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FOREWORD

This report describes a correlation study comparing REXOR analysis results
with flight test data for evaluation of the transient load prediction capa-
bilities of the REXOR analysis. This study was conducted by the Lockheed-
California Company from June 1972 to June 1973 under Contract DAAJO02-T2-
C-0100 (Project 1F162208AA82) with the Eustis Directorate, U.S. Army Air
Mobility Research and Development Laboratory. USAAMRDL direction was pro-
vided by D. J. Merkley.

Major Lockheed contributors to this report include R. E. Donham,
P. Kretsinger, T. Liu, and A. J. Potthast.
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INTRODUCTION

A complete understanding of the factors which establish the flight envelope
of a helicopter requires simultaneous consideration of power, static and
Aynamic stability, handling qualities, and pilot techniques as well as
resilting loads and vibration levels. To facilitate this understanding, an
f ¢ interdisciplinary mathematical model that provides analytical prediction

f of free-flight characteristics of single-rotor helicopter and compound

f helicopter configurations has been developed by the Lockheed California

\ Company. This interdisciplinary analysis tool (see Reference 1), known
]

i

s bl

as REXOR (Revised and EXtended rotOR), is a fully coupled rotor/body/
control system model that includes nonlinear mathematical simulation and
has over 30 degrees of freedom.

To make a total veiicle model in sufficient depth to predict detailed trans-
3 ient rotor loads is inhibitively expensive with the current computer state
- of the art. The approach taken in the formulation of the interdisciplinary
: model is to produce reasonably accurate transient shaft and fundamental
blade loadings which can be used to define a structural flight envelope
that may be checked at a few critical points with a detailed rotor loads
analysis and be adjusted if required. The model is not designed to provide
highly accurate spanwise load distributions ¢ higher harmonic internal
blade loads. This study is designed to evaluete REXOR as a tool for pre-
diction of rotor loads in transient maneuvers by providing correlation of
both steady and transient computed maneuver loads with compound helicopter
flight test data.

T—

The work described in this report presents a loads correlation of the cur-
rent (.ZXOR II) program with existing AH-56A and XH-51A (compound) test data
with primary focus on steady and cyclic loads during steady and transient
maneuvers. The 18,300-pound and 4500-pound gross weights of these aircraft
and the relatively large compound helicopter flight envelope of each that
has been flown offer a broad spectrum of test conditions between 100- and
200-knot flight speeds. The correlation was done under Contract DAAJO2-T2-
C-0100, sponsored by the Eustis Directorate, U.S. Army Air Mobility

Research and Development Laboratory, Fort Eustis, Virginia.

i
j
i
:
‘I
f
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BACXGROUND OF REXOR DEVELOPMENT AND APPLICATIONS

Analytical prediction of practical flight envelopes for helicopters

including compound configurations requires evaluation of the effects of ]
limits of steady or mareuvering flight on performance, dynamics, handling
qualities, and loads. To meet these requirements, analytical models must

fully describe the dynamically coupled rotor/body/control system combina-

tion, including both nonlinear and the time-variant effects. Outputs of 3
such programs are in the form of transient response time histories, steady-

state time histories, steady-state harmonic analyses, and constant or peri-

odic numerical coefficients for use in linear analyses.

REXOR is an integrated rotor/body model of this type which has been applied
in the preliction of performance, dynamics, handling qualities, and steady
and transient loads for hingeless rotor aircraft throughout their flight
envelopes. The analysis method can readily be appiied to other rotor
systems by minor modifications to the model. Figures 1, 2, and 3 show the
organization of the program, body and rotor degrees of freedom, and rotor
blade and hub geometric definitions. The approach employed to develop this
model was a coordinated effort among specialists in several applicable
rotary-wing disciplines. Equations of motion were derived from a basic
Lagrangian formulation, resulting in a rotor/body/control system model con-
sisting of 30 fully-coupled degrees of freedom with a minimum of simplifying
assumptions. In the formulation, each blade mode, although developed from
a multi-degree of freedom analysis, constitutes but a single degree of free-
dom. In Reference 1, the modeling approach used is discussed in detail
along with a description of the procedural ground rules required for sucess-
ful implementation and use of this type model. This reference includes
derivation of the model, program structuring, data management, checkout
procedures, and documentation. The basic requirements were that the model
fully describe the dynamically coupled rotor/body/control system, including
both nonlinear and time-variant effects.

By examining results of this free-flight vehicle analysis, the engineer is

able to conduct flight test programs by digital computer. As implemented,

the control system, aseroelastic rotor, and body combination requires that

the aircraft remain continuously in equilibrium. This permits evaluation ¢
of transient control input and subsequent transient response behavior in

order to investigate the helicopter's static and dynamic stability. The
steady-state loads analysis that can be performed is a restricted case for
examining linear systems. In the case of nonlinear or transient behavior, i
the system is examined in time-varying modes of equilibrium.

Two different gyro-controlled hingeless rotor system concepts have been
modeled in REXOR. The first of these, the flap/feather-moment feedback
system, was used in the XH-51A and in the early AH-56A configurations.
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This is the system for which correlation will be provided in this report.
For the AH-56A, this system is calle2 the Improved Control System (ICS)
configuration. The second concept, the Advanced Mechanical Control System
(AMCS), is a direct flap-moment feedback system. The REXOR analysis was
used extensively in the design of the AMCS, using experience gained in the
analysis of phenomena encountered in ICS flight tests. A brief description
of each system is presented for reference.

The flap/feather-moment feedback gyro-controlled rotor (ICS) is presented
schematically in Figure 4. Figure 5 is a representative simple block dia-
gram of the system. Pilot control input drives an irreversible actuator
which applies control moment to the gyro through a positive-negative spring
assembly, linkage, and swashplate. With the gyro fixed, compression of the
positive spring by the actuator applies control moment to the gyro. With
the actuator input fixed, gyro motion drives both the positive and negative
spring, the sum of which represents the steady-state impedance to the gyro
and the value of the gyro net positive spring. A small damper is used to
damp the gyro nutation mode (2P). The gyro responds to the pilot input and
drives the rotor blade cyclically through pitch links and a blade control
horn.

Cyclic Dlade angle changes create a rotor flap moment which is tranmitted to
the aircraft body via the fixed hub and shaft to pitch or roll the aircraft.
Precise rotor moment control and reduced rotor lag is obtained by feedback
of rotor flap-moment (proportional to rotor shaft moment) through the
feather axis to the gyro. Feathering moment proportional to flap moment is
obtained by sweeping the blade quarter-chord forward of the feathering axis
(sweep angle ¥o), 88 noted in Figure L. Feather moment is then proportional
to the product of flap moment and effective sweep angle. The total moment
applied to the gyro with this concept is the difference of the pilot input
and feathering feedback moment proportional to blade flap moment, as shown
in Figure 5.

The direct flap-moment feedback rotor system is shown in block diagram form
in Figure 6 and in schematic form in Figure 7. The concept is the same as
the flap-feathering feedback system except that irreversible hydraulic
actuators have been added betweern the gyro and the cyclic blades. Secondly,
only moment proportional to rotor blade cyclic flap moment is fed back to
the gyro. Except for the distirc” features noted above, the direct flap
feedback system operates in the <s.ame manner as the feathering feedback
system.

Major areas of application of the REXOR analysis are described briefly below.

PERFORMANCE

An analytical study of the maneuverability of 16,000-pound class winged and
conventional helicopter configurations is reported in Reference 2. This
analytic investigation, which was also sponsored by the Eustis Directorate,
U.S. Army Air Mobility Research and Development Laboratory, was conducted

7~
-~
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under Contract DAAJO2-T0-C-0032, using the REXOR simulation program. In
this previous investigation, specific transient requirements had to be met
for prescribed power and maneuvering levels. The study investigated
maneuvering load factors of 1.5, 1.75, and 2.0 ¢ in coordinated turns and
symmetrical maneuvers, at flight speeds up to 150 KEAS (167 KTAS), sustain-
ing maximum load factors for 3 seconds during coordinated turns, without
excessive speed loss or altitude change.

Subsequent refinements in the analytical description have been incorporated
in the current REXOR II program, but basic degrees of freedom and method-
ology are common to both programs. These refinements were directed at pro-
viding an improved control system description and accounting for the struc-
tural principal axis position of the blade as it varies with time relative
to the spin plane due to collective and cyclic blade angle variations. The
effect of these changes has been of some importance in the dynamics area,
but their prime benefit has been to contribute to completeness of the
description. Results of the referenced study should be unchanged with
respect to power, altitude, and velocity relationships as a result of the
new program refinements.

DYNAMICS

Development of the gyro-controlled hingeless rotor was motivated by the
outstanding control and stability achievable with this system. During this
development , several dynamic problems were encountered. Through the use of
the REXOR analysis, these problems were thoroughly analyzed and understood.
They can now be eliminated during design, as they have been in the current
(AMCS) version of the Al-56A and proposed advanced configurations.

In an early version of the AH-56A flap/fe. ther-moment feedback system, =z

1P x 2P problem resulted from feathering feedbacks due to in-plane motion
in conjunction with flapping motions of the blades. The feedback mechanism
which caused this problem is only possible with the tlap/feathering-moment
feedback system. With the direct flap-moment feedback system, as currently
eriployed in the AH-S56A/AMCS configuration, the mechanism for this problem
is eliminated. This has been demonstrated both on the whirl tower and in
extensive flight test programs.

A secord problem that was experienced in earlier hingeless rotor configura-
tions was the 1/2P hop problem. Computer studies and flight tests revealed
that this problem resulted from insufficient stiffness of the collective
system and from an unstable ‘3 coupling. Successful elimination of the
problem has been demonstrated in both flap/feathering-moment feedback and
direct flap-moment feedback configurations of the AH-S6A. Correlation
Letween REXOR analysis and flight test data was highly successful, providing
a high confidence level in selecting suitable design parameters prior to
flight for the AH-56A/AMCS and subsequent advanced designs.
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Another problem which manifested itself in rigid rotor configurations was
that due to a reactionless in-plane blade mode. REXOR analysis, whirl tower
testing, and flight testing all demonstrated that this problem is closely
associated with pitch-lag coupling and may be encountered in hingeless
rotors under very high 1ift conditions. 1In this case again, correlation

of computer analysis, whirl tower, and flight testing has provided a high
confidence level through diagnostic analysis to select suitable parameters
and to eliminate the problem or avoid it in new designs. This was demon-
strated in the AH-56A program and is documented in Reference 3.

Examples of REXOR program computations and related flight test results for
an AH-56A rotor system are shown in Figures 8 through 10. Figure 8 illu-
strates analytically the effect of blade droop with respect to the feather
axis as shown in Figure 3, and rotor lift on reactionless mode damping and
chord load. The traces shown at the top of the figu-e are the analytical
time histories of the reactionless mode content of the blade root chord
load for three different configurations. The curres at the bottom of the
figure show the results of a moving block Fast Fourier Transform (FFT),
Reference U4, of these traces. The slope of the moving block analysis
results indicate the damping of the mode. These results and additional
REXOR results are compared with flight test in the evaluation of reaction-
less mode damping shown in Figure 9. A summary of the mode as a function
of speed from the analysis and flight test is presented in Figure 10.

HANDLING QUALITIES

The original purpose of the analysis effort which led to the development of
REXOR was (o provide a full vehicle model for evaluating rotary-wing air-
craft handling qualities. It is for this reason that the full control
system is modeled so that the vehicle response to pilot control inputs

may be evaluated.

In the development of the AH-56A, REXOR was also used extencively to evalu-
ate handling qualities. In the ICS configuration, a reduction in longitu-
dinal stability due to retreating blade moment stall under high maneuvering
load factor conditions limited the flight envelope of the aircraft. This
resulted from high feather moments associated with shifts in the aerodynamic
center on the retreating blade. This problem again related to the flap/
feather-monment feedback system of the earlier rigid rotor control systems
under high 1lift conditions. The mechanism for the problem is eliminated
with the direct flap-moment feedback in the present AMCS/AH-56A, as demon-
strated by extensive flight testing which increased the demonstrated flight

envelope (Figure 11).

An example of the use of the REXOR program in analytic studies which
involve the interface of various technical disciplines (dynamics, handling
qualities, loads, etc.) is presented in Figures 12 and 13. A blade canopy
clearance analysis for the AH-S6A was made baced on dynamic response of the
vehicle to various types of pilot control input. Rotor blade deflection,
shaft moments, and body rates of Figure 12 represent typical output data.

12
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Figure 13 shows a summary of the analytic results for pitch and roll con-
trol inputs. The relationship of the various technical disciplines to the
problem investigated is readily apparent. A more complete discussion of
this study is presented in Reference 5.

LOADS

It is evident that in these varied applications, a good estimate of rotor

transient louds is inherent in the model. The analysis has shown good

agreement in defining the practical flight envelope of the various versions
{ of the AH-56A. This study will provide a detailed correlation of the lcads
capability of the REXOR analysis.




TECHNICAL APPROACH

The purpose of this study is to correlate a mathematical rotary-wing
simulation program (REXOR) with AH-56A and XH-51A flight test data.
Primary emphasis is placed on steady and cyclic blade loads during steady
and transient maneuvers. Correlation of analytical results with experi-
mental data for both high speed and high load factor conditions offers a
basis for analytic extension into regions beyond those measured. The
4,500~ and 18,300-pound respective gross weights, 100- to 200-knot flight
speed range, and large maneuver envelope of each aircraft establish a
quantitative assessment of the limiting factors for a range of aircraft.
Factors of prime consideration are root blade loads (chordwise and flap-
ping), feathering moments, and blade torsion moments. Distributed blade
loads, both chordwise and flapwise, and in particular midspan loads, are
also considered to be important in the correlation effort.

Two sets of test data were made available, one set for the AH-56A and one
set for the XH-51A (compound mode). Each set consists of a number of
steady and transient maneuvers over a defined load factor and speed range.
Because of the fundamental differences in the two configurations, each must
be considered separately and requires individual adaptation of the REXOR
mathematical analysis. The correlation effort was segmented into five
tasks:

e Selection and review of test data (AH~56A and XH-51A).

e Reduction of test data to correlation format.

® Modification or REXOR.

o Operation of REXOR to obtain data for correlation.

e Correlation report.

TEST DATA SELECTION AND REVIEW

Correlation cases were selected to cover the aircraft operational range
from which test data are available and to place emphasis on a flight regime
of high interest with respect to steady and transient rotor loads. The
selected range covers maneuver load factors from 0.2 to 2 g and a speed
range from 100 to 200 KEAS. A set of 56 flight test cases was made avail-
able and processed for correlation purposes. From a subset of L8, 33
steady-state and 8 transient cases fc the AH-56A were correlated with
analytic data; for the XH-51A, L steady-state and 4 transient cases were
correlated.
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The correlated static and dynamic cases for the AH-56A as a function of
the flight envelope are noted in Figure 1Lk, XH-51A cases are noted in
Figure 15. A tabulation of all the flight cases considered for
correlation and for which data were tabulated are noted in Table I.

REDUCTION OF TEST DATA TO CORRELATION FORMAT

The selected data were reduced from its time history format. Harmonic
analysis of blade bending loads, determination of transient rates and
accelerations, and extractions of time history records from oscillograph
rolls were among the data reduction requirements. Data items utilized for
correlation for each «f the aircraft are listed in Table II. Time history
data were also read a:ld processed to provide data plotted to the same scale
as that which is output by the REXOR analysis to allow for a direct com-
parison.

REXOR PROGRAM MODIFICATIONS

To correlate AH-56A maneuver loads, data output consistent with test data
r.casurement items must be available from the REXOR analysis model. Minor
modifications to the program were made to provide computational outputs
required that had not previously been made available. For example, calcu-
lation of blade bending loads at specific blade radial stations consistent
with test instrumentation locations was required.

The REXOR program was originally developed for the AH-56A. For the XH-51A
correlation, additional modifications were required. The XH-51A turbojet
was simulated by a scaled-down version of the AH-56A pusher propeller model.
Minor XH-51A control and rotor blade mechanical geometry description
changes were also necessary. Blade radial stations for load computations
were changed to be consistent with the test configuration of the XH-51A
aircraft.

REXOR DATA FOR CORRELATION

Operation of the REXOR program to obtain simulated flight data for corre-
lation is straightforward and only requires submittal of input data listed
in Appendix III along with the appropriate ca. : data. No modifications of
the mathematical model or the computer program were made to achieve or
improve the correlation except those required to correctly describe the
control geometry as defined above, or to facilitate a data output consistent
with the measurement references used in the flight test program. Pilot
control inputs were made consistent with flight test measurements. Data
management and bookkeeping procedures to control the program are indicated
by the arrangement of the data in the appendi- .
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TABLE II. EXPERIMENTAL DATA CORRELATION PARAMETEFRS
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