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I.     Research Project Overview 

This report describes the progress and results of the University 

of Southern California image processing research study for the period of 

1 September 1973 to 28 February 1974.    The image processing research 

study has b«en subdivided into five proj-cts: 

Image Coding Projects 

Image Restoration and Enhancement Projects 

Image Data Extraction Projects 

Image Analysis Projects 

Image Processing Support Projects 

In image coding the orientation of the research is toward the development 

of digital image coding systems that represent monochrome and color images 

with a   minimal number of code bits.   Image restoration is the task of im- 

proving the fidelity of an image in the sense of compensating for image de • 

gradations.    In image enhancement, picture manipulation processes are 

performed to provide a more subjectively pleasing image or to convert the 

image to a form more amenable to human or machine analysis.   The objec- 

tives of the image data extraction projects are the registration of images, 

detection of objects within pictures and measurements of image features. 

Tb« image analysis projects comprise the background research effort 

into the basic structure of images in order to develop meaningful quantita- 

tive characterizations of an image.    Finally, the image support projects 

include research on image processing computer languages and the develop- 

ment of experimental equipment for the sensing, processing, and display 
of images. 

The next section of this report summarizes some of the research 

project activities during the past six months.    Sections 3 to 7 describe the 

research effort on the projects listed above during the reporting period. 

Section 8 is a list of publications by project members. 

-1 
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2.      Research Project Actiäties 

Significant research project activities of the past six months are 
summarized below: 

Alexander A. Sawchuk has been appointed editor of the May-June 

1974 issue of Optical Engineering,,   :he journal of the Society of Photo-Optical 

Instrumentation Engineers.    This is a special issue devoted to uptical and 

digital image and information processing,  and will contain more than eleven 

papers discussing theory and applications of such systems.    Topics in this 

issue include: hybrid optical/digital systems using real-time input/output 

devices; digital holograms for optical processing; and image processing of 

synthetic aperture data. 

Harry C. Andrews has been appointed guest  editor of the May 1974 

issue,  of Computer. the journal of the IEEE Computer Society.    The issue, 

entitled "Computer Image Processing," consists of seven papers spanning 

picture coding, image restoration,  and digital image processing facilities 

at Aerospace,  EG&G,  and AEC facilities.    The issue will include photo- 

graphic examples of computer processed images both in black and white as 

well as in color.    In addition to normal circulation, the issue is being over- 

printed for additional distribution aL the NCC conference in Chicago. 

-2- 
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3.    Image Coding Projects 

The research effort in image coding has been directed toward a wide 

variety of applications.    Coding systems are under investigation for:   monochrome 

and color imagery; blow scan and real time television; and information pre- 

serving and controlled fidelity operation.    Results of this research study 

during the past six months are summarized here and presented in detail 

in subsequent sections. 

In the first report an interpolative data representation is utilized to 

develop three image coding algorithms.    One algorithm is based upon spatial 

domain coding, another upon transform domain coding,  and the third is a 

hybrid coding scheme.    Computational requirements for the algorithms are 

specified and the image performance is evaluated for several pictorial 

examples. 

The next report describes the analysis of logarithmic quantization 

scales for monochrome image quantization.    Quantization errors are 

evaluated in terms of a moael of the human visual process. 

Spline functions, which are a special class ol truncated polynomials, 

are known to be quite accurate for the approximation of one dimensional 

functions.    Their use in image approximation for purposes of bandwidth 

reduction is explored in the next report. 

In the following two reports, the concept of transform domain spectrum 

extrapolation and interpolation for image coding is investigated.    With these 

techniques, transform coefficient quantization error can be reduced by 

post-processing at the coder with a significant improvement in image 
quality. 

The last report considers extensions to the universal coding concept. 

In particular,  a rate distortion bound is established for coding image sources 

with unknown probabilities. 

-3- 
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3. 1   Image Coding via Two Dimensional Interpolative Representations 

Anil K.   Jain 

For finite discrete signals,  non-causal "interpolative" representations 

may be used for coding.    These non-causal representations lead to three 

different coding algorithms in the spatial, hybrid and frequency domains. 

Interpolative Modeling     For simplicity in presentation,  only the first 

order stationary Markov signal will be considered.    Let [u. j,  i = 0, 1, ... , 

N, N+l represent such a signal with zero mean and autocorrelation given by 

E[u.u.l   =   p|l-J (1) 

Representation of a sequence {u.j denotes a relationship 

^[u.]   =   v. (2) 

such that the sequence {u.} can be reconstructed from v..    For example 

u.   .  - pu.    *   v. 
i + l i i 

(3) 

is the Markov representation of eq.   (1) with 

ß2   i  E[v2l   =   (1-p2) (4) 

It can be shown that the linear minimum mean square representation of 

eq.   (1) is given by 

u. - -*—; (u. , ,+u.     )    =   v. 
i     ,     2 '  i+l     i-l i 

1+P 

uo"pui  = vo 

i = 1, . .. ,N (5a) 

(5b) 

Vl ■ PUN   "   VN+1 
(5c) 

z 
This representation is such that E[v. ] is minimum compared to all other 

linear representations and is given by 

- - - --^ -^ ■ - -  _ ^ -. —---■ •- - ■ 
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(1+P ) 
(6) 

('For a discussion of the correlation properties of v. and generalization of 

the above statement to non-stationary case see [l]. )   Also observe that 
2        2 

ß2 < ß.  since 0 <? < 1. 

For a two dimensional zero mean discrete signal u.. with 

E[u   u 1    =   pM+M 
ij  i+n,j+mJ 

"horizontal" and "vertical" representations are defined as 

e
h(i,j)   =   u.. - a(u.   .,,+u.  ,   J 

ij ij+i   i»j-r 
e
v(i.j)   =   u.. - *(u..   .+u.   .   .) 

(7) 

(8a) 

(8b) 

where a = p/(l+p ).    Then the representation 

a . e"   =   u.. - — (u.   ,   .+ u    ,    + u + u ) 
lJ U     2     l+M      i-l.j      i.j + 1        i.j-l' 

is such that Efef+e   1 is minimized,  and n    v 

11        (UP¥ 
This is in contrast with the Markov representation of eq.   (7) given by 

(9) 

(9a) 

with 

u..   =   pu.   .   . + pu.   .   ,   - p  u + e 

2.2 E[e..]   =   (l-p^) 

(9b) 

(9c) 

Comparison between  eqs.  (9a) and (9c) shows that iff .!<«[•   1 for 
-j ij 

0 < p ^ 0. 786.    For values of p ~ 1,  the two values have small mean square 

difference.    Also,  in   eq.   (9),  the coefficient «a« is relatively insensitive to 

changes in image statistics (p parameter).    In fact 

■Mm mil -■ - 



lllflllM    1 l...|lW^| 

a    " (i+p2)Vp/ 
(10) 

Therefore in the vicinity of (D = 1,   small changes in inv-tge statistics will 

not alter the performance of the interpolative representation. 

Coding and Reconstruction Algorithms     It should be recognized that 

if the €.. become observables in eq.   (9), then this equation has to be solved 

(for reasons of stability) as a boundary value problem with end conditions 

U0   I'  "N+l   "  U'   0 and U'   N+l known'    For simplicity,   it will be assumed 

here that these quantities are zero,i.e., the picture under consideration is 

imbedded in a dark background.    One might question the validity of this 

assumption in view of the stationary statistics of eq.   (7); however,  this 

assumption is actually non-essential for the coding algorithms below. 

Equation (9) can then be rewritten in vector form as 

a 
2    j + 1 Qu. +7U 

J      2    J-1 
=   -e 

J 
(11) 

where u. and e. now represent N x 1 column vectors of elements (u    , . .., u    ) 
J J Ij Nj 

and (C^...,CN|1 

matrix given by the elements 

>..» •••! e^.) respectively.    The matrix O is a symmetric tridiagonal 

QiJ     " 

1 i = j 

-a/2 |i-j|=l 

0 otherwise 

(12) 

Algorithm Al;   (Spatial Domain Coding,  Figure la) 

1. Quantize and code e.,  after obtaining it through eq.   (9).    Let 

e'1' . denote the received signal. 

2. The reconstructed sequence uf is obtained by solving 

tt.,,    =   R.n't + s. 
J+1 3  3 3 

j-1 j-l^a    j   r   j) 

u0   .   0 

R 
N 

SN   =   0 

(13a) 

(13b) 

(13c) 
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Figure 3. 1,1 Image coding algorithms. 
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Eq.   (13) can be solved in about (N    log- N) computations, 

employing the structure of matrix Q.    [l, 2, 3] 

Algorithm A?:   (Hybrid Domain Coding,  Figure lb) 

1.     Find e. =Te., where T is an N X N matrix contai 
J J 

terms.    It can be shown [3] that T is idempotent and diagonalizes 

liningV^sin(£fr) 

Q i.e. 

TQT   =   A =   < 1 - a cot — \ N+1J (14) 

.th 2.     Quantize e.. with the number of bits allocated for the i     row 

being proportional to logll - cos -rr—r]     , to obtain e'':. 
\ N+l/ ij 

3.     The reconstructed image uv. is obtained by 

tt?   =   Tu. 
J J 

and 

Vi = rijuij+ 8ij 

r..   .    =   f(x. -fr.Y1 
ij-1 2 \ x     2    ijj 

/2 % \ 

A      A   1 ITT xi = 1 " a cos ^RTT 

U. =    0 
1,0 

r.     TVT   =   0 i,N 

iN 

Again eq.  (15) requires about (N    log- N) computations. 

Algorithm A3;   (Transform Domain Coding,   Figure 1c) 

1.     If eis N XN matrix of element e,., then first find 

(15b) 

(15c) 

(15d) 

e   =   TeT (16) 

2.     Quantize e.. by allocai'ng n . bits to it such that 

n   a log(M   + |i ) 
J J 

1 

where U.    =   1 - 2a cos w i = 1, N 

(17) 

(17a) 
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3.     The reconstructed image is given by 

{u*}   -   U*   =   TU::;T 

 LL and u. 
lJ 1    J 

(18) 

(18a) 

References [l,2l provide details and generalizations. 

Examples,  Implementation and Computational Considerations     Algorithms 

A2 and A3 have been simulated for the 256 x 256 pixel girl image of  fig.  2a. 

The average value of p for this pictvre is 0. 96.    In all the simulations the 

actual value used was p = 1.    The difference in e.. for these two values 
2        lJ ' 

visually and quantitatively (in terms of £e..) both was insignificant. 

Figure 2b shows the display of |e    I.    Figure 2c contains the encoded image 

according to algorithm A2 with 3 bits/pixel on the average using a uniform 

quantizer.    The entropy of the quantized signal I* was actually 2. 35 bits,   so 

that a variable length Huffman code could be employed to obtain the same 

image with 2. 35 bits/pixel.    Figure 2d shows the quantized |l* | signal 

according to algorithm A3 and bit rate of 1 bit/pixel.    Figures 2e and 2f 

show the encoded images for 1 and 1.47 bits/pixel. 

It can be shown that the total computational load in each algorithm is 

of the same order.    In algorithm Al, the memory and computational require- 

ments on the transmitter are minimal and the major computational burden is 

at the receiver.    In algorithm A2, the total processing burden is roughly 

divided in a 1:2  ratio (the transmitter needs to take a one sided transform 

and the receiver solves scalar interpolative equations and takes an inverse 

transform).    In algorithm A3,  the processing load is roughly equally divided 

between the transmitter and the receiver.    Thus the three algorithms obtained 

via a single representation spell out three different communication system 

architectures, and their relative use therefore depends on the particular 

application.    In this sense the interpolative representation leads to a 

unification of some of the different methods of image coding employed 

currently. 

9- 
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Finally,  it should be remarked that the representation used here is 

but one member of a class of similar non-causal and semicausal repre- 

sentations.    The representation reported here corresponds to a discrete 

version of the Poisson equation (V   u=e).    The relative merits of other 

representations is currently under study and will be reported in the future. 
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3.2  Optimal Logarithmic Quantization for Picture Processing 

Francis Kretz and Werner Frei 

An optimal quantization law for image intensities for television monitor 

display of digitized and prc^ssed images has been considered.    Also, the 

effects of "brightness" adjustments for television displays has been analyzed. 

Subjective Criterion    A possible subjective criterion for quantization 

distortion is to postulate that the decision and reconstruction levels should 

be perceptually equi-distant.    Since it is well known that the perception of 

intensity is a concave.monotomically increasing function of light intensity 

A (I),  an optimal quantizer in the above sense can be derived from A (I) as 

Q(I)   =   int[(2N.l)A(I/I        )] 
max (1) 

where intf« ] denotes the nearest integer (0 ^ Q ^ 2N-1) of the argument, 

N is the number of bits of the quantizer, and A (I) is normalized so that 

A(0)   =   0,     A(l)   = 1 

11- 
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Various functions for A (I) such as the square and cube root,  polynomials 

and logarithms have been proposed to fit experimental perceptual data [l]. 

The parameters and range of validity of these functions depend very much 

upon the experimental conditions under which the data was obtained.    In 

particular,   background illumination has a strong influence on A(I). 

In the case of t Revision displays,  the range of intensities is fairly 

well defined (about two orders of magnitude),  but the background illumination 

for each pixel is a complex,  more or less random field (the image itself). 

Since one desires to design one quantizer for all pixelt. of an image,  the 

parameters of A(I) will be the result of some compromise. 

Experiments have been carried out to determine the optimal slope 

at the origin of the A-function 

where 

A(I)   =   b logj   (1 +I/a) 

b   =   (log10(1 +a))' 

(2) 

with A(0) = 0 and A(l) = 1 .      For this   A-function the slope at the origin is 

AVO) 
a log  (10) 

In the first set of experiment,  a ramp of intensities was quantized 

according to eqs.   (1) and (2),   generating a set ol grey scales with A^O) = 

4.4,   6.3,   8.0,   11.3,   16.1,   19.7,   22.9,   29.9 (from top to bottom,   respectively 

in figure la (N = 4) and figure lb (N = 3 and 5 bits).    Then the parameter 

A'fO) was chosen corresponding to the scale with the most uniform subjective 

spacing of intensities over the entire range.    It should be pointed out that the 

figures reproduced here have been subjected tc a series of distortions 

inherent to the lithographic process.    Several observers viewing the TV 

monitor preferred A^O) = 16 (slightly steeper than the Richter scale,   see [l]). 

12- 
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In the second experiment,  two images (the SMPTE "couple" and "girl") 

were coarsely quantized (N = 4 bits per pixel) in order to verify both the 

postulate regarding the quality criterion and the optimal slope determined 

in the previous experiment.    Figures 2 and 3 show the respective original 

images and a set of logarithmically quantized versions with different para- 

meters A^O).    For comparison,  linearly quantized versions with four and 

five bits are included. 

The second experiment shows that the optimal parameter A'fO) depends 

on the picture content.    Note that a small value of A^O) tends to create large 

subjective increments in dark areas and vice-versa.    It is observed that the 

very small optimal value of A^O) for the "girl" picture is a consequence of 

the unusually rare occurrence of low intensities.    In fact, the histogram of 

the "girl" pictvre has a maximum at about 20% intensity.    The "couple" 

picture has a more typical negative exponential-like histogram and the 

optimal slope A^O) = 16 is the same as determined in the first experiment. 

Minimum square error quantization laws for sources with given ampli- 

tude probabilities have been studied [2, 31.    Assuming a probability density 

function of the form p(I) ■ k exp(-al),  the MSE quantization law follows a 

concave monotomically increasing function of I quite similar to A(I).    The 

agreement between both criteria is presently being studied in more detail. 

Practical Considerations     In typical computer imag* processing 

environments,  images are usually scanned and quantized linearly.    It 

obviously makes little sense to coarsely requantize.    The results of this 

study are therefore primarily relevant to scanner or coding hardware. 

Comparing the quality of linearly and logarithmically quantized images, 

one sees that one bit at least out of five,   possibly two out of eight can be saved 

with appropriate quantization, which represents a 20-25% bandwidth reduction, 

or storage saving,  whichever is relevant. 
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(a) original (b) PCM 5 bits linear 

(c) PJM 4 bits linear (d)PCM log.      4 bits A,(0)=4.4 

(e) PCM log.      4 bits A,(0)=6. 3 (f) PCM log.      4 bits A,(0)=16. 1 

Figure 3.2-3.    Examples of grey scale quantization of "girl" picture. 
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In the context of hardware considerations, the influence of the "bright- 

ness" control of a television monitor has been analyzed.    Let u be the signal 

applied to the grid of the cathode ray tube (CRT),  U0 the CRT cut-off voltage, 

Uj the bias voltage (controlled by the   'brightness" setting) and v the intensity 

to be displayed.    The light intensity of the CRT is proportional to 

I   =   (u + U0 + Uj) 

I 

u-fU +U, >0 
0     1 

u+U0+U1 so 

The Y correction is carried out by letting 

where kj is a constant.    An incorrect setting of the brightness control 

U0+Ul = AU ^ 0 does not simply reduce the useful dynamic range of the 

display.    It also upsets the linearity of the gamma-corrected transfer 

function 

I   =   (kjv1^-, AU)Y 

Since the eye is very sensitive to errors at low 'ntensities, the effect oi 

yj is quite severe for the lower levels.    Figure 4a shows the overall transfer 

ft icvion A(w) where w represents the physiologically companded intensities 

v   =   a  [exp(^-) - 1] 

and 

A   =   b log(l + I/a) 

as shown in figure 4b.    These results indicate the importance of brightness 

adjustments.    A well designed hardware system should have an automatic 

video clamping circuit controlled by the D/A converter,  such that AU is set 

to zero when a digital zero is read. 

17- 

. .-...■,. . .....       - -^...i.-.. ----- 



(a)   influence of brightness control Dn overall perceptual system. 

u+U^U, 
W 

EXP GAMMA 
CORRECTION 

u 

n 

BRIGHTNESS 
CONTROL 

uniform   perception" spaces 

^ A. 

(b) perceptual system block diagram. 

Figure 3.2-4.   Subjective effect of brightness control. 
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3.3  Image Data Compression Using Spline Functions 

Faramaz Davarian 

9pliu. functions can be used to simultaneously comprePs and interpolate 

a given set of data.    Among different sets of bases spanning the space of 

splines, the B-splines are most suitable,   since they possess a local basis 

property and result in matrices which are easily iavertable. 

A dimensionality and subsequent bandwidth reduction can be achieved by 

a least squares fit of n points using m (m ^n) basis functions.    In essence, 

the data compression method is simply a transformation of the n-dimensiolal 

space of data points into a smaller m-dimensional spline space.    It is note- 

worthy that elemercs of the m-dimensional spline space will directly generate 

the continuous estimate of the original signal rather than the sampled estimate. 

The method is described below along with a study of the statistical properties 
of the transform domain. 

Definition of Spline Functions     Given a strictly increasing sequence 

of real numbers. ^^ t^  a spline function S(x) of degree m with 

knots tj. t2..... tn is a function defined on the real line having the following 
two properties: 

i)      In each interval (t , t       ) for i - 0   1 »,   i    c/„\ • i'  i+r Ior l - u. ^ • • • , n-1.  S(x) is given by some 
polynomial of degree m or less. 

ü)      S(x) an.! its derivatives of order 1.2 m.l are continuou8 on 

[t^tj,. 
Thus,  a spline function is a piecewise polynomial function satisfying certain 

conditions regarding continuity of the function and its derivatives. 
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It is generally believed that in many circumstances a spline function 

is a more adaptable approximating function than a polynomial.    This is based 

in part on actual numerical experience,  and in part on mathematical demon- 

strations that solutions of a variety of problems of best approximation turn 

out to be spline functions.    A spline function may be defined in terms of a 

truncated power function 

(x .„;. |; (x-t) 

0 

(x>t) 

(x^t) 

It is easily seen that [1 ] any spline of degree    1   with knots   t-.t-,...^ 
12 n 

has a unique representation of the form 

S(x)   =   P(x) + % v* - * /+ 

where P(x) is a polynomial of degreed or less.    The above representation 

of a spline function normally results in an ill conditioned set of line? r 

equations.    To overcome this deficiency it is possible to introduce a new 

set of local basis functions for the space of splines [2^, 

The preceeding considerations lead to the B-splines studied by 

Schoenberg [3 j,  which are in a sense, the splines of minimal support for 

a given degree (consisting of the smallest possible number of intervals 

between knots).    Figure 1 illustrates the typical shape of a B-spline function. 

Data Compression by Least Squares Method     Given a set of data pairs 

(t,,y,) for i = 1, 2,. . ., n, which can be interpolated as digitized values of the 

points of the graph y = f(t),  let the unknown function f(x) be approximated by 

a linear combination of suitably chosen functions   M. (t), M_(t),.. , ,   M    (t) 
12 m 

which are the basis splines.     Then 

f(t)   =   c.MJt)+c,M,(t) + ...  +c    M    (t) 
ii c,    c mm 

*M,, M2, . . . , M      form a complete set of bases for the space of m data points 
(m dimensional).    This basis can interpolate m data elements exactly. 
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f M(x) 

Figure 3. 3-1.    Typical shape of a B-spline. 
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where the unknown coefficients C.,C,,,,, ,c     are independent parameters 

to be determined,  and m ^n.    To minimize the mean square approximation 

error 

Q   =    £rF(t.)-y.l2   =IX£ c.M.(t.) - y.l2 

differentiate Q with respect to a    and set the result to zero to obtain 

or 

Tp-   =   2Zi{Ec.M.(t.) - y.W (t.)   =   0 

£c   £ M (t.)M  (t.) - Ey.M, (t.)   =   0 

k - 1, 2,,,,, ni 

In matrix form 

or 

where 

[? MiMk] KM? wv] 
T T 

B   B C   =   B   x 

X   =   ^l-W-^n"1 

£        [c1,c2, ...,cm| 

B 

Ml{tl) Ml^ ^(V 

MjCtj) M,(t9) M,(t ) 

M    (t.) 
m   1 

'2,k2' 

M   (t ) 
m   n 

with hUt     ) = 0,  for  b I 2P.    Thus,  B has many zero value off diagonal 

entries.    The vector of weighting coefficients is then 
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C   =   BT
X 

where 

B T„v-1   T 
B      =  (B   B)    _B 

is the pseudoinverse matrix of B.    Note that n elements of data vector y_ 

are mapped into m elements of the C vector, which,   represents the coefficients 

of m spline basis functions. 

The estimate of f(t) is then 

Let 

f(t)   =   c  M  (t) +c  M  (t) + ...+c    M    (t) 
1 d    *■ mm 

'(t4)   =   Ec.M.(t.) i = i n 

i    =   [F(t.)...F(t  )1T 
i n 

X =   BC   =   B^B)"1^^ 

The error vector e can then be expressed as 

Statistical Properties of B-SpUne Coefficient«     If the data vector ^ 

is modeled as a sample of a vector random process with known mean. E{y}. 

given by 

+ 

and known covariance.  K^. the B-spline coefficients given 

C_   =   B x 

are also random.    Their mean and covariance are 

and 
E{C}   =   ECB'X]   =   B+E{X] 

E{CCT}   =   B+K  (B+)T 

If the data vector x is consideied a sample of Markov process with a 

correlation coefficient of p (0 <p < 1) between each adjacent pixels and 
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12 5 10 

ELEMENT  NUMBER 

b)  N = I6, ELEMENT  CORRELATION 

15   16 

= .96 

2 5 
ELEMENT   NUMBER 

a)  N = I6,   ELEMENT   CORRELATION 

15   16 

= .95 

Figure 3. 3-2.    Variance of B-spline coefficients. 
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self correlation coefficient of unity,  then 

" 2 N-l 
1 p      0       .   .   .    p 

K 
i    p     . . .  p 

N-l 

N-2 

Figures 2a and 2b contain two plots of the variance function of c. as a function 

of i, where c. is the i     element of C^.    The plots are obtained with N = M = 16. 
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3.4  Positive Extrapolation of Signals and Images 

Ali Habibi,   Firouz Naderi 

In a transform coding system a bandwidth reduction is achieved by 

discai-ding a number of transform coefficients of a natural image.    Those 

coefficients possessing a small variance are of low information content,  and 

replacing them by zeros at the receiver results in a rather small degradation 

in the quality of the encoded signal.    The customary approach in designing 

transform coding systems has been to substitute the missing coefficients at 

the receiver with zeros.    However, the quality of the coded signal improves 

by extrapolation of the missing coefficients from those which have been trans- 

mitted.    The problem is analogous to one encountered in spectral estimation 
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of data where the covariance function is first estimated for a number of lag 

values, then the covariance function at the available lag values is extrapolated 

for additional lag values prior to taking its Fourier transform.    The 

extrapolation problem as applied to transform coding is more complicated. 

In transform coding only the quantized values of the coefficients are available 

at the receiver; thus,  one is forced to estimate the missing components of 

the transformed data from the available posnibly noisy components. 

This problem has been analyzed using two different approaches.    The 

first approach is statistical and is based upon the correlation among the 

transformed components using suboptimal transforms such as the Fourier, 

Hadamard, and Slant transforms .    The second approach is called 

positive extrapolation since it is based upon the positiveness of the video 

data and the fact that the Toeplitz matrix constructed from the Fourier 

coefficients of a positive,  real signal is always positive definite. 

Extrapolation of Signals     Let F(0), F{1), ..., F(N) refer to the first N+l 

components of vector F_, the Fourier transform of one line of a video data, 

which is composed of M points.    To make F^ real one must generate an even 

function by first reflecting the video data about the t = 0 axis and then taking 

a Fourier transform of the even signal. 

Now consider the Toeplitz matrix T(N+1) defined as 

/F(0) F(l)   ...    F(N) F(N+1) 

T(N+1)   = F(l) 
• 

F(l)   ...    F(N-l) 
•                                           ■ 

F(N) 
• 

*-* •                  * i                         * 

\F(N+1) 
•                                          • 
F(N)   ...    F(l) 

• 
F(0) 

(1) 

Since the modified video data is positive and even,  and the real matrix 

T(N+1) is semipositive definite,  it follows that the determinant of T(N+1) 

as a function of F(N+1) has a single maximum.    Hence the allowable values 

of F(N+1) are those that make the determinant of T(N+1) equal to zero and 

• 26. 
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all values in between.    Expanding the determinant of T(n+1) in terms of 

the last row and the last column gives an expression for the determinant of 

T(N+1) in terms of F(0), F(l), ..., F(N+1).    Since F(0), F(l),..., F(N) are 

known, this is an expression for the determinant of ^(N+l) in terms of 

F(N+1).    Choosing F(N+1) to maximize the determinant of T(N+1) gives a 

recursive algorithm to estimate F(N+1) from F(0), F(l),.. ., F(N).    The 

recursive algorithm can be used further to estimate F(N+2) from F(l),.. ., 

F(N) and the estimated value of F(N+1) i.e. 

N 
F(j)   =   Y^   A(k)F(|j-k|)   for   j = N+lf...M-l (2) 

k=l 

where A(k), k = 1, 

T(N+1). 

N,  are a set of fixed constants specified by matrix 

Extrapolation of Images    The positive extrapolation technique discussed 

for one-dimensional signals in the previous section can be generalized to 

extrapolate two-dimensional spectral density functions as well as two- 

dimensional Fourier transform of images.    This is achieved by extending 

eq.   (2) to functions of two variables by letting 
N      N 

F(i.j)   =   Z^ 2-/A(M)F(MUj-k|) for i, 
k=l «si 

j = 0,1....,M-1    (3) 

where F(i, j) is the two-dimensional discrete Fourier transform of the image 
2 2 

and consists of M    elements.    At the receiver site (N+l)    elements are 
2 

available and these (N+l)    elements are used to extrapolate the missing 

elements prior to taking the inverse Fourier transform to obtain a re- 

construction of the original image.    Analogous to the one-dimensional 

system, the original picture is first folded along the x = 0 and y = 0 axes 

to generate an even two-dimensional array.    This is required to make F(i, j) 

an array of real elements.    Solving eq.   (3) for A(k,-e) is straightforward 
2 

since (N+l)    values of F(i, j) are known. 

__ 
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Experimental Results     The performance of the positive extrapolation 

methods described above has been considered for a number of examples. 

The one-dimensional example is a discrete signal of 32 samples that consists 

of a pulse superimposed over a slowly varying background.    The discrete 

Fourier transform of this signal is calculated and all but the first eight 

samples substituted by zeros.    The inverse Fourier transform of the truncated 

signal and the original signal are shown on Figure 1.    The truncated signal 

in the transform domain is then extrapolated to recover all ?2 components. 

The inverse transform of the extrapolated signal is also shown on Figure 1. 

The extrapolated signal remains positive as expected and tracks the original 

signal significantly closer than the unextrapolated signal. 

Figures 2 and 3 contain examples of posit've extrapolation for a discrete 

(sin x/x)(sin y/y) signal and a block pulse signa ,  respectively.    In each case 

the Fourier transform has been truncated preserving the transform samples 

in a 3 x 3 low frequency block out of a total of 15 x 15 coetfl^ients.    The 

positive extrapolation process is seen to provide a significant improvement 

over the reconstruction without extrapolation. 

3. 5 Transform Domain Spectrum Interpolation 

Michael N. Huhna 

Quantization occurs whenever continuous physical properties are 

represented numerically.    A quantizer is a zero-memory nonlinear device 

which restricts an input variable to a firite number of possible output 

regions.    This process is irreversible and information is invariably 

destroyed since only the region containing the input is known at the output. 

However this output data can be combined with a priori knowledge, about 

the input to reduce the amount of information lost by interpolatinn between 

the discrete outputs. 

In transform image coding a block of image pixels undergoes a two 

dimensional transformation using a unitary transform such as the Fourier, 

• 28- 
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(a)   Original 

(b)   Un-extrapolated 

(c)   Extrapolated 

Figure 3.4-2.    The original, un-extrapolated and the extrapolated 

two-dimensional Signals.    Reduction ratio is ■^. 
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(a)   Original 

(b)   Un-extrapolated 

(c) Extrapolated 

1 

Figure 3.4-3 .    The original, un-extrapolated and the extrapolated 

two-dimensional Signals.     Reduction ratio is-^^ . 
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Hadamard,  or Slant transform.    Next, the transform coefficients are 

quantized and coded for transmission.    Figure 1 illustrates a typical bit 

assignment for a zonal quantization and coding algorithm.    The number of 

quantization levels assigned to the coefficient at coordinate (ufv) is 

M(u,v)    =   2 
b(u,v^ 

(1) 

where b(u, v) denotes the bit assignment.    At the receiver,  the quantized 

coefficients are reconstructed and an inverse transformation is performed 

to obtain an image estimate. 

If a transform coefficient is quantized to zero bits, then its restoration 

is equivalent to a spectrum extrapolation as outlined by Pratt [l J .    Those 

coefficients that are quantized to two or more levels can also be restored by 

a technique called spectrum interpolation. 

Analysis     Lc: the N element column vector x with probability density 

p  (x) denote a vector of input data samples.    For two-dimensional data arrays, 

x is formed by column scanning the data array.    Each data sample is quantized 

into one of M output regions,  denoted by D.,  i = 1,2,..., M.    The estimated 

value of xbased upon the observed D. regions is the quantizer output vector 

y..    The average error in this estimate is then defined as 

M 

<?  =   YM     e(x-Ii)px(x)dx (2) 

i=l i 

where e(« ) is an arbitrary error weighting criterion.    The vector of estimates 

Y. should be chosen to minimize the average error.    This choice can be 

determined by utilizing the principles of calculus to find the stationary 

points of the error surface 5 with respect to each ^..    Hence 

hS 

% 
■ -J    £-[•<S-I4»K(£)*E 

D.    "H 
i - 1   2, . . . , M (3) 

' 
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8 8 8 8 8 8 7 7 6 6 6 6 5 5  5  5 
8 8 8 7 6 6 4 4 4 4 4 4 3 3   3   3 
8  8  7 5 5 4 3 3 2 2 2 2 2 2   2   2 
8  7  5 3 3 2 2 1 1 1 1 1 111 
8 6  5 3 2 1 1 1 1 1 1 1 111 
8 6  4 3 2 1 1 1 1 1 1 1 111 
7  4  3 2 1 1 0 0 0 0 0 0  0  0 
7  4  3 2 1 1 0 0 0 0 0 0  0  0 
6 4  2 1 0 0 0 0 0 0 0 0  0  0 
6 4  2 1 0 0 0 0 c 0 0 0  0 0 
6  4  2 1 0 0 0 0 0 0 0 0  0  0 
6 4  2 1 0 0 0 0 0 0 0 0 0 0 
5  3  2 1 0 0 0 0 0 0 0 0  0  0 
5  3  2 1 0 0 0 0 0 0 0 0  0 0 
5  3  2 1 0 0 0 0 0 0 0 0 0 0 
5  3  2 1 0 0 0 0 0 0 0 0 0 0 

Figure 3. 5-1.    Typical transform d jtnain quantizing bit assignment. 
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with the assumption that the error function e(' ) is differentiable.    Solving 

eq.   (3) for the quadratic error criterion 

e(x-xi)   =   Trftx-^Hx-x.)   } 

one obtains 

_öe_ 
9v. 

which implies that 

(4) 

(5) 

i = I, 2, , . . , M (6) 
D. 

Rearrangement reveals 

|      xp  (x)dx 

h 
f    Pj*)d* 

JD.    X 

i = 1, 2,.. ., M (7) 

or 

v     =   E{x|xeD.} (8) 

This is an expression for the best nonlinear mean square estimate of x, 

given that x lies within region D.. 

Now assume that x is distributed according to a Gaussian probability 

density function 

T    -1 
p  (x)   =   K exp{-|x   C    x} 

where C    is the covariance matrix of x and the mean is assumed to be 
—x — 

zero.    Also let 

(9) 

D.   =   {x. |x.e[a.,b.)) 
i I    j      j    J 

j = 1.2,...,N (10) 

Then 
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p—• T    -1 
I     JCK exp{-jx.   C    x}dx 

& T   -1 
K exp{-jx   C    x}dx 

a 

Curry [2] has solved this equation for finely quantized values of x., i. e. 
J 

(H) 

b. - a. <a. 
J       J       J 

j = 1, 2,...,N (12) 

.th 
where a   is the standard deviation of the j     component of x.    His approach 

J ~ 
is to approximate the Gaussian density by the first three terms of its Taylor 

series expansion about the midpoint of the region D..    The integration can 

then be performed, with the result that 

where 

i   .k+i 
E{x|xeD.]   =   (I-AC"   )-r- 

—'—     i  x        2 

((b.-a.)2 1 

(13) 

k, j = 1,2,...,N (14) 

An exact solution can be obtained when the components of x are un- 

correlated.    In this case the covariance matrix can be expressed as 

c    =  (oX) k,j = 1,2,...,N (15) 

and much computation reveals that 

^i    :  VTT 

u2/o   2 2/7    2 

-b1/2a1        ^,720, 
o. (e     *        A - e     A       » 

erf 
1 

erf 
1 

^a1     w"    fSo1 

a   (e-bN/2aN . e"aN/2GN) 
N 

erf 
N 

72 a, erf 
N 

N 
T2^ N 

(16) 
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Gaussian variables which had been decorrelated by means of a Karhunen-Loeve 

transformation and then quantized could be restored according to a minimum 

mean square error criterion by utilizing this last equation. 

An exact analytical solution to eq.   (11) also exists when an estimate 

of a single vector component, x   ,  is desired based upon two types of inform- 

ation -- (a) the other components, x1,x2,...,x which are known 

completely (quantized with an infinite number of bits); (b) the quantizer output 

which nonlinearly specifies the interval containing x   .    To derive this,  consider 

X.   =   EUlx^aj. x2=a2 «N-l " Vl1'N * VV    (l7) 

or 

*i 

or 

*i 

;. 
|exp{.-i(a1...aN_1xN)C 

lN-l 

e:ip)-i(a1...aN_1xN)C;1 

D. 

K«P(-i<*l...*N.iJ8N^ 

rN 
.xp|.i(a1...aN^1xN)C; 

lN 

dx 
N 

(18) 

(19) 

Now denote the elements of (C   )'    by 
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rll       rl2   •••    riN 

(C ) '21       r22   *••    r2N 
(20) 

vrNl      rN2   ••*    rNN 

Then performing the one-dimensional integrations in eq.   (19) yield( 

lN-l 

-exp    - 
2rNN      WN + ^   'j 

N-l \2 
r. 

JN 
J = i 

fTTr 
NN 

erf 

N-l 
rNNXN + 2J   ajrjN 

NN 

N 

N 

N 

N 

N-l 

- x ..  a.r. 
rNN   j = l     ;, J 

(21) 

If x    is quantized to an infinite number of bits, then v     = a     = b 
« yi N       N' 

as expected.    If ^ is quantized to zero bits, its interval is the real line 

(-aN = b
N = ")•  and then it8 estimate,  y. , is 

N .        N-l 

NN    *-*'      } JN (22) 

j = l 

This result is identical to that obtained by Pratt [l]   in estimating an 

unknown spectral value based on known spectral components.    However 

eq.   (20) is a more general result in that it can be utilized to estimate 
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componen's that have been quantized to any number of bits by an arbitrary 

quantization scheme. 

Transform Domain Spectrum Interpolation    The above solution Is 

applicable to the mean square restc iition of zonal coded transform samples. 

In this case, the transform samples have a Gaussian distribution,  since each 

is the sum of a large number of random variables so that the central limit 

theorem can be invoked.    These transform samples are typically quantized 

according to a bit assignment such as the one shown in Figure 1.    For such 

a quantizing scheme,  only eq.   (16) can be utilized directly for restoration; 

however this equation ignores the known correlation existing between the 

samples.    Curry's method of eq.  (13) is unable to restore samples quantized 

to fewer than two bits.    However,  for greater bit assignments,  it has the 

advantage of providing a simultaneous solution utilizing all the available 

information.    The technique developed in eqs.  (17) to (21) avoids the above 

difficulties, but requires a recursive solution which may be only asymptotically 

optimal (further analysis is expected to establish this).    Therefore the best 

restoration, on the basis of optimality and ease of implementation,  is obtained 

from a combination of the solutions presented above and must be adapted to 

the particular quantizer used.    This technique will soon be applied to zonal 

transform coded images.    It is anticipated that the resultant image will have 

a lower mean square error and improved subjective quality. 
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3.6 Variable Rate Image Coding for Sources with Unknown Probabilities 

Lee D. Davissen 

The average distortion of image encoding at a fixed rate subject to a 
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fidelity criterion depends upon an actual statistical source index 6#  in effect, 

the actual stationary ergodic source model for the image to be encoded.    Thus 

distortion is a random variable over the ensemble with distribution given by 

the distribution of the parameter 9#  i.e. the; class of possible images.    In 

many applications it may be more desirable to allow the coding rate to depend 

on 6 while holding the average distortion fixed over the ensemble.    This is 

the case, for example, when the image is to be stored or a variable trans- 

mission rate exists due to the multiplexing of many messages,  e.g. the 

ARPANET. 

A coding theorem has been established for the special case of a finite 

number of subsources,   6 = 1, 2,... ,K,  in the ensemble.    The theorem holds 

for noncountable ensembles as well,  but the proof is considerably more 

involved.    In addition,  it is assumed that there is a maximum distortion 

value, PM. 

For each value of k,   generate a set of codewords according to the 

usual coding theorem for stationary,  ergodic sources.    If R   (D) is the rate 
th 

distortion function in bits of the k     subsource, and D is the desired value 

of average distortion,  each code will contain L,   codewords where 
k 

log Lk   =   (N(Rk(D-e) + e) (1) 

and e is an arbitrary positive constant with the blocksize chosen large 

enough so that the average distortion is D-e for all 9, and so that the 

probability that there is no codeword with distortion less than D-e/2 is 

less than e/2 p    . 
M 

The coded representation of each of the L    codewords generated for 
k 

each k consists of two parts.    The first part is the fixed length binary 

number equal to k-1, k = 1, 2,... , K using at most log K+l bits to identify 

the codeword.    The second part is the location of the codeword in a list for 

each k of length at most log Lk+1 bits.    Thus the rate of any codeword for a 

given 9 is at most 
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log K + 2 r
k   =   —*-$    + Rk(D-e) + e bits (2) 

Obviously by choosing N large enough and e small enough, the rate can be 

made arbitrarily close to RQ(D) for 6 = 1. 2...     K 

The achievement of D and Re(D) for the combined supercode depends 

upon the actual choice of a codeword out of the 

K 
L   = Es 

i=l 

total codewords.    The coding rule is as follows:   Upon observing an output 

block of length N,  among the codewords of distortion less than D-e/2,  find 

the one of minimum rate,  if any.    If there is no codeword with distortion 

less than D-e/2,  make a random choice.    The average rate for 6 - k then is 

Rl^d) ^ rv + (suP r.)Prob[no codeword of distortion less than D k   r > 
or 

in the kth code] 

M 

(3) 

which is arbitrarily close to Rk(D) for small enough e and large enough N. 

The average distortion for 6 = k is 

Dk SD-e/2 + PM Prob[no codeword of distortion less than D in the kth code] 

D.^D-e/2+pwe/2pw   =  D 
M M (4) 

The result described is largely an existence theorem and therefore 

doer not prescribe a specific method of synthesizing data compression 

systems.    It does, however,  provide figures of merit and optimal perform- 

ance bounds that can serve as an absolute yardstick for comparison with 

real systems.    Furthermore, the results provide theoretical justification 
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for overall design philosophies that have proved useful in practice.    In 

practice,  one could, for example have a coding scheme for each of several 

classes of pictures,  e.g. classed according to "busyness."   The appropriate 

coder would be switched in for each encoded image with the coder identity 

sent as a prefix to the encoded picture information as suggested above. 

The approximate minimum number of bits would then be used for each 

image depending upon the average allowed distortion. 
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4.    Image Restoration and Enhancement 

Image restoration techniques seek to reconstruct or recreate an 

image to the form it would have had if it had not been degraded by some 

physical imaging system.    Image enhancement techniques have two major 

purposes:   improvement in the visual quality of a picture to a human viewer; 

and manipulation of a picture for more efficient processing and data extrac- 

tion by a machine.    Both techniques are subjects of continuing study; re- 

sults of this effort during the past six months are summarized below. 

The first report deals v ith methods of restoration utilizing the 

matrix pseudoinverse of a blur matrix which models a space variant 

point spread function.    Computation of the pseudoinverse is obtained indir- 

ectly by a singular value decomposition of the blur matrix.    The following 

report considers ancther approach to pseudoinverse image restoration.    Com- 

putational techniques are developed for pseudoinverse restoration by process- 

ing in the transform domain.  « 

An anal   sis is presented in the next report of the effects of discrete 

modelling of the superposition integral for image restoration.    The effect 

of modelling errors and the ill-conditioning of the blur matrix are quan- 

tified for typical image blur models. 

The use of spline functions in imaging models is explored next.    It 

is shown that the B-splines offer computational promise for image restor- 

ation with smoothness constraints. 

Astigmatism and curvature of field image degradations are character- 

ized by spatially variant imaging models.    It is shown that the imaging model 

can be decomposed into a cascade of a geometric distortion,  a spatially 

invariant linear system, and another geometric distortion.    Methods of in- 

verting this cascaded model are developed. 

In the next report, the concept of transform domain Wiener filtering 

for image restoration is extended to include lower triangular transformations. 

For a Markov process image model,  it is found that an extremely efficient 

computational algorithm can be obtained. 

The two following reports are concerned with two aspects of color 
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image restoration.    Once report considers techniques for estimating the 

tristimulus values of a color from spectral observations of the color.    The 

other report presents methods for compensating for film nonlinearities in 

a photograph of a color television display. 

The final report presents a quantitative development of pseudo- 

color image enhancement techniques to map a grey scale image into a 

color display.    Mappings are found that are psychophysically relevant, yet 

computationally efficient. 

4.1   Space Variant Point Spread Function Pseudoinversion 

Monty Adler and Harry C. Andrews 

Many complex forms of image degradation cannot be modelled by 

a spatially invariant point spread function; consequently,  Fourier tech- 

niques are not applicable to the restoration process.    For these spatially 

variant point spread function systems,   restorations can be achieved by a 

matrix formulation in which point spread function matrices are inverted. 

For singular blur matrices, the inverses must be replaced by pseudoin- 

verses to achieve the least squares approximation to the original.    For 

computational simplification an assumption of a separable space variant 

point spread function allows the following analysis. 

Let F be a matrix representing a perfect image which is acted upon 

by a separable blur function to produce a blurred image G as modelled by 

G     =    A F B 

where B blurs the rows of F and A blurs the columns of F.     Usually A and 

B are singular or almost singular.    One would like to find an approximation 

to F,  F such that [JF- F ||is minimized.    The analysis and results which 

follow do not depend on any of the matrices being square but for simplicity 

it will be assumed that all matrices are N by N.    If A and B are nonsingular 
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* -1 -1 and square the solution is,  of course,  F   =   A     G B       =   E- 

Using appropriate A and B matrices one can model space variant 

blur, linear motion blur, and in general any separable blur function. 

It is known that A and B can be expressed as a sum of matrices of 

rank one as follows 

N 

A =   E 
i = 1 

a     a    aT 
i   —i   —i 

for      11.     2    n..,   ^   0 
i i+l 

B   --    T     r)b UbVbT 

"       l.l     l  -1-1 

b b 
for      TT    i    n .,   St 0 

i i+l 

where TL ,   r\.   are scalars,  and U, ,  U. ,  V. ,  V.    are column vectors of 

length N,  and the sets [U*} ,   {U. } ,   (V*) ,   {V7)are orthonormal.   In an ideal 

computational environment,  rf   =   0 for i > R   where R   is the rank of A: 
i a a — 

similarly for B. 

The ideal pseudoinverse of A can be expressed as 

IN + 

A+   =    E     r1
a    ^ Ua 

.    ,      i—i—i 

where 

Tia+ =    V a U     rt   4    0 
1 T1i i 

Tia+ =0 U      Tl*   .     0 
1 1 

A model is needed for the computed SVD.    Using a computer the calculated 

SVD will be modeled by 

N 
E   xa ua V 

i = 1 

aT      for    Xf *  Xf    *   0. 
i i+l 

The X.   will not be zero for i >R due to computational inaccuracy; and Ur , i a — i 
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VT will In general be identical to the ideal case.    Note that the rank of A, 
—i 0 — ' 

a 
R    cannot be accurately determined since the X. do not go to zero.    Defining 

K 
a „a „aT 

i = 1 

then as soon as K goes beyond R , the algorithm divides by 1/X.   for an 
a T 

inaccurate \   and AT, blows up.    It is desirable to " stop K at R " but R 
i —K r r a a 

is not known. 

The problem is further complicated if A and 13 are non-singular 

but have small  X. , X. which cannot be computed accurately.    Even if R    and 

R,  were known, the algorithm would not want to divide by the inaccurate 
a      b 

X. ,   X. values.    Unfortunately the typical situation is that A and B are either 
a     b 

singular or non-singular with small X. ,  X ; but,   of course, it is not known 

which is the case. 

For simplicity A and B will be assumed to have the same or close 

to the same rank. The methods described below are trivially modifieable 

if the ranks of A and B differ. 

Define 

ijK   =   ^ ^K 

and 

SJK   ■   AFJKB   .   AA^OB^B 

Since under the above assumption the best J equals the best K it is possible to 

drop the double subscript. 

V  4+
KGBK 

5K ' ^K!> 

It is desirable to minimize || F  -   F    H over all values of K.    Three methods 
~       "*J\. 
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are proposed, one of which can be shown to find the best K. 

Method 1 - Human Intervention.   Successively compute F , F 
A — 1 — 2     " 

and display to a human.    Although the best F    will not be apparent, it 

will be clear when F     is blowing up.    In figure 1,  the estimate F      is 
51 

seen to blow up,  and this fact is -.birous to a viewer.    For a display 

purposes all FK values have been rounded to the nearest integers,  all 

negative values have been set to zero,  and all values greater than 63 

have been set to 63.    This explains the black and white blocks in the figures, 

which are out of range values. 

Method 2 - Track A AK and B^ B.      It can be shown that 

'l- AA+ ||2 = N. K 

where N is the size of A.    Then one would expect E   (A) = ||l-A A+ jj2 -(N-K) 

to deviate from zero when_AK blows up.    Trials on a computer show that 

E
K(A) remains at a low constant value until K approaches R   at which point 

3 a 

EK(A) increases by a factor of 10    around R .    It thus appears that tracking 
+ + a ■ 

A AK or BK B could be a method of find the best K.    Table 1 contains the 

results of two a typical computer trial where 

E(A) 10 10 

E(B)  =   10 
10 

(lll-A+
KA 

(lli-B+
KB 

- (N-K)   ) 

- (N - K) ) 

E(F)  = IZ-FK 

E(G)   =   II G - GK 

Method 3.    Track llG-G 
K It can be shown that min || F -   F 

and therefore the best K occurs at the same value of K as min   |l G - G 
K       —    -K 

can be found simply by tracking min II G - G    H.    Figures 1 to 3 show the 
K "^ 

results of three simulation cases.    In each case the best reconstruction 

occurs at the K for which ||0 - ö„ H is a minimum. 
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(a) original (b) space variant blur 

(c)F 12 

(e) F./(best restoration) 

id) F24 

^^^^^^H 

1 P ■.jr.- 

• 3                1 

t^m h^iB... 
(f) F>ft(note space variant 

singularity) 

Figure 4. 1-2.    Restoration of spa,.,, variant point sources, N=60 
(Gaussian blur best at center). 
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Table I    Pseudoinverse and Reconstruction Computation Er: 60 

I E(F) E(G) E(A) E(B 

0 156.9 
6 166.3 25.6 2.5 2.4 

12 158.9 12.8 2.2 2.2 
18 147.2 1.9 2.0 2.0 
24 141.6 0.3 1.7 1.7 
30 134.8 2.4E-2 1.3 1.3 
36 125.9 1.1E-3 1.1 1.1 
42 114.0 1. 6E-5 1.2 0.13 
43 109.7 7.6E-6 -0.1 2.5 
44 108.4 2. 2E-6 -4.5 2.9 
45 106.5 1.6E-6 6.3 -3.8 
46 104.3 3.1E-7 8.8 -16. 
47 101.1 2.589E-7 58. -33. 
48* 99 2 2.583E-7 -100. 94. 
49 177.8 I. 9E-6 -67. 510. 
50 382.9 2. 9E-6 -420. -250. 
51 2. 2Ef4 2. 3E-5 -8800. 7200. 

*    mil nimum 

Experimental Results     Figures 1, 2,  and 3 show an image,  its blur 

and the reconstruction for different values of K.    Note that once the minimum 

is found, the reconstructed picture quickly blows up.    Table 1 shows || G - G    I 

and || F - FK 1|  for different K.    Although the minimum occurs at the same 

point,   || G - GK II  remains small after the minimum by || F - F    || blows up. 

Naturally,  in the real world one would not be able to track || F - F H but 

11 G - G || is available. 

4.2  Pseudoinverse Image Restoration by Transform Domain Processing 

William K.   Pratt 

Linear operations on data can often be performed more efficiently 

by indirect techniques which involve projection of the data to another vector 

space through a unitary transformation of the data.    This concept has been 

applied with success for discrete Wiener filtering of images.    The following 

. 
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1 " 

outlines the extension of the concept to pseudoinversion for image restoration. 

ImaRinR Model     Let F(x,y) denote an ideal,  continuous,  infinite ex- 

tent image field,  and let F (xf y) represent an observed image field which is 

also continuous and of infinite extent.    For a large class of imaging systems 

the observed image is related to the ideal image by the convolution integral 

00   00 

F'«»y)   i:   / J F(a,B)g(x-a,y.ß)dodB 

where g(x-a;y-ß) represents the impulse response of the imaging system. 

In the discrete model of the imaging system,  the observed image is repre- 

sented by physical samples spaced evenly over a unit grid,  and the continu- 

ous integration is approximated by a quadrature formula resulting in 

L+m -1 L+m -1 
F(ml'm2)   =     E E       F(n,n )H(m1.n1+L#m,.n,+U (1) 

nlSmi   n2=m2 

foi l^m^M and l^n.^N where the array H.  assumed to be zero outside its 

range of indices,   represents the sampled impulse response and incorporates 

all quadrature factors.    The impulse response is also truncated to an LxL 

array.    In order to prevent serious modelling errors at the image boundary, 

it is necessary that 

N* M + L - 1 

It is computationally convenient to represent the data arrays F and F 

as column vectors, landj.  respectively by column scanning.    Then the sam- 

pled superposition operation can be described by 

B f (2) 

where B is an M2x N2 matrix which can be partitioned as 
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B 

^ 2 *•• -l.L 
0              0   ... 0 

^2,2 ••* -2,L B2.LU   0   •'• 
0 

—M,N 

(3) 

The general term of JB is then given by 

B«,    « (m  ,n  )=H(m -n+L, m  -n +L) 
m fndiL 11 L     L 

(4) 

for 

1 ^m, s M "h 1 ^ m2 ^ M 

m   ^ n   sL+in   -1 m    sn    ^ L+m    -1 

Pseudoinverse     The imaging model of eq.   (2) can be "inverted" 
+ A 

by a pseudoinverse operator B   in the sense that an estimate f^ of the ideal 

image vector_f can be computed by 

+ ~ + 
B    f   =   B    B ' (5) 

If IJ is of rank M ,  then the pseudoinverse is equal to 

«+        «T .„ „T. -1 ^     =   B     (B B^   ) (6) 

2      2 
It should be noted that since M <N , that is,  there are fewer observations 

than points on the ideal image to be estimated,  the estimate will not be exact 

even in the absence of observational error.    The pseudoinverse, however, 

does provide a minimum mean square error,  minimum norm estimate. 

Transform Domain Pseudoinverse      Figure 1 illustrates the compu- 

tational steps involved in direct pseudoinversion of an image vector,  and in 
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a)   IMAGING   MODEL 

<S>- 

B + 

b) DIRECT PSEUDOINVERSE  PROCESSING 

o- 
f ty-^r-^r^ 

/ f 

AM2 « IAN2) rl 

c) TRANSFORM   DOMAIN 
PSEUDOINVERSE   PROCESSING 

Figure 4. 2-1.    Direct and transform domain pseudoinve rae processing. 
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the transformation processing approach.    In transform processing a uni- 

tary transformation in performed on the observed vector f prior to multi- 

plication by the transform domain pseudoinverse matrix^.    An inverse 
A 

transform reconstructs f.    From figure 1,   since 

and 

then clearly 

f = B''" r 

i = (A^r1 £+ (AN2) F 

1+   =   (A    2) B+   (A   ,) -1 

M N' 

(7a) 

(7b) 

(8) 

It is easy to show that 

where 
i+ - **T e J?*T) 'l 

£     =    (A    2) B (A   2) 
ml 

(9) 

(10) 

is the transform domain representation of the blur matrix of eq.   (3). 

Computational efficiencies in transform domain pseudoinversion 

result from the sparseness and structure of the blur matrix IJ.    As an 

example,   consider the Fourier transform representation of IJ  .    In this 

case the transformation matrix is of the form 

A 
—K 

=   A     (g) A 
■ —is.        — K 

vhere 

(ID 

A    s ±. w(x-i)(y-i) W  .    exp{-|li) 

r(N) 
for x, y = 1, 2,...,  K.      Now, let ITj, 'denote the extended impule^ response 
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obtained by imbedding the L x L impulse response matrix in the upper left 

corner of an N x N matrix of .eros.    The two dimensional Fourier transform 

of the extended impulse response matrix is obtained frt •om 

(N)     -    A    H(N)A V 
(12) 

These transform components are then column scanned and inserted as the 

diagonal elements of the N2 x N2 matrix 

*(N) 
diag C^E(1,1). V  (2,1) V    (N.N) } (13) 

Then,  it can be shown,  after considerable manipulation,  that the Fou ner 
transform blur matrix is 

9   =   IPB(g)PB]V (N) 
(14) 

where 

P-(u,v)   =   -i- B 

j _ w   -(v-l)(L-l) 
N 

^ i - V^v^ (15) 

Thus, thej9_matrix operator consists  of a scalar weighting matrix. V(N\ 

and a matrix CPg ® ^1 that performs the dimensionality conversion (an 

interpolation operation) between an N2 element input vector and an M2 eleme it 

output vector.    The dhnensionality matrix is extremely sparse,  and therefore, 

savings can be obtained in the computation of ^ and subsequently, 8+.    As an 

example figure 2 contains displays of the blur matrix B,  the pseudoinverse 

matrix B  ,  and their transform domain representations, &_ and ^+ for a 9 x 9 

Gaussian shaped impulse response,  and M=8   andN=l6.    The relative sparse- 

ness of S and 0    are apparent from the figures. 
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(a) spatial domain,   B (b) i ' iirier domain, ß 

(c) spatial domain,   B (d) Fourier domain, B 

Figure 4. 2-2.    Examples of blur matrix and its pseudoinverse 
in spatial and Fourier transform domain. 
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4.3 Modelling Superposition Integrals for Image Restoration 

Nelson D. A.  Mascarenhas 

The process of image blurring and addition of noise in an incoherent 

optical system can often be described by the equation 

• b  (»b 
y(a, ß)   =   J    l    xf^TDhfa.^TDdSdTH-TUa.ß) -«»xa, ß <• 

where x(a, ß) denotes an ideal image, y(a, ß) is the observed image,   n (a, ß) 

is an additive noise field,  and h(a, ?;ß, 11) is the image system spread function. 

When a restoration problem is to be solved with a digital computer to 

estimate x{a, ß), a discretization has to be performed.    By using a lexico- 

graphic ordering, it is possible to red-ce the resulting two dimensional 

data arrays into vector format.    The following equation describes the dis- 

crete model 

where 

J 

B 

x 

n 

-Y   =   i? * + 11 

(M    x  1) vector of observed values 
2        2 

(M    X N ) blur matrix 
2 

(N    X  1) vector of original pixel values 
2 

(M    X  1) vector of noise components. 

In general the entries of the blur matrix depend on both the kernel of the 

integral equation and the weights of quadrature integration.    In the simula- 

tion experiments described in this section these weights have been assumed 

to have unity value. 

Figure 1 describes the data arrays involved when an overdetermined 

model for restoration is used. This leads to the following structure for the 

blur matrix B 
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ORIGINAL  PICTURE 

(I.I) (lfM) 

;^jSf^ /M-Nt|MtN\ rj 
 -i 

V IMPULSE 
RESPONSE 
ARRAY 

(^.^+l) 

(M.l) 

/M+N M+N\ 
V  2   '   2   / 

(M.M) 

BLURRED  PICTURE 

Figure 4. 3-1,    Data arrays in the overdetermined model 
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»1,1 

S2.l 

0 

B 2,2 

0 

0 

0 

0 

B     = 
B
L.l ^.2 

0 ^L+l, 2 

0 0 0 

6 N,N 

0 eM,N 

First B is partitioned into submatrices B^     of size (M X N).    Then each 
—      r i» J 

submatrixhas a similar structure, being composed by a nonzero diagonal 

band of elements. 

Two expressions for the blur have been used.    The first simulates 

the effect of atmospheric turbulence over a long exposure.    The spread 

function is given by 

h(a.,?   ;0.,TO   =   exp 
i     m    j     t 

^i- ßi) ^m-^ 
2 

H 

where the coefficients b„ and b^ control the amount of blur imposed on the 
V rl 

vertical and horizontal directions,  respectively.    The second blur function, 

also space invariant and in separable form,  simulates the effect of a diffrac- 

tion limited optical system as given by 

i     m    j      -i 

L J 

A3 
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For white noise, the beiit linear unbiased estimator of the original picture 

is obtained as 

* /i-kT—.-l—T 
x  =   (B   B)    B   ^ 

and the covariance matrix of this estimator is 

2     T     -1 
V*     =     CT   (B   B) 

where a    is the variance of the noise.    The amount of uncertainty on the 
T estimators will depend on the degree of singularity of (B   B).    A 

possible measure of this is given by the condition number of the matrix_B, 

which can be expressed by the ratio of the largest to the smallest singular 

value of the matrix li [l]. 

Figures 2 and 3 illustrate curves of condition number versus blur 

coefficient, for a given number of original pixel values (N=8) Cz],    In the 

curves the number of observed values Mis varied while maintaining the 

structure of the blur matrix described previously.    The existence of a 

maximum of the condition number curves can be explained in terms of the 

truncation of the point spread function displayed in Figure 4.    In fact, for 

increasing M, the number of points where this function can be nonzero is 

increased,  and the effect of the truncation starts only for higher blur coef- 

ficients.    Consequently, the curves for different values of M have essentially 

a common ascending branch and the descending part starts at varying parts 

for different values of blur coefficients.    If there were no truncation, the 

curve would approach infinity very fast, the asymptotic value being obtained 

for the smoothest possible kernel,  with constant value unity,  implying a 

blur matrix with rank one.    With the truncation, the curves show a descending 

branch that begins at the point where the increasingly wider kernel starts to 

be cut down substantiallv.    For greater amounts of blur, the curves tend to 

a finite value that depends on M. 

The curves of figs.  2 and 3 can be used as a guide for the choice of 

the number of sampling points,   once the number of quadrature nodes is fixed. 
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Figure 4. 3-2.    Condition number curves for different number of sampled 

values - Gaussian blur. 
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Figure 4.3-3.    Condition number curves for different number ot 
2 

sampled values - Sine     Blur 
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For a very small amount of blur all curves coincide so that the designer 

may choose M = N with almost no error.    In this case blur plays no role, 

only noise affects the restoration.    With increasing blur,  different numbers 

of sampling points give different values of condition number.    If a curve on 

an ascending branch is chosen,  truncation has no effect on the kernel, but a 

high condition number   imposes high variances on the estimators.    If a curve 

on a descending branch is selected, lower variances of the estimators are 

obtained,  at the price of error on the estimation of the continuous function 

due to the truncation error in the discrete model.    Therefore,  a trade-off 

between the variance of the estimators and the modeling error can be char- 

acterized. 

Although these conclusions are drawn based on the particular model 

discussed in this section,  they are more general.    Since the inverse of the 

integral operator that describes the blur is unbounded,  therefore, the closer 

the discrete model follows the continuous one, the more ill conditioned the 

former model tends to be.    A move in the opposite direction reduces singu- 

larity but imposes modeling errors.    This inevitable dilemma can only be 

broken with correct a priori knowledge about the solution. 
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4,4 Spline Function Restorations 

Steve Hou and Harry C,  Andrews 

A variety of models for linear imaging systems have been postulated 

for processing by a general purpose digital computer.    Three of these models 

are: 
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Continuous-continuous.    Let 

g(x,y)   =   JJf(C, n)h(x,y,C,n)dCdn 

where the image,  g,   object,   f,   and point spread functions,  h,   are all des- 

cribed in continuous notation. 

Discrete-discrete.     Let 

K   =   Ul 

where the image and object have been scanned or stacked into N2 x  1 
2 

vectors and H is an N    x   1 

Continuous-discrete.    Let 

2 2 column vectors and H is an N    x   N    matrix. 

9.   =   JT H( C,n)£(C,Tl)dCdTi 

where the image is a matrix of entries g.. and the object is continuous and 

passes through a matrix of continuous point ipreftd functions.    Thus 

g U 
JJVjfC.TDf^TlJdCdTl 

Figure 1 indicates the geometry associated with this model.    Possibly 

this model is the most realistic of the above alternative's in the sense that 

the object is continuous before being sampled and the image (once in the 

computer) is inherently discrete. 

In attempting a restoration of the discrete image G to a better 

estimate f{C, n) of the continuous object t{C,v) it is clear that the degrees 

of freedom in the object are infinite while those in the image are finite. 

Thus it is necessary to provide a translation of the approximation of a 

continuous function to the estimation of a finite representation of a func- 

tional form of that continuous object.    The mechanism of spline functions 

are suggested for this purpose.    If f(C, v) denotes the restored object, then 
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let 

P =  JTü'CiDftC.iDdCdn 

It is then possible to formulate the restoration expression in terms of the 

minimization of an objective function 

W(f)   =   tr{[G-P]TCG-Pl} 

In this case,  the estimation is a least squares restoration.    Additional 

constraints on the objective function may be desired.    One such constraint 

might be that the restored object not oscillate wildlv; in particular that the 

second derivative of that object be minimum.    Then using the method of 

Lagrange multipliers the objective function becomes 

W(f)   =   tr[[G-P]TCG-P]3+xJJ,(V2f(CTi))2dCdT1 

Now expanding the restored object into a set of nonorthogonal basis func- 

tions determined by bi-cubic B splines on a uniform two dimensional grid, 

one obtains 

a    ß    ap  a      p 

where 8^(0 is the cubic B spline.    Such an expansion allows a priori know- 

ledge of the second derivative of f (C, n) in terms of the coefficients c 

When the objective function is minimized, the matrix equation 
aß 

(A   +   X.B) c   =   d 

is obtained where A is defined by the blurred spline functions,  B is the 

differential spline functions and highly banded,  c is the unknown coefficient 

vector and d is defined by the image G. 

Techniques for solving c, the equality constrained least squares prob- 

lem described above, are being investigated in the framework of spline func- 

tions and image arrays.    In addition inequality constraints on the c vector 
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such that f(C, n) is positive and bounded are being considered.    The approach 

looks fruitful as the B-spline basis functions provide a unique «et of non- 

orthogonal basis functions which are inherently positive and whose coeffi- 

cients provide second derivative (smoothness) criterion control. 

4. 5  Space-Variant Restoration of Astigmatism and Curvature of Field 

Alexander A.  Sawchuk and M.  Javad Peyrovian 

As discussed in previous work, the general problem of image restor- 

ation with a space-variant point-spread function (SVPSF) deg  adation is 

exceedingly difficult to solve due to the high system dimersionality &, 2]. 

To get a practical solution,  it is necessary to completely exploit the de- 

grading system symmetry and structure in order to reduce the effective 

dimensionality.    The approach has wide applications in the restoration of 

motion blur (l, 3] and certain geometrical optics aberrations {Z, 5, 61.    This 

section describes an extension of the technique to astigmatism and curvature 

of field. 

A great deal of insight into the restoration problem is obtained by 

careful examination and derivation of the degrading system point-spread 

function (PSF).    The aberration function Ü, 2, 41 of geometrical optics for 

astigmatism and curvature of field are given by 

x^ - u    =    A    =   (2C+D)u   e cos e (la) 

x2-u2   =    A2   =   D uj ^ sin E« (lb) 

where (x-.x«) and (u , u.) are the rectangular image and object coordinates 

respectively,   e   and e   are ray intercepts in the exit pupil of the optical 

system,  and C and D are constant coefficients describing the degree of astig- 

matism and curvature of field,   respectively.    Using previous results (1,21 

an equivalent system SVPSF h(x,u; which describes the degradation can be 

derived.    For a circular exit pupil of radius R this SVPSF is 
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h{x1,x2,u1,u2=0) 
D(2C+D)u 2   2 4 

R R Uj 

elsewhere 

(vV 
(2C+D)2ul

4 R2 

(2) 

^  1 

with the input object impulse function at (u ,u =0).    The function of eq.   (2) 

is shown in figure la for the impulses at various locations in the (u . u  ) 
1     2 

plane.    The regions of nonzero response are defined by ellipses which in- 

crease in sizfc as the square of the radial distance.    At the same time, 

the amplitude of the response decreases inversely with u   .    Because of 

the inherent circular symmetry, the amplitude and shape of the response 

is a function of radial distance only and not a function of angle fl,  as shown 

in figures la and lb.    Thus one reduction of system complexity is obtained 

by rewriting the aberration functions of eq.   (1) in polar coordinate form as 

x -u r     r (2C+D)u    e   cos e. 
r   r 9 (3a) 

Xe'U9  =   tan' (Du
r
e

r
sin 6Q/l+(2C+D)urercos   EJ (3b) 

where (xr,xe) and (u^Ug) are image and object polar coordinate variables. 

This procedure suggests that the coordinate transformation restoration (CTR) 

techniques used for other kinds of space-variant degradations are also valu- 

able here.    Performing this transformation to the system described by eq.   (3) 

effectively converts the problem to a space-invariant blur in 0 which changes 

slowly with u^eq.   (3b) ) and a purely radial two-dimensional space-variant 

blur (eq.   (3a) ). 

For the case of pure curvature of field with no astigmatism,   C = 0 in 

eq.   (2) becomes singular.    The SVPSF for astigmatism only has no 9 blurring 

and collapses to a radial space-variant blur h^x.,u.,u,^)) obtained by evalu- 

ating 

hc(xrUl'U2 =0)   =  J h(xl'x2'Uru2 = 0) dx2 (4) 

and letting D approach 0.    The result is 
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c)  cross-section of astigmatism SVPSF. 

Figure 4. 5-1.   Space variant point spread functions. 

.70. 

  - ^       ~     -  --. ^-     - 
-   ■ 

 . 



hc(xi'uru2=0) = 

(4C2R2
U4  . (xj-uj)2)! 

ZC  u 

2 2 u -2Cu    R ^x ^ u +2Cu   R 

elsewhere (5) 

which is shown in figures 2a and 1c.    For astigmatism only,  there is no 

blurring in the 9 direction anu one-dimensional space-variant blur in tue 

radial direction. 

The reduced dimensionality of the astigmatism degradation following 

the polar coordinate transformation makes it possible to write the degrada- 

tion operation in matrix form as 

l(xe,xr)   =  H{xr.ur|d(xyur) (6) 

wh-rd Kx-.x  ) andö.fx^u ) are one-dimensional line image» for each x. and 

H(x »u ) is the discrete blur matrix obtained applying a quadrature formula or 

other approximation to the continuous space description of eq.   (5).    The degra- 

dation due to astigmatism and the restoration process is shown in a series of 

figures that follow.    Figure 2b shows an original undegraded object scene, 

and fig.  2c shows the effect on the original of space-variant astigmatism 

described by eq.   (5).    Note that the amount of blurring increases proportional 

to the square of the distance from the origin. 

One method of image restoration for the space-variant system of eq.   (6) 

is to use a discrete pseudo-inversion technique.    As a result of the information 

reducing aspects of eq.   (6),  H{x ,u ) is usually singular so that pseudo-inver- 

sion must be used carefully while avoiding the system noise usually associated 

with ill-conditioned systems.    The analogous technique for space-invariant 

systems is to use Fourier techniques to diagonalize H, thus simplifying the 

inversion if a careful choice of spectral cutoff is made to reduce system noise. 

For inversion,   singular-value decomposition (SVD) techniques [7-101 have been 

used to obtain a unique pseudo-inverse H (u t x ) which has then used in the r     r 
restoration operation 
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_ö.(xe.ur) = H+(ur.xr)I(x0.xr) (7) 

The ^estimate Q (XQ, ur) produced by this procedure minimizes the functional 

II H^ - i II   with the measured image £and known H, and at the same time 

finds theQ. with minimum length || ^ ||    .    (here the arguments x .u    and x 
mm 0 r    r 9 

are omitted).    This is accomplished by the SVD method in which the matrix 

H is expressed as 

N 
E   X2. u. * vT 

"        i=l     ^    -l 
(8) 

where the \ are the eigenvalues of H H  (and of HTH), the u. are the orthonor- 
T —  — "1 T 

mal eigenvectors of H H , and the v. are the orthonormal eigenvectors of H   H. 

It can be shown that the pseudo inverse H   is given by 

K 

s = E \2  v. * u! (9) 
i=l 

where X^  i = 1,  K are the nonzero eigenvalues.    The SVD computer routine of 

Golub and Reinsch QO] computes these in a numerically stable way; by a judi- 

cious choice of the eigenvalue cutoff Xk a system inversion described by eq. 

(7) is obtained. 

This procedure has been implemented on the 100 X 100 point image 

of figure 2d blurred by astigmatism.    Figure 2e shows the result of a polar 

coordinate transformation applied to figure 2d; this operation converts the 

degradation to a space-variant blur la one direction.    Figure 2f shows the 

restoration by SVD,  in which the 5 eigenvalues out of 100 whose magnitudes 

were less than 10      were set to zero.    Following restoration of each line 

in the (xr, Xg) system,  an 5 iverse polar coordinate transformation [ll is 

used to produce the final restoration of figure2f.   Future modifications to 

this method may use the SVD for Wiener filtering and estimation under 

various constraints and noise statistics. 

This procedure can also be extended for restoration of the general 

astigmatism and curvature of field case.   A brief description of the proce- 
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dure involves: (a) a polar coordinatr. distortion;(b) a Fourier transform in 

the 9 direction to decouple space-invariant blnr as a function of u    as ex- 
r 

pressed in eq.   (3b);(c) a space-variant estimate in the radial direction by 

pseudo-inverse methods to obtain ^{u  , \ ) for each 9 spatial frequency 

variable > ;(d) an inverse Fourier transform in the 9 variable to obtain«^ 

(ur»u9); and(e) a reverse polar coordinate distortion.    Although complicated, 

this procedure enables the general four-dimensional problem of restoration 

to be converted to a family of two-dimensional space-variant problems wUh 

point-spread functions depending on \. 
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4.6  Fa st-Suboptimal Wiener Filtering of Markov Processes 

Ali Habibi 

Wiener filtering, the classical technique of estimating signals from 

noisy observations, has been developed primarily for continuous signals. 

In reference Ü],  Wiener filtering of discrete signals using various unitary 

transformations such as the Karhunen-Loeve,  Fourier,  and the Hadamard 

transforms has been considered in terms of computational efficiencies.    It 

has been shown that optimal results can be obtained with any unitary trans- 

formation of the data,  as opposed to operatir» on the data directly, but 

optimal transform domain processing requires more computations.    How- 

ever if one is willing to accept a small degradation in performance, the 

unitary transformations provide considerable computational savings.    The 

Wiener filter transformation concept is extended here to the use of lower- 

triangular transformations. 

Consider an N-dimensional data vector X   =   (x , x ,. .., x   )T with a 

covarianre matrix £x which has been corrupted by a white noise vector V 

= ^Vr.V2' * • *' VN^ Wl**1 a covarlance matrix crl^ resulting in a noisy signal 

S -- X + V.    Wiener filtering S consists of premultiplying S by filter matrix 

<i=cx(cx+c^ -1 
(1) 

Using any linear transformation A on the observation,  and the inverse of 

the transform A      on the filtered signal does not change the estimated 

signal if the filter response is altered accordingly, tha\ is,  if instead of a 

filter matrix G,  GA = A G A"   is substituted.    If A is a unitary operator that 

transforms X to an uncorrelated vector Y then vector Y possesses a diagonal 

covariance matrix.    If A is unitary it follows that C  . the covariance of the 

transformed noise vector W remains diagonal.    Thus G    is diagonal and 

Wiener filtering by it requires only N multiplications.    However 2N' 

multiplications are needed to perform the transformation of the input and 
the output of the filter by A and A    , 
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Wiener Filtering by Lower-Triangular Transformations    Given any 

covariance matrix Cxone can find lower-triangular matrices L and L-1 

such that L C^ L    is diagonal [21.    This implies that Y = L X is an un- 

correlated vector and transforming by L and L-1  requires a total of 

2{N /2 - N) multiplication operations.    However, using this transformation 

on the noisy signal S prior to filtering requires filtering L S by G    where 

G      =   LG L" —  2J —     —        _ (2) 

Denoting the covariance matrix of the signal vector Y and the noise vector 

W by CY and C     in the transformed domain,   respectively. 
W 

^Y L C    L 
~~X~ 

and 

(3) 

-W =   L C    L 
~V k    =  °VLL' (4) 

Using eqs.   (3) and (4) in eq.   (2) gives 

-L Cy(Cy + (^ LL*) T4-l 
(5) 

Since L   is non-unitary,  unlike the Karhunen-Loeve transformation. 

GL is not diagonal.     Therefore, the total number of opera- 

tions using the L   transformation requires 2[(N2/2)-N] + N2 operations, 

which is still less than the number of multiplications required using the 

Karhunen-Loeve transform.    However, it is more than that required for 

direct Wiener filtering.    Table I summarizes the number of multiplications 

required for Wiener filtering of a vector of N component! for various trans- 

formations.    For Markov processes, the lower-triangular transformation 

is used to design a suboptimal Wiener filter that reduces the number of 

multiplications significantly.    This is possible since the L matrix for a 

Markov process is banded.    This result will be demonstrated for a first- 

order Markov process; extension to an mth order Markov process is straight- 
forward. 
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When x.,  i - 1,...,  N is a first- order Markov process,  operator L 

is lower-triangular,  banded with one  off-diagonal band,  i.e., 

0 0 0 0 • • • 0 

1 0 0 0 •  • • 0 

-al 1 0 0 •  •  • 0 

0 '% 1 0 •  • • 0 

•<=i  1, 

(6) 

Transformations by L and L"     are accomplished recursively as shown 

on figure 1 each using N multiplications.    This also implies that L LTis a 

banded matrix of one off-diagonal band which in turn implies that G-1 

is a banded matrix of one off-diagonal band. 

Filtering L S by GLis equivalent of solving the matrix equation 

■1 
G    Y   =    (LS) (7) 

A 

for the estimated transformed signal Y.    An exact solution to eq.  (7) for 

known G^    requires N    operations, but if G^1 is positive definite and posseses 

only m off-diagonal bands it is shown that eq.   (7) can be solved using only 

2(m+l)N multiplications    [3].    Matrix G^1   can be approximated by a positive 
definite matrix if CY in eq.  (5) is approximated as 

cY   =   (l-OtJ )1 (8) 

For a first order Markov process this approximation corresponds to 

changing only the first element of Cy from unity to (l-^2 ) which in turn 

corresponds to ignoring the transient state of the process.    Naturally the 

effect of the approximation reduces as N increases or as a   (correlation 

of adjacent elements in the process) decreases.    Figure 2 shows the effect 
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Di J 

Figure 4. 6-1.    Wiener filtering of a first order Markov Process 
using lower-triangular transformation. 

Table I 

Wiener Filtering Computation Requirements for 

Various Transformations 

Transform 

Identity 

Karhunen-Loeve 

Fourier/Hadamard 

Lower-Triangular 

Lower-Triangular for m-th 
order Markov "suboptimal1 

Number of 
Multiplication Operations 

N 

2N    + N 
2 

N    + 2N log    N 

2N2-2N 

2(2m+l) 
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of this approximation on the theoretical value of the estimation error for 

various values of Oj and the signal to noise ratios for a first order Markov 

process.    The effect of this approximation will be more pronounced for 

higher order Markov processes.    However,  the required number of com- 

putations for this suboptimal Wiener filtering is 2(2m+l)N for an m^ order 

Markov process which is even smaller than the number of operations needed 

for Kaiman filtering of the same signal. 
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4.7  Color Image Restoration by Linear Estimation Methods 

Clanton E.  Mancill 

Trichromatic color sensing systems, such as color film or a color 

television camera, reduce the spectral intensity C(» at an image point to a 

triple  of numbers      (x^x^x^ through a set of three    integral equations of 

the form 

c = f13   C(X)S (X)dX 1 = 1.2.3 (1) 

The S.fX) functions are the spectral sensitivity functions of the three color 

sensors.    The colorimetric model of human color vision describes the sensa- 

tion obtained by observing the color C(X) in terms of three numbers (t   t    t  I 
I    2'   3 

called tristimulus values, which are given by the set of equations 
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Ja 
for i = 1, 2, 3 (2) 

The color matching functions T.(>) describe the spectral response of the 

human eye under the colorimetric model.    Since the T (X) functions can 
i 

rarely be expressed as linear weighted sums of S,(X),  the tristimulus 

values t. cannot be determined exactly by observing the sensor outputs x . 1 i 
Linea)  Tristimulus Estimation    The purpose of the work described 

in this section is to estimate the tristimulus values of a color after obser- 

ving the sensor outputs.    The approach used is to discretize the linear in- 

tegral eqs.   (1) and (2) and then to solve the resulting matrix equations for 

an estimate of the tristimulus values using several well known linear esti- 

mation methods.    The matrix equations corresponding to eqs.   (1) and (2) are 

x   =   Sc + t_ 

t    =   T c 

(3) 

(4) 

where the 3 x n matrices S and T are the discretized sensor and color match- 

ing functions (including quadrature formulas for numerical integration over 

n mesh points),  t_,Xf  and_e  are 3x1 vectors corresponding to tristimulus 

values,   sensor outputs,  and observation errors,  respectively,  and c is the 

n x 1 vector representing the color C(X).    The matrices S and T  are known, 

the vectors     c_and £ are unknown, the vector x is observed, and_t is to be 

estimated. 

Estimation Methods    The linear estimation methods which have 

been considered thus far are enumerated below. 

(1)   Least Squares Estimate:   The rows of the color matching matrix 

T can be approximated (in the least squares sense) by a weighted sum of the 

rows of the sensor matrix S.    If the norm in n-space is chosen to be the 

Euclidean distance norm. 

T   A 
|c||  =   (c   c) 

81- 
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then the least squares tristimulus estimate is given by 

A T T -1 
ILS   =   T S1   (SS   )  X x (6) 

This estimate neglects the observation noise and is,   strictly speaking,  a 

deterministic solution. 

2.    Minimum Norm Estimate:   Another deterministic solution is pro- 

vided when the equation x   =   S£ is solved for c under a linear constraint. 

Since the equation is underdetermined, there are many solutions.   The 

solution which minimizes a norm of the form 

£llN   =    (£TN£)' (7) 

is chosen, where N is a positive definite matrix chosen so that cmaximizes 

some known a priori property of spectral functions,   such as smoothness. 

For example,  N could be selected so that the solution to x = S c   is chosen 

which has the smallest average squared second difference.    The minimum 

norm tristimulus estimate is given by 

.-1 „T 1 „T -1 
'MN 

=^   ^   (SI?    ä >    * (8) 

3.    Minimum Bias - Minimum Variance Estimate:   Assume that the 

observation error e_ has mean and covariance given by 

E(ri  =   0 E(e e   )   =   R 
  —EE (9) 

An unbiased linear estimator of_t or c is not possible since the equation 

x = S c is underdetermined.    The estimator is restricted to the class of 

minimum bias estimators of minimum variance.    The resulting trisUmulus 

estimator is then given by 

-MBMV T M ST (S M S1")"1 x (10) 
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where the M-norm ||c ||M   =   (c    M c)2    is used in the n-dimens'.onal space 

and the Euclidean norm is used in three dimensional space.    Note that the 

estimate does rot contain fi^.    If Mis replaced by the identity matrix,  eq.   (10) 

becomes   eq.   (6),  the least squares estimate. 

The three estimates considered thus far are of the form 

T c T S+ x (11) 

where S_   is a generalized inverse of S. 

4.    Wiener Estimate:   If the color vector c is itself a random vec- 

tor whose first two moments are known, then it is possible to deiive a 

Wiener estimator which gives a solution of eq.   (3) that minimizes the ex- 

pected squared error 

Q   =   E[(c - £)   (c - 6)1 (12) 

The moments of £ and the observation error j are given by 

E(c)   =   u E[(c - u   )(c -_ti  )T1  =   R (13) —     i—c   —     J-C —cc 

E(e)   =   0 E[e e   ] =   R 
  — ee 

The resulting c, when multiplied by T,  gives the Wiener tristimulus esti- 

mate 

t 
—w T(u    + R      ST (SR      ST + R     )"1x) 

—     C      — CC— ——rr— —ee'        —' CC •ee (14) 

Simulation Results    The four types of estimates described have been 

tested using as inputs a set of ten test colors.    These represent spectral dis- 

ti-ibutions of ns'ural colors (sky,  grass,  flesh tones,  etc.) seen in daylight. 

The S matrix represents the layer sensitivities of a common reversal color 

film,  corrected for lens absorption.    The T^ matrix consists of the color 

matching curves of the Uniform Chromaticity Scale (UCS) system.    Eighty 
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mesh points have been used in the discretization of S(X),T(X),  and C(X). 

The minimum norm estimate utilized a smoothing matrix N which mini- 

mizes the average squared second difference of £.    The minimum-bias, 

minimum variance estimate contains M = .1 giving an estimate equivalent 

to the least squares estimate.    The Wiener estimate utilizes a first 

order Markov covariance with an adjacent element correlation of 0. 95, 

and assumes a zero observation error.    The mean vector u    has been 
—c 

set equal to the illumination curve times a constant reflectivity of 0. 3. 

The results are shown in Table 1.    The chrominance error is the RMS 

error distance in uniform chromaticity space averaged over the ten test 

colors, and the luminance error is the normalized RMS value averaged over 

the ten colors.    It is clear that specifying more and more a priori informa- 

tion on £ improves the estimate of t_.    Further improvement might be made 

by imposing a nonlinear boundedness constraint on £,   since spectral re- 

flectivities must lie between zero and one at all wavelengths. 

Type of Estimate 

Least Squares 

Minimum Bias-Minimum 

Variance, M = I 

Minimum Norm 

(smoothness norm) 

Wiener 

Chrominance Error 
(ten color RMS average) 

.023 

.022 

.012 

Luminance Error 
(ten color RMS avg. 

.046 

.034 

.005 

Table 1. 

Linear Tristimulus Estimator Luminance and Chrominance Errors 
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4. 8 Film Recording of Color Images from a Television Monitor 

Robert Wallis 

The end result of computer image processing is generally a 

photographic image.    Unfortunately, the gross distortions of grey level 

and color information that are inherent in film recording are typically 

ignored.    The result is often an image which has been processed to a 

greater degree by the film than the computer.    The goal of this research 

is the capability of controlling the photographic process not by chemical 

means, but by an appropriate pre-distortion of the image in order to 

neutralize the film's distortions. 

Color display    The color monitor is an additive three color device 

which generates a spectral distribution given by 

S(X)   =    £    p. P. (X) 
= 1 i    i 

where PJX) i = 1, 2, 3 are the spectral distributions of the red,  green,  and 

blue phosphors and the p.,  i = 1, 2. 3 are the weights given to each phosphor. 

If the nonlinearities of the CRT are accounted for (gamma correction) the 

weights in the summation correspond to the drive signals of the monitor. 

These weights are often denoted as R, G, and B. 

Color film    Color film [2l is difficult to analyze for two reasons. 

First, it is a subtractive process.    That is,  it generates colors by blocking 

certain wavelengths from white light, whereas an additive system super- 

imposes various spectra.    The dyes used as subtractive primaries are 

cyan, magenta,  and yellow.    These can be considered notch filths which 

reject  red,  green and blue respectively.    The use of red,  green, and blue 

primaries for a subtractive system would be unfeasible.    This is because 

red,  green,  and blue are generated by passing narrow spectral portions of 

white light.    Thus, if any two such dyes were to be mixed, the resultant dye 

would block nearly all wavelengths,  since their passbands would not overlap. 

A second difficulty is the nonlinear response of the photographic 

emulsion to light.    The relationship between exposure and the resulting 
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optical density is known as the Hurter-Driffeld curve Cz] .    If the image 

intensity at each point of the image to be photographed is predistorted by 

the inverse of this curve,  the film can be forced to yield a linear response. 

Tristimulus values      The basis of colorimetry is the three color 

theory of human vision, which states that human perception of color is in- 

trinsically a three dimensional phenomenon.    Specifically,  for each spec- 

tral distribution S(X) color perception can be characterized by three tristi- 

mulus values given by 

t. = jTi(X)S(X)dX i = l,2,3 

where the T (» are known as color matching functions.    The t   are scaled 
i 

such that t. = 1 for a reference white.    In order for two colors to match, 

it is sufficient that their tristimulus values match, but it is unnecessary 

that their spectral distributions match.    This of course presupposes that 

the colors are compared under similar circumstances.    Tristimulus values 

can be transformed into a number of different coordinate systems in order 

to facilitate interpretation.    One system which has been found useful is the 

cube root coordinate system [3],  which is described in figure 1.    The cube 

root color space has the advantage that equal distances in the spuce very 

nearly correspond to equal distances perceptually.    Thus,  it can be utilized 

to judge colorimetric errors between pairs of colors. 

Computer simulation of color film     Using the model of figure 2, a 

simulation of color transparency film has been performed.    The hypothetical 

inputs are the three individual color monitor phosphors exposed over a wide 

range of "f-stops".   (Each f-stop corresponds to a doubling of the exposure.) 

The results are given in figure 3.    The loops are the paths in color space that 

retult as the exposure is incremented in one-half f-stop intervals.    In an 

attempt to verify the accuracy of the model,  red, green and blue fields of 

a Conrac color monitor have been photographed using Ektachrome-X film 

over a similar range of exposures.    The resulting colors of the transparencies 

have been measured using a colorimeter.    The agreement between theory and 

experiment is good,  as can be judged from figure 3.    It is expected that more 

careful modelling will yield even better correlation.    Evidently,  the exposure 
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L =25.29 [(IOOY),/3-l8.3^] 

a =106.0 [(l02X)l/3-(IOOY),/3] 

b > 42.34 [(IOOY)l/3-(84.7Z)l/3] 
where   X,Y, Z    are the   C.I.E. tristimulus values 

4b 

yellow 

yellow-green 

saturation 
or chroma 

purple 

blue-purple 

the  3rd coordinate, L   (or lightness), is orthogonal 
to both a and b (i.e. comes out of the page) 

Figure 4,8-1.    Cube root color coordinate system. 
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is a parameter of great concern, in that large shifts in hue and saturation 

result from even a one-half f-stop change in exposure.    For instance, the 

red shifts towards orange an." the blue shifts towards cyan as exposure is 

increased.    Another general result is the loss of saturation as compared with 

the original color photographed.    Note the greater saturation of the original 

red,  green and blue primaries of figure 3.    A simple algorithm providing 

a first order correction to this loss of saturation has been developed.    It 

essentially subtracts white (or neutral density) from each color to be photo- 

graphed,  but maintains the original luminance.    Thus,  the loss of saturation 

suffered by film recording is somewhat offset by the pre-saturation.    The 

algorithm is 

Y   =   .241 R + . 682 G + . 077 B 

a   =    k Y 

where Y is the luminance of the color and k is a constant which determines 

the degree of presaturation desired. The R, G and B are then transformed 

as follows 

R' = ("Y^r)(R-a) 

01 = ^ri(G ■ ^ 

B'   «   tY3ft>  (B - a) 

Note that the luminance remains invariant, but that the differences between 

R, G and B are exaggerated.    The algorithm has been tested on an actual 

color image,  and has been found to result in a marked improvement.    An 

algorithm providing a colorimetrically exact correction is possible, assuming 

the desired color is within the film's gamut of color reproducibility.    That is, 

given a desired output color, the required input color can be found exactly 

by iterative techniques.    However, for a large image,  the required compu- 

tation time would be prohibit!.-e.    A compromise algorithm employing look 

up tables is being developed which will combine speed and accuracy. 
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4. 9 Psycho-Visual Pseudo-Color Mapping of Imagery 

Warner Frei and Mark Stein 

Pseudo-color techniques generally map two-dimensional functions 

of space variables into a pre-selected gamut of colors, thus creating arti- 

ficially or pseudo-colored images for easier and more efficient information 

extraction by human observers.    These techniques can be broadly classified 

into two categories: (a)   mappings of a scalar spatial function such as low- 

contrast achromatic images into some fixed arbitrary color scale so that 

minute differences of grey in the orif.inal image may then appear as easily 

recognizable color differences B :(b)   mapping of a vector-valued spatial 

function into color space.    Since the human visual system is able to recog- 

nize three attributes of colors mor- or less independently of each other 

(attributes such as brightness, hue aod saturation) one can theoretically 

map three components of a vector-valued spatial function into three suitably 

chosen attributes and instruct the observer that for example, brightness 

corresponds to function A, h te to function B and saturation to function C. 

It is felt that many pseudo-color techniques often fail to re-ch 

their potential because they are designed with little understanding of the 

visual system.   Arbitrary color assignments, indeed, tend to introduce 

artificial contours and destroy other valuable features creating more confu- 

sion than clarification.    Careless pseudo-coloring may thus result in pictures 

with a mere artistic interest.    In this report, these points will be illustrated 

by an application of pseudo-color to nuclear medicine imagery. 

Comparison of Inhalation and Perfusion Lung Scintigrams    Lung 

scintigrams or scans are images of the lung obtained by imaging the output 

of a Y- ray detector which is placed over a patient who has received an in- 
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ternallv administered radio nuclide.    In lung scanning,  two images are obtained 

which reflect the lung blood per'asion and ventilation respectively.    An area 

that is normally ventilated but not perfused most likely has      blood clot in the 

vessels (pulmonary embolus).    TWftui distinction is extremely important in 

clinical therapeutic decision-r^aking.    Since the Y- ray camera is an imaging 

system with a low spatial resolution and the images are extremely noisy, the 

correspondence determination between the two images is very difficult for 

human observers,  especially when multiple defects are present on both types 

of scintigrams.    Identification of this correspondence requires the ability to 

determine: (a)   degree (severity) of defects; (b)   polarity of defects (which 

image has the defect;(c)   anatomic limits (lung outlines).    Viewing the per- 

fusion and inhalation scans adjacent to,  or superimposed upon one another 

results in an inability to extract these three information elements accurately. 

The perfusion and inhalation scans, denoted as two functions f (x , x.) 
p   1    2 

and fj(x fx2) of the same space variables x , x , contain combined anatomic 

(structural) and defect information. In order to combine the information of 

interest into one color image,  a field 

Y(x
1'
x2)   =  kl max ^fp(xi'x2)'fI(xl'X2) ^+ k2 (1) 

which preserves structural information, and a field 

6(x1,x2)   =   k3[f (x1.x2)-fI(x1,x2)] (2) 

which measures differences in count rates are formed (k , k , k   are arbi- 

trary scaling factors).    Next,Y(x , x2) is mapped into luminance and 6 (x^,x?) 

into an axis of complementary colors.    In the general case,   such an axis 

is defined in the CIE chromaticity diagram by a straight line 

y   =   ax + b (3) 

y      =   ax    + b 
w w 

Choosing a zero difference (normal area) to be represented by white. 
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(x      =   y      ■   1/3), the chromaticity of the displayed pixel is 

x(6) =   1 / 3 + 6 (1 + a  ) «.-* 

-2.-i 
7(6)  =   1 / 3 + 6 (1 + a     ) 

(4) 

(5) 

Since the chromaticity coordinates x, y are given by 

X + Y + Z X + Y + Z 

where X, Y,  Z are tristimuli referred to the CIE non-physical primaries 

(X),   (Y),  (Z),  one obtains 

Y   =  kj max [f (x1,x2),fI(x1,x2)l+ k. 

X   =   Y -SO- 
y{6) 

_   Y 1 - x(6) - y(6) 
y(6) 

(6) 

(7) 

where x(^, y(6) are given by eqs.   (4) and (5).    Finally the signals to drive a 

color TV monitor are obtained by a change of coordinates in tristimulus 

space as given by 

all     ai2    al3 

a21    a22   a23 

a31    a32   a33 

(8) 

A much more computationally economic solution is obtained by restricting the 

choice of complementary colors to an axis passing through one of the receiver 

primaries.    Considering further the energy limitations of the display pri- 

maries,  it is found that the most efficie it axis is the green-magenta axis, 

because the luminous efficiencies of the NTSC primaries give y    =0. 585 
G 

and yR + yB yM   =   0.413.    The pseudo-color mapping,   such that 6 = 0 
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maps into white becomes 

 G 
G +"M -r-,    =     6+0.5 

and 

Y   =   0. 585G + 0.413 M 

(9) 

(10) 

whure G(x1, x2) and Mi^x^   =   R(x1,x2) =B(x1,x2) are the green,  red and blue 

signals for a TV display.    Letting 

gives 

and 

K 
0.5 
0.5+6 for •0. 5 < 6  ^ 0. 5 

G(x.,xJ   = 
•(x1>x2) 

1'   2'        0.585 + 0.413 

M{xlfx2)  =   kG   --   R(x1,x2)   =   B(x1,x2) 

(11) 

(12) 

With the mapping described, pseudo-color images are obtained where inten- 

sity naturally carries outline information, hue indicates the polarity of the 

defects,  and saturation shows severity, while normal areas appear white. 

The constant k   insures that the intensity does not drop below a level that 

would make color discrimination difficult. 

Initial studies have shown that the ability of the physician to deter- 

mine accurately correspondences in perfusion and -ventilation scans can be 

greatly enhanced by this single pseudo-colored images as compared to two 

separate black-and-white images.    In addition this rational use of color 

may increase the detectability of defects.    Both results have been recognized 

in the initial work,  but more experience and rigorous psycho-physical testing 

will be needed to develop confidence of the medical community in this method. 

References 
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5.    Image Data Uxtraction Projects 

Image data extraction is a name given to a collection of projects that 

are concerned with the detection of features within an image and methods 

of measuring these features. 

A hybrid optical-digital feature extraction system for images is 

described in the first report.    The system includes a two dimensional 

Fourier transformation stage implemented by optics followed by a diffraction 

pattern electronic sensor which supplies digital signals to a computer 

processor.    The hybrid system can be programmed for edge detection, 

texture detection, or to detect a variety of other image features. 

In the next report a description is given of an interactive edge trac- 

ing device for photographic transparencies.    The device consists of an 

electro-acoustic sensor that provides coordinate points on an edge contour 

which are then formatted for remote computer entry. 

The following two reports are concerned with techniques for obtaining 

two and three dimensional perspective views of an objerJ from one or two 

dimensiop.il density profiles.    Methods based upon the Fourier transform, 

convolution,  algebraic reconstruction,  and Kaiman filtering are explored. 

In the last report a method of image boundary estimi tion is discussed. 

Experimental results are given for several test images. 

5. 1   An Optical-Digital System for Feature Extraction From Images 

Richard P.  Kruger and Ernest L.  Hall 

A hybrid approach to image feature extraction is described which 

combines the parallel processing capability of a coherent optical system 

with the logical processing ability of a computer controlled scanner.    A 

novel feature of the system is provided through the use of an automated 

film transport which permits parallel combinations of optical and digital 

processing on local or global areas of an image rather than a cascade of 
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sequential optical-digital or digital-optical operations.    This system 

configuration has been motivated by the cesire to combine both digital 

and optical processing capabilities in a single system,  thus permitting 

a convenient switch from one system to the other when desired for a 

particular task.    For example,  the digital system may be used to locate 

objects and the optical system to measure properties of the objects. 

A block diagram of the hybrid system is shown in figure 1.    At 

present a film transparency Is loaded into a fixed frame which may be 

manually registered in both the optical and digital systems.    A future 

modification will permit access to the film via the film transport shown 

in Figure ?a.    The film scanner  is an image dissector type as shown in 

Figure 2b.    The principal components of the optical system are the 

sampling sensors shown in Figure 3a and the electronic amplifier unit 

shown in Figure 3b.    The controlling computer is a PDP 11/10 which 

is interfaced via an HP 2100A to an IBM 360/44. 

For a practical application of the hybrid system,  the transformations 

and operations should use the particular device to advantage.    For example, 

Fourier transformations are easily computed with the coherent optical 

system.    Nonlinear operations such as threshold computations are easily 

performed with the computer c   ntrolled scanner.    Furthermore,  for a 

feature extraction system,  a large computer storage is not required since 

the film is an excellent read only memory and the number of required 

measurements is usually small. 

In the hybrid system a diffraction pattern eampler is used for the 

optical measurements.    The Fourier transform of f(x, y) is defined as 

F(u, v)    =    ff   f(x,y)exp{-(uv+vy)]dxdy 

th 
and the k     measurement,  m   ,  is given by 

m^   =        JJ |F(u,v)|   dudk 
Rk(u.v) 
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where the regions lyu. v) are annular ring or wedge shaped areas in the 

spatial frequency domain [l].    These measurements have been found 

useful in many applications.    By the use of the film transport,  any desired 

region of the image may be sampled in the above manner. 

The digital computation is completely programmable and limited 

only by the resolution of the scanning device and speed of the computer. 

Typical operations might include a low resolution scan to produce a computer 

image,  f(i,j),  computation of the histogram, h(f) and spatial profiles 

j 

i 

which are used to locate a center point (x, y) for the optical measurements. 

Another set of digital measurement which are presently used are 

spatial moments [2] m    (f) defined bv pq » 

OB 

»pqW   ■   If   *Pxqf(x.y)dxdy 

The moment computation may be normalized to obtain translation or size 

invariance.    The moments may also be extended to reflect edge structure 

of texture patterns.    For example, the picture function at any point (?. T|| 

may be expressed as a Taylor's series about the point (x,y).    The first 

three terms of this expansion are 

f(x+?,y+Tl)   =   f(x,y) + ?^^l + TlM(*<_£) 
ax ay 

Therefore, the picture function at the point (5, 71) may be expressed in te 

of the moments 

mpq[f(x+?.y+Tl)]   -   ^pqrf(x.y)l+?m     rfx(x,y)l+nm     [f (x,y)l 

The operations which combine the optical and digital measurements 

appear to be highly application dependent and will be studied for particular 

applications. 

rms 
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A current application of this hybrid system involves a hybrid 

system for automatic screening of chest radiographs to detect the 

presence or absence of coal workers black lung disease (pneumoconiosis). 

The proposed system incorporates coarse digitization of the entire chest 

x-ray film to either automatically reject a film with improper exposure 

or detect and measure gross anatomical features in the film.    In addition 

aperture centers in all six lung zones are computed for transmission to 

the computer controlled film transport. 

Figure 4 depicts the output of this first digital process.    Shown are 

least squares oolynomial estimates of the lung outlines,   rectangular estimates 

of the six lung zones,  and simulated aperture centers for each zone.    The 

second stage of processing will involve the movement of the film transport 

to each of the aperture centers,  measurement of their respective spectral 

content and conservative initial diagnostic classification.    If the film is 

classified normal in all zones,  it will be removed from the system.    If 

this conservative initial classification indicates a possible abnormal situation, 

the random access capability of tne digital scanner will be used to rasW 

scan the suspicous rectangular zones at high resolution.    This third sta:/e 

of processing will involve the computation of textural measures obtained 

within the boundaries of the interpolated least square estimates of lung 

zones in question.    These textural measures will be used to obtain a 

second diagnostic classification.    This final decision will either place the 

film into the normal group or place it in one or several disease classes. 

This flexible hybrid approach allows for processing economy at each 

stage of analysis.    In general use of the film at a read only memory, different 

optical detectors,  random access digital scanning and a computer controlled 

film transport will provide a flexible laboratory tool for image analysis and 

data extraction. 
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5.2  A Terminal/Timeshare Based Device for Interactive Boundary 

Tracing and Analysis 

Richard P.  Kruger 

The ability to input graphic information such as image boundary 

information and strip chart data in digital form into a computer for analysis 

can be approached in mar.y ways.    The specific facility to be described here is 

particularly applicable in circumstances whi  li preclude the use of a local 

minicomputer system, and where it is desired to share a common program 

library with several remote users. 

A system with these general attributes has been installed at the USC- 

LA County Medical Center and connected to the USC main campus computer 

via sv-indard dial up telephone lines.    The library consists of Fortran language 

programs accessed under IBM time share option for analysis of various 

aspects of left ventricular heart function.    The system configuration for 

data collection is shown in Figure 1.    The digital input device consists of 

a graf pen digitizing tablet. 

The Graf-Pen graphic tablet digitizer utilizes acoustic ranging to 

digitally measure the position of a stylus on the surface of the tablet.    The 

measurement is performed by measuring the time required for sound to 

travel from a spark sound source on the tip of the stylus to a pair of linear 

microphones located along two axes of the tablet.    This time measurement 

is translated into a number between zero and 1999 for each axis,   effectively 

dividing the tablet into a matrix of 2000 x 2000 points. 

The four digit binary-coded decimal numbers generated by the Graf- 

Pen for each data point are converted to a sequence of characters suitable 

for transmission to a computer terminal or teletype unit by a data converter. 

This data converter,  in addition to performing the parallel to serial data 

conversion,  inserts control characters into the data string to make it 

compatable with a computer. 
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Hgute 5, 2-1.   Data acquisition and processing system. 
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In the present installation,  data generated by the Graf Pen is passed 

from the data converter to a Novar computer terminal which is equipped with 

a cartridge data tape recorder.    This tape recorder is used as a data buffer 

to hold pen data until it is required by a computer program and to provide 

for maximally efficient transmission of data to the computer during program 

execution.    The sporadic manner in which time-shared computers schedule 

program execution makes such a buffer a necessity.    During the execution 

the operation of the tape recorder is controlled automatically by the computer 

making manual intervention unnecessary. 

Data transfer rates for the graphic data terminal are determined by 

the rate limitations of the computer terminal and the computer's input equip- 

ment.    Since the existing equipment is limited to no more than 30 characters 

per second,  the data acquisition and transfer rate is limited to approximately 

two X-Y coordinate pairs per second.    During digitization operations the 

digitizer can be set to acquire data only when the operator indicates a 

desired point by pressing on the data stylus. 

In operation a stop motion movie projector image of the dye filled 

left ventricle is projected onto the graf pen surface where the operator 

digitizes 30 to 50 perimeter points obtained from 2 to 60 frames of 

cine-film per patient.    This boundary information as well as digitized 

strip chart recording of a simultaneously recorded pressure versus time 

curve is stored on cassette tape for transmission. 

At this point the IBM time share option is accessed with resident 

programs to accept, analyze the data and return a report to the operator. 

The programs initially interact with the operator in a question and answer 

mode followed by computation and return of 20 quantitative indices of 

ventricular function.    In addition, a high resolution (30 characters per inch) 

plot routine returns a plot of the end diastole (full expansion and end systole 

(full contraction) boundary trace (see Figure 2) as well as volume vs time. 
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Figure 5.2-2,    Ventricular outlines from high resolution, 
terminal based plotting routine. 
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pressure vs volume,  and force vs length plots where applicable.    This 

information then becomes part of the permanent patient record. 

This interactive terminal based device has significantly reduced the 

time to complete such an analysis to the point of practical cost-effectiveness. 

The modest cost of such a system will allow many remote users to have ac- 

cess to a large general purpose computer where they can use as well as 

augment existing ventricular analysis programs for use by the user 

community.    This concept has the potential for encouraging resource 

sharing within its limited scope. 

5. 3     Reconstruction of Three-Dimensional Object Arrays From Their 

Projections 

Alexander A.  Sawchuk and Ernest L.  Hall 

A problem of some interest la image processing concerns the re- 

construction of arrays of data from projection measurements having a lower 

spatial dimensionality.    Typically, the objective is to reconstruct three- 

dimensional object arrays from two-dimensional projections,  or to 

reconstruct two-dimensional object arrays from one-dimensional projec- 

tions.    The technique has applications in a wide variety of areas, not all 

of which are traditionally connected with image processing.    Some of these 

application areas include:   radiography,  or X-ray imaging [1,2]; nuclear 

icintillation imaging [3]; electron microscopy [4]j electromagnetic ana 

pressure wave field mapping such as in radar,   radioastronomy and sonar [s]; 

measurement of volume refractive index and temperature profiles [6]; and 

multidimensional picture representation and coding [?]. 

A large number of different techniques have been proposed for 

accomplishing image reconstruction.    In its most general form, the M- 

dimensional projection vector £ is obtained by a linear combination of the 

N-dimensional orginal object vector {_ as expressed by 

Ä   =   HI (1) 
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where H is an M x N matrix.    All reconstruction algorithms attempt to 

produce an estin.ate {_o{ the true f^.    There are many obvious similarities 

to the image restoration problem, and the special nature of reconstruction 

has led to several general approaches:   Fourier transform [l,4] , convolution 

[5, 8], and algebraic [2].   No one approach has been found superior to the 

others,  and extensive analytical comparison is difficult.    Other problems, 

such as measurement noise in taking the data according to eq.   (1),  and 

imperfect knowledge of H also led to different tradeoffs between techniques. 

Noise is utlimately the most significant problem in image processing,  and 

very few reconstruction methods really consider it adequately. 

The Fourier transform method of reconstructions is one of the simplest 

techniques although it requires that projection data be taken in a full 180° 

around the object to be imaged.    The method relies on the fact that the Fourier 

transform of a two-dimensional projection of a three-dimensional trans- 

form of the object.    If ffrj, x^x^ represents the object, the three-dimensional 

Fourier transform is given by 

^(fl't2'f3)   =  JB" l(xi'x2'X3)expf-2TTj(fixi +f2X2 +f3X3)''dxldx2dx3   {2) 

and the central section of the transform is 

eo 

FCfj.f^O)   =   JJJl(x1.x2,x3)exp[-2TTj(f1x1 ^f^jldx^x^ 3) 

After performing the integration with respect to x3 in eq.   (3) and identifying 

W*V*2)   =   („KVW**, (4) 

as the projection on the Xj^ axes and £(£^£,,0) as its transform, the full 

three-dimensional transform c an be built up plane by plane using the trans- 

forms of different projection views ol the object.    It can be shown that a 

coordinate system (s^s^ rotated, as t^hown in figure la, by 6 with respect 
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to (Xj.x^ moves in exactly the same manner as the rotated Fourier 

transform space (Mj,^).    Thus,  projections are taken at different 9 

orientations, transformed, and inserted into the two-dimensional transform 

plane shown in figure lb. The entire transform of the object can be built 

up plane-by-plane by this method.    Since only a finite number of projections 

are available,   some  interpolation   in the transform space is required. 

Several methods including puls« approximation,  linear interpolation, 

Fourier series interpolation, and sine function expansion for band and 

space-limited objects are being considered, and tradeoffs and relative 

accuracies are under study.    Related to this are problems of appropriate 

sampling rate and projection density for adequate reconstruction as a 

function of object parameters.    Although the Fourier transform method 

needs 180° of data,  it is relatively easy to implement and give* some of 

the best quality results with relatively low required computation when the 

projection data is not too noisy. 

Tne second major reconstruction technique is known as the convolu- 

tion method [5, 8J and operates entirely in the spatial domain without the 

use of any transforms.    Denoting the desired object to be reconstructed in 

polar coordinates by f(r, 9), then a forward Fourier transform relationship 

to transform F(R, i) is 

F(R.$)   =   / TT
iro

,Bf{r.9)e -j2TTRcos(9-$) 
rdrd9 (5) 

with reverse transform 

f(r,9)   =   J     J    F(R,$)e+J2TTrRco8(e-%dRd$ 
0      0 

Equation (6) can also be expressed as 

A 

(6) 

^,9)   .   ^J2   |R|F(R.$)e+J2TTrRcos(e-$Wd* 
A 
2 

(7) 
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a) Projection  data-Fourier   transform reconstruction 

P2 \   t   I      / 

b) Assembly of  Fourier   transform 

Figure 5. 3-1,    Geometry for Fourier transform technique. 
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where the finite limits    -^,|     on R represent the bandlimited nature of 

F(R, I),    Equation (7) is the basis for the terhnique. 

The method begins by first measuring projections g(i, $) as a function 

of the variable^ at angle $as shown in figure 2a. This can be expressed as 

an inverse transform 
A 
2 

g0.t)   =   J     F(R.$)e+j2TTR<!dR 
A 

(8) 

in a frequency space identical to that shown in figure lb. The second step 

is to linearly filter g{£, I) with a space-invariant impulse response hf(ü) 

given by 

A 
2 

V)   =   J     |R|e 
A 

" 2 

J2TTIU 
dR (9) 

to produce g'(^ |) according to the convolution relationship 

g'fM)   =   t(ß,*)*h%iß] (10) 

This operation is known as -rho-filtering- due to the radial spatial frequency 

amplification of eq.   (9) shown in figure 2b. By the convolution theory of 

transform theory,  eq.   (10) is the same as 

A 
2 

g^.*)   =  ;A   |R|F(R.$)ej2TTRV. 
' 2 

The final step is to use g»(^ i) and compute 

TT 

f(r. 9)   =  J    g'(r co8(e-$),$)d$ 
0 

(11) 

(12) 
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a) Convolution   projection data 

b) Rho  filter  for convolution restoration 

Figure 5, 3-2,    Geometry for convolution techniques. 
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to give the object density f{r, 9).    Substituting eq.   (11) ir.to eq.  (12) gives 

the identity of eq.  (7) and proves the method.    In a discrete sampled-data 

format the operations of eq.   (10) and eq.   (12) becomes 

gVna, 6;   =   a    ^      g(ma, 9)h((m-n)a) (13) 
m=- 

and 

N 
f(r.f)   =   f(jr0,kl0)   =   22  g,[jr0

cos(k$0-teo),teo] (14) 

respectively.    Other alternative techniques may involve reversing the order 

of the operations of eqs.   (10) and (12),  or combining them with part of the 

data taking operation of eq.   (8).    As with the transform method, the discrete 

nature of the computer implementation requires interpolation,   sampling,  and 

numerical integration; work is underway to study the best method of performing 

these tasks.    Some study of the effects of noise is also being considered for 

this system,  and improvements to the inverse filtering operation in the rho 

filter are possible. 

The third reconstruction technique may be called the algebraic approach. 

The problem is illustrated in figure 3 and may be formulated in the following 

manner.    Define a linear set of projection equations 

Ml = 1 

where 

1   =   {tvtr....i^) N   =   n X n 

1 
I   =   (gj» gr • • •. gN. gN+2 g2N, .... g2N+2' g2N' '' • gK) 

with K = M - (m   -1) linearly Independent projection equations,  and H is a K x ,v 

matrix depending only upon the geometry.    These equations are exactly similar 

in form to the restoration equation and only differ by construction.    Some of 

the possible solution constraints include: 
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RECTANGULAR   OR FAN  BEAM 
GEOMETRY   ma   ANGLES 

Assumed uniform 
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c 
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hiK n = nx = ny 

N = n2 

M = ma x rrip 

Figure 5.3-3.    Algebraic reconstruction geometry. 
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a)     Minimum Ener gy 

•VD   = II 

b)     Smoothness 

J
Z(I)   =   1  C£ 

c)     Minimum mean square error.    Given a measurement with noise 

£ ■ .S + i 

V-'-J ■ I'*-üill 

Solutions may easily be developed for these minimization problems. 

For example,  one may minimize 

J<I) = ITI + aITci 

subject to the constraint 

SI = I 

which gives 

I =   -2[H(l + aC)     H1]-1 £ 

Similarly,  one may minimize 

J(f.)   =   I|z-Hfj|2+afTCf + fTf 

subject to the noise measurement constraint which gives 

i ■   fi + H  H+ac]     HT^ 
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The inverses in these equations may be shown to exist by construction of 

F and £. 

Thas, the algebraic approach is characterized by the solution of a 

large set of linear equations.    For example in the EMI scanner [9 J the un- 

known imafe is reconstructed on an 80 X 80 grid which gives a 6400 equiva- 

lent vector dimension.    Also m    =180 projection angles are used with m    = 

160 points per projection angle.    Thus,  K is approximately 28,000.    The 

previous solutions for [i if directly solved would require inverting 6400 X 

6400 matrices. 

The large amount of computations involved motivate two avenues of 

continued study.    The first involves the use of iterative solutions of the large 

set of equations.    The second involves studying the structure of the H matrix 

so that efficient computational algorithms may be developed. 

Certain structures in the H matrix are obvious.    For example,  suppose 

the coefficient values are selected proportional to the intersection area of a 

given ray and the elemental unknown area as shown in figure 4.    Then assum- 

ing either one or two rays intersect each elemental area there are only 18 

possible intersection areas as shown in figure la. Thus, although the inter- 

section areas changes for each projection angle, the formulas for the com- 

putation are identical. 
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5.4 Application of Kaiman Filtering to the Reconstruction of Images from 

Noisy Projections 

Firouz Naderi,   Ali Habibi 

A digital monochromatic image can be modeled by a two dimensional 

array x(i, j) i, j = 1,... ,N where x(i, j) denotes the magnitude of the gray 

level at point (i, j).    Then a one dimensional projection of the N X N image 

in direction 6 is defined as an N vector Yfi where each component of Y0 is 

the sum of the elements of the image along a line making an angle G with a 

fixed reference axis.    Figure 1 ähows examples of two such projections for 

6 = 90 and 45 degrees.    Note that for the 6 = 90° projection 

Y - r 1     2 
Ly

900'y900' 
N    -jT 

'y900-' 

where 
N 

j = l 

(1) 

(2) 

Now,  let x be an N    vector defined as 

x   =   [x(l,l),x(l,2) x(l,N),x{2, l),...x(N,N)]T 

A one dimensional projection of an image can now be written as 

(3) 

ye = Cex (4) 
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Figure 5.4-1.    Examples of one dimensional projections of 
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2 
Where the N by N    matrix C0 is called the projection matrix at angle 0. 

For the example of figure 1 when 0 = 90° matrix C_ is 
"~6 

^90° 

1       1   ...    1 

0   ...    0 

0   ...    0 

0   ...    0 

1       i   ...   1       0       0   ...   0 

Oil    ...    1        o 

0 

0 

0   .... 
1 ...  1 

Given a finite number of projections YQ  ... ..Y^ and the corresponding 

projection matrices CQ   . . . .. CQ    it is iesired to^reconstruct the image, 

i. e. to determine the    V elements x(i. j). i. j = 1 N.    This problem 

can be viewed as an attempt to solve a set of N x L algebraic equations with 

N    unknowns.    In most cases the number of linearly independent equations 

available is not equal to N2; therefore obtaining a unique solution requires 

forming a meaningful criterion and solving the equations based on this 

additional constraint. 

Another approach discussed below is to model the image as a two 

dimensional random process,  and use some a priori statistical knowledge 

of the process to obtain an estimate of the image. 

Reconstruction of Images Using Kaiman Filtering     The approach here 

is to derive a linear dynamic model to represent the imaging system,  and 

then use linear estimation theory to obtain an estimate of the image which 

is optimal using mean square error criterion.    Let Y(1),..., Y(L) be L one 

dimensional projections of the image at different angles.    As a result of 
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faulty measurement,  Y(l), ..., Y(L) are not the true projections, but contain 

some noise.    Let this noise be an additive white noise denoted by the N 

element vector n(k) where n(k) is the noise corresponding to projection 

Y(k).    Then 

Y(k)   =   C(k)x + n(k) (6) 

where E[n(k)n{j)] ■ L6(k-j). 

Clearly since all the projections correspond to the same fixed image, 

the dynamic equations representing the system are 

x(k+l)   =   x(k) 

Y(k)   =   C(k)x(k) + n(k) 

(7a) 

(7b) 

Given projections Yjl), ..., YjL) it is desired to find a linear estimate of x 

such that the mean square error is minimum. 

The recursive solution to the above is the well known Kaiman estimator, 

Denoting by x(k+l) the estimate of the image obtained after observing the 

projections Yjl), .,. ,X(^) one obtains 

where 

and 

x(k+l)   =   [l_ - F(k)C(k)]x(k) + F(k)Y(k) 

F(k)   =   P(k)TC(k)[C(k)P(k)TC(k) + U]" 

P(k)   =   E{[x(k) - x(k)] [x(k) - x(k)lT} 

(8) 

(9) 

(10) 

The term P(k) is the covariance of the error after k iterations and has the 

recursive form 

P(k+1)   =   [l_ - F(k)C(k)"|P(k) (H) 

Equations (8),   (9) and (11) provide r recursive method of finding the estimate 

of the image.    However along with this equation initial conditions for x(k) 

and for P(k) are needed. 
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A reasonable value for the ini.ial conditions are [2] 

x{0)   =   E(x) 

P(0)   =   Efx - E(x)l [x - E(x)lT 

Some aspects of this approach are intriguing enough to warrant more 

investigation of this method.    For example: 

1) The error covariance equation (eq.   11) is asymptotically stable. 

Given that projection matrices,   Cjk), are known for various angles, the 

error covariance can be calculated for all k before any projection data is 

actually available.    This suggests that it might be possible to decide how 

many projections are necessary to achieve a certain fidelity. 

2) The error covariance depends on the projection matrices which 

in turn depend on the angle of projection.    It might be possible then to decide 

the angles of projections more judiciously by proper evaluation of the error 

covariance. 

At the present the biggest disadvantage of the method is the excessive 

computations which are required because of using large matrices.    However 

this method has distinct advantages over other methods that are used for 

reconstructing images from noisy projections.    Namely,   it is iterative and 

provides a measure for the error and is based on an established estimation 

theory procedure. 
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5.5  Boundary Estimation of Statistical Objects in Noise 

Nasser E.  Nahi and Mohammad Jahanshahi 

The problem considered is determination of the boundary of an object 

in noise.    Standard boundary detection techniques,  in general,  utilize some 
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form of differencing or differentiation,   [l] .    These methods,  however, are 

sensitive to noise.    Various extensions of these techniques appear in [z] 

[3] .    They are mainly effective for high signal to noise ratio images. 

The images considered in this work can be partitioned into two 

regions:   background and foreground.    The foreground is assumed to form 

a horizontally convex set in the plane. 

2 
Definition:   A set E cR    i8 said to be horizontally convex if given 

x = (x1,x2)eE, £ = (y1,y2)eE with Xj * y^ and x2 = y2,  then 

wx + (1 -w)^eE, where 0 < w < 1. 

Example:   Sets E1 and E2,   in figure 1, are horizontally convex. 

Set E    is not. 

An object of interest whose intensity levels dominate those of the 

background will always be assumed to exist in the image.    This object 

forms the foreground. 

Problem Statement    Assuming 

1.      An image consisting of a background and a horizontally convex 

object is given; 

«i.     The image is represented by b(z, n)r(z, n), where b(z, n) is a 

random process representing grey levels within the object, and 

r(z,n)   = 
1       when (z, n) is a point in the object, 

0      when (z, n) is a point in the background; 

3. The process b(?;, n) is characterized in a statistical sense,  in 

terms of its first and second order moments; 

4. The operator r(z, n) defned the object boundary; 

5. The observ?bl£3 

y{z,n)   =   b(z,n)r(z,n) + v(z,n) , 

where v(z, n) represents the observation noise with known first 

and second order statistics,  are given. 

The goal is to find an estimate of the object boundary. 
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Figure 5. 5-1.    Examples of convex sets. 

Sets Ej and E^ are horizontally convex. 
Set E3 is not. 

_—. 
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A Solution Method     The image,  as stated,  is characterized by a two 

dimensional random process.    Since the solution of the proposed method 

will utilize conventional digital computers with litter or no parallel-computa- 

tion capabilities,  an image scanner is employed.    Therefore,  the problem is 

restated as the following:   Assuming 

1.      The observation 

y{t)   =    s(t)X(t) + v(t) for 0 ^t £ T« 

is given, where s(t) denotes the output of a line scanner,   represent- 

ing the grey level of the image at time t, and where 
m2 

Mt)   =   X)     tt^-»«) " u(t-V 

with 

m.    = first line of the image containing the object; 

m-   = last line  of the image containing the object; 

a.     = start of the object in line i ; 

C     = end of the object in line £ ; 
Jl 

u(»)   = step function: 

and 

v(t) = process representing the inaccuracies 
introduced by the scanner or any other 
phenomenon distorting the image. 

2. The sequence x = (a^,c), i = m1,m1 + l,...,m2,  is Markov. 

3. The density function f{x   |x    j) is Gaussiar. 

Find the M. A.P.  estimates of a   and c  , m^ z Z ^rn^, denoted by ä^ and 

c.,  respectively, and determine the values of m. and ni_. 

A recursive b^lution to the above problem has been obtained.    Figure 

2 contains two examples showing the feasibility of the boundary estimation 

technique.    Further investigations are in progreLS as to the refinement of 

some of the theoretical aspects of the problem. 

-125- 

- *—  -     —   ■ — ■■ 

**um*m*ä**~m~ä*^.     _. ,  ..   _    . ,    





"^•m^K^mmrm^mm^mwm^fmvmm^mrfm^mm^ "   '    ■   '   • 1    ""i ii,\.mmmr*mtmm****v^ 

References 

1. A.   Rosenfeld,  Picture Processing by Computer, New York,   Academic 
Press,   1969. 

2. A.  Rosenfeld,  "A Nonlinear Edge Detection Technique," Pvoceer'tngs 
of the IEEE,  Vol.  58, No.   5,   May 1970. 

3. E.  Argyle,  "Techniques for Edge Detection," Proceedings of the IEEE, 
Vol.  59,  No.  2,  Feb.   1971. 

4. N.   E, Nahi,  Estimation Theory and Applications,  New York,  Wiley, 
1969. 

5. N.  E. Nahi,   T.  Assefi,   "Bayesian Recursive Image Estimation," 
IEEE Transactions on Computers, Vol.  C-21, No. 7,  July 1972. 

127- 

,  I   -■   ■    ■ -  ■  -—'^—-^ i—^-»-^ .._—!-..„■  



'II   l~ 

6.    Innate Analysis Projects 

The image analysis projects are concerned with the background 

technology necessary to effectively design image coding,  restortion, 

enhancement,  and data extraction systems.    Of particular interest are 

models of the human visual system for monochrome and color images, 

and the development of quantitative measures of image fidelity and 

intelligibility. 

The following project traces the development of a model of human 

color vision.    This model has been found to accurately predict known 

visual phenomena such as spatial color contrast and color blindness. 

6. 1   A New Modei of Color Vision and Some Practical Implications 

Werner Frei 

Color image coding and processing techniques usually operate on 

three scalar functions of some space variables such as red,  green and 

blue color separations.    Under the laws of colorimetry,  these scalars 

called tristimulus values represent light energy quantities and the operations 

defined on them by color matching experiments conveniently satisfy the 

requirements of linear mappings:   for example, the additive mixture of 

two arbitrary colors is mapped into the sum of their respective tristimulus 

■ alues. 

In terms of the human observer,  however,  colorimetric color repre- 

sentations have serious disadvantages, because the tristimuli are not 

representative of the physiological response evoqued in the human visual 

system.    It has been shown that the visual response is a highly nonlinear 

function of the energetic tristimulus quantities.    Tristimulus spaces are 

therefore not euclidean, and unfortunately,  ordinary superposition of 

tristimuli does not entail superposition of responses.    For example,  if 

the tristimulus values of a color are doubled,  one does not obtain a color 
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that appears twice as bright,  twice as saturated,  etc.    This remark applies 

of course to spatial arrangements of colored stimuli so that visual modula- 

tion transfer functions are,   strictly speaking,   not defined in tristimulus 

space. 

It is therefore no surprise that distortion measures such as mean 

square error, or visual modulation transfer functions, etc. are of little 

relevance to the observer of a picture processed under that kind of criterion. 

In view of these difficulties,  the simple visual model developed here 

has a variety of practical implications in image processing and possibly in 

vision research.    It is shown that its structure enables one to define an alge- 

braic system in tristimulus space with a generalized superposition consis- 

tent with known perceptual phenomena. 

As a result,  one can define error measures in a euclidian domain 

that is a linear vector mapping of tristimulus space,   given a particular 

set of basis vectors.    This gives analytical convenience in the design and 

evaluation of coding and processing techniques. 

On the other hand, with superposition defined, visual MTF can be 

defined ard it can be shown that spatial color contrast phenomena such as 

similtaneous color contrast,  color shadows,  color mach bands,  etc. ,  can 

be modeled by linear spatial filters. 

Superposition is also expected to enhance the effectiveness of pseudo- 

color techniques.     Since the visual system is able to recognize more or 

less independently three attributes of colors (such as brightness,  hue and 

saturation),  pseudo-color techniques attempt to display multiple functions 

(at most three) of the space variables as a single composite color picture. 

If the observer is expected to be able to recognize the individual functions 

in the pseudo-color image,  it is quite evident that the functions of interest 

must be mapped into color space in accordance with subjective superposition. 
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The visual model discussed here provides a tool to design precisely that 

kind of mapping, and, in addition, it predicts the spatial resolution to be 

expected for each function mapped into color space. 

Visual Model     Figure 1 shows a block diagram of the model.    The 

basic ideas and the physiological evidence justifying its structure have 

been discussed in a previous report [l J.    In brief, the first stage converts 

the input spectral energy distirbution of light C(X) (a function of the space 

variables x and y) into a tristimulus vector t = t(x, y) whose three components 

represent the respective amounts of light energy absorbed by three types of 

photo-receptors (Young-Helmholm theory); 

IT t   =   Ctj.t^tj] 

xTT 
t. = ru c(x)t.(X)dx 

tj-t^y) 

1= 1.2,3 

where t.(X) is the spectral absorbtion function of the i-th type 0/ receptor. 

The second stage of the model represents the conversion of absorbed 

energies to neural signals, according to an approximate logarithmic 

relationship (Weber-Fechner type of response).    The components of the 

resulting vector t* are:   log t.,  log t_,  log t, (the superscript star denotes 

the logarithmic domain).    The last stage of the model contains a matrix of 

spatial filters with transfer function 

\K 0 

H*(ju*,jv*)   = ■K «1 
L-H; 0 H 

0 

3J 

H' =H*(ju*.jv*) 

where u*,  v* are spatial frequencies in the logarithmic domain.    This 

stage simultaneously represents two phenomena: 

(a) linear differences (inhibitions) between the outputs of the two types of 

receptors (demonstrated in the retinas of monkeys by deValois [2^). These 

differences are represented by equal terms of opposite sign within a row of 

H*.    They can be seen to generate two " perceptual" chromatic signals by 
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observing that 

H2(t* - t*)   =   log 

83   "   H3(t3 - ty   "   lo8 
&)" 

• 

Under the assumption of exact logarithmic receptor responses,  g* and g* 

are functions of the ratios of pairs of tristimulus values, e.g. chromatic 

quantities independent of the absolute light intensity.    (This approximation 

is not valid at very low or very high intensities, but quite acceptable within 

most of the range of interest.    The intensity is represented by 

g*   =   logftj)**! 

(b)   The matrix H* also represents weighted linear summations between 

the outputs of spatially distributed like receptors.    Assuming shift-invariance, 

suppose that each summation output g5;:(x,,y.) is related to the outputs of the 

receptor array t*(x. , y,) by the sum 

g*(x.,y.) = J£ ^n'V^VVV^ 

where h*(x, y) denotes the impulse response matrix in the logarithmic 

domain.    Taking the discrete two-dimensional Fourier transform,  gives 

gf(x,y)   =  f Y £^[tf(x,y)lH*(ju-:sjv^ 

(Note:   the shorthand notation g!" = Y] H'f.tf is used instead of the above 

expression. )    Letting t. (X) be equal to the luminous efficiency function 

V.. , and considering the scalar expression for g. ,  a familiar model of 

achromatic vision 

gj(x,y)   =   rV[logI(x,y)lH*(ju*,jv*)) 
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is obtained [3].    This model has been successfully used to predict various 

visual phenomena such as Mach bands,  simultaneous contrast,  etc.,  as 

well as for image coding and processing [41. 

Spatial Color Contrast Phenomena     Examination will now be directed 

toward the mechanisms by which chromatic contrast effects such as color 

shadows,  etc. ,  can be represented by the model.    Suppose that a small test 

spot with tristimulus values tj.t2.t3 i8 viewed against a colored background 

with values t^.t^.t^.    Assuming total lateral inhibition,  e.g.  mutual 

subtractions of the outputs from neighboring receptors, the apparent 

chromatic quantities g*',  g*' and g*^,  g*^ of the test color and background 

respectively,  become 

,*i   - 

g *i   _ 

«20 * lo* 

§£ - log 

-ft) ■ -fe) ■ -e a 

= White 

In other words, the background appears to be white, while the test color 

is shifted towards a color complementary to that of the background.    The 

same apparent chromaticities are predicted by the model if one assumes 

that the responses of the photo-receptors are decreased in proportion to 

the average energies absorbed (bleaching).    The new tristimuli are 

t. 

*•'   =   r1 1     ho 
And the apparent chromatic quantities become 
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g- 

I?' 

log 

=   log 

Vi hoi 

V'l So/ 

The apparent chromatic shifts preiicted correspond to the vonKries 

coefficient law regardless of the physiological assumption we make 

(inhibition or bleaching). 

In practice however, the visual system does not ignore completely 

a non-white average sceme chromaticity, particularly at saturated average 

chromaticities.    Letting lateral inhibition be weighted by a factor k* <   1 

the following apparent chromaticities are obtained 

&-. =   log 

■   log 

g^'   =   log 

ft) ■ >! « © 
k*<i 

k*<i 

Since the influence of various colored areas within the visual 

field on each other's corresponding perceptual quantities is a function 

of their geometric distance,  let k*, k* be functions of the geometric 

distance between the excited receptors and write for each summation output 

^yVvV 
J        k   ^ t i(W 

ki(xt-Vyj-^ 

^i-^rJ 

It is then observed that k'^x, y) is an impulse response, and the color 

contrast phenomena can be represented by the spatial filters H*(ju*, jv*). 
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Figure 2 shows a comparison of measured visual modulation transfer functions. 

The question whether the chromatic response is attenuated at very low spatial 

frequencies (spatial band-pass response) is subject to controversy.    Note 

that the measurements of chromatic responses were not made in a logarithmic 

domain. 

Spectral Sensitivities of the Receptors     According to Konig's theory, 

color blindness known as dichromatism occurs whenever one of the three 

types of photo-receptors is inoperative in some fashion.    The theory there- 

fore predicts the existence of the three types of dichromats whose color 

matches are uniquely determined by two of the three energy absorption 

quantities 

t.   =   J S(X)t.(X)d(X) 1.2 

Under Konig's assumption,  colors with two fixed values t.,t. and arbitrary 

value t    should all look alike to the corresponding dichromat.    It can be 

shown that the chromaticity of such equivalent colors are sets of converging 

straight lines in the CIE x-y chromaticity diagram,  and that the centers of 

convergence are the chromaticities of the respective missing primaries. 

Experiments show that there exist indeed three types of dichromats, 

called protanopes, deuteranopes and tritanopes and that their color matches 

correspond well with the predicted behavior (fig.   3). 

Let A be a 3 x 3 matrix which maps the CIE XYZ tristimulus space 

into the model's tristimulus space 
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PROTANOPE        DEUTERANOPE      TRITANOPE 
loci of dichromatic color   matches 

Figure 6.1-3.    Confusion loci for the three types of dichroroats in the 
CIE x-y chromaticity diagram. 
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Also let x. , y, , z, »k = 1, ... 3 be the chromaticity coordinates of the 

convergence for the protanope,  deuteranope and tritanope respectively. 

Since ^.tY^t2,   are the chromaticities of the unknown primarties, the 

following equations can be written to determine A = [a..] 

v v 'o" 

0 = [A] yl • 4 
0 ■l. 0_ 

[Al 

LZ2J 

0 

0 

LS 

=   [A] 

LZ3J 

Three more equations can then be written by defining an arbitrary reference 

white for the model,  for which ti^-^o31«    Finally,  the spectral sensitivity 

functions of the receptors are given by 

t^M" xx 
t2(X) = [Al 

\ 

t3m -V 

where x   ,y ,  z    are the CIE color matching curves for the standard observer. 
K      X       \ 

Using essentially the method outlined, and rounding Pitts coordinates for the 

deuteranopic convergence point from x = 1. 08,  y = -0. 08 to x = 1. 00 and 

y = 0.0,   Judd obtained the following transformation matrix 

0 1 0 

A   = • 0.460      1.359      0.101 

1 

The spectral sensitivities of the receptors thus obtained are unimodal 

positive functions of the wavelength, as one would except from a physiological 
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standpoint (fig. 4).    Furthermore,  one of the receptors exhibits a V  ,  or 
K 

luminance response,  as is required for our model to be considered with 

Abney's law of luminance addition.    Figure 4 also shows the remarkable 

agreement between the measured luminous efficiency functions of the normal 

and dichromatic observers, and the luminous efficiencies predicted with 

the model. 

Uniform Perception Space g*    While the visual model has been based 

upon physiological evidence, quite a few approximations have been made.    It 

remains to verify whether the model predicts measured color differences. 

First note that g* = log luminance is in agreement with Weber's law 

of perception for intensities.    As far as the chromatic quantities g* and g* 

are concerned, consider concentric circles centered at the origin and 

straight lines radiating from the origin in the g*  g* plane.    If the model 

were perfect, the circles would be loci of constant saturation colors, and 

the lines loci of constant hue colors.    Figure 5 shows a set of such equi- 

distant circles and lines,  mapped into the CIE x-y chromaticity diagram. 

The agreement with the Munsell equi-distant set is remarkable if scaling 

constants c   , c, (to be included in the filter function H* and H*) are introduced 
it 2 3 

such that 

'2 
g2   -   cilog^ 

g*   =   Cj log - 

Assuming that the sensation of brightness is evoked by the total activity of 

the three perceptual channels, brightness is then equal to the norm of g-::. 
...2 2 1 

lg*l = (gj    + g^"    + go   )2«    The mapped set of circles and lines now  repre- 

sents equi-brightness geodesies.    A remarkable agreement with the geodesies 

obtained with Stile's line element is noted [5],    Improvements may be expected 

by replacing the logarithmic approximation by a more realistic function of 

the type AI/K+I.    However, the original approximation shall be retained for the 

next discussion. 
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Figure 6.1-5.    Equi-distant loci of constant hue and constant 
saturation predicted by the model. 
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Generalized Superposition in Tristimulus Space     Define two vector 

spaces V and W over the field of real numbers reR, with teV,  t = (t^t  ,t,) 

and g*€W,   g* = (g*, gl, g*).    Let the components t
1.
t2»t3 of * be tristimulus 

values with respect to the spectral receptor sensitivities of the model and 

some arbitrary reference white,  and define the following laws of composition 

on V 

lA'VV 

'A + 'B  "  "IA'IB'WZB'SAW 
r    r    r 

rt   =    (tj.t^tj) 

Next,  let the components g''~, g*  g^ of g:': be the perceptual quantities 

defined in the model, and let ordinary ?ddition and multiplication by scalars 

be the laws of composition on W.    Since the three receptor sensitivity curves 

selected are positive between X    , X     (the limits of the visible spectrum), 

t-.t  ,t   are always larger or equal to zero.    Excluding zero light intensities 

(which is quite acceptable for practical images) the vector mapping 

T: t 

defined by the model as 

T, (vw (H'l.i^Hjl.iji.Hjlo,^) 

-1 
can easily be shown to be linear.    The inverse mapping T       is 

T     :   (g1,g2,g3) ►fexp(g1)        i.expfg^g^)        c,exp{gvg3)       3 1 

It is seen that the operations defined on t (which is an element of tristimulus 

space,  relative to a particular basis determined by the model's receptor 

sensitivities) correspond to ordinary addition and multiplication by scalars 

of perceptual quantities in the euclidean space W.    For example, multiplying 

the tristimuli of a color by a scalar 
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r(tl,t2't3)   a   ^rV1^   = ^i*» r«2*'■^ 

results in a color which appears r-times as light,   r-times as saturated and, 

letting brightness be approximately proportional to the norm of g*,  a color 

r-times as bright as the original color is obtained. 

Conclusions     Generalized superposition thus defined opens a broad 

vari-ty of image coding and processing related problems to analytical 

treatment.    In particular,  homomorphic filtering can be readily applied 

to color images,  if tristimuli are referred to the basis indicated.    The 

simple mapping T: t —* g* can be used in any real-time environment to 

solve the old problem of optimal color quantization.    Finally,   it is hoped 

that the reflections on superposition will help to clarify some of the 

controversy on chromatic modulation transfer functions in the visual 

system. 
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7. Image Processing Hardware and Software Projects 

The image processing hardware and software projects are devel- 

opmental projects supportive of the image processing research. 

The first project describes the progress toward the development 

of a real time digital image display system for the ARPANET.    This 

device which is connected to a port on the TIP provides a flicker free 

display of digital images transmitted over the network. 

In the second report plans are outlined for the construction of a 

digital image recording and display system.    This system will be capable 

of recording real time color television for playback into a digital computer; 

and will record computer generated images for real time playback. 

The last report is concerned with progress on software development 

for image processing and networking. 

7.1   Real Time ARPANET Digital Image Display 

Toyone Mayeda 

The digital color image display for use on the ARPANET is presently 

ready for software checkout.    The refresh memory integrated circuits were 

finally received during February 1974. 

A block diagram of the system is shown in Figure 1,  and photographs 

of the system are shown in Figure 2.    The display system specifications 

are listed below: 

1. Receive asynchronous digital picture Information from the 

ARPANET TIP with brightness resolution up to 64 levels and 

at input rates up to Iv, 2K band; 

2. Store the received data in an array of up to 256 X 256 six bit 

picture values; 

3. Display a true 6 bit monochrome image on the monitor; 

4. Display a pseudo color image by use of a random access memory 

which is addressed by ^he refresh memory output. The RAM can 

be remotely programmed from the TIP or by local switch con- 
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trol.    Over 4096 different color combinations ol hue.  saturation 

and luminance are available for pseudo-coloring. 

Design of an 8 bit monochrome digital image display has been 

completed and is presently in the wire listing phase (prior to fabrication). 

The specifications of this system are: 

1. Receive asynchronous digital picture information from the 

ARPANET TIP with brightness resolution up to 256 leveU 

and at input rates up to 19. 2K baud; 

2. Include a function memory which can be used to translate the 

8 bit data words (from the refresh memory) with any desired 

transfer curve.    The function memory can be remotely pro- 

grammed from the TIP or by local switch control; 

3. Display a 256 x 256 eight bit image,  or a six or seven bit image 

and a one bit graphic overlay. 

4. Use an alphanumeric keyboard to communicate with the 

ARPANET TIP and also to generate alphanumeric char- 

acters on the display monitor. 

5. Output the monochrome video data and alphanumeric charac- 

ters in composite RF format so that it can be displayed on any 

TV receiver using its antenna input. 

I 

7. 2   Real Time Color Image Digital Recorder and Display 

Toyone Mayeda 

Design has been started on a real time image digital recorder and 

display system as shown in Figure 1.    The system will initially be designed 

to process an eight bit monochrome image, but eventually, will have the 

capability to process a color image using additional tracks of the recorder. 

The digital recorder and analog to digital converter have been ordered. 

With reference to the digital recorder in Figure 1.  the monochrome system 

operates in the following four modes: 

I.      In the 600 ips record mode, video from the monochrome TV 

camera is digitized at approximately 10 MHz by the A/D conver- 
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Figure 7. 2-1.    Real time image digital recorder and display. 
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ter and the eight digitized bits are selected.    A ninth 

channel, which consists of a continuous 16 bit sync 

word pattern, is distributed with the eight data channels 

and all nine channels are recorded. 

2. In the 1 7/8 ips playback mode, the nine   channels are aligned 

in the deskew buffer.    After the sync words are separated, the 

data in the eight   remaining channels are transferred to the 

controller to be processed. 

3. In the 1 7/8 ips record mode, the processed data from the 

controller is recorded with the sync word as in mode 1. 

4. In the 600 ips playback mode, the nine  channels are aligned 

and the sync words are separated as in mode 2.    The  eight 

remaining data channels are applied to a D/A converter and 

the output video data is displayed on a TV monitor. 

7. 3  Software Progress Report 
James Pepin 

In the last six months several important projects have been initiated 

by the programming staff.    The most visible is a new network timesharing 

monitor.    The second area of work is the interfacing of the Optronics 

scanner and digitizer.    A third area of effort has been in the front-end 

image processing system design.    Finally a PDP-11/10 has been added to 

the Image Processing Instite (IPI) hardware.    This machine well act as a 

front-end to the HP2100,   relieving it of some device control functions. 

The new netv/ork support has many invisible improvements as well 

as some that are at once apparant.    A password capability has been added 

to allow users data integrity.    This also will allow more awareness of who 

is using the system and what they are doing.   Another important feature 

added to the monitor is the capability to perform multi-tasking within the 

timesharing system itself.    This will allow implementation of some compli- 

cated network protocals without complex code in each program.    The system 

also has been made more efficient in its input/output and user swapping 

areas.    This improvement should be very noticeable in heavy loading situa- 
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tions.    Other improvements in this area include new and better help files. 

A file structure scheme has been implemented that will allow for faster and 

easier searches of HELP and other similar data bases. 

In December IPI received an Optronics microdensitomiter.    This 

device has required a large software effort for interfacing to the HP2100. 

This microdensitometer has mai y options that must be implemented by 

the computer so that a user can scan or display an image without detailed 

knowledge of the control logic. 

At the end of January the Institute received a PDP 11/10.    This 

computer will be used as a device controller to relieve the HP2100 of some 

of its controlling duties.    As it now stands the 2100 has to handle all the 

'bit watching- for the devices in the lab; with the addition of the 11/10 some of 

this task can be moved to the 11/10,  allowing the 2100 to be free to handle 

other tasks.    This technique will enable operation of two or more devices 

simultaneously. 

During the last six months the staff has been participating in several 

committees that have as their responsibility the formulation of the needs of 

the image processing community on the ARPA net.    There have been two 

areas of prime interest:   software requirements and hardware requirements. 

The software area investigation has lead to the conclusion that some sort of 

insulation is necessary between the average image processing user and the 

large machines on the net.    The approach taken is that a software package 

should be implemented that will present to the image processing user one 

command language.    This will allow the user to use any large machine 

while only learning the command for image processing.    Following this line 

of thought it follows that it would be desirable to have an image processing 

•front-end'.    This would be a computer system that would run this common 

language,   convert that into the Job Control of the proper machine,  and then 

send the JCL along with all pictures and other data needed to complete the 

user's task.    This system could also act as a conferencing tool for image 

processors and could be a common collection point for literature in the field. 

Various hardware and software approaches have been investigated. 
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