67.329 55.445 55.445 55.705 44.303 7.709 44.303 11.702	CJ/CJMAX 1.00000 0.56545 0.7 < 224 1 0.192819 0.122834 0.320919 0.221862 0.074393 0.166786 0.049191	1 2 3 4 5 6 7 8	4.132 4.287 12.397 16.525 20.461 24.793 28.526 33.058 37.190
AJ -0.927J107F 0J -0.1093244E 03 -0.1022540E 03 -0.171413JE 03 -0.3625495E 02 -0.2342023* 02 0.7260848E 02 0.504630E 02 0.504630E 02 0.4740475E 01 -0.2341150F Ga -0.6055274E 01  FIXED HUB FLAP AT MARMONIC ANALYSIS	## ## ## ## ## ## ## ## ## ## ## ## ##	CJ 0.2490330E QA 0.1407737E QA 0.1549576E QA 0.4502222E QA 0.3502726 QA 0.7942775 QA 0.26532736 QA 0.16027177 QA 0.2653277 QA	PHIJC 244.480 310.608 201.986 223.979 220.043 335.429 336.320 61.675 205.462 119.623	PS IJC 244.98J 154.304 67.329 55.445 55.445 55.705 44.303 7.709 44.303 11.702	CJ/CJMAX 1.00000 0.56545 0.7 < 224 1 0.192819 0.122834 0.320919 0.221862 0.074393 0.166786 0.049191	1 2 3 4 5 6 7 8	4.132 4.287 12.397 16.525 20.461 24.793 28.526 33.058 37.190
AJ -0.527J107F 0J -0.1053244E 03 -0.1053244E 03 -0.1714135E 03 -0.362545E 02 -0.2342023* 02 0.726684E 02 0.504823C 02 0.4740475E 01 -0.234153F GL -0.6055674E 01 FIXED NUB FLAP AT HARMONIC ANALYSIS	## ## ## ## ## ## ## ## ## ## ## ## ##	CJ  0.2690330E 0A 0.1407737E 03 0.1549576E 04 0.3032222E 02 0.30323223E 02 0.79425756 02 0.18427776 02 0.26535372 02 0.12251136 02	PHIJC  244.980 310.008 201.980 223.979 220.043 335.429 330.020 01.075 205.962 119.023	PS IJC  244.98J 150.304 67.329 55.245 54.305 46.303 77.09 42.485 11.702	CJ/CJMAX  1.000000 0.56545 0.76241 0.192819 0.122834 0.320919 0.221862 0.074343 0.106786 0.074343	1 2 3 4 5 7 8 9	4.132 8.264 12.397 16.525 20.661 24.773 28.526 33.052 37.190 41.322
AJ -0.527J107E 0J -0.1053244E 03 -0.1053244E 03 -0.17141JJE 03 -0.362545E 02 -0.2342023F 02 0.7200848E 02 0.5548630E 02 0.8740475E 01 -0.23415JF GL -0.0055674E 01 FIXED YUB FLAP AT HARMONIC ANALYSIS	## ## ## ## ## ## ## ## ## ## ## ## ##	CJ  0.2490330E UA 0.1407735E 03 0.13+0376E 04 0.4802223E 02 0.3037223E 02 0.17923736 02 0.260393376 U2 0.260393376 U2 0.12231136 U2  CJ  CJ  0.1406570E 05	PHIJC  244.480 310.608 201.930 220.979 220.443 335.429 330.320 01.073 205.902 119.023  CTR 366 FL	PS IJC 244-98J 154-304 67.329 55.445 44-003 72.103 44.303 72.104 42.485 11.402	CJ/CJMAX  1.000000  0.565245  0.772241  0.192819  0.320919  0.221462  0.074393  0.106786  0.049191	1 2 3 4 5 6 7 8 9 10	4.132 4.254 12.397 16.525 20.661 24.793 28.526 33.058 37.190 41.322
######################################	## ## ## ## ## ## ## ## ## ## ## ## ##	CJ  0.2490330E US 0.1407737E QS 0.13+9574E QS 0.4932225 QZ 0.3057227F QZ 0.3552036E QZ 0.1432777E QZ 0.2657337E QZ 0.1223113E QZ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  C	PHIJC  244.980 310.608 201.986 220.979 220.043 335.429 336.020 61.675 205.962 119.623  CTR 366 FL	PS IJC 244-983 154-304 67-329 55-245 44-303 7-709 42-885 11-902 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-0 7-500-	CJ/CJMAX  1.000000 0.505245 0.742241 0.192819 0.122034 0.320919 0.221802 0.074393 0.106786 0.049191  CJ/CJMAX 1.000000 0.636662	1 2 3 6 7 8 9 10	4.132 4.264 12.397 16.525 20.661 24.793 28.526 33.058 37.190 41.322 FREQUENCY 4.132
######################################	## ## ## ## ## ## ## ## ## ## ## ## ##	CJ  0.2690330E 0A  0.1407793E 03  0.14974976 04  0.3097229E 02  0.3097229E 02  0.4697307E 02  0.1223113E 02  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  C	PHIJC  244.980 310.008 201.980 223.979 220.043 335.429 330.020 01.075 205.902 119.023  CTR 300 FL  PHIJC  89.109 296.559 192.491	PS IJC 244.98J 194.304 67.329 59.449 44.JUS	CJ/CJMAX  1.000000 0.565245 0.792241 0.192819 0.122834 0.320919 0.221802 0.074393 0.106786 0.094191  FR 1  CJ/CJMAX 1.000000 0.636662 0.43225	1 2 3 4 5 7 8 9 10	4.132 8.264 12.397 16.525 20.661 24.793 28.526 33.056 37.190 41.322 FREQUENCY 4.132 8.264 12.397
AJ -0.927J107F 0J -0.1053244E 03 -0.1053244E 03 -0.17141J3E 03 -0.362545E 02 -0.2342023* 02 0.7266843E 02 0.504823E 02 0.474047E 01 -0.234153F G2 -0.055674E 01 FIXED WUB FLAP AT HARMONIC ANALYSIS  0.2478577E 05 0.24873J4F 0J 0.400424F 04 -0.58036ED 04	## ## ## ## ## ## ## ## ## ## ## ## ##	CJ  0.2490330E UA 0.1407737E 03 0.13-4576E 04 0.3032225E 02 0.1432777E 02 0.2552536E 02 0.1432777E 02 0.2553537E 02 0.1225113E 02  CJ  CJ  0.1406573E 05 0.895310E 04 0.3228423E 06	PHIJC  244.480 310.608 201.980 201.980 223.979 230.020 01.075 205.962 119.023  CTR 366 FL  PHIJC 89.109 290.559 142.491 195.327	PS IJC  244.98J 150.304 67.329 55.245 54.305 46.305 7.709 42.485 11.702  T 500.0	CJ/CJMAX  1.000000 0.565245 0.7 ~224 1 0.192819 0.122834 0.320919 0.221862 0.074393 0.166786 0.049191  FR 1  CJ/CJMAX 1.000000 0.636662 0.42625 0.231686	1 2 3 4 5 6 7 8 9 10	4.132 4.284 12.397 16.325 20.401 24.793 28.526 33.058 37.190 41.322 FREQUENCY 4.132 8.264 12.397 16.525
######################################	## ## ## ## ## ## ## ## ## ## ## ## ##	CJ  0.2490330E US 0.1407735E 03 0.1549576E 03 0.4802225E 02 0.3097227F 02 0.7992776 02 0.26939372 UZ 0.12231136 02  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  C	PHIJC  244.480 310.608 201.980 201.970 220.043 335.429 336.020 61.675 205.462 119.623  CTR 366 FL  PHIJC  89.109 296.559 142.491 145.327 158.425	PS IJC 244.983 154.304 67.329 55.445 44.003 7.109 42.485 11.902  T 500.0  PS IJC 89.109 148.280 60.104 48.832 31.085	CJ/CJMAX  1.000000 0.505245 0.742241 0.192819 0.320919 0.221402 0.074343 0.104786 0.049191  FR 1  CJ/CJMAX 1.000000 0.630602 0.42225 0.231686 0.112888	1 3 4 5 7 8 9 10	4.132 4.254 12.397 16.525 20.601 24.793 28.526 33.058 37.190 41.322 FREQUENCY 4.132 8.264 12.397 16.525 20.661
AJ -0.927J107F 0J -0.1093244E 03 -0.1022540E 03 -0.171413JE 03 -0.3625495E 02 -0.2342023* 02 0.726649E 02 0.504649L 02 0.504649L 02 0.5074677E 01  FIXED HUB FLAP AT MARMONIC ANALYSIS  0.2478577E 05 0.2478577E 05 0.2478577E 04 -0.5803616E 04 -0.5803616E 04 -0.11476087 04 -0.40603711E 03	## ## ## ## ## ## ## ## ## ## ## ## ##	CJ  0.2490330E 04 0.1407193E 03 0.154757E 03 0.154757E 02 0.3037229E 02 0.1942776 02 0.1942776 02 0.2637376 02 0.12271136 02  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  C	PHIJC  244.980 310.008 201.980 223.979 220.043 335.424 336.024 36.075 205.962 119.023  CTR 366 FL  PHIJC  89.109 290.559 192.491 195.327 158.425 249.737	PS IJC  244.983 194.304 67.329 55.445 44.305 44.305 7.709 42.885 11.702  T 500.0  PS IJC  87.109 148.280 64.164 48.832 31.085 41.683	CJ/CJMAX  1.00000 0.565245 0.742241 0.192819 0.122834 0.320919 0.221860 0.074393 0.166786 0.049191  FR 1  CJ/CJMAX 1.00000 0.036662 0.412625 0.231666 0.112886 0.095737	1 3 6 7 8 9 10	4.132 4.264 12.397 16.525 20.461 24.793 28.526 33.058 37.190 41.322 FREQUENCY 4.132 8.264 12.397 16.525 20.661 24.793
AJ -0.927J107F 0J -0.1053244E 03 -0.1053244E 03 -0.1714135E 03 -0.362545E 02 -0.2342023F 02 0.726643E 02 0.574673E 01 -0.234150F G2 -0.6055674E 01  FIXED HUB FLAP AT MARMONIC ANALYSIS  0.2776577E 05 0.24776577E 05 0.247657E 04 -0.560361E 04 -0.560361E 04 -0.5603711E 03 0.2541673E 03	## ## ## ## ## ## ## ## ## ## ## ## ##	CJ  0.2690330E 0A  0.1407737E 0A  0.1407737E 0A  0.4842725E 0A  0.30372429E 0A  0.74943736 0A  0.143427776 0A  0.143437776 0A  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  C	PHIJC  244.980 310.008 201.980 223.979 220.043 335.429 330.020 01.075 205.902 119.023  CTR 300 FL  PHIJC  49.109 290.559 192.491 195.327 158.425 249.737 281.850	PS IJC  244.98J 150.304 67.329 55.245 54.303 77.09 44.303 77.09 22.485 11.702  T 500.0  PS IJC  87.109 148.280 60.164 48.832 31.885 41.623 41.623	CJ/CJMAX  1.000000 0.56545 0.76241 0.192819 0.122834 0.320919 0.221862 0.074343 0.106786 0.074343 0.106786 0.074343 0.166786 0.074343 0.166786 0.074343 0.166786 0.074343 0.166786 0.074343	1 2 3 4 5 7 8 9 10	4.132 4.264 12.397 16.525 20.461 24.793 28.526 33.058 37.190 41.322 FREQUENCY 4.132 8.284 12.397 16.525 20.661 24.793 28.426
AJ -0.927J107F 0J -0.1053244E 03 -0.1053244E 03 -0.1714135E 03 -0.1714135E 03 -0.2342023* 02 0.7200848E 02 0.504823C 02 0.4740475E 01 -0.234153F G2 -0.0055674E 01 FIXED **UB FLAP AT HARMONIC ANALYSIS  0.2478577E 05 0.24873J4F 0J 0.400424F 04 -0.503660 04 -0.514673E 04	## ## ## ## ## ## ## ## ## ## ## ## ##	CJ  0.2490330E UA 0.140775E 03 0.13-4576E 04 0.4802225E 02 0.1742575E 02 0.2552536E U2 0.1252717E 02 0.2653337E U2 0.1225113E U2  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  C	PHIJC  244.480 310.608 201.980 201.980 223.979 230.029 01.075 205.962 119.023  CTR 366 FL  PHIJC 89.109 290.559 142.991 145.327 158.425 249.737 281.850 359.729	PSIJC 244.98J 150.304 67.329 55.445 44.007 52.305 46.303 7.709 42.485 11.702  T 500.0  PSIJC 87.109 148.280 64.164 48.432 31.085 41.643 40.264 44.960	CJ/CJMAX  1.000000 0.565245 0.7 ~224 1 0.192819 0.122834 0.320919 0.221862 0.074393 0.166786 0.049191  FR 1  CJ/CJMAX 1.000000 0.636622 0.422625 0.231686 0.112886 0.045737 0.080004	1 2 3 4 5 6 7 8 8 5 6 7 8	4.132 4.254 12.397 16.525 20.661 24.793 28.526 33.058 37.19C 41.322 FREQUENCY 4.132 8.264 14.397 16.525 20.661 24.793 28.926 33.058
AJ -0.927J107F 0J -0.1053244E 03 -0.1053244E 03 -0.1714135E 03 -0.362545E 02 -0.2342023F 02 0.726643E 02 0.574673E 01 -0.234150F G2 -0.6055674E 01  FIXED HUB FLAP AT MARMONIC ANALYSIS  0.2776577E 05 0.24776577E 05 0.247657E 04 -0.560361E 04 -0.560361E 04 -0.5603711E 03 0.2541673E 03	## ## ## ## ## ## ## ## ## ## ## ## ##	CJ  0.2690330E 0A  0.1407737E 0A  0.1407737E 0A  0.4842725E 0A  0.30372429E 0A  0.74943736 0A  0.143427776 0A  0.143437776 0A  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  C	PHIJC  244.980 310.008 201.980 223.979 220.043 335.429 330.020 01.075 205.902 119.023  CTR 300 FL  PHIJC  49.109 290.559 192.491 195.327 158.425 249.737 281.850	PS IJC  244.98J 150.304 67.329 55.245 54.303 77.09 44.303 77.09 22.485 11.702  T 500.0  PS IJC  87.109 148.280 60.164 48.832 31.885 41.623 41.623	CJ/CJMAX  1.000000 0.56545 0.76241 0.192819 0.122834 0.320919 0.221862 0.074343 0.106786 0.074343 0.106786 0.074343 0.166786 0.074343 0.166786 0.074343 0.166786 0.074343 0.166786 0.074343	1 2 3 4 5 7 8 9 10	4.132 4.264 12.397 16.525 20.461 24.793 28.526 33.058 37.190 41.322 FREQUENCY 4.132 8.284 12.397 16.525 20.661 24.793 28.426

		COMPONENTS			JI DAIA		
	CASE	33	5 KTS	n = 1.4	<b>8</b> ~		
					/ Ren	oduced avsilabl	
					160.0	oducad	copy.
FIXED HUB CHORD AT	STA 18				203/	evailed	Iron
MARHUNIC ANALYSIS		SHIP 1009 T +05	CTR 344 FI	7 500.0	TR 3	- Suapl	
Hannotte statists	HOUSE MILL SON		01K 200 15	20010			COPY. O
LA	8.1	C.J	PHIJC	PSIJC	CJ/CJMA'X	3	FREUUF NC Y
0.4121C43E 05		100					
0.76517636 05	U. 0231730E 05	0.11234/9E Up	47.041	47.091	1.000000	1	4.132
0.47747278 04	3.8401104£ 04	0.47134148 04	60.563	30.202	J.086445	2	0.264
-4.44701451 44	-U.111014E 0>	0.1222457E CD	244.520	42.840	0.104416	3	12.397
0.321240JE C3	3.6471315E U3	0. /224348E U3	63.598	15.400	0.006424	4	16.525
-U.3445ibbt U4	U. 11201U4E G4	C. 16/13+0E 04	102.231	12.446	0.032658	5	20.461
-0.21476046 04	-0.42545445 03	0.22147748 04	140.475	31.429	0.019485	•	24.793
-U.1518c3>E 04	9-14541AAE 04	0.2344104E 04	130.758	14.537	0.018549	7	28.526
0.1227437E 04	-0.2C46406 C3	0.124+17# C4	350.534	43.817	0.011072		33.05E
0.5206 15UE UJ	-0.31+15uff C4	U. slaysone Up	274.410	31.040	0.028334	9	37.196
U.1477435E 03	-U.1C31715E G4	0.13623426 04	211.996	27.300	0.009450	10	41.322
BLADE FLAP AT STA	130.6						
HAFYONIC ANALYSIS		SHIP 1009 T +05	CTR JOS FI	7 640 0	TR 19		
HAP AD THE PARE 1313	HUNER MILL SON	2017 1007 1 403	CIA 300 F		14 44		
A.J	HJ .	CJ	PHLIC	PSIJC	CJ/CJMAX	J	FREQUENCY
0.11149218 05						•	
0.47345316 04	-U. 3374502E C4	0.56173402 04	324.543	324.543	1.000000	1	4-132
-0.141/3045 34	U. 2334448E L4	0.33310327 04	129.000	04.844	U.541484	Ž	8.464
U.1491C54E 04	0. 0773936t 03	0.1730051= 04	34.474	10.158	0.247395	3	12.397
0.1304459F U4	0.18302UMF 01	C. 133446JE 04	180.0	0.020	0.224236	4	16.529
0.60381815 03	-0.5556J+48 CJ	C. 0057/416 OJ	323.001	04.312	0.146027	5	20.661
0.82778308 03	J. 4551740F CZ	0.4303/146 03	4.565	U.754	0.142/41		24.743
U.6348 174E 03	-0.81510u9F 02	C. 04JJ6807 03	152.084	50.383	0.110026	7	28.924
0.5400e27E U3	J. 4263474E CS	0./1471402 03	30.241	4.537	0.163719		33.058
-0.1176116E 02	3.42694005 02	0.44284516 02	105.401	11.711	0.007413	9	37.196
0.113244BE 04	0.14509118 02	0.11+17037 03	7.300	0.733	0.019629	10	41.322
RLADE FLAP AT STA							
MARMONIC ANALYSIS	MOUSE WH- 204	SHIP 1009 T 405	CTR JOS P	LT 503.0	TR 20		
A.1		<b>C</b> 1	But if	0614	CALCAMA	1.6	ERECUENT W
-0.000 J125F U4	61	CI	PHIJC	PSIJL	CJ/CJMAX	J	FREQUENC Y
-0.203071st 04	3.475dloce 04	0.54613445 04	114.347	119.39/	1.00000	-1	4.132
0.26697845 04	-0.1272079E C4		334.513	107.250	0.541553	į	8.264
-0.020>£76F U3	-0.7323137E C3		429.449	76.483	0.176475	3	12.397
0.13732656 64	0.4579402F 03		10.037	4.659	0.255867	- 4	16.525
0.801/6476 03	-0.1934117F CA		335.474	67.092	0.173447	3	20.661
0.6434557E 33	0.1533J91E CA		13.409	2.235	0.121054	6	24.793
U.153260eE 01	J.2091412E 03		51.702	7.680	0.047475	ĭ	20.446
-0.1048574t OJ	0. JZ17765E 03		117.635	14.729	0.060020	à	33.050
-U. 1242505E UJ	-0.3432237E CL		181.272	20.141	0.028307	9	37.190
0.14574406 03	0.7260292t C2		21.365	2.137	0.036540	10	41.322
BLADE FLAP AT STA	235						
HARYCNIC ANALYSIS		SHIP LUGY T 405	CTR 306 F	LT 500.0	TR 4		
M224 2007 300-0004 5			Y KINT		-		
		_			_		
AJ	BJ	CJ	PHIJC	P\$ IJC	XAMLDYLD	J	FREQUENCY
0.14047425 04		10-0	100		10000000		
-0.51446148 03	0.341U480E 04		44.608	94.664	1.000000	1	4.132
0.1846 SHUE 34	-0.40107456 03		342.983	172.992	0.551405	Š	4.264
-0.9336.70E 01	-0.612CASCE 61		204.130	89.710	0.178311	ş	12.397
0.13909729 04	0.15004128 01		0.433	1.608	0.405749	•	10.525
0.7067C31E 33	-U.4466B75F C3		321.777	65.555	0.242628	5	20.661
0.80476348 03	-0.31.469ct C3		336.902	50.444	0.250014	•	24.193
0.79605075 03	-0.52341 /OE C3		320.040	40.0/1	0.270315	7	24.926
0.15396615 04	0.7333652E C3		25.469	3.184	0.494335		33.058
0.2949890E U3	J.11309>/E C3		20.757	2.306	0.092992	9	37.190
-0.73019J+E 02	-J. 4153238E CZ	0.11104475 03	231.419	23.142	0.033940	10	41.322

BLADE FLAP AT STA 270 HAMMCHIC ANALYSIS HOUSE AM-Sea SHIP 1009 T 405 CTR 366 FLT 500.0 TR 26

• •	Д.				T		
0.4109C35E 04	81	G1 .	_ PHIJC	PSIJC	K AMED VED	J	FRE QUE NC Y
0.1215119E 04	U-1414129E C4	C. 2020317E 0	53.027	54.027	1.000000	1	4.132
0.74105946 03	U. 2134760E C3	0. 11494776 m	15.230	7.615	0.405812	ż	0.264
0.7266 152E 02	-0.80H1143E 03	0. 44100145 03	274.6/8	91.559	0.441047	3	12.397
0.10041015 04	0.22375945 C3	0.1047372E U	11.075	2.969	0.538202	- 1	10.525
0.43345408 03	-U. 1565949E CJ	0.45914174 03	\$04.046	40.160	0.227280	5	20.661
0.10021216 03	-0.2516821E C3	0.11297466 01	248.772	49.79>	0.164814	7	24. 793
0.56903546 03	-0.7789421E 03	C. 977Juj45 03	30/.134	43.476	0.443605	ĭ	28.526
0.18423566 04	U.4553642E C3	0.14526152 06	0.053	0./5/	0.416499	i	33.056
0.5245 706E 01	-0.1C44767E C3	C. SIFLUAZE US	344.611	34.734	0.260875	ě	37.19C
0.22104376 02	U. 5080840E 02	0.0013765€ 02	64.739	0.874	0.030172	10	41.322
BLADE CHORD AT STA HARMONIC ANALYSIS		IP 1009 T 405	CTR 300 FLT	>00.0	TR 17		
LA at 76t71t65.u	8.3	CJ	PHIJC	PS IJC	X AMLD\LD	J	FREQUENCY
U.311>493E US	0.436887af C5	0.33660628 05	54.505	54.505	1.000000	L	4.132
0.5437C51F C4	0.5188195E C4	0. 76611405 04	42.626	41.313	0.142771	2	8.264
-0.67745595 C4	-J. 76942J4E 04	co stopperci.u	229.302	76.454	J.143490	3	12.347
0.2280184E 04	-0.53424418 03	0.23457336 04	340.751	80.684	J.U4377U	•	16.526
-0.07271705 03	0.14365156 C4	0.2153400E OF	114.257	22.447	0.034618	5	20.661
0.117JS90E 03	0.30241315 63	to stlobust.5	12.394	12.010	0.007094	•	24.743
0.728+550E U3	-0.1068410E C4	0.19572106 04	293.547	41.441	0.033426	1	28.526
0.1020477E 03	-0.8541891E CJ	0. 1041445E 03	263.265	25.022	0.016946	8	33.058
-0.13091152 32	J.10563u9E 04	o lesosole Or	90.453	19.050	7-9905	9	37.176
-0.142717UE 03	0.6366118E 03	C. 65241315 03	102.636	10.264	0.012156	10	41.322
BLADE CHORD AT STA MARMUNIC ANALYSIS		IP 1309 T +05	CTR 300 FLT	500.0	TR 22		
AJ	: 6J	c1	PH1 JC	PS IJC	CJ/CJMAX	J	FREQUENCY
-0.2057149E US		12 2 11 2 12	12-20-0				
0.50156276 04	0.55509228 04	0.74612625 06	47.900	47.403	1.000000	į	4.132
U-1430794E U4	U. 7541653E C3	0.16394236 04	29.033	14.510	0.218736	ş	8.264
-U.1447537E U4	-0.5458646E 03	0.1711/0/2 04	213.266	71.001	0.231473	3	12.397
0.6461C79E 03	-0.2231361£ C3.	0.00122403 03	340.947	85.237	0.041364	\$	16.525 20.661
-0.2012225 03	0.4523398 02	fo : 60 f f f f f f f f f f f f f f f f f f	167.155	33.631	0.035416	- 7	20.001
0.1059251F 03 -0.40##757F 03	-0.5240060E 02 -0.10022176 64	0.1342413= 04	333.681	32.401	0.144683	į	28.526
-0.40881577 03	-0.75161356 03	0.10824135 04	241.600	30.654	0.110615	ú	33.058
0.65476046 03	0.14151376 04	0.15013515 05	65.006	1.223	0.208701	9	37.19C
-0.1577405E 03	-0.1452081E C3	0.214414 / 03	224.026	22.203	U.028660	10	41.322
-0.17771052 03	-0114720011 03	0.2144142 03			0101000		*****
HAPE TORBION AT S		1P 1309 T 405	CTO - 366 ELT	500.0	70 44		
					*** **		
A.J	24. 26. 2.4	6J	PHIJC	PS IJC	CJ/CJMAX	J	FREGUENCY

AJ	44	, pJ	9.1	CJ		JL IH9	PS IJC	CJ/CJMAX	J	FREGUENCY
		0	64	0 42440405	^4	45 503	44 404	1 000000		4.132
0 07 300 5046	4	0.23413405	64	0.16-6440	•	42.203	43,303	1.00000	•	7.136
-U. >25 3 507E	03	J. 85034145	C3	C. 33424JJE	UB	121.709	6J.654	0.304474	2	8.264
U.41735135	0.3	-0.41279226	C3	C.58700916	43	315.314	105.105	0.174811	3	12.397
-0.9314360E	40	0.41417486	04	0.93217976	Us	177.423	44.356	0.283955	4	16.524
-0.578554UE	43	U. 4716045E	03	0. 7444401	03	140.817	49.163	U-247376	5	24.661
					-			0.44444	•	44.193
• • • • • •									_ I	
0.27153745	03	-0.7265145E	0.3	C. 7755440E	03	290.443	41.499	0.236258	7	26.926
0.133045BF	C4	-J. 7150323F	C3	0.151J861E	04	331.728	41.400	0.463230		33.05E
4-1-156426	43	-0.14/+330[	C3	0.140.2/88	03	317.195	35.333	0.058007	9	31.176
			-	0. /551 OpoF	a	359. 141	35.346	0.02.002	10	41.322
	0.5177.39F 0.23307E 0.243307E 0.4173513F -0.578540E -0.5785540E -0.105347E 0.2715378F 0.1130628E 0.1-15642E	AJ 0.5177(39F 03 0.6170(66F 04 -0.5253597E 03 0.6173513F 03 -0.411336E 03 -0.578556UE 03 -1.105347VE 03 0.2715370F 03 0.1130620E 04 0.1150620E 04	0.5177(39F 03 0.2141590E -0.253507E 03	0.5177(39F 03 0.6130669F 04	0.5177(39F 03 0.410066F 04	0.5177(39F 03 0.4341540E C4 -0.5253567E 03 0.4053616E C3 -0.4173513F 03 -0.4173424C C3 -0.4173513F 03 -0.417424C C3 -0.417366C U3 0.4161748E 04 0.9321747E 03 0.4716045E 03 0.746446UE 03 0.2775540E C3 0.1773313E 04 0.2775540E 03 0.1775346 03 0.1130424E C4 -0.775540E C3 0.151346E 04 0.1115042E U3 -0.1274336E C3 0.14042/8E 03	0.5177(39F 03 0.430064F 04 0.4341540E C4 0.1242840E 04 45.503 -0.5253567E 03 0.8503416F C3 C.374540JE 03 121.709 0.4173513F 03 -0.412742E C3 C.5270081E 03 121.314 -0.4914386E 03 0.4161748E 02 0.92174F 03 177.423 -0.5785540E 03 0.4716045E 03 0.746460JE 03 140.817 -0.1053474E 04 0.2057504E C3 0.1373313E 04 168.444 0.2715378F 03 -0.7265125F 03 C.7755440E 03 290.443 0.1130428E 04 -0.7265125F 03 0.1513861E 04 290.443 0.11415642E 03 -0.1274316E 03 0.14042/8E 03 317.795	0.5177(39F 03 U.LJUJ664F 04	0.5177(39F 03 U.4.JJU664F 04 0.2441540E C4 0.124284UE 04 45.503 45.503 1.0U0000 -0.5253557E 03 U.8503416F C3 C.37454JE 03 121.709 0.30474 -0.4173513F 03 -0.4127422F C3 C.5870093F U3 315.314 105.105 U.174811 -0.431236E U3 U.4161748E 02 0.9321747E U3 177.423 44.156 0.283955 -0.578564UE U3 U.4716045E 03 0.746446JE 03 140.817 29.163 U.227378 -0.105378F 03 -0.7265125E 03 C.775546UE 03 290.443 41.499 0.230288 U.1330228E C4 -0.7150323F C3 0.1513861E U4 331.728 U.44050 U.4405020	0.5177(39F 03 U.LJUC64F 04

### HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 34 V= 121 KTS n= 1.5 g Reproduced from evailable copy.

BLADE FEATHER ANGLE
MARMONIC ANALYSIS MODEL AM-36A SMIP LOGS T 405 CTR 370 PLT 500.0 TR 31

4

6.1	CJ	PHIJC	PSIJC	CJ/CJM4X	3	FREQUENCY
-0.25400078 01	0.56298936 01	333.106	333.100	1.000000	1	4.132
-U. 1063172F 00	C. 12//034E 00	216.314	114.100	J.022694	2	8.264
0.7353723E-C1	0. 74 71 1645-01	100.173	33.341	0.013271	3	12.397
-U. 0074550F-UL	10-54620104.3	321.047	40.262	0.01/177	4	16.525
U.1463572E-C1	0.15-96566-01	13.209	14.042	0.002753	5	20.661
J. 5 75+709L-C2	0.10444455-01	20.432	3.405	0.002928	•	24.793
-0.2653552F-CL	10-36066600	324.537	40.714	0.009030	7	28.526
J. 586351 8t -02	6.46512316-01	171.070	21.460	0.00/146	8	33.056
0.2-C4291E-01	0.243601 # -01	80.742	8.771	0.004327	9	37.190
0.46102188-02	0.14574225-01	20.472	2.697	U.002587	10	41.322
	-0.2546617E 01 -0.1063172F 00 0.7353723E-C1 -0.6674550F-01 0.1463572E-C1 0.5754704L-C2 -0.2653592E-C1 0.3863518E-02 0.246291E-01	-U.25400U7E 01	-U.25466178 01	-U.25400178 01	-U.25466U7E 01	-U.25466U7E 01

SHAFT HOMENT MAFRONIC ANALYSIS MODEL AM-SAA SHIP 1009 T -05 CTR 370 FLT 500.0 TR 36

1.1		8.1	CJ	PHIJC	PS IJC	CJ/CJMAX	J	FREQUENCY
-0 .7442 LBUE 04								
-U . looy 551F U!	0.734	INDE CS	0.7334864E 05	102.805	102.405	1.000000	1	4.132
-U .3028435t U4	-0.374	7697E 04	0.44495436 04	231.356	115.674	U.064361	2	8.264
-J. 4403 eluf U:	-0.115	4714E C5	0. 1/191116 05	201.301	67.120	0.443613	3	12.347
U.1564478E U	-0.426	DOCE C3	0.16210002 06	344.747	40.147	0.021521	4	16.525
-J. 973#LUDE U	-0.176	4674E G4	0. 44 174 125 04	190. 100	34.360	0.131350	5	20.661
0.8115125E 0.		BLYZE CA	G. 1412362E U4	105.064	30.844	U.010747	•	44.793
-0.2713.00E J		42UOF C4	0.57438652 04	242.007	34.514	0.070721	7	26.924
0.33327a36 U		24+6E C3	C. 4648411E OJ	244.035	10.000	J.012872		33.05E
U.5505134E 0		SAULE CA	C. 17366122 US	288.819	12.091	0.042650	ý	37.190
0.11215355 0		0914E U1	0.12+94CUE U-	333.856	31.380	0.016587	10	41.322

PITCH LINK TENSION
MARKONIC ANALYSIS MUDEL AM-SOA SHIP LUGY T GUS CTR 370 FLT SOULO TR 11

AJ		8.3		CJ	PHIJC	PSIJC	XAML3\L3	J	FREQUENCY
-U.6010C7L5	44								
-0.1124159E	33	-0.24102306	U3	to Estrects.0	241.223	241.223	1.000000	1	4.132
0.54812348	02	-U.1622743E	G3	O. LLoJedoé OJ	294.147	147.094	0.420>99	7	8.264
-3.14495186		-0.25155568	4	0.20206618 03	188.296	64.705	0.732407	3	12.397
-0.27124006		-U. 1587524E		0.631JJ335 W	242.307	60.577	J.228724	•	10.525
-0.2114228F		-0.25171115		C. 1300142 02	229.704	42.341	0.119618	5	20.461
0.07044145		-U.3730/27E		C. 1740385E UZ	331.142	55.190	U.280/74	4	29.793
J.4772482E		-U. LJ#>#+JE		0. 44040415 02	343.808	49.115	0-140158	Ĭ	24.924
U . 7-33C35E		0.4538457F		0. 26512135 02	13.267	9.158	0.090340	À	33.058
-U .74>312YE		-0-173010/6		3.20014405 02	244.404	21.114	0.074735	9	37.19C
0.01527476		0.16683925		0.1307875 62	>3.416	5.342	0.049581	10	41.322

FIRED HUB FLAP AT STA 18 HAR-GONIC AMALYSIS MUDEL AM-56A SMIP 1009 T 405 CTR 370 FLT 500.0 TR 1

0.3240314E	cs	93		CJ	PHIJC	PSIJC	CJ/CJMAX	J	PREQUENCY
0.344>4362		0.14728098	05	0.1512578E 05	70.632	76.632	1.000000	A	4.132
0.35594676	04	-0.96442765	04	0.57564136 04	291.399	145.700	0.645052	2	8.264
-0 .0516348E	04	U. 5447786E	C3	0.05410706 04	175.223	38.408	0.432445	3	12.397
-0.319250JE	04	-0.76315878	C3	0. 3242 510 04	193.444	48.341	0.217014	Ă	16.525
-0.1361353e	04	0.1C20095E	C4	0. 1717147E 04	143.555	20.711	0.113527	•	20.661
-2.2470330E	03	-U. 1475541E	C4	C. 1>J5141E 04	250.018	44.104	0.059508		24.793
0.51196148	03	-J. 5752925E	63	0.111J9J7E 00	240.607	44.658	0.073445	,	24.926
0.1730205E	04	-0.14474678	C3	0.17-00-06 0	151.935	44.238	0.115034	À	33.054
0.32+2217E	03	-0.54143215	20	0. 124/1435 43	350.512	34.946	0.021732	i	37.190
0.3206904E	03	-0.3643232E	CZ	0. J22715JE 03	353.403	35.348	0.021339	10	41.322

FIXED HUB CHORD AT STA 18 HARMONIC ANALYSIS MODEL AM-DOA SHIP LUOS T 405 CTR 370 FLT 500.0 TR 3

A.J	63		C.J	PHIJC	PSTJC	CJ/CJMA X		FREUUENC Y
0.2220446E 05						207 001		***************************************
U-8345C50E C5	U. 9217775E		3.12-20702 06	47.413	47.913	1.000000	A.	4.132
-0.44057156 04	0.9637492#		0.104-1577 05	117.260	28.610	0.087286	2	8.264
-0.71291315 03	-U. 177000UE	-	0.10203942 05	238.648	79.566	0.082636	3	12.347
-0.35015616 04	0.47372296		0.30377442 05	172.296	34.453	0.006471	5	16.526
-J.187+6/4F U4	J. 7588455t		0.2322437: 04	121.764	20.321	0.016583	6	?u.661 .4./93
-J.249U 556F C4	0.2159865E		0.24383456 04	175.869	25.124	U.044140	7	28.426
J.1734446E J4	-U.1032340F		0.21418102 04	310.738	14.292	0.019176		33.058
-0 -1644C84E 04	-J. 2850141F		0. 12101445 04	240.022	20.064	U.020441	9	37.140
-0.3234141E C3	-0.137494 /6	C4	0.1412471F 04	256.163	25.076	0.011372	10	41.322
BLADE FLAP AT STA			1009 T 405			TR 19		
		8118	1007 1 103	C	300.0	10.47		
AJ	u J		CJ	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
J.130560JE C5	**		•••	******		007 00	•	
J.5418344E 04	-0.14512406	04	0.64457-22 06	327.204	327.204	1.000000	1	4.132
-3.16415575 04	0.20640795	04	0.261J592E US	124.449	64.224	0.409665	2	8.264
J.1700504E 04	U.3657725E		0.17935513 04	11.734	3.911	0.2/9024	3	12.347
9-12486146 04	-0.1e413/7F		C. 10071+3= 0+	353.961	44.493	0.244442	4	16.525
J.7483 105E U3	-0.6C26021F		C. 960817+E U3	321.153	04.231	0.149002	5	20.661
9.81447456 03	-3.13356546		C. 84001736 03	351.304	20.201	9.1300/8	6	24.143
0.64175175 03	-0.4CCU90UE		0.64292405 03	150.641	50.949	0.105950	7	28.924
3.61+35675 03	0.56304818		0.4.07737: 03	43.514	5.449	0.131373		33.058
0.1+30212E 03	-0.25942+3E		O. LYSSONGE US	352.377	34.123	966060.0	9	31.146
0.28127648 03	-0.1225508	63	0.10011.55 01	336.457	33.040	0.047600	10	41.322
BLADE FLAP AT STA	205							
		11.000						
HAPMLNIC ANALYSIS	PUDEL AH-SAA	SHIP	1339 T 405	CTR A/U FI	7 500.0	TR 26		
HAPMUNIC ANALYSIS	MUDEL AH-SOA	SHIP	1304 T 405	CTR 3/U FI	LT 500.0	TR 20		
HAPMUNIC ANALYSIS	MUDEL AH-SOA	SHIP	1304 T 405	CTR 3/0 FI	LT 500.0	TR 2U		
HAPMUNIC ANALYSIS	MUDEL AH-SAA	\$H1P	1304 7 405	CTR 310 FI	LT 500.0	TR 2U		
		\$H1P			22	- "		
AJ	MUDEL AH-SOA	\$H1 <b>P</b>	CJ CJ	CTR 3/0 FI	PS IJC	TR 2U CJ/CJMAX	J	FREQUENC Y
AJ -0.586±89eF 09	8,3		ÇJ	PHLJC	PS IJC	CJ/CJMAX		
-0.586±696F 04 -0.2522£63E U4	018811.41E	04	CJ 0.544621E U6	PH1JC 117.332	PS 1JC	CJ/CJMAK	1	4.132
-0.580æf9af 04 -0.2522663E 04 0.2336404F 04	8J 0.4881141E -0.5664/22F	04	CJ 0.>+44621E U4 U.2526121E O4	PHIJC 117.332 337.003	PS 1JC 117.332 166.626	CJ/CJMAK 1.000000 0.454744	1 2	4.132 0.264
~0.586æ696F	8J 0.9841191E -0.9864/22F -0.2523501E	04 03 C3	CJ 0.>+44621E U4 U.2526121E 04 C.6003498E 03	PHIJC 117.332 337.053 209.131	PS IJC 117.332 108.426 69.710	CJ/CJMAX 1.00000 0.457744 0.109298	1 2 3	4.132 8.264 12.397
AJ -0.586±696F 04 -0.2326404F 04 -0.5245672E C3 0.1320±07E U4	8J U-18811 Y1E -0.9664/24F -0.26235015 U-26274695	04 03 C3 03	CJ 0.5444621E U4 U.2526121E O4 C.6003498E O3 G.134388F O4	PHIJC 117.334 337.053 209.131 10.367	PS IJC 117.332 108.024 69.710 2.592	CJ/CJMAX 1.000000 0.45444 0.109296 0.445443	1 2 3	4.132 8.264 12.397 16.525
AJ -0.586±896F 04 -0.2522663E 04 0.2336408F 04 -0.5245872E C3 0.1326±07E 04 0.8846249F 03	8J 0.~881141E -0.566472F -0.2423501E 0.2427469E -0.1767732E	04 03 C3 03	CJ 0.2444621E U4 U.2546141E O4 U.2546141E O3 0.134348F O4 C.4341134E U3	PHIJC 117.334 337.053 209.131 10.367 348.699	PS IJC 117.332 108.424 49.710 2.592 59.743	CJ/CJMAX 1.00000 0.45v744 0.109296 U.2454V3 0.104182	1 2 3 4 5	4.132 8.264 12.397 16.525 20.661
AJ -0.2886£90F 04 -0.222£63E 04 0.2336404F 04 -0.9245£72E C3 0.1326807E 04 0.8846234F 03 0.2846234F 03	8J -0.9869722F -0.292390F 0.2427405E -0.1767732E -0.1760031F	04 03 03 03 03 03	CJ 0.274621E U4 U.2566121E O4 C.6003498E O3 G.1343849E O4 C.4921312E U3 0.6133037E U3	PHIJC 117.332 337.653 209.131 10.367 348.649 18.648	PS IJC 117-332 108-326 69-710 2-592 69-74J 3-108	CJ/CJMAK 1.00000 0.45774 0.109296 0.245493 0.164182 0.111564	3 4 5	4.132 0.264 12.397 14.525 20.661 24.793
AJ -0.580m69aF	8J 0.984141E -0.9864/22F -0.2523501E 0.2427469E -0.1767732E 0.1673172F	04 03 03 03 03 03 03	CJ 0.544621E U4 U.2526121E 04 C.6005498E 03 0.1343849E 04 C.4012113E U3 U.2087481E U3	PHIJC 117.334 337.653 209.131 10.367 348.659 18.648 53.254	PS IJC 117-332 148-324 59-710 2-592 59-743 3-108 7-008	CJ/CJMAX 1.00000 0.454744 0.109296 0.245493 0.164194 0.111564 0.038000	1 2 3 4 5	4.132 8.264 12.397 10.561 24.793 28.926
AJ -0.580c690F	8J 0.4881191E -0.9664/24F -0.2523501E 0.2427469E -0.1767732E 0.196001E 0.197367E	04 03 03 03 03 03 03	CJ 0.5446621E U4 U.2526121E 04 C.6003498E 03 0.1343149E U3 C.40231437E U3 0.2487491E U3 0.1485714F U3	PHIJC 117.332 337.053 209.131 10.367 348.699 18.648 53.254 105.043	PS IJC 117.332 108.026 69.710 2.592 69.743 3.108 7.608 13.130	CJ/CJMAX 1.00000 0.45v744 0.10929 0.2454y3 0.164142 0.111564 0.03600 0.036139	3 4 5 6 7	4.132 8.264 12.397 14.525 20.641 24.793 24.926 33.058
AJ -0.580m69aF	8J 0.984141E -0.9864/22F -0.2523501E 0.2427469E -0.1767732E 0.1673172F	04 03 03 03 03 03 03 03 03 03	CJ 0.544621E U4 U.2526121E 04 C.6005498E 03 0.1343849E 04 C.4012113E U3 U.2087481E U3	PHIJC 117.334 337.653 209.131 10.367 348.659 18.648 53.254	PS IJC 117-332 148-324 59-710 2-592 59-743 3-108 7-008	CJ/CJMAX 1.00000 0.454744 0.109296 0.245493 0.164194 0.111564 0.038000	1 2 3 4 5	4.132 8.264 12.397 10.561 24.793 28.926
-0.580	8J 0.984141E -0.9664724F -0.2523501E 0.2427469E -0.1767732E 0.19673172F 0.1517666E -0.1221916E	04 03 03 03 03 03 03 03 03 03	CJ 0.274621E U4 U.2526121E O4 C.6003478E O3 G.13-1347E O4 C.9021132E U3 0.6130037E U3 0.143710F U3 0.174770F U3	PHIJC 117.332 337.053 209.131 10.367 348.659 18.648 53.254 105.043 230.841	PS IJC 117-332 108-326 69-710 2-592 69-743 3-108 7-008 13-130 25-049	CJ/CJMAX 1.00000 0.459744 0.109296 0.245493 0.164182 0.111564 0.0 36000 0.0 36159 0.0 28880	1 2 3 4 5 6 7 8 9	4.132 0.264 12.397 16.525 20.661 24.793 24.793 23.056 33.056
AJ -0.580æ69eF	8J 0.984141E -0.9664/24F -0.2523501E 0.2427469E -0.1767732E 0.19600172F 0.1673172F 0.151766E -0.1221916E -0.1425516E	04 03 03 03 03 03 03 03 03 03	CJ 0.274621E U4 U.2526121E O4 C.6003478E O3 G.13-1347E O4 C.9021132E U3 0.6130037E U3 0.143710F U3 0.174770F U3	PHIJC 117.332 337.053 209.131 10.367 348.659 18.648 53.254 105.043 230.841	PS IJC 117-332 108-326 69-710 2-592 69-743 3-108 7-008 13-130 25-049	CJ/CJMAX 1.00000 0.459744 0.109296 0.245493 0.164182 0.111564 0.0 36000 0.0 36159 0.0 28880	1 2 3 4 5 6 7 8 9	4.132 0.264 12.397 16.525 20.661 24.793 24.793 23.056 33.056
AJ -0.580	8J 0.984141E -0.9664724F -0.2523501E 0.2427469E -0.1767732E 0.197172F 0.1673172F 0.1673172F -0.122191bE -0.122191bE	04 03 03 03 03 03 03 03 03 03 03 03	CJ 0.274621E U4 U.2526121E O4 C.6003474E O3 G.13-1447E O4 C.9021132E U3 0.6130037E U3 0.1467701E U3 0.1767705 U3 U.24-74931E O3	PHIJC 117.334 337.053 209.131 10.367 348.699 18.648 53.258 105.043 230.841 320.234	PS IJC 117.332 168.626 69.710 2.592 9.74J 3.108 7.008 13.130 25.049 32.723	CJ/CJMAX 1.00000 0.459744 0.109296 0.245493 0.164182 0.111564 0.038000 0.036159 0.028080 0.045498	1 2 3 4 5 6 7 8 9	4.132 0.264 12.397 16.525 20.661 24.793 24.793 23.056 33.056
AJ -0.580æ69eF	8J 0.984141E -0.9664724F -0.2523501E 0.2427469E -0.1767732E 0.197172F 0.1673172F 0.1673172F -0.122191bE -0.122191bE	04 03 03 03 03 03 03 03 03 03 03 03	CJ 0.274621E U4 U.2526121E O4 C.6003478E O3 G.13-1347E O4 C.9021132E U3 0.6130037E U3 0.143710F U3 0.174770F U3	PHIJC 117.334 337.053 209.131 10.367 348.699 18.648 53.258 105.043 230.841 320.234	PS IJC 117.332 168.626 69.710 2.592 9.74J 3.108 7.008 13.130 25.049 32.723	CJ/CJMAX 1.00000 0.459744 0.109296 0.245493 0.164182 0.111564 0.0 36000 0.0 36159 0.0 28880	1 2 3 4 5 6 7 8 9	4.132 0.264 12.397 16.525 20.661 24.793 24.793 23.056 33.056
AJ -0.580	8J 0.984141E -0.9664724F -0.2523501E 0.2427469E -0.1767732E 0.197172F 0.1673172F 0.1673172F -0.122191bE -0.122191bE	04 03 03 03 03 03 03 03 03 03 03 03	CJ 0.274621E U4 U.2526121E O4 C.6003474E O3 G.13-1447E O4 C.9021132E U3 0.6130037E U3 0.1467701E U3 0.1767705 U3 U.24-74931E O3	PHIJC 117.334 337.053 209.131 10.367 348.699 18.648 53.258 105.043 230.841 320.234	PS IJC 117.332 168.426 69.710 2.592 9.74J 3.108 7.008 13.130 25.049 32.723	CJ/CJMAX 1.00000 0.459744 0.109296 0.245493 0.164182 0.111564 0.038000 0.036159 0.028080 0.045498	1 2 3 4 5 6 7 8 9	4.132 0.264 12.397 16.525 20.661 24.793 24.793 23.056 33.056
AJ -0.580	8J 0.984141E -0.9664724F -0.2523501E 0.2427469E -0.1767732E 0.197172F 0.1673172F 0.1673172F -0.122191bE -0.122191bE	04 03 03 03 03 03 03 03 03 03 03 03	CJ 0.274621E U4 U.2526121E O4 C.6003474E O3 G.13-1447E O4 C.9021132E U3 0.6130037E U3 0.1467701E U3 0.1767705 U3 U.24-74931E O3	PHIJC 117.334 337.053 209.131 10.367 348.699 18.648 53.258 105.043 230.841 320.234	PS IJC 117.332 168.426 69.710 2.592 9.74J 3.108 7.008 13.130 25.049 32.723	CJ/CJMAX 1.00000 0.459744 0.109296 0.245493 0.164182 0.111564 0.038000 0.036159 0.028080 0.045498	1 2 3 4 5 6 7 8 9	4.132 0.264 12.397 16.525 20.661 24.793 24.793 23.056 33.056
AJ -0.3886696 04 -0.252263E 04 0.2336404F 04 -0.524567E C3 0.1326807E 04 0.8846237F 03 0.3846237F 03 0.124764F 03 -0.513246 02 -0.9951253E 02 0.2053669E 03  BLADE FLAP AT STA MARAUNIC ANALYSIS	8J 0.9861724F -0.9664724F -0.2523501F 0.2427469F -0.1767732F 0.15470031F 0.1673172F 0.1673172F -0.1221916F -0.1425516F	04 03 03 03 03 03 03 03 03 03 03 03	CJ 0.2740621E U0 0.2526121E O0 0.2526121E O0 0.1531847E U3 0.120712E U3 0.1575404E U3 0.1575404E U3 0.2497931E 03	PHIJC 117.334 337.653 209.131 10.367 18.648 53.254 105.043 230.841 325.234	PSIJC 117-332 148-324 49-710 2-592 69-/4J 3-108 7-008 13-130 25-049 32-023	CJ/CJMAK  1.00000 0.45774 0.109296 0.4245943 0.164182 0.11564 0.036000 0.036199 0.028080 0.045498	1 2 3 4 5 6 7 8 10	4.132 8.264 12.397 14.525 20.641 24.793 24.926 33.058 37.192
AJ -0.580	8J 0.984141E -0.9664724F -0.2523501E 0.2427469E -0.1767732E 0.197172F 0.1673172F 0.1673172F -0.122191bE -0.122191bE	04 03 03 03 03 03 03 03 03 03 03 03	CJ 0.274621E U4 U.2526121E O4 C.6003474E O3 G.13-1447E O4 C.9021132E U3 0.6130037E U3 0.1467701E U3 0.1767705 U3 U.24-74931E O3	PHIJC 117.334 337.053 209.131 10.367 348.699 18.648 53.258 105.043 230.841 320.234	PS IJC 117.332 168.426 69.710 2.592 9.74J 3.108 7.008 13.130 25.049 32.723	CJ/CJMAX  1.00000 0.459744 0.109296 0.245493 0.164192 0.111564 0.036009 0.036159 0.028080 0.045498	1 2 3 4 5 6 7 8 9	4.132 8.264 12.397 14.525 20.641 24.793 24.926 33.058 37.190 41.322
AJ -0.586696F 04 -0.252663E 04 0.2336404F 04 -0.524567E 03 0.132667E 03 0.1249664F 03 -0.5159624E 02 -0.95153E 02 0.2053669E 03  BLADE FLAP AT STA MARAUNIC ANALYSIS	8J 0.98617428 -0.96647428 -0.25235018 0.24274698 -0.176731726 0.16731726 0.1517668 -0.1249168 -0.14255168 235 RODEL AH->6A	04 03 03 03 03 03 03 03 03 03 03 03 03 53	CJ 0.244621E U4 0.2526121E 04 0.2526121E 04 0.6003474E 03 0.1313137E 03 0.1313137E 03 0.137363E 03 0.2427931E 03 1037 T 405	PHIJC 117.332 337.653 209.131 10.367 148.659 18.648 53.254 105.043 230.841 325.234  CTR 370 FL	PS IJC  117.332 108.424 69.710 2.594 69.743 3.108 7.804 13.130 25.649 32.523	CJ/CJMAX  1.00000 0.454744 0.109296 0.245443 0.164182 0.111564 0.038000 0.038189 0.028180 0.045498  TR 4  CJ/CJMAX 1.000000	1 2 3 4 5 6 7 8 10	4.132 8.264 12.397 14.525 20.661 24.793 28.926 33.058 37.150 41.322
AJ -0.586 a E 9 o F O o o 252 £ 63 £ U o o .253 6 40 F O o o .253 6 40 F O o o .255 6 7 £ C3 U.13 2 0 £ 0 5 C	8J 0.9861722F -0.9664722F -0.2523501F 0.24274695 -0.1767732F 0.156700215 0.1673172F 0.1673172F -0.1221916F -0.1425516F 235 MODEL AM-SAA	04 03 03 03 03 03 03 03 03 03 03 03 03 03	CJ 0.2740621E U6 0.2526121E 06 0.2526121E 06 0.6003478E 03 0.1373137E 03 0.137363E 03 0.1575863E 03 0.2477931E 03	PHIJC 117.334 337.653 209.131 10.367 18.648 53.256 105.043 230.841 325.234  CTR 370 Pt PHIJC 90.722 0.606	PSIJC  117-332 148-324 49-710 2-592 69-743 3-108 7-004 13-130 25-949 32-923	CJ/CJMAX  1.00000 0.45774 0.109296 0.245493 0.164182 0.11564 0.036000 0.036399 0.04598  TR 4  CJ/CJMAX 1.000000 0.455814	1 2 3 4 5 6 7 8 10	4.132 8.264 12.397 14.525 20.427 24.793 24.926 33.058 37.190 41.322
AJ -0.580	BJ U-1841141E -0.5664724F -0.2523501E 0.2427465E -0.1767732E 0.157172F 0.157172F -0.122191bE -0.122191bE -0.122191bE -0.142551oE 235 MODEL AM-56A BJ U.37274u8E 0.1794246F -0.5360546E	04 03 03 03 03 03 03 03 03 03 03 03 03 03	CJ 0.244621E U4 0.2526121E 04 0.2526121E 04 0.134348E 04 0.134371UE U3 0.134771UE U3 0.134771UE U3 0.1575464E 03 0.247491E 03	PHIJC 117.332 337.053 209.131 10.367 348.699 18.648 53.256 105.043 230.841 325.234  CTR 370 FL	PS IJC  117.332 168.626 69.710 2.592 69.743 3.108 7.008 13.130 25.049 32.723  7 500.0  PS IJC 90.722 0.303 87.429	CJ/CJMAX  1.000000 0.459744 0.109296 0.245493 0.164182 0.111564 0.036000 0.036159 0.028080 0.045498  TR 4  CJ/CJMAX 1.000000 0.455814 0.143491	1 2 3 4 5 6 7 8 10	4.132 8.264 12.397 14.525 20.641 24.793 24.924 33.058 37.190 41.322
AJ -0.5886296F 04 -0.232643E 04 0.2336404F 04 -0.524567E C3 0.132667E 04 0.8846249F 03 0.1247654F 03 -0.5154624E 02 -0.4951253E 02 0.2053669E 03  BLADE FLAP AT STA MARMUNIC ANALYSIS  4 0.2653730F 04 -0.469662F 02 0.1699071E 04 -0.7174542E 02 0.1367505E 04	BJ  0.984191E -0.9664745E -0.2523501E 0.25274695E -0.17673172F 0.1517000E -0.1517000E -0.1241910E -0.1425510E  235 MODEL AM-DOA  BJ  0.3747408E 0.1794240F -0.5360540E 0.1394995E	04 03 03 03 03 03 03 03 03 03 03 03 03 03	CJ 0.244621E U4 U.2526121E 04 C.6003474E 03 C.14721132E U3 0.6133037E U3 0.143710F U3 0.157363E U3 U.2477931E 03 U.2477931E 03 U.3727763E 04 U.3727764E 04 U.37277764E 04 U.3727764E 04 U.372776E 04 U.372776E 04 U.372776E 04 U.3	PHIJC 117.332 337.053 209.131 10.367 348.699 18.648 53.256 105.043 230.841 325.234  CTR J/O FL  PHIJC 90.722 0.006 262.286 5.841	PSIJC  117.332 108.420 69.710 2.594 69.743 3.108 7.004 13.130 25.049 32.023  7 500.0  PSIJC 90.722 0.303 87.429 1.000	CJ/CJMAX  1.00000 0.457744 0.109296 0.4245493 0.164182 0.111564 0.036000 0.036199 0.045880 0.045880 TR 4  CJ/CJMAX 1.000000 0.455814 0.143491 0.368758	1 2 3 4 5 6 7 8 9 10	4.132 8.264 12.397 14.525 20.641 24.793 28.926 33.058 37.150 41.322
AJ -0.586696F 04 -0.252663E 04 0.2336404F 04 -0.5236406F 04 0.8446247F 03 0.124764F 03 -0.5153624E 02 -0.9951351E 02 0.2053669E 03  BLADE FLAP AT STA MARAUNIC ANALYSIS  4 0.2653730F 04 -0.4696602F 02 0.1699071E 04 -0.71775466 02 0.1367505E 04 0.690012LE 03	BJ  0. 1841 14 E -0. 566722F -0. 2523501F 0. 2427407E -0. 1767732F 0. 1767001F 0. 1673172F 0. 1517006F -0. 1241910F -0. 1241910F -0. 1425510F  235  RODEL AM->0A  BJ  0. 1742740F 0. 1794274F -0. 5360540F J. 154974F -0. 13749748F -0. 19740768F	04 03 03 03 03 03 03 03 03 04 04 02 03 03 03	CJ 0.274621E U6 0.2566121E 06 0.2566121E 06 0.6003498E 03 0.131389E 06 0.404791E U3 0.404791E U3 0.1575464E U3 0.249791E 03 10J9 T +U5 10J9 T +U5	PHIJC 117.332 337.653 209.131 10.357 148.649 18.648 53.254 105.0451 320.454 320.454 CTR 370 FL PHIJC 90.722 0.606 262.286 9.841 327.430	PSIJC  117.332 108.420 69.710 2.594 3.108 7.008 13.130 25.049 32.923  T 500.0  PSIJC 90.722 0.303 87.429 1.900 65.846	CJ/CJMAX  1.00000 0.45774 0.109296 0.245493 0.164182 0.11564 0.038000 0.036139 0.045880 0.045498  TR 4  CJ/CJMAX 1.000000 0.455814 0.143491 0.368758 0.211866	1 2 3 4 5 6 7 8 10	4.132 8.264 12.397 14.525 20.4793 24.793 24.926 33.058 37.190 41.322 FREQUENCY 4.132 8.264 12.397 16.357 20.661
AJ -0.586 x 69 oF O+ -0.252 x 63 E U+ 0.233 640 x 64 -0.524 5 67 E C3 0.13 2 6 5 7 E C3 0.13 2 6 5 7 E C3 0.13 2 6 5 7 E C3 0.12 4 C 6 5 F C3 -0.515 1 2 6 E C3 -0.515 1 2 6 E C3 -0.255 2 6 9 E C3  BLADE FLAP AT STA HARMUNIC AMALYSIS  4 J -0.265 3 7 J OF O+ -0.40 4 C 6 2 E C3 0.16 9 Q 7 E C4 -0.71 7 4 5 4 E C3 0.13 6 7 5 5 E C4 0.00 0 1 2 L E C3 0.00 2 2 8 9 E C3	8J  0.9861722F -0.9664722F -0.2523501F 0.2427405E -0.1767732F 0.1517006E -0.1221910E -0.1221910E -0.1425510E  235 MODEL AM-50A  BJ  0.1794240F -0.5360540E U.1354945F -0.40613636	04 03 03 03 03 03 03 03 03 04 02 03 03 03 03 03 03 03	CJ  0.2740621E U4  0.2566121E 04  0.6003478E 03  0.13731847E 03  0.4087781E U3  0.1575868E U3  0.2477931E 03  1UJY T 405  1UJY T 405  1UJY T 405  0.1574642E U4  0.1574642E U4  0.1574642E U4  0.1574642E U3  0.7477652E U3	PHIJC 117.334 337.653 209.131 10.367 18.648 53.256 105.043 230.841 325.234  CTR 370 FL  PHIJC 90.722 0.606 262.286 5.841 324.430 326.393	PSIJC  117-332 148-324 49-710 2-592 69-743 3-134 7-008 13-130 25-23  7-500-0  PSIJC 90-722 0-303 87-429 1-900 65-4-39-7	CJ/CJMAX  1.00000 0.45774 0.109296 0.245493 0.164182 0.11564 0.036000 0.036139 0.045581 1.000000 0.455814 0.143491 0.368758 0.213819	1 2 3 3 4 5 6 7 8 9 10	4.132 8.264 12.397 14.525 20.621 24.793 24.926 33.058 37.190 41.322 FREQUENCY 4.132 8.264 12.397 16.525 20.661 24.793
AJ -0.580±996 0+ -0.222636 0+ 0.233640+ 0+ -0.525672 C3 0.1320±07E 04 0.8640±94 03 0.1247C0+ 03 -0.5153624 02 -0.9951253E 02 0.2053609E 03  BLADE FLAP AT STA MARMONIC ANALYSIS  4 0.2053730F 0+ -0.4040C02E 02 0.1097071E 04 -0.7174542 02 0.1367505E 04 0.000124E 03 0.0032312F 03	BJ  U-981191E -0.966724F -0.2523501E 0.25274695 -0.17673172F 0.151700E -0.124910E -0.124910E -0.1425510E  235 MODEL AM->0A  BJ  U-3727408E 0.1793296F 0.139494F -0.5360546E U-13949-9F -U-4010708E -0.4661704E -0.5750931E	04 03 03 03 03 03 03 03 03 04 02 03 03 03 03 03 03 03 04 04 04 04 04 04 04 04 04 04 04 04 04	CJ 0.244621E U4 U.2526121E 04 C.6003494E 03 G.1343149E 04 G.9021132E 03 0.6130137E 03 0.143714E 03 0.1575464E 03 U.2479931E 03 10J9 T 405 10J9 T 405 10J9 T 405 0.157764E 04 G.534472E 03 0.1377642E 03 0.7372414E 03	PHIJC 117.332 337.053 209.131 10.367 348.699 18.648 53.254 230.841 320.234  CTR 3/0 FL  PHIJC 90.722 0.006 262.286 5.841 327.430 320.393 314.071	PSIJC  117.332 168.426 69.710 2.594 69.743 7.008 13.130 25.049 32.723  7 500.0  PSIJC 90.722 0.303 87.429 1.900 65.846 54.399 45.582	CJ/CJMAX  1.00000 0.459744 0.109296 0.245493 0.16182 0.111564 0.03600 0.036139 0.028880 0.045498  TR 4  CJ/CJMAX 1.000000 0.455814 0.143491 0.368758 0.211866 0.2133149 0.235488	1 2 3 4 5 6 7 8 9 10	FREQUENCY  4.132  6.264 12.397 14.525 20.641 24.793 24.924 33.C58 37.19C 41.322
AJ -0.5886696F 0+ -0.252663E 0+ 0.2336404F 04 -0.525672E C3 0.132667E 04 0.8846234F 03 0.1249C64F 03 -0.5153664E 02 0.2053664E 02 0.2053664E 03  BLADE FLAP AT STA MARAUNIC ANALYSIS  4 0.2653730F 04 -0.4646C02F 02 0.1699071E 04 -0.7174542E 02 0.1367505E 04 0.60012LE 03 0.6022898E 03 0.6032312F 03	BJ  0.984191E -0.9664724F -0.2523501E 0.25274695 -0.1767732E 0.17673172F 0.1517000E -0.1221916E -0.1225510E  235 MODEL AM->0A  BJ  0.3727408E 0.1794246E -0.3260540E -0.1354949E -0.46614346 -0.57509395 -0.46614346 -0.57509395 -0.4709395 -0.4709395 -0.4709395 -0.4709395 -0.4709395	04 03 03 03 03 03 03 03 03 03 03 03 03 03	CJ 0.244621E U4 0.2526121E 04 0.2526121E 04 0.6003474E 03 0.1313137E U3 0.6133317E U3 0.137374E U3 0.1373764E U3 0.2473931E 03 1037 T 405 1037 T 405 0.53746472E U3	PHIJC 117.334 337.053 209.131 10.367 348.649 18.648 53.258 105.043 230.841 325.234  CTR J/O FL  PHIJC 90.722 0.606 262.286 5.841 324.430 326.393 314.071 14.311	PSIJC  117.332 108.424 69.710 2.594 69.740 3.108 7.004 13.130 25.049 32.023  7.500.0  PSIJC  90.722 0.303 87.429 1.000 60.846 54.394 40.502 2.414	CJ/CJMAX  1.00000 0.459744 0.109296 0.245493 0.164182 0.111564 0.036000 0.036000 0.04598  CJ/CJMAX 1.000000 0.455814 0.143491 0.368758 0.211866 0.213519 0.235488 0.420394	1 2 3 4 5 6 7 8 6 7 8 6 7 8 8 6 7 8 8 8 8 8 8 8 8	4.132 8.264 12.397 14.525 20.661 24.793 28.926 33.058 37.150 41.322 4.132 8.264 12.397 16.525 20.661 24.793 28.758
AJ -0.580±996 0+ -0.222636 0+ 0.233640+ 0+ -0.525672 C3 0.1320±07E 04 0.8640±94 03 0.1247C0+ 03 -0.5153624 02 -0.9951253E 02 0.2053609E 03  BLADE FLAP AT STA MARMONIC ANALYSIS  4 0.2053730F 0+ -0.4040C02E 02 0.1097071E 04 -0.7174542 02 0.1367505E 04 0.000124E 03 0.0032312F 03	BJ  U-981191E -0.966724F -0.2523501E 0.25274695 -0.17673172F 0.151700E -0.124910E -0.124910E -0.1425510E  235 MODEL AM->0A  BJ  U-3727408E 0.1793296F 0.139494F -0.5360546E U-13949-9F -U-4010708E -0.4661704E -0.5750931E	04 03 03 03 03 03 03 03 03 03 03 03 03 03	CJ 0.244621E U4 U.2526121E 04 C.6003494E 03 G.1343149E 04 G.9021132E 03 0.6130137E 03 0.143714E 03 0.1575464E 03 U.2479931E 03 10J9 T 405 10J9 T 405 10J9 T 405 0.157764E 04 G.534472E 03 0.1377642E 03 0.7372414E 03	PHIJC 117.332 337.053 209.131 10.367 348.699 18.648 53.254 230.841 320.234  CTR 3/0 FL  PHIJC 90.722 0.006 262.286 5.841 327.430 320.393 314.071	PSIJC  117.332 168.426 69.710 2.594 69.743 7.008 13.130 25.049 32.723  7 500.0  PSIJC 90.722 0.303 87.429 1.900 65.846 54.399 45.582	CJ/CJMAX  1.00000 0.459744 0.109296 0.245493 0.16182 0.111564 0.03600 0.036139 0.028880 0.045498  TR 4  CJ/CJMAX 1.000000 0.455814 0.143491 0.368758 0.211866 0.2133149 0.235488	1 2 3 4 5 6 7 8 9 10	FREQUENCY  4.132  6.264 12.397 14.525 20.641 24.793 24.924 33.C58 37.19C 41.322

BLADE FLAP AT STA 278
HARMONIC MIALYSIS MOLEL AM-56A SHIP 1009 T 405 CTR 370 FLT 500.0 TR 26

A.J	ĄJ	C.J	PHIJC	PSIJC	C 14C 1914		Par suit ve u
0.4073275F U4			VIII 3C	P3 13C	CJ/CJMA K	J	FRI: QUE NC Y
0.1626306 04	J. 15C7490F			42.420	1.000000	1	4.132
0.6047E47E 03 -0.7761702F 02	0.4705454E -0.06140475			17.610	0.368806	2	8.264
0.11305145 04	0.1699334			47-771	0.300486	3	12.347
J. 10 7111 1 01	-U. 2 CO1. 1UE		3.550	1.366	0.512127	•	16.525
0.10001005 03	-0.3C37703		290.946	49.624	0.186572	5	20.661
J. 8505134F U3	-U. > 58764CL		324.854	40.438	0.466480	7	24.793 28.426
0.15405256 04	9-45143046	03 C.1547315E 04	15.290	1.+12	0.720288	i	33.C5e
0.1940:515 03	0.8181444E		22.864	2.500	0.044441	9	37.19C
-0.14005806 03	0.1076448	03 0.2144665 03	150.466	15.047	0.046>11	10	41.322
PLADE CHORD AT 8							
HAPMONIC ANALYSI	S MUDEL AH-56A	SHIF 1334 T 405	CTR 370 F	LT 530.0	TR 17		
A.J. 19643436 (c.	43	CJ	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
J.19437d2E Co	0.45.50.45	06 0					
-0.12326791 04	31.06624.0		56.400	56.400	1.000000	l.	4.132
-0.72346786 0+	-0.60676765		219.709	53.895	1.000001	2	8.204
0.30076241 04	-0.4463542		339.143	73.236	0.154705	3	12.397
0.2+482675 04	J. 2644175		0.116	1.444	0.041557	\$	16.525
-J.9727CubE U3	-0.90950765		223.379	37.180	0.022476	•	20.661 24.753
J.5444Ca7F U3	-3.11613115		487.508	44.073	0.0305/0	7	20.924
7.41442026 75	-3. 86848454		318.235	34.017	0.002061	8	31.650
-J. 0430554E U3	0.13947646		114.752	12.150	3.325921	9	31.116
-3.00475005 03	0.10208776	C3 0.0/2550JE 03	171.209	17.127	0.011351	10	41.322
BLADE CHORD AT ST HARMUNIC ANALYSIS		SHIP 1009 T +05	CTR 370 FI	LT 500.0 1	R 22		
-U.2349414E US	6.1	C.J	PHIJC	PS IJC	CJ/CJMAX		
U.3021646F 04					401 do.m.n	J	FREQUENCY
	J. 655145F (	4 C. 44. 402 15 (m.					LICE STORIES
U.5830354E 03	J.6555145E (		51.053	51.053	1.000000	1	4.132
	J.6555145E ( J.6555145E ( J.6555145E (	3 C. 11 JooU6 : 04	51.053 50.206	51.053	1.000000	1 2	4.132
CO 344E0FPG.0	U. 9402511E (	3 C.1136006E 06	51.053	51.053 29.103 67.164	1.000000	1 2 3	4.132 8.264 12.397
0.5830359E 03 -0.1811214F 04 0.8401679E 03 0.6400589E 03	0.9405571E ( -0.8024065E ( -0.3292432E ( -0.3357446E (	3 C.11Jeou6: 04 13 C.143108: 04 13 C.7223076: 03	51.053 58.206 201.843	51.053	1.000000 0.123740 0.221523 0.100497	3	4.132 4.264 12.347 16.525
0.5430354E 03 -0.1411714F 04 0.8401674E 03 0.6400549E 03 -0.4746304F 02	0.9905571E ( -0.8024005E ( -0.3292432E ( -0.3357446E ( -0.155052E (	3 C.1136062 04 3 0.193104 0 3 0.9023266 03 3 0.7223076 03 3 0.2040745 03	51.053 50.206 201.673 336.579	51.J53 24.LU3 67.J64 44.G50	1.000000	1 2 3	4.132 8.264 12.397 16.525 20.661
0.5830354E 03 -0.1811714F 04 0.8401674F 03 0.6400674F 03 -0.4146304F 02 0.3101655E 03	U.990571E ( -U.8024005E ( -U.3292432E ( -U.3357446E ( -U.155052E ( -U.5418485_ (	3 C.11JeeU6 = 04 3 C.14J184 = 04 3 C.74Z176 03 3 C.72Z176 03 4 C.74Z176 03 4 C.74Z176 03 5 C.74Z176 03	51.053 5d.206 203.6v3 33d.5v9 332.322 256.5v1 28d.229	51.053 24.103 67.364 64.050 66.404 42.765 41.175	1.00000 0.123740 0.221523 0.100497 0.080824 0.022886 0.110881	1 2 3 4 5 6 7	4.132 4.264 12.347 16.525
0.5830354E 03 -0.1811214F 04 0.8401074F 03 0.6400749E 03 -0.446530F 03 0.3101055E 03 -0.5304590E 03	U. 9900571E ( -U. 8024005E ( -U. 3292402E ( -U. 3357440E ( -U. 154052E ( -U. 154052E ( -U. 541840E ( -U. 5048007E (	3 C.11Jacu6 = 04 3 C.11Jacu6 = 04 3 C.1723LTE 03 3 C.7223LTE 03 3 C.7413LZE 03 3 C.7413LZE 03 3 C.740373E 03	51.053 58.206 203.673 338.329 332.322 256.571 288.229 222.524	51.053 24.103 67.364 64.050 66.404 42.765 41.175 27.410	1.00000 0.123740 0.221523 0.100497 0.080824 0.02288 0.110881 0.083524	1 2 3 4 5 6 7	4.132 4.264 12.397 16.525 20.u61 24.793 24.796 33.058
0.5830354E 03 -0.1811714F 04 0.8401674F 03 0.6400674F 03 -0.4146304F 02 0.3101655E 03	U.990571E ( -U.8024005E ( -U.3292432E ( -U.3357446E ( -U.155052E ( -U.5418485_ (	3 C.11JeeU6 = 0+ 3 C.11JeeU6 = 0+ 3 C.12JUR = 04 3 C.72ZJUR = 03 3 C.72ZJUR = 03 3 C.71J121E 03 3 C.71J121E 04 4 C.12/14/1E 04	51.053 5d.206 203.6v3 33d.5v9 332.322 256.5v1 28d.229	51.053 24.103 67.364 64.050 66.404 42.765 41.175	1.00000 0.123740 0.221523 0.100497 0.080824 0.022886 0.110881	1 2 3 4 5 6 7	4.132 8.264 12.397 16.525 20.061 24.193
0.583035VE 03 -0.1811214F 04 0.8401674F 03 0.6400789E 03 -0.474030F 02 0.5301459E 03 0.410416F 03 -0.7781424F 02	U. 9-00>571E ( -U. 8024045E ( -U. 3292432E ( -U. 3357446E ( -U. 154404 ( -U. 5046007E ( -U. 1203748 ( 0. 3359412E (	3 C.11JeeU6 = 0+ 3 C.11JeeU6 = 0+ 3 C.12JUR = 04 3 C.72ZJUR = 03 3 C.72ZJUR = 03 3 C.71J121E 03 3 C.71J121E 04 4 C.12/14/1E 04	51.053 50.206 203.643 330.549 332.322 250.541 243.249 222.524 71.156	51.053 29.03 67.164 64.050 66.404 42.765 41.175 27.410 7.106	1.00000 0.123740 0.221523 0.100897 0.080824 0.022886 0.110881 0.142231	1 2 3 4 5 6 7	4.132 8.264 12.397 16.525 20.661 24.793 24.726 33.628 37.196
0.583035VE 03 -0.1811216F 04 -0.840167VE 03 -0.4446300F 02 -0.3101655E 03 -0.5045V0E 03 -0.5045V0E 03 -0.778142VE 02	U.9900571E ( -U.8024005E ( -U.3292432E ( -U.3357440E ( -U.1914045 ( -U.9114045 ( -U.9014007E ( -U.9014007E ( 0.3359412E (	3 C.113e06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	51.053 58.206 203.673 338.599 332.322 250.591 286.229 222.524 71.156 103.115	51.053 29.103 67.364 64.050 66.404 42.765 41.175 27.410 7.306 10.312	1.00000 0.123/40 0.221523 0.100097 0.080824 0.02886 0.110881 0.083524 0.142231 0.038347	1 2 3 4 5 6 7	4.132 8.264 12.397 16.525 20.661 24.793 24.726 33.628 37.196
0.583035VE 03 -0.1811214F 04 0.8401674F 03 0.6400789E 03 -0.474030F 02 0.5301459E 03 0.410416F 03 -0.7781424F 02	U.9900571E ( -U.8024005E ( -U.3292432E ( -U.3357440E ( -U.1914045 ( -U.9114045 ( -U.9014007E ( -U.9014007E ( 0.3359412E (	3 C.113e06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	51.053 58.206 203.673 338.599 332.322 250.591 286.229 222.524 71.156 103.115	51.053 29.103 57.364 64.050 66.404 42.765 41.175 27.410 7.306 10.312	1.00000 0.123740 0.221523 0.100897 0.080824 0.022886 0.110881 0.142231	1 2 3 4 5 6 7	4.132 8.264 12.397 16.525 20.661 24.793 24.726 33.628 37.196
0.5830354E 03 -0.1811714F 04 -0.8401674E 03 -0.4446300F 02 -0.3101655E 03 -0.5004540E 03 -0.7781424E 02  RLADE TORSION AT MARMUMIC AVALYSIS	U.9900571E ( -U.8024005E ( -U.3292432E ( -U.3357440E ( -U.199072E ( -U.9914007E ( -U.504007E ( -U.1203749E (  0.3339912E (  STA 131.5	3 C.113e06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	51.053 58.206 203.673 338.599 332.322 250.591 286.229 222.524 71.156 103.115	51.053 29.103 67.364 64.050 66.404 42.765 41.175 27.410 7.306 10.312	1.00000 0.123/40 0.221523 0.100097 0.080824 0.02886 0.110881 0.083524 0.142231 0.038347	1 2 3 4 5 6 7	4.132 8.264 12.397 16.525 20.661 24.793 24.726 33.628 37.196
0.583035VE 03 -0.1811214F 04 -0.840167VE 03 -0.474030UF 02 -0.3101255E 03 -0.5504570E 03 -0.778142VE 02  RLADE TORSION AT HARMUNIC AVALYSIS	U.9909571E ( -U.8024005E ( -U.3292432E ( -U.3357440E ( -U.1964007E ( -U.9618409C ( -U.564007E ( -U.3359412E (  STA 131.5  MUDEL Am-988	3 C.113606 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	51.053 58.206 203.673 338.599 332.322 250.591 286.229 222.524 71.156 103.115	51.053 29.103 67.364 64.050 66.404 42.765 41.175 27.410 7.306 10.312	1.00000 0.123/40 0.221523 0.100097 0.080824 0.02886 0.110881 0.083524 0.142231 0.038347	1 2 3 4 5 6 7	4.132 8.264 12.397 16.525 20.661 24.793 24.726 33.628 37.196
0.583035VE 03 -0.1811716F 04 -0.840167VE 03 -0.4746300F 02 -0.3101655E 03 -0.5904570E 03 -0.778142VE 02  RLADE TORSION AT HARMUNIC AVALYSIS	0.49005 (0.000000000000000000000000000000000	3	51.053 58.206 203.673 338.549 332.322 256.571 286.249 222.526 71.156 103.115 CTR 370 FL	51.J53 29.1U3 87.364 44.U50 40.7U3 42.765 41.175 27.910 7.306 1J.312	1.00000 0.123/40 0.221523 0.10097 0.0 80824 0.0 22886 0.1 10881 0.0 85529 0.142231 0.0 38347	1 2 3 4 5 6 7 8 9	4.132 8.264 12.397 16.525 20.001 24.793 24.526 33.028 37.190 41.322
0.5830354E 03 -0.1811214F 04 0.8401674E 03 0.640044E 03 -0.4146300F 02 0.3101655E 03 -0.5004540E 03 0.4130416E 03 -0.7781424E 02  RLADE TORSION AT MARMUMIC AVALYSIS  0.7187147E 03 0.2364516E 04 -0.4730137E 03	U.9903571E ( -U.8024005E ( -U.3292432E ( -U.3357440E ( -U.19907E ( -U.19907E ( -U.1203749E (  0.3339912E (  STA 131.5  MUDEL Am-baa  U.2962338E (  0.8263730E (  0.8263730E (	3	51.053 58.206 203.4v3 338.549 332.322 256.5v1 288.229 222.524 71.156 103.115 CTR 370 FL PHIJC 47.631 119.668	51.053 29.103 57.364 49.050 60.707 42.765 41.175 27.910 7.306 10.312	1.00000 0.143/40 0.221523 0.100097 0.080824 0.02886 0.11081 0.08524 0.142231 0.048247 R 44	1 2 3 4 5 6 7 8 9	4.132 8.264 12.397 16.525 20.061 24.793 24.526 33.658 37.190 41.322
0.583035VE 03 -0.1811214F 04 0.840167VE 03 0.640078VE 03 -0.474030UF 02 0.3101655E 03 0.410410E 03 -0.778142VE 02  RLADE TORSION AT MARMUMIC AVALYSIS	U.4903571E ( -U.8024045E ( -U.3292432E ( -U.3357446E ( -U.1540452 ( -U.5418482 ( -U.540407E ( -U.623748E ( 0.3359412E ( STA 131.5 MUDEL An-56A	3	51.053 58.206 203.473 338.579 332.322 250.571 288.229 71.150 103.115 CTR 370 FL PHIJC 47.631 117.668 322.511	51.053 29.103 67.364 64.050 66.404 42.765 41.175 27.416 7.306 10.312 T 500.0 T	1.00000 0.143/40 0.221523 0.100497 0.04884 0.11081 0.083524 0.14231 0.043547 R 44 CJ/CJMAR 1.000000 0.272363 0.199262	1 3 4 5 6 7 8 9 10	4.132 8.264 12.397 16.525 20.001 24.793 24.926 33.028 37.196 41.322
0.583035VE 03 -0.1811216F 04 -0.840167VE 03 -0.474030UF 02 -0.3101255E 03 -0.50454VE 03 -0.778142VE 02  RLADE TORSION AT HARMUNIC AVALVSIS  0.2304510E 04 -0.4730137E 03 -0.547224F 03 -0.4646109E 03	### ##################################	3	51.053 58.206 203.643 338.549 332.522 250.541 244.229 222.524 71.156 103.115 CTR 370 FL PHIJC 47.631 119.668 322.511 183.664	51.053 29.103 57.364 de.050 60.707 42.765 41.175 27.410 7.306 10.312 T 500.0 T	1.00000 0.123740 0.221523 0.100097 0.080824 0.1081 0.083524 0.142231 0.083527 0.142231 0.038347	1 2 3 4 5 6 7 8 9 10	4.132 8.264 12.397 16.525 20.061 24.793 21.526 33.658 37.196 41.322 FREQUENCY 4.132 8.284 12.397 16.525
######################################	0.4903571E ( -U.8024005E ( -U.8024005E ( -U.3292432E ( -U.33357440E ( -U.14607E ( -U.504607E ( -U.504607E ( -U.504607E ( -U.50359412E (  0.3339412E (  8J  0.4392338E ( 0.8263730E ( -U.926372E ( -U.926	3	51.053 58.206 203.673 338.579 332.322 256.571 288.229 222.526 71.156 103.115 CTR 370 FL PHIJC 47.631 117.668 322.511 183.666 175.730	51.053 29.103 87.164 49.050 60.707 42.765 71.175 27.710 7.706 10.312 T SQU.O T PSTJC 47.631 59.634 107.504 45.916 55.186	1.00000 0.123/40 0.221523 0.100097 0.080824 0.022886 0.110881 0.085524 0.142231 0.042347 R 44 CJ/CJMAR 1.00000 0.272363 0.159262 0.252636 0.159262 0.159262	1 2 3 4 5 6 7 8 9 10	#.132 #.264 12.397 16.525 20.001 24.793 24.526 33.028 37.190 41.322 #.204 12.397 16.525 20.661
0.583035VE 03 -0.1811216F 04 -0.8401679E 03 -0.640049E 03 -0.4146300F 02 -0.3101655E 03 -0.5904590E 03 -0.7781429E 02  RLADE TORSION AT MARMUMIC AVALYSIS  0.7187147E 03 0.2384516E 04 -0.4730137E 03 0.5547629F 03 -0.4746100E 03 -0.7750446E 03	U. 9-00>71E ( -U. 802-00>E ( -U. 3292-43E ( -U. 33574-0E ( -U. 19-00>E (	3	51.053 58.206 203.693 338.599 332.322 256.591 288.229 222.526 71.156 103.115 CTR 370 FL PHIJC 47.631 119.668 322.511 183.664 175.930 203.866	51.053 27.103 67.164 64.050 66.707 66.707 7.706 10.312 7.706 10.312 7.906 10.312	1.00000 0.143/40 0.221523 0.100097 0.080824 0.02886 0.110081 0.08524 0.142231 0.038347 R 44 CJ/CJMAK 1.000000 0.272363 0.169252 0.237647	1 3 4 5 6 7 8 9 10	#.132 #.264 12.397 16.525 20.001 24.793 24.526 33.028 37.190 41.322 #.264 12.397 16.525 20.661 24.793
######################################	0.4903571E ( -U.8024005E ( -U.8024005E ( -U.3292432E ( -U.33357440E ( -U.14607E ( -U.504607E ( -U.504607E ( -U.504607E ( -U.50359412E (  0.3339412E (  8J  0.4392338E ( 0.8263730E ( -U.926372E ( -U.926	3	51.053 58.206 203.679 338.579 338.579 222.574 71.156 103.115 CTR 370 FL PHIJC 47.631 117.668 322.511 183.664 175.730 203.886 310.632	51.053 27.103 57.364 d4.050 60.707 42.765 41.175 27.810 7.306 10.312 T 500.0 T PS IJC 47.631 59.634 107.504 45.916 35.186 35.481 44.705	1.00000 0.123/40 0.221523 0.100497 0.08824 0.11081 0.083524 0.142231 0.083527 0.142231 0.09000 0.272363 0.149262 0.272363 0.149262 0.237647 0.247510	1 4 3 6 5 6 7 8 9 10 J 1 2 3 6 5 6 7	#.132 #.264 12.397 16.525 20.001 24.793 24.526 33.658 37.196 41.322 #.204 12.397 16.525 20.661 24.793 28.926
######################################	U.4903571E ( -U.8024045E ( -U.3292432E ( -U.3357446E ( -U.1450452E ( -U.4504545E ( -U.5504607E ( -U.4203748E ( 0.3359412E (  STA 131.5 MUDEL Am-baa  U.42962348E ( 0.8203746E ( -U.5064325E ( -U.5064325E ( -U.5064325E ( -U.5063725E ( -U.5063725E ( -U.5063770E ( -U.506370E ( -	3	51.053 58.206 203.873 338.549 332.322 256.571 288.269 222.526 71.156 103.115 CTR 370 FL PHIJC 47.631 117.668 322.511 183.666 175.730 203.886 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.832 310.83	51.053 27.103 57.164 44.050 60.707 42.765 41.175 27.710 10.312 T.06 10.312 T.00.0 T PS IJC 47.631 59.634 107.504 45.916 33.481 44.705 44.077	1.00000 0.123/40 0.221523 0.10097 0.080824 0.022886 0.110881 0.085529 0.142231 0.04231 0.09500 0.272363 0.149262 0.272363 0.149262 0.237647 0.247647	1 4 3 4 5 6 7 8 9 10 J 4 2 3 4 5 6 7 8	#.132 #.264 12.397 16.525 20.001 24.793 24.526 33.028 37.196 41.322 #.204 12.397 16.525 20.401 24.793 28.926 33.028
### CONTRACT OF THE PROPERTY O	### ##################################	3	51.053 58.206 203.679 338.579 338.579 222.574 71.156 103.115 CTR 370 FL PHIJC 47.631 117.668 322.511 183.664 175.730 203.886 310.632	51.053 27.103 57.364 d4.050 60.707 42.765 41.175 27.810 7.306 10.312 T 500.0 T PS IJC 47.631 59.634 107.504 45.916 35.186 35.481 44.705	1.00000 0.123/40 0.221523 0.100497 0.08824 0.11081 0.083524 0.142231 0.083527 0.142231 0.09000 0.272363 0.149262 0.272363 0.149262 0.237647 0.247510	1 4 3 6 5 6 7 8 9 10 J 1 2 3 6 5 6 7	#.132 #.264 12.397 16.525 20.001 24.793 24.526 33.658 37.196 41.322 #.204 12.397 16.525 20.661 24.793 28.926

PLANK FRATHER ANGLE HARMONIC AMALYSIS MODEL AM-SOA SHIP 1309 T 405 CIRT 405 FLT 500.0 TR 31

AJ	. 11	ć.	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
0.515A147E CT		4			1 1000000000	_	
-3.417692JF 01 -3.418196UF-01	-0.3433135E CL	0.63012348 OF	322.742 234.0 <b>69</b>	322.742	0.026538	1	4.119 0.23C
0.31.377211-62	0. e7C75+7E-C1	0.6/144246-01	67.322	29.107	0.011189	5	12.346
0.4634#656-01	U.151091JE-01	0. 4641 >>26-01	14.104	4.526	0.000134	4	16.461
0.23576485-01	0.27632235-01	10-306101-01	44.449	4.400	0.006644	5	20.576
10-1004601-01	-0.05209495-04	0.14110115-01	515.081	35.347	0.002065	•	24.641
-0.263 - 7505-02	-0.2C12953E-CI	0.30-51115-01	267.005	30.144	0.008403	7	28.607
-0.1>956726-01	0.2677120E-C1	0.3546325!-OL C.42374326-OL	34.507	4.340	0.005493	•	32.422 37.637
-0.33434766-03	-0.5438657E-C2	0.5+473555-02	266.197	20.640	0.000908	10	41.152
							******
SHAFT HOHENT							
HARMONIC AMALYSIS	NUDEL AH-SOA	MIP 1304 T 405	CTR 405 F	LT 500.0	TR 36		
			But 15	00.146	CIACIMAN		ER EAUTE W
CO Jobiouliu-	91	Cl	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENC Y
-3.12794235 05	U.6754738E 05	C. 06/48662 05	100.722	100.722	1.000000	1	4.115
-0.250045#F 04	-0.45C1513E C4	0. 214 432 AE OF	240.949	120.47>	0.07+847	2	8.216
-U.460+COJE 05	-0.444661 F 04	0.2+24946E 05	141.182	3.024	0.711700	3	12.346
-0.364763E 04 -0.364465E 04	0.10255346 05	U.11885+7E 05	15.247	21.918	0.158222	3	20.576
J.1040374 U4	-0.11:60:35 09	0.23118921 04	324.428	>4.155	0.024243		24.671
-U .1470400E 04	-U.14370725 C4	0.20023146 04	224.204	34.044	0.029976	7	24.207
-0.147-2496 02	-U.54C7439E C3	C. 2+04401E US	200.438	33.555	J.JU7#63		34.922
-0.30755382 03	-U. JULLUYAF CA	0.33133916 00	207.677	21.404	0.0+9144	9	37.C37
-0.5581602F 02	-0.67904865 63	0.01111445 01	205.301	26.233	0.004403	10	41.152
PITCH LINK TENSIO	N						
HARMUNIC ANALYSIS	MULL AH-DOA	HIP 1009 T 405	CTR 405 F	LT 50U.0	TR LL		
A la		c 1	But se	05.1.16	CACIMAN		EDEANIEM W
-U.5341 1965 U3	87	CJ	PHIJC	<b>6217C</b>	CJ/CJMAX	J	FREQUENCY
-0.10355471 03	-0.4343250E C3	0.44650326 03	256.589	250.589	1.000000	1	4.115
-J.3501 640E C2	-0.64986478 02	0. /410/496 02	241.273	120.637	0.165475	Ž	8.230
-3.27003745 03	0.4450252E C2	C.2424597E 03	101.124	>5.708	0.654781	3	12.346
-0.243154-1 05	0.24168446 CS	0. 11 11 1275 62	134.470	14.485	U.U85705	•	16.461
0.25567256 02	-0.45543/7E CL	0.23709715 02	349.400	69.985	0.056163	3	20.576
-0.1404441 05	-0.122021F C2	0.141/5446 03	202.041 256.814	30.600	0.240615	•	24.691
0.830+55+F CL	0.24#15J#6 C2	0.2-174411 02	70.067	0.033	0.054152	ı.	32.522
-U.1>3+607F UL	U. 26 700005 C2	C. 2041210! UZ	91.202	10.365	140000.0	ě	37.C37
0.317+565E 02	0.61353496 01	0.12111105 04	10.939	1.044	0.072414	10	41.152
FIXED HUR FLAP AT		HIP 1339 T 405	CTR 405 F	LT 500.0	TR 1 - 1	F.H. FLAP	- 1A
			01K 405 /	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		74115 7547	
4.1	BJ .	c1	PHIJC	PS IJC	CJ/CJMAX	, 4	FREQUENCY
0.40271828 65	U.1674412E C5	C. 1342525E 05	81.121	41.121	1.000000	1	4.115
0.11276678 04	-U.04524 > 3E C4	0.65302306 06	279.913	139.957	0.549552	2	8.23C
-0.60135921 04	0.15655248 04	0.82513325 04	106.249	55.410	0.755803	3	12.346
-0.3494324E C4 0.1045537E 04	0.10110/45 C4	C. 1111415E U	152.589	38.147	0.360043	•	16.461
		1 4 4 4 4 4 4 7 2 444			UATICYES		
J.9/70 1115 AL	0.3255575E C4	J. 1-144672 04	72.189				
0.92743315 03		0.14144672 04 C.44d1J1JE 03 C.1J->>=1E 04	348.161 2/9.498	56.027	0.020781	4	24.691 24.607
0.11.54435 03	0.32555756 C4 -0.15451656 03 -0.1631306 C4 -0.18200786 04	C. #4dluluE 03 0-10-5-1E 04 0-20-13-19-6 04	348.161 279.498 316.376	56.027		6 7 8	24.691
0.17254935 03 0.19042775 04 0.10442076 02	0.32555756 C4 -0.15451055 03 -0.16313005 C4 -0.18200786 04 -0.65348226 03	C. i+dlule 03 C. lJ->>+lE 04 C. lJ->>+lE 04 O-2033J95 04 0.6>4242+E 03	348.161 274.498 316.376 271.616	58.027 34.428 34.547 30.183	0.0 PG781 0.0 95709 0.2 41468 0.0 59884	6 7 8	24.691 24.607 32.922 37.037
0.11.54435 03	0.32555756 C4 -0.15451656 03 -0.1631306 C4 -0.18200786 04	C. #4dluluE 03 0-10-5-1E 04 0-20-13-19-6 04	348.161 279.498 316.376	56.027 34.426 34.547	0.0 26781 0.095709 0.241468	6 7 8	24.691 24.607 32.922

FIXED HUB CHORD AT STA 18 HAF-YOR SHIP 1009 THOS CTR AUS FLT 500.0 TR 3

		2.					
0.3519471F US	8J	CJ	PHI JC	PSIJC	CJ/CJMX	J	FREQUENCY
0.10401348 00		5 0.112003JE 06	20.930	20.930	1.00000	4	4.115
U.1440443F US			29.624	14.012	0.147965	į	8.23C
-0.11u2044F 05	-J. BILZOCCE C	4 C.1434618E 05	218.275	74.758	0.125427	3	12.346
0.3271-846 03	0.2468800E C		82.451	20.613	0.022235	•	16.461
-U.1700/13F J4			109.063	21.017	0.054310	5	20.576
0.4647441E 01	-0.15C4849E U		10.406	12.828	0.014604	•	24.691
0.53-1:795 32	U.4>61809E 0		42.153	41.633	0.014434	7	26.807
-0 -4145036 04	-J. 431133 at C		201.576	23.064	U.00U607 J.048+74	9	32.922
-0.1069736E U+	0.155175CF C		123.903	12.390	0.017123	10	37.C37 41.152
BLADE FLAP AT ST.							
MARMONIC ANALYSI		SHIP LUJY T 405	CTR 405 F				
INCIDENCE MARKETSE	3 NOVE: 10-208	2017 1007 1 403	C14 405 P	L' 300.0	TA 15		
		4.		11			
J.1401578E US	93	CJ	DHITC	PSIJC	KAMLDYLD	J	frequency
J.5163 749F U4	-0.3646824E C	. 0.04341506 04	323.315	323 346	1 000000		4 44 4
-J.1414240E U4	0.21127406 0		121.446	323.315	1.000000	ļ	4.115
0.2323546E C4	U.>£37374E C		13.038	4.546	0.371315	i	8.23C
0.1-15162F 04	-U.12412606 C		314.745	74.000	0.292336	- 1	16.461
-0.22757Laf 03	-0.181105CE C		202.945	52.565	0.286946	5	20.576
-0.30J211/E U3	-J. 170/207E C		240.400	41.067	0.131413	•	24.641
0.7633656E J2	-0.7(29600E C		276.148	34.457	0-104411	1	28.807
0.45273295 03	J.21453656 0		45.474	44.726	0.150357	•	34.422
0.2193 1-UE C3	-v.11.04305 C		334.122	33.412	0.051490	16	37.637 41.152
			,,,,,,,,	331412	010 41 30 1		41.132
BLADE FLAP AT ST	A 205						
HAPMONIC ANALYSI		CO+ T 6001 41H2	CTR 405 FI	LT >00.0	TR 20		
		SHIP 1007 T +05	CTR 405 FI	LT 500.0	TR 20		
		cor T 6001 41H2	CTR 405 F	LT >00.0	TR 20		
		COP T FOUL TIME	CTR 4US FI	LT >00.0 .	TR 20		
	S MODEL AH-SWA						
MARMONIC ANALYSI		C1	CTR 405 FI	LT >00.0 '	TR 20 GJ/CJMAX	, i	FREQUENC Y
AJ -0.5435488F 04 -0.2647452L 04	S MODEL AH-SWA	cı		PSTJC	GJ/CJMAX		
AJ -0.5435488F 04 -0.2644952L 04 0.3061631F 04	# MODEL AM-SWA  ###################################	CJ • 0.3+a3+19€ U•	PHLJC			1	4.115
AJ -0.5435488F 04 -0.245452L 04 0.3061631F 04 -0.4277632L 03	## MODEL AM-SWA  ### ################################	CJ • 0.0022844E U4 • 0.3+87019E U4 • 0.6420513E 03	PHIJC 118.188 332.651 241.345	PS 1JC	CJ/CJMAX 1.00000		
AJ -0.5435488F 04 -0.247452L 04 0.3061631F 04 -0.4277632L 03 0.1002404F 04	### ### ##############################	CJ  O.00228448 U4  O.31070198 U6  O.8120518 O3  C.11533079 O6	PHIJC 118.188 332.651 241.345 325.124	PSIJC 118.188 100.324 80.444 81.281	CJ/CJMAX 1.0 00000 0.5 76043 0.1 44111 0.3 24316	3	4.115
AJ -0.5435488F 04 -0.2647452L 04 0.3041621F 04 -0.42762L 04 0.1002404F 04 0.2695205E 02	## MODEL AM-SWA  U-53Ce57CL C -0.1593871F C -0.782/948E C -0.1114917F B -0.1412502E 0	GJ •	PHIJC 118.188 332.651 241.345 325.124 271.174	PS IJC 110.100 100.320 80.440 91.201 54.235	CJ/CJMAX 1.0 00000 0.5 76043 U-1 44111 0.3 24316 0.2 3 23>73	1 2 3 4 5	4.115 8.230 12.346 16.461 20.576
AJ  -0.5435488F 04  -0.5435488F 04  -0.6444952E 03  0.1002404F 03  0.2495205E 02  -0.4444F 03	######################################	CJ  O. 0.42494E U9  O. 3+03+19E U9  O. 0.42451E O4  C. 145317E O9  O. 1412/54E O9  C. 344137E O3	PHIJC 118.188 332.651 241.345 325.124 271.174 235.154	PSIJC 110.34 100.32 80.44 81.24 81.23 54.23 34.192	CJ/CJMAX 1.0 0000 0.5 76043 0.1 44111 0.3 24316 0.2 34573 0.1 44264	3 4 5	4.115 8.230 12.346 16.461 20.576 24.671
AJ -0.5435488F 04 -0.2647452L 04 0.3041621F 04 -0.42762L 04 0.1002404F 04 0.2695205E 02	#J  U.53Ce57GL G  -0.1593#71F C  -0.70279#8E C  -0.1114917F G  -0.1412502E G  -0.713109eE C	CJ  O.00228448 U4  O.3+079198 U4  O.0920518 O3  C.19533079 O4  C.19533079 O4  C.19533079 O3  C.3udJJ379 O3  O.14661818 OJ	PHIJC 118.188 332.651 241.345 325.124 271.174 235.154 177.410	PSIJC 110.32u 100.32u 80.44a 81.281 57.23 37.192 27.344	CJ/CJMAX 1.00000 0.576043 0.14d11 0.324316 0.23977 0.14929 0.024344	1 2 3 4 5 6 7	4.115 8.230 12.346 16.461 20.576 24.691 28.807
AJ  -0.5435488F 04  -0.244452L 04  0.3061631F 04  -0.4277632L 03  0.1002404F 04  0.2495205E 02  -0.44444F 03  -0.1404692E 03	######################################	CJ  0.00/2844E U4  0.3+03+19E U4  0.6420513E 03  C.14533079 04  0.1412750 03  C.3un10379 03  1 0.1466141E 03  0.4466140E 03	PHIJC 118.188 332.651 241.345 325.124 271.174 235.154 177.410 80.718	PSIJC 118.188 100.32u 80.442 81.281 54.23 34.192 22.344 10.340	GJ/CJMAX 1.00000 0.576043 0.14411 0.324316 0.23457 0.144264 0.024344 0.075164	1 2 3 4 5	4,115 8,230 12,346 16,461 20,576 24,691 28,807 32,922
AJ -0.5435488F 04 -0.2677952L 04 0.306123E 04 -0.4277632L 03 0.1002404F 04 0.2695205E 02 -0.44046 03 0.17300626F 62	#J  U-53Ce57GL C  -0.1553#71F C  -0.76179#8 C  -0.14125U2F 0  -0.7131098 C  U-0253218 C  U-442825E U	GJ  G. 00228448 U4  G. 37037196 U4  G. 6722715 04  G. 17533077 04  G. 1712/576 04  G. 146614 E 03  G. 146614 E 03  G. 146614 E 03  G. 146614 E 03	PHIJC 118.188 332.651 241.345 325.124 271.174 235.154 177.410	PSIJC 118.188 100.320 80.442 81.281 59.235 39.192 20.346 10.340 9.733	CJ/CJMAX 1.0 00000 0.5 76043 0.1 44111 0.3 24316 0.2 34>73 0.1 44264 0.0 75144 0.0 75144	1 2 3 4 5 6 7	4.115 8.230 12.346 16.461 20.576 24.641 28.607 32.92 37.637
AJ -0.5435488F 04 -0.28************************************	### ### ##############################	GJ  G. 00228448 U4  G. 37037196 U4  G. 6722715 04  G. 17533077 04  G. 1712/576 04  G. 146614 E 03  G. 146614 E 03  G. 146614 E 03  G. 146614 E 03	PHIJC 118.188 332.651 241.345 325.124 271.174 235.154 177.410 80.718 87.599	PSIJC 118.188 100.32u 80.442 81.281 54.23 34.192 22.344 10.340	GJ/CJMAX 1.00000 0.576043 0.14411 0.324316 0.23457 0.144264 0.024344 0.075164	1 2 3 4 5	4,115 8,230 12,346 16,461 20,576 24,691 28,807 32,922
AJ -0.5435488F 04 -0.2647452L 04 0.306123EF 04 -0.427763L 03 0.1002404F 04 0.2645205E 02 -0.444445 03 -0.7300226F 02 0.6015621F 01 0.1326418E 03	### ### ##############################	GJ  G. 00228448 U4  G. 37037196 U4  G. 6722715 04  G. 17533077 04  G. 1712/576 04  G. 146614 E 03  G. 146614 E 03  G. 146614 E 03  G. 146614 E 03	PHIJC 118.188 332.651 241.345 325.124 271.174 235.154 177.410 80.718 87.599	PSIJC 118.188 100.320 80.442 81.281 59.235 39.192 20.346 10.340 9.733	CJ/CJMAX 1.0 00000 0.5 76043 0.1 44111 0.3 24316 0.2 34>73 0.1 44264 0.0 75144 0.0 75144	1 2 3 4 5 6 7	4.115 8.230 12.346 16.461 20.576 24.641 28.607 32.92 37.637
AJ -0.5435488F 04 -0.2847952L 04 0.3041631F 04 -0.427632 03 0.1002404F 03 -0.404644F 03 -0.444644F 03 0.7303226F 02 0.6015621F 01 0.1326418E 03	### ### ##############################	CJ  O. 0.00228448 U4 O. 3+034198 U4 O. 0.3+034198 U4 C. 14533U7 O4 O. 1412/548 O4 C. 3ud JU373 U3 C. 3ud JU373 U3 O. 1466148 U3 O. 14501408 U3 O. 14501408 U3	PHIJC 118.188 332.651 241.345 325.124 271.174 235.154 177.410 80.718 87.549 336.040	PSIJC 118.188 100.320 80.442 81.281 59.235 39.192 20.346 10.340 9.733	CJ/CJMAX 1.0 00000 0.5 76043 0.1 44111 0.3 24316 0.2 34>73 0.1 44264 0.0 75144 0.0 75144	1 2 3 4 5 6 7	4.115 8.230 12.346 16.461 20.576 24.641 28.607 32.92 37.637
AJ -0.5435488F 04 -0.2647452L 04 0.306123EF 04 -0.427763L 03 0.1002404F 04 0.2645205E 02 -0.444445 03 -0.7300226F 02 0.6015621F 01 0.1326418E 03	### ### ##############################	GJ  G. 00428048 U9  G. 3+03+192 U9  G. 04205116 U3  G. 14533017 O6  G. 14121796 U9  G. 3 U1461416 U3  G. 14661416 U3  G. 146146 U3  G. 146146 U3  G. 14516036 U3	PHIJC 118.188 332.651 241.345 325.124 271.174 235.154 177.410 80.718 87.549 336.040	PSIJC 118.188 100.320 80.442 81.281 59.235 39.192 20.346 10.340 9.733	CJ/CJMAX 1.0 00000 0.5 76043 0.1 44111 0.3 24316 0.2 34>73 0.1 44264 0.0 75144 0.0 75144	1 2 3 4 5 6 7	4.115 8.230 12.346 16.461 20.576 24.641 28.607 32.92 37.637
AJ -0.5435488F 04 -0.2847952L 04 0.3041631F 04 -0.427632 03 0.1002404F 03 -0.404644F 03 -0.444644F 03 0.7303226F 02 0.6015621F 01 0.1326418E 03	### ### ##############################	CJ  O. 0.00228448 U4 O. 3+034198 U4 O. 0.3+034198 U4 C. 14533U7 O4 O. 1412/548 O4 C. 3ud JU373 U3 C. 3ud JU373 U3 O. 1466148 U3 O. 14501408 U3 O. 14501408 U3	PHIJC 118.188 332.651 241.345 325.124 271.174 235.154 177.410 80.718 87.549 336.040	PSIJC 118.188 100.320 80.442 81.281 59.235 39.192 20.346 10.340 9.733	CJ/CJMAX 1.0 00000 0.5 76043 0.1 44111 0.3 24316 0.2 34>73 0.1 44264 0.0 75144 0.0 75144	1 2 3 4 5 6 7	4.115 8.230 12.346 16.461 20.576 24.641 28.607 32.92 37.637
AJ -0.5435488F 04 -0.2847952L 04 0.3041631F 04 -0.427632 03 0.1002404F 03 -0.404644F 03 -0.444644F 03 0.7303226F 02 0.6015621F 01 0.1326418E 03	### ### ##############################	CJ  O. 0.00228448 U4 O. 3+034198 U4 O. 0.3+034198 U4 C. 14533U7 O4 O. 1412/548 O4 C. 3ud JU373 U3 C. 3ud JU373 U3 O. 1466148 U3 O. 14501408 U3 O. 14501408 U3	PHIJC 118.188 332.651 241.345 325.124 271.174 235.154 177.410 80.718 87.549 336.040	PSIJC 118.188 100.320 80.442 81.281 59.235 39.192 20.346 10.340 9.733	CJ/CJMAX 1.0 00000 0.5 76043 0.1 44111 0.3 24316 0.2 34>73 0.1 44264 0.0 75144 0.0 75144	1 2 3 4 5 6 7	4.115 8.230 12.346 16.461 20.576 24.641 28.607 32.92 37.637
AJ -0.5435488F 04 -0.2847952L 04 0.3041631F 04 -0.427632 03 0.1002404F 03 -0.404644F 03 -0.444644F 03 0.7303226F 02 0.6015621F 01 0.1326418E 03	### ### ##############################	CJ  O. 0.00228448 U4 O. 3+034198 U4 O. 0.3+034198 U4 C. 14533U7 O4 O. 1412/548 O4 C. 3ud JU373 U3 C. 3ud JU373 U3 O. 1466148 U3 O. 14501408 U3 O. 14501408 U3	PHIJC 118.188 332.651 241.345 325.124 271.174 235.154 177.410 80.718 87.549 336.040	PSIJC 118.188 100.320 80.442 81.281 59.235 39.192 20.346 10.340 9.733	CJ/CJMAX 1.0 00000 0.5 76043 0.1 44111 0.3 24316 0.2 34>73 0.1 44264 0.0 75144 0.0 75144	1 2 3 4 5 6 7	4.115 8.230 12.346 16.461 20.576 24.641 28.607 32.92 37.637
AJ  -0.5435488F 04  -0.244452E 04  0.1002404F 04  0.2495205E 02  -0.444446 03  -0.1404446 03  -0.1404446 03  -0.15621E 01  0.1326418E 03  BLADE FLAP AT STA	### ### ##############################	CJ  O. 0.00228448 U4 O. 3+034198 U4 O. 0.3+034198 U4 C. 14533U7 O4 O. 1412/548 O4 C. 3ud JU373 U3 C. 3ud JU373 U3 O. 1466148 U3 O. 14501408 U3 O. 14501408 U3	PHIJC 118.188 332.651 241.345 325.124 271.174 235.154 177.410 80.718 87.549 336.040	PSIJC 118.188 100.320 80.442 81.281 59.235 39.192 20.346 10.340 9.733	CJ/CJMAX 1.0 00000 0.5 76043 0.1 44111 0.3 24316 0.2 34>73 0.1 44264 0.0 75144 0.0 75144	1 2 3 4 5 6 7 8 9 10	4.115 8.230 12.346 16.461 20.576 24.6v1 28.807 32.922 37.637 41.152
### ## ### ### ### ### ### ### ### ###	### ### ### ### ### ### ### ### ### ##	GJ  G. 0022844E U4 G. 3707419E U4 G. 03707419E U4 G. 0472071E U4 G. 14533079 U4 G. 1466147E U3 G. 1466147E U3 G. 1466147E U3 G. 14671487E U3 G. 14671487E U3 C. 14671487E U3 C. 14671487E U3 C. 14671487E U3 C. 14671487E U3	PHIJC 118.188 332.651 241.345 325.124 271.174 235.154 177.410 80.718 87.549 336.040 CTR 405 FL	PSIJC  118.188 100.320 80.443 81.281 59.235 39.192 20.340 10.340 9.733 33.004	CJ/CJMAX 1.0 00000 0.5 76043 0.1 4411 0.3 24316 0.2 32773 0.1 44204 0.0 75164 0.0 75164 0.0 24136	1 2 3 4 5 6 7	4.115 8.230 12.346 16.461 20.576 24.641 28.607 32.92 37.637
AJ  -0.5435488F 04  -0.2847952L 04  0.3041631F 04  -0.427632 02  0.1002404F 03  -0.444646 03  -0.444646 03  0.730326F 02  0.6015621F 01  0.1326418E 03  BLADE FLAP AT STA  HARMIC ANALYSIS	### ### ### ### ### ### ### ### ### ##	CJ  O. 00228948 U9 O. 3+03+195 U9 O. 01427945 U9 O. 14533077 U9 O. 146614 F U3 O. 146614 F U3 O. 146614 F U3 O. 146014 F U3	PHIJC  118.188 332.651 241.345 325.124 177.410 80.718 87.599 336.040  CTR 405 FL	PSIJC  118.188 100.320 80.443 81.281 59.235 39.192 23.344 10.390 9.733 33.004  T SUG-U T	CJ/CJMAX  1.0 00000 0.5 76043 0.1 44111 0.3 24316 0.2 34573 0.1 44264 0.0 24344 0.0 75164 0.0 24136  CJ/CJMAX 1.0 00000	1 2 3 4 5 6 7 8 9 10	4.115 8.230 12.346 16.461 20.576 24.6v1 28.807 32.922 37.637 41.152
### ### ### ### ### #### #### #### #####	### ### ### ### ### ### ### ### ### ##	CJ  O. 0042844E U4 O. 3+03419E U4 O. 3+03419E U4 C. 1453347E O4 C. 1453347E O4 C. 145347E O4 C. 14544E U3 C. 3ud JJ37E U3 C. 1466184E U3 C. 1466184E U3 C. 145043E U3 C. 145043E U3 C. 145043E U3 C. 145043E U4 CJ	PHIJC 118.188 332.651 241.345 325.124 271.174 235.154 177.410 80.718 87.549 336.040  CTR 405 FL  PHIJC 47.167 344.729	PSIJC  118.148 100.320 80.443 81.281 59.235 39.192 20.344 10.390 9.733 33.004  T.SUG.U.T	CJ/CJMAX  1.0 00000 0.5 76043 0.1 44111 0.3 24316 0.2 3477 0.1 44264 0.0 75164 0.0 75164 0.0 24136  CJ/CJMAX 1.0 00000 0.5 72706	1 3 4 5 6 7 8 9 10	4.115 8.230 12.346 16.461 20.576 24.6v1 28.407 32.922 37.637 41.152
AJ  -0.5435488F 04  -0.247452E 04  0.3061E3F 04  -0.4277632E 03  0.1002404F 03  0.2495205E 02  -0.44046 03  -0.1404692E 03  0.4315621F 01  0.1328418E 03  BLADE FLAP AT STA  HARTIMIC ANALYSIS  0.3233593E C4  -0.510468F 03  0.4386715F 04  0.3362368F 03	######################################	GJ  G. 00.22844E U4  G. 3407419E U4  G. 0.472011E U4  G. 1453307E 04  G. 141275E 04  G. 146618E U3  G. 146618E U3  G. 146618E U3  G. 145363E U3  SMIP 1303 T 403  CJ  G. 417961E 04  G. 4274005E 04  G. 4274005E 04  G. 4274005E 04	PHIJC  118.188 332.651 241.365 325.124 271.174 235.154 177.410 80.718 87.599 336.040  CTR 405 FL  PHIJC 97.167 349.729 286.539	PSIJC  118.148  100.320  80.443  81.281  59.235  39.192  20.344  10.390  9.733  33.004  T.Sug.u T	CJ/CJMAX  1.0 00000 0.5 70043 0.1 44111 0.3 24316 0.2 34>73 0.1 44204 0.0 7>144 0.0 7>144 0.0 24136  CJ/CJMAX 1.0 00000 0.5 72706 0.2 249661	1 3 4 5 6 7 8 9 10	4.115 8.230 12.346 16.461 20.576 24.6v1 28.407 32.922 37.037 41.152 FREQUENCY 4.115 8.23C 12.346
### ONIC ANALYS!  #### ONIC ANALYS!  ###################################	### ### ##############################	GJ  G. 00228948 U9  G. 37037196 U9  G. 03703719	PHIJC  118.188 332.651 241.365 325.124 271.174 235.154 177.410 80.718 87.599 336.040  CTR 405 FL  PHIJC 97.167 309.729 2809.399 316943	PSIJC  118.188 100.320 80.443 81.281 51.235 34.192 25.344 10.340 9.733 33.004  T \$00.0 T	CJ/CJMAX  1.0 00000 0.5 76043 0.1 44111 0.3 24316 0.2 34573 0.1 44264 0.0 75164 0.0 75164 0.0 24136  CJ/CJMAX  1.0 00000 0.5 72706 0.2 49461 0.4 49665	1 3 4 5 6 7 8 9 10	4.115 8.230 12.346 16.461 20.576 24.6v1 28.807 32.92 37.637 41.152 FREQUENCY 4.115 8.23C 12.346 10.461
AJ  -0.5435488F 04  -0.2447952L 04  0.3041631F 04  -0.4277632L 03  0.1002404F 03  -0.444648C 03  -0.444648C 03  0.7303621F 01  0.1325418E 03  BLADE FLAP AT STA  HAR4,MIC ANALYSIS  -0.518466F 03  0.4386715F 04  0.356236E 03  0.14191625E 04  -0.1446477E 03	### ### ### ### ### ### ### ### ### ##	CJ  0.00228048 U0  0.3+03+195 U0  0.4923115 U1  0.4923115 U1  0.1+03107 U1  0.1+03106 U3  0.1+03106 U3  0.1+03006 U3  0.1+03006 U3  CJ  SMIP 13UJ 7 405  CJ  CJ  U.1251101 U0  U.1251101 U0  U.1251101 U0  U.1251101 U0  U.12512101 U0  U.12512101 U0  U.12512101 U0  U.12512101 U0  U.12512101 U0  U.153132125 U0	PHIJC  118.188 332.651 241.345 325.124 177.410 80.718 87.599 336.040  CTR 405 FL  PHIJC 97.167 349.729 286.339 316.943 269.987	PSIJC  118.188 100.320 80.448 81.281 59.235 39.192 20.344 10.390 9.733 33.004  T SUG.U T  PSIJC  97.167 172.365 90.013 77.236 22.697	CJ/CJMAX  1.0 00000 0.5 76043 0.1 44111 0.3 24314 0.0 24344 0.0 75144 0.0 24346 CJ/CJMAX 1.0 00000 0.5 72706 0.2 264665 0.4 44665 0.3 48663	1 3 3 4 5 6 7 8 9 10	### ##################################
### ONIC ANALYS!  #### ONIC ANALYS!  ###################################	### ### ##############################	CJ  O. 0042844E U4 O. 3+03419E U4 O. 3+03419E U4 C. 1453147 O4 C. 1453147 O4 C. 145141E U3 C. 30 0. 146141E U3 C. 146614 E U3 C. 145140E U3 C. 145140E U3 C. 145140E U4 C. 145140E U4 C. 145140E U4 C. 145140E U4 C. 1451410E U4	PHIJC  118.188 332.651 241.345 325.124 271.174 235.154 177.410 80.718 87.599 336.040  CTR 409 FL  PHIJC  97.167 349.729 286.539 316.943 264.987 296.529	PSIJC  118.148 100.320 80.444 81.281 54.235 34.192 23.344 10.340 9.733 33.004  T. SUG.U. T.  PSIJC  V7.167 172.365 V3.31 74.236 52.497 41.403	CJ/CJMAX  1.0 00000 0.5 76043 U-1 44111 0.3 24316 0.2 3 >> 73 U-1 4 + 264 U-0 24344 0.0 7 > 164 0.0 24136  CJ/CJMAX  1.0 00000 0.5 72706 U-2 6 9 4 6 1 0.4 4085 0.3 48663 0.2 3 + 27	1 3 4 5 6 7 8 9 10	#.115 #.230 12.344 16.461 20.576 24.671 28.807 32.922 37.637 41.152 FREQUENCY 4.115 6.23C 12.346 16.461 20.576 24.691
AJ  -0.5435488F 04  -0.244452E 04  0.1002404F 04  0.2495202E 02  -0.444646 03  BLADE FLAP AT STA  HAR4,MIC AMALYSIS  0.2386715F 04  0.3362368F 03  0.191625E 03  -0.3720242E 03	######################################	GJ  G. 0022844E U4  G. 340719E U4  G. 340719E U4  G. 145337E 04  G. 145337E 04  G. 146618E 03  G. 146618E 03  G. 146518E 04  G. 145308E 03  SMIP 1303 T 409  CJ  G. 4317961E 04  G. 1433743E 04	PHIJC  118.188 332.651 241.365 325.124 271.174 235.154 177.410 80.718 87.549 336.040  CTR 405 FL  PHIJC  97.167 394.729 286.539 316.943 264.987 294.292 204.083	PSIJC  118.148 100.320 80.443 81.281 51.235 34.192 20.344 10.340 9.733 33.004  T SUG.U T  PSIJC  V7.167 172.365 20.497 41.400 34.440	CJ/CJMAX  1.0 00000 0.5 70043 0.1 44111 0.3 24316 0.2 3%77 0.1 4%20 0.0 24344 0.0 73149 0.0 24136  CJ/CJMAX 1.0 00000 0.5 72700 0.2 49461 0.4 40465 0.3 44065 0.3 44065 0.3 44065 0.3 44065 0.3 44065 0.3 44065 0.3 44065 0.3 44065 0.3 44065 0.3 44065 0.3 44065 0.3 44065 0.3 44065 0.3 44065 0.3 44065 0.3 44065 0.3 44065 0.1 76304	1 3 4 5 6 7 8 9 10	### ##################################
AJ  -0.5435488F 04  -0.247452E 04  0.3061E3F 04  -0.427763E 03  0.1002404F 03  0.2495205E 02  -0.47464692 03  0.7300226F 02  0.6015621F 01  0.1328418E 03  BLADE FLAP AT STA  HARTIMIC ANALYSIS  AJ  0.3233593E 04  -0.5189266F 03  0.2386715F 04  0.3362368E 03  0.1391025E 04  -0.3720242F 03  -0.3720242F 03  -0.1217408F 03	######################################	GJ  G. 00228948 U9  G. 37074195 U9  G. 037074195 U9  G. 14533077 U9  G. 1453477 U9  G. 1465145 U3  G. 1465146 U3  G. 1453046 U3  SMIP 13UJ T 405  G. 1453045 U9  G. 1453046 U3  G. 1453046 U3  G. 1453046 U3  G. 1453040 U9  G. 14540	PHIJC  118.188 332.651 241.345 325.124 271.174 235.154 177.410 80.718 87.599 336.040  CTR 409 FL  PHIJC  97.167 349.729 286.539 316.943 264.987 296.529	PSIJC  118.148 100.320 80.444 81.281 54.235 34.192 23.344 10.340 9.733 33.004  T. SUG.U. T.  PSIJC  V7.167 172.365 V3.31 74.236 52.497 41.403	CJ/CJMAX  1.0 00000 0.5 76043 U-1 44111 0.3 24316 0.2 3 >> 73 U-1 4 + 264 U-0 24344 0.0 7 > 164 0.0 24136  CJ/CJMAX  1.0 00000 0.5 72706 U-2 6 9 4 6 1 0.4 4085 0.3 48663 0.2 3 + 27	1 2 3 4 5 6 7 8 9 LO	### ##################################
AJ  -0.5435488F 04  -0.2444526L 04  0.306182464F 04  0.1002464F 03  -0.444646 03  -0.444646 03  -0.7300226F 02  0.6015621F 01  0.1328418E 03  BLADE FLAP AT STA  MARAUNIC ANALYSIS  AJ  0.3233593E C4  -0.5189666F 03  0.23677357 04  0.3362364F 03  0.13910256 04  -0.3720242F 03  -0.1217485E 03  0.11653327E 04	### ### ### ### ### ### ### ### ### ##	CJ  O. 0022844E U4 O.3+03419E U4 O.3+03419E U4 O.442311E O4 O.1453317E O4 O.1453317E O4 O.340430E O3 O.146618E O3 O.146618E O3 O.146518E O3 O.145363E O3  SMIP 1301 T 409  CJ  CJ  O.4317961E O4 O.247430E O4 O.1251410E U4 O.1453722E U4 C.131134E U4 O.1616242E U3 O.2417566E O4 O.4921635E U2	PHIJC  118.188 332.651 241.365 325.124 271.174 235.154 177.410 80.718 87.549 336.040  CTR 405 FL  PHIJC  97.167 349.729 286.539 316.943 269.987 240.929 240.923 240.923 240.923	PSIJC  118.188 100.320 80.443 81.281 91.235 34.192 23.346 10.340 9.733 33.004  T \$00.0 T	CJ/CJMAX  1.0 00000 0.5 76043 0.1 44111 0.3 24316 0.2 24324 0.0 75164 0.0 24344 0.0 24136  CJ/CJMAX  1.0 00000 0.5 72706 0.2 89461 0.4 4065 0.3 48663 0.2 34237 0.1 76304 0.4 67033	1 3 4 5 6 7 8 9 10	### ##################################

BLADE PLAP AT STA 270
HAPAURIC INFLYSIS HOUEL AIM-564 SHIP 1009 T 405 CTR 405 FLT 500.0 TR 26

.aJ	: hJ	C.J	PHIJC	PSIJC	CJ/LJMAX		FREQUENCY
U.5345573F C4		-				_	
0.1364245E U4	U. 19/9/85E C	4 0.24002246 04	101.56	30.361	1.000000	1	4.115
0.12695265 04	-0.1484333E C			176.007	0.532688	į	8.23G
to sectioner.	-U. 1342783E C		290.071	76.370	0.597933	- 5	12.346
0.15199738 04	-0.90493316 0		344.232	42.304	0.736994		16.461
0.24105426 02	-0.12042335 0		271.147	54.229	0.501817	,	20.576
-0.2/499198 03	-3.85502468 0		252.730	42.122	0.350759		24.691
0.84446046 03	-U.1033032ê C		214.948	37.274	0.434000	7	
							28.807
0.1690600€ 04	-0.10517JHF 0		320.206	41.026	0.631060		32.922
0.10635245 03	-3.3.305056 0		286.516	32.057	0.142203	y	31.637
-0.2132654E 03	0.2775101E C	to 3440014E 03	141.545	12.754	3.145821	10	41.152
	1 101						
BLADE CHORD AT ST							
HARMONIC AVALYSIS	MCLET WH-20V	SHIP 1009 T 405	CTR 405 FLT	500.0	TR 17		
AJ	PJ	CJ	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
OLIVEYTAE JO							11. 11. 4 4 4 11.
0.40743716 05	0.2207869E C	5 0.51/409/E US	25.260	25.260	1.000000	4	4.115
U.4+1#50LF 04	0.33726#1E C		19.702	9.451	0.193352	į	0.230
-0.15166005 05	-0.4122450E C		197.294	65.764	0.307032	3	12.346
0.344101F U4	-0.1443305F C		339.146	84.787	0.067273	•	16.461
U . 2849 7085 U4	0.1433884 C		34.101	6.632	0.000502	5	20.576
U.1162532F U4	-0.15249576 6	3 C. II/BJule 04	370.548	58.433	0.022774	•	24.691
-0.1001744E 04	J. 1044343F C	4 C. 19291JJE 04	121.528	17.361	0.037284	7	28.637
0.236875UF U3	-J. 20318445 0		311.015	34.452	1000001		32.522
U.13/8624E 3+	U. 1/21246E C		20.3/4	0.460	U.U.14/56	ě	37.637
0.24761525 03	0.2501831E C		45.841	4.584	0.007474	10	41.152
0.10,01,20 03	0127010711	, 0.4.20,2.12 03	771076	4.704	01001717		*****
BLADE CHOPD AT ST	235						
HARMONIC MALYSIS		SHIP LUUY T 405	CTA 4.14 E.T	840 4			
***************************************							
	House dir year	3017 1007 1 403	CTR 405 PLT	300.0	TR 22		
		3717 1007 1 403	CIR 403 FEI	300.0	TR 22		
		3717 1007 1 403	CIR 405 PEI	300.0	1R 22		
	Autor an year	2017 2007 1 403	CIK 405 PEI	300.0	1R 22		
							RUSQUEAGU
	aJ	c1	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENC Y
-0.270:13.E G5	91	cı	PHIJC	PS IJC	CJ/CJMAX		0.000
-0.270c15cE G5	aj u. 32236736 C	CJ 4 0.7432478E U4	PHI JC 24.305	PS 1JC 24.305	CJ/CJMAX 1.00000	ı	4.115
-0.270:13.E G5	aj u. 32236735 6 -u. 11358585 6	CJ 4 0.7432478E U4 3 0.3333423E U4	PHI JC 24-305 35u-043	PS IJC	CJ/CJMAX 1.000000 0.426250	i 2	4.115 8.23C
-0.270c15cE G5	aj u. 32236736 C	CJ 4 0.7432478E U4 3 0.3333423E U4	PHI JC 24.305	PS 1JC 24.305	CJ/CJMAX 1.00000	ı	4.115
-0.270c15cE G5 0.713768JE 04 0.3336477F 04	aj u. 32236735 6 -u. 11358585 6	CJ 4 0.7432178E U4 3 0.333423E U4 4 0.3302003E O4	PHI JC 24-305 35u-043	PS IJC 24.305 179.022	CJ/CJMAX 1.000000 0.426250	i 2	4.115 8.23C
-0.2702154E G5 0.7137883E 04 0.3336477F 04 -0.3100411E 04 0.4731543F 03	dJ -0.11348587 -0.13603271 -0.136775431	CJ 4	PHI JC 24-305 350-043 202-753 1-769	PS IJC 24.305 179.022 67.584	CJ/CJMAX 1.000000 0.426250 0.429267 0.040447	1 2 3	4.115 8.23C 12.346 10.461
-0.2702192E G5 0.7137884E 04 0.3330477F 04 -0.3100411E 04 0.4731543F 03 0.9476213E 03	0.32236735 C -0.11358585 C -0.13603271 C 0.1775936 O 0.21455776 O	CJ 4	PHI JC 24.305 358.043 202.753 1.789 12.143	PS IJC 24.305 179.022 67.544 0.447	CJ/CJMAX 1.00000 0.426250 0.429267 0.040447 0.130292	1 2 3 4 5	4.115 8.23C 12.346 10.461 20.576
-0.2702192E G5 v.7137883E 04 0.3336477F 04 -0.3100411E 24 v.4731543F 23 0.4476213E 03 v.7176501E 03	0.32236735 C -0.11358587 C -0.13603271 C 0.14775736 O 0.21465776 O -0.22569276 C	CJ  4 0.7432478E U4 3 0.3333423E U4 4 0.3342032E 04 2 0.4734232E 03 3 0.1324474E U4 2 0.7042037E U3	PHI JC 24-305 350-043 202-7>3 1-709 12-144 35d-174	PS IJC 24.305 179.022 67.364 0.447 24.425	CJ/CJMAX 1.00000 0.426250 0.429267 0.040447 0.130492 0.090424	1 2 3 4 5	4.115 8.23C 12.346 10.461 20.576 24.691
-U.2702194E G5 U.7137883E G4 0.3336477F G4 -U.3100411E C4 U.4731543F C3 0.9476213E G3 U.7076501E G3 -0.2710544F U2	#J  -0.11358587  -0.11358587  -0.13601271  0.14775438  0.21465778  -0.22589278  0.365504986	CJ  4	PHI JC 24.305 358.043 202.753 1.789 12.143 354.174 94.242	PS IJC 24.305 179.022 67.544 0.447 2.449 53.696 13.407	CJ/CJMAX 1.000000 0.420250 0.429267 0.040447 0.130292 0.090424	1 2 3 4 5 6 7	4.115 8.23C 12.346 10.461 20.576 24.691 28.607
-U.270.19.E G5 U.711.788.E G4 O.3336477F G4 -U.3100411E C4 U.4731543F C3 O.9476213E G3 U.717.001E G3 -O.271054.F G2 U.3141655E C2	0.32230735 C -0.11358587 C -0.113603271 C 0.14775936 O 0.21465776 O -0.22599276 C 0.34550956 O -0.75569576 C	CJ  4	PHI JC 24.305 358.043 202.753 1.789 12.143 35d.174 94.242 473.684	PS IJC 24-305 179-022 67-344 0-447 2-449 59-696 13-407 34-210	CJ/CJMAX 1.000000 0.428250 0.429267 0.020447 0.130292 0.090424 1.040796 0.102177	1 2 3 4 5 6 7	4.115 8.23C 12.346 10.461 20.576 24.691 28.107 32.922
-U.2702192E G5 U.7137E83E G4 G.3330477F G4 -U.3100411E C4 U.4731543F C3 G.9476213E G3 U.707601E G3 -O.2710542F U2 U.5141655E C2 G.237516GE G4	-U.123b735 C -U.11358587 C -U.1350377 C U.14775936 U -U.21465776 C -U.22509276 C -U.25509276 C -U.75808576 C	CJ  4 0.7432478E U4 2 0.3333423E U4 4 0.3362032E 05 4 0.743423E 03 2 0.102497E U3 2 0.7042047E U3 3 0.3043242E 03 4 0.7542234E 03 4 0.7542234E U4	PHIJC 24.305 350.043 202.753 1.709 12.143 35d.174 94.242 273.684 33.178	PS IJC 24.305 179.022 67.344 0.447 2.429 59.696 13.407 34.210	CJ/CJMAX 1.000000 0.420250 0.420267 0.00447 0.130242 0.090424 1.040746 0.102177 0.362441	1 2 3 4 5 6 7 8	4.115 8.23C 12.346 10.461 20.576 24.691 28.607 32.922 37.637
-U.270.19.E G5 U.711.788.E G4 O.3336477F G4 -U.3100411E C4 U.4731543F C3 O.9476213E G3 U.717.001E G3 -O.271054.F G2 U.3141655E C2	0.32230735 C -0.11358587 C -0.113603271 C 0.14775936 O 0.21465776 O -0.22599276 C 0.34550956 O -0.75569576 C	CJ 4 0.7432478E U4 3 0.3333423E U4 4 0.336203E 05 4 0.376232E 03 5 0.1024376 U4 2 0.7042076 U3 3 0.3007420 U6 3 0.3007420 U6 3 0.3007420 U6 4 0.274220 U6	PHI JC 24.305 358.043 202.753 1.789 12.143 35d.174 94.242 473.684	PS IJC 24-305 179-022 67-344 0-447 2-449 59-696 13-407 34-210	CJ/CJMAX 1.000000 0.428250 0.429267 0.020447 0.130292 0.090424 1.040796 0.102177	1 2 3 4 5 6 7	4.115 8.23C 12.346 10.461 20.576 24.691 28.107 32.922
-U.2702192E G5 U.7137E83E G4 G.3330477F G4 -U.3100411E C4 U.4731543F C3 G.9476213E G3 U.707601E G3 -O.2710542F U2 U.5141655E C2 G.237516GE G4	-U.123b735 C -U.11358587 C -U.1350377 C U.14775936 U -U.21465776 C -U.22509276 C -U.25509276 C -U.75808576 C	CJ  4 0.7432478E U4 2 0.3333423E U4 4 0.3362032E 05 4 0.743423E 03 2 0.102497E U3 2 0.7042047E U3 3 0.3043242E 03 4 0.7542234E 03 4 0.7542234E U4	PHIJC 24.305 350.043 202.753 1.709 12.143 35d.174 94.242 273.684 33.178	PS IJC 24.305 179.022 67.344 0.447 2.429 59.696 13.407 34.210	CJ/CJMAX 1.000000 0.420250 0.420267 0.00447 0.130242 0.090424 1.040746 0.102177 0.362441	1 2 3 4 5 6 7 8	4.115 8.23C 12.346 10.461 20.576 24.691 28.607 32.922 37.637
-U.2702192E G5 U.71137E83E G4 G.3336477F G4 -U.3100411E C4 U.4731543F C3 G.9476213E G3 U.777501E G3 -G.2710542F U2 U.5141605E C2 G.237916CE G4 -U.9248204E U2	0.32236735 C -0.11358587 C -0.1303271 C 0.14775936 0 0.21465776 O -0.22569276 O -0.7566076 O 0.15555986 O 0.22147666 O	CJ  4 0.7432478E U4 2 0.3333423E U4 4 0.3362032E 05 4 0.743423E 03 2 0.102497E U3 2 0.7042047E U3 3 0.3043242E 03 4 0.7542234E 03 4 0.7542234E U4	PHIJC 24.305 350.043 202.753 1.709 12.143 35d.174 94.242 273.684 33.178	PS IJC 24.305 179.022 67.344 0.447 2.429 59.696 13.407 34.210	CJ/CJMAX 1.000000 0.420250 0.420267 0.00447 0.130242 0.090424 1.040746 0.102177 0.362441	1 2 3 4 5 6 7 8	4.115 8.23C 12.346 10.461 20.576 24.691 28.607 32.922 37.637
-U.2702192E G5 U.7137883E G4 0.3330477F G4 -U.3100411E 24 U.4731593F 23 0.9476213E 03 U.707801E 03 -0.2710542F U2 0.5141655E C2 0.237516GE 04 -U.9248209E U2	4J	CJ  4	PHIJC 24-305 350-043 202-753 1-769 12-143 35d-174 94-242 473-004 33-178 111-778	PS IJC 24.305 179.022 67.344 0.447 24.449 29.696 13.407 34.210 3.646 11.176	CJ/CJMAX 1.000000 0.426250 0.429267 0.040447 0.130292 0.090724 1.040796 0.102177 0.362941 0.031626	1 2 3 4 5 6 7 8	4.115 8.236 12.346 10.461 20.576 24.691 28.607 32.922 37.637
-U.2702192E G5 U.71137E83E G4 G.3336477F G4 -U.3100411E C4 U.4731543F C3 G.9476213E G3 U.777501E G3 -G.2710542F U2 U.5141605E C2 G.237916CE G4 -U.9248204E U2	4J	CJ  4	PHIJC 24.305 350.043 202.753 1.709 12.143 35d.174 94.242 273.684 33.178	PS IJC 24.305 179.022 67.344 0.447 24.449 29.696 13.407 34.210 3.646 11.176	CJ/CJMAX 1.000000 0.426250 0.429267 0.040447 0.130292 0.090724 1.040796 0.102177 0.362941 0.031626	1 2 3 4 5 6 7 8	4.115 8.236 12.346 10.461 20.576 24.691 28.607 32.922 37.637
-U.2702192E G5 U.7137883E G4 0.3330477F G4 -U.3100411E 24 U.4731593F 23 0.9476213E 03 U.707801E 03 -0.2710542F U2 0.5141655E C2 0.237516GE 04 -U.9248209E U2	4J	CJ  4	PHIJC 24-305 350-043 202-753 1-769 12-143 35d-174 94-242 473-004 33-178 111-778	PS IJC 24.305 179.022 67.344 0.447 24.449 29.696 13.407 34.210 3.646 11.176	CJ/CJMAX 1.000000 0.426250 0.429267 0.040447 0.130292 0.090724 1.040796 0.102177 0.362941 0.031626	1 2 3 4 5 6 7 8	4.115 8.236 12.346 10.461 20.576 24.691 28.607 32.922 37.637
-U.2702192E G5 U.7137883E G4 0.3330477F G4 -U.3100411E 24 U.4731593F 23 0.9476213E 03 U.707801E 03 -0.2710542F U2 0.5141655E C2 0.237516GE 04 -U.9248209E U2	4J	CJ  4	PHIJC 24-305 350-043 202-753 1-769 12-143 35d-174 94-242 473-004 33-178 111-778	PS IJC 24.305 179.022 67.344 0.447 24.449 29.696 13.407 34.210 3.646 11.176	CJ/CJMAX 1.000000 0.426250 0.429267 0.040447 0.130292 0.090724 1.040796 0.102177 0.362941 0.031626	1 2 3 4 5 6 7 8	4.115 8.236 12.346 10.461 20.576 24.691 28.607 32.922 37.637
-U.2702192E G5 U.7137883E G4 0.3330477F G4 -U.3100411E 24 U.4731593F 23 0.9476213E 03 U.707801E 03 -0.2710542F U2 0.5141655E C2 0.237516GE 04 -U.9248209E U2	4J	CJ  4	PHIJC 24-305 350-043 202-753 1-769 12-143 35d-174 94-242 473-004 33-178 111-778	PS IJC 24.305 179.022 67.344 0.447 24.449 29.696 13.407 34.210 3.646 11.176	CJ/CJMAX 1.000000 0.426250 0.429267 0.040447 0.130292 0.090724 1.040796 0.102177 0.362941 0.031626	1 2 3 4 5 6 7 8	4.115 8.23C 12.346 10.461 20.576 24.691 28.607 32.922 37.637
-U.2702192E G5 U.7137883E G4 0.3330477F G4 -U.3100411E 24 U.4731593F 23 0.9476213E 03 U.707801E 03 -0.2710542F U2 0.5141655E C2 0.237516GE 04 -U.9248209E U2	4J	CJ  4	PHIJC 24-305 350-043 202-753 1-769 12-143 35d-174 94-242 473-004 33-178 111-778	PS IJC 24.305 179.022 67.344 0.447 24.449 29.696 13.407 34.210 3.646 11.176	CJ/CJMAX 1.000000 0.426250 0.429267 0.040447 0.130292 0.090724 1.040796 0.102177 0.362941 0.031626	1 2 3 4 5 6 7 8	4.115 8.23C 12.346 10.461 20.576 24.691 28.607 32.922 37.637
-U.2702194E G5 U.7137883E G4 0.3336477F G4 -U.3100411E C4 U.4731543F C3 0.9976215E G3 U.7076901E G3 -0.271094F U2 U.5141695 C2 U.237516GE G4 -U.9248204E U2  BLANT TORSION AT S HARMUNIC ANALYSIS	0.32236735 C -0.11358587 C -0.13603271 C 0.14775938 Q 0.21465778 Q 0.3650495 Q -0.75660578 Q 0.15505986 Q 0.22147668 Q	CJ  4	PHI JC  24-305 358-043 202-7-3 1-789 12-143 354-174 94-242 273-684 33-178 111-778  CTR 4UD PLT	PSIJC 24.305 179.022 67.344 0.447 2.429 59.696 13.407 34.210 3.666 11.176	CJ/CJMAX 1.000000 0.420250 0.420267 0.040447 0.130292 0.093924 1.040796 0.102177 0.362941 0.031826	1 2 3 4 5 6 7 8 9	4.115 8.23C 12.346 10.461 20.576 24.691 28.507 32.922 37.C37 41.152
-U.2702192E G5 U.71137E83E G4 G.3336477F G4 -U.3100411E C4 U.4731543F C3 O.9476213E G3 U.7776901E G3 -O.2710542F U2 U.5141605E C2 U.237516GE G4 -U.92482UNE U2  BLANT TORSION AT S MARMUNIC ANALYSIS	4J	CJ  4	PHIJC 24-305 350-043 202-753 1-769 12-143 35d-174 94-242 473-004 33-178 111-778	PS IJC 24.305 179.022 67.344 0.447 24.449 29.696 13.407 34.210 3.646 11.176	CJ/CJMAX 1.000000 0.426250 0.429267 0.040447 0.130292 0.090724 1.040796 0.102177 0.362941 0.031626	1 2 3 4 5 6 7 8	4.115 8.23C 12.346 10.461 20.576 24.691 28.607 32.922 37.637
-U.2702192E G5 U.71137E83E G4 0.3336477F G4 -U.3100411E C4 U.4731543F C3 0.9476213E G3 U.7777601E G3 -0.2710942F U2 U.5141055 C2 U.237516GE G4 -U.92482GHE U2  BLANT TORSION AT S MARMUNIC ANALYSIS	4J  -0.1236735 6  -0.136927 6  -0.136927 6  -0.2569276 6  -0.365946 6  -0.7660976 6  0.1555986 6  0.2214766 0  BTA 131.5  MUDEL AM-Sea	CJ  4	PHIJC 24.305 350.043 202.753 1.709 12.143 35d.174 94.242 473.084 33.178 111.778  CTR 405 PLT	PS IJC 24.305 179.022 67.344 0.447 29.696 13.407 34.210 3.646 11.176	CJ/CJMAX 1.000000 0.420250 0.420267 0.020447 0.130242 0.090424 1.040746 0.102177 0.362441 0.031826	1 2 3 4 5 6 7 8 9	4.115 8.23C 12.346 10.461 20.576 24.691 28.607 32.922 37.C37 41.152
-U.2702192E G5 U.7137883E G4 0.3336477F G4 -U.3100411E C4 U.4731543F C3 0.477631E 03 U.777630E 03 -0.2710542F U2 U.51516GE 04 -U.9248204E U2  BLANT TORSION AT S MARMUNIC ANALYSIS	### ##################################	CJ  4	PHI JC  24.305 358.043 202.753 1.789 12.143 354.174 94.242 273.684 3J.178 111.778  CTR 4UD FLT  PHI JC 52.152	PS IJC 24.305 179.022 67.534 0.447 2.429 59.696 13.407 34.210 J.646 11.176	CJ/CJMAX 1.000000 0.426250 0.429267 0.040447 0.130292 1.040796 0.102177 0.362941 0.031826  TR 44	1 2 3 4 5 6 7 8 9 10	4.115 8.23C 12.346 10.461 20.576 24.691 28.507 32.922 37.C37 41.152
-U.2702192E G5 U.7137E83E G4 0.3336477F G4 -U.3100411E C4 U.4731543F C3 0.9476213E G3 U.7076901E G3 -O.2710542F U2 U.5141695E C2 U.237916GE G4 -U.92482GHE U2  BLANT TORSION AT S MARMUNIC ANALYSIS  AJ -U.102211UE G3 0.2842G11E U4 U.6073P49E G3	0.32236735 C -0.1358587 C -0.1363271 C 0.145775 36 C 0.22569276 C 0.3455465 C 0.15555986 C 0.22147666 C  BTA 131.5 MUDEL AM-Sea	CJ  4	PHIJC 24.305 358.043 202.753 1.789 12.143 356.174 94.242 273.684 33.178 111.778  CTR 4UD FLT  PHIJC 52.152 33.870	PSIJC 24.305 179.022 67.344 0.447 29.696 13.407 34.210 3.666 11.176  PSIJC 92.152 16.935	CJ/CJMAX  1.000000 0.426250 0.427267 0.010447 0.130242 0.09324 1.01077 0.362441 0.031826  TR 44	1 2 3 4 5 6 7 8 9 10	4.115 8.23C 12.346 10.461 20.576 24.691 28.507 32.922 37.C37 41.152
-U.2702192E G5 U.71137E83E G4 0.3336477F G4 -U.3100411E C4 U.4731543F C3 0.9476213E G3 U.7776901E G3 -0.2716942F U2 U.5141695E C2 U.237516GE G4 -U.92482UNE U2  BLANT TORSION AT S MARMUNIC ANALYSIS  AJ -U.102211UE G3 0.2842011E G3 U.26473749E G3 U.103259F G3	### ##################################	CJ  4	PHIJC 24-305 358-043 202-753 1-789 12-143 354-174 94-242 473-684 33-178 111-778  CTR 4UD PLT  PHIJC 52-152 33-870 477-558	PS IJC 24.305 179.022 67.344 0.447 27.696 13.407 34.210 3.066 11.176  PS IJC 52.152 10.935 92.519	CJ/CJMAX  1.000000 0.420250 0.429267 0.00047 0.130242 0.090424 1.040796 0.102177 0.362441 0.031826  TR 44  CJ/CJMAX 1.060000 0.1577932 0.317213	1 2 3 4 5 6 7 8 9 10	4.115 8.23C 12.346 10.461 20.576 24.691 28.607 32.922 37.C37 41.152
-U.2702194E G5 U.7137883E G4 0.3336477F G4 -U.3100411E C4 U.4731543F C3 0.9476213E 03 -U.7778501E 03 -U.7778501E 03 -U.277916CE 04 -U.9248204E U2  BLANT TORSION AT S MARMUNIC ANALYSIS  -U.1022110E 03 0.2842011E U4 U.6673445E 03 U.103259F C3 -U.132599F C3 -U.132599F C3	### ##################################	CJ  4	PHIJC 24.305 358.043 202.753 1.789 12.143 354.174 94.242 473.084 33.178 111.778  CTR 4U5 PLT  PHIJC 52.152 33.870 477.558 149.622	PS IJC 24.305 179.022 67.344 0.447 59.696 13.407 34.210 3.686 11.176 500.0 PS IJC 52.152 16.935 92.519 37.406	CJ/CJMAX 1.000000 0.426250 0.429267 0.130247 0.130242 1.04070 0.102177 0.362441 0.031826  TR 44  CJ/CJMAX 1.0C0000 0.157932 0.317213 0.340839	1 2 3 4 5 6 7 8 9 10	4.115 8.23C 12.346 10.461 20.571 24.691 28.507 32.922 37.C37 41.152 FREQUENCY 4.115 8.23C 12.33C
-U.2702192E G5 U.7137E83E G4 0.3336477F G4 -U.3100411E C4 U.4731543F C3 0.9776215 G3 U.7776301E G3 -U.2710542F U2 U.5141605E C2 U.237516GE G4 -U.92482GHE U2  BLANG TORSION AT S HARMUNIC ANALYSIS  -U.1722110E G3 0.2842GHE U4 U.6073745E G3 U.173250F G3	### ##################################	CJ  4	PHI JC  24.305 358.043 202.753 1.789 12.143 35d.174 94.242 273.684 3J.178 111.778  CTR 4UD FLT  PHI JC  52.152 33.870 277.558 149.622 77.625	PSIJC 24.305 179.022 67.344 0.447 2.449 39.696 13.407 34.210 J.646 11.176 500.0 PSIJC 52.152 16.935 92.519 37.406 15.525	CJ/CJMAX 1.000000 0.426250 0.426250 0.429267 0.040447 0.130292 1.040796 0.102177 0.362441 0.031826  TR 44  CJ/CJMAX 1.06000 0.157932 0.317213 0.340819	1 2 3 4 5 6 7 8 9 10	#.115 #.23C 12.346 10.461 20.576 24.691 28.507 32.922 37.C37 41.152 FREQUENCY 4.115 #.23C 12.346 16.461
-U.2702194E G5 U.7137883E G4 0.3336477F G4 -U.3100411E C4 U.4731543F C3 0.9476213E 03 -U.7778501E 03 -U.7778501E 03 -U.277916CE 04 -U.9248204E U2  BLANT TORSION AT S MARMUNIC ANALYSIS  -U.1022110E 03 0.2842011E U4 U.6673445E 03 U.103259F C3 -U.132599F C3 -U.132599F C3	### ##################################	CJ  4	PHIJC  24.305 350.043 202.753 1.769 12.143 35d.174 94.242 273.684 33.178 111.778  CTR 4UD PLT  PHIJC  52.152 33.870 277.558 149.622 77.625 25.361	PS IJC 24.305 179.022 67.344 0.447 59.696 13.407 34.210 11.176 500.0  PS IJC 52.152 16.935 92.519 37.408 15.525	CJ/CJMAX  1.000000 0.426250 0.429267 0.00447 0.130242 0.090424 1.040746 0.102177 0.36241 0.031826  TR 44  CJ/CJMAX 1.060000 0.157932 0.317213 0.340839 0.336415 0.268662	1 2 3 4 5 6 7 8 9 10	4.115 8.23C 12.346 10.461 20.576 24.691 28.507 32.922 37.C37 41.152 FREQUENCY 4.115 8.23C 12.346 16.461 20.576 24.691
-U.2702192E G5 U.7137E83E G4 0.3336477F G4 -U.3100411E C4 U.4731543F C3 0.9776215 G3 U.7776301E G3 -U.2710542F U2 U.5141605E C2 U.237516GE G4 -U.92482GHE U2  BLANG TORSION AT S HARMUNIC ANALYSIS  -U.1722110E G3 0.2842GHE U4 U.6073745E G3 U.173250F G3	### ##################################	CJ  4	PHI JC  24.305 358.043 202.753 1.789 12.143 35d.174 94.242 273.684 3J.178 111.778  CTR 4UD FLT  PHI JC  52.152 33.870 277.558 149.622 77.625	PSIJC 24.305 179.022 67.344 0.447 2.449 39.696 13.407 34.210 J.646 11.176 500.0 PSIJC 52.152 16.935 92.519 37.406 15.525	CJ/CJMAX 1.000000 0.426250 0.426250 0.429267 0.040447 0.130292 1.040796 0.102177 0.362441 0.031826  TR 44  CJ/CJMAX 1.06000 0.157932 0.317213 0.340819	1 2 3 4 5 6 7 8 9 10	#.115 #.23C 12.346 10.461 20.576 24.691 28.507 32.922 37.C37 41.152 FREQUENCY 4.115 #.23C 12.346 16.461
-U.2702192E G5 U.71137E83E G4 Q.3336477F G4 -U.3100411E C4 U.4731543F C3 Q.9476213E G3 U.777601E G3 -Q.2710542F U2 U.5141000 C4 -U.92482UNE U2  BLANT TORSION AT S MARMUNIC ANALYSIS  AJ -U.102211UE G3 Q.2642011E U4 Q.6673440E G3 Q.11243000 C4 Q.3334497E G3 Q.11243000 C4 Q.1049531E G3	### ##################################	CJ  4	PHIJC  24.305 350.043 202.753 1.769 12.143 35d.174 94.242 273.684 33.178 111.778  CTR 4UD PLT  PHIJC  52.152 33.870 277.558 149.622 77.625 25.361	PS IJC 24.305 179.022 67.344 0.447 59.696 13.407 34.210 11.176 500.0  PS IJC 52.152 16.935 92.519 37.408 15.525	CJ/CJMAX  1.000000 0.426250 0.429267 0.00447 0.130242 0.090424 1.040746 0.102177 0.36241 0.031826  TR 44  CJ/CJMAX 1.060000 0.157932 0.317213 0.340839 0.336415 0.268662	1 2 3 4 5 6 7 8 9 10	4.115 8.23C 12.346 10.461 20.576 24.691 28.507 32.922 37.C37 41.152 FREQUENCY 4.115 8.23C 12.346 16.461 20.576 24.691
-U.2702192E G5 U.7137883E G4 0.3336477F G4 -U.3100411E C4 U.4731543F C3 0.9476213E 03 -U.710501E 03 -U.710501E 02 0.237916GE 04 -U.9246207E 02  BLANT TORSION AT S MARMUNIC ANALYSIS  -U.1022110E 03 0.2842011E 04 0.6073745E 03 U.1022375 C3 -0.1301540E 03 U.102307E 03 U.102307E 03 U.102307E 03 U.102307E 03 U.102307E 03 U.102307E 03 U.1024307E 03 U.1024307E 03 U.7770741E 03	### ##################################	CJ  4 0.7432478E U4  5 3333423E U4  6 0.3342032E 04  6 0.342032E 04  2 0.7012037E U3  3 0.1012037E U3  3 0.101237E U3  3 0.24223E U4  3 0.242267UE 03  CJ  SHIP 1009 T wyb  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  CJ  C	PHIJC  24.305 350.043 202.753 1.703 12.143 35d.174 94.242 273.004 33.178 111.778  CTR 4U5 PLT  PHIJC  52.152 33.870 277.558 149.622 77.625 25.361 277.137 293.767	PS IJC 24.305 179.022 67.344 0.447 29.696 13.407 34.210 3.686 11.176 500.0  PS IJC 52.152 16.935 92.519 37.406 15.525 4.230 39.591 30.721	CJ/CJMAX 1.00000 0.426250 0.429267 0.104047 0.130492 0.090424 1.04079 0.104177 0.362941 0.031826  TR 44  CJ/CJMAX 1.060000 0.157932 0.317413 0.340839 0.336415 0.268662 0.290105	1 2 3 4 5 6 7 8 9 10	4.115 8.23C 12.346 10.461 24.691 28.507 32.922 37.C37 41.152 FREUUENC V 4.115 8.23C 12.32C 12.34C 12.4601 24.691 28.507
-U.2702192E G5 U.7137E83E G4 0.3336477F G4 -U.3100411E C4 U.4731543F C3 0.9776215L G3 U.7776901E G3 -U.2710542F U2 U.5141605E C2 U.237516GE U4 -U.924826WE U2  BLANT TORSION AT S MARMINIC ANALYSIS  -U.1722110E G3 U.2862611E U4 U.6073845E G3 U.173250F C3 U.173250F C3 U.1724305E U4 U.1609531E G3 U.777691E G3	### ##################################	CJ  4	PHI JC  24.305 358.043 202.753 1.789 12.143 35d.174 94.242 273.684 3J.178 111.778  CTR 4UD FLT  PHI JC  52.152 33.870 277.558 149.622 77.625 25.381 277.137 293.767 131.237	PSIJC 24.305 179.022 67.344 0.447 2.427 39.696 13.407 34.210 J.646 11.176 500.0 PSIJC 52.152 16.935 92.519 37.408 15.525 4.230 39.591 36.721 14.382	CJ/CJMAX  1.00000 0.426250 0.426250 0.429267 0.040447 0.130292 1.040796 0.102177 0.362941 0.031826  TR 44  CJ/CJMAX 1.06000 0.1577932 0.317213 0.340439 0.336415 0.268662 0.290103 0.004675	1 2 3 4 5 6 7 8 9 10	#.115 #.23C 12.346 10.461 20.576 24.691 28.507 32.922 37.G37 41.152 ####################################
-U.2702192E G5 U.7137883E G4 0.3336477F G4 -U.3100411E C4 U.4731543F C3 0.9476213E 03 -U.710501E 03 -U.710501E 02 0.237916GE 04 -U.9246207E 02  BLANT TORSION AT S MARMUNIC ANALYSIS  -U.1022110E 03 0.2842011E 04 0.6073745E 03 U.1022375 C3 -0.1301540E 03 U.102307E 03 U.102307E 03 U.102307E 03 U.102307E 03 U.102307E 03 U.102307E 03 U.1024307E 03 U.1024307E 03 U.7770741E 03	### ##################################	CJ  4	PHIJC  24.305 350.043 202.753 1.703 12.143 35d.174 94.242 273.004 33.178 111.778  CTR 4U5 PLT  PHIJC  52.152 33.870 277.558 149.622 77.625 25.361 277.137 293.767	PSIJC 24.305 179.022 67.344 0.447 29.696 13.407 34.210 3.686 11.176 500.0 PSIJC 52.152 16.935 92.519 37.406 15.525 4.230 39.591 30.721	CJ/CJMAX 1.00000 0.426250 0.429267 0.104047 0.130492 0.090424 1.04079 0.104177 0.362941 0.031826  TR 44  CJ/CJMAX 1.060000 0.157932 0.317413 0.340839 0.336415 0.268662 0.290105	1 2 3 4 5 6 7 8 9 10	4.115 8.23C 12.346 10.461 24.691 28.507 32.922 37.C37 41.152 FREUUENC V 4.115 8.23C 12.32C 12.34C 12.4601 24.691 28.507
-U.2702194E G5 U.7137883E G4 0.3336477F G4 -0.3100411E C4 U.4731543F C3 0.9776213E G3 U.777691E G3 -0.271054F U2 U.5141655 C2 U.237516GE G4 -U.9248204E U2  BLANT TORSION AT S HARMINIC ANALYSIS  -U.1722110E G3 0.2642011E U4 U.6073845E G3 U.1732555F C3 U.1323555F C3 U.1732555F C3 U.17324505E U4 U.10333497F U3 U.11243U5E U4 U.103531E Q3 U.7776541E U3 U.7776541E U3 U.7776541E U3	### ##################################	CJ  4	PHI JC  24.305 358.043 202.753 1.789 12.143 35d.174 94.242 273.684 3J.178 111.778  CTR 4UD FLT  PHI JC  52.152 33.870 277.558 149.622 77.625 25.381 277.137 293.767 131.237	PSIJC 24.305 179.022 67.344 0.447 2.427 39.696 13.407 34.210 J.646 11.176 500.0 PSIJC 52.152 16.935 92.519 37.408 15.525 4.230 39.591 36.721 14.382	CJ/CJMAX  1.00000 0.426250 0.426250 0.429267 0.040447 0.130292 1.040796 0.102177 0.362941 0.031826  TR 44  CJ/CJMAX 1.06000 0.1577932 0.317213 0.340439 0.336415 0.268662 0.290103 0.004675	1 2 3 4 5 6 7 8 9 10	#.115 #.23C 12.346 10.461 20.576 24.691 28.507 32.922 37.G37 41.152 ####################################

SELADE FEATHER ANGLE
HARMINIC SNALVSIS MODEL AM-56A SEIP LOGS T 365 CTR 174 FLT 438.0 TR 31

0.92942436 01	NJ NJ	CJ	PHIJC	PSIJC	CJ/CJPAX		FREQUENCY
0.39734n6f 01 +0.192560F 06 -0.87319066-02 -0.5507685F-01 0.5196065F-01 -0.023802F-02 -0.17394586-01 -0.26454605-02 -0.2059677F-01 -0.1930252F-02	-3.3774081E 01 -3.2386311F 00 -0.7443392E-01 -3.8623246F-01 -3.117436E-01 -3.117436E-01 -3.127463E-01 -3.127469-01 -0.447692F-02 3.6144973F-03	0.5480178F 01 0.304443E 00 0.74445E-01 0.1037P61F 00 0.5314642E-01 0.3274467F-01 0.3574184F-01 0.204372GF-01 0.22247CFE-01	316.474 231.143 263.307 238.016 347.863 106.361 119.081 207.208 162.760	316.474 115.571 87.769 59.504 69.573 17.727 17.012 17.188 22.468 16.276	1.000000 0.055919 0.013476 0.019975 0.009698 0.005975 0.006531 0.001766 0.004660	1 2 3 4 5 6 7 8	4.132 8.264 12.397 16.529 20.661 24.793 28.926 33.U58 37.192

SHAFT HOMENT HARMCHIC ANALYSIS MODEL AM-56A SHIP LOOS T 365 CTP 174 FLT 430.0 TP 36

AJ -U.7471172F 04	HJ	CJ 11	PHIJC	PSTJC	CJ/CJPAX	J	FREQUENCY
-0.21A401AF 04 -0.2451501E 04 0.4771742F 04 -0.1067459F 64 0.6321852F 04 0.5417055F 03 -0.2594704F 04 -0.7499417E 03 -0.1691823F 04 0.7405673F 02	0.885210AF U5 -0.1843537E 03 -0.1710289E C5 0.1700041E C4 0.811239E C4 -0.3110894E C0 -0.2337377E C4 0.764240E 03 0.1049792F 04 -0.3563009E C5	0.8844750F 05 0.245852ZE 04 0.187270ZE 05 0.160371ZF 04 0.1044338F 05 0.5816055F 03 0.344463F 04 0.1045133E 04 0.1972306F 04	91.400 104.300 204.762 131.550 52.746 359.965 272.173 133.721 148.040 280.533	91.400 92.150 94.921 32.889 10.549 59.995 31.732 16.715 16.49	1.000000 0.027765 0.211491 0.01811 0.117941 0.006568 0.039356 0.012255 U.022387 0.004572	1 2 3 4 5 6 7 8 9	4.132 8.264 12.397 16.529 20.661 24.793 28.926 33.058 37.192

PIXEN HUP PLAP AT STA 18
HARMONIC ANALYSIS MUDEL AH-564 SPIP 10C9 T 365 CTR 174 FLT 438.0 TR 1

-J.3425487F 35	Lh	CJ	PHIJC	PS IJC	CJ/CJPAX	J	FR EQUENCY
0.7648770F 04 0.1469909 04 0.1356666F 04 -0.140541F 04 0.7278193F 03 -0.44101E 03 0.1463090F 04 -0.2658161F 03 -0.313614525 02	0.2187016F 05 -0.1598650E 05 -0.4194672F 03 -0.2765171E 03 0.3209417F 03 -0.1367653F 03 0.1269903F 03 0.1269903F 03	0.2316511F 05 0.1605212F 05 C.4411F41F 04 U.16556C4F 04 U.2034177F U4 C.79C8674F 03 U.1569343F U4 C.27656C4F 03 U.1315259F 03	70.723 275.182 298.044 211.910 352.187 23.942 195.869 338.795 152.679 104.808	70.723 137,591 96.015 52.977 70.437 3.990 27.981 42.349 16.964 10.481	1.00000 0.692824 0.190410 0.071457 0.0847747 0.034135 0.021587 0.067734 0.011942	1 2 3 4 5 6 7 8 9	4.172 8.264 12.397 16.529 20.661 24.793 28.926 33.058 37.190 41.322

FIXED HUR CHORD AT STA 18
MARMIPIC ANALYSIS MODEL AM-564 SPIP 1009 T 365 CTR 174 FLT 438.0 TR 3

0.54702ale 04	AJ	C1	PHIJC	PSIJC	CJ/CJPAX	J	FREQUENCY
0-103447 #F 04 J-0-258 P 04 -0-8793354 P 04 -0-8793354 P 04 0-1051524 P 04 0-1051747 P 04 0-1104477 D 04 0-1523415 J3 -0-519497 P 03	0.1133429F C6 0.4436195F C4 -0.9696969F C4 0.3110411F 04 0.4236210F 02 0.177363F C3 -0.177363F C3 -0.2636099F C3 0.5124583E C3	0.1133473F C6 U.7645C23F 04 C.1309C24F 05 U.3237FCCF 04 C.166353F 04 C.166133F 04 C.1119137F 04 U.14152C5F 04 U.14152C5F 04 U.5587273F 03 U.6290523E 03	89.492 35.470 227.798 104.126 50.901 1.461 7.116 302.100 201.599 54.748	89.492 17.735 75.933 26.531 10.160 0.244 1.302 37.763 27.400 5.455	1.000000 0.06744# 0.115488 0.028565 0.014657 0.014657 0.012486 0.004929 0.005550	1 2 3 4 5 6 7 8 9	4.132 8.264 12.397 16.529 70.661 24.793 28.976 33.058 37.190 41.322

BLADE FLAP AT STA 176
HAPMONIC ANALYSIS MODEL AM-564 SHIP 1009 T 365 CTR 174 FLT 438.0 TR 50

AJ		· ·		C.J		PHIJC	PSIJC	CJ/CJPAX		FREQUENCY
0.96335725	33									
0.3170375	34	-0.4010550[	64	0.52381956	04	310.043	310.043	1.000000	1	4.132
-0.19143736	04	0.3757578€	C4	0.42171336	04	116.998	58.499	0.804997	2	8.264
0.14679106	04	0.11512126	C4	C.1 967C63F	04	38.048	17.689	0.356398	3	12.397
-0-12269916	33	-0.5C42603E	C3	0.51497346	03	256.324	64.001	0.099065	4	16.529
-3.9235112F	12	3.4543207E	01	" C.5 CAU718E	03	99.365	19.873	0.096603	5	20.661
-0.1248069F		2.37739975		0.39/50126		108.299	18.050	0.075878	•	24.793
-0.65132126		-0.25966658		C. 7CUBC69F	03	201.660	28.809	0.133775	7	28.926
J. 7925012F		-J.5C61028F	CB	0.94031816		327.437	40.930	0.179495		33.056
-0.90595276		0.1305640E		0.34275465	_	105.327	11.703	0.065427	9	37.190
-0.2044194F		0.50902506		0.215517CE		166.338	16.634	0.041139	10	41.322

BLADE CHORD AT STA 176
HARMONIC ANALYSIS MODEL AH-S6A SHIP 1009 T 365 CTR 174 FLT 438.0 TR 42

· AJ		AJ		CJ		PHIJC	PSIJC	CJ/CJPAX -	J	FREQUENCY
J. 28 3 JAC3F	35									
-3.27357846	04	0.26667266	05	0.26807176	05	95.856	95.856	1.000000	1	4.132
0.31757815	34	J. 1640008F	04	0.357379SE	04	27.316	13.658	0.133315	2	9.264
-0.35604745	94	-0.3446015E	04	C.4956387E	04	224.081	74.694	0.184890	3	12.397
U.2001951F	04	-J. 7024717E	03	0.2985814F	04	346.386	86.597	0.111391	4	16.529
 -0.1400/19t	04	-0.11360835	Cs	0.19706565	04	183.304	36.661	0.07349C	- 5	20.661
0.5841140F	-	-3.63047796		0.85962116	_	312.825	52.137	0.032067	6	24.793
-0.28059105		0.2409470F		0.40420616		133.962	19.137	0.015078	7	28.926
-0.4341465F		-0.4613232F		0.93528496		182.827	22.85?	0.034889		33.058
0.5294531F		-J.5545110F		C.7662102E		313.606	34.845	U.028582	9	37.190
0.61764535		0.14528616		0.3507468F		79.458	7.986	0.013085	10	41.322

READE TORSION AT STA 131.5 HARMONIC ANALYSIS MUDGE AH-564 SHIP 1009 T 365 CTP 174 FET 438.0 TR 21

	Aj.		NJ.		CJ	-	PHEJC	PSIJC	CJ/CJPAX		FR EQUENCY
3.113											
3.227	272 up	04	U. 2257344F	C4	0.3203257E	04	44.806	44.806	1.000000	1	4.132
-3.104	46656	34	3.16673498	C4	U.2300946E	04	135.550	67.775	0.743285	2	8.264
-0.468	9789F	93	-0.4036717E	02	0.4706128F	03	184.920	61.640	0.146517	3	12.397
-0.279	81415	03	-0.12674395	05 .	U.2302141E	03	183.157	45.789	J.071869	4	16.529
5.871	10330	31	j.2544729F	CI	C.40/5173E	03	16.286	3.257	0.283311	5	20.661
0.231	15295	33	-J.2973848F	C3	0.369175CF	03	309.981	51.480	0.115250	6	24.793
-0.512	2neaf	33	-J.5553903E	CZ	C.5152751f	03	186.194	24.599	0.160860	7	28.926
0.936	6+65F	33	-0.2113040F	CI	U.9309636E	03	346.481	43.36C	0.290430	-8	33.058
-0.230	8 165C	31	-0.1085517E	0.2	0.20111945	03	183.094	20.344	0.062786	9	37.190
-9.433	7927F	<b>J2</b>	-0.9C48285F	62	0.1 C03 CC 7E	U3	244.437	24.444	0.031312	10	41.322

### HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 37 V= 173 KTS n= 1.24 g Reproduced from best available copy.

BLADE FEATHER ANGLE HARMONIC MALTS IS MINEL AM-SEA SHIP 1009 T 365 CTR 202 FLT 438.0 TR 31

	AJ	:NJ	CJ	PHI JC	PSTJC	CJ/CJPAX	. 1	FP EQUENCY
<u> </u>	0.9455121f 01 0.4454800F 01 -0.6683421F 00 -0.6675379F-01 -0.6675513F-01 0.3266200F-01 -0.1077921F-01 -0.1510109F-01 0.3030444E-02	-u.3949321E C1 -J.199593UF C0 -J.6CR6/49F-C1 -J.1145625E-C1 J.1145625E-C1 J.9646811C-02 J.637863F-01 -J.3892660E-02 J.6711463F-02	0.5588852C 01 0.3285561F 00 0.65532E-01 0.1122454F 00 0.3461285F-01 0.1443503E-01 0.1833153E-02 0.4633153E-02	315.042 215.241 222.595 219.385 340.671 138.065 145.500 307.4901 70.165	315.042 107.621 74.198 54.846 68.134 23.011 20.786 37.488	1.000600 0.058788 0.016091 0.020084 0.006193 0.002583 0.003279 0.000483	1 2 3 4 5 6 7 8	4.132 6.264 12.397 16.529 20.661 24.793 2H.976 33.058
	0.22349955-02	-3.66952158-02	0.7C775C8F-02	248.418	28.892	0.001266	10	41.322

#### SHAFT MOMENT

HARMINEC ANALYSIS MODEL AM-SAA SHIP 1009 T 365 CTR 202 FLT 438.0 TR 36

AJ		A.J		C.J	PHIJC	PSIJC	CJ/CJPAX	J	FREQUENCY
-0.911/395F	34								
-0.5781907F	35	0.91921636	05	0.10655385 06	122.17C	122.170	1.000000	1	4.132
-0.33576556	94	-0.1011727E	04	U.3230184F 04	198.253	99.126	0.029746	2	8.264
-0.4790213F	04	-3.24826216	C5	C.2528412E 05	259.079	86.360	0.232832	3	12.397
-0.99439745	0 ?	0.56957C6F	C3	U.1145566E 04	150.197	37.549	0.010553	4	16.529
0.72379245	34	0.54972198	34	C.SCSSSCEE 04	37.281	7.456	0.083420	5	20.661
-0.31532345	0.3	-0.2137032E	<b>C3</b>	C.4 C93 C JCE 03	214.818	35.803	0.003765	6	24.793
-0.35012906	34	-J.9792378F		C.3733479E C4	195.204	27.886	0.034385	7	28.926
3. 35243495	-	-0.15197776	-	0.4013C35E 03	331.42C	41.427	0.003695		33.058
-U.22665C9F	33	0.7431465F	63	C.9686226E 03	103.170	11.463	0.009920	9	37.190
0.5143484F	_	J. 2641638E		0.51503616 03	2.440	0.294	0.004743	10	41.322

FIXED HUB FLAP AT STA 18 HARMGINEC ANALYSIS MODEL AH-SAA SHIP 1009 T 345 CTR 202 FLT 438.0 TR 1

160							
LA	MJ	CJ	PHI JC	PSIJC	CJ/CJPAX	4	FREQUENCY
-0.271P39AF U5					00100144	•	FREGOTIALT
-0.77016176 34	J. 2272765F 05	0.239971CF 05	104.720	108.720	1.00000		4 1 4 4
A 3611430F 34					1.00000		4.132
0.25114341 04	-J. 1416279F Q5	0.1 #33 564E 05	277.874	136.937	0.764078	2	8.264
0.13443576 03	-0.5381855E C4	C.5382 275E 04	271.116	90.372	A 334314	121	
			*****	70.312	0.274314		12.397
-0.1559485# 04	-3.1527766E C4	C.2183131F 04	224.411	56.103	0.090975	A	16.529
 J. 1764 785F C4	- 3 34164446 43					•	10.724
	-J.3615564E U3	C.1801535E 04	344.422	69.684	0.075073	5	20.661
0.67547216 33	J. 3740544F C3	C.7493625E 03	20			•	
		0.14736276 U7	25.673	4.276	0.031227	6	24, 793
-0.5707954F C3	-3.6896534F C2	0.57493468 03	186.879	26.697	A A 23 AFA	- 1	
			100.014	20.09/	0.023959	,	28.926
0.91200345 13	-J. 7924049F C3	0.12602P2E 04	321.042	40.130	0.052518	•	42 480
-0 10000100 00					0.035346	•	33.058
-0.1809C39F 33	3.629U577E C2	0.1514561# 03	160.854	17.873	0.007980	•	37-190
-0.71046711 02	0.16/5874F C3						31.170
-01110-0111 02	0. 1E134146 C3	U.1620252F Q3	112.974	11.297	0.007545	10	41.322

FIXED HUB CHORD AT STA 18 MAPMONIC ANALYSIS MODEL AM-964 SHIP LOCH T 365 CTR 202 FLT 438.0 TR 3

AJ*	-	RJ.	**			PHIJC	PSIJC	XAMLDALS"		FREQUENCY
0.5310491F	05								-	
0.1147713F	05	0.1075498F	96	C.1042036F	06	83.698	83.498	1.000000	1	4.132
J.4854+25F	04	J. 584 7536E	02	0.4854577F	04	0.490	0.345	0.044869	ž	8.264
-0.12467946	05	-U.1242165F	Ç5	0.18387326	05	226.481	75.627	0.169933	3	12.397
-3.15273731	04	0.1896786E	C4	0.2427515F	04	128.991	32.248	0.022435	4	16.529
3.56807155	03	7.1367844E	C4	0.1481115F	04	67.447	13.489	0.013648	5	20.661
0.41340025	03	-J. 1639036F	C4	0.18764C7F	04	299.132	49.855	0.017341	<b>A</b>	24. 793
-0.3341739F	03	-0.8905000E	C3	0.9511 J75E	òз	249.431	35.633	0.038790	ž	28.926
-0.8847451F	03	-Q.A.339348E	C3	0.1215E21F	04	223.307	27.913	0.011236	•	33.058
-0.200 9783F	03	-U. 251 06 56E	CS	C.3215556E	03	231.323	25.703	0.002572	i	37.190
J. 2077449F	U3	J. 4433550E	C)	0.48961386	03	64.873	6.409	0.004525	10	41.322

BLADE PLAP AT STA 176
HJEMONIC JOALVSIS MUDEL AM-56A SPIP 1009 T 365 CTR 202 FLT 438.0 TR 50

LA	- NJ	CJ	PHIJC	PSIJC	CJ/CJPAX	J.	FR EQUENCY
3.1441 de9f 04							
3.36479157 04	-1.4919086E C4	0.61241C5E 04	306.560	306.560	1.000000	1	4.132
-3.1578 7127 34	3.441 9754E C4	0.4692168E Q4	109.656	54.828	0.766180	2	R. 264
J.13585138 U4	0.1113549E C4	0.21657PF 04	30.928	10.309	0.353779	3	12.397
-3. 19389626 01	-3.30381285 63	C.475127CF 03	217.862	54.466	0.083949	4	16.524
-3.514574UF UZ	3.5357404F C3	0.53845C9E 03	95.698	19.140	0.097523	5	20.661
-0.17574425 03	7.4529380F 03	0.4858F5CE 03	111.205	18.534	0.074340	6	24.793
-0.09044435 03	J.192HJ71E 03	C. I nonchef 04	168.984	24.141	0.164765	7	28.926
2.16 29986 33	-7.9368857F C3	0.8522314E 03	280.885	35.111	0.139160		33.058
-0.93750521 02	J.149U/11E 01	C.17349C4F 03	120.768	13.419	0.028329	2	37.190
-U.3055132E U3	9.4761157E C2	C.3C92CC7E 03	171-142	17-114	0.050489	10	41.322

BLADE CHORD AT STA 174 HARMONIC ANALYSIS MIDEL AM-564 SHIP 1009 T 365 CTP 202 FLT 438.0 TR 42

AJ	AJ	C.J	PHIJC	PS IJC	KAMES/ES	J	FR EQUIPNCY
0.26959611 35							
J. FO 15462F 03	0.26741965 05	0.2A30416E 05	88.254	88.254	1.000000	1	4.132
0.3170221E 04	-U.1843962F 03	C.31756C8E 04	356.662	178.331	0.120726	2	8.264
-0.545371°f J4	-0.303 75790 04	U.6242149F 04	208.825	69.608	0.237306	3	12.397
0.31474945 04	-J.4704258F C3	0.31775CCF 04	351.486	87.872	0.120798	4	16.529
-0.16118-00 04	-0.37612821 03	0.16/3/CIE 04	192.987	38.547	0.063629	5	20.661
9.49423855 33	-3.2473353F C2	0.4548665F 03	357.112	59.519	0.014813	6	24.793
-0-64747716 03	0.3393374F C3	C. 775645CF 03	154.056	22.008	0.029488	7	29.926
0.1754EF3F 03	-J. 3222698F C3	0.37692636 03	301.241	37.655	0.014330	8	33.058
0.134/4141 03	-0.3C64019E C3	U.3344785E 03	293.644	32.627	0.012716	9	37.190
-J.1140650F 03	0.2465935E C3	0.271656PE 03	114.824	11.482	0.010329	10	41.322

BLADE TORSION AT STA 131.5 HARMONIC ANALYSIS MOREL NH-564 SHIP 1009 T 365 CTR 202 FLT 438.0 TR 21

AJ .		н		CJ		PHIJC	PSIJC	CJ/CJPAX	j	FR EQUENCY
0.9756.504	a s									
J. 2579431E	4	J. 2381737E	04	0.34000471	04	43.176	43.176	1.000000	1	4.132
-0.2041C99F	34	0.1712078F	C4	U.2664C75E	04	140.010	70.005	0.765352	2	8.264
-0.3256355F	03	J. 1137515F	CL	0.32563756	C3	179.800	59.933	0.093551	3	12.397
-3-16341675	03	-0.2212451F	C3	U.2766648F	03	233.796	58.449	0.079482	4	16.529
3.7125923F	03	0.37174635	03	0.00651465	03	27.928	5.586	0.231701	5	20.661
0.32#0469	33	-3.33882965	G 3	U.4716145F	03	314.0/3	52.346	0.135488	6	24.793
-U. ( 9 0666 CF	23	-0.3646741E	02	0.68164216		183.067	26.152	0.195826	7	28.926
J. /Hondant	-	-0.15146516		0.86173686		335-748	41.468	0.247565		33.058
-0.15 A5 949F	33	-J. 3930266E	02	0.16332C4E	03	193.316	21.535	0.046920	9	37.190
	12	-J. 6525304F		0.70456330		293.129	29.313	0.020385	10	41.322

PLADE FFATHER ANGLE HARMONIC ANALYSIS MODEL AH-564 SPIP 1009 T 365 CTR 217 FLT 438.0 TR 31

	7,1	CJ	PHIJC	PSIJĊ	CJ/CJPAX	J	FP EOUFNC
0.9763344F 01 0.4375135F 01	-0.46139185 01	0.4358442F OL	313.474	313.476			4 14
-0.3154481F OC	-0.3200556F CO	0.44938CBF 00	275.415	112.700	0.070674	1 2	4.16 8.33
-0.10201041 00	U. 2828641F-02	0.10284921 00	178.424		0.016175	Š	
-0.40169516-01	-3.9207165F-01	0.10254726 00	246.429	59.475	0.015798		12.50
0.5001999F-02	-0.7165974[-0]	C.7199423E-01	274.625	54.426	0.011307	3	20.8
3.29055946-01	J.16J4614E-C1	0.331923CF-01	28.916	4.818	0.005220	6	25.00
3.36152575-01	-3.20932566-01	0.41725346-01	330.048	47.150	0.006562	7	29.16
-0.13161865-01	J. 176 78 747-C2	0.13240056-01	172.350	21.544	0.002089	i	33.31
0.97925426-02	-J.7615313E-C2	0.12405156-01	322.129	35.792	0.001951	•	37.50
-9.73960205-32	-1.82570690-02	0.11045145-01	220.149	22.815	0.001743	10	41.6
SHAFT HOMENT HANNING AMALYSIS	MITTEL AIR-SOA SE	IP 1009 T 365	CTR 217 F	LT 438.0	IF 36		
	12.		Au. 10	00.115	C A CC I MAIN		es e mieni
-0.1028643F 05	L)	¢1	PH1 JC	PSTJC	CJ/C.IPAX	J	FREQUEN
-0.7951789F US	0.97250250 65	0.1217516E 06	130.761	130.761	1.000000	1	4.10
-U.25447 70F U4	-3.24758135 04	0.35500695 04	224.219	112.109	0.029149	2	6.3
-0.135707CF 05	-3.3714321F C5	0.3954462E 05	249.930	83.310	0.324691	3	12.5
0.43eanokf 33	J. 13892 ROF C4	0.1457250F 04	72.430	18.108	0.011965	4	16.6
0.10894305 34	U.6042957F 04	0.67#2#GIF 04	65.984	12.598	0.055692	5	20.8
-0.2535156F 0?	-0.27284628 03	0.2740212E C3	264.691	44.115	0.002250	6	25.0
-3.4710A16F J4	-9.1750532F 04	0.45401880 04	202.574	28.939	0.037443	7	29.1
-3.71000005 32	-3.4643381E C3	0.4703286E 03	260.614	32.577	0.003465		33.3
-0.5462747F U3	0.6684695F C3	0. H636755E C3	179.235	14.359	0.007091	9	37.5
0.329157AF 03	-0.1371814E C3	0.35663676 03	337.378	33.738	0.002528	10	41.6
		-IP 10C9 T 365	CTR 217 F	LT 438.0	TR 1		
		-IP 10C9 T 365	CTR 217 F	LT 438.0	TR L		
AAR MIDH E AN ALYS ES AJ		-IP 10C9 T 365	CTR 217 F	LT 438.0	TR L	=- <b>J</b>	FR FQUEN
48 91111 C 46 46 45 15  AJ  -0.7163587F 04	MODEL AH-56A SI	c1	PH I JC	PSIJC	CJ/CJMAX		
ARMINEC ANALYSIS  AJ  -0.7153587F 04  -0.1349394F 05	#00FL AH-56A SI AJ J. 219 RG 38F 05	CJ 0.25797C3E 05	PHEJC 121.539	PS1JC	CJ/CJMAX 1.000000	ı	4.1
AJ -0.7163587F 04 -0.1349314E 05 0.1638642F 04	AJ J. 219 86 38F 05 -0.218344UF 05	CJ 0.25797C3E 05 0.218558CF 05	PHEJC 121.539 274.292	PS1JC 121.539 137.146	CJ/CJMAK 1.000000 D.848772	l 2	4.1
AR MINITE ANALYSIS  -0.7183587F 04  -0.1349314E 05  0.1638642F 04  -0.2476493F 04	AUDEL AH-56A SI AU J.2198638F 05 -3.218344UF C5 -3.5752675E 04	CJ 0.25797C3E 05 0.218588CF 05 0.6263C23F 04	PHIJC 121.539 274.292 246.709	PS1JC 121.539 137.146 82.236	CJ/CJMAX 1.000000 0.848772 0.242781	l 2 3	4.1 8.3 12.5
AR MINITE ANALYSIS  -0.7183587F 04 -0.1344344E 05 0.1638642F 04 -0.7274443F 04	9.219 8638F 05 -0.218344F 05 -0.518344F 05 -0.51839144F 04	CJ 0.25797C3E 05 0.218580E 05 0.6263C23F 04 u.23011C4F C4	PHIJC 121.539 274.292 246.709 214.675	PSIJC 121.539 137.146 82.236 53.669	CJ/CJMAX 1.000000 0.848777 0.242781 0.089200	1 2 3 4	4.1 8.3 12.5 16.6
AJ -0.7163587F 04 -0.1548394E 05 0.1638642F 04 -0.247649F 04 -0.162414E 04 -0.1166442F 04	AUDITL AH-56A SI AU J. 219 8638F 05 -0.2183440F C5 -0.5752675E 04 -0.119144F C4 -0.1172020F 04	CJ 0.25797C3E 05 0.21858CF 05 0.6263C23F 04 0.23C11CcF 04 0.1572Cc3E 04	PHI JC 121.539 274.292 246.709 214.675 269.575	PS IJC 121.539 137.146 82.236 53.669 53.915	CJ/CJMAX 1.000000 0.848777 0.242781 0.089200 0.060940	1 2 3 4	4.1 8.3 12.5 16.6 20.8
AJ -0.7163587F 04 -3.1349346 05 0.1634642F 04 -0.2474443F 04 -0.1892446 04 -0.189246 04	AJ J. 219 8438F 05 -0.2183440F C5 -0.5752675E 04 -0.1472623E 04 -0.560190E 03	CJ 0.25797C3E 05 0.218588CF 05 0.6263C23F 04 u.23011C6F C4 0.1572C43E 04 0.5977451E 03	PHIJC 121.539 274.292 246.709 214.675 264.575 281.368	PS1JC 121.539 137.146 82.236 53.669 53.669	CJ/CJMAX 1.000000 0.848772 0.242781 0.089200 0.060940 0.023171	1 2 3 4 5	4.1 8.3 12.5 16.6 20.8 25.0
-0.7163587F 04 -0.1349394F 05 -0.1638642F 04 -0.167241443F 04 -0.11672414E 04 -0.1176479E 03 -0.8459443F 03	AUDITL AH-56A SI AU J.2198438F 05 -0.2183444F C5 -0.5752675E 04 -0.1372675E 04 -0.1572620 C4 -0.1572620 C4 -0.5560190E 03 0.2539645E 03	CJ 0.25797C3E 05 0.218588CF 05 0.6263C23F 04 U.23C11C4F C4 0.1572C43E 04 0.5917451E 03 C.8661177F 03	PHI JC 121.539 274.292 246.709 214.675 269.575 281.368 163.345	PSIJC 121.539 137.146 82.236 53.669 53.915 46.895 23.335	CJ/CJMAX 1.000000 0.848772 0.242781 0.089200 0.060940 0.023171 0.034350	1 2 3 4 5 6 7	4.1 8.3 12.5 16.6 20.8 25.0 29.1
ARMINEC ANALYSIS  -0.7153587F 04 -0.1349394E 05 -0.1638642F 04 -0.1692414E 04 -0.1176179E 03 -0.169443F 03 -0.169443F 03	AUDEL AH-56A SI AJ J. 219 8638F 05 -0.2183449F C5 -0.5752675E 04 -0.1309144F C4 -0.1572020F 04 -0.5800190E 03 0.2539645E 03 -1.4334933F C3	CJ 0.25797C3E 05 0.218580F 05 0.6263C23F 04 0.73011C4F C4 0.1572C43E 04 0.5977451E 03 0.68661177F 03 0.535553F 03	PHI JC 121.539 274.292 246.709 214.675 269.575 281.368 163.345 305.64C	PSIJC 121.539 137.146 82.236 53.669 53.915 46.895 23.335 38.205	CJ/CJMAX 1.000000 0.848777 0.242781 0.089200 0.060940 0.023171 0.034350 0.020916	1 2 3 4 5 6 7 8	4.1 8.3 12.5 16.6 20.8 25.0 29.1
AJ -0.7163587F 04 -0.184946F 05 0.1638642F 04 -0.184443F 04 -0.1842F 02 0.117642F 02 0.117643F 03	AUDITL AH-56A SI AU J.2198438F 05 -0.2183444F C5 -0.5752675E 04 -0.1372675E 04 -0.1572620 C4 -0.1572620 C4 -0.5660190E 03 0.2539645E 03	CJ 0.25797C3E 05 0.218588CF 05 0.6263C23F 04 U.23C11C4F C4 0.1572C43E 04 0.5917451E 03 C.8661177F 03	PHI JC 121.539 274.292 246.709 214.675 269.575 281.368 163.345	PSIJC 121.539 137.146 82.236 53.669 53.915 46.895 23.335	CJ/CJMAX 1.000000 0.848772 0.242781 0.089200 0.060940 0.023171 0.034350	1 2 3 4 5 6 7	4.1 8.3 12.5 16.6 20.8 25.0 29.1 33.3 37.5
AJ -0.7153587F 04 -0.1349394F 05 0.1638642F 04 -0.1692414E 04 -0.1176479E 03 -0.6499443F 03 -0.1028461E 03 0.3017883F 03	AUDITL AH-56A SI AJ J. 219 8638F 05 -0.2183444F C5 -0.57526.75E 04 -0.1399144F C4 -0.1572020F C4 -0.5550140E 03 -0.2539645E 03 -0.1212063F 03 -0.1212063F 03 -0.1691259F 03	CJ 0.25797C3E 05 0.21858CF 05 0.6263C23F 04 0.73011C4F 04 0.1572C43E 04 0.5977451E 03 C.88661177F 03 0.53555575 03	PHI JC 121.539 274.292 246.709 214.675 281.368 163.345 305.64C 227.685	PS IJC 121.539 137.146 82.236 53.669 53.915 46.895 23.335 38.205 25.521	CJ/CJMAX 1.000000 0.848772 0.242781 0.089200 0.060940 0.023171 0.034350 0.020916 0.006162	1 2 3 4 5 6 7 8	4.1 8.3 12.5 16.6 20.6 25.0 29.1 33.3 37.5
AJ -0.7163587F 04 -0.134934E 05 0.1638642F 04 -0.1692414E 04 -0.1892414E 04 -0.1892414E 03 -0.189343F 03 -0.1843940F 03 -0.1028461E 03 0.3143940F 03	AUDIFL AH-56A SI AJ J. 219 8638F 05 -0.2183444F C5 -0.575295 04 -0.1399144F C4 -0.1972020F 04 -0.5560190F 03 J. 2539645F 03 -1.4334933F 03 -0.1212063F 03 -0.1691259F 03	CJ 0.25797C3E 05 0.21858CF 05 0.6263C23F 04 0.73011C4F 04 0.1572C43E 04 0.5977451E 03 C.88661177F 03 0.53555575 03	PHI JC 121.539 274.292 246.709 214.575 281.368 163.345 305.64 C 229.685 330.733	PS IJC 121.539 137.146 82.236 53.669 53.915 46.895 23.335 38.205 25.521 33.073	CJ/CJMAX  1.000000 0.848777 0.242781 0.089200 0.060940 0.023171 0.034350 0.020416 0.006162 0.014410	1 2 3 4 5 6 7 8	4.1 8.3 12.5 16.6 20.8 25.0 29.1 33.3 37.5
AJ -0.7153587F 04 -0.1349394F 05 0.163864F 04 -0.1672414E 04 -0.1672414E 04 -0.1166542F 02 0.1176179E 03 -0.6459443F 03 0.3143940F 03 -0.1028461E 03 0.3017883F 03	AUDIFL AH-56A SI AJ J. 219 8638F 05 -0.2183444F C5 -0.575295 04 -0.1399144F C4 -0.1972020F 04 -0.5560190F 03 J. 2539645F 03 -1.4334933F 03 -0.1212063F 03 -0.1691259F 03	CJ 0.25797C3E 05 0.21858CF 05 0.6263C23F 04 0.73011CeF 04 0.1572C43E 04 0.5977451E 03 0.6866177F 03 0.5955579 03 0.15946CCE 03 0.3459475F 03	PHI JC 121.539 274.292 246.709 214.575 281.368 163.345 305.64 C 229.685 330.733	PS IJC 121.539 137.146 82.236 53.669 53.915 46.895 23.335 38.205 25.521 33.073	CJ/CJMAX  1.000000 0.848777 0.242781 0.089200 0.060940 0.023171 0.034370 0.02416 0.0204162 0.014410	1 2 3 4 5 6 7 8	4.1 8.3 12.5 16.6 20.8 25.0 29.1 33.3 37.5
AJ -0.7183587F 04 -0.1349394F 05 -0.1349394F 05 -0.1638642F 04 -0.2774443F 04 -0.1892414F 04 -0.117457 02 -0.117459 03 -0.143940F 03 -0.1028461E 03 0.3017863F 03	AUDIFL AH-56A SI AJ J. 219 8638F 05 -0.2183444F C5 -0.575295 04 -0.1399144F C4 -0.1972020F 04 -0.5560190F 03 J. 2539645F 03 -1.4334933F 03 -0.1212063F 03 -0.1691259F 03	CJ 0.25797C3E 05 0.21858CF 05 0.6263C23F 04 0.73011CeF 04 0.1572C43E 04 0.5977451E 03 0.6866177F 03 0.5955579 03 0.15946CCE 03 0.3459475F 03	PHI JC 121.539 274.292 246.709 214.575 281.368 163.345 305.64 C 229.685 330.733	PS IJC 121.539 137.146 82.236 53.669 53.915 46.895 23.335 38.205 25.521 33.073	CJ/CJMAX  1.000000 0.848777 0.242781 0.089200 0.060940 0.023171 0.034350 0.020416 0.006162 0.014410	1 2 3 4 5 6 7 8	4.1 8.3 12.5 16.6 20.8 25.8 29.1 33.3 37.5 41.6
AJ -0.7163587F 04 -0.1349394E 05 0.1634642F 04 -0.7874443F 04 -0.1892414E 04 -0.1864943F 03 -0.16394461E 03 0.3143940F 03 0.3143940F 03 0.3143940F 03	AUDITL AH-56A SI  AU  J. 2198638F 05  -0.2183440F C5  -0.57526,75E 04  -0.1309144F C6  -0.1572020F 04  -0.5600190E 03  J. 2539645F 03  -0.1212063F 03  -0.1212063F 03  -0.1691259F 03  T STA 18  MODIL AIM-56A SI	CJ  0.25797C3E 05 0.218558CF 05 0.6263C23F 04 0.23011CeF 04 0.1572C3E 04 0.5977451E 03 0.6861177F 03 0.535553F 03 0.15946CCE 03 0.3459475F 03	PHIJC 121.539 274.292 246.709 214.675 269.575 281.368 163.345 305.64C 229.685 330.733	PSIJC 121.539 137.146 82.236 53.669 53.915 46.895 23.335 38.205 25.521 33.073	CJ/CJMAX  1.000000 0.848777 0.242781 0.089200 0.060940 0.023171 0.034350 0.020916 0.006162 0.013410	1 2 3 4 5 6 7 8 9 10	4.1. 8.3 12.5 16.6 20.8 25.0 29.1 33.3 37.5 41.6
AJ -0.7163587F 04 -0.1549394E 05 0.1638642F 04 -0.1602414E 04 -0.1602414E 04 -0.1602414E 04 -0.1602414E 04 -0.164646 03 -0.164943F 03 -0.16494461 03 0.3143940F 03 -0.1028461E 03 0.3143940F 03	AUTOFIL AH-56A SI  AU  J. 219 8638F 05  -0.2183449F 05  -0.575020F 04  -0.1572020F 04  -0.560190E 03  J. 253945E 03  -0.1212063F 03  -0.1212063F 03  -0.1691259F 03  T STA 18  MODIL AH-56A SI	CJ  0.25797C3E 05 0.21858CF 05 0.6263C23F 04 0.73011C4F 04 0.1572C43E 04 0.5977451E 03 C.8661177F 03 0.5955575 03 0.15946CCE 03 0.3459475F 03	PHIJC 121.539 274.292 246.709 214.675 281.368 163.345 305.64C 229.685 330.733 CTP 217 FI	PSIJC 121.539 137.146 82.236 53.669 53.915 46.895 23.335 38.205 25.521 33.073	CJ/CJMAX  1.000000 0.848772 0.242781 0.089200 0.060940 0.023171 0.03430 0.023161 0.03416 0.006162 0.01410  TR 3	1 2 3 4 5 6 7 8 9 10	4.1 8.3 12.5 16.6 20.8 25.0 29.1 33.3 37.5 41.6
AJ -0.7153587F 04 -0.1349394F 05 0.1638642F 04 -0.1692414E 04 -0.116642F 02 0.1176179E 03 -0.6469443F 03 0.3143940F 03 -0.1028461E 03 0.3017883F 03	AUDITL AH-56A SI  AU  J. 2198638F 05  -0.2183440F C5  -0.57526,75E 04  -0.1309144F C6  -0.1572020F 04  -0.5600190E 03  J. 2539645F 03  -0.1212063F 03  -0.1212063F 03  -0.1691259F 03  T STA 18  MODIL AIM-56A SI	CJ 0.25797C3E 05 0.21858CE 05 0.6263C23F 04 0.730L1C4F 04 0.1577C43E 04 0.5977451E 03 C.886117F 03 0.5355575 03 0.15946CE 03 0.3459475F 03	PHIJC 121.539 274.292 246.709 214.675 289.575 281.368 163.345 305.645 229.685 330.733 CT# 217 F	PSIJC 121.539 137.146 82.236 53.669 53.915 46.895 23.335 38.205 25.521 33.073	CJ/CJMAX  1.000000 0.848777 0.242781 0.089200 0.060940 0.023171 0.334350 0.020916 0.020916 0.013410  TR 3	1 2 3 4 5 6 7 8 9 10	4.1 8.3 12.5 16.6 20.8 25.0 29.1 33.3 37.5 41.6
AJ -0.7163587F 04 -0.1349394E 05 0.163842F 04 -0.1637444F 04 -0.1672414E 04 -0.1176179E 03 0.3143940F 03 -0.1028461E 03 0.3017883F J3	AUTOFIL AH-56A SI  AJ  J. 219 86 38F 05  -0.2183444F 05  -0.1399144F 04  -0.1572020F 04  -0.5500190F 03  J. 2539645F 03  -0.1212063F 03  -0.1212063F 03  -0.1691259F L3  T STA 18  MODIL AH-56A SI	CJ  0.25707C3E 05 0.21858CE 05 0.6263C23F 04 0.23C11CEF 04 0.5717451E 03 0.6861177F 03 0.535553F 03 0.15946CCE 03 0.3459475F 03  CJ  U.9117C531F 05 0.1892843F 05 0.2257C5GE 05	PHIJC 121.539 274.292 246.709 214.675 281.368 163.345 305.64C 229.685 330.733  CT# 217 F	PSIJC 121.539 137.146 82.236 53.669 53.915 46.895 23.335 38.205 25.521 33.073	CJ/CJMAX  1.000000 0.848772 0.242781 0.089200 0.060940 0.023171 0.034350 0.0201162 0.010410  TR 3  CJ/CJMAX 1.000000 0.206396 0.245565	1 2 3 4 5 6 7 8 9 10	4.1 8.3 12.5 16.6 20.8 25.0 29.1 33.3 37.5 41.6
AJ -0.7153587F 04 -0.1349394E 05 0.1638642F 04 -0.1678464E 04 -0.1672414E 04 -0.1176179E 03 -0.1028461E 03 0.3143940F 03 -0.1028461E 03	AUDITL AH-56A SI  AU  J. 219 8638F 05  -0.2183449F C5  -0.57526.75E 04  -0.1399144F C4  -0.1572020F C4  -0.5500190E 03  J. 2539645E 03  -0.1212063F 03	CJ  0.25797C3E 05 0.21858CF 05 0.6263C23F 04 0.73C11C6F 04 0.1572C3E 04 0.597745E 03 0.5955573F 03 0.15946CCE 03 0.3459475F 03  CJ  U-917C531F 05 0.1892843F 05 0.2257C59E 05 0.3056231F 04	PHIJC 121.539 274.292 244.709 214.575 281.368 163.345 305.64 C 229.685 330.733  CT# 217 F	PS IJC 121.539 137.146 82.236 53.669 53.915 46.895 23.335 27.325 25.521 33.073 LT 438.0 PS IJC 68.219 2.971 77.712	CJ/CJMAX  1.000000 0.848777 0.242781 0.089200 0.060940 0.023171 0.034370 0.020916 0.000162 0.013410  TR 3  CJ/CJMAX 1.000000 0.206396 0.245565 0.033325	1 2 3 4 5 6 7 8 9 10	4.1 8.3 12.5 16.6 20.8 25.0 29.1 33.3 37.5 41.6
AJ -0.7153587F 04 -0.1349394F 05 0.1634642F 04 -0.1692414E 06 -0.1176179E 03 -0.1694943F 03 -0.1028461E 03 0.3143940F 03 -0.1028461E 03 0.317883F 03 EIXEN HUB CHORD A (APM ) FF ANALYS IS 0.463200F 05 0.145267F 05 -0.13442957F 05 -0.1342957F 05	AJ  J. 219 86 38F 05  -3. 218 36 40F 05  -3. 575 26 75 04  -3. 13091 46 06  -3. 13091 46 06  -0. 157 20 20 06  -0. 550 100 100 03  3. 253 96 45 03  -0. 121 206 36 03  -0. 121 206 36 03  -0. 1691 259 F 13  T STA 18  MODIL AH- 56A SI  PJ  U. 451 62 06 05  U. 1457 24 96 06  -3. 177 23 69 05	CJ  0.25707C3E 05 0.21858CE 05 0.6263C23F 04 0.23C11CEF 04 0.5717451E 03 0.6861177F 03 0.535553F 03 0.15946CCE 03 0.3459475F 03  CJ  U.9117C531F 05 0.1892843F 05 0.2257C5GE 05	PHIJC 121.539 274.292 246.709 214.675 281.368 163.345 305.64C 229.685 330.733  CT# 217 F	PS I J C 121.539 137.146 82.236 53.669 53.915 46.895 23.335 25.521 33.073 LT 438.0 PS I J C 68.219 2.971 77.302	CJ/CJMAX  1.000000 0.848772 0.242781 0.089200 0.060940 0.023171 0.034350 0.020916 0.020916 0.01410  TR 3  CJ/CJMAX 1.000000 0.206396 0.245565 0.033325 0.018943	1 3 4 5 6 7 8 9 10	4.1 8.3 12.5 16.6 20.8 25.0 29.1 33.3 37.5 41.6
AJ -0.7163587F 04 -0.11549394E 05 0.1638642F 04 -0.106244E 04 -0.1166442F 02 0.1176179E 03 -0.649443F 03 0.3143940F 03 -0.1028461E 03 0.3143940F 03 -0.1028461E 03 0.3147883F J3 EIXED HUB CHORD A 1ARMORE ANALYSIS 0.483200JF 05 0.1482676F 05 -0.1482676F 05 0.4932736F 03	### ### ### ### ### ### ### ### ### ##	CJ  0.25797C3E 05 0.21858CF 05 0.6263C23F 04 0.73011C6F 04 0.5977451E 03 C.8861177F 03 0.5355557 03 0.15346CCE 03 0.3454475F 03  -IP 1009 1 365  CJ  U.917C531F 05 G.1852843F 05 0.2257C59E 05 0.3056231F 04 0.173773CF 04	PHIJC 121.539 274.292 246.709 214.675 281.368 163.345 300.733 CT# 217 FI	PS I J C 121.539 137.146 82.236 53.669 53.915 46.895 23.335 38.205 25.521 33.073 LT 438.0 PS I J C 68.219 2.971 77.302 19.714 70.445	CJ/CJMAX  1.000000 0.848777 0.242781 0.089200 0.060940 0.023171 0.334350 0.0204162 0.014410  TR 3  CJ/CJMAX 1.000000 0.206396 0.245565 0.033325 0.018943 0.021474	1 3 4 5 6 7 8 9 10	FR FQUEN( 4.1: 8.3 12.5: 16.6 20.8 25.0: 29.1: 33.3 37.5: 41.6
AJ	### ### ### ### ### ### ### ### ### ##	CJ  0.25797C3E 05 0.21858CF 05 0.6263C23F 04 0.23011C4F 04 0.5917451E 03 C.866117F 03 0.5355575F 03 0.15946CE 03 0.3459475F 03  CJ  U-917C531F 05 CJ  U-917C531F 05 C.1892843F 05 0.2252C59E 05 U-3056231F 04 0.173723CF 04 0.1747393E 04	PHIJC 121.539 274.292 246.709 214.675 269.575 281.368 163.345 305.685 330.733  CT# 217 F	PSIJC 121.539 137.146 82.236 53.669 53.695 23.335 38.205 25.521 33.073 LT 438.0 PSIJC 68.219 2.971 77.302 19.714 70.445 45.265	CJ/CJMAX  1.000000 0.848772 0.242781 0.089200 0.060940 0.023171 0.034350 0.020916 0.020916 0.01410  TR 3  CJ/CJMAX 1.000000 0.206396 0.245565 0.033325 0.018943	1 3 4 5 6 7 8 9 10	4.1 8.3 12.5 16.6 20.8 25.0 29.1 33.3 37.5 41.6
AJ -0.7153587F 04 -0.1349394F 05 0.1638642F 04 -0.167241443F 04 -0.16724145 04 -0.1168442F 02 0.1178179F 03 -0.1624461E 03 0.3143940F 03 -0.1028461E 03 0.3147843F 03 0.3147843F 03 0.3147845F 03 0.117843F 03 0.117843F 03 0.117843F 03 0.117843F 03 0.117843F 03 0.117843F 03	### ### ### ### ### ### ### ### ### ##	CJ  0.25707C3E 05 0.218558CF 05 0.6263C23F 04 0.23011C6F 04 0.1572C3E 04 0.597745E 03 0.597575F 03 0.15946CCE 03 0.3459475F 03  -IP 1009 T 365  CJ  U-917C531F 05 0.1892843F 05 0.2257C59E 05 0.3056231F 04 0.173773CF 04 0.173773CF 04 0.194933C 04 0.10511CCF 04	PHIJC 121.539 274.292 246.709 214.675 269.575 261.368 163.345 305.64C 229.685 330.733  CTR 217 F	PSIJC 121.539 137.146 82.236 53.669 53.915 46.895 23.335 27.33.073 LT 438.0 PSIJC 68.219 2.971 77.302 19.714 70.445 45.265 13.674	CJ/CJMAX  1.000000 0.848777 0.242781 0.089200 0.060940 0.023171 0.034350 0.020916 0.006162 0.01410  TR 3  CJ/CJMAX 1.000000 0.206396 0.206396 0.206396 0.206396 0.206396	1 2 3 4 5 6 7 8 9 10	4.1 8.3 12.5 16.6 20.8 25.0 29.1 33.3 37.5 41.6

BLADE FLAP AT STA 174
HAPMONIC ANALYSIS MUDEL AM-SAA SHIP 1009 T 365 CTR 217 FLT 438.0 TR 50

AJ	NJ		PHIJC	PSIJC	CJ/CJPAX	J	FREQUENCY
0.14811658 04							
0-42379055 04	-0.5434773F O	4 0.7654L07F	04 306.723	306.923	1.000000	1	4.167
-0.20317715 04	3.58520906 0	4 0.619475#E	04 109.146	54.573	0.676116	2	0.333
0.175JOSOF 04	9.1206209F 0	4 0.212546SE	04 34.576	11.525	0.301288	3	12.500
-0.5121235E 01	-0.26241895 C	3 0.5763320	03 207.086	51.771	0.081696	4	16.667
-0.4812766 01	7.5131487F C	0.7753359F	G3 134.56C	27.712	0.107705	5	20.833
-0-4175627E 03	3.17391865 C	3 G.6407517E	03 164.538	27.423	0.090827	6	25.000
-0.5557703F J3	0.2064016 C	3 0.4 2484875	08 151.928	21.704	0.089285	7	29.167
-0.1324374F 02	-3.1587278F C			33.273	0.028232		33.333
-0.1764470F 03	9.21438665 0			14.384	0.039355	9	37.500
-0.1945586F 03	3.9272737F 0			15.464	0.030521	10	41.667

BLADE CHORD AT STA 174 HARMONIC ANALYSIS MODEL AM-564 SHIP 1009 T 365 CTR 217 FLT 438.0 TR 42

AJ		#J		CJ	PHI	JC	PSIJC	CJ/CJMAX	J	FREGUFNCY
3.24474935	45								_	
0.4460 1201	34	0.21166236	05	0.21631CBF 05	76.	100	78.100	1.000000	1	4.167
0.77124576	34	-3.11173916	64	U.7772761E 04	351.	792	175.896	0.360235	2	8.333
-0.84155200	04	-U. 4252467F	04	C.C.479C54F 04	206.	ALO	68.937	0.435905	3	12.500
J.4187234F	04	J.6197134F	Cs	0.4232844F C	. 8.	419	2.105	0.195684	4	16.667
-0.25461856	34	U. HH4 1345C	CI	U. 7742667F 04	161.	140	32.230	0.126793	5	20.833
0.40954696	03	0.41355576	C3	0.581325CE, 01	45.	349	7.550	0.026875	6	25.000
-0.115316DE	31	-J. 2143448E	C4	.C. 2143552E V		916	36.131	0.099096	7	29.167
3.16105nne	04	-0.2°37144E	C4	0.3323479F C	298.	987	37.373	0.153644	8	33.333
0.47673246	33	J. 2894958F	<b>C3</b>	C.557746FE 03	31.	268	3.474	0.025785	•	37.500
-0.3441499		0.1281U16E		0.1337375E 04			10.669	0.061827	10	41.667

HARMONIC ANALYSIS MODEL AM-564 SHIP LUCY T 365 CTR 217 FLT 438.0 TR 21

AJ		81		CJ		PHI JC	PSIJC	CJ/CJMAX	,	FREQUENCY
0.66452256	0 1									
0.29770645		0. 3220HB7F	C4	0.438602CE	04	47.253	47.253	1.000000	1	4.167
-0.1649107E	04	J. 2595630E	04	0.3088457E	04	123.155	61.570	0.704159	2	8.333
J. 2419#74L	33	0.35347416	C2	0.244555JE	03	8.310	2.770	0.055756	3	12.500
-0.45H3633F		-0.66298246	03	0.8C60C42F	33	235.341	58.835	0.103767	4	16.667
0.98617431	02	1.21913061	C3	U. 2404814E	43	65.19C	13.158	0.054 929	5	20.835
-0.84869795	0.2	-0.58458590	C3	C.5507144F	03	261.739	43.623	0.134681	6	25.000
-0.37046736		0.4C34957E		0.5477581F		132.557	18.937	0.124890	7	29.167
0.4774812F		-0.6330549E		0.4 £162CIF		352.483	44.060	0.109808		33.333
0.12660656	-	-0.12399186		0.1635128F		310.691	34.521	0.037280	9	37.500
0.44799775		-J.1409684F		0.1479159E		287.630	28.763	0.033724	10	41.667

BLAME FRATHER ANGLE
HAFMONIC ANALYSIS PODEL AM-56A SPIP 1009 T 408 CTR 247 FLT 503.0 TR 31

AJ		CJ	PHIJC	PSIJC	CJ/CJHAX	J	FREQUENCY
3.4317347E J1							
0.3826372E OL	-0.2217057E_01	0.442484E UL	329.531	329.931	1.00000		4.115
-U.1Co25246 00	-0.1474U54E CO	0.18203316 00	234.289	117-144	0.041139	2	8.230
-J.4421737E-01	0.45392786-02	0.44698006-01	171.507	57.196	0.010102	3	12.346
3.4306C84E-02	-0.2939537E-01	0.2576909E-01	270.334	69.583	0.006714	4	16.461
-0.06543336-02	0.3424252E-GI	0-34455146-01	101.319	20.264	0.007842	5	20,576
0.1122059E-01	0.69834636-02	0.1321625E-01	31.897	5.316	0.002947	•	24.691
-0.45636458-02	-0.1373013E-QL	0.1459987E-01	250.124	35.732	U. CO 3300	7	26.807
3.1284904E-01	2. 15079006-02	0.15413456-01	326.490	40.811	0.003483		32.922
-0.12945526-01	-C . OARS4E-CS	G. 1304034E-01	186.914	20.768	0.002947	9	37.037
C. SZOL STCE-UZ	44632E-C1	0.1576505E-01	61.968	6.197	0.004467	10	41.152

SHAFT HOMENT HAPHONIC ANALYSIS PODEL AH-56A SHIP 1009 T 408 CTR 247 FLT 503.0 TR 36

Marian Maria		-	čJ		PHIJC	PSIJC	CJ/CJMAX	· " <b>J</b> "	FREQUENCY
-0.347EC44E 04									
-0.4208341E 05	0.1018633E	C6	0.11929186	06	121.362	121.362	1.000000	1	4.115
-0.12485636 04	-0.26612710	04	0.2956815E	04	244.144	122.082	0.024786	2	8.230
-0.4322316E J4	-0.93431 88E	C4	0.1029454E	05	245.174	81.725	0.086297	3	12.346
-0.741 3 350E 03	0.91423856	63	0.1192808E	04	129.463	32.416	0.009999	4	16.461
0.75464846 04	U. 2948466E	04	0.81203598	04	21.670	4.334	0.068371	5	20.576
0.44551356 32	0.11076366	03	0.153955CE	03	76. 709	12.765	0.001626		24.691
-0.3(25)200 04	-U. 221/054E	12.5	G. 3 /5 397CE	04	216.200	30.886	0.031469	7	28.807
-0.1771576t 04	0.81531716		0.15501886	34	155.287	19.411	0.016348		32.922
0.2355365E 02	-0.1565 830E		0.15660C7E	04	270.862	30.046	0.013128	9	37.037
0.21666436 03	-0.86821516	-	C. 9142598E		203.709	28.371	0.007664	10	41.152

PITCH LINK TENSION
HARMONIC ANALYSIS MODEL AM-56A SHIP 1009 T 408 GTR 247 FLT 503.0 TR 11

AJ		CJ	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
-0.3C92356E J3							
-0.2394C74E 03	-0.1177041E 03	0.24713726 03	206.143	206.143	0.840442	1	4.115
0.15/31486 03	-0.2396946€ 03	0.3104651E 03	309.460	154.730	1.000000	2	8.230
-0.1291221E 02	-0.3278607E 02	0.3523700E 02	248.504	02.435	0.113498	3	12.346
-0.26732018 02	-0.44523706 62	G.8702917E 02	256.219	64.055	0.280319	4	16.461
-0.7634787E 02	0.9874066E 01	0.7698434E J2	172.627	34.525	0.247965	5	20.576
-0.1296426E 02	0.3937418E C2	0.4143355 02	108.225	18.037	0.133521	•	24.691
-0.4E647536 OL	-0.2189940E G2	C.2243341E 02	257.476	36.782	0.072257	7	28.807
-3.1734031E 01	-0.3219047E 01	0.3642245E UL	242.105	30.263	0.011732		32.922
-0.111 #447E 01	-0.4289042E CO	0.1147865E OL	200.981	22.331	0.033858	9	37.037
0.154 824 16 02	0.13714138 02	0.23825236 02	35.143	3.514	0.076743	10	41.152

FIXED HUB FLAP AT STA 18 HARMONIC ANALYSIS MODEL AM-56A SHIP 1009 T 408 CTR 247 FLT 503.0 TR 1

TITLE AVEL	BJ	£3	PHIJE	PSIJC	CJ/CJHAX	·j	PREGUENCY
-0.10242298 09							
-0.731CC94E 04		C-5451406 02	106.189	106.189	1.000000		4.115
3.472541JE 04	-0.17443048 65	0.1844392E 05	284.804	142.402	0.705347	2	8.230
0.756472vE U	-0.4628747E 03	C-9234027E 03	324.930	104.977	0.035233	3	12.3'6
0.2142467E 04		0.2439273E_04	207.220	51.805	_ 0.091888		16.461
0.235 GO TOE N		0.7171012E 02	72.328	14.466	0.002964	5	20.576
0.6525504E 01	-0.2435510E C3	0.4564943E 03	339.544	56.591	0.026574	•	24.691
0.1538492[ 0]	-J.2415376E 03	0.34845UZE 03	236.740	33.427	0.013290	7	28.807
0.5CL4797E 01	-0.40540091 03	0.7402522E 03	304.647	38.706	0.029987	•	32.922
-0.14524546 03	-0.3003252E GJ	0.3428040E 03	241.174	26.797	0.013074	•	37.037
0.16493348 0	0.2841056E 02	0.1673629E 03	350.226	35.023	0.004383	10	41.152

FIXED HUR CHORD AT STA 18 HARMONIC ANALYSIS PODEL AM-56A SHIP 1009 T 408 CTR 247 FLT 503.0 TR 3

AJ	- UJ	-	CJ		PHIJC	PSIJC	CJ/CJMAX	7	FPEQUENCY
0.3497213E US									
0.41046728 04	0.10611416 0	•	0.10819208	04	07.026	87.826	1.000000	1	4,115
-3. 755 Ju24E 34	O. GOJJUCSE O	4	0.10464916	05	139.468	69.734	0.096725	2	8.230
-0.41252666 04	-0. 7253547E O	4	0.95603476	04	226./14	75.571	0.092062	3	12.346
0.1235c99E 04	0.3649917E 0	3	0.1289901E	04	10.669	4.167	0.011922	4	16.461
J. 1459135E J4	-U. >363584E C	3	0.1554592E	04	339.817	67,963	0.014369	5	20.576
0.5525CG2F 03	-0.1040853F 0	4	0.1178437E	04	297.959	49.660	0.010892	6	24.691
0.74552336 02	0.3516350E 0	3	0.30J2815E	03	77.400	11.057	0.003330	7	28.807
U.1570871E 04	0.3878928E C	3	0.1614053E	04	13.870	1.734	0.014955		32.922
-0.16567e3E 04	-0. 2216018E G	3	0.1C7J876E	04	191.909	21.323	C. CU9926	9	37.037
0.76172416 32	J. 4486506E 0	-	0.45413526		81.110		0.004197	10	41.152

BLADE FLAP AT STA 130.5 HAPMONIC ANALYSIS PEDEL AM-56A SHIP 1009 T 408 CTR 247 FLT 503.0 TR 19

										~
AJ		u.J		CJ		PHIJC	PSIJC	CJ/CJMAX		FREQUENCY
0.516E145E	04									
U. 4410565E	04	-0.3293621E	C4	0.5504957E	04	323.252	323.252	1.00000	1	4.115
-G. 1485643E		0.47481136	04	0.45751098	04	107.374	53.687	0.903751	2	8.230
3.19739166	-	0.28#6554E	03	0.3498616E		55.653	18.551	0.063554	3	12.346
0.45067746	03	-0.1413304E	03	0.90201836	03	350.986	87.746	0. 163856	4	16.461
-U. 5028684E	O's	-0.6431282E	02	0.56653056	03	186.518	37.304	0.102913	5	20.576
-3.2268151F		J. 3541116E		0.4205256E	03	122.641	20.440	0.076340	6	24.691
-0.74756736	10	-0.204962UE	03	0.2C51056E	03	267.855	38.265	0.037258	7	26.507
0.2441JSeE	33	0.49456775	01	0.26432840	33	2.165	0.271	0.048016		32.922
0.3993217E	02	-C. 1000475E	C3	G. 1C77242E	03	291.759	32.418	0.019568	. 9	37.037
0.4408COZE		-0.1345140E	03	U.158630CE	03	302.008	30.201	0.028816	to	41.152

BLADE FLAP AT STA 205 HARMCNIC ANALYSIS PEDEL AH-56A SHIP LOCO T 408 CTR 247 FLT 503.0 TR 20

- NJ	CJ	PHI JC	PSIJC	CJ/CJMAX	<u>j</u>	FREQUENCY
0.50762198 04	0.5835605E 04	119.030	119.030	1.000000	1	4.115
-0.2188154E 04	0.2392907E U4	293.475	146.937	0.412172	2	8.230
-0.1151535E C4	0.2720971E 04	205.037	68.346	0.468680	3	12.346
0.3460833E 03	0.55578136 03	38.513	9.628	0.095732		16.461
-0.2375023E 03	0.2378065E 03	267.102	53.420	0.040961	5	20.576
0.9362358E 02	0.1061165E 03	121.351	20.225	0.018278	6	24.691
U. 1570557E CZ	0.1728362E 02	11.786	1.684	0.013312	7	28.807
U. 2212733E 03	0.2417339E 03	06.257	8.282	0.641638		32.922
J.2003148E 02	C.9771936E 02	11.829	1.314	0.016832	9	37.037
-0.9559390E 02	C. 160/22CE 03	323.503	32.350	0. C2 7684	10	41.152
	0.5076219E 04 -0.2160154E 04 -0.1151535E C4 0.3460833E 03 -0.2375023E 03 0.9062358E 02 U.1570557E 02 U.2212733E 03 0.2003168E 02	0.5076219E 04	0.5076219E 04	0.5076219E 04	3.5376219E 04	0.5076219E 04

BLADE FLAP AT STA 235 HARMONIC ANALYSIS PODEL AM-96A SHIP 1009 T 408 CTR 247 FLT 503.0 TR 4

AJ	BJ T	CJ	PHI JC	PSIJC	CJ/CJMAX		FREQUENCY
-0.21110510 04							
-0.6516514E 03	0.30510536 04	0.31199066 04	102.056	102.056	1.000000	L	4.115
0.1292402E 33	0.5535953£ C2	0.14061606 03	23,184	11.592	0.045071	2	8.230
-0.2436314E 04	-0. 9132324F G3	0.257971GE 04	197.847	45.949	0.955064	3	12.340
6.43eECouE 03	-0.28432676 03	0.52119248 03	326.939	81.735	0.167054	4	16.46
-0.30055136 03	-0.2123217E 03	0.3e79832E 03	215.239	43.048	0.117947	5	20.576
-0.2518423E 03	0.35257286 03	0.4332805E 03	125,538	20.923	0.138876	•	24.69
-0.2646544E 03	-0.3370558E C3	0.394J166E 03	238.839	34.116	0.126291	7	28.80
0.22743446 03	-0.1794174E C3	0.2846841E 03	321.731	40.216	0.092850		32.92
0.18724828 02	-0.1309941E C3	0.1323277E 03	274.135	30.904	0.042414	9	37.03
-2-1152543E 03	0.11299116 03	0.1614334E 03	135,578	13.550	0.051742	10	41.15

BLADE FLAP AT STA 270 HARMONIC ANALYSIS PUDEL AM-SOA SPIP 1009 T 408 CIR 247 FLT 503.0 TR 26

AJ	8.3	CJ CJ		PHI JC	PSIJC	CJ/CJMAX	_ ·	FREQUENCY
0.22340156 36								
0.10721156 04	0.7428176E C	3 C. 1304304E	04	34.716	34.716	0.510214	1	4.115
0.96475896 02	0.57949CZE O.	3 0.5476313E	03	80.336	40.148	0.229446	2	8.230
-J. 241101JE J4	-0.8497713E C		04	199.415	66.472	1.000000	3	12.346
-0.2425157E 02	-J. 2593613E 0		03	264.214	66.053	0.101050	4	16.461
0.14777446 01	-0.3382014E 0	C. 3342044E	03	270.250	54.050	0.132298	5	20.576
-U.1567214E J3	U. 1102852E 0.			144. 865	24.144	0.074945	•	24.691
-0.2351306E 03	-0.3373640E C			235.125	33.569	0.160859	7	28.807
0.2259402E J3	-J. 3350/3JE C			303.944	37.993	0.150202		32.922
0.4364197F 02	-0.38804C3E C			262.164	31.352	0. 1552 79	9	37.037
-0.0C4126UE 02	-0.1676369E C.			244.374	24.437	0.072730	10	41.152

READE CHORD AT STA 103 HARMONIC ANALYSIS MODEL AM-56A SHIP 1009 T 408 CTR 247 FLT 503.0 TR 17

AJ			~ •	· cJ		PHIJC	PSIJC	CJ/CJMAX	- J	FREQUENCY
J. 2033122E	26									ID-SCORE.
-0.4435688E	04	U. 5384794E	05	0.5403070E	05	94.713	94.713	1. 000000	1	4.115
-0.27762CJE	04	U.229#818E	04	Q.3605964E	04	140.394	70-197	0.066739	ž	8.230
-0.65490001	04	-0.3577451E	C4	C. 7806430E	04	207.274	69.091	0-144491	3	12.346
0.2715025E	04	0.70/5251E	03	0.26057016	04	14.606	3.652	0.051928	4	16.461
J.358C>27E	03	0.142J3e5E	03	0.422635GE	33	19.636	3.924	3.007622	5	20.576
0.5CLe206E	33	-0.7899434E	C3	C. 935 /529E	03	302.416	50.403	0.017319	6	24.691
-0.6C38472E	03	-0.4345354E	C3	G.743943EE	03	215.739	30.820	G. C1 3769	7	28.807
-0.16451556	04	-J. 1202163E	04	0. 1619491E	04	227.928	28.441	0.029974		32.422
0.55455216	03	-0.1197934E	C3	C. 1002138E	04	353.135	39.237	C. C18548	9	37.037
U.2506C76E	31	J. 2542534E		0.35659456		45.414	4.541	0.030366	10	41.152

BLADE CHORD AT STA 174
MARMONIC ANALYSIS MODEL AM-56A SHIP 1009 T 408 CTR 247 FLT 503.0 TR 42

AJ		d.J		- cj		PHIJC	PSIJC	CJ/CJMAX	j	FREQUENCY
0.1834e3CE	05									
-0.39878256	04	0.2751632E	CS	0.2780379E	05	98.246	98.246	1.00000	1	4.115
-0.89650266	03	U.9039950€	C3	0.1273479E	04	134.776	67.384	0.045802	2	8.230
-0.51602C7E	34	-0.12433520	C4	G. 5307895E	04	193.548	64.516	0.190905	3	12.346
0.14436416	04	0.2185054E	C3	0.16565448	04	6.759	1.690	0. 066773	4	16.461
U.1485877E	U3	U.7371406E	C3 "	0.751967CE	03	78.603	15.721	0. CZ 7045	5	20.576
-0.16367916	03	0.5466843E	02	0.1887686E	03	163.166	27.194	0.006789	6	24.691
-0.35612740	03	0.34583676	03	0.4564170E	03	135.840	19-406	0.017854	7	28.607
-0.91J5642E	03	-0.97455176	C3	G.1233747E	04	226.944	28.368	0.047970		32.922
0.1537259E	04	0.2941943E	C3	0.1565155E	04	10.834	1.204	0.056294	9	37.037
U. 445C456E	03	-0.1487001F	03	0.48/2>59E	03	335.977	33.598	0.017525	10	41.152

SLADE CHORD AT STA 235
HARMONIC ANALYSIS PODEL AM-56A SHIP 1009 T 408 CTR 247 FLT 503.0 TR 22

AJ	-	87		CJ		PHIJC	PSIJC	CJ/CJMAX	1	FREQUENCY
-0.2701514E	US								-	
-3.1055180é	34	J. 7727#13E	04	0.7799516E	04	97.775	97.775	1.000000	1	4.115
-0.1C05868E	34	0.10634688	04	0.1461420E	04	133.476	66.738	0. 18 7437	2	8.230
-J.1154477E	04	-0.21043598	C3	0.1173588E	04	140.354	63.451	0.150449	3	12.340
J.1042035E	04	-0.4743245E	03	J.1181432E	04	336. 329	84.062	0.151475	4	16.461
-0.4405e1CE	US	0.275365UE	CJ	0.51453816	03	147.993	24.549	0.066612	5	20.576
-0.7C83255E	02	0.1769784E	63	0.1924858E	03	111.592	18.599	0.024679	6	24.691
-0.4575C74E	02	-0.12981666	C3	0.137655EE	03	250.570	35.746	0.017649	7	28.00
-0.5563176E	03	-0.1010256	0 3	C. 97JUJBJE	03	232.252	29.031	0.124470		32.422
0.3645303E	33	-0.1928434E	03	0.412395CE	03	332.121	36.932	0-052874	9	37.031
-0.549556JE	02	-U.70995J3E	CZ	0.8478015E	02	232.257	23.226	0.011511	10	41.152

BLADE TORSION AT STA 131.5 MARMONIC ANALYSIS PODEL AN-SOA SPIP 1009 T 408 CTR 247 FLT 503.0 TR 44

AJ			- CJ		PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
U. 733C781E 0	13								
J.23230J2F 3	14	0.2516277E 04	0.3424048E	04	47.309	47.309	1.000000	ı	4.115
-0.13242256 0	14	0.1070526E 04	C. 1702820E	04	141.047	70.524	0.497022	2	8.230
-0.3212471E C	13	-0.4040414E 03	0.51621536	03	231.512	77.171	0.150674	3	12.346
-0.3194760E 0	3	0.2008486E 03	0.37736656	03	147.043	36.961	0. 110146		16.461
0.963354UE 0	13	0. 20884 C2E 03	C. 4271799E	0.5	13.017	2.603	0.270627	5	20.576
0.24336586 0		-0.57469266 03	0.62410606	03	292.453	44.825	0. 1821 65	6	24.491
-0.3317474E 0	13	-0.10-19466 03	0.34772616	03	197.437	28.205	0. 101495	7	28.807
U. 5581563E 0		0.3705243E CZ	0.5593448E	03	3.798	0.475	0.163274		32.922
J.2338294E J		-U.3449205E 02			351.609	39.068	0.068989	9	37.037
0.1737525E 0		-0.1223955E C3			324.437	32.484	0.062035	10	41.152

RLADE FEATHER ANGLE HARMONIC ANALYSI'S MODEL AM-56A SHIP LOCO T 408 CTR 306 FLT 503.0 TR 31

A.J	B.J	CJ	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
0.02005186 01							
0.45244CCE UL	-0.1690132E 01	0.4829775E 01	339.516	339.516	1.000000	1	4.132
-3-5243300E-02	-0.1414799E 00	0.14157456 00	267.861	133.931	0.029314	2	8.264
-0.7234-156-01	0.345J254E-01	0.81063698-01	153.213	\$1.071	0.014784	3	12.397
-C.1C10240E 00	-J.4806053E-01	0.1124157E 00	205.311	51.328	0.023276	4	16.529
-0.2724642E-01	0.51620e2E-C1	0.5854787E-01	117.736	23.547	0.012122	5	20.661
0.12078446-01	0.13305126-61	0.18378496-01	46.362	7.730	0. 504805	•	24.793
3.13431986-32	-0.2559940E-02	C.2509730E-02	298.383	42.626	0.000602	7	28.926
0.47335941-04	-0.2343429E-02	0.23443506-02	271.646	33.956	C. 0004#5	•	33.054
-U.3275472E-02	-0.3724152E-C1	C. 373#53CE-01	264.973	29.441	0.337741	Ā	37.190
-0.634474/6-02	-0.1366663E-CI	C. 1600244E-01	230.653	23.865	0.003313	_10	41.322

SHAFT HOMENT HARMONIC ANALYSIS MODEL AM-SOA SHIP 1300 T 408 CTR 306 FLT 503.0 TR 36

LA		- To J			PHIJC	PSIJC	CJ/CJMAK		FREQUENCY
-0.3712327E	04								
-0.116474CE	06	0.1084122E	06	0.1592708E 06	137.103	137.103	1.000000	1	4.132
-J.1778443E	0+	-0.1619353E	04	0.25442236 04	225.451	112.025	0.015974	2	8.264
-0.162514JE	JS	-0.4961043E	04	Q. 17679481 05	203.187	67.729	0.111003	3	12.397
-0.9392534E	03	0.2334020E	03	0.96792956 33	166.018	41.505	0.004077	4	16.529
3115542116	04	0.1068627E	04	0.22434656 04	29.021	5.804	0. 014089	5	20.661
-C.1182CSGE	03	-U. 3022402E	0.3	0.32467676 03	246.574	41.429	0. 002039	4	24.793
-3.1274265E	34	-0.4633000E	04	G.4403211E 04	254.566	36.367	0.030158	7	28.926
-0.11455608	04	-0. 4656665 [	LO	0.12400006 04	202.045	25.256	0.007790		33.058
-0.245/43/6	03	0.5626736E	03	0.42400716 03	115.616	12.846	0.003918	•	37.190
-0.54150oJE	03	U. 41 184 38E	TH 7	0. et15353E 03	142.611	14.261	0.004279	10	41.322

PITCH LINK TENSION HARMONIC ANALYSIS PODEL AM-SAA SHIP 1009 T 406 CTR 306 FLT 503.0 TR 11

-	AJ		ij.		73	-	PHIJE	PSIJC	CJ/CJMAX	1	FREQUENCY
	-0.6115670E	03									
_	-0.16025828	03	-U. 1079616E	03	0.23215096	03	226.344	226.344	0.733660	1	4.132
	J.2515eJIE	33	-0.2134565E	03	0. 32991856	03	314.604	159.842	1,000000	2	8.264
	-0.1131250E	03	0.9149756E	Cl	G.1134949E	03	175.376	58.459	0. 344008	3	12.397
	-0.4179ClaE	JI	-0. 1798 756E	02	0.7839923E	02	266.936	66.734	0.236723	4	16.529
	-0.546 4577L		-0.3474435E	02	0.1C0#629E		200.150	40.030	0. 305721	5	20.661
	J. 2753139E	02	0.2062746E	CZ	C. 3440318E	02	36.840	6.140	0. 104278	•	24.793
	0.4544918E	10	0.29334676	02	8. JC05983E	02	77.424	11.061	0.091113	7	20.926
	0.05261236		U. 2986844E	02	0.3068045E	02	76.949	9.619	0.092995		33.058
	0.40812646	JL	-0. 4812064E	CI	0.1C47429E	02	295.499	32.833	0.032461	9	37.193
	-0.4333157E		-U.1884556E		0.4337252E		182.440	14.249	0.013146	10	41.322

FIXED HUB FLAP AT STA 18
HARMONIC AMALYSIS PEDEL AM-56A SHIP 1009 I 408 CTR 306 PLT 503.0 TR 1

AJ		ČJ.	PHIJC	PSIJC	CJ/CJMAX		FREQUENCY
J.1418528E 05							
-0.21505CCE 05	0.24524336 0	5 0.32617608	05 131.247	131.247	1.C00000	1	4.132
0.03026746 04	-0.19663146 0	5 6.20857988	05 287.586	143.743	0.439470	Ž	8.264
-0.1074342E 04	0.2138645E C	4 0.23693106	04 117.104	39.035	0.072630	3	12.397
-0.25575976 04	-0.2431155E C	4 0.38284946	04 219.417	54.854	0.117387	4	16.529
-0.21141116 04	-G-4790781E C	3 0.216/7136	04 192.764	38.554	0.066458	5	20.061
-0.1233340E 03	-0.1188624E Q	4 0.12310146	04 254. 782	42.464	0.037745		24.793
0.259374CE 03	-0.3596670E C	3 0.4434368E	03 305.797	43.665	0.013595	7	28.926
3.416248JE 33	0.8417247E 0	3 0.1230096E	04 47.530	5.941	0.037063	À	33.050
-0.2C4411¿E 03	0.6210010E C			14.122	0.004550		37.190
0.35974786 02	0.4921565E O			4.586	0.002997	10	41.322

FIXED HUR CHORD AT STA 18 HARMONIC ANALYSIS PODEL AM-SAA SPIP 1009 T 408 CTR 304 FLT 503.0 TR 3

AJ	NJ.		ÇJ		PHIJE	PSIJC	CJ/CJMAX	J	FREQUENCY
0.26455846 05									
0.4475093E 05	0.88571 CAE	05	0.9923444E	05	43.195	61.195	1.000000	1	4.132
-0.44088596 04	0.42260236	04	C. 1120229E	05	146.507	73.253	0.113693	2	8.264
-0.5111172E U4	-0.1037114E	05	0.1156220E	05	243.765	01.255	0.116514	3	12.397
O. Clediet of	0.57276CTE	03	0.581 7024E	03	19.941	19.985	0.005862	4	16.529
0.2501C40E 02	-0.1658821E	64	0.1654U. BE	04	270.865	54.177	0.016/18	5	20.561
-0.2010433E 03	-0.1460778E	64	0.1472904E	04	263.097	43.849	0.016858	•	24.793
U.4148223E 03	-0.2546715E	03	C.4501731E	03	320.498	46.957	0.004940	7	28.926
0.92551405 03	J.680.354E	C3	0.11521906	04	36.221	4.528	0.011611		33.056
-0.4742551E 03	0.7902164E	02	0.48079356	-	170.540	18.949	0.004845	9	37.190
Q. 1+32361E 03	0.29557798		0.75905JBE		21.667	2.169	0. COBOAU	10	41.322

BLADE FLAP AT STA 138.5 HAPMONIG AMALYSIS PCDEL AH-56A SHIP 1009 T 408 CTR 306 FLT 503.0 TR 19

AJ		BJ		CJ		PHIJL	PSIJC	CJ/CJMAX	J	FREQUENCY
0.1C63C14E	05									
6.5405734E	34	-0.3580337E	C4	0.44672236	04	326.502	324.502	1.000000	1	4.132
-J.1815157E	04	0.45840COE	C4	0.49303136	04	111.603	55.801	0.760004	2	8.264
0.13#4094E	03	-0.2653944E	00	0.13860946	03	359.890	119.963	C. 021367	3	12.39
0.13405306	34	0.479495LF	C3	0.14237058	04	19.082	4.920	0.219463	4	16.52
0.10495336	J3 "	-0. 37566C7E	02	0.14921296	03	347.173	69.435	0.026084	5	20.66
0.253C160E	03	0.59325436	03	0.6449575E	03	66.902	11.150	C. 099420	•	24.79
0.27772C4E	03	0.2714852E	C3	C. 348+548E	03	44.392	6.342	0.059911	7	28.92
-0.210.3836	31	0.5926575E	03	0.6288425E	03	104.532	13.691	0.096936		33.05
0.16455296	03	-0. 8841940E	02	C. 1390246E	03	320.292	35.588	0.021431	9	37.19
0.47458226	02	-0.1554745F	01	0.47483656	02	358.124	35.812	0.007320	10	41.32

BLADE FLAP AT STA 205 MARMONIC ANALYSIS PODEL AM-SOA SHIP 1009 T 408 CTR 306 FLT 503.0 TR 20

AJ		6.3		CJ		PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
-C.5603671E	04									
-0.35738506	34	0.4076324E	04	0.7260383E	04	123. 184	123.184	1.000000	1	4.132
0.549197UE	03	-U.1942316E	04	0.21618436	04	294.044	140.022	0. 247759	Ž	8.264
-0.1455552E	04	-U. 8454520E	C3	C.1805947E	04	204 . 360	69.453	0.259759	3	12.397
J.625054JE	33	0.6475415E	C3	C. TCOUOSIE	03	46.012	11.503	0.123961	4	16.529
0.41645616	03	-0. 9602637E	02	0.42742246	03	347.017	69.403	0.050871	5	20.661
0.240te53E	0.5	0.51681426	03	0.57013236	03	65.030	10.438	0.074522	•	24.743
0.4768652F	02	0.368+211E	C3	C. 3714944E	03	82.645	11.804	0.051167	7	28.926
-U.1440784E	U3	0.1066955	63	0.1806JL6E	03	142.916	17.865	0.024875		33.054
-3.2 C4667CE	32	0.3146544E	CZ	Q. 3775565E	32	123.551	13.728	0. C05200	9	37.190
-0.3431749E	02	U. 1456326E	02	0.3727972E	02	157.005	15.701	0.005135	10	41.322

BLADE FLAP AT STA 235 HARMCNIC ANALYSIS POUBL AH-SEA SHIP 1009 T 408 CTR 306 FLT 503.0 TR 4

	Tj		CJ		PHIJC	PSIJC	CJ/CJMAX	7	FREQUENCY
0.126425E 03	0.4489652E	C4	0.45583956	04	99.963	99.963	1.000000	1	4.132
0.1531429E J3	-0.0346033E		0.1744006E	03	331.410	165.705	0.038241	2	8.264
-U.2C14387E 04	-C. 94005 74E	C3	0.22232706	04	205.036	68.345	0.487733	3	12.397
0.119 1726E 04	0.62122666	03	0.1347475E	04	27.454	6.863	0. 295603		16.529
J. 4116029E 03	-0.4270486E	C3	0.59311656		313.945	42.789	C. 130115	5	20.661
0.16457516 03	0.72693196		0.1799146E		23, 831	3.972	0.039469	•	24.793
0.4554275E 03	-0.9079811E		0.4460200E	-	347.760	49.680	0.102233	7	20.926
0.25582456 03	C. 7806917E		0.0215386E		71.857	0.962	0.190552	•	33.05#
0.744045JE 02	-0.5876389E		0.94815436		321.700	35.744	C. C20800		37.190
0.36852236 02	0.88107C4E	02	0.9335260E	05	70.701	7.070	0.020479	10	41.322

BLADE PLAP AT STA 278
MARMONIC MALYSIS PODEL AM-SEA SHIP 1000 T 408 CTR 306 PLT 503.0 TR 26

AJ	8,7	CJ .	PHIJC	PSTJC	CJ/CJMAX	J	PREQUENCY
0.43711946 04							
0.46126636 03	0.2172476E C4	0.23879546 04	45.473	45.473	1.000000	1	4.132
-0.2070471E 03	0-10101168 04	0.10311275 00	101.586	50.793	0.431804	ž	8.264
-0.14123936 04	-0.98516218 03	0.14495306 04	211.425	70.475	0. 791279	3	12.397
0.49575542 33	0.1586124E 03	0.52040996 03	17.761	4.440	0.218015	4	16.529
0.36406136 03	-0.3575898E 03	0.5103045E 03	315.514	63.103	0.213700	5	20.661
0-41567326 02	-0.2613361E C3	0.29292366 03	200.160	47.695	0.122667	•	24.743
0.5455985E 03	-0.4828555E C3	Q. 7280744E 03	318.512	45.502	. 0. 305231	ž	24.926
0.5390156E 03	0.4102744E 03	0. 4773955E 03	37.277	4.440	0.263672	•	33.058
0.22124891 43	-0.1643#39E C3	C. 2740522E 03	322.729	35.859	0.116440	•	37.190
0.36850875 02	0.12677486 03	0.122033JE 03	73.775	7.374	0.055291	10	41.322

BLADE CHORD AT STA 183 HARMONIC AMALYSIS PODEL AH-SAA SHIP 1009 I 408 CTR 306 FLT 503.0 TR 17

AJ	8.3	CJ	PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
0.1405224E 06							
0.13230046 05	0.4551832E C5	0.47404478 05	73.783	73.783	1.00000	1	4.132
-0.3359524E 04	0.2759227E 04	0.43478036 04	140.603	70.302	0.091708	2	8.26
-0.7593789£ 04	-0.6092851E 04	0.1COSTORE 02	217.315	72.438	0.212028	3	12.39
0.244334UE 0+	0-10001CZE 04	0.20240568 04	20.875	5.219	0.059679	4	16.52
-0.1432422E 03	0.1230712E C4	0.124 . 4918 04	97.556	19.511	0.026189	5	20.66
-0.4275274E 03	-0.2779156E G3	0.5094.458 03	213.026	35.504	0.010757	•	24.79
J.4552C90E 03	-0.1454661E 04	0.15244956 04	207.321	41.046	0.032254	7	28.42
0.1220186E 04	-0.5465451E C2	0.1221405E 04	357.435	44.679	0.025766		33.05
0.44028618 03	-0.1505087E 03	0.7C65U59E 03	347.700	36.633	0. (14904	•	37.19
0.9573228E 03	-0.225566BE 03	C. 9435361E 03	346.741	34.674	0.020748	10	41.32

BLADE CHORD AT STA 174
HARMONIC ANALYSIS MODEL AM-SEA SHIP 1009 T 408 CTR 306 FLT 503.0 TR 42

AJ		11		CJ		PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
0.1553545E O	5									
0.27571746 0	10	0,2407534E	CS	0.24232716 0	)5	83.467	83.467	1.00000	1	4.132
-J. 7146523E J	3	0.1873461E	04	0.2CU2334E 0	14	110.911	55.455	0.082629	2	8.264
-0.4996535E O	-	-0.35523186	04	U. 6130605E 0	)4	215.411	71.804	0.252949	ă	12.347
0.54CC745E U	3	0.2437210E	C3	C. 9935264E 0	3	14.244	3.561	0. 343876	4	16.529
-0.05565CIE 0	3	0.2247245E	04	0.246566E 0	14	111.300	22.260	0. 101750	5	20.661
-0.2300471E 0	3	0.586JC25E	C3	0.42441918 0	3 1	111.424	18.571	0.025950	•	24.793
-0.8591895E 0	3	-0.1193683E	64	0.1468307E 0	14	234.186	33.455	0.060592	7	28.926
U.5C5546CE 0	3	-0.137209JE	C4	0.14623598 0	14	290 . 241	36.240	C. C60348		33.058
0.16233716 0		-0.9088434E	02	0.1C27399E 0		354.925	39.436	0.042397	•	37.190
0.58576248 0	3	J. 6253162E	02	C.5490879E 0		6.090	0.609	0.024310	10	41.322

BLADE CHORD AT STA 235 MARMONIC ANALYSIS POUEL AM-SAA SHIP 1009 T 408 CTR 306 FLT 503.0 TR 22

AJ	6,5		PHIJC	PSIJC	KAMLD\LD		FREQUENCY
-0.2865277E 05	117 12-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2					•	
3.2140508E 34	0.5804770E 04	0.41848488 04	49.759	49.759	1.000000	1	4.132
-0.4398816F UJ	0.5032402E 03	0.44434116 03	131.157	45.578	0.100034	2	8.264
-0.1644758E 04	-0.1040526E 04	0.1946259E 04	212.319	70.773	0.314580	3	12.397
J.9965333E J3	0.2823041E 02	0.44643266 03	1.623	0.406	0.161137	4	16.529
-0.1364349E 03	0.97654 16E C3	C. 9860322E 03	97.953	19.591	0.159375	5	20.661
0.24737146 01	0.3579553E C3	G. 3579653E 03	69.572	14.929	0.057859		24.793
-0.5429C19E 03	-0.5072542E 03	0.74300UCE 03	223.056	31.065	0.120093	7	28.424
-0.84144766 02	-0.8089756E C3	0.#133420E 03	204.060	33.008	0.131463	i i	33.050
3.1013224E 33	-0.9651437E C2	0.2654089E 03	331.974	36.686	0.033201	9	37.190
0.43347136 04	0.7070328E G2	0. # 2943716 02	58.476	5.848		10	41.322

PLAME TORSION AT STA 131.5 HARMONIC AMALYSIS PODEL AM-56A SPIP 1009 T 408 CTR 306 FLT 503.0 TR 44

AJ	01		CJ		PHIJC	PSIJC	CJ/CJMAX	J	FREQUENCY
0.411/1246 04									
0.14225458 04	0.38442318	04	0.41746176	04	47.122	47.122	1.00000	1	4.132
-0.1551100E 34	0.1844985E	04	0.2414204E	04	129.978	64.489	0.578305	2	0.264
0.547C433E 03	-0.5926782E	63	0. # 6454456	03	312.710	104.237	0. 193212	3	12.397
-0.7465392E U3	-0.3676516E	C3	0.43251786	03	206.207	51.552	0. 199424	4	16.529
0.5524/15t 02	J. 60501 66E	02	C. # 14402#	90	41.037	9.527	0.019640	5	20.46
-0.3792537E 03	-0.1117395E	04	C. 1 180014E	04	251.250	41.875	G. 282664	•	24.793
U.25/5245E 01	-0.219/740E	03	C. 3702143E	03	323.584	46.226	0.088483	7	28. 92
0.27143596 03	0.10871445	04	0.1120435E	04	75.961	9.495	0.268440		33.05
0.131642/E 03	0.3440072E	CZ	0.1274336E	03	16.399	1.622	0.032921	•	37.190
2.4473204E 02			0.1151445E		44.055	4.434	0.027202	10	41.32

CLASE PEATMER ANGLE MARPENIC ANALYSIS MODEL XF-51A SHIP 1002 T 458 CTR 181 FLT 511.0 TR 20

.,	FJ	CJ	PHEJC	PSI JC	CJ/CJMAX	-3	FREQUENCY
C.282:599F 01							
U.1465569E 01	-0.11944445 01	0.16506636 01	320.819	320.819	1.000300	1	5.848
-0.11014566-01	9.45957401-02	0.1355E73F-01	148.938	74.407	0.037171	ž	11.694
0.33361/56-01	0.24020541-01	U.415823CE-01	34.649	12.216	0.021993	3	17.544
-0.2244.77E-01	0.45053115-01	0.50411576-01	117.006	29.252	0.026769	4	23.392
-0.4442025E-02	0.12765176-01	0.14245 30E-01	116.889	23.378	0.007534	5	29.240
C.69627461-02	0.19690196-02	0. /2354636-02	15.791	2.632	0.001127	6	35.068
-0.7344153F-02	0.54842536-02	0.91685C8E-02	143.224	20.461	0.004550	7	40.936
-0.25212636-02	0.1144-567-01	0.1220859E+C1	101.947	12.743	0.006457		46.784
C.234C610E-03	-0.1662356F-01	0.1662:666-01	270.820	30.091	0.008793	9	52.632
0-35943126-02	0.17102436-62	0. 4981 1565-02	25.440	2.544	0.002106	10	54.440

PITCH LINK TENDION SHE TILD TOP T 45P CTP LRI PLT SIL.2 TS 36

A'l-		٠., ٠.			- PHIJC	PSIJC	CICLUAX	J	FREGUENCY
0.105504	16 24				V.11.1	10000		-	
-0.134:10	54F C2	0.62434785	0.3	0.70727146 07	118.376	118.376	1.000000	1	5.848
0.4 17701	10: 21	0.67576565	01	0.15474740 02	17.376	18.688	0.147663	7	11.696
0.45530	16 744	3.74973' )	71	J.1137544E J?	41.228	13.743	J.163382	9	17.544
0.474165	32: 01	-0.1106317	CS	0.17713158 32	205.567	71.392	J.249737	4	23.342
0.253601	10 20	-3.4480671"	20	0.20747695 01	347.559	69.512	0.029323	5	29. 240
-0.1 26765	51f C?	-0.174 30056	CZ	U.1 P4442 05 02	222.3/1	37.062	0.262244	6	35.088
0.47195	14. 01	-0.244ng  or	11	0.41755686 01	327.699	47.17)	3 . 3/ P741	7	43.936
2.573189	205 60	-0.49849747	01	0.5011 0025 01	275.958	34.495	0.070667		46.784
0.306619	16 = 3f	0.47645730	21	0.52488795 01	54.337	6.037	C-3740C4	5	52.632
0.147795	14ª 30	0.90567-11	90	0.1006001F 01	£1.782	8.178	J. 3141P4	13	58.48)

BLADE 2 FIXED HUB FLAP AT STA 6 HIS MODEL THESTA SHIP 1002 T 458 (TP 181 FLT 511.) TR 43

		La				PHIJE	- P\$11G	C3/5341X		" FREGUENCY
-0.2472376" 0	5	•••				, oc	, , ,	. 37 . 3 . 4	•	THE GOLDEN
-C.41090619 0		0.21592150	14	0.4991320F	04	147.061	147.701)	0.664740	1	5.848
- 1.17401041 1	4	3.71453107	14	). 7356 33LF	14	173.756	" 41.E74	1.000000	2	11.496
0.1015557* C	4	-7.96854391	0.3	0.14716395	74	316.345	105.448	0.120815	9	17.544
-0.1817765, C	1	-0.3582744=	03	0.80226685	13	201 . 937	51.700	0.117738	4	23.392
-3.72465411 3	3	1.7)17670	13	3.3314497E	13	139.24)	27.444	3.040990	 5-	29.240
0.7466455 0	>	3.10385/c	02	0.76756168	02	13.592	2.265	2.010434		35.088
0.11963261 0		-0.25H#5045	C.3	0.20525076	03	294.841	42.120	0.039778	7	40.936
-C.1435784F )	4	-1.17734125	13	3.2325999E	33	229.679	28.71)	2.331623		46.744
0.5150777 0	7	-9.5767277	92	0.11756275		297.998	33.111	0.015230	Ġ	52.632
-0.50000000		0.79839195		0.1130867E		135.089	13.507	0.015373	10	58.480

PIECE HUS CHORD AT STA 5
PIECE MILE STALESIF MIDEL EN-SIL SHIP LCGS T 450 CTG LSL FLT SILD TR 5

		- 1:51 - nj				brila	PSIJC	CI/CIMEX_	J	FREDUENCY
3.16879777	05			_					_	
-2.06159145	9.1	0.17773145	15	0.17717505	C5	92.142	92.142	1.020000	1	4. 848
-0.7475591	04	0.4057176	24	0.4453484F	04	117.044	58.522	3.337989	2	11.656
-2-11167762	04	-0.9474174	73	0.14771646	04	220.012	73.637	0.043704	,	17.544
0.5141775	07	-0.22866965	6.0	0.56638995	03	336.188	84.047	0.031977	4	23.352
-D.1:4 PRACE	7T	0.4545777	62	0.17103F2E	03	164.587	12.917	3.339656		25.24)
3.27746974	33	-3.14677945	63	0.31407136	03	330.171	55.02F	0.017732	E	35.008
-C-1276566+	07	0.6217165	63	0.13757246	0.3	153.123	21.875	0.007764	7	40.536
C-14213625	0,	-0.16507567	0.2	0.14905725	03	353.641	44.205	0.733415		46.784
3.227?7115	33	1.41 167 195	03	0.46641265	03	£1.029	6.781	0.026502	5	52.632
-0.25764637	02	-2-1022935	63	0.10652056	03	254.805	25.380	1.026014	10	54.480

### HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 41 V= 168 KTS n= 1.03 g Reproduced from best available copy.

- 13	n j		CJ.	but ic	- PSTUC	CTACTAVA	J	FOEOUE ACA
-0.42210230 03								
3.1 17 7 7 4 7 4 7 4	-0.710:34AF	) 1	0.1347971F 04	327.198	327.19#	1.000000	1	5.848
-0.7916657' 03	3.797.86975 0	11	1.77949465 07	105.017	57,508	0.574765	2	11.496
0.10452514 02	0.10556/17 0	3	0.1492475F 03	45.019	15.331	3.11 37 45	3	17.544
3.1507633 32	-1.17259101 0	,	0.4050064F 02	244.071	73.270	0.030046	4	23. 392
-0.1047767 77	""0,341 7630F C	9"	0.15848445 01	107.550	71.514	7.026594	•	24.240
-0.4244251" 02	0.1747756 0	17	0.44207705 02	166.283	27.715	0.932792	6	15. 398
-3.21135975 32	1.487 37795	2	0.51095725 02	113.45/	16.209	0.030109	7	40.536
-3.46267842 02	-0.7782942" 0	) 2	0.11617816 03	222.170	27.163	0.09(107		46.754
-0.47744411 02	-0.2333gn4# n	17	0.49585898 02	208.078	23.120	0.036/86	G	52.632
1.56191916 33	-7.14298515	n	3.1546 949F 91	207.433	29.243	2.001148	10	58.400

SLABE FLAP AT STA 187 HERMONET TO THE VISTS MUTCH WHICH SHIP 1002 T 458 (TE 181 FLT 511.0 TF 31

					who are an in the same				
41		A.J		. CJ	PHI JC	PSIJC	CJ/CJ4FK	J	FREGUENCY
-0.6174479	6.3								
0.57600205	03	-1.67212015	03	0.96516946 03	310.596	310.596	1.033333	1	5.848
1.5547411	2.	1.4 34 97700	23	0.4C870#3F 03	47.157	41.075	0.461779	,	11.696
0.7065650	03	7.25131741	03	0.39677225 03	37.304	13.103	0.448188	3	17.544
-0.25:49536	95	-1.6482471"	12	0.11389595 03	217.915	54.454	0.120660	4	23.392
-).11[07]1	21	-).1354151	)1	0.16479915 03	210.654	43.731	0.190697	5	29.240
0.18673695	03	-0.15429000	03	0.24196758 03	320.300	53.397	0.273357	e	35.088
C.745E9301	01	-1.57469545	52	U.5008458F 02	277.373	39.425	0.945672	7	42.536
1.2755451	33	1.4797347	12	J. 2413918E 03	20.383	2.548	9.272368		46. 784
0.74701545	02	0.7.156415	0.2	0.77480361 02	15.392	1.710	0.08/402	4	52.632
0.14706547	C	-0.85898135	01	0.16896036 02	327.859	32.786	0.019988	10	58.483

BLADE CHORD AT STA 45 WIENDLIC 49144515 WINFE WH-514 SHIP 1002 T 459 CT9 181 FLT 511.0 TR 29

A1	n j	***	J.		PHIJC ""	25730	CJ/CJMAX	4	FREQUENCY
C.1794224- 05									
-7.6717477 07	0.17545434	CS	0.12600045	ns -	77.837	92.937	1.000000	1	5.848
-3-11776915 34	1.63846175	23	0.13352298	04	151.434	75.717	0.105963	2	11.694
-0.71582501 03	-0.42002125	C >	0.7255816F	03	197.284	62.429	0.057500	3	17.544
C. 17186991 03	0-14226125	17.7	0.35374416	77	23.717	5.929	0.025073	4	23.392
-1-15157451 33	3.1015545F	13	J. 2718156E	03	131,254	26.651	0.217603	5	29.240
-0-16069221 02			0.62920026	02	252.551	42.392	0.004994	é	35.288
0-72906301 02			0.77776425		23.832	3.406	0.006325	7	4 3. 936
3-45714431 32		12	).9483745F		297.535	37.192	9.207548		46.724
3-7582726- 02			0.11:72905		310.306	34.487	2.079287	5	52.637
0.44422305 02			7.7775934E		314.417	31.442	0.006171	10	58.480

01

BLADE FEATHER ANGLE
MARPENIC AVALUSIS MUNEL X1-51A SHIP LOGS T 458 CTR 214 FLT 511.0 TF 20

<i>N</i> :	N	CJ	PHIJC	PSI JC	CJ/CJMAX	J	FR EDIENCY
C. 3055484E 01	16.5						
0.1217032F 01	-0 .1 39 69 31 10 01	U.18494CBF OL	311-152	311.152	1.003000		5.917
0.263029/F-01	0.10044c1f-01	0.2837523F-OL	22.033	11.016	0.015343	Z	11.834
-0.16549401-05	0.371642CF-01	J. 3/20170E-01	97.573	30.858	0.023115	3	17.751
0.20415566-01	U.4212777F-01	0.4681352F-01	64.145	16.036	0.025313	•	23.669
-0.12317296-01	-0.65931201-02	0.13896676-01	21C.160	42.032	0.007515	5	29.586
0.21086426-01	0.30952566-02	0.21312576-01	8.361	1.394	0.011524	6	35.503
0.54866601-02	-0.728 10156-02	0.4122264E-02	306.974	43.853	0.004733	7	41.420
0.14241571-31	0.13544626-01	U.1567468E-01	43.542	5.443	U. 010638		47.337
-0.148:333F-01	0.18669/16-01	0.23673136-01	128.475	14.275	0.012909	4	53.254
0.72071666-02	0.2751PFCF-07	0.7714feef-02	20.498	2.090	0.004171	10	59.172
PITCH CONK TENSION PARTIT AND YSIS		P 1002 T 458	CT6 214 FL	7 511.0	TF 36		
	Aj	- cJ	, balac	p211c .	CI/CIMAX		FPEOUFICY
1.9341321c 32 -0.1976495 02	0.58341145 02	0.59375995 02	100 -455	100.455	1.000000	1	5.517
0.7237699" 01	0.71232067 01						11.434
0.7341644 01	4.712.72.6	0.1015501E 02	44.543	72.277	0.171173	•	11.77

	N.		~ c.j		PHIJE	p\$110	CJ/CJ4EX		PPEDUENCY
J. 9 3/102/c 32									
-0.19764955 02	0.58341145	6.5	0.59175995	05	100.455	100.455	1.000000	1	5.517
0.7217699" 01	0.7123236	01	0.1715571E	92	44.543	72.277	0.171173	7	11.834
3.11771476 32	2011947125	)1	J. 11434365	77	5.404	1.799	0.197773	3	17.751
-0.23549705 01	-0.13674705	9.5	0-13877935	07	261.453	65.763	0.233084	4	23.669
C.10342091 02	0.18303/2"	01	0.10/07536	02	10.330	2.066	0.172058	5	29.596
- 3.74651025 31	- 3 - 1 3261 32"	32	J.1269926F	)2	233.963	18.994	0.21 1490	6	35.501
0. 1/71/-75: 01	-9.114745M	CI	0. 1045307F	01	342.71/	44.159	0.004517	7	41.420
0.27092577 00	-0.2385C13F	CI	0.2405419F	01	276.683	34.585	0.040546	•	47.327
3.64744975 31	1. 14 15 1055	71	3. 73154276	) [	27.743	3.163	9.123309	٠,	53, 254
0.36261025 01	0.514 2777	nn	0. 16475326	01	n.431	0.843	0.761483	10	59.172

### SLADE 2 FIXED HUS FLAP AT STA 6 HISMONIC ACCLUSES MIDEL XH-314 SHIP 1002 T 458 CTP 214 FLT 511.0 TO 48

N		9.3		CJ	PHIJC	P\$1.1C	CJ/SJ4AX	J	LICHUENCA
-0.27657095	15								
-C.295*342- 6	74	-0.45366/1"	12	).2459432F )	4 191.911	141.911	3.377192	1	5.417
-0.11149040	74	0.7494017	74	0.75023756 0	4 90.459	49.227	1.000000	2	11.434
0.92749185 (	0.0	-0.71601445	0.3	0.1130301F 0	3 311 . 264	105.422	0.015012	•	17.751
-3.5646960	13	-0.14927247	23	0. 9346 1695	3 231.921	51.482	3.123263	4	23.649
0.28167217	FO	0.31076 560	01	0.3919655E C	0.460	0.206	0.050365	5	29.586
-0.99745811	0.2	0.16069 195	13	0.16331071 0	119.047	19.941	0.024242	6	35.503
-0.7217311	02	-1.26514725	03	0.21746795 0	4 253.61	35.832	3. 329631	7	41.42)
-3.20334360	-	-1.631 79/05		0.20046316 0			0.026438		41.337
-0.11213345 (		-0.75637107	-	0.7636497F C			0.010071	G	53.254
0.47504221 (		7.12046145	-	C. 12552845 0			1.317363	13	55.172

### FIXED HUB CHORD AT STA 6 HIS NOTE AND YESTS COOPER AMMENTS SHEP 1002 T 458 CTR 214 FET 511.0 TR 5

2.

2,1	)	N.1	ĊJ	• •	PHIJC	PSTUC	CINCIMIX	J.	FREDHENCY
3.1 1929577 3	5								
0.1474941" 0	4 0.107	76417 05	0.19834245	05	#5.50M	85.50A	1.070000	1	5.517
-0.3213desc 0	4 0.456	14. 7" 04	0.55816095	04	125.155	67.57%	0.276354	2	11.834
-3.470)4015 3	1 - 3.967	6314- 13	1.1 )797 )3F	14	247.661	61.223	0.057327	3	17.751
0.23379676 0	1 -0.965	231.02 65	0.7579592F	0.3	230.022	84.504	0.013696	4	23.169
-1.15017355 6	-0.165	40107 02	0.20082645	0.3	185.564	37-117	0.010463	5	29.586
0.9450712" )	1 - ).1919	49467 33	1.10183935	) ?	272.593	45.472	1. 11 11 86	į.	15.503
-0.1477375" 0	-0.421	26 45180	0.98524925	0.2	241.205	35.601	0.075231	7	41.420
0.16564311 0		76107 63	0.25133165	03	311.312	33.715	0.013344	p	47.337
-0.3645999 0		51736 13	1.3979491F		150.523	17.391	3. 321124	4	53.254
-0.14717:151 0		13455 03	0.4229245E		261.191	26.119	0.022455	10	59.172

BLADE PLAP AT STA 115 HIS MODEL PROSECUTOR SHEETS SHIP 1007 T 459 CTR 214 FLT 511.0 TR 27

·	n j	cu ·	PHIJE	PSTJC	CJ/CJMAX	J	PREDUENT Y
-0.40,50745 03							
0.11779997 34	-0.1156023" 03	0.14335255 04	325.373	325,323	1.))))))	1	5.517
-1.2036110 01	2. 01 75460 03	0.86750936 13	104.453	54.777	0.605158	2	11.834
0.16 77.46 03	0.23950116 03	0.28955326 03	55.207	18.602	0.201487	1	17.751
-0.440-1495 91	-0.12954747 02	0.13698158 02	250.845	62.711	3. 339493	4	23.669
-3.61151632 327	1.11463070 02	0.6247105# 02	169.333	37.867	0.043579	- 5	29.596
-0.3774164" 0"	-0.3007500F C2	0.48259065 92	218.550	36.425	0.031665	é	35.503
-0.1306342. 03	0.41 231 712 02	0.44112773 07	108.503	15,500	0.03)772	7	41.423
-3.65859735 33	-3.65819445 02	0.9311122F 02	224.982	28.123	0.064453		47. 137
0.6354814F OL	-0.3551126F 02	0. 16476465 02	280.051	31.117	0.025441	9	51.254
-C.153f006' 0'	-0.42034115 01	0.15944135 02	145.200	19.529	0.011122	13	59.172

BLADE PLAP AT STA 157
HIEMONIC ANGLYSIS MONEL WHISIA SHIP 1002 T 456 CTP 214 FLT 511.0 TP 31

AJ -0.71137105 03	4.3	CJ	PH1 JC	PSIJC	CONCLANA	J	FREQUENCY
7.66684364 37	-).83021205 03	0.1064 #68 04	308.772	308.772	1.000000	1	5.917
C. TCACTAF: 07	0.45654752 03	0.4619705F 03	81.208	40.634	0.433429	,	11.634
0.4298241 02	0.4000700 03	0.66797318 03	37.656	12.552	1.627283	2	17.751
-3.56 33174 02	0.2493544; 02	0.4774509F 02	156.819	14,205	0.057486	4	23.669
-0.17175757 03	-0.1637413F 63	7.20952675 73	231-178	46.736	0.196763	5	29.566
0.15660877 01	-0.11652716 03	0.19470436 03	373.348	53.891	3.183313	6	35.533
-3.31377435 32	-1.7649577= 07	0.85340096 02	248.673	15.525	0.090141	7	41.420
9.15477445 99	9.58261065 02	0.16496505 03	20.661	2.585	0.154416	e	47.337
0.60410411 02	0.34836237 02	0.62735115 02	29.470	3.337	0.365487	e,	53.254
3.28734024 37	1.21223135 02	0.35720695 02	34.445	1.645	0.033545	10	59.172
							, , , , , ,

BLADE CHORD AT STA 45 HARMETT STITUTE WHEEL SHEEL SHEEL THE 1002 T 450 CTO 214 FLT 511.3 TP 20

1.1		- • •		CJ		PHIJC	- PSTUC .	KAPLTYLD	.,	FPEQUENCY
3.17)7741	175									
2.3757271.5	0.3	0.17365405	15	0.1136545E	35	69.839	19.339	1.000000	1	5.517
-J.1250) ***	0.5	0.466668	0.3	0.13426408	04	159.651	74.926	3.133475	2	11.834
-3.46 1455 h	11	-0.347620FF	0.3	0.57439HQF	03	216.372	72.174	0.042976	3	17.751
C. 445158	01	0.21894/45	0.4	0.44604425	03	24.160	6.545	0.037114	4	23.664
-0.20471976	71	-0.50018555	12	0.2257550E	73	205.171	41.034	1. 316991	•	29.586
3.32056231	22	3.35755466	01	0. 72056596	03	7.69?	0.115	0.024658	É	35.503
0.47167956	2.3	0.5/ 150/145	12	0.11215616	03	120.779	17.254	0.000001	7	41.420
-0.8555201	01	-0.3626030	6.7	0.37350725	0.2	256 - 121	32.015	0.002795		47.337
3.14159250		-1.93493174		0.14283474	-	350.649	37.629	0.0106.57	S	53.254
0.7441330		-0.71546545	-	0.75597056		288.841	28.884	7.035656	10	59.172

# HARMONIC COMPONENTS OF FLIGHT TEST DATA CASE 43 V= 170 KTS n= 1.49 g Reproduced from best available copy.

BLADE FEATHER ANGLE MARPERIC ANALYSIS HUDEL XF-11A SHIP LOCE T 450 CTR 247 FLT 511.0 TR 20

13	ru .	CJ	PHIJC	PSI JC	CJ/CJMAX	J	EN EQUENCY
0.31354508 01							
0-11164116 01	-0.172COCH+ 01	0.23538336 01	307.998	302.944	1.000000	1	5.417
0.46177036-07	-U-10719461-01	0.13444211-01	309.863	154.937	0.006555	2	11.834
0-10414056-01	0.34640115-01	0.3617311F-01	73.260	24.420	0.017638	3	17.751
0.51344276-01	0 - 21414546-01	0.5543150F-01	22.440	5.660	0.027126	4	23.664
-C.201217+E-01	-0.15054551-02	0.20437377-01	149.890	37.973	0.009463	5	29.586
U. 1054463F-01	0-17165831-01	0. 151 34f cF-01	29.284	4.861	0.017132	6	35.503
0.26340846-01	-0.24422C7F-01	0.4571224F-01	216.832	45.202	0.017414	7	41.470
G. 135C4/2E-01	0.3597CCef-C2	0.11215456-01	20.832	2.604	0.005480	A	47.337
-0.63524525-C2	0.45612166-02	0. 74595485-02	144.095	16.011	0.004125	9	53.254
0.83535616-07	0.13H474CF-01	0.16171567-01	58.899	5.690	0.007986	10	59.172

2

PITCH LINK TENSION
WARMANIC ANALYSIS MODEL RH-511 SHIP 1002 T 459 CTP 247 FLT 511.0 TR 36

	P I	CJ	PHIJC	PSTUC	KAPLOLLO	J	FREQUENCY
3.7396463° 37 -0.5170041° 31	1.65012975 02	0.69705935 07	94.284	24.284	1.002200	1	5.917
0.5651634 U1 3.14929825 32	0.76953'7" 01 -3.25124737 31	0.97013176 01	344.962	27.184	0.140100 0.219797	2	11.834
-0.1611581 07	7.15746767 01	0.1341006F 02	271-076	55.257	0.193782	4 .	23.469
-3.0117737 31	-3.25183615 31	J. 7457070F 71	195.439	12.573	0.136619	6	35,503
-3.46161575 10	-0.61062807 00 -0.52946/31 61	0.8141456E 07	273.459	33.537 34.922	0.011764	é	41.470 47.337
3.41.34 POF 31 0.49670745 01	-).4994443 1) -).2272479 01	).47174646 )1 0.54804245 01	347.686 335.502	19.632 17.550	0.047941	10	53.254 55.172

BLADE 2 FIXED HUB FLAP AT STA 6 SHIP 1002 T 458 FTR 247 FLT 511.0 TR 43

4.1	• J	CJ	PHIJO	PSIJC	CI/CJMAX	j	<b>LAEGUENCA</b>
-0.20221910 05							
-3.6114747- 31	-1.13717976 34	1.12342075 04	240.244	240.244	0.156948	1	5. 917
C. 3 5 4 71 5 1 7 0 3	0.7462070" (4	0.78771075 04	87.30g	43.699	1.200000	2	11.834
-0.52554347 03	0.2466415 03	9.58457392 03	155.044	51.681	0.074212	3	17.751
-3.11512305 37	-).179A694F )7	3.7767HL75 03	177.277	47.569	7.397765	4	23.667
C.74755476 03	-0.7277418" 07	0.77566096 07	354.727	72.945	0.399768	5	79.586
-0-12047575 67	0.1/97711 03	0.17719465 03	24.047	15.678	0.021607	6	35.533
-3.72161435 32	-3.19594355 33	7. 2 39( ) 39 33	242.715	35.673	0.026507	7	41.420
-0.2160454" 03	0.4025717 02	0.21976365 03	167.446	21.141	0.02/899	B	41,331
-0.40217015 01	-0.95773875 07	0. 5315546 65	26.1.679	29.742	0.012608	S	53.254
3.2 3051565 32	3.54339575 32	1.6258443E 32	73.538	7.354	0.007945	10	59.172

FIRED HUS CHORD AT STA 6
MINNEY !! AND EL WINSEL WHISEL SHEP 1002 T 458 CTP 247 FLT 511.0 TR 5

A 1		• • •		- 6u	PHIJC "	PSIJC	KAPLSYLS	J	FOF JUSTICY
n.llrerest	35								
0.50359415	04	U.207576#F	35	0.213594CE 05	76.767	76.363	1.000000	1	5.517
-0.20942530	64	7.66398756	04	0.72399885 34	113.474	56.747	1.337954	2	11.034
-0.165707HE	04	-0. 17661 115	03	0.1132 3055 04	149.427	66.476	0.051011	3	17.751
0.11141145	C3	-9.50243705	01	0.11352275 03	157.46.7	19.356	0.005315	4	23.669
-0.1075565	31	" "J. 1244745°	13	0.7419797E 01	133.332	21.666	3.316313		29.586
-3.2716485	07	0.30333421	0.2	0.77676178 02	126.402	21.967	2.021/64	6	35.503
0.65384875	3?	0.13143295	6.0	0.14675765 07	63.542	9.777	0.006871	7	41.420
0.37741397	0.3	-0.5602191"	112	0.35145195 03	351.763	43.97)	3.318327		47.337
-2-13563136	11	0.61316:10	CT	0.62242436 03	97.790	11.288	0.029140	•	51,254
-0.12167337	03	-9.118750ac	C3	0.17013176 03	224.770	22.427	0.007965	10	59.172

## SLADE FLAP AT STA 315 MARMONIC ARALYSIS MODEL WHIGH SHIP 1002 T 458 CT# 347 FLT 511.0 TR 27

A1	а.j	cu.		DUTHE	PSILIF	C1/C14/X	J	EDED HENCY
-0.455544 if 13								
0.1.2323041 34	-U. 15379HA" IL	0.153A349F	04	321.445	321.445	1.000000	1	5.917
-0.2536857# G1	0.36775145 03	0.49985776	03	104.375	53.187	0.584950	ž	11.834
0.2102711 03	2.25630131 03	0.33779965	0.3	49.457	16.474	2.219261	3	17.751
-0.74467835 07	-0.77577475 67	0.34092656	0.2	221.350	55.138	0.022142	4	23.669
-0.11946395 02	-0.1(6922CF C2	0.20526785	02	234.400	46.882	0.013343	5	29.594
-0.1254210 - 02	0.19275197 02	0.23036178	02	123.432	23.572	3.314975	6	35.531
-3.47767877 01	2.61978165 02	0.65074668	0.2	91.593	13.370	0.044902	7	41.420
-0.1007120 03	-0.676CZ-115 77	0.12129015	03	211.871	76.734	0-078549	ė	47.337
-0.37426501 02	-0-170059PT CZ	0.41109745	02	204.436	72.715	3.126723	ç	53.254
1.755 17326 11	-0-12361505 02	0-14719136		302.879	30.284	0.009448	10	59.172

BLADE PLAP AT STA 157
HILLYSIS MINEL MH-511 CHIP 1002 T 458 CTP 747 PLT 511.0 TP 31

34.0	e.1	c 1	ant ic	<b>451JC</b>	CU/CUMAK	J	FREQUENCY
-).05151500 31 0.0514017 03	-0.4514279 01	0.1155631F 04	304.374	304.174			4 617
0.1475795" 02	3.46844115 07	0.44373786 03	89.074	44.037	1.000000 0.425586	ž	5.917 L1.834
3.63568956 33	1.43265/36 17	0.72731965 03	33.416	11.205	3.679369	3	17.751
-0.14740145 02 -0.20139995 02 "	-0.7275517" 02	0.4777448F 02	271.750 712.415	55.938	0.041341	Ž.	23.667 29.586
Del 1453707 D3	-3-13567245 33	3.1775495F 03	310.195	51.699	0.153639	6	35.503
-0.47642471 01	-0.11690120 03	0.1169817E 07	267.862	38.266	3.191728	7	41.420
0.23053414 01	0.40725/37 02	0.7419857E 93	4.689	1.711	7.204397 0.069714	<u></u>	47.137 51.254
0.61740877 12	3.12946475 07	0.61616295 07	12.129	1.213	0.053318	10	59.172

BLADE CHORD AT STA 45 HIRMONIC ANTIVERS MODEL WHITE SHIP 1002 T 458 CTR 247 FLT 511.0 TR 29

- 63	L4	CJ	20130	PSTJC	CINCIMPA		LOF DIRENCA
3.15735911 35							
C.171253.1 04	9.14199125 05	1.14306765 05	12.907	92.942	1.000000	1	5.917
-0-1771735 04	9.1417394" 04	1.23471595 04	130.444	69.772	3.164769	7	11.834
-3.7831447: 31	-1.2164672F C3	0.41021395 13	195.644	65.215	0.756634	3	17.751
0.1552721: 01	3.36396965 33	0.55166245 13	44.024	11.024	0.038561	4	23.669
-C-10639577 03	0.22544475 03	0.24929155 33	115.264	23.353	0.01/425	5	27.586
3.11712515 33	2.27511 145 33	0. 25469505 33	62.114	10.352	0.017903	6	35.503
0.3(28374" 0"	0-14407-4" 03	0.14857506 37	15.865	10.438	0.013385	7	41.470
-0.3275535: 02	0.63175337 02	0.7164719= 02	119.144	14.765	J.03570P		47.337
-3.53453527 31	3-1571532" 37	1.21932116 02	135.475	11.009	0.00:425	9	53.254
0 34443545 02	0.4245749: 07	0.546/1015 02	50.250	5.095	0.003221	10	59-172

#### BLADE FEATHER ANGLE MARPEATE ANALYSIS MUDEL XI-SIA SHIP LUCZ T 45H CTR 25A FLT 511.0 TR 20

	l.En	CJ	PHIJC	PST JC	XAPL3\L3	J	FREDUENCY
0.31351436 01			100		1200000	_	. 65
0.445CUTOE 03	-0.224101CF 01	0.24157276 01	791.669	241.654	1.000000	ı	4.988
0.64 167776-03	0.34571551-01	0.1657625E-01	86.904	44.452	9.015142	7	11.976
G. 1143480F-01	0.62420911-01	C. 70071546-01	62.475	20.992	0.029006	3	17.964
0.52870346-01	0.42026475-07	0.53037196-01	4.546	1.136	0.021755	4	23.957
-0.4673/39E-31	-0.35356406-02	0.46676556-01	184.326	36.865	3.019402	5	29.940
-6.40521871-0?	-J. 3 2770121-07	0.13517226-02	263.038	43.840	0.001387	6	35.928
-0.2637605t-J1	-0.226:756F-01	0.35431550-01	221.490	31.699	0.014467	7	41.916
C.724022JE-C1	-0.403t076t-01	0.46152407-01	299.038	37. 3AU	0.014105	.8	47.904
0.15243546-01	0.12617471-01	0.13786196-01	39.616	4.402	161900.0	9	53.892
0.27495466-01	-3.16857575-01	0. 12251796-01	328.487	32.849	0.013351	10	59.440

PITCH LINK TENSION
HACKMALL SALEYSIS MANAL MH-MIN SHIP 1002 1 .50 CTP 258 FLT 511.3 TR 36

46		-	ć. ·		PHTUC	PSIJC	4.410/02	3	FREQUENCY
0.56074445 07									
-0.74579721 00	3.614701/	92	0.4147488	32	90.695	90.695	1.000000	t	5. 488
-0.56375637 01	0.12535145	62	0.1374489F	CZ	114.273	57.11)	1.223585	2	11.976
3.1767651F 02	-0.90711745	01	0.19868195	02	137.834	110.945	0.323192		17.964
-0.1626555 63	-0.55479205	CI	0.1 PAR676F	02	212.367	57.597	9.397777	4	23.55?
0.1075911: 02	-0.1037654	C2	0.1497643E	02	43.057	6.771	3.243619	5	29.943
-3.61370415 01	0.30032500	01	0. ( F69792F	21	157.329	25.555	0.111733	6	35.529
C.1511515 01	0.2390300	e i	C. 2 P39 43 2E	01	17.317	8.168	0.046197	7	41.516
-0.24564055 01	-0.3573615	01	0.46012435	21	237.956	28.969	3.374848	8	47.914
3.75:3415: 33	-9. 68 3451 37		0.1162500F	_	310.303	34.488	0.018678	9	53.892
0.7477841, 01	- 3.53141100		0.63215775	01	702.707	30.279	0.102832	10	59.860

BLADE 2 FIXED HUB FLAP AT STA 6 HIS NOTICE N

7.1	a j	r.J	PHIJC PS13	MAPLONED DE	J	FREDIENCA
-0.17524775 05						
0.5478479" 03	-0.1830052F 04	0.1510285# 04	280.666 286.5	66 3.231763	1	5.948
C. 45 - C1 44 " 03	3.82476 75 04	0.22672348 04	85.835 43.4	000000.1 31	7	11.576
-0.35246 PPF 07	3.34990/ 68 (3	1.5336P165 33	134.41) 44.3	333 3.363977	•	17.554
-0.00463346 01	3.1185403: 33	0.01427935 63	171-621 42-5		4	23.952
" C. 7 1046476 04"	-0.4262546= CT	0.92373496 07	332.521 66.5	304 0.111835	5	29.940
-0.7072172 02	0.1551316: 43	0.1703324F 33	114.384 19.1		6	35.929
-0.137651 25 03	-0.20004-05 03	0.31 06 6776 03	250.274 35.1		7	41.916
-0.94141575 62	0.76959645 02	0.124051 95 03	133.867 17.4	83 0.015018	F	47.904
-2.1541113" 02	-0.0336470* 02	0-94781135 02	259.527 28.8	36 3.313264	G	53.892
3.74476041 07	3.1775000 02	0.29926215 02		20 0.003423	10	55. 990

\$7

ş

FIXED HUS CHORD AT STA 6
HASY MIC SHOULESTS MAMBE WHENTS SHIP 1002 T 458 CTR 258 FLT 511.0 TP 5

• • • • • • • • • • • • • • • • • • • •	6.1	ra ·	PHTJC	PSTJC	CJYCJ46X	J.	ESFORESCA.
C. 1.1 154400 75			4 = 0.44				
3.05701977 34	3.215411/1 35	). 7555 PAGE ()5	# 7.U47	67.334	:.003000	· ·	5.509
-0.15.7747 04	0.42395345 04	0.14 /02855 04	107.406	51./02	9.331273	?	11.576
-0.157E351: C4	-0.55774175 02	U.1579039F 04	197.074	53.475	7.061756	3	17.564
0.25272271 03	-1.23674727 33	1. 17447/1[ 07	371.783	97.445	0.017.770	4	71.957
0.1591454 02	-0.11919347 03	0.15906935 03	323.174	64.635	0.007778	5	29.940
0.17780451 07	9.7564617 02	0.14473607 03	31.632	5.777	0.005641	6.	35.52#
- 1. 10053615 31	3.13432247 13	1. 184415RF 13	163.000	23.427	0.015035	7	41.916
0.7146770 03	-2.25675 167 63	0. 15711265 03	205.857	34.354	0.012564		47.904
0.4 2525735 33	2.57797477 03	0.72067805 03	47.475	5.297	0.323186	5	53.472
-3-1263259-33	). 776 tat # 32	1.15697175 33	153.222	15.929	0.006139	10	55. 840

BLADE PLAP AT STA 115 HARMINET ANALYSES MIDEL MIN-511 SHIP 1002 T 458 CTR 250 FLT 511.0 TP 27

13		. = .	٠	· c J		THE JE	PSIJC	CIVETAVA	- 1	FREGUENCA
-).17567675	11									
C.12*7466:	04	-0.1184777	04	0.17491076	74	317.157	317.157	1.000000	1	5.588
-C.nilediki	C.	90.014 .016	1.3	0.9C51 804E	0.3	95.923	47.961	0.517510	2	11.576
2027683131	)3	3.27317/15	13	). 1088845E	03	44.614	14.871	0.222333	3	17.964
0.7472997=	10	-0.6997775F	01	0.1043 353#	77	318.656	79.664	0.005915	4	73.957
-3 . 7 74 44 115 "	0:	-0.154P947	U2	0.44309026	26	213.50	42.700	0.020107	•	29.943
-3.8151618"	33	3.1437814	12	3.14431125	12	93.745	15.541	0.000233	6	35.528
0.67787117	0.7	0.56655757	0.2	0. #3124396	72	43.004	6.143	0.047574	7	41.516
-0.8 - 1406AF	02	0.25401 135	CZ	C. P947969F	02	140.928	20.116	2.051443	9	47.904
-3.45142975	32	3.36453520	)?	J.5832179F	12	141.381	15.676	9.033172	5	53.892
-0.1074576	0.7	0.17440105	07	0.16178795	0.2	129.530	12.953	155000.0	10	59. 889

#### BLADE FLAP AT STA 157

HARMITIC ANDIVERS MODEL MM-SLA SHIP LOOP TASK CTP 258 FLT 511.) TR 31

A.1		NJ.		CJ -	•	Listae	PS IJC	CIVOLATA	J	FREGUENCY
-0. 4" F1. 7" 0	3									
0.47146475 3	3 -7.	11175737	74	0.1101220F	04	300.962	300.962	1.000000	1	5.988
מ מיניניניים	1 0.	44715115	63	0.46042535	03	77.P17	36.008	9.353798	,	11.576
C.75'14404F 0	3 0.	31033.165	03	0.8460237F	73	22.176	7.392	0.649179	3	17.964
0.7843974" 0	1 0.	300006.05	CZ	0.31106375	17	75.316	18.63)	3.323869	4	23.952
-0. "61 CAT IF 0	1 -0.	196385.35	03	0.1742095	03	210.955	43.371	0.251240	. 5	29.940
0.3450384- 0	2 - 7.	17557-05	03	0.1793202E	93	281.093	46.949	0.137598	6	35.928
-0-1076344 - 0	-0.	35614600	02	0.11512198	93	197.989	28.284	3.398493	7	41.516
1.7 1570245 0	3 -0.	106536 PT	03	0.23165400	03	737.619	41.577	0.177/45		47.504
0.94316486 0	0.	57757117	02.	0.90/42655	02	327.337	16.376	0.075576	9	53. 097
0.3233676" 0	-	15774575	02	0.5126C93F		309.111	33.911	3.339334	10	59.28)

BLADE CHORD AT STA 45 HISMOS TO ANHIVESTS HIJDEL WH-511 SHIP 1002 T 459 CTP 258 FLT 511.0 TR 29

41	ுர	ζĵ	PHILIC	25116	KAPLONES	J	FRE THE NEY
0.14714615 75							
3.45253437 14	J.1641 11 0" 35	3.1732632F 35	74.577	74.577	1.000000	1	5.988
-0.7174968F 04	0.24003/5" 04	0.33482165 04	123.979	66.999	0.196549	2	11.976
-0.12447141 34	-7.677-314" (3	0.1487770E U4	205.360	68.453	0.037466	3	17.564
J. 61 361671 14	1.13231 95" 13	3.62765835 33	12.142	4.336	0.036864	4	21,952
-0.1056547" 93	-1.771 PP 07 02	0. 2155215F 03	194.146	38.979	0.018531	5	29.440
0.40706236 03	0.52304587 (3	0.72570756 03	46.116	7.696	0.242623	,	35.528
0.1094862F 33	3.1104415" 13	1.16736358 33	47.533	6.786	1. 1)9514	7	41.716
-0.38679245 02	0.47843305 62	0.61522726 02	121.954	16.119	0.003613	8	47.904
-0.78462646 02	-0-11410555 C3	0.13671745 03	235.343	26.149	0.038147	9	53. 992
C.46113600 02	-1.31524955 32	J. 545607E 12	326.629	32.661	0.113257	1)	59. 480



#### APPENDIX II

#### CORRELATION DATA

Harmonic correlation data for REXOR analysis and flight test results are tabulated in this appendix for AH-56A and XH-51A steady trim cases. The 37 cases for which REXOR calculations were made are included. A complete listing of the test conditions is available in Table I.

Data are provided for the steady (mean) component and the magnitude and phase of 1P and 2P cyclic components of the rotor loads. The AH-56A loads include the flap and chord moments on the fixed hub at station 18; blade flap moments at a maximum of five stations; the blade chord moment at a maximum of three stations; the torsion moment at station 131.5; and the feather moment. Fixed hub flap and chord moments at station 6 are presented for the XH-51A vehicle, along with the flap moments at stations 115 and 157, the blade chord moment at station 45, and the feathering moment. No XH-51A blade torsion load measurements were available from flight test data. The tables also show correlation of the steady (collective) and 1P cyclic feathering angles.

All loads are presented in inch-pounds, and the angles are presented in degrees. Positive directions are flap up, lag aft, and blade nose up. All loads and the cyclic blade angle were measured on blade 1, except the fixed hub flap moment at station 6 on the XH-51A compound was taken from blade 2. A 90-degree adjustment was made to the phase angles for these data so that the data listed in the tables are effective for blade 1 in all cases. The feathering angle measurements were lagging due to galvanometer response characteristics, so the phase angle of the feather angle data has been corrected by 30 degrees to give the "true" value listed in the tables.

AH-56A CORRELATION DATA CASE 1

DEG PRESSURE ALTITUDE = 3920 FT; AMBIENT TEMPERATURE = 75 % LOAD FACTOR = 1.00 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 2.0 DEG, TEST 2.3 ROTOR LIFT = 7855 LB; SHAFT MOMENT = 100,000 IN-LB FLAP UP AT 105 DEG AIRSPEED = 154 KEAS;

	AFINAL	STEADY	λQ	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	deg	5.9	5.6	1.7	3.8	287	262	•	ı	•	1
Blade Feather Moment	in1b	160	35	2400	3320	-16	5	1340	3560	7	99
Fixed Mub Flap @ Sta 18	in1b	-33,300	-33,300	33,400	24,100	104	8	16,300	16,000	81	141
Fixed Hub Chord @ Sta 18	inlb	57,900	50,500	74,300	100,800	81	8	8,600	8800	-11	59
Blade Flap @ Sta 130.5	in1b	32,600	7500	7800	5000	247	320	4500	1400	9-	53
Blade Flap @ Sta 205	in1b	-21,400	-8300	4200	4500	273	121	2200	1700	\$	146
Blade Flap @ Sta 235	in1b	-22,600	-4220	1350	1640	356	115	14870	130	76	. 88
Blade Flap @ Sta 270	drut	-12,700	330	1,040	720	29	-17	5140	800	82	37
Blade Chord @ Sta 103	inlb	138,000	138,000 207,000	41,400	50,000	81	101	4200	1,600	-11	39
Blade Chord @ Sta 174	fn1b	24,000	20,000	20,300	26.90	8	101	2500	2400	-12	32
Blade Chord @ Sta 235	in1b	-14,000	-26,100	7200	880	8	103	1300	1200	-11	70
Blade Torsion @ Sta 131.5	fn1b	-5160	η <del>-</del>	270	3090	ผ	52	570	1360	12	63

AH-56A CORRELATION DATA CASE 2

DEG PRESSURE ALTITUDE = 4190 FT; AMBIENT TEMPERATURE = 75 % 5.9 LOAD FACTOR = 1.0 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 2.2 DEG, TEST ROTOR UFT = 12600 LB; SHAFT MOMENT = 53700 IN-LB FLAP UP AT 78 DEG AIRSPEED = 121.5 KEAS;

	TIMIT	STEADY	λQΛ	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER	OIVIIIS	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	deg	8.5	8.1	3.9	5.2	287	287			•	•
Blade Feather Moment	1n1b	1840	1480	1360	2860.	310	9	560	2150	S	89
Fixed Hub Flap @ Sta 18	in1b	270	-6620.	18,600	14,500.	80	57	1340	8680	81	141
Fixed Hub Chord @ Sta 18	in1b	63,700	55,200.	59,300	94,600.	58	74	20,600	11,400.	8	35
Blade Flap @ Sta 130.5	in1b	41,800	9660.	7800	4700.	263	320	3900	2800	-3	82
Blade Flap @ Sta 205	in1b	-25,200	-7300.	3000	4100.	992	118	3400	2200	81	161
Blade Flap @ Sta 235	in1b	-31,200	-1580.	840	1620.	69	100	6100	1620	82	9
Blade Flap @ Sta 270	in1b	-21,700	280v.	3710	900.	85	359	5800	<b>€1</b> †	8	8
Blade Chord @ Sta 103	in1b	153,000	216,000.	35,000	46,500.	65	81	10,400	1,340	6	45
Blade Chord @ Sta 174	in1b	23,500	23,400.	17,000	23,400	3	8	5900	1050.	7	55
Blade Chord @ Sta 235	fn1b	-13,200 -25,500.	-25.500.	5600	6400.	58	8	2700	1900	1	36
Blade Torsion @ Sta 131.5	drlb	-6450	135	1190	2700	49	46	508	1400	33	79

AH-56A CORRELATION DATA CASE 3

DEG PRESSURE ALTITUDE = 3250 FT; AMBIENT TEMPERATURE = 78 PF LOAD FACTOR = 1.0 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 0.3 DEG, TEST 0.8 ROTOR LIFT = 4500 LB; SHAFT MOMENT = 122,000 IN-LB FLAP UP AT 104 DEG AIRSPÉED = 190 KEAS;

	ŽĮ.	STEADY	ΛDΥ	I-P MAGNITUDE	ACUTIN	4	PHASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER	2	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blede Feather Angle	gap	5.2	7.5	0.8	3.6	282	287	•		•	•
Blade Feather Moment	in1b	1780	-300	3460	3520.	243	357	1310	5300.	5	67
Fixed Hub Flap @ Sta 18	in1b	-58,900	-46,500	39,500	29,000.	103	89	17,400	22,000	82	140
Fixed Hub Chord @ Sta 18	in1b	65,400	52,300.		74,700 105,000.	85	8	2600	6100.	7	52
Blade Flap @ Sta 130.5	1n1b	26,800	0069	9300	4700	241	330	0009	5200	9-	4.7
Blade Fla. @ Sta 205	1n1b	-19,100	-9500	0009	00111	268	119	1500	1700	29	140
Blade Flap @ Sta 235	41uş	-17,400	-5300	1930	1850	320	₹	3000	750	69	گر
Blade Flap @ Sts 270	1n1b	-7400	-1030.	3960	00 <del>1</del>	59	345	3740	1,400	111	£4
Blade Chord @ Sta 103	in1b	160,000 210,000	210,000	41,000	51,000.	85	105	2500	1800.	9	58
Blade Chord @ Sta 174	dini	26,500	21,500.	20,200	27.000	ౙ	103	1200	1200	3	58
Blade Chord @ Sta 235	in1b	-13,400 -26,000	-26,000	7300	9	ಹೆ	100	800	150	-1	145
Blade Torsion @ Sta 131.5	in1b	-1480	560	210	3000	240	26	520	2600.	9	89

AH-56A CORRELATION DATA CASE LA

DEG PRESSURE ALTITUDE = 3460 FT; AMBIENT TEMPERATURE = 68 % LOAD FACTOR = 1.00 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 1.2 DEG, TEST 1.8 LB; SHAFT MOMENT = 170,000. IN-LB FLAP UP AT 134 DEG AIRSPEED = 163.5 KEAS; ROTOR LIFT = 9200

		STE	STEADY	I-P MAG	I-P MAGNITUDE	4	PHASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Peather Angle	deg	7.9	7.7	2.3	4.6	787	279	•	-	•	•
Blade Feather Moment	in1b	-710	2100.	2120	2170.	224	5	1550	4350.	12	65
Fixed Hub Flap @ Sta 18	in1b	-32,600	-28,000.	53,500	39,600	130	132	21,000	11,400	22	137
Fixed Hub Chord @ Sta 18	in1b	76,800	27,400	63,300	84,000.	91	16	11,200	11,100.	-8	163
Blade Flap @ Sta 130.5	inlb	34 700	12,200.	7800	3150.	528	305	5800	009η	-7	56
Blade Flap @ Sta 174	in1b	-6500	670.	7900	5300.	262	295.	2500	0044	7	53
Blade Flap @ Sta 205	in1b	-21,300 -10,000	-10,000.	5540	4900	285	115	3420	3500	99	155
Blade Flap @ Sta 235	in1b	-23,900	-2700	3230	2500	336	104	7090	2300	73	165
Blade Flap @ Sta 270	in1b	-14,600	800	4240	750	917	339	7180	1400	75	0/1
Blade Chord @ Sta 103	in1b	158,000 228,000	228,000	35,000	39.500	89	ਡੋ	5500	7700	157	165
Blade Chord @ Sta 174	in1b	26,100	17,500	17,400	23,700	88	93	3000	0009	157	152
Blade Chord @ Sta 235	in1b	-12,600 -21,500	-21,500	0009	6100	89	ò	1700	1400	191	156
Blade Torsion @ Sta 131.5	in1b	-5580	750	630	2100	340	33	650	2000	15	9

AH-56A CORRELATION DATA CASE 5

DEG PRESSURE ALTITUDE = 3400 FT; AMBIENT TEMPERATURE = 69 PF LOAD FACTOR = 1.13 g's; FUSELAGE ANGLE OF ATTACK; REXOR = -1.2 DEG, TEST -1.6 ROTOR LIFT = 9400 LB; SHAFT MOMENT = 205,000 IN-LB FLAP UP AT 141 DEG AIRSPEED = 165 KEAS;

	ZINII	STE,	STEADY	I-P MAGNITUDE	NITUDE	1-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	geg	8.2	7.8	2.2	9.4	286	280			-	•
Blade Feather Moment	in1b	-160	3:50	2480	1670.	199	33	1600	4650.	15	99
Fixed Hub Flap @ Sta 18	in1b	-25,800	-22,000.	66,700	48,000.	137	141	21,700	12,200.	78	143
Fixed Hub Chord @ Sta 11	in1b	83,400	17,900	52,700	78,000	25	83	11,800	13,900	152	158
Blade Flap @ Sta 130.5	in1b	35,600	13,600	8500	3200	226	300	5900	5300	9-	57
Blade Flap @ Sta 174	in1b	-6500	820	8600	2600	79%	293	2500	2000	7	51
Blade Flap @ Sta 205	In1b	-22,300 -10,300	-10,300	0069	5600	288	115	3800	000 <del>1</del>	65	153
Blade Flap 6 Sta 235	in1b	-25,600	-1250	0024	3200	325	108	7400	2500	72	159
Blade Flap @ Sta 270	in1b	-16.100	1300	4100	0999	30	24	7400	1300	7,7	164
Blade Chord @ Sta 103	in1b	158,000	158,000 230,000	29,400	36,500	87	85	6300	0096	148	158
Blade Chord @ Sts 174	in1b	27,100	15,600	14,800	22,000	98	98	3400	8000	149	147
Blade Chord @ Sta 235	in1b	-12,000	-21,000	006 ₁	5300	88	87	1800	1800	155	153
Blade Torsion @ Sta 131.5	in1b	-5700	700	800	3200	-28	32	590	2200	17	61

AH-56A CORRELATION DATA CASE 6

LOAD FACTOR = 1.42 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 0.0 DEG, TEST -1.0 DEG PRESSURE ALTITUDE = 3260 FT; AMBIENT TEMPERATURE = 69 % ROTOR LIFT = 13,400 LB; SHAFT MOMENT = 293,000 IN-LB FLAP UP AT 153 DEG AIRSPEED = 165.5 KEAS;

		STE	STEADY	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER	CNIS	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	gep	8.3	8.1	2.0	4.5	287	276	•	•	•	
Blade Feather Moment	in1b	1700	00ተተ	3600	3720	179	76	1740	5800	22	93
Fixed Hub Flap @ Sta 18	in1b	-3500	-4750	91,300	69,000	147	154	24,400	14,000	62	140
Fixed Hub Chord @ Sta 18	in1b	58,700	18,700	28,700	48,000.	92	%	26,000	36,300.	150	157
Blade Flap @ Sta 130.5	in1b	39,100	15,000	8900	3700	224	280	6100	6900	-7	57
Blade Flap @ Sta 174	in1b	-8300	1000	9300	6300	273	291	2200	0099	11	52
Blade Flap @ Sta 205	inlo	-27,700	0006-	8800	6500	599	117	5000	5500	29	150
Blade Flap @ Sta 235	in1b	-32,500	200	7200	4100	326	112	9100	3500	72	155
Blade Flap @ Sta 270	in1b	-21,600	2700	5100	1050	15	76	8800	1900	ηL	191
Blade Chord @ Sta 103	ir1b	155,000	227,000	17,800	24,000	1.1	17	14,000	23,500	149	156
Blade Chord @ Sta 174	in1b	24,000	16,300	9000	10,400	8	11	7400	16,700	641	151
Blade Chord @ Sta 235	in1b	-13,300	-21,000	2230	2550	98	20	3640	4650	153	157
Blade Torsion @ Sta i31.5	in1b	-6330	200	1230	4100	-17	43	049	2500	11	51

AH-56A CORRELATION DATA CASE 7

DEG PRESSURE ALTITUDE = 3260 FT; AMBIENT TEMPERATURE = 69 % LOAD FACTOR = 1.60 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 0.5 DEG, TEST -0.2 ROTOR LIFT = 14,900 LB; SHAFT MOMENT = 311,000 !N-LB FLAP UP AT 158 DEG KEAS; AIRSPEED = 165

	AT IN	STE	STEADY	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PACAMETER	04113	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	deg	9.8	8.2	2.1	8-4	281	277	•	•		•
Blade Feather Moment	in1b	2150	14600	3950	5740	165	97	1740	5300	23	56
Fixed Hub Flap @ Sta 18	fn1b	14500	3420	004,66	74,400	153	158	26,500	14,60c	79	138
Fixed Hub Chord @ Sta 18	in1b	65,300	14,700	9300	5400	100	-15	39,100	55,300	152	158
Blade Flap @ Sta 130.5	fn1b	39,700	15,700	9500	4200	228	276	6200	7300	חו	58
Blade Flap @ Sta 174	in1b	-8700	1300	10,00	6700	278	293	1900	7400	17	55
Blade Flap @ Sta 205	in1b	-29,300	-8800	10,000	7100	303	119	5900	6300	67	150
Blade Flap @ Sta 235	in1b	-34,800	680	8500	4950	326	116	10,300	4300	77	154
Blade Flap @ Sta 270	in1b	-23,500	3500	5800	1400	76	102	9700	2250	73	158
Blade Chord @ Sta 103	in15	154,000	224,000	8800	30,000	8	341	21,200	34,400	151	158
Blade Chord @ Sta 174	in1b	25,000	15,100	4100	9200	8	358	11,200	23,300	151	154
Blade Chord @ Sta 235	in1b	-12,600	-21,100	100	3250	ଛ	325	5400	7000	153	157
Blade Torsion @ Sta 131.5	in1b	-6650	-240.	1510	520.)	-1	47	840	2100	0	46

AH-56A CORRELATION DATA CASE 8

DEG AIRSPEED = 204.5KEAS; PRESSURE ALTITUDE = 4690 FT; AMBIENT TEMPERATURE = 43 % LOAD FACTOR = 1.06 g's; FUSELAGE ANGLE OF ATTACK; REXOR = -1.8 DEG, TEST 0.4 ROTOR LIFT = 3400 LB; SHAFT MOMENT = 152,300 IN-LB FLAP UP AT 130 DEG

	MIT	STEADY	λQΛ	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAG	2-P MAGNITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	Яәр	6.1	6.0	0.7	2.0	255	311		.2		109
Blade Feather Moment	in1b	-2610	-1040	4700	1840	453	343	1230	5200	14	72
Fixed Hub Flap @ Sta 18	in1b	-65,900	-52,100	49,000	39,300	126	122	18,300	23,600	82	148
Fixed Hub Chord @ Sta 18	in1b	73,100	55,000	86,400	84,000	87	106	15,500	7000	156	33
Blade Flap @ Sta 174	in1b	-8000	-68	7500	1,600	255	311	4500	5550	2	8
Blade Chord @ Sta 174	in1b	27.400	26,600	23,700	20,500	98	105	3400	1420	154	115
Blade Torsion @ Sta 131.5	inlb	-4670	011	300	1925	290	143	720	2100	п	52
					-						
											i

AH-56A CORRELATION DATA CASE 10

DEG PRESSURE ALTITUDE = 4250 FT; AMBIENT TEMPERATURE = 46 % LOAD FACTOR = 1.35 g's; FUSELAGE ANGLE OF ATTACK; REXOR = -0.9 DEG, TEST 1.9 ROTOR LIFT = 6400 LB; SHAFT MOMENT = 190,000 IN-LB FLAP UP AT 139 DEG AIRSPEED = 200.5 KEAS;

	N. I.	STEADY	ADY	I-P MAGNITUDE	NITUDE	I-P PHASE	IASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	deg	6.3	6.1	7.0	2.6	₹%	<b>3</b> (:	•			•
Blade Feather Moment	in1b	-1020	420	14620	1740	225	13	1720	9	16	69
Fixed Hub Flap @ Sta 18	in1b 47,800		-38,400	61,100	46,900.	134	133	21,000	29,400	83	147
Fixed Hub Cherd @ Sta 18	inlb	71,100	000,64	81,200	91,500	89	105	15,900	2600	152	8
Blade Flap @ Sta 174	in1b	-8400	006	8700	2600	261	313	4700	6300	9	53
Blade Chord 3 Sta 174	in1b	26,900	24,400, 22,500	22,500	24,300	87	109	3900	2400	149	135
Blade Torsion @ Sta 131.5	in1b	-5080	370	590	2700	301	91	820	2700	77	n

AH-56A CORRELATION DATA CASE 11

DEG PRESSURE ALTITUDE = 3730 FT; AMBIENT TEMPERATURE = 48 P LOAD FACTOR = 1.62 g's; FUSELAGE ANGLE OF ATTACK; REXOR = -0.4 DEG, TEST 3.2 ROTOR LIFT = 8600 LB; SHAFT MOMENT = 226,000 IN-LB FLAP UP AT 144 DEG AIRSPEED = 199 KEAS;

	21141	STEADY	ADY	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	deg	4.9	6.2	9.0	3.3	11/2	307	•		ŧ	•
Blade Feather Moment	in1b	8	2000	1,676	2500	164	&	2230	6800.	16	65
Fixed Hub Flap @ Sta 18	in1b	-35,600	-29,100	72,100	53,300	138	137	23,700	33,300	ਲੈ	141
Fixed Hub Chord @ Sta 18	in1b	64,700	43,800	73,800	100,600	8	100	16,100	8700	149	93
Blade Flap @ Sta 174	in1b	-8900	515	9600	6800	264	312	5000	7650.	6	51
Blade Chord @ Sta 174	dlui	25,700	24,400	20,900	26,000	98	105	lt 300	2400	145	107
Blade Torsion @ Sta 131.5	in1b	-5440	620	890	3350	300	43	970	3200	10	73
							===				

AH-56A CORRELATION DATA CASE 12

PRESSURE ALTITUDE = 4220 FT; AMBIENT TEMPERATURE = 47 % LB; SHAFT MOMENT = 163,000 IN-LB FLAP UP AT 118 DEG AIRSPEED = 204.5 KEAS; ROTOR LIFT = 6000

LOAD FACTOR = 1.23 g's; FUSELAGE ANGLE OF ATTACK; REXOR = -2.4 DEG, TEST 0.8

DEG

	ATIMIT	STE	STEADY	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	deg	8.2	8.0	2.3	9.4	279	295			•	
Blade Feather Moment	in1b	-2430	130	3070	3360	246	352	2150	6950	18	74
Fixed Hub Flap @ Sta 18	in1b	-51,400 -40,300	40,300	53,200	42,500	211	110	24,700	27,500	82	346
Fixed Hub Chord @ Sta 18	in1b	78,500	54,100	102,000 112,000	112,000	8.	100	13,400	2600	153	
Blade Flap @ Sta 174	in1b	0069-	1340	7800	5400	259	318	7 ⁺ 800	<b>900</b> 0	4	55
Blade Cord @ Sta 174	in1b	28,100	27,100	27,100	27,800	89	101	3000	850	145	135
Blade Torsion @ Sta 131.5	in1b	-5460	360	1430	2800	295	41	1030	3100	8	74

AH-56A CORRELATION DATA CASE 13

DEG PRESSURE ALTITUDE = 3650 FT; AMBIENT TEMPERATURE = 49 % LOAD FACTOR = 1.44 g's; FUSELAGE ANGLE OF ATTACK; REXOR = -2.0 DEG, TEST 1.4 LB; SHAFT MOMENT = 187,000 IN-LB FLAP UP AT 131 DEG AIRSPEED = 204.5 KEAS; ROTOR LIFT = 7800

	STINIT	STEADY	NDY	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	qeg	8.3	8.1	2.2	4.5	279	292		•	•	-
Blade Feather Moment	inlb	-1560	850	3040	2000	231	350	2460	7450	18	22
Fixed Hub Flap @ Sta 18	in1b	-41,200 -32,200	-32,200	61,100	46,700	124	123	26,500	26,850	83	150
Fixed Hub Chord @ Stg. 18	in1b	78,400	51,000	89,000	104.500	91	76	14,400	7350	150	150
Blade Flap @ Sta 174	in1b	-7000	1760	9600	5430	262	315	5100	7600	9	59
Blade Chord @ Sta 174	in1b	27,900	20,300	24,300	19,600	89	122	3600	12,400	143	148
Blade Torsion @ Sta 131.5	in1b	-5730	8-	670	2870	305	34	1100	2950	19	75

AH-56A CORRELATION DATA CASE 14

DEG PRESSURE ALTITUDE = 3660 FT; AMBIENT TEMPERATURE = 48 PF LOAD FACTOR = 1.61 g's; FUSELAGE ANGLE OF ATTACK; REXOR = -0.3 DEG, TEST 3.1 18; SHAFT MOMENT = 217,000 IN-LB FLAP UP AT 144 DEG AIRSPEED = 199 KEAS; ROTOR LIFT = 8500

	YIN	STEADY	ADY	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	deg	6.3	6.1	0.5	3.2	78r	302		•		•
Blade Feather Moment	in1b	-20	2360	4320	1850	215	27	2160	6750	15	65
Fixed Hib Flap @ Sta 18	in1b	-35,900	-29,900	00 [†] 69	52,200	138	137	23,800	31,800	₽	146
Fixed Hub Chord Sta 18	in1b	63,400	42,000	70,800	70,800 101,000	89	93	15,100	8000	151	105
Blade Flap @ Sta 174	in1b	-900	1020.	0096	6420	₹	312	5000	7700	7	52
Blade Chord @ Sta 174	in1b	25,600	23,800	20,300	24,900	88	102	2900	8	148	123
Blade Torsion @ Sta 131.5	in1b	-5400	485	760	3200	297	142	046	3100	10	. 73

AH-56A CORRELATION DATA CASE 16

DEG PRESSURE ALTITUDE = 3850 FT; AMBIENT TEMPERATURE = 51 % LOAD FACTOR = 0.93 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 1.7 DEG, TEST 0.2 ROTOR LIFT = 10,700 LB; SHAFT MOMENT = 47,150 IN-LB FLAP UP AT 86 DEG ARSPEED = 120.5 KEAS;

	A PINT	STEADY	λο\	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER	014113	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	deg	9.5	9.5	3.8	5.0	₹87	292	•		1	
Blade Feather Moment	in1b	250	250	11.70	2180	312	8	720	2070	17	73
Fixed Hub Flap @ Sta 18	in1b	-14,500	-15,600	16,800	9050	8	65	14,200	1,200	80	143
Fixed Hub Chord @ Sta 18	in1b	74,000	61,000	50,200	82,000	82	n	14,000	11,000	13	27
Blade Flap @ Sta 174	inlb	-3700	2550	0009	4500	263	318	840	3200	-	80
Blade Chord @ Sta 174	in1b	25,200	30,200	14,700	19,900	₹	82	2400	3000	12	88
Blade Torsion @ Sta 131.5	in1b	-6410	-1480	940	2250	141	141	520	1150	36	82
						36.7					

AH-56A CORRELATION DATA CASE 17

DEG PRESSURE ALTITUDE = 4210 FT; AMBIENT TEMPERATURE = 50 P LOAD FACTOR = 1.13 g's; FUSELAGE ANGLE OF ATTACK; REXOR = -0.5 DEG, TEST 1.3 ROTOR LIFT = 13,300 LB; SHAFT MOMENT = 59,000 IN-LB FLAP UP AT 110 DEG AIRSPEED = 121 KEAS;

	Z INIT	STEADY	λQ	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER	914115	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	deg	6.6	9.5	3.9	5.1	286	238	,		1	
Blade Feather Moment	fn1b	1380	150	340	2270	N	31	999	1910	19	75
Fixed Hub Flap @ Sta 18	in1b	1100	-3500	22,400	10,500	106	87	14,800	4500	81	152
Fixed Hub Chord @ Sta 18	in1b	70.000	70,100	49,700	96,200	43	38	15,600	7400	10	36
Blade Flap @ Sta 174	in1b	-4200	1800	6200	0061	267	322	800	2700	-1	87
Flade Chord @ Sts 174	in1b	25,000	32,800	14,300	21,000	51	78	3800	2800	80	32
Blade Torsion @ Sta 131.5	in1b	-6820	-300	1120	2500	38	9:1	520	1200	39	86

AH-56A CORRELATION DATA CASE 18

2.1 DEG PRESSURE ALTITUDE = 3790 FT; AMBIENT TEMPERATURE = 51 % LOAD FACTOR = 1.12 g's; FUSELAGE ANGLE OF ATTACK; REXOR = -0.5 DEG, TEST ROTOR LIFT = 13,100 LB; SHAFT MOMENT = 58,100 IN-LB FLAP UP AT 106 DEG AIRSPEED = 118.5 KEAS;

	YIN	STEADY	νDΥ	I-P MAG	I-P MAGNITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	geb	6.6	9.5	3.9	4.9	287	297		•	•	•
Blade Feather Moment	in1b	1410	640	1430	2300.	1	34	8	1860	21	75
Fixed Hub Flap @ Sta 18	in1b	1000	-4600	22,000	10,200	105	8	13,600	3700	8	159
Fixed Hub Chord @ Sts 18	in1b	82,200	59,300	45,100	85,000	45	29	004,71	8100	10	31
Blade Flap @ Sta 174	in1b	-1000	2400	6300	2000	998	316	8	3000	2	82
Plade Chord & Sta 174	in1b	26,400	29,100	13,100	20,000	53	33	φ300	3100	8	25
Blade Torsion @ Sta 131.5	qrut	-6710	009-	1080	2100	38	43	500	1200	01	83
							,				

AH-56A CORRELATION DATA CASE 19

DEG PRESSURE ALTITUDE = 4120 FT; AMBIENT TEMPERATURE = 50 % LOAD FACTOR = 1.26 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 0.2 DEG, TEST 2.1 ROTOR LIFT = 15,000 LB; SHAFT MOMENT = 71,500 IN-LB FLAP UP AT 123 DEG AIRSPEED = 121.5 KEAS;

	ATIM	STEADY	λOγ	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	gep	10.0	9.7	3.9	6.4	288	301	•	•		•
Blade Feather Moment	inlb	2130	-620	720	2180	8.	747	009	2300	12	8
Fixed Hub Flap @ Sta 18	inlb	10,000	3600	27.200	12,000	117	107	15,000	5200	81	160
Fixed Hub Chord @ Sta 18	in1b	71,300 72,000	72,000	45,100	95,500	&	8	17,800	1,000	7	64
Blade Flap @ Sta 174	in,-1b	-4600	2500	6500	5000	270	323	006	2900	0	87
Blade Chord @ Sta 174	in1b	25,500	25,500 29,500	12,600	22,000	39	73	14400	2100	5	82
Blade Torsion @ Sta 131.5	in1b	-7060	-400	1190	2300	35	ß	510	1350	41	8
					1						

AH-56A CORRELATION DATA CASE 22

DEG PRESSURE ALTITUDE = 3480 FT; AMBIENT TEMPERATURE = 53 % LOAD FACTOR = 1.45 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 0.4 DEG, TEST 3.4 ROTOR LIFT = 16000 LB; SHAFT MOMENT = 76200 IN-LB FLAP UP AT117 DEG AIRSPEED = 120.5 KEAS;

	STINIT	STEADY	ΛΟΥ	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
BLADE FEATHER ANGLE	geg	10.1	7.6	3.6	5.0	290	301	•	•	٠	
BLADE FEATHER MOMENT	in1b	2730	0	1280	2680	101	62	620	2160	13	九
FIXED HUB FIAP @ STA 18	1n1b	16,400	8900	29,500	12,800	Ħ	109	12,800	5700	81	173
EDED HIB CHORD @ STA 18	in1b	74,900	24,000	904,14	93,000	59	表	14,500	9500	7	13
BLADE FIAP @ STA 174	in1b	-4700	2950	6800	5000	569	311	1000	3500	4	75
BLADE CHORD @ STA 174	1n1b	25,800	28,500	11,600	21,300	41	53	3500	4200	9	2
BLADE TORSTON @ STA 131.5	diai	-7.70	-500	1020	2400	33	4.1	094	1200	74	77

AH-56A CORRELATION DATA CASE 23

DEG PRESSURE ALTITUDE = 3550 FT; AMBIENT TEMPERATURE = 53 P LOAD FACTOR = 1.66 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 1.6 DEG, TEST 5.1 ROTOR LIFT = 18,300 LB; SHAFT MOMENT = 82,250 IN-LB FLAP UP AT 141 DEG AIRSPEED 422.5 KEAS;

	Y	STE	STEADY	I-P MAG	I-P MAGNITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	1ASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
BIADE FEATHER ANGLE	deg	10.1	6.6	3.7	5.0	290	300	-	ŀ	•	•
BLADE FEATHER MOMENT	in1b	3600	150	2070	3780	108	%	540	1970	12	73
FIXED HUB FLAP @ STA 17	dini	28,800	18,300	30,900	11,800	129	135	14,400	3800	82	172
FIXED HUB CHORD @ STA 18	in1b	73,500	55,000	49,106	102,000	8	34	19,100	20,400	3	5
BLADE FIAP @ STA 174	in1b	-5500	2700	6700	5300	275	317	1100	3900	8	83
BLADE CHORD @ STA 174	in1b	26,500	29,000	12,300	22,700	13	715	₩800	8300	1	8
BLADE TORSION @ STA 131.5	in1b	-7570	-750	1240	3200	32	62	420	850	11	75

AH-56A CORRELATION DATA CASE 24

4.1 DEG PRESSURE ALTITUDE = 3060 FT; AMBIENT TEMPERATURE = 55 % DEG, TEST LB; SHAFT MOMENT = 81000 IN-LB FLAP UP AT 117 DEG LOAD FACTOR = 1.57 g's; FUSELAGE ANGLE OF ATTACK; REXOR =1.4 AIRSPEED = 121 KEAS; ROTOR LIFT =15800

	TINIT	STEADY	λQΛ	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
BLADE FEATHER ANGLE	gep	9.3	8.9	3.0	5.1	293	304		.22		134
BLADE FEATHER MOMENT	4n1b	3200	3300	1360	3000	118	83	650	2120	23	28
FIXED HUB FLAP @ STA 18	1n1b	15,500	6500	30,900	12,100	110	11.7	11,400	6450	83	176
FIXED HUB CHORD @ STA 18	in1b	68,400	24,000	44,300	104,000	24	64	10,700	8400	80	3
BIADE FIAP @ STA 174	tn1b	-5200	2800	6700	2600	898	305	1200	3750	9	٤
BIADE CHORD @ STA 174	in1b	24,300	29,700	12,900	21,500	2	35	2700	5700	9	174
BLADE TORSION @ STA 131.5	in1b	0969-	7,00	800	2800	37	39	1,00	1200	49	n
			2								
											9

AH-56A CORRELATION DATA CASE 25_

LOAD FACTOR = 1.0 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 7.2 DEG, TEST 2.0 DEG PRESSURE ALTITUDE = 2190 FT; AMBIENT TEMPERATURE =79 IN-LIB FLAP UP AT 55 DEG ROTOR LIFT = 17500 LB; SHAFT MOMENT = 80000 AIRSPEED = 111 KEAS;

	STINIT	STE	STEADY	I-P MAGNITUDE	NITUDE	I-P PHASE	1ASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
BLADE FEATHER ANGLE	deg	8.7	8.3	5.0	6.4	291	230		٠	-	•
BLADE FEATHER MOMENT	inlb	3700	1620	1880	3040	28	21	300	1570	170	80
FIXED HUB FLAP @ STA 18	fn1b	33,100	17,800	24,900	5900	82	表	13,300	3300	81	157
FIXED HUB CHORD @ STA 18	in1b	59,800	73,800	68,700	103,000	22	53	901,14	21,400	8	8
BLADE FLAP @ STA 130.5	fn1b	45,700	12,800	9300	5300	271	328	3900	1850	-1	77
BLADE FLAP @ STA 174	in1b	0099-	1700	7000	5000	75/2	308	470	3100	95	85
BLADE FIAP @ STA 205	In1b	-30,900	0049-	2700	3900	255	120	4700	3600	82	179
BLADE FLAP @ STA 235	in1b	-39,000	1220	1600	2000	109	89	7706	2900	83	179
BLADE FIAP @ STA 270	in1b	-28,000	-2500	4200	1180	95	8	7000	1600	83	r
BLADE CHORD @ STA 103	in1b	150,000	173,000	37,500	27,000	35	33	21,100	7200	80	£
BLADE CHORD @ STA 235	fn1b	9400	-24,830	11,400	7200	25	ま	7900	2600	1	23
BLADE TORSION @ STA 131.5	in1b	-7600	250	2500	2600	弘	38	680	1050	102	76

AH-56A CORRELATION DATA CASE 26

2.1 DEG PRESSURE ALTITUDE = 3470 FT; AMBIENT TEMPERATURE = 74 % LOAD FACTOR = 1.15 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 3.2 DEG, TEST DEG ROTOR LIFT =11,100 LB; SHAFT MOMENT = 124,250 IN-LB FLAP UP AT 09 AIRSPEED = 173 KEAS;

	ATIM	STEADY	λQΛ	I-P MAGNITUDE	NITUDE	4	PHASE	2-P MAGNITUDE	NITUDE	2-P P	2-P PHASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
BLADE FEATHER ANGLE	geg	9.9	6.3	2.9	6.0	285	282		.5		115
BLADE FEATHER MOMENT	In1b	1300	1260	1670	3920	792	5	1550	5740	п	89
FIXED FLAP @ STA 18	in1b	-12,800-14,800	-14,800	42,700	28,800	107	95	21,800	18,800	81	138
FIXED HUB CHORD @ STA 18	in1b	52,900	52,000	79,800	116,500	82	83	24,500	11,500	174	8
BIADE FLAP @ STA 130.5	in1b	34,800	0486	0066	5650	249	329	90069	6200	175	95
BIADE FIAP @ STA 174	1n1b	00±6.	1600	10,100	6350	262	307	2300	5500	10	85
BIADE FIAP @ STA 205	1n1b	-24,400	-8600	6300	0009	273	122	0054	3800	77	151
BLADE FLAP @ STA 235	in1b	-27,200	-2500	2000	3300	319	105	8000	2300	76	170
BLADE FIAP @ STA 270	in1b	-16,700	-1400	000 <del>1</del>	1050	65	8	8300	1700	82	10
BLADE CHORD @ STA 103	in1b	150,000	206,000 46,400	16,400	56,500	83	91	12,700	7400	9	ч
BLADE CHORD @ STA 235	fn1b	-13,700	-27,700	7906	8900	81	8	3600	1400	171	177
BLADE TORSION @ STA 131.5	fn1b	-5750	009	790	3700	38	37	780	2700	134	99

AH-56A CORRELATION DATA CASE 27

DEG FT; AMBIENT TEMPERATURE = 74 % LOAD FACTOR = 1.22 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 3.3 DEG, TEST 2.3 ROTOR LIFT = 12,100 LB; SHAFT MOMENT = 132,000 IN-LBFLAP UP AT 122 DEG AIRSPEED = 173.5 KEAS; PRESSURE ALTITUDE = 3330

	NI NI	STE	STEADY	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
BLADE FEATHER ANGLE	gep	6.7	۴.9	2.8	6.1	787	28h		η.		111
BLADE FEATHER MOMENT	41u	1550	1660	1590	3980	245	17	1720	5880	п	89
FIXED HUB FIAP @ STA 18	1n1b	-7800	-9950	44,500	29,300	118	103	23,100	20,600	81	138
FIXED HUB CHORD @ STA 18	fn1b	45,800	52,500	76,700	108,500	76	8	25,500	10,300	170	13
BLADE FIAP & STA 130.5	1n1b	36,000	10,400	30,106	5900	247	332	7100	6300	-5	58
BIADE FIAP @ STA 174	In1b	-8600	1640	10,300	6800	264	313	2200	5500	12	9
BLADE FLAP @ STA 205	in1b	-25,600	-8350	0099	6300	278	124	51.00	3500	п	159
BLADE FLAP @ STA 235	in1b	-28,900	-2200	2600	3500	326	103	9400	2000	75	174
BLADE FIAP @ STA 270	inlb	-18,100	-2200	4200	2400	8	45	9000	1740	$\pi$	19
BLADE CHORD @ STA 103	in1b	150,000	205,000 45,200	45,200	52,500	#	87	13,300	6450	169	3
BLADE CHORD @ STA 235	in1b	-14,100	-27,400	7700	9600	7.	89	3900	1700	167	5
BLADE TORSION @ STA 131.5	in1b	-6010	500	1020	3900	₹.	142	830	2900	п	69

AH-56A CORRELATION DATA CASE 28

DEG LOAD FACTOR =1.45 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 4.9 DEG, TEST 4.2 FT; AMBIENT TEMPERATURE =75 ROTOR LIFT = 14,700 LB; SHAFT MOMENT = 142,000 IN-LB FLAP UP AT 128 DEG PRESSURE ALTITUDE = 3270 KEAS, AIRSPEED = 173

	ŽĮZ	STE	STEADY	I-P MAGNITUDE	NITUDE	4	PHASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER	2	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
BIADE FEATHER ANGLE	geb	7.0	6.7	3.5	9.9	282	286		.5		911
BLADE FEATHER MOMENT	in1b	21.10	2740	680	4350	104	51	2060	6160	10	65
FIXED HUB FLAP @ STA 18	in1b	7700	1830	48,300	29,300	122	115	25,800	23,300	80	137
FIXED HUB CHORD @ STA 18	in1b	45,000	47,800	24,900	93,300	72	57	45,400	21,000	169	п
BLADE FIAP @ STA 130.5	in1b	37,800	11,500	10,500	0099	249	329	8800	7000	7	57
BLADE FLAP @ STA 174	in1b	- 0006-	1500	11,200	7500	265	312	2600	6700	18	×
BLADE FIAP @ STA 205	in1b	-28,000	-7800	2006	7000	278	123	7000	4400	02	155
BLADE FLAP @ STA 235	in1b	-32,500	-500	3600	4200	311	106	12,100	2400	47.	170
BLADE FIAP @ STA 270	inlb	-21,100 1450	1450	3706	1600	53	74	11,200	2100	76	य
BLADE CHORD @ STA 103	in1b	147,000	206,000 35,206	35,206	43,000	73	₫	24,000	12,600	168	80
BLADE CHORD @ STA 235	in1b	-13,400	-27,400	5700	6700	- 8	8	6800	3100	166	5
BLADE TORSION @ STA 131.5	inlb	-6880	230	1956	4750	84	148	1250	3200	3	9

AH-56A CORRELATION DATA CASE 29

DEG PRESSURE ALTITUDE = 3150 FT; AMBIENT TEMPERATURE = 75 % LOAD FACTOR = 1.62 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 7.6 DEG, TEST 5.6 ROTOR LIFT = 17,200 LB; SHAFT MOMENT = 152,600 IN-LB FLAP UP AT 137 DEG AIRSPEED = 170.5 KEAS;

	ATINIT	STE	STEADY	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-6	2-P PHASE
PARAMETER	9111	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
BLADE FEATHER ANGLE	deg	7.2	6.9	9.4	6.9	280	286	-	·	•	
BLADE FEATHER MOMENT	in1b	2180	3650	3200	6100	81	\$	1890	5500	14	\$
FIXED HUB FIAP @ STA 18	in1b	22,200	13,300	004,94	29,400.	122	132	32,900	23,000	8	134
FIXED HUB CHORD @ STA 18	in1b	40,200	43,700	27,200	86,500	32	31	74,800	26,000	170	4
BIADE FIAP @ STA 130.5	in1b	38,800	12,800	11,300	7200	253	325	10,200	7200	175	57
BLADE FLAP @ STA 174	in1b	-10,100 1830	1830	12,000	8150	566	312	2500	6800	24	%
BLADE FLAP @ STA 205	in1b	-30,800 -7250		8500	7400	275	121	9600	4950	72	155
BLADE FLAP @ STA 235	7.11Ib	-36,000 1120	1120	3700	4900	300	101	16,200	2900	75	170
RIADE FLAP @ STA 270	drui	-24,000 1600		3500	1200	57	86	14,600	1400	76	4
BLADE CHORD @ STA 103	fnlb	145,000	145,000 205,600 21,700	21,700	40,800	Š	35	39,900	16,700	170	7
BLADE CHORD @ STA 235	in1b	-12,800	-12,800 -27,000 4000	000 <del>1</del>	6100	32	88	11,200	4300	166	177
BLADE TOESTON @ STA 131.5	in1b	-8060	-300	31.70	5700	82	朩	1546	2900	9	53

AH-56A CORRELATION DATA CASE 30

LOAD FACTOR = 0.99 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 7.0 DEG, TEST = 3.9 DEG PRESSURE ALTITUDE = 3860 FT; AMBIENT TEMPERATURE = 73 % ROTOR LIFT = 14,600 LB; SHAFT MOMENT = 71,100 IN-LB FLAP UP AT 87 DEG AIRSPEED = 122.5 KEAS;

	ALIMIT	STEADY	ADY	I-P MAGNITUES	NITUE	4-I	PHASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	gep	7.3	6.8	3.9	5.5	289	288	-		•	•
Blade Feather Moment	1n 1b	4300	1520	990	2640	341	n	1460	2430	य	69
Fixed Hub Flap @ Sta 18	in 1b	12,800	3200	25,700	16,700	87	72	13,000	0006	ß	144
Fixed Hub Chord @ Sta 18	in 1b	- 7700	53,200	65,900	105,500	61	n	31,400	0066	1	38
Blade Flap @ Sta 1305	in 1b	40,400	10,500	9200	£300	260	323	3900	2900	4 -	63
Blade Flap @ Sta 205	in 13	- 28,800	- 7200	3400	4300	270	121	0054	2500	81	991
Blade Flap @ Sta 235	in 11	- 34,500	- 700	1200	1950	63	99	7200	1700	æ	178
Blade Flap @ Sta 270	in 13	- 23,400	00 <del>1/</del> E -	001/1	1060	æ	24	0099	009	81	20
Blade Chord @ Sta 103	in 11		121,000 210,500	39,800	50,500	67	$\pi$	16,800	9	1	丧
Blade Chord @ Sta 235	in 116-	- 18,200	-27,000	6200	7000	58	72	001/1	0411	- 3	35
Blade Torsion @ Sta 131.5	in 13	- 6910	500	1916	2700	55	36	9	1400	п	69

AH-56A CORRELATION DATA CASE 31

LOAD FACTOR = 1.11 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 8.4 DEG, TEST = 4.9 DEG PRESSURE ALTITUDE = 3800 FT; AMBIENT TEMPERATURE = 73 % 91 256 ROTOR LIFT = 16,300 LB; SHAFT MOMENT = 71,500 IN-LB FLAP UP AT AIRSPEED = 123 KEAS;

	ŽĮ.	STEADY	ΙΦΥ	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	gep	4°L	7.0	4.3	5.5	289	291	•	•	•	•
Blade Feather Moment	n 1b	4380	2400	1650	2420	47	30	500	2400	2	n
Fixed Hub Flap @ Sta 18	dınl	23,300	11,000	25,600	16,300	8	72	14,1∞	9000	8	148
Fixed Hub Chord @ Sta 18	ln 1b	10,000	49,000	51,000	102,500	142	99	42,800	10,500	2	34
Blade Flap @ Sta 130.5	ln 1b	41,600	11,500	9600	5100	592	324	7 ² 00	3100	τ -	65
Blade Flap @ Sta 205	In 1b	- 30,400	- 7100	००५५	7F000	268	123	5200	2800	62	166
Blade Flap @ Sta 235	ln 1b	- 36,900	165	300	2600	6	101	8400	1700	18	177
Blade Flap @ Sta 270	ln 1b	- 25,500	1900	3600	1150	†8	21	7500	680	18	2
Blade Chord @ Sta 103	in 1b	149,000	208,000	31,900	49,000	53	n	22,800	6100	τ	28
Blade Chord @ Sta 235	in 1b	- 16,000	-26,500	5100	0069	37	\$	0009	1300	- 3	62
Blade Torsion @ Sta 131.5	in 1b	- 7390	500	2550	2700	58	39	920	1400	2	73

AH-56A CORRELATION DATA CASE 32

LOAD FACTOR = 1.24 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 10.3 DEG, TEST = 6.1 DEG PRESSURE ALTITUDE = 3610 FT; AMBIENT TEMPERATURE = 73°F ROTOR LIFT = 18,400 LB; SHAFT MOMENT = 71,100 IN-LB FLAP UP AT 103 DEG AIRSPEED = 123 KEAS;

	ZIV.	STEADY	ΛDΥ	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	gap	7.6	7.1	p.4	5.6	289	297	•	•	•	•
Blade Feather Moment	ln 1b	14600	2980	3400	2860	70	45	786	2110	- 1	69
Fixed Hub Flap @ Sta 18	ln 1b	35,400	21,000	26,600	16,000	98	8	14,900	9100	88	148
Fixed Hub Chord @ Sta 18	ln 1b	0011	49,200	M6,600	103,600	य	56	52,000	10,800	٥	37
Blade Flap @ Sta 130.5	In 1b	43,200	11,600	9600	5450	264	326	5700	2900	- 3	49
Blade Flap @ Sta 205	n 1b	- 32,700	- 6200	5300	5000	271	118	6200	2600	78	168
Blade Flap @ Sta 235	In 1b	- 40,100	9	1000	3100	297	95	9700	1700	79	9/1
Blade Flap @ Sta 270	ln 1b	- 28,000	2900	3000	1500	81	43	8700	700	80	23
Blade Chord @ Sta 103	in 1b	149,000	149,000 201,300	27,700	51,500	30	65	27,700	00 49	- 1	56
Blade Chord @ Sta 235	fn 1b	- 15,700	-27,500	5200	7200	6	61	7500	1200	9 -	62
Blade Torsion @ 3ta 131.5	in 1b	- 8300	1580	3500	1660	61	41	1330	900	- 1	99

AH-56A CORRELATION DATA CASE 36

LOAD FACTOR = 0.99 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 2.7 DEG, TEST = -1.0 DEG PRESSURE ALTITUDE = 3670 FT; AMBIENT TEMPERATURE = 75 % ROTOR LIFT = 7000 LB; SHAFT MOMENT = 88,500 IN-LB FLAP UP AT 91 DEG AIRSPEED = 173 KEAS;

	UNITS	STEADY	VDY	I-P MAGNITUDE	NITUSE	4	PHASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	Sep	ή.6	9.3	3.9	5.5	1112	286	•	•	•	•
Fixed Hub Flap @ Sta 18	in1b	-40°600	34,000	30,700	23,000	88	n	25,700	16,000	79	138
Fixed Hub Chord @ Sta 18	1n1b	70,000	58,300	84,100	113,300	8	89	7200	7650	- 1	18
Blade Flap @ Sta 174	1n1b	00 <del>1/1</del> -	980	7300	5250	261	310	2800	4200	2	58
Blade Chord @ Sts 174	in1b	-25,700	28,300	22,900	26,800	8	%	1200	3600	- 3	7.
Blade Torsion @ Sta 131.5	in1b	0009 -	1130	380	3200	19	45	006	οοηZ	77	89

AH-56A CORRELATION DATA CASE 37

LOAD FACTOR = 1.24 g's; FUSELAGE ANGLE OF ATTACK; REXOR = -2.1 DEG, TEST = -0.2 DEG PRESSURE ALTITUDE = 3490 FT; AMBIENT TEMPERATURE = 76 P ROTOR LIFT = 9600 LB; SHAFT MOMENT = 108,600 IN-LB FLAP UP AT 122 DEG AIRSPEED = 173 KEAS;

	STIMI	STEADY	νDΥ	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
	<b></b>	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
	deg	9.7	9.5	3.9	5.6	278	285	-	-	•	
Fixed Hub Flap @ Sta 18	1n1b	-25,800	-22,200	38,100	24,000	911	109	26,400	18,300	80	139
Fixed Hub Chord @ Sta 18	1n1b	009,49	53,100	77,600 108,200	108,200	80	<b>₽</b>	11,200	00617	791	180
Blade Flap @ Sta 174	in1b	- 4800	०५५७	7800	5100	263	306	2900	4700	5	55
Blade Chord @ Sta 174	in1b	24,300	27,000	21,500	26,300	79	88	5600	3200	155	178
Blade Torsion @ Sta 131.5	dint	OD 179 -	1000	630	3500	9	43	870	2700	23	2
							i				

AH-56A CORRELATION DATA CASE 38

LOAD FACTOR = 1.56 g's; FUSELAGE ANGLE OF ATTACK; REXOR = -0.7 DEG, TEST = 1.8 DEG PRESSURE ALTITUDE = 3390 FT; AMBIENT TEMPERATURE = 76 P ROTOR LIFT = 13,100 LB; SHAFT MOMENT = 121,800 IN-LB FLAP UP AT AIRSPEED = 172 KEAS;

	YIN	STEADY	ΛΟΛ	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	deg	10.1	9.8	4.3	h.9	279	283	•	•	•	•
Fixed Hub Flap @ Sta 18	in1b	- 6000	- 7200	43,800	25,800	122	121	28,500	21,900	81	137
Fixed Hub Chord @ Sta 18	1n1b	59,000	48,300	57,100	91,700	89	68	20,100	19,000	- 11	3
Blade Flap @ Sta 174	in1b	- 5600	1980	9600	7000	566	307	2800	6200	7	55
Blade Chord @ Sta 174	in1b	24,100	24,500	16,700	21,600	69	78	1,900	7800	164	176
Blade Torsion @ Sta 131.5	inlb	- 7000	999	970	1400	5	47	1030	3100	22	89

AH-56A CORRELATION DATA CASE 39

LOAD FACTOR = 1.36 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 4.2 DEG, TEST = 7.8 DEG FT; AMBIENT TEMPERATURE = 77 % ROTOR LIFT = 12,200 LB; SHAFT MOMENT = 119,300 IN-LB FLAP UP AT 121 DEG PRESSURE ALTITUDE = 3690 AIRSPEED = 154 KEAS;

	ZINIT	STE/	STEADY	I-P MAGNITUDE	NITUDE	4	PHASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	geb	6.3	6.0	2.3	4.4	290	300		•	•	
Blade Feather Moment	in1b	2400	2280	1180	3350	218	26	1030	3900	7	65
Fixed Hub Flap @ Sta 18	inlb	- 9700	-10,250	40,900	26,200	911	106	15,700	18,500	28	142
Fixed Hub Chord @ Sta 18	1n1b	43,900	39,000	67,400	108,000	92	88	15,700	10,500	ħ -	70
Blade Flap @ Sta 130.5	inlb	36,700	9200	8600	5500	546	323	0084	2000	E -	式
Blade Flap @ Sta 205	in1b	-26,100	- 7300	0069	5800	275	119	2900	2400	22	741
Blade Flap @ Sta 235	in1b	-29,600	- 2100	3400	3100	299	102	5700	041	11	य
Blade Flap @ Sta 270	in1b	-18,700	2250	2400	1300	143	35	2600	9009	79	04
Blade Chord @ Sta 105	in1b	147,000 200,000	200,000	39,200	54,000	77	8	8600	3600	- 5	20
Blade Chord @ Sta 174	in1b	21,600	18,300	19,500	27,800	76	98	5100	1300	- 7	67
Blade Chord @ Sta 235	inlb	-14,200	-27,000	0099	7800	75	98	2600	1500	- 8	29
Blade Torsion @ Sta 131.5	inlb	- 5700	700	790	3400	011	147	०५५	1700	14	2

AH-56A CORRELATION DATA CASE 40

LOAD FACTOR = 1.77 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 7.7 DEG, TEST = 5.0 DEG AIRSPEED = 152.5 KEAS; PRESSURE ALTITUDE = 3380 FT; AMBIENT TEMPERATURE = 78 % ROTOR LIFT = 17,600 LB; SHAFT MOMENT = 159,300 IN-LB FLAP UP AT 137 DEG

	MINIT	STEADY	ADY	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	gep	6.8	6.3	3.1	4.8	287	309	-	•	•	•
Blade Feather Moment	in1b	4030	6100	3320	2920	101	94	1120	4150	10	70
Fixed Hub Flap @ Sta 18	inlb	21,700	14,200	53,800	32,600	129	131	19,500	20,900	81	ነትት
Fixed Hub Chord @ Sta 18	in1b	27,600	28,700	23,600	99,250	35	63	46,900	ωε'π	- 10	73
Blade Flap @ Sta 130.5	fn1b	41,200	10,600	9300	6500	246	326	6900	4930	- 5	8
Blade Flap @ Sta 205	in1b	-31,700	- 5800	8800	7300	280	123	6200	2200	п	148
Blade Flap @ Sta 235	in1b	-37,800	130	5400	14600	300	300	10,000	175	75	166
Blade Flap @ Sta 270	in1b	-25,700	11400	2600	2400	97	65	9000	1030	26	51
Blade Chord @ Sta 103	in1b	151,000	190,500	18,500	47,400	148	74	25,500	4350	п-	70
Blade Chord @ Sta 174	in1b	20,600	15,600	8	24,200	50	83	14,800	2000	41 -	55
Blade Chord @ Sta 235	in1b	-13,900	-28,700	2700	6200	33	70	7300	670	47	66
Blade Torsion @ Sta 131.5	in1b	- 7490	400	2590	4200	51	67	1100	2400	77 -	65

XH-51A CORRELATION DATA CASE 41

DEG PRESSURE ALTITUDE = 4600 FT; AMBIENT TEMPERATURE = 65 % LOAD FACTOR = 1.03 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 2.2 DEG, TEST ROTOR LIFT = 1050 LB; SHAFT MOMENT = 19,100 IN-LB FLAP UP AT 57 DEG AIRSPEED = 168 KEAS;

	ATILA II	STEADY	ΛQΛ	I-P MAG	I-P MAGNITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR"	TEST	REXOR	TEST
Blade Feather Angle	deg	3.0	2.8	1.9	1.9	334	321		•	•	•
Blade Feather Moment	In1b	-1480	-465	260	001	329	298	120	9	77	109
Fixed Hub Flap @ Sta 6	in1b	-38,900	-25,700	2400	0061	45	57	1700	7400	119	142
Fixed Hub Cherd @ Sta 6	in1b	9400	16,900	15.620	17,700	105	92	1100	5500	10	58
Blade Flap @ Sta 115	in1b	250	-430	1220	1350	328	327	Oth	800	37	52
Blade Flap @ Sta 157	in1b	530	-610	570	8	34	311	320	00 ₁	110	14
Blade Chord @ Sts 45	1n,-1b	18,600	18,000	10,200	12,600	101	93	700	1300	1	92
*Not Available											

XH-51A CORRELATION DATA CASE 12

* DEG PRESSURE ALTITUDE = 4410 FT; AMBIENT TEMPERATURE = 65 % LOAD FACTOR = 1.26 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 2.6 DEG, TEST 92 DEG ROTOR LIFT = 1810 LB; SHAFT MOMENT = 11,800 IN-LB FLAP UP AT AIRSPEED = 169 KEAS;

	Y	STEADY	ADY	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	deg	3.1	3.0	1.6	1.8	348	311			-	•
Blade Feather Moment	fn1b	-1410	-320	100	330	η£	280	110	9	79	टाा
Fixed Hub Flap @ Sta 6	1n1b	-38,600	-22,700	3300	2900	83	92	1800	7600	110	139
Fixed Hub Chord @ Sta 6	in. 1b	8800	13,900	13,900	18,800	104	85	1200	2600	-3	63
Blade Flap @ Sts 115	in1b	390	-400	1140	1400	290	325	064	006	33	55
Blade Flap @ Sts 157	fn1b	02 ₁	-700	130	1100	75	309	340	091	105	141
Blade Chord @ Sta 45	in1b	16,900	17,000	9500	13,400	100	8	900	1300	-14	80
*Not Available											

XH-51A CORRELATION DATA CASE 43

* DEG PRESSURE ALTITUDE = 4100 FT; AMBIENT TEMPERATURE = 67 % LOAD FACTOR = 1.49 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 3.3 DEG, TEST ROTOR LIFT = 2320 LB; SHAFT MOMENT = 4800 IN-LB FLAP UP AT 150 DEG AIRSPEED = 170 KEAS;

	AFINAL	STEADY	νOΥ	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P PHASE	HASE
PARAMETER		REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
Blade Feather Angle	gep	3.3	3.1	1.3	2.0	334	303	•	•	-	•
Blade Feather Moment	41uş	-1390	-270	80	390	241	7.Z	30	33	92	717
Fixed Hub Flap @ Sta 6	in1b	-37,80c	-21,000	1200	1300	109	150	1800	7900	115	134
Fixed Hub Chord @ Sta 6	dint	8300	11,900	15.200	21,400	₹8	76	1400	7300	80	57
Blade Flap @ Sta 115	in1b	540	-450	1600	1550	82	321	580	8	14	53
Blade Flap @ Sta 157	in1b	8	-850	270	1150	301	304	02.17	02.11	8	71
Blade Chord @ Sta 45	in1b	16,600	15,700	10,400	14,300	82	83	960	2400	-3	89
*Not Available											

XH-51A CORRELATION DATA CASE LAL

*DEG PRESSURE ALTITUDE = 3540 FT; AMBIENT TEMPERATURE = 70°F LOAD FACTOR = 1.69 g's; FUSELAGE ANGLE OF ATTACK; REXOR = 3.6 DEG, TEST ROTOR LIFT - 2720 LB; SHAFT MOMENT = 7470 IN-LBFLAP UP AT 197 DEG AIRSPEED = 173 KEAS;

REXOR         TEST         TEST         REXOR         TEST         TEST <th></th> <th>STIME</th> <th>STEADY</th> <th>ΛΟΥ</th> <th>I-P MAGNITUDE</th> <th>NITUDE</th> <th>I-P PHASE</th> <th>HASE</th> <th>2-P MAGNITUDE</th> <th>NITUDE</th> <th>2-P P</th> <th>2-P PHASE</th>		STIME	STEADY	ΛΟΥ	I-P MAGNITUDE	NITUDE	I-P PHASE	HASE	2-P MAGNITUDE	NITUDE	2-P P	2-P PHASE
### deg 3.2 3.1 1.0 2.4 336 292	PARAMETER	Old II	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST	REXOR	TEST
### Sta 6	Blade Feather Angle	deg	3.2		1.0	2.4		292	-	-	•	٠
## Sta 6 in1b -38,000 -17,500 1800 1900 201 197 1900 8300 115	Blade Feather Moment	In1b	-1370		150	350		270	20	80		147
1 © Sta 6 in1b 8000 10,500 15,500 74 67 2000 8500 74 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Fixed Hub Flap @ Sta 6	in1b	-38,000	-17,500	1800	1900		197	1900	8300		133
ta 115 in1b 630 -400 1960 1750 280 317 610 900 1  ta 157 in1b 210 -850 500 1300 265 301 560 460 9  Sta 45 in1b 15,000 14,900 10,800 17,000 74 75 1300 3400	Fixed Hub Chord @ Sta 6	in1b	8000	1	15,500	25,600	74	67	2000	8500		52
ta 157       in1b       210       -850       500       1300       265       301       560       460       9         Sta 45       in1b       15,000       14,900       10,800       17,000       74       75       1300       3400	Blade Flap @ Sta 115	in1b	630	-400	1960	1750		317	610	900		84
Sta 45 in1b 15,000 14,900 10,800 17,000 74 75 1300 3400	Blade Flap @ Sta 157	in1b	210		500	1300	265	301	560	7160		37
*Not Available	Blade Chord @ Sta 45	in1b	15,000	14,900	10,800	17,000	42	75	1300	3400		29
*Not Available												
*Not Available												
*Not Available												
*Not Available												
*Not Available												
	*Not Available											

## APPENDIX III

## REXOR INPUT DATA

This appendix contains a listing of input data for the REXOR program for both the AH-56A and XH-51A compound helicopter configurations, together with a definition of each input quantity. The REXOR input format is comprised of 3000 data locations identified as relative addresses (RA's). Using this format, any data item or series of data items may be changed for expediting stacking of multiple-case data. The listing provided is indexed by relative address to guarantee that all input data are provided.

XH-51A	8/22 /72 XH-5 IM C OMPO UND HELI COPT COU M/O COU NTER HTS	7 HET AO= 3.0 OME GA= 37.1 8 BL ADE 000 CONV O FL OPE	03 1.0000E 03	02 1.8000E 02	0.0
AH-56A	1-10 -71 PHAS E II 56A 56A 2C 7 3M80 1.9 50 4 50 4 57 F HIE! 3.	THET AOH CME CAH 25.7 6 RA (82) 1 35 CONV 0 FL AP M	1.0000€	1.30005	0.0
1 DESCRIPTION	TITLE CARD 1	TITLE CARD 2	MAX LONG. STICK TRAVEL .FT.	NO. OF PUINTS/REV. IN TRIM	TRIM KOTOR ROLL MOMENT, FT-LB
REXOR JATA PAGE R/A PRG.SYMBOL	1 ******(15) 3 4 7 7 8 9 10 11 12 14	16 *****(15) 17 18 19 20 21 22 23 24 25 26 27 29	31 KCSMAX	32 A21	33 TRIM2(3)

XH-51A	000	2.0000E 01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0000E 00	1.0000E 00	1.0000E 00	3.0000E 00
AH-56A	000	1.6000E 01	0.0	0.0	0.0	0.0	1.2800F 01	0.0	0.0	0.0	0.0	0.0	1.0000E 00	3.0000E 00
2 0ESCRIPTION	TRIM ROTOP PITCH MOMENT.FT-LA	MAX HEVOLUTIONS TO TRIM	INITIAL ALTITUDE, FT, +=UP	SIVESLIP ANGLE, RAD	STICK STABILIZER DISP. COFFF. 0=U==,.NE.0=GN	STICK STABILIZER RATE. COEFF.	DIST. BOBWEIGHT FCRWARD OF CC.	1=HARD SWASH FLATE, KINEMATIC LINKAGE UNLY, NO SP D. D. F.	BLADE TIP PLUT FLAG INACTIVE	BLADE SECTION AFFC FLAG O=TABLE+1=LINFAR	CONSTANT MCTOF SPEED FLAG	MASS MATRIX PRINT FLAG O=GFF ,1=DN	PUNCH FLAG 0=0FF 1=0N	PLOT FLG,0=NONE,1=TRIM,2=FLY
REXUR DATA DAGE R/A PRG.SYMBOL	34 35	36 TCUT	31 16	38 RET	39 *****	***** 05	41 X82P	42 HAF USP	43 ZPLT	44 NSDATA	45 CRSFG	46 ICDATR	HONOdl 45	48 1PLOT

R/A	REXOR DATA PAGE R/A PRG.SYMBOL	3 DESCRIPTION	AH-56A	X#-51A
64	49 IPRINT	EVERY POINT PRINT FLAG 0=0FF,1=0N	0.0	0.0
20	50 CASE	CASE NO.	7.51306 03	5.6300E 02
15	51 VAZ	NO. OF POINTS/REV. IN FLY	1.8000E 02	1.8000E 02
25	c	MAIN ROTOR SPEED, RAD/SEC	2.5880E 01	3.6740E 01
53	53 BP	PROPELLER BLADE ANGLE, PAD	4.3920E-01	4.1181E-01
54	418	LATERAL CYCLIC, PAD	-1.3152E-02 -2.7823E-02	-2.78235-02
55	55 315	LONGITUDINAL CYCLIC, KAD	2.5955E-02	3.7001E-02
96	56 ТНО	COLL ECTIVE, A AD	1.4300E-01	7.00 00 E-02
57	57 TH0T2	TAIL ROTOR COLLECTIVE, RAD	2.2956E-02	5.5050E-02
5.8	SB ALPHA	ANGLE OF ATTACK, RAD	3.3300E-02	6.3041E-02
59	144	BANK ANGLE, RAD	-8.1390E-03 -1.1973E-02	-1.1973E-02
60	60 DPEV(2) 61	OPEN	-7.5130E-01 0.0	000
95	62 VT	TOTAL VELOCITY.FT/SEC	2.1500E 02	2.4800E 02
63	63 GAMMA	FLIGHT PATH ANGLE, RAD	0.0	0.0
3	64 GA4A1	NOT USED	-2.5440E 03	0.0
99	65 WI42	VERTICAL DOWNWASH	3.5000E 00	2.01275 00
ee.	66 blar	HS7MNMGG 110a	2.1400E-02	4.0923E-03
19	67 Q142	PITCH DOWNWESH	-6.3900E-03	1.16035-02

P EXO 2 / A 68	PEXOR DATA PAGE 7/A PRG.SYMBOL 68 KFKG	4 DESCRIPTION BOWWEIGHT FFFDRACK GAIN	AH-56 A	XH-518
69	SECEN	FILTERED GYRO RULL MOMENT OR SP ROLL MOMENT, FT-LB		-3.8400E 00
20	70 GPC04	FILTEPED GYRC FITCH MOMENT CR SP PITCH MOMENT, FT-LB	0.0	2.0031E 01
12	WIMRD	D/01 OF WIMP	0.0	0.0
22	PIMEL	0/01 OF PIMR	0.0	0.0
13	OIMRD	E/DT OF SIME	0.0	0.0
2	74 HIMBUI	NOT USED IN CURRENT PROGRAM	3.5000E 00	0.0
75	1 PINFUI		2.1486E-02	0.0
76	OFWRYI		-6.4000E-03	0.0
11	77 AITE	TAIL ROTGR LONG. FLAP ANGLE	0.0	2.3978E-02
78	a	TAIL ROTOR DOWNWASH	5.0000E 00	4.9343E 00
2	79 DNWFLG	CONN WASH FLAG O=CN	0.0	0.0
90	80 TAU	TRIM CONTROL TIME CONSTANT, SEC	5.00006-02	6.0000E-02
8	œ	ROTOR RADIUS = RA(513),FT	2.5700E 01	1.7500E 01
	06(3)	NAT.FREG.,RAD/SEC,WITH BLADE DATA, (INFO.ONLY) SEE RA(1286)	3.5640E 01	5.7030E 01
6 4			2.8280E 01 6.9670E 01	4.0500E 01 1.0070E 02
85 THI		BLADE THIST ANGLE, RAD	-8.7270E-02 -8.1050E-02	-8.1050E-02

REXC R/A	REXOR DATA PAGE R/A PRG.SYMBOL	5 DESCRIPTION	AH-56A	XH-51A
98	15 78	LONGITUDINAL C.G. OFFSET.FT	0.0	0.0
87	87 QNEAR	LATERAL C.G. OFFSET.FT	0.0	0.0
98	86 DY(2)	NOT USED IN CURRENT PROGRAM	5.6140F 03	0.0
80		Negr Offin	5.3710E 04	0.0
90	90 IPITCH	PITCH DESFNSITIZER FLAG 0=0FF+1=0N	0.0	0.0
91	FMASS	FUSFLAGE MESS, SLUGS	4.7200E 02	1.3400E 02
92	OPFN	CPFN	1.0000E 04	0.0
93	93 H	ALTITUDE, FT	1.0000E 04	1.0000E 04
76	94 KRD	ROLL DAMPEP GAIN	0.0	0.0
95	95 HC	VEHT. DIST. HUB TC C. G. FT	5.7000E 00	0.0
%	.JH 96	VEPT. DIST. HUR TO FUSLG. AXIS	5.4500E 00	2.7400E 00
4	97 ST2	TAIL FIN BLUCKIGE FACTOR	1.0000E 00	8.0000E-01
8	98 SLTR	AFT.DIST. TAIL ROTOR TO FUSE AXIS.FT 98.5 FT.	2.9900F 01	2.1800E 01
66	d 15	AFT.DIST. PROPELLER TO FUSE AXIS.FT	3.1400F 01	0.0
100	100 нь	VEKT DIST. PROPELLER TO FUSE AXIS,FT	9.5000E-01	9.5000E-01 -1.3300E 00
101	101 SLHS	AFT DIST. HURIZONTAL SURFACE	2.8200E 01	2.8200E 01 1.7500E 01

XH-51A	2.2200E 01	-2.0000E-01	0.0	0.0	8.6000E-01	1.0000E 00	2.2700E-01	2.1300E-03	1.1240E 00	5.7000E 00	8.0000E-03	3.6000E-01	0.0	0.0	0.0
AH-56A	2.6700E 01	-1.7200E 00 -2.0000E-01	0.0	0.0	9,0000E-01	1.0000E 00	0.0	2.1700E-03	2.3300E 00	5.7000E 00	8.0000E-03	3.6000E-01	0.0	0.0	0.0
6 DESCHIPTION	AFT DIST. VERT. SUPEACE TO FUSE AXIS.FT	VEAT DIST. VEPT SURFACE TO CUSE AXIS. ET	NEW DATA DECK OPTION O=OFFNE.O=ON	POLL GAMPER FLAG NOT USED IN CURRENT PROS. KEEP OPEN	EQUIVALENT VELUCITY RATIO	TAIL BLUCKASE FACTOF FOR PROP.	PRUP. INCILENT ANGLE, RAD	AIR DENSITY, SLUG/FT3	BLADE CHORD, FT	BLADE LIFT CURVE SLOPE	BLADE DRAG AT ZFRO LIFT	BLADE DRAG VARIATION WITH LIFT SQUARED	FEATH. FRICTION	FFATH. STICTION BREAKPOINT	GYRO OR SWASHPLATE FRICTION
REXOR DATA PAGE	102 SIVS	103 HVS	104 EDIT	105 IDAMP	105 FTAF	107 QP3PT	108 019	109 RHJ	110 6030	111 SMALLA	112 DEL TO	113 DEL T2	114 FCF	115 RLF	116 FCG

REKJA DATA PŁGE R/A PPG.SYMBJL	7 DESCRIPTION	AH-56A	XH-51A
117 FLG	GYRO OR SWASHPLATE STICTION RREAKPOINT	0.0	0.0
118 QJGY2G	GYPU GR SP. PCLAR MIM. OF INERTIA.	4.5300E 01	8.0400€ 00
119 CHI	GY30 TO CONTPOL PHASE ANGLE (SWP.),FT	6.2800E-01	4.1900E-01
120 Tue	AUTHORITY LIMITS ON LATERAL STICK	3.3000E-02	0.0
121 OCGK	GYRO DAMPING CONSTANT, ROLL (SWF.)	1.0570E 03	1.5000£ 02
122 0000	GYRO DAMPING CONSTANT, PITCH (SMP.)	1.0570E 03	1.5000E 02
123 OKKCS	SPRING CENSTANT, LONG. STICK	3.3300€ 03	3.7000E 02
124 JKYCS	SPRING CONSTANT, LAT. STICK	6.3000E 03	7.3000E 02
125 BETAG	GYRU IN ROTOR CANT ANGLE (SWF.), RAD	5.7600E-01	7.8500E-01
126 QKGK	GYRE SPRING CONSTANT, ROLL (SWP.)	4.1000£ 03	2.5000E 02
127 QKGD	GYRO SPRING CONSTANT, PITCH [SWP.]	4.1000E 03	2.5000E 02
128 HUBL(5) 129 130 131	DIST TO INBAD.BRNG.,FT DIST.BETWEEN FEATH.BRNGS.,FT DIST.TO AMCS FOBK.MOUNT.FT NOT USED	2.9170E 00 2.0830E 00 0.0	1.2080£ 00 6.6670£-01 0.0 0.0

REX A/A	REXOR DATA PAGE R/A PRG.SYMBOL	8 DESCRIPTION	AH-56A	X#-51A
133	133 NGJRF	GROUND RUN OR FREE FLY FLAG O=FREE FLY,1 =FIXED SHAFT	0.0	0.0
134	134 CYCFLG	FLV PLOT SCALE FLAG, RA(298) O=SEC/IN,1=CYCLES/IN	0.0	0.0
135	135 DEJCA	DE/DIALPHA) AT TAIL FROM WING .365	4.3000E-01	6.50005-01
136	<b>u</b> i	PITCH HORN LENGTH, FT	1.3300E 00	5.5000E-01
137	137 QKG21	FIRST VERT. GYPG SPKING CONST.	6.7200E 02	1.6000E 05
138	790 861	GYRO VERT. DAMPING CONSTANT (SWP.)	3.6000E 02	1.00 00 E 03
139	139 GMASS	GYFU MASS (SWP.) SLUGS	8.7000E 00	2.0000E 00
140	140 CKGZ2	SECOND VERT. GYRO SPRING CONST (Shp.)	1.6800E 05	1.6000E 05
197 141	197	GYHC VFRT. SPRING BREAKPOINT (SWP.)	4.1600E-03	1.0000E 00
145	142 CORAF	TRIM CPTION	1.0000E 00	1.0000E 00
143	143 TURNLE	TURN LUAD FACTOR, G	1.0000E 00	1.0000€ 00
144	144 TU?NSN	FLAG FOR TURN LEFT OR RIGHT +=RIGHT	-1.0000E 00 -1.0000E 00	-1.0000F 00
145	145 CH11	INPLANE TO FEATHER COUPLING	7.0000E-01	5.8980E-01
146	146 C1F1	FIRST FLAP TO FEATHER COUPLING	5.5000E-02 -2.6970E-01	-2.6970E-01
141	147 0152	CIFI WITH FEATHER ANGLE	-6.3800E-01	0.0

REXNR DATA PAGE R/A PRG.SYMBOL 148 C2F1 149 C2F2 150 NMP 151 PT(20) 153 154 155 155 158	9 DESCRIPTION SECOND FLAP TO FEATHER COUPLNG C2F1 WITH FFATHER ANGLE NO. UF POINTS FOR PILOT TABLES PILOT TIME TABLE SEC	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-3.1060F-01 0.0 1.6000E 01 1.2500F-01 2.5000F-01 6.2500E-01 6.2500E-01 1.6250E 00 2.5000E 00
P.KC.S(.20.)	PILIT LONG.STICK DISPL.TBL.,FT	0.0 0.0 1.2500E-02 1.6700E-02 1.4200E-02 1.5000E-02 1.4200E-02	0.0 8.0000E-03 2.9000E-02 5.8000E-02 1.3800E-01 1.2500E-01 1.2500E-01 1.2100E-01 1.1700E-01

PEXON DATA PAGE PAGE	10 PESCRIPTION	AH-564	XF-51A
181 182 183 184 185 187 189 190		1.67005-02 1.67006-02 2.08005-02 2.08005-02 2.08006-02 2.08006-02 2.50006-02 2.50006-02	4.2000F-02 -8.0000E-03 -1.7000F-02 0.0 1.3000F-02 0.0
191 PYC S ( 201 193 194 195 196 197 198 200 201 205 206 207 208 209	PILET LAT. STICK DISPL.TBL.,FT	0.0 -1.6700E-02 -6.7000E-02 -9.6000E-02 -9.2000E-02 -9.2000E-02 -7.9000E-02 -7.9000E-02 -7.9000E-02 -7.9000E-02 -7.1000E-02 -7.1000E-02 -7.1000E-02 -7.1000E-02 -7.5000E-02 -7.5000E-02	1.50006-03 -1.70006-03 -1.70006-03 -1.70006-03 -1.70006-03 -1.70006-03 -1.70006-03 -1.70006-03
211 PTHO(20) 212 213 214 215	PILOT COLLECTIVE TABLE, PADIANS	00000	00000

REXOR DATA PLASE R/A PRG.SYMBOL	11 DE 3CR I P TI ON	4H-56A	XH-51A
216		0.0	0.0
217		0.0	0.0
213		0.0	0.0
219		0.0	0.0
220		0.0	0.0
221		0.0	0.0
222		0.0	0.0
223		0.0	0.0
224		0.0	0.0
225		0.0	0.0
226		0.0	0.0
227		0.0	0.0
228		0.0	0.0
229		0.0	0.0
230		0.0	0.0
231 PT40TP (20)	PILLUT TAIL 9 TP.COLCTV. TBL 9 AD	0.0	0.0
232		0.0	0.0
233		0.0	0.0
234		0.0	0.0
235		0.0	0.0
236		0.0	0.0
237		0.0	0.0
220		•	•
240			
241		0.0	
242		0.0	0.0
243		0.0	0.0
244		0.0	0.0
245		0.0	0.0
246		0.0	0.0
241		0.0	0.0
248		0.0	0.0
249		0.0	••
250		0.0	0.0

REXOR DATA PAGE R/A PRG.SYMBOL	12 Description	AH-56A	XH-51A
251 PBP (20)	PILOT PROP.BLD.ANGLE.TBL.,RAD	0.0	0.0
262		0.0	
255		0.0	0.0
255		0.0	0.0
256		0.0	0.0
257			0.0
258			
520		0.0	
260		0.0	0.0
197		0.0	0.0
263		0.0	0.0
264		0.0	0.0
265		0.0	0.0
266		0.0	0.0
267		0.0	0.0
268		0.0	0.0
269		0.0	0.0
270		o :	0.0
		0.0	0.0
271 0050	GEAR RATIN - STATIC (SWP.)	7.2000E-01	7.8000E-01
272 DOF 1	GEAR RATIO (SWP.)	-2.0000E-01	-3.0000E-01
273 FKSPT	SHAFT RENDING FELTA-3 CHEFF.	6.0000E-07	0.0
274 DEL.04R	TRIM VARIABLE	0.0	0.0
275 FBL 11(2,2) 276 277 278	FELTH.BEAM. DISPL., INPLANE	1.3700E-02 -6.1790E-03 6.1650E-02 -2.9650E-02	5.4160E-03 -4.3460E-03 2.1160E-02 -3.1240E-03
279 FRL 1 ^c (2,2) 280 281	FEATH.BEAR.DISPL.,1ST.FLAP	2.2580E-04 2.8410E-02 1.2830E-03	4.7180E-05 3.0720E-02 1.8220E-04

AH-56A XH-51A	1.0350F-01 5.6270E-02	,2NC.FLAP -3.4510E-03 -2.2690E-04 -8.0910E-02 -8.6160E-02 -1.9700E-02 -8.8680E-04 -2.4240E-01 -1.5560E-01	IN TELY 1.0000E-01 1.0000E-01 IN ELY 5.0000E-02 5.0000E-02 I.0000E-01 1.0000E-02 I.0000E-02 1.0000E-02 I.0000E-01 0.0	TOP TIME CON. 2.5000E-02 2.5000E-02	JK TIME CUN. 2.5000E-02 2.5000E-02	7.1600E 02 0.0	CR TRIM 0.0 0.0	FOR TRIM 0.0 0.0	ADE FOR PLUT, 1.9500E 01 1.3080E 01	PLUT 5.0000E-01 5.0000E-01	PLOTTED IN 4.0000E 01 4.0000E 01	
UESCAIPTION		› FEATH. UEAP.OISPL., 2ND.FLAP	DAMMSH TIME CONST. IN TEDWNWSH TIME CONST. IN ELNOT USED SHAFT RENDING TIME CONST. NOT USED	PILOT LONG. ACTUATOR TIME CON.	PILOT LAT. ACTUATOR TIME CON.	FEATHER SPRING	POLL RATE INPUT FOR TRIM	PITCH RATE INPUT FOR TRI RAD/SEC	DISTANCE ALONG BLADE FOR	SCALE FACTOR FOR PLUT	NO. PARAMS. TO BE PLOTTE	
REXOR DATA PAGE R/A PRG.SYMBOL	282	283 FBI 2F (2,2) 284 285 286	287 TC(5) 288 289 290 291	292 TCX	293 TCY	294 TXS	295 PRI	296 QRI	291 DSTAF	298 TSCLE	299 NVA21	

AH-56A XH-51A	TO BE 1.0000E 00 1.0000E	NI	3 8	20	01 10	10	8	8.0000E 00 8.0000E	88	10	01 5	01 5	5 10	3.6000E 01 3.6000E	010	01 6	01 1	01 2	10	01 3	01 8	20	00 7.	01 8	01 8.	8	9 10	8.9000E 01 8.9000E	
14 DESCRIPTION	CODE NO. OF PARAM. 1																												
EXOR DATA PAGE	NVE C 1 ( 40)																												

REXI	REXOR DATA PAGE	16 DESCRIPTION	4H-56A	XH-51A
354	354 GFDDL	GYEG DAMPER, PITCH-ROLL COUPLNG, AMCS	0.0	0.0
355	€SK •	SYPE SPRING, PITCH-ROLL COUPLNG , AMCS	0.0	0.0
356	356 GSDP	GYRC SPRING, PITCH, AMCS	0.0	0.0
357	357 GFKDM	GYPU DAMPER, PITCH-ROLL COUPLNG, AMCS	0.0	0.0
358	358 GFDD4	GYRC DAMPER, PITCH, AMCS	0.0	0.0
359	GFKDL	GYRG DAMPER, RCLL, AMCS	0.0	0.0
360	12264A	GYRO POLAR INERTIA, NON-ROTATNG , AMC S	0.0	0.0
361	361 1xxG	RGLL INERTIA (SWP.)	2.2500E 01	3.7500E 00
362	362 GRK	GYRU-TU-SWASHPLATE GEAR RATIU •AMCS	2.3000E-01	0.0
363	GRD	GYRO-TO-SWASHPLATE GEAR RATIO ,AMCS	2.4700E-01	0.0
364	364 XTHTF	PARTIAL (X-FUSELAGE/THETA-SHFT)	-2.6950E 00 -2.6950E 00	-2.6950E 00
365	365 YPHIF	PARTIAL (Y-FUSELAGE/PHI-SHAFT)	2.6950E 00	2.6950E 00
366	366 HMA SS	HUB MASS, SLUG	1.8600E 01	8.1200E 00
367	367 HXXGF	ADDED FUSELAGE ROLL MOMENT	0.0	0.0
368	368 HYYGF	ADDED FUSELAGE PITCH MOMENT	0.0	0.0
369	369 MZZGF	ADDED FUSELAGE YAN MOMENT	0.0	0.0

REXOR DATA R/A PRG.SYMBUL	P.E. SE	17 DESCRIPTION	AH-56A	XH-51A
370 NIFLL		VEHICLE FLAG 0=AH56A .NE.0=AAH	0.0	0.0
371 TCL		NOT USTD	0.0	0.0
372 XF84R		AFT DIST. FUSFLAGE TO C.G. FT	-1.7500E-01	2.0000E-02
373 YF942		4T. DIST. FUSELAGE TO C.G. CT	-1.0400F-01 -3.2000E-01	-3.2000E-01
374 25883		DOWN DIST. FUSELAGE TO C.G. FT	2.9200E-01	7.8000E-01
375 FKS		SMAFT BENDING SPRING	3.4000E 06	3.4000E 06
VCJHAN 916		SWASHPLATE SPRING, ROLL #RA(126)	4.1000E 03	7.3000E 02
377 KTHCON		SMASHPLATE SPPING, PITCH = RA(127)	4.1000E 03	7.3000E 02
378 CPHDSP		SMASHPLATE DAMPER, ROLL=RA(121)	1.05706 03	1.5000E 02
379 CTHDSP		SWASHPLATE DAMPER,PITCH =RA(122)	1.0570E 03	1.5000E 02
380 ***** (15) 381 382 383 384 385 386 389 390 391	<u> </u>	PT (C) DATA - NOT USED	1.0700E-02 2.2580E-04 -3.4510E-03 2.8410E-02 2.0300E-02 3.8300E-02 3.8300E-04 -1.1510E-02 3.5410E-02 2.9170E 00 0.0	5.4160E-03 4.7180E-05 -2.2690E-04 3.0720E-02 1.9340E-02 1.6720E-04 -5.6020E-04 -5.6020E-04 -1.0390E-01

REX	REXOR DATA PAGE			
R/A	R/A PRG.SYMBOL	DESCRIPTION	AH-56A	XH-51A
395	KFP HG	GYRO FRICTION, AMCS	0.0	0.0
396	REAL	FQUIV.RADIUS AT INBOARD END OF FDBK LEVER	4.36005-01	0.0
397	397 PSIFBL	ANGLE INROARD END OF FORK LEVR LEADS BLADE	4.0700E-01	0.0
398	CAPHIS	COEF. FOR PHI, IN SHAFT BENDING (SWP.)	5.2000E-01	0.0
399	IFLEX	SHAFT BENDING FLAG O=[FF,1=]N	0.0	0.0
400	ROFFT	O RULL RATE FET .NE.O Reactionless flap	0.0	0.0
401	19E JN540			
405			1	0.0
403		•	-1.4240E 00	•••
104		•	-3.5910E-02	0.0
405				0.0
404			3.2240E 00	0.0
407			1	0.0
408				0.0
409				0.0
410		,	-2.9630E-01	
411		•	8-1220F-01	
412			-2.1280E-02	0.0
			3.1630E 00	0.0
5T+			1.3110E 01	0.0
417		•	-7.1290E-02	0.0
014		•	-3.3300E 00	0.0
110		•	-4.6780F 01	0.0
017		•	-4.3960E 00	0.0
420			-1.8650E-01	0.0
1		•	-3.8220E-01	0.0

AH-56A XM-51A	-2.3480E-02 0.0 -7.1890E-01 0.0 -2.4370E 00 0.0 -9.6930E 01 0.0 -1.2510E 00 0.0 -1.2510E 00 0.0 -1.0290E 00 0.0 -2.4440E 00 0.0 -1.3750E 01 0.0 -1.3750E 01 0.0 -1.4050E-01 0.0 -1.4050E-01 0.0 -1.4050E-01 0.0	TE 1.5000E 00 1.0000E 03	1.0000E 00 1.0000E 03	0.0	3.0000€ 00 0.0	0.0 0.0 0.0 -3.00006-02 2.60006-02 0.0 0.0 -1.85006-01 0.0
19 DESCRIPTION		MAX.LONG.STICK ACTUATOP PATE	MAX.LAT.STICK ACTUATOR FATE	CILTERED GYRG YAW MOMENT	SINGLE BLADE TRIM FLAG	FUSFLAGE AIRLOAD
REXNR DATA PAGE R/A PRG.SYMBOL	421 422 424 425 426 427 428 431 431 432 433 434 435	437 XC2DL	438 YCPDL	439 FG-3r	440 FAST	441 FNN(6,8) 443 444 445 446 447 449

AH-56A KH-51A	0.0	-6.2000E 00 0.0			200E-01 -		000E-01	0.0		0		0.0	-2.4200E 01 -5.0000E 00	0	•			200E-01 -	0.0	200E 00 -			-9.7000E-02 -2.7000F-02		900E-01 -		900E 00 6.	ċ	0.0	•	•	•	o (		
20 DESCRIPTION																																			
REXOR DATE PAGE R/A PPG.SYMBOL	20	51	452	453	54	10	96	57	.58	651	099	191	795	rn.	791	<b>.</b>	994	167	891	69	•	T,	22	52	<b>52</b> .	15	.76	_	821	•	90	19	95	70	

R/A	REXOR DATA PAGE R/A PRG.SYMBOL	21 DESCRIPTION	AH-56A		XH-51A
488			0.0		00
489	489 GAYYAG	FOTUR-TO-GYRO FEFDBACK ANGLE	0.0		0.0
4 90	IAMCS	FLAG FOR AMCS O=ICS,1=AMCS	0.0		0.0
164	GIXS	NOT USED	0.0		0.0
765	QKFEFD	AMCS PEEDBACK SPRING	0.0		0.0
463	1001	AMCS GYRD ACTUATOR TIME CONST.	0.0		0.0
767	494 YCSMAX	LAT. STICK TRAVEL LIMIT	1.3000E	03	1.0000E 03
495	495 GKIL	AMCS ACT. RATE LIMIT	1.0000E	03	0.0
496	496 GD1L	AMCS ACT. RATE LIMIT	1.0000E	03	0.0
164	DISTCN	BLADE STA.(FT.) FOR BLADE- Canopy Clearance	0.0		0.0
498	498- NRAD	NG. OF BLADE STATIONS	1.3000E	10	1.3000E 01
664	OPIN	INCREMENT OF STATIONS	1.00006	00	1.0000E 00
200	KSTART	STARTING STATION	2.0000E	8	2.0000E 00
200 200 200 200 200 200 200 200 200 200	Sx( 40 )	DISTANCE ALONG BLADE, FT	1.5000E 2.5830E 5.1660E 6.8330E 8.5820E 1.0020E	228888	5.00006-01 5.10006-01 3.7500E 00 6.0830E 00 7.8330E 00 9.5830E 00

REXOR DATA PAGE R/A PRG.SYMBOL	22 Description	AH-56A	XH-51A
508		1.4500E 0	1.16706
504			1.30 BOE
510			1.4330E
511			1.5420E
512		2.3570E 0	01 1.64206 01
513			1.7500E
514		0.0	0.0
515		0.0	0.0
516		0.0	0.0
517		0.0	0.0
518		0.0	0.0
519		0.0	0.0
520		0.0	0.0
521		0.0	0.0
522		0.0	0.0
523		0.0	0.0
524		0.0	0.0
525		0.0	0.0
526		0.0	0.0
527		0.0	0.0
528		0.0	0.0
529		0.0	0.0
530		0.0	0.0
531		0.0	0.0
532		0.0	••
533		0.0	0.0
534		0.0	0.0
535		0.0	0.0
536		0.0	0.0
537		0.0	0.0
538		0.0	0.0
539		0.0	0.0
540		0.0	0.0
541 UH(40)	MASS/LENGTH ALCNG BLADE	1.7100E-01	3.11706-01
242	SLUG/FT	7-97405-01	1 6.3490F-01
346			

AH-56A XH-51A		1.3800E 00 1.3800E-01				5.5670E-01 1.4700E-01	.9570E-01		.9910E-01	.8420E-01	.7370E-01	•	0.0	•	0	•	0.0	•	0	•	•	•	•	•	•	•	•	•	0	0.0	•	•	•	•	•	0.0	•
23 DESCRIPTION																																					
REXOR DATA PAGE R/A PFG.SYMBOL	543	544	545	246	247	548	549	550	551	552	553	554	555	556	557	558	559	260	195	295	563	564	565	566	267	568	569	570	571	572	573	574	575	576	577	578	579

REX R/A	REXOR DATA PAGE R/A PRG.SYMBOL	24 DESCAIPTION	AH-56A	XH-51A
280			0.0	0.0
185	VE31	INITIAL AIRSPEED, LONG, STICK Desensitizer	1.86006 02	0.0
585	582 DVF01	AIRSPEED, FULL LONG, STICK Desensitizer	1.01006 02	0.0
583	583 VE22	INITIAL AIRSPEED, XCS-P COUPLNG	1.8600E 02	0.0
584	. DVEC2	AIKSPEED, FULL XCS-P COUPLING	1.5200E 02	0.0
585	KXCS	IONG.NESENSITIZER FFEDBACK RATIO	5.0000E-01	0.0
586	586 KYCS	LAT. DESENSITIZER FEEDBACK RATIO	0.0	0.0
587	X XP R	XCS-P FEEDBACK RATIO	1.20005-01	0.0
588	588 XCS1	LONG.DF SFNSI TIZER LIMIT	4.1700E-02	0.0
589	589 XCS2	LONG.DESENSITIZER PLUS XCS-P FEEDBACK LIMIT	5.83006-02	0.0
290	590 YCS1	LAT. DESENSITIZER LIMIT	1.0000E-01	0.0
165	POENG	ENGINE INPUTS	1.1200E 04	0.0
265	POECH	ENGINE INPUTS	5.0000E 03	0.0
593	k KIPP4	ENGINE INPUTS	1.0000E 00	0.0
594	594 K2PRM	ENGINE INPUTS	3.3000E 00	0.0
595	595 TAJG	ENGINE INPUTS	7.5000E-01	1.0000E 00

REX.	REXUR DATA PAGE R/A PR3.SYMBOL	25 DESCRIPTION	AH-564	XH-51A
296	TAUG	ENGINE INPUTS	0.0	0.0
297	0.00141	SELECTIVE PERTUPBATION INCPMNT	0.0	0.0
965			0.0	0.0
288			000	00
601	SY(40)	CHCPUMISE DISTANCE ON BLADE	0.0	0-0
209				0.0
6000				-1.0400E-01
609			-	-2.8000E-02
909				-6.7000E-03
209			-1.2550E-02	-3.3000E-03
809			-2.8110E-02	0.0
609			-2.6010ë-03	5.4000E-03
119			-7.9080E-02	5-4000F-03
612			5.7500E-02	5.4000E-03
613			-1.7380F-92	5.4000E-03
419			0.0	0.0
610			0.0	0.0
617				
919			0.0	0.0
619			0.0	0.0
620			0.0	0.0
170				
623				200
624			0.0	0.0
629			0.0	0.0
626			0.0	0.0
627			0.0	0.0
979			0.0	0.0
629			0.0	0.0

REXOR DATA PLGE R/A PRG.SYMBOL	26 Description	AH-56A	XH-51A
630		0.0	0.0
169		0.0	0.0
632		0.0	0.0
633		0.0	0.0
634		0.0	0.0
635		0.0	0.0
636		0.0	0.0
637		0.0	0.0
638		0.0	0.0
639		0.0	0.0
049		0.0	0.0
641 PSIT3(20)	PILOT ENGINE SPEED	0.0	0.0
642		0.0	0.0
643		0.0	0.0
949		0.0	0.0
645		0.0	0.0
946		0.0	0.0
149		0.0	0.0
648		0.0	0.0
649		0.0	0.0
650		0.0	0.0
651		0.0	0.0
760		0.0	0.0
653		0.0	0.0
759		0.0	0.0
655		0.0	0.0
929		0.0	0.0
657		0.0	0.0
65R		0.0	0.0
659		0.0	0.0
099		0.0	0.0
661 GL3N	GYRO ROLL CONTROL MOMENT	0.0	0.0
NOME 799	GYPO PITCH CONTROL MOMENT	0.0	0.0

AH-56A XH-51A	0.0	TROL EQ.S 0.0 0.0	TROL E0.5 0.0 0.0	TPOL EG.S 0.0 0.0	TROL E4.5 0.0 0.0	TROL E0.5 0.0 0.0	TROL EQ.S 0.0 0.0	TROL E0.5 0.0 0.0		POINTS 0.0 2.0000E 01	0.0
27 DESCRIPTION		GAIN FACTURS IN CONTROL A-FHI	GAIN FACTURS IN CONTROL R-PHI	GAIN FACTORS IN CONTROL A-PSI	GAIN FACTORS IN CONTROL R-PSI	GAIN FACTORS IN CONTROL	GAIN FACTORS IN CONTROL B-THETA	GAIN FACTORS IN CONTROL 4-THE TA-C	OPFN	NO. OF AUTOPILOT POI	AUTHORIOT TIME
RFXDR DATA PAGE R/A PPG.SYMBUL	N2du 699	1Hdv 999	1Has 599	666 APSI	15d6 <b>199</b>	668 ATH	669 ВТН	670 ATC	671 OPFN(10) 672 673 674 675 677 678 679	680 NMPAT	681 PTAUTO(20)

REXOR DATA PAGE R/A PRG.SYMBOL	28 DESCRIPTION	AH-56A	XH-51A
683			
489		0.0	0.0
685		0.0	0.0
989		0.0	••
189		0.0	0
688		0.0	0.0
689		0.0	0.0
069		0.0	••
169		0.0	0.0
269			0.0
693			0.0
769		•	0.0
695			
969			
269			•
869		0.0	0.0
669			9 0
100			0
		0.0	0.0
701 PXC SAT( 20)	AUTCPILOT LONG. STICK	0.0	0,0
702			
204		0.0	0.0
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.0	0.0
56		0.0	0.0
707		0.0	0.0
708		0.0	0.0
109		0.0	0.0
710		0.0	0.0
112		0.0	0.0
712		0.0	0.0
713		0.0	0.0
714		0.0	0.0
715		0.0	0.0
716		0.0	0.0
717		0.0	
718			•
		•	•

REXUR DATA PAGE R/A PRG.SYMBUL	29 DESCRIPTION	AH-56A	XH-51A
719		0.0	0.0
120		0.0	0.0
721 PYC SAT(20)	AUTUPILOT LAT. STICK	0.0	0.0
722		0.0	0.0
723		0.0	0.0
724		0.0	0.0
725		0.0	0.0
726		0.0	••
727		0.0	0.0
87/		0	••
729		0.0	0.0
7.30		0.0	0.0
731		0.0	0.0
732		0.0	••
733		0.0	0.0
734		0.0	••
735		0.0	0.0
136		0.0	••
737		0.0	0.0
738		0.0	••
739		0.0	0.0
140		0.0	0.0
741 PTH3AT(20)	AUTOPILOT COLLECTIVE	0.0	0.0
742		0.0	0.0
743		0.0	0.0
744		0.0	0.0
745		0.0	••
746		0.0	0.0
747		0.0	0.0
748		0.0	0
		0.0	0.0
750		0.0	0.0
151		0.0	0.0
761		0.0	0.0
753		0.0	0.0

REXOR DATA PAGE R/A PRG.SYMBOL	30 DESCRIPTION	I	
755 756			
		0.0	0.0
758		0.0	0.0
160		0	0
761 BMS17(40,4)	INPLANE YO COORDINATE	0.0	0.0
		3.93706-03	0.0
763			
164			
765		1.83906-01	2.9060E-01
166		•	.0260E
<u>~</u> (		•	•
168		4.2910E-01	•
770		5.5300E-01	6.5650F-01
177		8-3420F-01	36.90F
. ~		8.9110E-01	9.1510F-01
773		1.0000F 00	-0000E
4		0.0	0.0
775		0.0	0.0
١٥		0.0	0.0
<b>~</b>		0.0	0.0
er ·		0.0	0.0
<b>6</b>		0.0	0.0
780		0.0	0.0
		0.0	0.0
782		0.0	0.0
3		0.0	0.0
•		0.0	0.0
785		0.0	0.0
•		0.0	0.0
787			0.0
Œ		0.0	•
89		0.0	0.0

REXOR DATA PAGE R/A PRG.SYMBOL	31 DESCRIPTION	4H-56A	XH-514
190		0.0	0.0
161		0.0	0.0
761		0.0	0.0
193		0.0	0.0
194		0.0	0.0
795		0.0	0.0
796		0.0	0.0
191		0.0	0.0
198		0.0	0.0
799		0.0	0.0
800		0.0	0.0
108	INPLANE ZO CCOPDINATE	0.0	0.0
802		-2.3470E-03	0.0
803		-3.1370E-02	-1-
804		-4.70T0E-02	-1.5130E-0
805		-5.8100F-02	7
806		-5.9610E-02	1
807		-5.4100E-02	•
808		-4.5230E-02	-5.
809		-3.0470E-02	-5
810		-1 .5080E-02	-7-
811		2.9210E-03	-9.2180E-0
812			•
813		2.1840E-02	-1.39 20E-0
814		0.0	0.0
815		0.0	•
816		0.0	0.0
817		0.0	
818		0.0	0.0
619		0.0	0.0
8.20		0.0	0.0
821		0.0	0.0
822		0.0	0.0
823		0.0	•
824		0.0	0.0
825		0.0	0.0
826		0.0	0.0

AH-56A XH-51A	000			1950E-02 4240E-02 6350E-02 0350E-02	4.6420E-02 7.3560F-02 4.9610E-02 7.6120E-02 5.2050E-02 7.7440E-02 5.3070E-02 7.8090E-02 5.3180E-02 7.8340E-02 5.3250E-02 7.8400E-02	
32 DESCR 1 P TI ON			INPLANE Y-PRI-0 CCORDINATE			
REXOR DATA PAGE R/A PRG.SYMBOL						

REXOR DATA PAGE R/A PRG.SYMBOL	33 JESCF IPTION	AH-56A	XH-51A
994			0.0
865		0.0	0.0
198		0	0
868		0.0	0.0
698		0.0	0.0
910		0.0	0.0
871		0.0	0.0
872		o. 0	0.0
873		0.0	0.0
874		0.0	0.0
875		0.0	0.0
876		0.0	0.0
877		0.0	0.0
878		0.0	0.0
879		0.0	0.0
080		0.0	0.0
	INPLANF Z-PRI-D COORDINATE	0.0	
682		-1.1470E-02	0.0
800		-1,0260E-02	7
984		-8.1980E-03	2.2320E-0
685		-3.8520E-03	2.1020E-
989		1.8240E-03	1.1780F-0
199		4.05 /0E-03	5.0213E-0
10 (d)		5.3380F-03	-1.35305-0
6.88		5.9730E-03	-1.0100E-0
840		•1570F-0	-
168		9	-0800E-0
268		.0690E-0	-3016Z-
893		6.0360E-03	-2.3610E-03
200		0.0	
895		٥.	0.0
969		0.0	0.0
269		0.0	0.0
		0.0	0.0
			0.0
966		0.0	0.0

REXOR DATA PAGE R/A PRG.SYMBOL	34 DESCRIPTION	AH-564	XH-51A
901		0.0	0.0
206		0.0	
903		0.0	0.0
406		0.0	0.0
905		0.0	0.0
906		0.0	0.0
404		0.0	0.0
906		0.0	0.0
606		.,•0	0.0
910		0.0	0.0
911		0.0	0.0
912		0.0	0.0
913		0.0	0.0
914		0.0	0.0
516		0.0	0.0
916		0.0	0.0
917		0.0	0.0
916		0.0	0.0
616		0.0	0.0
076		0.0	0.0
921 BMS1F(40,4)	IST.FLAP YO CCORDINATE	0.0	0.0
		9.8090E-05	0.0
923		1.4010E-03	9.0100E-0
924		2.7290E-03	2.9540E-0
925		4.4490E-03	4.9710E-0
956		7.5640E-03	7.1550E-0
927		1.03905-02	8.5620E-0
928		1.3660E-02	9.8830E-0
929		1.8630E-02	1.1780E-0
930		2.3740E-02	1.3470E-0
931		2.9920E-02	1.4930E-0
932		3.2220F-02	
933		3.6620F-02	
934		0.0	0.0
935		0.0	0.0
436		0.0	

REXOR DATA PAGE R/A PRG.SYMBOL	35 DESCRIPTION	AH-56A	XH-51A
937		0.0	0.0
938		0.0	0.0
939		•••	0.0
040			
942		0	0
943		0.0	0.0
746		0.0	0.0
945		0.0	0.0
945		0.0	0.0
146		0.0	0.0
840		0.0	0.0
646		0.0	0.0
950		0.0	0.0
951		0.0	0.0
952		0.0	0.0
953		0.0	0.0
954		0.0	0.0
955		0.0	0.0
926		0.0	0.0
156		0.0	0.0
958		0.0	0.0
656		0.0	••
096		0.0	0.0
961	1ST.FLAP ZO CCCRDINATE	0.0	0.0
296		1.6620E-02	•
696		1.09606-01	1.3350E-0
796		1.71706-01	2.5900E-0
496		2.3910E-01	•
995		3.34706-01	4.7770E-0
196		4.0980E-01	5.4780E-0
996		4.9050E-01	6.1310E-0
696		6.0640F-01	
970		2050E-0	•
971		8.5520E-01	8.6110F-0
972		.0490E-0	L
973		1.0000E 00	1.0000E 0

REXOR DATA DAGE	36		
RIA PRG.SYMBOL	DESCRIPTION	4H-56A	X#-514
716			
975		0.0	
0.7		0.0	0.0
270		0.0	
		0.0	
976		0.0	
		0.0	0.0
086		0	
186			
982			•
983			0.0
<b>786</b>		0.0	0.0
985		0.0	٠ <b>٠</b>
986		0.0	0.0
786		0.0	0.0
**************************************		0.0	0.0
0		0.0	0.0
066		0.0	
991		0.0	0.0
992		0.0	0.0
993		0.0	••
766		0.0	0.0
566		0.0	0.0
966		0.0	0.0
166		0.0	0.0
866		0.0	0.0
666		0.0	0.0
1000		0.0	0.0
1001	TOT ELAB V. GOT. O. COORDINATION	0.0	0.0
1002		0.0	0.0
1003		3.8620E-04	0.0
1004		7.2660E-04	5.9950E-04
1005		8.7340E-04	.03
1006		1.1320F-03	1.21106-03
1007		1.5110E-03	1.2830E-03
1006		1 - 7000E-03	1.3110E-03
1000		1 00105-03	
1010		2.0870F-03	1.36.20 [.03

REXOR DATA PAGE R/A PPG.SYMBOL	E 37 DESCRIPTION	AH-56A	XH-51A
1011		2.1400E-03 2.1480E-03	1.3540E-03 1.3540E-03
1013		2.1530E-03	1.3540E-03
1014		0.0	0.0
1016		0	0
1017		0.0	0.0
1018		0.0	0.0
1010		0.0	0
1021			0
1022		0.0	0.0
1023		0.0	0.0
1024		0.0	0.0
1025		0.0	0.0
1026		0.0	0.0
1027		0.0	0.0
1028		0.0	0.0
1029		0.0	0.0
1030		0.0	0.0
1031		0.0	••
1032		0.0	0.0
1033		0.0	0.0
1034		0.0	0.0
1036			
1037		0.0	0.0
1038		0.0	0.0
1039		0.0	0.0
1040		0.0	0.0
1041	IST.FLAP Z-PRI-0 CCCRDINATE	0.0	0.0
1042		3.5310E-02	0.0
1043		3.6900F-02	
1044		3 96605-02	5.9240E-02
1046		4.2290E-02	6-4390E-02
1047			6.5020E-02

XH-51A	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.0 0.0 -3.6770E-03
AH-56A	4.4406 4.53006 4.53006 4.64406 6.64407 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.0000 6.000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.00	0.0 -1.2730E-03 -2.1340E-02
38 DESCEIPTION		2ND.FLAP YO COORDINATE
REXOR DATA PAGE R/A PAG.SYMROL	1048 1050 1051 1055 1055 1055 1060 1065 1066 1066	1081 BMS2F(40,4) 1082 1083

39	DESCRIPTION
PAGE	15
REXJA DATA	RIA PRG.SYMBG

	A/A PRG. SYMBOL	DESCRIPTION	AH-56A	XH-51A
-7.3140f=-0.2 -7.6000E=7.3140f=-0.2 -7.600E=7.3140f=-0.2 -7.600E=7.310f=-0.2 -7.600E=7.310f=-0.0 -7.600E=7.310f=-0.2 -7			-3.8410E-0	-6.7120E-0
- 1,316 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02 - 7,396 - 02			-5.5440E-0	-7.6600E-0
1. 98 10 F - 02 - 7 - 7 9 9 10 F - 02 - 7 - 7 9 9 10 F - 02 - 7 - 7 9 9 10 F - 02 - 7 - 7 9 9 10 F - 02 - 7 - 7 9 9 10 F - 02 - 7 - 7 9 9 10 F - 02 - 7 - 7 9 9 10 F - 02 - 7 - 7 9 9 10 F - 02 - 12 - 13 10 F - 02 - 13			-1-5140#10-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0	7 23 00 E-0
-17.9650E-02 -7.0050E-02 -7.00			-0-10.00-0-	7 939905
-1,33105=02 -1,4005=00 -1,33105=02 -1,4005=00 -1,30005=02 -1,4005=00 0,000000000000000000000000000000000			-8-4810E-0	-7.0780E-0
-3,3060E-02 -7,4940E-0 -1,9810E-02 -1,106E-02 -1,9810E-03 -1,106E-03 -1,0810E-03 -1,08			-7.9650E-0	-7.00 60 E-0
-3.3060E-02 -8.4170F-0 -1.9810F-02 -9.45100E-0 -1.9810F-02 -9.45100E-0 -1.9810F-02 -9.45100E-0 -1.9810F-02 -9.45100E-0 -0.0			-6.3310E-0	-7.4940E-0
-1.9810F-02 -9.4100F-0  6.7830E-03 -1.1080F-0  0.0  0.0  0.0  0.0  0.0  0.0  0.0			-3.3060E-0	-8.41 70E-0
6.7830E-03 -1.1080F-0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0			-1.98105-03	-9.6100E-0
			6. 7830E-03	-1 . 10 80F-0
			0.0	0
			0.0	0
			0.0	0
			0.0	0
			0.0	0
			0.0	0
			0.0	0
			0.0	0
			0.0	0
			0.0	0
			0.0	0
			0.0	0
			0.0	0
			0.0	0
			0.0	0
			0.0	0
			0.0	0
			0.0	0
			0.0	0
			0.0	0
			0.0	0
			0.0	0
00000			0.0	0
0.00			0.0	0
•••			0.0	0
•0			0.0	0
			0.0	•

AH-56A XH-51A	0.0	050E-02		-3.8060E-01 -5.5140E-01			-5.2820E-01 -4.7650E-01			3.7540E-01 4.3240F-01		000E 00			0.0				•		0.													•	
40 DESCRIPTION	2NG.FLAP ZO COORDINATE																																		
REXOR DATA PAGE R/A PPG.SYMBOL	1121	1122	1124	1125	1126	1127	1128	1129	1130	1131	1132	1133	1011	1132	1137	1130	0011	1140	1711	1142	1143	1144	1145	1146	114/	1146	1149	1150	1151	1152	1153	1154	1155	1156	1157

REXOR DATA PAGE R/A PRG.SYMBOL	41 CESCRIPTION	ž		AH-56A	XH-51A
1158				0.0	00
1160 1161	2NC.FLAP Y-PA1-0	1-P 8 1-0	CCCRDINATE	00	00
1162				.5180E-0	0.0
1163				-9.9850F-03	-1.5650E-03
1165				-8.9980E-03	7
1166				-6.0570F-03	7
1167				-3.4030E-03	7
1168				4.0710E-06	7 -
1170				8-4760F-03	-6 -26 50E-04
1171				1.1970E-02	
1172				.2670E-0	-1.2950E-03
1173				1.3120F-02	380F-0
1174				0.0	0.0
1175				0.0	0.0
1176				0.0	0.0
1177				0.0	0.0
1178				0.0	0.0
1179				0.0	0.0
1180				0.0	0.0
1811				0.0	0.0
1162					9 0
1184					
1185				0.0	0
1196				0.0	0.0
1187				0.0	0.0
1168				0.0	0.0
1189				0.0	
1190				0.0	0.0
1911				0.0	0.0
1192				0.0	0
1193				0.0	0.0
****				•	•••

REXOR DATA PAGE R/A PRG.SYMBUL	42 Description	AH-56A	XH-514
1195			
1196			
1197		0.0	
1198		0.0	0
1199		0.0	000
1200		0.0	0.0
1201	2ND.FLAP 4-PRI-0 COORDINATE	0.0	
1202		-7.7430E-02	0
1203		-7.6470E-02	-1.0270E-0
1204		-7.3100E-02	-5.9350E-0
1205		-6.0280E-02	-5.1800E-0
		-2.7920E-02	5.9040E-0
		2.5260E-03	1.0230E-0
1208		4.1720E-02	1.4260E-0
6071		9.4270E-02	1.9710E-0
1210		1.4520E-01	2.3650E-0
1121		1.89506-01	2.61705-0
1212		1.9880E-01	2.7340E-0
1213		2.0500E-01	•
1216		0.0	
121		0.0	0.0
1217		0.0	0.0
1218		0.0	0.0
1210		0.0	0.0
1220		0.0	0.0
1221		0.0	0.0
1222		•	••
1223			9.0
1224			9.0
1225		0.0	0.0
1226		0.0	0.0
1227		0.0	0.0
1224		<b>•</b> •••	•
1229		0.0	0.0
1230		0.0	
1221		0.0	•
1031		0.0	0.0

AH-56A XH-51A		3.4520E 01 3.8990E 00 -7.0790E 02 -3.8490E 01 3.4520E 01 3.8990E 00 1.6260E 02 1.2510E 02 -3.4230E 02 -2.8140E 02 -7.0790E 02 -2.8140E 02 3.0150E 03 1.4520E 03	FIN 5.7000E-04 5.7000E-04 5.7000E-04 TOR 3.0000E-02 1.0000E-02
43 DESCRIPTION		BLADE STIFFNESS MATRIX FLEMENTS K(1,1)-K(3,3)	BLADE HODE DAMPING FFTFR I SECOND OF TRIM FLY DAMPING FACTOR INITIAL DAMPING FACTOR K USED IN TAIL ROTOR INCREMENTAL BLADE CM FOR T
REXOR DATA PAGE R/A PRG.SYMBOL		BLADK(3,3)	1250 CT4 IY 1251 CFL Y 1252 CZERJ 1253 CUNK 1254 OPEN 1256 DCMR
REXO R/A	1232 1233 1234 1235 1235 1237 1239 1240	1241 1242 1243 1244 1245 1246 1247 1248	1250 1251 1252 1253 1254 1256

REXI	REXOR DATA PAGE	44 DESCRIPTION	AH-56A	^	XH-51A	
1258 1259 1260 1261	SXB(4)	BLADE STA. FOR HARM. ANALYSIS	5.8200E 00 5.8300E 00 1.0910E 01 1.4400E 01		0000	
1262	1262 IMPLT	HARM. ANAL. PLOT FLAG. 0 -NONE	2.0000E O	8	2.0000E 00	2
1263	рерне	VERT-TO-ROTARY SWASHPLATE DAMP. COUPLING	-1.04306 0	8	0.0	
1264	1264 DELCD	ADJUSTMENT TO CD TABLES	0.0		0.0	
1265	WTOL	TOL. FOR WIMR CONVERGENCE	0.0		0.0	
1266	1266 BETA	CONE ANGLE, DEG	2.0000E 0	00	3.2000E 00	2
1267 TAJ	TAJ	SWEEP ANGLE, DFG	4.0000E 0	8	1.4000E 00	8
1268	1268 GA4MA	DROCP ANGLE, DEG	2.7800E 0	8	1.0000E	8
1269	PHIREF	REFERENCE FEATHER ANGLE, DEG	9.0000E	8	3.0000E	8
1270	BFAS	BLADE BEARING CONE ANGLE, CEG	2.3830E 0	8	3.2000E	00
1271	PTJL	TOL FOR PIME CONVERGENCE	0.0		0.0	
1272	073L	TOL FOP OTMR CONVERGENCE	0.0		0.0	
1273	HITOL	101 FOR WITH CONVERGENCE	0.0		0.0	
1274	<b>1</b>	CONSTANTS FOR PERTURBATION MODEL	0.0		0.0	
1275	× 2	CONSTANTS FOR PERTURBATION MODEL	0.0		0.0	
1276	1276 GASTOP	GYRO STOP CONTACT ANGLE (SWP.)	1.0000E 03		1.0000E 03	03

PEXC 9/A	REXOR DATA PAGE R/A PRG.SYWBOL	45 DESCRIPTION	AH-56A	XH-51A
1277	GKSTJP	GYAN STOP SPRING CONSTANT (Shp.)	1.0000E 03	1.0000E 03
1278	¥ a. a.	FOLL RATE CONSTANT	0.0	0.0
1279	1279 THIR	TAIL ROTOR WASHUP TIME	5.0000E 00	5.0000E 00
1280	1280 TCTAA	TAIL ROTOR ACTUATOR TIME CONST	3.5000E-02	3.5000E-02
1281	GRAO	AMCS, GFAR RATIO RCLL	0.0	0.0
1282	GRPO	AMCS, GFAR RATIO PITCH	0.0	0.0
1283	DGRRTH	AMCS.GEAR RATIO	0.0	0.0
1284	ОСКРТН	AMCS, GEAR PATIO	0.0	0.0
1285	GB384	AMCS, GYRN BOB WEIGHT MOMENT	0.0	0.0
1286	***	NAT.FREQ.,RAD/SEC,WITH BLD.OTA	1.15006 02	1.7000E 02
1287	THETH	AMCS, CYCLIC STIFFNESS	0.0	0.0
1288	THK THC	AMCS, COLLECTIVE STIFFNESS	0.0	0.0
1289	C3F1	AMC S, 83, SHAFT BENDING	0.0	0.0
1290	C3F2	AMCS, 83, SHAFT BENDING	0.0	0.0
1531	SS	SPEED OF SOUND, FT/SEC	1.1440E 03	1.1300E 03
1292	TRMZM	FLAG=1 TRIM TO SPEC. MOMENT USE TRIMO 1,2,3	0.0	0.0
1293	1163 2311	AMCS.FEEDBACK PICKUP	0.0	0.0

REX	IOR DATA PAGE	95		
2	RIA PRG.SYMBOL	DESCRIPTION	AH-56A	XH-51A
1294	. 231F	AMCS, FEEDBACK PICKUP	0.0	0.0
1295	. 232F	AMCS, FEEDBACK PICKUP	0.0	0.0
1296	1296 2P311	AMCS, FEEDBACK PICKUP	0.0	0.0
1297	2P31F	AMCS, FEEDBACK PICKUP	0.0	0.0
1298	2P32F	AMCS, FEEDBACK PICKUP	0.0	0.0
1299	BRK SH	AMCS, SHAFT BENDING STIFFNESS	0.0	0.0
1300	IPLADE	BLADE AERO FLAG	3.0000E 00	3.0000E 00
1301	91(40)	BLADE POLAR MOMENT OF INEPTIA	1.94506-04	1.6200E-02
1303			2.6500E-02	3.1680E-02
1304			3.6310E-01	1.6020E-02
1306			1.6880E-01	1.3220€-02
1307			1.0650E-01	1.1690E-02
1308			8.6980F-01	1-1/-205-02
1309			6.73105-02	8.44.80E-03
1311			6.4830F-02	1.1520E-02
1312			1.1660E-01	1.0320E-02
1313			7.1820E-02	8.9450F-03
1314			0.0	20-20-01-0
1315				
1316			0	0.0
318			0.0	•••
1319			0.0	0.0
1320			0.0	0.0
1321				
1322			0.0	0
1323			0.0	

REXOR DATA PAGE P/A PRG.SYMBOL	47 DESCRIPTION	AH-56A	XH-51A
1324 1326 1326 1329 1330 1332 1336 1336 1336 1339		000000000000000000000000000000000000000	0000000000000000
1341 DCDEF(4) 1342 1343 1344	DAMPING COEFFICIENTS	1.0000f-01 3.0000f-01 3.0000f-01 2.0000f-01	1.0000E-01 3.0000E-01 3.0000E-01 2.0000E-01
1345 KTI	INBOARD TAB STATICN	1.00000 01	1.0000E 01
1346 KT3	CUTBOARD TAB STATION	1.1000E 01	1.1000E 01
1347 DC4R1	INCREMENT ADDED TO CM TABLE	1.00006-02	0.0
1348 HT?	HEIGHT OF THE TAIL ROTOR	0.0	3.0800E 00
1349 YP	THRUST LATEMAL OFFSET	0.0	-3.5800E 00
1350 TH4CDN	DACP THRUST CONSTANT	2.9364E 01	7.2000E 00
1351 104634	FACE TORQUE CONSTANT	4.6663E 01	0.0

AH-56A XH-51A	9.0020E-02 1.3000E-01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	00000000000000000000000000000000000000
48 CESCPIPTION	OPEN	BLADE TORSIONAL SPRIM
REXOR DATA PAGE R/A PRG.SYMBOL	1352 OPEN(9) 1353 1354 1355 1356 1357 1358 1359	1361 0536J(40) 1362 1363 1364 1366 1366 1367 1370 1371 1377 1378 1382 1388

REXC R/A	REXUR DATA PAGE R/A PRG.SYMBOL	49 DESCRIPTION	AH-56A	XH-51A
1388			0.0	0.0
1389			0.0	0.0
1390			0.0	0.0
1391			0.0	••
1392			0.0	0.0
1393			0.0	••
1394			0.0	0.0
1395			0.0	0.0
1396			0.0	••
1397			0.0	0.0
1398			0.0	0.0
1399			0.0	0.0
1400			0.0	0.0
1401 101	TCT	STATIC THIST NUMER. TIME CONST	1.0000E-02	1.5000E-02
1402	ртні	BLADE ELASTIC TWIST DATA STA.1	1.4000E 01	1.4000E 01
1403	1403 DTH2	BLADE ELASTIC TWIST DATA STA.2	2.0000F 01	2.0000E 01
1404	1404 TTFLAG	TTPACK FLAG IF 0. SKIP	1.0000E 00	0.0
1405	1405 CD10	BLADE ROJT DRAG COEF.	2.5000E-02	2.5000E-02
1406	GA42	ANGLE BET. PITCH LINK PT. AND FEATHER AXIS, AMCS	0.0	0.0
1407	TC1(2)	AMCS, TIME CONSTANT	0.0	000
1409	1409 YIVI	PARTIALS FOR TT PACK	1.0000E-04	0.0
1410	Y1V2	PARTIALS FOR TT PACK	0.0	0.0
1411	YIV3	PARTIALS FOR TT PACK	0.0	0.0
1412	1112	PARTIALS FOR TT PACK	-1.0000E-04	0.0

REXOR DATA PAGE R/A PRG.SYMBOL	SO DESCRIPTION	AH-56A	XH-51A
1413 2102	PARTIALS FOR TT PACK	9.0000E-04	0.0
1414 2143	DARTIALS FOR IT PACK	-3.0000E-03	0.0
1415 YOV1	PARTIALS FOR TT PACK	3.0000E-03	0.0
1416 YOV2	PARTIALS FOR TT PACK	1.0000E-04	0.0
1417 YOV3	PAPTIALS FOR TT PACK	-7.0000E-04	0.0
1418 2041	PARTIALS FOR TT PACK	-1.3000E-03	0.0
1419 2002	PAPTIALS FOR TT PACK	1.5000E-02	0.0
1-20 2043	PARTIALS FOW TT PACK	-5.1300E-02	0.0
1421 YSC (40)	BLADE SHEAP CENTER CHORDWISE POS.	0.0	0.0
1422		-4.0000E-01	0.0
1423		-4.3000E-01	1.4000E-01
1424		1.0000E-01	1.4000F-01
1425		2.0000E-01	1.4000F-01
1427		2.0000E-01	1.4000F-01
1428		1.9000E-01	1.4000E-01
1429		1.7000E-01	1.4000E-01
1430		1.4000E-01	1.4000E-01
1431		1.2900E-01	1.4000F-01
1432		10-3000-01	1.40005-01
1435		10-10000-1	10-0004-1
1435			
1436		0.0	0.0
1437		0.0	0.0
1438		0.0	0.0
1439		0.0	0.0
0447		0.0	0.0

REXOR DATA PACE R/A PRG.SYMBOL	51 DESCRIPTION	AH-56A	XH-51A
1441		0.0	0.0
1442		0.0	0.0
1443		0.0	0.0
1444		0.0	0.0
1445		0.0	0.0
1446		0.0	0.0
1447		0.0	0.0
1448		0.0	0.0
1449		0.0	0.0
1450		0.0	0.0
1451		0.0	•
1452		0.0	0.0
1453		0.0	0.0
1454		0.0	0.0
1455		0.0	0.0
1456		0.0	0.0
1457		0.0	0.0
1458		0.0	0.0
1459		0.0	0.0
1460		0.0	0.0
1461 1XXF	FUSE , MMM. INFPTIA, ROLL	6.0000E 03	1.0000E 0
1462 1YYF	FUSE . MOM. INERTIA, PITCH	5.3300E 04	2.6800E 0
1463 122F	FUSE . MOM. INFRTIA, YAN	5.1900E 04	2.8000E 0
1464 TXYE	FUSE, PROD. OF MOM. INERTIA, AOLL-PITCH	1.1460E 03	0.0
1465 TXZF	FUSE . PROD. UF MOM. INERTIA, ROLL-YAW	1.62 70E 03	0.0
1466 IYZF	FUSE, PROD. OF MOM. INERTIA, PITCH-YAW	5.2900E 01	0.0
1467 [630	MISC . MOM. INERTIA. ABOUT ZZ-AKIS	2.5060E 03	0.0

REX	REXOR DATA 94.05			
RIA	MBOL	DESCRIPTION	AH-56A	XH-51A
1468	<b>1468 122</b> н	IZZH A HUB.MOM.INERTIA ABOUT ZZ-AXIS	2.1000E 02	
1469 268	<b>597</b>	GYRO C.G. IN Z DTR., ROTOR SYS1.3300E 00 -6.3000E-01 (SWP.)	-1.3300E 00	-6.3000E-01
1470	1470 IXXP30	PROP.MOM.INERTIA ABOUT XX-AXIS 1.3980E 01 (ALSO PROP. FLAG)	1.3980E 01	1.0000E 00
1411	1471 IXXENG	ENG. MOM. INERTIA ABOUT XX-AXIS	5.6700E-01	6.1000E-02
1472	1472 IWT2	TAIL ROTOR HGM.INERTIA ABGUT	1.2600F 01	6.6000E-01
1473	1473 GRPRO	GEAR RATIO, PROP.	7.0000E 00	4.8500E 00
1474	1474 GRENG	GEAR RATIU, ENG.	5.5300E 01	1.0200E 02
1475 GRT2	GRT2	GEAR RATIG.TAIL ROTOR	5.2500E 00	5.8700E 00
1476	1476 GAINEN	GAIN, FNG.	4.1200E 03	0.0
1477 Z6PH	H 497	PITCH HORN ARM DFFSET	1.0000E 00	0.0
1478 AKPH	АКРН	PITCH HORN SPRING CONST.	4.2500E 04	0.0
1479	1479 DEL 238	NUTBOARD BEARING CFFSET AUJ.	-4.5000E-03	0.0
1480	1480 [PHDen	FLAG FUR PITCH HORN 0=0=F:1=ON	1.0000E 00	0.0
1481	1481 SKIPIN	SKIP N MATRIX INVERSIONS	0.0	9.56005-02
1482 2	9662	BLADE JUG REQUIRED BY FEXOR -	-1.8200E-02	0.0
1483 IFFT		FAST FOURTER TRANSFORM FLAG	0.0	0.0

REXU R/A	REXUR DATA PAGE R/A PAG.SYMBOL	53 HESCRIPTION	4H-56A	XH-51A
1484	ENGHPX	MAX. HOR SEPUWER WITH ENG. D.O.F	3.8000£ 03	1.0000E 05
1485	CFB	FEATHERING VISCOUS FRICTION	5.5000E 01	0.0
1486	FICOR	CONST. MULTIPLIER ON WINRM	1.0000E 00	0.0
1487	<b>T D T</b>	SPAING ONLY USED WITH PSEUD'S PITCH HOPN 5.0.F	0.0	0.0
1488	TPH	TIME CONST. USED WITH PSEUDO PITCH HORN D.P.F	0.0	0.0
1489	K1D	CONSTANTS FOR INTERNALLY GENE-	0.0	0.0
1490	K20	CONSTANTS FOR INTERNALLY GENE- FATING 2	0.0	0.0
1491 1492 1493	R Ta Avg (3)	REACTIONLESS INPLANE EXCITATN	000	000
1494	7 100L F	COLLECTIVE CONTROL LOAD ADJANT	0.0	0.0
1495	FLOQUE	FLOQUET ANALYSIS FLAG 0=0FF,1=0N	0.0	0.0
1496	A2FL	INCREMENT FOR FLOQUET ANALYSIS	0.0	0.0
1497	TORFLG	TORSION FLAG	1.0000E 00	0.0
1458	TSTOP	MAX. FLY TIME	2.7000E 00	4.2500E 00
1499	IDECUP	DECOUPLER FLAG	0.0	0.0
1500	3	FLAG FOR RA(1501-1660)	0.0	0.0

XH-51A	0.0	0.0	0.0	0.0	•	•		0.0	0		0	0.0	••	0.0	0.0	0.0	00	0.0	0	0.0	0.0	0.0	0.0	0	9.0	0.0	0.0	0.0	9		000
AH-56A	0.0	0.0	0.0	0.0	•	•		0.0	0.0		0	0.0	0.0	0.0	0.0	0.0	•••	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0		000
	- USE IN																														
54 DESCRIPTION	THETA TABLE																	0 2													
REXOR DATA PAGE R/A PRG.SYMBOL	1501 178(20)	1502	1503	1504	1505	1500	1508	1509	1510	1517	1513	1514	1515	1516	1517	1518	1519 1520	1521 OPF NC140)	522	1523	1524	1525	1526	1527	8261	6761	1530	1531	1532	1534	1535

REXUR DATA PAGE	55 Description		1
		WOC-LE	AR-514
1536			0.0
1537		•	0.0
1538		•	0.0
6851			0.0
1540			0.0
1541		•	0.0
1542			0.0
1543			0.0
1544			0.0
1545		•	0.0
1546			0.0
1547		•	0.0
1548		•	0.0
1549		•	0.0
1550			0.0
1551			0.0
1552		•	0.0
1553		•	0.0
1554			0.0
1555		•	0.0
1556		•	0.0
1557		•	0.0
1558			0.0
1559		•	0.0
1560			0.0
1561			0.0
1562			0.0
1563			0.0
1564			0.0
1565			0.0
1566		•	0.0
1961			0.0
1568			0.0
1569		•	0.0
1570		•	0.0
1571		0.0	0.0
1572		•	0.0

	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EXOR DATA PAGE /A PRG.SYMBOL	56 DESCR IPTION	AH-56A	XH-51A
				000	0
				0.0	0.0
				0.0	
	•••••••			0.0	0
	000000000000000000000000000000000000000			0.0	0.0
000000000000000000000000000000000000000	000000000000000000000000000000000000000			0.0	0.0
				0.0	0.0
aaaaaaaaaaaaaa	000000000000000000000000000000000000000			0.0	0.0
				0.0	0.0
				0.0	0.0
				0.0	0.0
				0.0	0.0
				0.0	0.0
				0.0	0.0
				0.0	0.0
				0.0	0.0
				0.0	0.0
				0.0	0.0
				0.0	0.0
				0.0	0.0
				0.0	0.0
	00000000000			0.0	0.0
				0.0	0.0
	000000000			0.0	0.0
	00000000			0.0	0.0
				0.0	0.0
0000000	0000000			0.0	0.0
	000000			0.0	0.0
				•	•
0000	00000			•	0.0
0000	••••			0.0	0.0
000	000			0.0	0.0
0	00			0.0	0.0
	. 0			0-0	0.0

REXOR DATA PAGE R/A PRG.SYMBOL	57 DESCRIPTION	AH-56A	XH-51A
0191			0.0
1611			
1612			
1613			0.0
5191			
1615			0.0
9191		•	0.0
1617			0.0
1618			0.0
619			0.0
0291			0.0
1621			0.0
1622			0.0
1623		•	0.0
1624		•	0.0
1625			0.0
1626			0.0
1627			0.0
1628			0.0
1629		•	0.0
1630			0.0
1631			0.0
1632		•	0.0
1633			0.0
1634		•	0.0
1635			0.0
9691			0.0
1637			0.0
1638			0.0
1639			0.0
1640			0.0
1641			0.0
249		•	0.0
1643		•	0.0
1644		0.0	0.0
1645			0.0
9491			0.0

REXOR DATA PAGE R/A PRG.SYMBOL	58 DESCRIPTION	AH-56A	XH-51A
1647		0.0	0.0
1648		0.0	••
649		•••	0.0
1650		0.0	0.0
1651		0.0	0.0
1652		•••	0.0
1653		0.0	0.0
1654		0.0	0.0
5591		0.0	0.0
1656		0.0	0.0
1657		0.0	0.0
8591		0.0	0.0
6591		0.0	0.0
0991		0.0	0.0
1661 Y(30)	DISPL. EACH D.C.F.	0.0	3.9043E-02
7991		0.0	.3719E-0
1663		0.0	2.8601E-02
<b>1994</b>		0.0	0.0
5991		0.0	8
9991		0.0	4.01505-01
1991		0.0	100
8991		0.0	•
6991		0.0	3.48546-02
1670		0.0	.3920E-0
1671		0.0	4.4026E-02
7291		0.0	•
1673		0.0	8.6136E-02
1674		0.0	3.1388E-01
1675		0.0	9.2961E-03
1676		0.0	0.0
1677		0.0	5
1678		0.0	-6.0389E-02
1679		0.0	2
0891		0.0	
1891		0.0	2.4751E 02
1682		0.0	0.0

xH-51A	1.5624E 01 0.0 0.0 -1.1973E-02 6.3036E-02 0.0	-1.9171E 00 -7.6593F-01 0.0 1.0371E 00 1.351E 00 -2.433E 00 -2.433E 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AH-56A	0000000	
59 DESCRIPTION		VEL. EACH D.O.F.
REXOK DATA PAGE R/A PAG.SY4BOL	1684 1685 1685 1686 1687 1689 1699	1691 YD(30) 1692 1694 1695 1696 1696 1698 1699 1700 1701 1702 1708 1709 1710 1711 1711 1712 1711 1711 1711 1711

REXOR DATA PAGE R/A PRG.SYMBOL	60 DESCRIPTION	AH-56A	XH-51A
1719		0.0	0.0
		0.0	0.0
1721 YD5(30)	ACC. EACH D.G.F.	0.0	-1.7476E 01
1723		0.0	.2154E
1726		0.0	1.0472E C2
1725		0.0	0.0
1726		0.0	
1727		0.0	2.0793E 02
1728		0.0	.9724E
1729		0.0	
1730		0.0	
1731		0.0	-6.3628E 02
1732		0.0	304E
1733		0.0	
1734		0.0	
1735		0.0	2.1893E 02
1736		0.0	705E
1737		0.0	0.0
1738		0.0	2.4137E 00
1739		0.0	-4.1303E-02
1740		0.0	2.0484E 00
1741		0.0	0.0
1742		0.0	1.8238E 00
1743		0.0	1.93896-01
1744		0.0	-3.2239E 01
1745		0.0	-1.1011E-01
1746		0.0	3.5384E-02
1747		0.0	-2.0891E-02
1748		0.0	0.0
1749		0.0	0.0
1750		0.0	
		0.0	0.0
1751 EXTV(25,2)	AEFUDYNAMIC INTERFERENCE FACTR MAINROTOR-TO-FIXED SURFACES	1.80006 01	1.8000E 01
1752		-1.8000E 02	-1.8000E 02

FXOR DATA PAGE	79		
A PRG.SYMBOL	DESCRIPTION	4H-56A	XH-51A
53		6.2300E-01	6.2300F-01
*			0.0
25		6.2300E-01	6.2300E-01
.99		4.0000F 01	4.0000E 01
57		7.4000F-01	7.4000F-01
28		7.0000E 01	7.0000E 01
29			8-8000E-01
09		8.0000€ 01	8.0000E 01
51		8.6000E-01	8.6000E-01
29		9.0000E 01	9.0000E 01
63		8.4000E-01	8.4000F-01
*			1.0000E 02
55		5.6000E-01	5.6000E-01
. 99		1.1000E 02	1.1000E 02
29			3.8300E-01
<b>.</b>		1.8000E 02	1.8000E 02
69		3.8300E-01	3.8300E-01
20		0.0	0.0
1.		•	••
72		0.0	0.0
73		0.0	0.0
74		0.0	0.0
			0.0
26		2.2000E 01	1.4000E 01
7.1		-1.8000E 02	-1.8000£ 02
78			4.0000E-01
2		2.0000E 01	-5.0000E 00
2			4.0000E-01
		5.0000E 01	0.0
92		2.0000E 00	5.0000E-01
2			7.0000E 01
1			1.9000E 00
92		7.4000E 01	9.0000E 01
2			1.0000E 00
20		8.0000E 01	1.2000E 02
		1.3400E 00	4.0000F-01
•			1.8000E 02

AH-56A XH-51A	1.1400E 00 4.0000E-01 1.0000E 02 0.0 1.1000E 02 0.0 1.2000E 02 0.0 9.6000E-01 0.0 1.8000E 02 0.0 0.0 0.0	3.0000E 00 3.0000E 00 1.6000E 01 2.1000E 01 2.1000E 01 2.3000E 01 2.3000E 01 2.5000E 01 1.5000E 01
62 DESCRIPTION		CLY PLOT CGOE TABLE
REXMR CATA PAGE R/A PKG.SYMBOL	1790 1791 1792 1794 1795 1796 1799 1800	1801 NVE C2 (50) 1802 1803 1804 1805 1806 1806 1800 1810 1811 1812 1813 1814 1815 1816 1817 1819 1820 1822 1822 1823 1823

4H-56A XH-51A	0000E 00	2000E 01 1.1000E 3000E 01 3.3000E	01 3.4000E 01 3.7000E 01 3.8000E	01 3.9000E 01 4.0000E	4.1000E	4.5000E	0.0	0.0	00		00	•	•	0.0	•	0	9 6	•	•		•
63 CESCRIPTION														TABLE OF PLNT SCALE FACTORS							
PEXOR DATA PAGE	1825 1827 1828 1829	1831	1832 1833 1834	1835 1836	1837 1838	1839 1840	1841	1842	1844	1846	1847	1849	1850	1851 SVEC(50)	1853	1854	1835	1857	1858	1854	1961

REXOR DATA PAGE R/A PRG.SYMBOL	64 DESCRIPTION	AH-56A	XH-51A
2981			•
6981			0.0
1.00			0.0
9981			0.0
1867			0.0
8981			
6981			
0281			0.0
1871			0.0
2812			0.0
1873			0.0
7.91			0.0
710			0.0
27.0			0.0
			0.0
9 70			0.0
			0.0
			0.0
			0.0
			0.0
760			0.0
500			0.0
886			•
887			
903			•
690			
0690			
168			•
892			
			0.0
300			0.0
200			0.0
400			0.0
- COE			0.0
- 0			0.0
			0.0

	REXUM DATA PAGE R/A PRG.SYMBOL 899	65 DESCRIPTION	<b>T</b> •	XH-51A
			•	0.0
			•	
	٠.			
	• •			
			0.0	0
	~		0.0	0.0
	•		0.0	0.0
	•		0.0	0.0
	0		0.0	0.0
			0.0	0.0
	2		0.0	0.0
	•		0.0	0.0
	٠		0.0	0.0
	10		0.0	0.0
	•		0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
	<b>A</b> I		0.0	0.0
			0.0	0.0
	٠		0.0	0.0
	10		0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
0,00	<u> </u>		0.0	0.0
0.0			0.0	0.0
			0.0	0.0

REX	REXOR DATA PAGE	99		
	109F16-041	DESCRIPTION	AH-56A	XH-514
1935			0.0	0.0
1936	HPSET	SET HOR SEPCHER IN AUTOPILOT	0.0	0.0
1937	(OPEN(2)	OPEN	00	00
1939	TMAUTO	TIME TO START AUTO	0.0	0.0
1940	FON	NGT USED	0.0	0.0
1961	(04)*****	AUTO PILET INPUTS	0.0	0.0
1942			0.0	0
1945			0.0	0.0
1945			0.0	0.0
1946			0.0	0.0
1947			0.0	0.0
1948			0.0	0.0
1949				
1950			0.0	0
1661			0.0	0.0
1953			0.0	0.0
1954			0.0	0.0
1955				
1956			0.0	0
1661			0.0	0.0
9667			0.0	0.0
1940			0.0	0.0
100			0.0	0.0
1041			0.0	0.0
1062			0.0	0.0
1964			0.0	0.0
1965			0.0	0.0
1960			0.0	0.0
			0.0	0.0

REXUR DATA PAGE R/A PAG.SYMBOL	67 DESCRIPTION	Š		AH-56A	XH-51A
1961				0.0	0.0
1968				0.0	0.0
1961				0.0	0.0
1970				0.0	0.0
1971				0.0	0.0
1972				0.0	0.0
1973				0.0	0.0
1974				0.0	0.0
2/61				0.0	0.0
2,51				0.0	0.0
1977				0.0	0.0
1978				0.0	0.0
1979				0.0	0.0
1980				0.0	0.0
1981 GAINT( 20)	TRIM GAIN	Š	ВP	1.0000E-02	5.0000E-03
1982	TRIM GAIN		IHd	1.0000F-02	5.0000E-03
1983			THO OF ALPHA	-4.0000E-04	-2.0000E-04
1984			A1S	8.0030F-04	4.0000E-04
1985			618		-1.0000E-03
1986			THOTE	-02	-1.0000E-02
1981			GLCON	8	5.0000E-01
1988	TRIM GAIN		92	10-	-1.0000E-04
1989			ENDMZZ	5.0000E 02	0.0
1990		-			0.0
1661	GAI			.0000E	0.0
1992	GAI	7.0 Z	THOLAKAY FROM	3.0000E-05	0.0
	POST)				
1993				3.3400E-01	0.0
1994	TRIM GAIN	20 7	GMCON	2.0000E 00	5.0000E-01
1995				0.0	0.0
1996				0.0	0.0
1997				0.0	0.0
1998					
1999				0.0	0.0

REXUR DATA PAGE R/A PRG.SYMBOL	69 DESCRIPTION	AH-56A	XH-51A
2034			
2035		•	
2036			
2037			
2038		•	
2039		•	
2040		•	
2041			
2042		•	
2043		0.0	0.0
5044		•	
2045		•	
2046			
2047		•	
2048		•	
2049			
2050		•	
1502		•	
2052		•	
2053		•	
2054		•	
2055		•	
2056		•	
2057			
2058		•	
5020		•	
2060		•	
1902		•	
2062		•	
2063		•	
5064		•	
2065		•	
2066		•	
2067		•	
2068			
5069		•	
2010		•	

XH-51A	•	•	•	•	•	•	•	•	•	0.0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AH-56A	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70 DESCRIPTION																																					
REXOR DATA PAGE R/A PRG.SYMBOL	2071	2012	2073	2074	2075	2076	2017	2078	2019	2080	2081	2082	2083	2084	2085	2086	2087	8902	5089	2090	1602	2002	2093	2094	2095	2096	2002	2098	5060	2100	2101	2102	2103	2104	2105	2106	2107

REXTY DETA PAGE R/A PAG.SYMADI	71 DESCRIPTION	AH-56A	XH-51A
10		•	
10			
1		•	
_			
-		•	
-		•	
-			
-		•	
		•	
-		•	
_		•	
-			
-		•	
		•	
-		•	
-		•	
~		•	
_		•	
_			
_		•	
-		•	
-		•	
-		•	
-		•	
-			
~			
_		•	
~			
~			
-			
2142		0.0	0.0
_			
2144			

REXOR DATA PAGE R/A PRG.SYMBOL	72 DESCRIPTION	AH-56A	XH-51A
2145		0.0	0.0
2146		0.0	0.0
2147		0.0	0.0
2148		0.0	0.0
2149		0.0	0.0
2150		0.0	0.0
2151		0.0	0.0
2152		0.0	0.0
2153		0.0	0.0
2154		0.0	0.0
2155		0.0	0.0
2156		0.0	<b>9.</b>
2157		0.0	0.0
2158		0.0	0.0
2159		0.0	0.0
2160		0.0	0.0
2161 THTFD(40.4)	ELADE TORSTON MODE - 4 BLADES	0.0	0.0
2142			
2144			•
2144			
1017		· ·	
5165		0.0	•
2166		0.0	
2167		0.0	•
2168		0.0	•
2169		0.0	•
2170		0.0	•
2171		0.0	
2172		0.0	•
2173		0.0	
2174		0.0	
2175		0.0	•
2176		0.0	•
2117		0.0	•
2178		0.0	•
2179		0.0	•

REXOR DATA PAGE R/A PRG.SYMBOL	73 Description	AH-56A	XH-51A
2180		0.0	0.0
2181		0.0	0.0
2182		0.0	0.0
2183		0.0	0.0
2184		0.0	0.0
2185		0.0	0.0
2186		0.0	0.0
2187		0.0	0.0
2188		0.0	0.0
2189		0.0	0.0
2190		0.0	0.0
2191		0.0	0.0
2192		0.0	0.0
2193		0.0	0.0
2194		0.0	0.0
2195		0.0	0.0
2196		0.0	0.0
2197		0.0	0.0
2198		0.0	0.0
2199		0.0	0.0
2200		0.0	0.0
2201	•	0.0	0.0
2202		0.0	0.0
2203		0.0	0.0
2204		0.0	0.0
5022		0.0	0.0
2206		0.0	0.0
2207		0.0	0.0
8022		0-0	0.0
5504		0.0	0.0
2210		0.0	0.0
2211		0.0	0.0
2212		0.0	0.0
2213		0.0	0.0
2214		0.0	0.0
2215		0.0	0.0
2216		0.0	0.0

MEXOS DATA PAGE R/A DPG.SYMBOL	74 DESCRIPTION	AH-56A	XH-51A
~			
N			
2		•	
N		•	
N			
2			
N			
N		•	•
2		•	
2		•	
2			
N		•	
~			
2		•	
2231		0.0	0.0
~			•
2		•	•
N		•	•
2		•	•
2		•	•
2			
N		•	
N		•	•
~		•	•
2		•	
N		•	•
N		•	•
2		•	
N		•	
24			
2247			•
2248			
2249		•	
25		•	•
N		•	•
25		•	•
25		•	•

REXON DATA PAGE 2/1 PRG.SYMBOL	75 DESCRIPTION	AH-56A	XH-51
~		•	•
2		•	•
2		•	•
2			•
2		•	•
N		•	•
N		•	
2		•	•
2		•	•
2		•	•
2		•	•
2		•	•
2		•	•
2		•	
2		•	•
2		•	•
2			•
2		•	•
N			
N		•	•
2		•	•
N		•	•
2		•	•
2277		0.0	0.0
2		•	•
2		•	•
N		•	•
N		•	•
~		•	•
2		•	•
2		•	•
2		•	•
2286		•	•
~		•	•
N		•	•
N		•	•
N		•	•

.

REXOR DATA PAGE R/A PRG.SYMBOL	76 DESCRIPTION	AH-56A	XH-51A
2291			
2292		•	•
2293			
2294		•	•
2295			•
2296			•
2297			•
2298			0
2299		•	0.0
2300			• •
2301			
2302		90	
2303			
2304		0	
2305		0.0	0
2306		0.0	0
7967		0.0	0.0
2306		0.0	0.0
2310		0.0	0.0
2311		0.0	0.0
2312		0.0	0.0
2112		0.0	0.0
2314		0.0	0.0
5160		0.0	••
716		0.0	0.0
2317		0.0	0.0
2318		0.0	o- <b>Q</b>
9162		0.0	0.0
2320		0.0	0.0
0262		0.0	0.0
2321 TH51(40,4)	SLADE TOPSION MUDE - 4 BLADES ACCFLEGATION	0.0	0.0
2322		0.0	0.0
2323		0.0	0.0
2324		0.0	0.0
2325		0.0	0.0

REXOR DATA PAGE	"		
RIA PRG.SYMBOL	DESCRIPTION	AH-56A	XH-51A
2326		0.0	0.0
2327			
2328		•	0-0
2329		0.0	0
2330		0.0	0
2331		0.0	0
2332		0.0	
2333		0.0	0,0
2334		0.0	0.0
2335			0.0
2336			0.0
2337			0.0
2338		0.0	0.0
2339		0.0	0.0
2340		0.0	0.0
2341		0.0	0.0
2342		0.0	0.0
2343		0.0	0.0
2344		0.0	0.0
2345		0.0	0.0
2346		0.0	0.0
2347		0.0	0.0
2348		0.0	0.0
2349		0.0	0.0
2350		0.0	0.0
2351		0.0	0.0
2352		0.0	0.0
2353		0.0	0.0
2354		0.0	0.0
2355		0.0	0.0
2356		0.0	0.0
2357		0.0	0.0
235R		0.0	0.0
2359		0.0	0.0
2360			0.0
2361		0.0	0.0
m		•	0.0

REXUP DATA PAGE	78 DECE 10 T1 (1)	445-44	X H-5.14
JOSEPH STATE			
2363		0.0	0.0
2364		0.0	0.0
2365		0.0	0.0
2366		0.0	0.0
2367		0.0	0.0
2368		0.0	0.0
2369		0.0	0.0
2370		0.0	0.0
2371		0.0	0.0
2372		0.0	0.0
2373		9.0	0.0
2374		0.0	0.0
2375		0.0	0.0
2376		0.0	0.0
2377		0.0	0.0
2378		0.0	0.0
2379		0.0	0.0
2380		0.0	0.0
2381		0.0	0.0
2382		0.0	0.0
2383		0.0	0.0
2384		0.0	0.0
2385		0.0	0.0
2386		0.0	0.0
2387		0.0	0.0
2388		0.0	0.0
2389		0.0	0.0
0662		0.0	0.0
1961		0.0	0.0
2392		0.0	0.0
2393		0.0	0.0
394		0.0	0.0
395		0.0	0.0
396		0.0	0.0
1961		0.0	0.0
8663		0.0	0.0
1399		0.0	0.0

STAC GOVE	2		
MBGL	DESCRIPTION	AH-56A	XF-51
2400		0.0	0.0
2401		0.0	0.0
2402		0.0	0.0
2403		0.0	0.0
2404		0.0	0.0
2405		0.0	0.0
2406		0.0	0.0
2407		0.0	0.0
2408		0.0	0.0
2409		0.0	0.0
2410		0.0	0.0
2411		0.0	0.0
2412		0.0	0.0
2413		0.0	0.0
2414		0.0	0.0
2415		0.0	0.0
2416		0.0	0.0
2417		0.0	0.0
2418		0.0	0.0
2419		0.0	0.0
2420		0.0	0.0
2421		0.0	0.0
2422		0.0	0.0
2423		0.0	0.0
2424		0.0	0.0
2425		0.0	0.0
2426		0.0	0.0
2427		0.0	0.0
2428		0.0	0.0
2429		0.0	0.0
2430		0.0	0.0
2431		0.0	0.0
2432		0.0	0.0
2433		0.0	0.0
2434		0.0	0.0
2435			0.0
2436		0.0	0.0

REXOR DATA PAGE R/A PPG.SYMBOL	80 DESCRIPTION	AH-56A	XH-51A
2437		0.0	
2438			
2439			•
2440			
2441			•
2442		•	
2443			
2444			
2445			
2446			
2447			
2448		0.0	
2449		0.0	0
2450		0.0	0
1647		0.0	0.0
7547		0.0	0.0
2425		0.0	0.0
24 D4		0.0	0.0
2422		0.0	0.0
0642		0.3	0.0
2451		0.0	0.0
24.50		0.0	0.0
6642		0.0	0.0
2441		0.0	0.0
2442		0.0	0.0
2663		0.0	0.0
7464		0.0	0.0
2465		0.0	0.0
3444		0.0	0.0
2447		٥.0	0.0
2446		0.0	0.0
6946		0.0	0.0
24.70		c•0	0.0
34.71		0.0	0.0
3473		0.0	0.0
7147		0.0	0.0
C1+7		0.0	0.0

REXUR DATA PAGE R/A PFG.SYMBOL	81 DESCETPTION	AH-56A	XH-51A
2474 2475 2477 2477 2479 2479		000000	000000
2481 OPEN(11) 2482 2483 2484 2485 2486 2487 2488 2489 2490	Z	0000000000	0000000000
2492 LF3	ROTOR HEIGHT ABOVE GYRO, AMCS	0.0	0.0
2493 OPEN(21) 2494 2495 2497 2499 2500 2501 2504 2505 2505	OPEN	000000000000000	00000000000000

XIE-NX	0000	900	•••	••	0.0	00	•••	00	0.0	00	0 3.9610E-10	000	0.0	6 -3.7660E-00 7 3.2900E-11
AH-56A	0000	000	0.0	0.0	0.0	00	0.0	000	0.0	00	9.55806-10	00	0.0	-3.3260E-06 -5.8120E-07
92. Description			FEEDBACK APM LENGTH.SPAN, AMCS	.NF. 0,NO ZND. FLAP MODE	FEEDBACK PHASE ANGLE, AMCS	OPFN	LATERAL DISPL. OF FDBK MOUNT, EACH BLADE MODE		VERT. DISPL. OF FOBK. MOUNT. EACH BLADE MODE		LATERAL SLOPE OF FOBK. MOUNT. EACH BLADE MODE		VERT. SLOPE OF FDBK. MOUNT, EACH BLADE MODE	
REXOR DATA PAGE R/A PRG.SYMBOL	2508 2509 2510 2511	2512 2513	2514 XSTD1F	2515 FL1P2	2516 PSIFB	2517 OPFN(2) 2518	2519 YA4[(3)	2520 2521	2522 ZR4I(3)	2523 2524	2525 YR4PI(3)	2526 2527	2528 Zaupl (3)	2529 2530

AH-56A XH-51A	PE OF FDBK. MOUNT, 0.0 0.0	OF FDBK. MOUNT. 0.0 0.0			FEEDBACK ARM SLOPE LIMIT, AMCS 0.0 0.0	FEEDBACK ARM RADIUS, AMCS 0.0 0.0	BELOW FUSELAGE REF. 0.0 0.0	ROLL TILT DAMPING 0.0 0.0	TILT DAMPING 0.0 0.0	ON PHI. (SMP.) 8.2500E-02 0.0	
93 DESCR IPTION	LATFRAL SLOPE GEOMETRY, AMCS	VERT. SLOPE CI	SPEN	FEEDBACK SPRING, AMCS	FEEDBACK ARI	GYRN FEEDBA	GYRO DEPTH BELOW AMCS	SHAFT ROLL	SHAFT PITCH	SLOPE LIMIT	
REXOR DATA PAGE R/A PRG.SYMBOL	YR4ST	ZRMST	OPE W( 12 )	KF3G	2546 ZJLIM	4 F.B	907	DPHIS	OTHTS	PSLOPL	
REXOI R/A	2531	2532		2545 KF3G	2546	2547	2548	2549	2550	2551	

REM R/A	REXOR DATA PAGE R/A PRG.SYMBOL	84 DESCRIPTION	AH-56A	XH-51A
2553	TCUT0	NO. ADDITIONAL CYCLES.4 BLADE	8.00006 00	8.0000E 00
2554	TCUT3	NO. ADDITIONAL CYCLES,INT. TRIM	0.0	0.0
2555	ISTALL	0.=CALL AERQ,1.=CALL STALL	0.0	0.0
2556	INOLD	EO. NORMAL=1.	0.0	0.0
2557	OCHCON	NOT USED	0.0	0.0
2558	NCONSO	NOT USED	0.0	0.0
2559	FACT	FACTOR IN STALL RCUTINE	5.00006-01	5.0000E-01
2560	<b>1</b>	NO. HARMONICS+1 IN SINGLE BLDE TRIM	2.0000E 00	0.0
2561 2562 2563 2564 2564 2565	0 MC DN ( 6 )		7.0000E-01 7.0000E-01 5.5000E-01 4.0000E-01 0.0	00000
2567 2568 2568	OPEN(3)	N J d C	000	000
2570	STA 70	STATION WHERE SWEEP AND DROOP BEGIN	5.8330E 00	2.3300E 00
2571 2572 2573	GAIN1(19)	SINGLE BLADE TRIM GAIN-BP SINGLE BLADE TRIM GAIN-PHI SINGLE BLADE TRIM GAIN-THO OR ALPHA	5.0000E-01 5.0000E-01 5.0000E-01	5.0000E-01 5.0000E-01 5.0000E-01

REXOR DATA PAGE	RS DESCRIPTION			449	
				800	
2574	SINGLE BLADE	TRIM	GAIN-A1S	5.0000E-01	5-0000E-01
2575	SINGLE BLADE			5.0000E-01	5.0000E-01
2576		TPIM		5.0000E-01	5.0000E-01
2577	SINGLE BLADE			5.0000E-01	5.0000E-01
	AND GMCON				
2578				5.0000E-01	5.0000F-01
2579				5.0000E-01	5.00000-01
2580				5.0000E-01	5.0000F-01
2581				5.0000E-01	5.0000E-01
2582				5.0000E-01	5.00006-01
2583				5.0000E-01	5.0000E-01
2584				0.0	0.0
2585				0.0	0.0
2586				0.0	0.0
2587				0.0	0.0
2588				0.0	0.0
2589				0.0	0.0
2500 OPEN(111	OPEN				
1667				0.0	0.0
2942				0.0	0.0
2593				0.0	0.0
2594				0.0	0.0
2595				0.0	0.0
2596				0.0	0.0
2597				0.0	0.0
2598				0.0	0.0
2599				0.0	0.0
26,00				0.0	0.0
2601 ALFA(20)	AIR FRAME AE	AERO.DATA	TA - TABLES	-1.8000E 02	-1.4000E 02
	ANCONER				
7007				-4.0000E 01	-1.4100E 02
2604					9000
2605				_	
2606					2

.4

REXOR DATA PAGE	86 DESCRIPTION	AH-56A	XH-51A
24.07			
2000		2.0000F 00	-1.0000E
2609			_
2610		6.0000E 00	-2.0000E 0
2611		7.0000E 00	
2612			
2613		-0000E	
2614		1.0000E 01	
5015		- 2000E	
9192		- 4000E	
7192		1.6000E 01	8.4000E 0
0107		20000	3000
2620		1.8000E 02	1.8000E
2621 (1(20)		0.0	0.0
	LIFT COEFF.		
2622			1.6500E 0
2623		-1.2307E 00	•
2624		9.6361E-02	
2625		2.53505-01	-1.0150E 0
5626		4.1600F-01	-9.3500E-0
2627		5. 7350E-01	-6.3500E-0
26.29		8 8750F-01	-3.5000E-0
2630		.0425E	2.6500E-0
2631			5.6500E-0
2632		.1965E	8-6500E-0
2633		.2485E	1.0000E 0
2634			1.0150E 0
2635		1.0650E 00	9.5000E-0
2636		9.45005-01	1.6500E 0
2637		9.0000F-01	•
2638		9.0000E-01	
2660		0.0	
21.23		•	

XH-51A	0.0	0.0	0.0	0.0	0.0	- 1	-4.0000E-02		8 -00 00 E-02		6.0000E-02	-3.0000E-02	0.0	0.0		0.0	1.00006-01	1.0500E 00	1.5000E 00	1.0500E 00	2.4800F-01	8 - 2000E-02	5.0000E-02	3.8000E-02	7.1000E-02	1.1900F-01	1.6600F-01	1.65000-01
AH-56A	-4.1400F-02	4.5860F-01	-6.4656F-03	2.1072E-02	2.4026E-02	-3.0658E-03	-8.2950E-03	-1.3295E-02	-1.7321E-02 -2.2498F-02	-4.6102F-02	-7.8441F-02	-1.1828E-01	-1.3952E-01	-1.6640E-01	-5.4255F-01	-4.1400E-02	2.0000E-01	2.0000F 00	1.3953E-01	1.1410E-01	1.1151E-01	1.27246-01	1.42476-01	1.7356E-01	2.21286-01	2.4975E-01	2.9181E-01	3.2494E-01
87 LESCF IPTION	PITCHING MIMFNT COFFF.																AIS FRAME AEPC.DATA - TABLES DRAG CREFFICIENT											
PEXOR DATE PAGE R/A PPG.SYMROL	2641 CM(20)	2642	2644	2645	2646	2648	2649	2650	2652	2653	2654	2655	2656	2651	2659	2660	2661 CD(20)	2662	2663	2664	2665	2667	2668	2669	2671	2672	2673	2014

R EX	REXUR DATA PAGE R/A PRG.SYMBOL	88 DESCRIPTION	AH-56A	XH-51A
2675 2676 2677 2679 2679 2680			3.7143E-01 4.2477E-01 6.8000E-01 5.3500E-01 2.0000E-01	2.4800F-01 1.0500F 00 1.5000F 00 1.0500F 00
2681	AMING	WING AREA FT. #+2	1.9500E 02	7.00 00E 01
2682	CHING	WING CHORD FT.	7.4500E 00	4.31 00E 00
2683	AJTR	TAIL ROTOR BLADE AREA FT. **2	2.3300ë 01	4.2500E 00
2684	6.72	TAIL ROTIJR RADIUS FT.	5.0000F 00	3.0000E 00
2685	•		5.7300E 00	5.7300E 00
2686	æ		9.7000F-01	9.7000E-01
2687	2687 OPEN	GPEn.	0.0	0.0
2688	CUTDUT	BLACE RUDT AFPO CUTOUT	6.0000F 00	2.3300E 00
5689	2689 1L30k	SPECIAL TABLE LUCKUP FLAG	0.0	1.00 00E 00
2690	ונזור	CAMBERED AIRFOIL FLAG	0.0	1.0000E 00
2691 2692 2693 2694 2695	XNTAB(5)	NORMALIZED BLADE LOCATION	00000	0.0 1.0000E 00 0.0
2696 2697 2698 2699	TCTAB(5)	THICKNESS RATIO	0000 0000	1.2000E-01 1.2000E-01 0.0

REXNY DATA PASE P/A PRS.SYMBOL	89 DESC	AH-56A	XH-51A
2100		0.0	0.0
2701 CLTAB(5)	CESIGN LIFT CREFFICIENT	0.0	0.0
2703		0	0
2704		0.0	0.0
2705		0.0	0.0
2706 CPEN(95)	CPEN	0.0	0.0
2707		0.0	0.0
2708		0.0	0.0
2709		0.0	0.0
2710		0.0	0.0
1112		0.0	0.0
2712		0.0	0.0
2713		0.0	0.0
2714		0.0	••
2715		0.0	0.0
2716		0.0	0.0
2717		0.0	0.0
2718		0.0	0.0
2719		0.0	0.0
2720		0.0	0.0
2721		0.0	0.0
2722		0.0	0.0
2723		0.0	0.0
2724		0.0	0.0
2725		0.0	••
2126		0.0	0.0
2727		0.0	0.0
2728		0.0	0.0
2729		0.0	0.0
2730		0.0	0.0
2731		0.0	0.0
2732		0.0	0.0
2133		•	) (
×12		0.0	0.0

AH-56A XH-51A	0	•	•	•	0	•	•	•	•	•	0.0	0.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
90 DESCRIPTION																																					
REXOR DATA PAGE R/A PRG.SYMBOL	2735	2736	2737	2738	2739	2740	2741	2742	2743	2744	2745	2/46	7412	2748	2749	2750	2751	2752	2753	2754	2755	2756	2757	2758	2759	2760	2761	2762	2763	2764	2765	2766	2767	2768	2769	2770	

XI-51A	0000	000	00000	00000		
AH-56A						
NOILON						PITCH HOPN SAVE DATA
91 0escription						PSEUDOP
R/A PRG.SYMBCL						0P=(4)
REXC R/A	2772 2773 2774 2775	2776 2777 2778	2779 2780 2781 2782 2783	2784 2786 2786 2787	2790 2790 2791 2792 2793 2794 2795 2795 2795 2796	2800 2801 2802 2802 2803 2803

A

REX R/A	REXOR DATA PAGE R/A PRG.SYMBOL	92 DESCP IPTI UN		AH-56A	XH-51A
2805	DP=0(4)	PSEUDO PITCH HORN	KN SAVE DATA	0.0	0.0
2806 2807 2808				000	000
2809	OPF 1(4)	_	JOHN SAVE DATE	0.0	
2810		OTSPLACEMENT ST	f A . 1	0.0	
2811				0.0	0.0
				0.0	0.0
2813	DP=2(4)	PSEUDO PITCH HORN DISPLACEMENT STA.	GRN SAVE DATA	0.0	0.0
2815				0.0	0.0
2816				0.0	0.0
				0.0	0.0
2817	OPEN(13)	CPEN		0.0	0-0
2819				0.0	0.0
2820				0.0	0.0
2821					0.0
2822				0.0	
2824				0.0	0.0
2825				0.0	0.0
2826				0.0	0.0
2827					
2828				0.0	
6297				0.0	0.0
2830	AKON	NOT USED		5.0000E-01	0.0
2831	TP4RT(6,6) 6		DERIVATIVES FOR	1.2500E 04	1.2500E 04
2832		PARITAL TRIM		0.0	0.0

REXOR SATA PAGE A/A PRS.SYMBOL	93 DESCRIPTION	AH-56A	XH-51A	
,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.0	0.0	
2633		000E	0.0	
5834 		5.6200E 04		4
2835			7.00 00 E	4
2836		0.0		
2837		2.2500F 04		4
2838			0.0	
2839		1.1000E 05		6
2840		0.0	0.0	
1482		0.0	0.0	
2842		0.0	0.0	
2843		0.0	0.0	
2844		800E	-1.8800E	S
2845		-9.3000E 04	•	4
2846			4.3000E	4
2847		-1.5600E U	-1.5600E	•
2848				
2840		0-0	0.0	
2850		-3.1000E 0	3000	4
2851		1.1340F	1-1340E	9
2852			05 6-8000E 0	05
2853			0.0	
2854			0.0	
2855		0-0	0.0	
2856			1.1000E	5
2857				2
2858		-6.5200E 0	05 -6.5200E 0	2
2859		0.0	0.0	
2860		0.0	0.0	
2861			300E	ö
2862		0.0	0.0	
2863		500E	0.0 00	
7907		0.0		
2865		900E	01 -2.9900E 0	0
7200			•	
2867 *****	1.	1.0000€	0.0	

REX(	REXOR DATA PAGE R/A PRG.SYMBOL	94 DESCRIPTION	AH-56A	X#-51A
2868	******	BILLS - TEMPORARY	00	00
2870	IDYN	CYNAMIC TORS. FLAG. NF. 0=ON	0.0	0.0
2871	PPT03 (20)	DYNAMIC TORSION TABLE	0.0	0.0
2873			3.7300E-03	
2874			5.2200E-02	
2875			1.2700E-01 2.3900E-01	1.2700F-0
2877			3.7300E-01	
2878			5.0000E-01	
2879			6.3900E-01	0
2880			7.6100E-01	
2881			8.8700E-01	0.0
2882			9.6600E-01	0
2883			1.0000E 00	
2885				
2886			0.0	0.0
2887			0.0	0.0
8887			0.0	0.0
2889			0.0	0.0
2890			0.0	0.0
2891	CPEN(110)	JPEN	0.0	0.0
2892			0.0	0.0
2893			0.0	0.0
2894			0.0	0.0
2895			0.0	0.0
2896			0.0	0.0
2897			0.0	••
2898			0.0	0.0
6607				
2901				
1000			•	

REXOR DATA OF GER/A PRG SYMPOL	95 NESCRIPTION	AH-56A	XH-51A
2902		•	0.0
2903		0.0	0
2904			0.0
2905			0.0
2906			0.0
2507		•	0.0
2908		•	0.0
5062		•	0.0
2910			0.0
2911		•	0.0
2912		•	0.0
2913		•	0.0
2914			0.0
2915		•	0.0
2916		•	0.0
2917			0.0
2918			0.0
6167		•	0.0
2920		•	0.0
2921		•	0.0
2922		•	0.0
2923		•	0.0
2924		•	0.0
2925			0.0
2926		•	0.0
72927		•	0.0
2928		•	0.0
2929		•	0.0
2930		•	0.0
2931			0.0
2932			0.0
2933		•	0.0
2934			0.0
2935		•	0.0
2936		•	0.0
2937		•	0.0
2938		•	0.0

REXOR DATA PAGE R/A PRG.SYMBOL	96 DESCRIPTION	AH-56A	XH-51
2939		•	
2940			
2941			•
2942			
2943			•
2944			•
2945		•	
2946		•	•
2947		•	•
2948		•	•
2949			•
2950		•	•
2951		•	•
2952		•	•
2953		•	•
2954		•	
2955		•	•
2956		•	•
2957		•	•
2958		•	•
5059			
2960		•	•
2961		•	
2962		•	•
2963		•	•
2964		•	•
2965		•	•
2966		•	
2967		•	•
2968		•	•
5963		•	•
2970		•	•
2971		•	•
2972			•
2973		•	
2974		0.0	0.0
2975		•	

AH-56A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
97 DESCRIPTION																									
REXOR DATA PAGE R/A PRG.SYMBOL																									
REX	2976	2977	2978	2979	2980	2981	2982	2983	2984	2985	2986	2987	2983	2989	2970	1667	2662	2993	2994	2995	2996	2997	2998	5999	3000

XH-51A

## APPENDIX IV

## COMPARISON OF THE C-81 PROGRAM WITH REXOR

As an added task under contract DAAJO2-72-C-0100, it was agreed to provide a preliminary comparison of the U.S. Army's C-81 Program and the REXOR program. The C-81 program was provided through the Eustis Directorate, USAAMRDL, making it possible to study the program, to determine its limitations with respect to analysis of gyro-controlled rigid rotors with flapping feedback, and to incorporate modifications necessary to provide capability to analyze these rotor systems. C-81 and REXOR are similar programs in that level flight or maneuver conditions are calculated on a real-time basis using finite time intervals.

The comparison between C-81 and REXOR was carried out for a 16,000-poundclass attack helicopter configuration with a Lockheed Advanced Mechanical Control System (AMCS). The C-81 program, as provided, is not adequate for analysis of a gyro-controlled rigid rotor with flapping feedback. This made it necessary to modify the C-81 so that the Lockheed rigid rotor and associated AMCS control system could be modeled. Modifications were made to the program so that, by option, it could be implemented either in its conventional mode (i.e., with a hard swashplate), or for a gyro-controlled rigid rotor with flapping feedback. The modifications were made by removing subroutines of C-81 that were incorporated for modelling the control system between the pilot's stick and the rotor system itself. This was accomplished by replacing the existing subroutine (SCASIT) with a completely new subroutine of the same name that models the AMCS control system. Also, subroutines SWAS and VARI were modified to allow for AMCS operation during maneuvers. A variable, IAMCS, was provided in common for the above three subroutines, and this was set to zero in block data as part of the job setup. IAMCS is set to 1 after trim to activate the modifications in SWAS and VARI. All other AMCS input data were built into the revised subroutine SCASIT. No additions were made to the original C-81 input format.

With these modifications, it is possible to operate the program either with or without the AMCS control system incorporated. The program is operated in the direct C-81 mode (conventional swashplate) by replacing the new SCASIT with the original SCASIT. The variable IAMCS remains at zero and does not change to 1 for maneuvers as it does when AMCS is operating. These changes result in some limitations in operating the program: multiple cases are not possible, and the small perturbation analysis (STAB) cannot be performed.

In operating the program, stick aft or right is positive for the AMCS modified program once the maneuver begins. In trim, the original C-81 "hard swashplate" stick is still used. The positive direction for the

longitudinal stick in trim is opposite to that for the AMCS longitudinal stick in a maneuver. To output the correct AMCS trim stick position, the program must be operated at least one time point into a maneuver.

## INITIAL RESULTS WITH THE C-81 PROGRAM

In initially implementing the C-81 program and comparing it with REXOR and other analyses, certain problems were encountered. These resulted in differences between C-81 and REXOR which were later largely eliminated by findings of the comparison. For completeness of this report, the results of the initial comparison will be discussed. Discrepancies between REXOR and C-81 noted in this initial phase were later greatly improved by two principle modifications.

The AMCS modified C-81 program initially provided results that agreed reasonably well with those from REXOR for maneuvers below 1.5 g. This is shown by Figure 70, where pitch rate and vertical load factors are seen to agree closely between the two programs for a given longitudinal stick input. Roll rate cross-coupling effects are small for both programs. Part of the difference between the roll rate response as shown is due to the REXOR case entering the maneuver condition slightly out of trim. Figure 70 shows that C-81 indicated higher rotor power than REXOR. This rotor power was higher than that predicted by other performance methods as well. It fill be shown later that this difference is primarily due to implementation of blade section data in the C-81 for the lift and drag coefficients.

As a maneuver calculation was carried out following trim, the C-81 program was noted to suffer some deterioration when time variant solutions for hingless blade modes were added. For a typical example, if rigid blades were modelled, the quasi-static trim results gave total body loads that were quite small, all less than 10 pounds or 10 foot-pounds. But with blade modes introduced, the error became 2345 foot-pounds in roll moment and 2703 foot-pounds in pitch moment after five rotor revolutions due to changes caused by the blade modes. This meant that following trim, when the blade modes were activated, the aircraft would enter a maneuver with roll and pitch accelerations that were significant.

Initially, difficulty was also experienced with C-81, but not with REXOR, in obtaining high load factors for a pull-up maneuver as shown in Figure 71. For similar stick inputs, REXOR showed that the aircraft achieved a sustained 2 g load factor for 3 seconds, whereas C-81 results showed 1.75 g for the same period of time. Drop-off in airspeed was similar for the two programs but there were differences in both roll and yaw attitudes. More significantly, with respect to rotor power, initial C-81 results indicated an increase in rotor power following entry into the maneuver, whereas REXOR showed power dropping off. In a pull-up maneuver, the rotor will tend to windmill to some extent and the REXOR results, in Figure 71

showing an initial power reduction, are believed to be more consistent with what would occur in an actual flight case.

Another significant limitation determined from the initial comparison is that the C-81 program is satisfactory for study of steady-state level flight and maneuver conditions, but cannot be used for evaluating rigid-rotor stability. The program lacks provisions for modelling blade sweep, blade droop, and cyclic and collective control system stiffness - - all of which are significant parameters in determining rigid-rotor stability.

## REXOR VS. C-81 AND MODIFICATIONS INCORPORATED

Detailed comparison of REXOR and C-81 revealed differences in three major areas: (1) Induced flow calculations; (2) Tip loss; and (3) Dynamic stall calculations.

In the area of induced flow calculations, C-81 introduces tip loss into its uniform inflow calculation, whereas REXOR does not. In addition, C-81 ignores the inner 8 feet of the blade radius when applying inflow, whereas REXOR does not. Although both programs assume a triangular distribution of downwash, the downwash factors in each program are different. Tip loss in REXOR is accounted for by setting the aerodynamic lift and moment equal to zero at the tip station, as well as adjusting the integration interval at the blade tip. With respect to drag, REXOR calculates in a conventional manner the profile drag at the blade tip. Study of C-81 indicated that no tip loss is accounted for in the lift coefficients at the blade tip.

Dynamic stall is included in both programs in a similar manner based upon the formulation of Reference 8, but significant differences were noted between the two programs. Both programs account for spanwise flow in their calculations but treat spanwise flow differently in their dynamic angle-of-attack calculations. As might be expected, neither program includes spanwise flow in determining the dynamic angle of attack with respect to profile drag. REXOR, also, does not include it in determining the dynamic angle-of-attack due to lift, but C-81 does. In addition, C-81 puts a 20% limit on the angle-of-attack overshoot in obtaining the dynamic maximum lift coefficint, whereas REXOR has no limit. This point alone could be significant in the load factors that can be achieved with each program. Further, for dynamic stall, REXOR places a limit on the lift curve slope where C-81 has no restriction. The correctness of the treatment of dynamic stall in either program is difficult to assess since the concensus of researchers in this area is that current methods are empirical at best, and much research still remains to be done in this area.

The initial results with the C-81 program when implemented for both level flight and high load factor maneuvers gave higher rotor power required compared to the REXOR program. Study of these differences indicated that the problem was due primarily to differences in implementation of the data for  $C_1$  and  $C_d$ , the coefficients of lift and drag, in the two programs. A comparison of blade section data was made

as shown in Figures 72 and 73 where C1 and Cd vs. angle of attack is presented for NACA 0012 airfoils at Mach numbers of 0.3 and 0.7. Note that three curves are shown. One curve represents NACA 0012 airfoil data provided with the C-81 program. The second curve represents NASA's NACA 0012 airfoil data published in Reference 11. The third curve shows airfoil characteristics for the C-81 0012 data as corrected for the camber used on the example helicopter rotor blades. It is evident in Figure 72 that the C-81 0012 data shows considerably higher values for maximum lift coefficient than the NASA-furnished 0012 data at both Mach numbers. The variations between the two sets of data appear to be due to the fact that a different airfoil section data base has been used in development and correlation of the C-81 program. To account for these differences and place the two programs on a comparative basis, C-81 was implemented using the NACA 0012 data provided with the program rather than the NASA supplied 0012 data. Results (circular symbols on Figure 74) shored that closer agreement was achieved between C-81 and REXOR. Agreement between the programs was further improved by modifying the C-81 NACA 0012 airfoil data to account for the effect of camber. These results are indicated in Figure 74 by the triangular symbols. The method of introducing the example helicopter blade cambe: into the C-81 0012 airfoil data was very simple. The C-81 NACA 0012 data was modified for camber using the same increments to the data that were used in modifying the NASA-furnished 0012 data for camber.

.

The primary lack of agreement between the two analyses is in maximum load factor achieved for a given stick input and in power required for level flight and maneuvers. The modifications made to the blade section airfoil data improve correlation in both these areas. The power requirements are in much closer agreement, and the load factor achieved in C-81 is up from 1.75 to 1.80 g. In order to determine the impact of control input variation on maximum load factor, a gradual pull-up maneuver was made with C-81. The results presented in Figure 75 show that by proper adjustment of input time history, load factors in excess of 2 g can be obtained for the example helicopter configuration using C-81. However, the power required in this maneuver is still higher than that obtained from REXOR.

Additional improvement in correlation between C-81 and REXOR was achieved by introduction of improved fuselage and stabilizer aerodynamic data consistent with both programs. A different format is required for the data in each program, and close examination of the input data revealed that corrections should be made to the C-81 data in this area. Figure 76 shows the effect of this corrected data on forward flight performance. Note that these corrections bring the C-81 performance calculations for the example helicopter into closer agreement with performance results from Lockheed's performance program and the charts of Reference 12. Figure 77 shows the effect of this corrected fuselage and stabilizer data on the high load factor pull-up maneuver at 150 knots previously described.

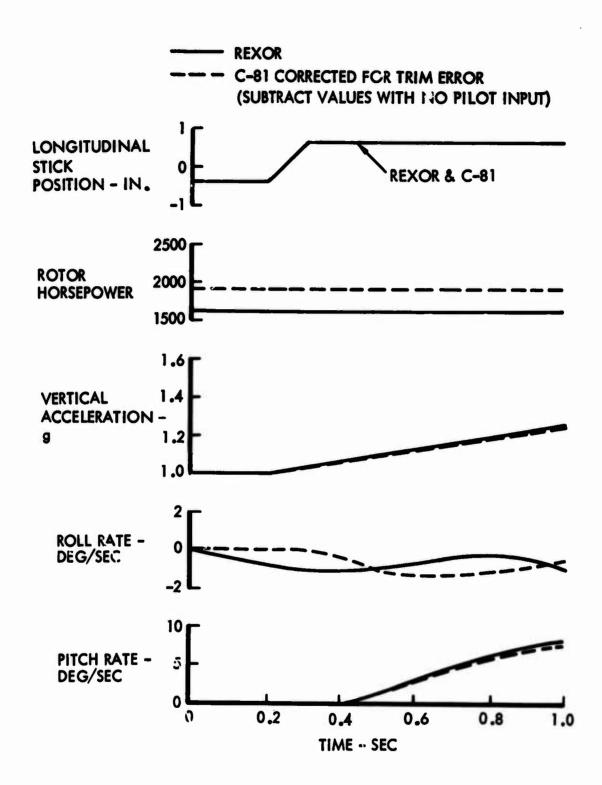



Figure 70. Longitudinal Response 1-Inch Longitudinal Control Input, 150 Knots.

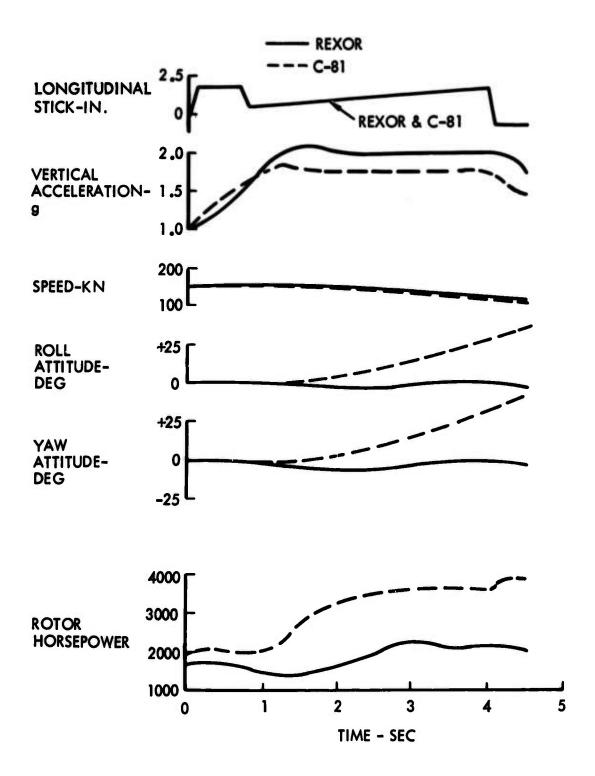



Figure 71. Pullup Maneuver to High Load Factors, 150 Knots.

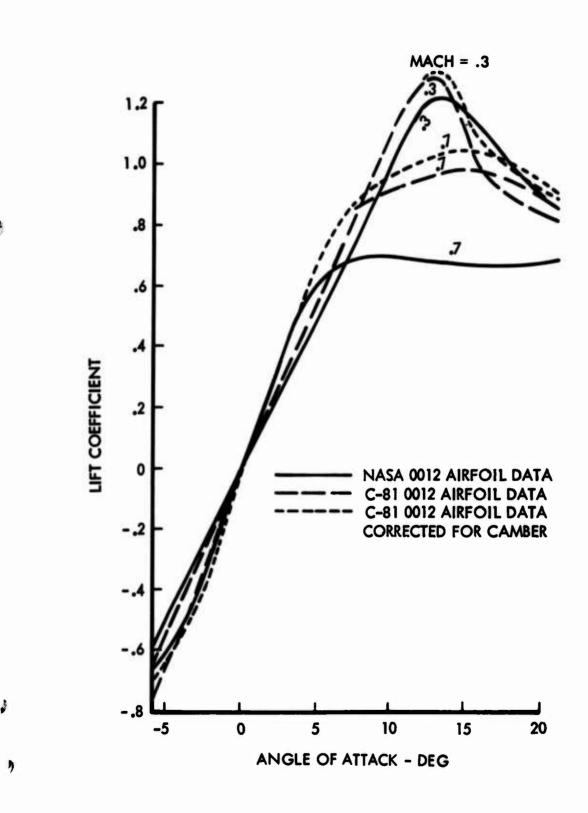



Figure 72. 0012 Airfoil Section Data, Lift Coefficient.

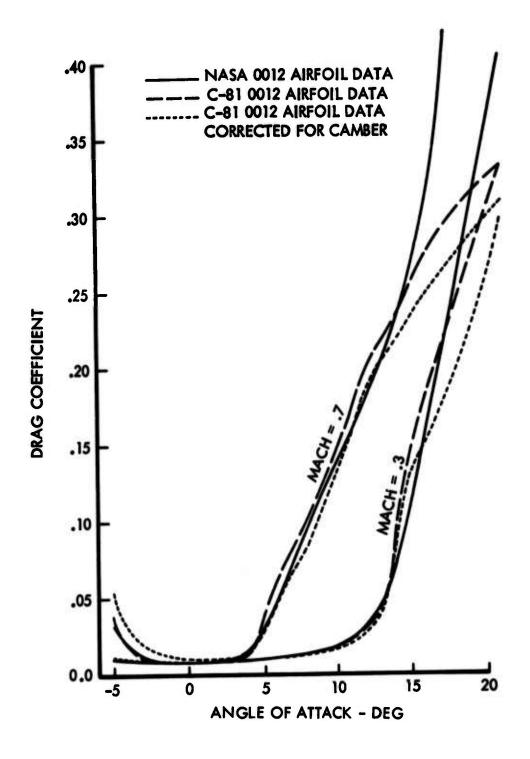



Figure 73. 0012 Airfoil Section Data, Drag Coefficient.

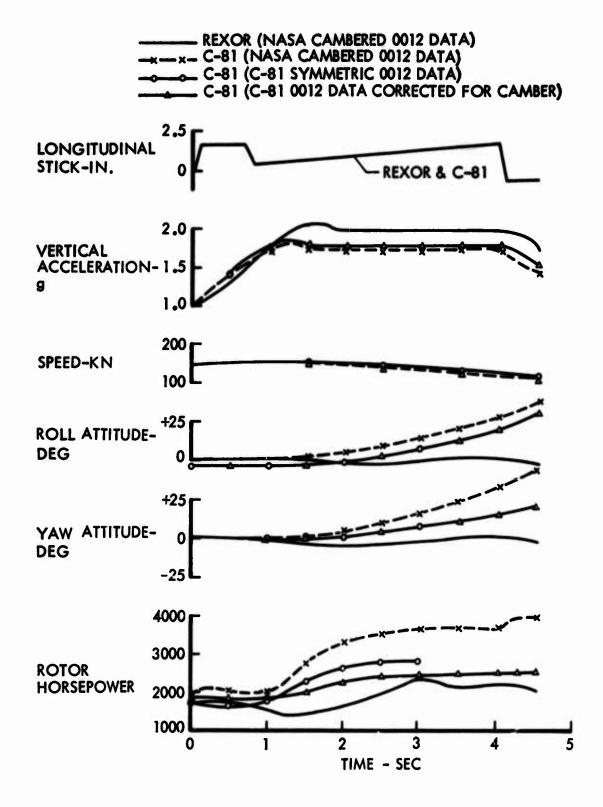



Figure 74. Pullup Maneuver to High Load Factors, Modified Airfoil Data, 150 Knots.

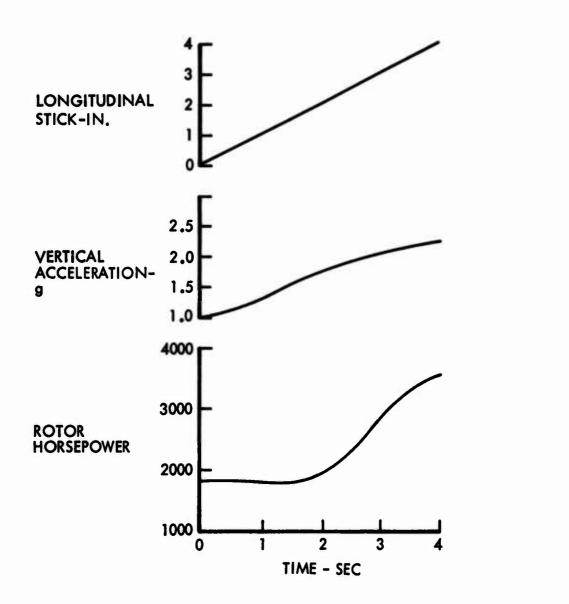



Figure 75. Gradual Pullup Manuever, 150 Knots, C-81 Program.

(

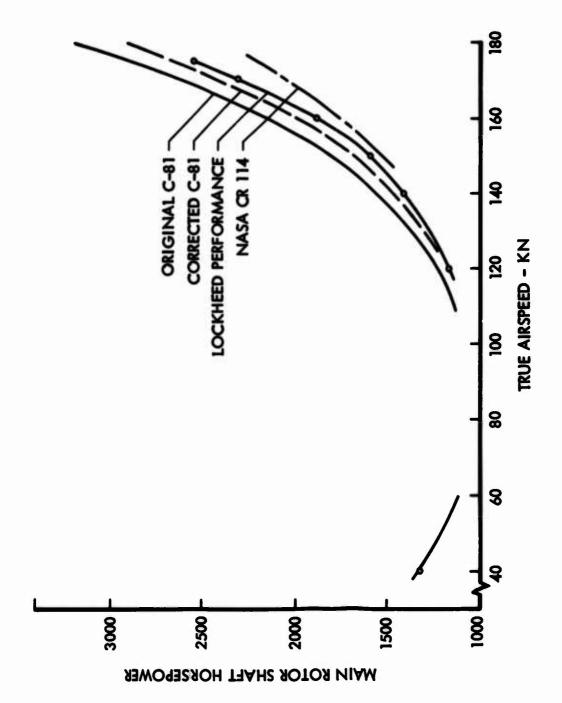



Figure 76. Forward Flight Performance.

--- C-81 (C-81 0012 DATA CORRECTED FOR CAMBER PLUS CORRECTED FUSELA JE AND STABILIZER DATA)

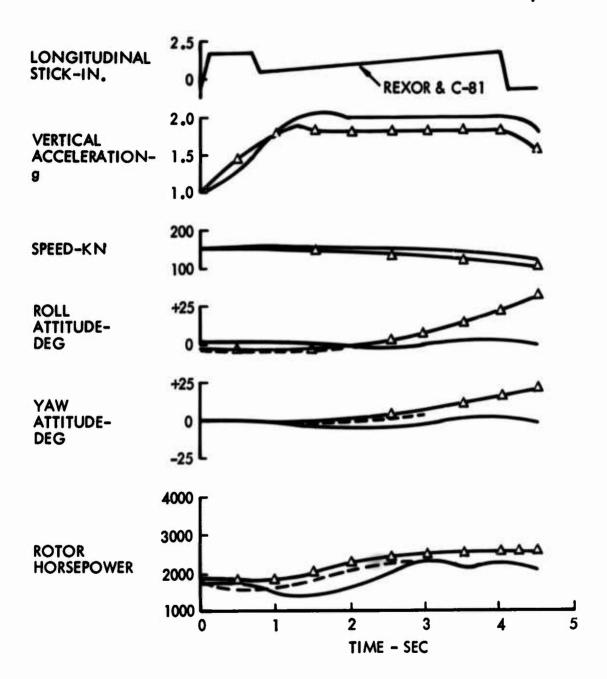



Figure 77. Pullup Maneuver To High Load Factors, Corrected Fuselage And Stabilizer Data, 150 Knots.