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1. Research Project Overview

This report describes the progress and results of the University
of Southern California image processing research study for the period of
1 September 1973 to 28 February 1974, The image processing research
study has been subdivided into five projccts:

Image Coding Projects

Image Restoration and Enhancement Projects
Image Data Extraction Projects

Image Analysis Projects

Image Processing Support Projects

In image coding the orientation of the research is toward the development

of digital image coding systems that represent monochrome and color images

with a ainimal number of code bits. Image restoration is the task of im-
proving the fidelity of an image in the sense of compensating for image de-
gradations. In image enhancement, picture manipulation processes are
performed to provide a more subjectively pleasing image or to convert the
image to @ Jorm more amenable to human or machine analysis. The objec-
tives of the image data extraction projects are the registration of images,
detection of objects within pictures and measurements of image features.
The image analysis projects comprise the background research effort
into the basic structure of images in order to develop meaningful quantita-
tive characterizations of an image. Finally, the image support projects
include research on irnage processing‘ computer languages and the develop-
ment of experimental equipment for the sensing, processing, and display
of images. ‘

The next section of this report summarizes some of the research
project activities during the past six months. Sections 3 to 7 describe the
research effort on the projects listed above during the reporting period.

Section 8 is a list of publications by project members,
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2. Research Project Activities

Significant research project activities of the past six months are
summarized below:

Alexander A, Sawchuk has heen appointed editor of the May-June

1974 issue of Optical Engineering, the journal of the Society of Photo-Optical
Instrumentation Engineers. This is a special issue devoted to optical and
digital image and information processing, and will contain more than eleven
papers discussing theory and applications of such systems, Topics in this
issue include: hybrid optical/digital systems using real-time input/output

devices; digital holograms for optical processing; and image processing of
synthetic aperture data.

Harry C. Andrews has been appointed guest »ditor of the May 1974
issue, of Computer, the journal of the IEEE Computer Society. The issue,
entitled "Computer Image Processing,' consists of seven p.\pers spanning
picture coding, image restoration, and digital image processing facilities
at Aerospace, EG&G, and AEC facilities. The issue will include photo-
graphic examples of computer processed images both in black and white as
well as in color. In addition to normal circulation, the issue is being over-

printed for additional distribution ai the NCC conference in Chicago.




3. Image Coding Projects

The research effort in image coding has been directed toward a wide
variety of applications. Coding systems are under investigation for: monochrome
and color imagery; slow scan and real time television; and information pre-
serving and controlled fidelity operation. Results of this research study
during the past six months are summarized here and presented in detail

in subsequent sections.

In the first report an interpolative data representation is utilized to
develop three image coding algorithms. One algorithm is based upon spatial
domain coding, another upon transform domain coding, and the third is a
hybrid coding scheme. Computational requirements for the algorithms are
specified and the image performance is evaluated for several pictorial

examples,

The next report describes the analyeis of logarithmic quantization
scales for monochrome image quantization. Quantization errors are

evaluated in terms of a model of the human visual process,

Spline functions, which are a special class of truncated polynomials,
are known to be quite accurate for the approximation of one dimensional
functions. Their use in image approximation for purposes of bandwidth

reduction is explored in the next report,

In the following two reports, the concept of transform domain spectrum
extrapo’ation and interpolation for image coding is investigated, With these
techniques, trana‘form coefficient quantization error can be reduced by
post-processing at the coder with a significant impr~vement in image

quality.

The last report considers extensions to the universal coding concept.
In particular, a rate distortion bound is established for coding image sources

with unknown probabilities.,

-3.




3.1 Image Coding via Two Dimensional Interpolative Representations

Anil K. Jain

For finite discrete signals, non-causal ""interpolative'' representations
may be used for coding. These non-causal representations lead to three

different coding algorithms in the spatial, hybrid and frequency domains.

Interpolative Modeling For simplicity in presentation, only the first

order stationary Markov signal will be considered. Let {ui}, B2 M SR

N, N+! represent such a signal with zero mean and autocorrelation given by

-5l
E[uiuj] = p (1)

Representation of a sequence {ui} denotes a relationship

2iu} = v, (2)
1 1

such that the sequence {ui} can be reconstructed from Ve For example

e Ml Sl ()
is the Markov representation of eq. (1) with

g 4

2 2
: E[v;] = (1-p7) (4)

It can be shown that the linear minimum mean square representation of

eq. (1) is given by

(5a)

(5b)

-pu,, = Vv (5¢)

Nt N N+l

2
This represcntation is such that E[vi] is minimum compared to all other

linear representations and is given by




| 2
24 A 2 [
E Elv;] = 8, - L) (6)
i 2
(1407)
{For a discussion of the correlation properties of A and generalization of

the above statement to non-stationary case see [1].) Also observe that

B: < Bf since 0 <p <1,

For a two dimensional zero mean discrete signal u,, with

_ lnl+|m]
E[uijui+n, j+m] ol

(7)

'""horizontal" and ''vertical' representations are defined as

u, - af

eh(l.J) T ui,j+1+ui,j-1) (8a)

ev(l,_]) uij = a(ui+1,j+ui-1,j) " (8b)

2
where a =p/(14p ). Then the representation
£, 0 8. veq +u +u + ) (9)
i @i T el M gen T %ysa0

2
is such that E[ei+ev'] i8 minimized, and

2
2 1-p7)
Ele;] = e (9a)
(1+p )
This is in contrast with the Markov representation of eq. (7) given by
2
uij & pui-l,j ¥ pui,j-l -p ui-l,j-l + e, (9b)

J
with

2 2.2
Ele..] = (1-p°) (9¢c) !
1)
; 2 2
Comparison between eqs. (9a) and (9¢c) shows that E[e’j]<E[eij | for !

0 <p =0.786, For values of p~ 1, the two values have small mean square

difference. Also, in eq. (9), the coefficient 'a' is relatively insensitive to

changes in image statistics (p parameter), In fact




2
da _ (l-p) (se) (10)

2
= (14+p°)

Therefore in the vicinity of p = 1, small changes in im=uge statistics will

not alter the performance of the interpolative representation.

Coding and Reconstruction Algorithms It should be recognized that

if the eij become observables in eq. (9), then this equation has to be solved
for reasons of stability) asaboundary value problem with end conditions

uO,j' “N+1,j 1,0 and u, i, N+1 known. For simplicity, it will be assumed
here that these quantities are zero,i.e., the picture under consideration is
imbedded in a dark background. One might question the validity of this
assumption in view of the stationary statistics of eq. (7); however, this
assumption is actually non-essential for the coding algorithms below.
Equation (9) can then be rewritten in vector form as

-Qu, 42w, , = -€,, (11)

2a
2 54l 772 Y-l j

)

where uj and ej now represent N x 1 column vectors of elements (ul., o T ’uNj
J

and (elj' o B eNj) respectively., The matrix Q is a symmetric tridiagonal

matrix given by the elements

1 i=]j
. = - 2 i-11 =1 12
QiJ { -a/ li-j] (12)
0 otherwise

Algorithm Al: (Spatial Domain Coding, Figure la)

1. Quantize and code € after obtaining it through eq. (9). Let

J denote the recewed signal,
l;

2, The reconstructed sequence uJ is obtained by solving

u' . = Ru*+s, u =0 13a)
j+l ido 0 (
-1
a
- .a = 1:
Rj-l ( > J) RN 0 (13b)
2 sk '
Sj-l x Rj-l(z ej + Sj) sy = 0 (13¢)

-6-
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c) Transform domain coding algorithm A3

Figure 3, 1.1 Image coding algorithma,




2
Eq. (13) can be solved in about (N log2 N) computations,

employing the structure of matrix Q. (1,2, 3]

Algorithm A2: (Hybrid Domain Coding, Figure lb)

I ; g . AN
1. Find ej —Tej, where T is an N X N matrix containing N+l Sm(N+l)
terms. It can be shown [3'\ that T is idempotent and diagonalizes

Q i.e,

TQT = A = {1 . i oGe I\;‘:l} (14)

2. Quantize éi' with the number of bits allocated for the ith row

1 -1 R A
e .
N+l , to obtain i

3. The reconstructed image u:':] is obtained by

being proportional to logll - cos

u¥ = TO¥ (15a)
j j
& E s & = 15b
Y+ T iUyt Sy o0 (15B)
-1
a a
= =\ -= = 1
ij-1 2 ( i 2 ru) rt,N ¢ (e
s = r Eg* + 8 s, =9 (15d)
ij-1 i, 5-10\a Tij T i iN ~ |
A it
and )‘i =1-acos N+l

Again eq. (15) requires about (N2 log2 N) computations.

Algorithm A3: (Transform Domain Coding, Figure lc)

1. Ifeis N XN matrix of element eij’ then first find

~

m

= TeT (16)

2. Quantize éij by allocai ng s bits to it such that
1

=]
nija log(ui + uj) (17)
wheTe . 21 - 23 comf=i i=1 N (17a)
i - co N+1 1= 900 0 .

e




N e——— T Ve, e

3. The reconstructed image is given by

{u;:::j} = U* = TU™T (18)
. 28

and a,, = —L (18a)
o,

References [1, 27 provide details and generalizations,

Examples, Implementation and Computational Considerations Algorithms

AZ and A3 have been simulated for the 256 X 256 pixel girl image of fig. 2a,
The average value of p for this pict:re is 0.96. In all the simulations the
actual value used was p = 1, The difference in eij for these two values,
visually and quantitatively (in terms of Zef,) both was insignificant.

Figure 2b shows the display cof |€ij l. Figure 2c contains the encoded image
according to algorithm A2 with 3 bits/pixel on the average using a uniform
quantizer. The entropy of the quantized signal £€* was actually 2, 35 bits, so
that a variable length Huffman code could be employed to obtain the same
image with 2.35 bits/pixel. Figure 2d shows the quantized léul signal
according to algorithm A3 and bit rate of 1 bit/pixel. Figures 2e and 2f

show the encoded images for 1 and 1,47 bits/pixel.

It can be shown that the total computational load in each algorithm is
of the same order. In algorithm Al, the memory and computational require-
ments on the transmitter are minimal and the major computational burden is
at the receiver. In algorithm A2, the total processing burden is roughly
divided in a 1:2 ratio (the transmitter needs to take a one sided transform
and the receiver solves scalar interpolative equations and takes an inverse
transform). In algorithm A3, the processing load is rouéhly equally divided
between the transmitter and the receiver. Thus the three algorithms obtained
via a single representation spell out three different communication system
architectures, and their relative use therefore depends on the particular
application, In this sense the interpolative representation leads to a

unification of some of the different methods of image coding employed

currently,




(c) hybrid domain encoded image (d) quantized signal |‘€‘*l

(e) encoded image 1 bit/pixel (f) encoded image 1.47 bits/pixel

Figure 3.1-2, Image coding results via interpolative model.

-10-




Finally, it should be remarked that the representation used here is
but one member of a class of similar non-causal and semicausal repre-
sentations. The representation reported here corresponds to a discrete
version of the Poisson equation (V’2 u=€), The relative merits of other

representations is currently under study and will be reported in the future.

References
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2, A. K. Jain, "Image Modelling for Unification of Transform and
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Conference, Chicago, Illinois, Oct. 1973,

3. A. K. Jain and E. Angel, "Image Restoration, Modelling and

Reduction of Dimensionality, "' (to appear in the IEEE Transactions
on Computers),

3.2 Optimal Logarithmic Quantization for Picture Processing

Francis Kretz and Werner Frei ]

An optimal quantization law for image intensities for television monitor
display of digitized and prc-essed images has been considered, Also, the

effects of '"brightness'' adjustments for televisiondisplays has been analyzed,

Subjective Criterion A possible subjective criterion for quantization

distortion is to postulate that the decision and reconstruction levels should

be perceptually equi-distant. Since it is well known that the perception of
intensity is a concave,monotomically increasing function of light intensity

]
3
A(I), an optimal quantizer in the above sense can be derived from A(I) as {

. .ruN
Q(I) = intf(2 -l)A(I/Imax)] (1) %

where int[-] denotes the nearest integer (0 < Q < ZN-l) of the argument,

N is the number of bits of the quantizer, and A(I) is normalized so that

A(0) = 0, A(1l) =1




Various functions for A(I) such as the square and cube rceot, polynomials
and logarithms have been proposed to fit experimental perceptual data [l]
The parameters and range of validity of these functions depend very much
upon the experimental conditions under which the data was obtained. In

particular, background illumination has a strong influence on A(I).

In the case of t:levision displays, the range of intensities is fairly
well defined (about two orders of magnitude), but the background illumination
for each pixel is a complex, more or less random field (the image itself).
Since one desires to design one quantizer for all pixels of an image, the

parameters of A(I) will be the result of some compromise.

Experiments have been carried out to determine the optimal slope

at the origin of the A-function

AI) = b 1°g10(1 +1/a) (2)

where

-1
b = (loglo(l + a})
with A(0) = 0 and A(1) =1, For this A-function the slope at the origin is

b

A'(O) = ——_—a loge(IO)

In the first set of experiment, a ramp of intensities was quantized

according to eqs. (1) and (2), generating a set of grey scales with A'(0) =

4.4, 6.3, 8,0, 11,3, 16,1, 19,7, 22,9, 29.9 (from top to bottom, respectively
in figure la (N = 4) and figure lb (N = 3 and 5 bits). Then the parameter

A'(0) was chosen corresponding to the scale with the most uniform subjective
spacing of intensities over the entire range. It should be pointed out that the
figures reproduced here have been subjected tc a series of distortions

inherent to the lithographic process. Several observers viewing the TV

monitor preferred A'(0) = 16 (slightly steeper thun the Richter scale, see [1]).

-12-
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(b) 8- and 32- level logarithmic grey scales

Figure 3.2-1. Logarithmic grey scale.
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In the second experiment, two images (the SMPTE ''couple' and '"girl'")
were coarsely quantized (N = 4 bits per pixel) in order to verify both the
postulate regarding the quality criterion and the optimal slope determined
in the previous experiment, Figures 2 and 3 show the respective original
images and a set of logarithmically quantized versions with different para-
meters A'(0). For comparison, linearly quantized versions with four and

five bits are included,

The second experiment shows that the optimal parameter A'(0} depends
on the picture content. Note that a small value of A'(0) tends to create large
subjective increments in dark areas and vice-versa. It is observed that the
very small optimal value of A'(0) for the ''girl' picture is a consequence of
the unusually rare occurrence of low intensities. In fact, the histogram of
the "girl" picture has a maximum at about 20% intensity. The ''couple"

picture has a more typical negative exponential-like histogram and the

optimal slope A'(0) = 16 is the same as determined in the first experiment.

Minimum square error quantization laws for sources with given ampli-
tude probabilities have been studied [2,37. Assuming a probability density
function of the form p(I) = k exp(-al), the MSE quantization law follows a
concave monotomically increasing function of I quite similar to A(I). The

agreement between both criteria is presently being studied in more detail.

Practical Considerations In typical computer imag: processing

environments, images are usually scanned and quantized linearly, It
obviously makes little sense to coarsely requantize. The results of this

study are therefore primarily relevant to scanner or coding hardware.

Comparing the quality of linearly and logarithmically quantized images,
one sees that one bit at least out of five, possibly two out of eight can be saved

with appropriate quantization, which represents a 20-25% bandwidth reduction,

or storage saving, whichever is relevant,




3
|

(c) PCM 4 bits linear (d) PCM log. 4 bits A'(0)=6.3

(e) PCM log. 4 bits A'(0)=16.1 (f) PCM log. 4 bits A'(0)=22.9

Figure 3.2-2. Examples of grey scale quantization of ""couple'’ picture.
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I_. (a) original

(d)PCM log. 4 bits A'(0)=4.4

(e) PCM log. 4 bits N'(0)=6.3 (f) PCM log. 4 bits A'(0)=16.1

i e - e e . o

Figure 3.2-3. Examples of grey scale quantization of ''girl" picture.
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In the context of hardware considerations, the influence of the "bright-

ness' control of a television monitor has been analyzed, Let u be the signal
applied to the grid of the cathode ray tube (CRT), U0 the CRT cut-off voltage,
U1 the bias voltage (controlled by the "brightness' setting) and v the intensity
to be displayed. The light intensity of the CRT is proportional to

. Y T
I = (u+U0+Ul) u+ JQ+U1>0

I =0 u+U0+Ul <0

The Y correction is carried out by letting

1/y

u=klv

where kl is a constant. An incorrect setting of the brightness control
U0+Ul = AU # 0 does not simply reduce the useful dynamic range of the

display. It also upsets the linearity of the gamma-corrected transfer

function

1/y

I= kv 'Vsam’

1
Since the eye is very sensitive to errors at low intensities, the effect of
Al 18 quite severe for the lower levels. Figure 4a shows the overall transfer

iv.scvion A(W) where w represents the physiologically companded intensitie s

v = a [exp(il) - l'|
and

A = blog(l +1/a)

as shown in figure 4b, These results indicate the importance of brightness
adjustients. A well designed hardware system should have an automatic

video clamping circuit controlled by the D/A converter, such that AU is set

to zero when a digital zero is read.

P T TR s




CRT Saturation —f

AU=+10%(u

l'l'Il:Il."l

nu=0/

/ X CRT CUt"‘Uff7

/
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10 % ( Um,)

v 7
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w

(a) influence of brightness control on overall perceptual system,

V[GAMMA™ | U [BRIGHTNESS

u+U +U

CORRECTION CONTROL
\ Jau
*uniform perception” spaces

(b) perceptual system block diagram,

Figure 3,2-4, Subjective effect of brightness control.
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3.3 Image Data Compression Using Spline Functions

Faramaz Davarian

Spi...e functions can be used to simultaneously comprees and interpolate
a given set of data, Among different sets of bases spanning the space of
splines, the B-splines are most suitable, since they possess a local basis

property and result in matrices which are easily invertable.

A dimensionality and subsequent bandwidth reduction can be achieved ly
a least squares fit of n points using m (m Sn) basis functions. In essence,
the data compression method is simply a transformation of the n-dimensional
space of data points into a smaller m-dimensional spline space. It is note-
worthy that elements of the m-dimensional spline space will directly generate
the continuous estimate of the original signal rather than the sampled estimate,
The method is described below along with a study of the statistical properties

of the transform domain.

Definition of Spline Functions Given a strictly increasing sequence

of real numbers, tl' tZ' 5 0 O tn' a spline function S(x) of degree m with
knots tl',tZ' 55 tn is a function defined on the real line having the following
two properties:
i) In each interval (ti, ti+l) fori=o0,1,..., n-1, S(x) is given by some
polynomial of degree m or less.
ii) S(x) an! its derivatives of order 1,2,...,,m-1 are continuous on
[tl , tn] :
Thus, a spline function is a piecewise polynomial function satisfying certain

conditions regarding continuity of the function and its derivatives,




It is generally believed that in many circumstances a spline function
is a more adaptable approximating function than a polynomial. This is based
in part on actual numerical experience, and in part on mathematical demon-
strations that solutions of a variety of problems of best approximation turn
out to be spline functions. A spline function may be defined in terms of a

truncated power function

y) (x't)z (x >t)

0 (x <t)

It is easily seen that [l] any spline of degree 1 with knots tl,tz, 00 ,'cn

has a unique representation of the form

n

£
S = P y - t,
(x) (x) +J};1 e lx - t),

where P(x) is a polynomial of degree £ or less, The above representation
of a spline function normally results in an ill conditioned set of linei.r
equations. To overcome this deficiency it is possible to introduce a new

set of local basis functions for the space of splines [2]

The preceeding considerations lead to the B-splines studied by
Schoenberg [3], which are in a sense, the splines of minimal support for
a given degree (consisting of the smallest possible number of intervals

between knots). Figure 1l illustrates the typical shape of a B-sgpline function.

Data Compression by Least Squares Method Given a set of data pairs

(ti’yi) fori=1,2,.,.,n, which canbe interpolated as digitized values of the
points of the graph y = f(t), let the unknown function f(x) be approximated by
a linear combination of suitably chosen functions Ml(t), Mz(t), Ll Mm(t)

which are the basis splines. ™ Then

fit) = clMl(t) +c t) +... + cmMm(t)

ZMZ

*My, MZ’ L Mm form a complete set of bases for the space of m data points
(m dimensional). This basis can interpolate m data elements exactly.




f

t,t

bl i+l

Figure 3.3-1. Typical shape of a B-spline.




where the unknown coefficients C1sCprees,C are independent parameters
m

to be determined, and m <n. To minimize the mean square approximation

error
2 12
Q = Llrey -y < [EX emie) - v]

differentiate Q with respect to a, and set the result to zero to obtain

r =9 zZ{Zc.M.(t.)-y.}M (t,) = 0 k=12,...,m
: Bck 1 V) 551 iJ ki
or

ZJ: e, ; My (M () - 21: yM (£) = 0

In matrix form

1 [21: MiMlJ [e, ] = [21: YiMk(ti)]

or
B'BCc - By
where
T
I = [Y11Y21Y3""Yn.]
T
C = [cl,cz,...,cm]
Ml(tl) Ml(tz) e 3K B S e o g Ml(tn)
T Mz(tl) Mz(tz) e o o o o o o o o Mz(tn)

]
L ]
e R

M_(t,) e et s s s e a0 e s e e e M (t) %
m 1 m n

with Mi(ti+j) =0, for |j|Zp. Thus, B has many zero value off diagonal

entries., The vector of weighting coefficients is then ‘
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8" = 8T

1T
B) B

is the pseudoinverse matrix of B. Note that n elements of data vector Yy

are mapped into m elements of the C vector, which, represents the coefficients

of m spline basis functions.
The estimate of f(t) is then
f(t) = clMl(t) + cZMZ(t) +. ..+cmMm(t)
fit.) = Y e.M,(t) i=1,...,n
('l ‘J‘: J J( 1
Let
. A 2 T
y = [F(ti). ..F(tn)]
=BC =BBB By
The error vector £ can then be expressed as

T -1_T
nxn - BB B) By

e=y-y=[1I

Statistical Properties of B-Spline Coefficients

if the data vector y
is modeled as a sample of a vector random process with known mean, E{y],

and known covariance, K , the B-spline coefficients given by

c =3By

are also random. Their mean and covariance are

E{C) = E{B"y) = B'E})
and

e{cc™} - Bk %7
cecl-3K B

If the data vector Y is considered a sample of Markov process with a

correlation coefficient of p (0 <p <1) between each adjacent pixels and

e
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Figures 2a and 2b contain two plots of the variance function of c.asa function

of i, where c, is the ith element of C. The plots are obtained with N = M = 16,
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3.4 Positive Extrapolation of Signals and Images

Ali Habibi, Firouz Naderi

In a transform coding system a bandwidth reduction is achieved by
discarding a number of transform coefficients of a natural image, Those
coefficients possessing a small variance are of low information content, and
replacing them by zeros at the receiver results in a rather sniall degradation
in the quality of the encoded signal. The customary approach in designing
transform coding systems has been to substitute the missing coefficients at
the receiver with zeros. However, the quality of the coded signal improves
by extrapolation of the missing coefficients from those which have been trans-

mitted, The probiem is analogous to one encountered in spectral estimation
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of data where the covariance function is first estimated for a number of lag
values, then the covariance function at the available lag values is extrapolated
for additional lag values prior to taking its Fourier transform. The

extrapolation problem as applied to transform coding is more complicated,

In transform coding only the quantized values of the coefficients are available
at the receiver; thus, one is forced to estimate the missing components of

the transformed data from the available possaibly noisy components.

This problem has been analyzed using two different approaches. The
first approach is statistical and is based upon the correlation among the
transformed components using suboptimal transforms such as the Fourier,
Hadamard, and Slant transforms. The second approach is called
positive extrapolation since it is based upon the positiveness of the video
data and the fact that the Toeplitz matrix constructed from the Fourier

coefficients of a positive, real signal is always positive definite.

Extrapolation of Signals Let F(0), F(1l),..., F(N) refer to the first N+1

components of vector F, the Fourier transform of one line of a video data,
which is composed of M points. To make F real one must generate an even
function by first reflecting the video data about the t = 0 axis and then taking

a Fourier transform of the even signal,

Now consider the Toeplitz matrix T(N+1) defined as

F(0) F(l) ... F(N) F(N+1)
T(N+1) = F(1l) F(l) ... F(N-1) F(N) (1)
.F(N+l) .F(N) coe .F(l) .F(O)

Since the modified video data is positive and even, and the real matrix
T(N+41) is semipositive definite, it follows that the determinant of T(N+1)
as a function of F(N+1) has a single maximum. Hence the allowable values

of F(N+1) are those that make the determinant of T(N+1) equal to zero and




all values in between. Expanding the determinant of T(n+l) in terms of

the last row and the last column gives an expression for the determinant of
T(N+l) in terms of F(0), F(1),..., F(N+1), Since F(0), F(l),...,F(N) are
known, this is an expression for the determinant of T(N+1) in terms of
F(N+1), Choosing F(N+1) to maximize the determinant of T(N+1) gives a
recursive algorithm to estimate F(N+1) from F(0), F(1),..., F(N). The
recursive algorithm can be used further to estimate F(N+2) from F(),...,

F(N) and ithe estimated value of F(N+1) i, e.

F(j) = AMF(lj-k]) for j=N+1,...M-1 (2)

M=

where A(k), k=1,,..,N, are a set of fixed constants specified by matrix

T(N+1).

Extrapolation of Images The positive extrapolation technique discussed

! for one-dimensional signals in the previous section can be generalized to
extrapolate two-dimensional spectral density functions as well as two-

dimensional Fourier transform of images. This is achieved by extending

eq. (2) to functions of two variables by letting
N N
F(i,j) = Z ;_;A(k.fzmh-zl. lj-x ) fori,j=0,1,...,M-1 (3)
k=1 %=

where F(i, j) is the two-dimensional discrete Fourier transform of the image
and consists of M2 elements. At the receiver site (N+l)2 elements are
available and these (N+l)2 elements are used to extrapolate the missing
elements prior to taking the inverse Fourier transform to obtain a re-

construction of the original image. Analogous to the one-dimensional

system, the original picture is first folded along the x = 0 and y = 0 axes
to generate an even two-dimensional array. This is required to make F(i, j) 1
an array of real elements. Solving eq. (3) for A(k,%) is straightforward ;

2
since N+1) values of F(i, j) are known. l
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Experimental Results The performance of the positive extrapolation

methods described above has been considered for a number of examples.

The one-dimensional example is a discrete signal of 32 samples that consists
of a pulse superimposed over a slowly varying background. The discrete
Fourier transform of this signal is calculated and all but the first eight
samples substituted by zeros. The inverse Fourier transform of the truncated
signal and the original signal are shown on Figure 1., The truncated signal

in the transform domain is then extrapolated to recover all 22 components.
The inverse transform of the extrapolated signal is also shown on Figure 1.
The extrapolated signal remains positive as expected and tracks the original

signal significantly closer than the unextrapolated signal.

Figures 2 and 3 contain examples of posit've extrapolation for a discrete

(sin x/x)(sin y/y) signal and a block pulse signa., respectively. In each case

the Fourier transform has been truncated preserving the transform samples
in a 3 X 3 low frequency block out of a total of 15 x 15 coetii~ients. The
positive extrapolation process is seen to provide a significant improvement

over the reconstruction without extrapolation.

3.5 Transform Domain Spectrum Interpolation

Michael N. Huhns

Quantization occurs whenever continuous physical properties are
represented numerically. A quantizer is a zero-memory nonlinear device
which restricts an input variable to a firite number of possible output
regions, This process is irreversible and information is invariably
destroyed since only the region containing the input is known at the output.
However this output data can be combined with a priori knowledge about
the input to reduce the amount of information lost by interpolating between

the discrete outputs.

In transform image coding a block of image pixels undergoes a two

dimensional transformation using a unitary transform such as the Fourier,
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Figure 3,4-2, The original, un-extrapolated and the extrapolated

two-dimensional Signals. Reduction ratio is L)
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(a) Original

(c) Extrapolated

Figure 3,4-3, The original, un-extrapolated and the extrapolated

two-dimensional Signals. Reduction ratio is%‘z .
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Hadamard, or Slant transform. Next, the transform coefficients are
quantized and coded for transmission. Figure 1 illustrates a typical bit
assignment for a zonal quantization and coding algorithm. The number of

quantization levels assigned to the coefficient at coordinate (u, v) is

\
zb(u, v}

M(u,v) = (1)

where b(u, v) denotes the bit assignment, At the receiver, the quantized
coefficients are reconstructed and an inverse transformation is performed

to obtain an image estimate.

If a transform coefficient is quantized to zero bits, then its restoration
is equivalent to a spectrum extrapolation as outlined by Pratt [l] . Those
coefficients that are quantized to two or more levels can also be restored by

a technique called spectrum interpolation.

Analysis Le: the N element column vector x with probability density
px(zc_) denote a vector of input data samples. For two-dimensional data arrays,
x is formed by column scanning the data array, Each data sample is quantized
into one of M output regions, denoted by Di' i=1,2,...,M. The estimated
value of xbased upon the observed Di regions is the quantizer output vector
Y The average error in this estimate is then defined as

M

8 = 21 j'D. e(x-y,)p, (x)dx 2)
1= 1

where e(.) is an arbitrary error weighting criterion. The vector of estimates
Y, should be chosen to minimize the average error. This choice can be

determined by utilizing the principles of calculus to find the stationary

points of the error surface é with respect to each Y, Hence

o8 d
e - By le(x-y.) Ip_(x)dx i=1.2,...,M (3
a L J‘D a!- X

i

=32 =

R —




2

8753332211111111
8653321111111111
8643221111111111
7432111100000000
7432111100000000
64211100006000000
6421110000C9020000
6421110000000000
6421110000000000
5321110000000000

L2
5321110000000000

"
£

8888887766665555
8887664444443 333
5321110000000000
5321110000000000

8875543322222

o
=}
£
e
oo
el
)]
0
o
-
ot
o]
ob
=l
ord
N
ot
ey
o
3
o
=}
ol
£
..m
S
1]
(=}
o
*
ey
—
o
(3}
o
a
>
B

Figure 3.5-1,




Sk st e a

with the assumption that the error function e(-) is differentiable. Solving

eq. (3) for the quadratic error criterion

e(x-y.) = Tr{(z-xi)(z-y_.l)'r} (4)
one obtains
de
E = -2(x - zi) (5)
which implies that
f (x-y.)p (x)dx = 0 i=l,2,000,M (6)

D,
i

Rearrangement reveals

JD xp_(x)dx
xi = i i=1,2,...,M (7)
J Px(i)di
or Di
% & E{5|5eDi} (8)

This is an expression for the best nonlinear mean square estimate of x,

given that x lies within region Di'

Now assume that x is distributed according to a Gaussian probability
density function
(x) = Kex {-leC-lx] (9)
Pyl& P2t 2. &
where Ex is the covariance matrix of x and the mean is assumed to be

zero, Also let

D, = fxilxje[aj,bj)] j=1,2,...,N (10)

Then

B e
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o

I_ xK expf{ -%ETE;IE] dx

(11)

y, =

-1
K exp{ -%§T£x x}dx

INL—TU I®

Curry [2] has solved this equation for finely quantized values of xj, i.e.

b, - a. <o, j=1,2,...,N 12
5 s i, j ’ (12)

where oj is the standard deviation of the jth component of x. His approach
is to approximate the Gaussian density by the first three terms of its Taylor
series expansion about the midpoint of the region Di' The integration can

then be performed, with the result that

=l ==
E{x|xeD} = (L-5C ) - (13)
where
2
(b,-a)
é =i 12 6kj$ k,J=l,2,...,N (14)

An exact solution can be obtained when the components of x are un-

correlated., In this case the covariance matrix can be expressed as

2 .
gx - {ojbkj} k’J— 1!2’°°'DN (15)

and much computation reveals that

.
2, 2 2, 2
ol(e'b1/2°1 _oma1/20Y,

i
5

. (16)
2 2 2 2
(e-bN/ZoN ) aN/ZoN)
N
erf bN erf aN
J?ON B 2 o
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Gaussian variables which had been decorrelated by means of a Karhunen-Loeve
transformation and then quantized could be restored according to a minimum

mean square error criterion by utilizing this last equation.

An exact analytical solution to eq. (11) also exists when an estimate

of a single vector component, x,, is desired based upon two types of inform-

N
ation -- (a) the other components, XysXypeee, xN-l' which are known

completely (quantized with an infinite number of bits); (b) the quantizer output

which nonlinearly specifies the interval containing XN To derive this, consider

= = = = . < <
¥ E{ilxl Br Xy TByeen, Xy | TAG Ay Jﬁqu} (17)

2 s
I g exp --%(al. cedy X )C : dx
D, : e
! AN-1 N-1

o

| )
bN " 1
J; ; exp ,_(a cesdy lxN)_(_Z_x d.xN

or

in
m

exp }J-3(a....a XN v
rD. { "1 N-1 .
i a

or

B e

X

= (19)
4 b

I exp | -%(al...aN XN )C dx.

°N

-1
Now denote the elements of (gx) by
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r r L) rNN

. . P . N
If xN is quantized to an infinite number of bits, then Yi = aN = bN,
as expected. If xN is quantized to zero bits, its interval is the real line

(-a.N = bN = @), and then its estimate, y?, is
N-1
;? = - rl 2 ajer (22)
NN j:l

This result is identical to that obtained by Pratt [1] in estimating an
unknown spectral value based on known spectral components, However

eq. (20) is a more general result in that it can be utilized to estimate
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components that have been quantized to any number of bits by an arbitrary

quantization scheme,

Transform Domain Spectrum Interpolation The above solution is

applicable to the mean square restc ution of zonal coded transform samples.
In this case, the transform samples have a Gaussian distribution, since each
is the sum of a large number of random variables so that the central limit
theorem can be invoked. These transform samples are typically quantized
according to a bit assignment such as the one shown in Figure 1. For such

a quantizing scheme, only eq. (16) can be utilized directly for restoration;
however this equation ignores the known correlation existing between the
samples. Curry's methed of eq. (13) is unable to restore samples quantized
to fewer than two bits, However, for greater bit assignments, it has the
advantage of providing a simultaneous solution utilizing all the available
information, The technique developed in eqs. (17) to (21) avoids the above
difficulties, but requires a recursive solution which may be only asymptotically
optimal (further analysis is expected to establish this). Therefore the best
restoration, on the basis of optimality and ease of implementation, is obtained
from a combination of the solutions presented above and must be adapted to
the particular quantizer used. This technique will soon be applied to zonal
transform coded images. It is anticipated that the resultant image will have

a lower mean square error and improved subjective quality.
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3.6 Variable Rate Image Coding for Sources with Unknown Probabilities

Lee D, Davisson

The averase distortion of image encoding at a fixed rate subject to a

-38-




fidelity criterion depends upon an actual statistical source index 8, in effect,
the actual stationary ergodic source model for the image to be encoded. Thus
distortion is a random variable over the ensemble with distribution given by
the distribution of the parameter 9, i,e. the class of pocsible images, In

many applications it may be more desirable to allow the coding rate to depend
on 6 while holding the average distortion fixed over the ensemble. This is
the case, for example, when the image is to be stored or a variable trans-

mission rate exists due to the multiplexing of many messages, e.g. the

ARPANET.

A coding theorem has been established for the special case of a finite
nurnber of subsources, 6=1,2,..,,, K, in the ensemble. The theorem holds
for noncountable ensembles as well, but the proof is considerably more
involved. In addition, it is assumed that there is a maximum distortion

value, pM

For each value of k, generate a set of codewords according to the
usual coding theorem for stationary, ergodic sources. If R (D) is the rate
distortion function in bits of the k L subsource, and D is the deeured value

of average distortion, each code will contain Lk codewords where

log Lk = (N(Rk(D-e) +¢€) (1)

and € is an arbitrary positive constant with the blocksize chosen large
enough so that the average distortion is D-¢ for all 6, and so that the

probability that there is no codeword with distortion less than D-¢/2 is
less than €/2 pM

The coded representation of each of the Lk codewords generated for

each k consists of two parts. The first part is the fixed length binary
number equal to k-1, k = 1,2,,..,,K using at most log K+1 bits to identify
the codeword. The second <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>