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EVACUATION OP A YULE PROCESS WITH IMMIGRATION 

by 

Mark Brown, Sheldon Ross, Richard Shorrock 

1.  Introduction 

In the second section of this paper we obtain a 

correspondence between the joint distribution of the epochs 

of birth in a Yule process and the order statistics of a 

sequence of independent and identically distributed (i.i.d.) 

exponential random variables. This correspondence is then 

used to obtain simple proofs of some Yule process results. 

In particular a simple proof of a result due to Neuts and 

Resnick [1] concerning the conditional distribution of the 

birth epochs given the number of such epochs in (o,t) is 

presented. 

In the final three sections we deal with the problem 

that motivated this paper. .Namely if a population of indi- 

viduals arrives at a contaminated geographical area in accord 

with a Yule process with immigration, and if all people in 

the area are to be evacuated at time T because of th3 

unhealthy conditions in the area, then if we are allowed an 

additional evacuation time in (0,T) how can we choose it in 

an optimal manner? 

-1- 
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2.  The Yule Process 

The Yule process is a pure birth process with 

birth parameters A . ■> jX, j ^ 0 . In other words, each 

individual in the population independently gives birth 

in accordance with an exponential distribution with rate A 

We assume that there is a single person in the population 

at time t=0, Define T.# i > 1, to be the time of the 

i-th birth, and let N(t)  equal the number of births in 

(oft). 

Let Xw ... , X.  be k i.i.d. exponential 

random variables with rate X and let X (i) 
equal the 

i-th smallest of X.,...,X.     for i*l,...,k .  It directly 

follows, from the lack of memory of exponential random 

variables, that 

(C) Tl'T2"*"Tk 

has the same joint distribution as 

(C) X(k)"X(k-l)'X(k)'X(k-2)"*"X(k), 

We shall refer to this fact as the correspondence C. 

As an application of the correspondence we note that 

k 
PCT^ < t) - P{x(k) < t} - [l-e"xtG 

-  - i       I   l  IJi 
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and thus 

P{N(t)   « k)  = P{N(t)   > k}  - P{N(t)   >  k + 1} 

= P{Tk <  t}  -  P{Tk+1  <   t} 

■Xt  [l - e-^]1 

which, of course, is just the well known result that the 

transition probabilities in the Yule process are given by 

'iW'' ■ e"xt &--xt3 

i, 

It easily follows from the above that 

lim P{e'Xt N(t) > x} « e"x 

and, in fact, it can be shown, by regarding Tk as a 

weighted sum of i.i.d. exponential random variables, that 

T.,/log k -»- i with probability 1, and this can easily be 

shown to yield that 

log N (t) „, x with probabiiity i. 

The correspondence C immediately yields the 

following 

Proposition li Given T.»^^,.. .#Tk-1 have the same 

joint distribution as the order statistics from a sample 

-.. . 
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of k-1 i.i.d. random variables having density function 

f(x) Xe -X(t-x) 

1-e -Xt 
0 < x < t 

otherwise 

Proof; From the correspondence C we note that the 

conditional distribution of Ti",,'Tv_i 9iven T.=t 

is the same as the conditional distribution of 

t-x.,,*,... t-X.,*  given t-X.j*. As f(x)  is just 

the conditional density of t-Y given that Y < t, 

where Y is em exponential random variable with rate X, 

the result follows. 

While Proposition 1 yields the conditional dis- 

tribution of times of birth given T. «t, it is more 

useful to obtain their conditional distribution given 

information about N(t).  To obtain this, note that the 

conditional distribution of T.+1 given NCU-k/T.,... fT. 

is the same as the conditional distribution of T.+1 

given N{t)»k. Therefore, given NCO-k, ^+1 ^a 

conditionally independent of T.,...^. , and thus the 

conditional distribution of T^,,.,,T^    given N{t)«k 

and T. .^t is the same as the conditional distribution 

of Tnf*,T^   given N(t)=k. Hence, as the event that 

N(t)»k and T.+i"t is, with probability 1, equivalent to 

the event that Tv+i't' we obtain from Proposition 1. 

■ 
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Propositlon 2:    Given NCt^krTw ... ,Tk are distributed 

as the order statistics from a sample of size k from a 

population having density 

-X(t-x) 
f(x) ^j

X* Xt 

1-e 

0 

0 < x < -1 

otherwise 

Proposition 2 can be used in establishing re- 

sults about the Yule process in the same way that the 

corresponding result for Poisson Processes is used.  For 

example, consider the random variable Y(t)  defined by 

N{t) 
V(t) - I      g^t-T.) 

1-1  1   1 

where gj(*)f 1 >. 1» are i.i.d. random functions that 

are independent of the Yule process.  (Yule shot noise 

would probably be an appropriate name for the stochastic 

process {Y(t), t > 0}). Letting ^(u) = E eiuY(t)J 

be the characteristic function of Y(t), we obtain 

^(u) by conditioning on N(t) as follows. 

..[e1»1"*»] - z[t[. ^C
iMM\Mt) «]} 

Nowr since given N(t)«kf the unordered set  {T.,...,! } 

are distributed as i.i.d. random variables with density 

\ 
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glven in Proposition 2 it follows that 

E >Y(t'|N(t).k] - M^ /' e-^^1"*,,^, dx" 

r  x      ft 
e"Xlt *g(x) ' u)   dx 

where 

*g(x)(u)   -E 'eiug (x) 

Hence, 

*.   (u)  - e -Xt l [rxe"x^(x)(u>dxi J 

-Xt e 

l-jt Xe-Xx ^,v,(u)  dx 'g(x) 

Differentiation yields, assuming the moments exist, that 

E[Y(t)l = XeXt /t e"^ E[g(x)l dx 

Var[Y(t)l = XeXt /t e'Xx E[g2(x)] dx + X2e2Xt 

o 
/ e"XxEtg(x)]dx 
o 

-.2 
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3.  Optimal Evacuation of a Yule Process with Immigration 

Individuals arrive at  a geographical area that is 

initially empty, in accordance with a pure birth process 

with birth parameters  X.=jX+e, j^O.  Due to contami- 
■* ■ ■ ' . 

nation, this geographical area is unsafe for its population 

and at some fixed time T in the future everyone in the 

area will be evacuated and no further immigration will he 

allowed. 

If an individual spends a total time of x units in 

the area before being evacuated then let us suppose that a 

cost of g(x)  is incurred (by society). We are interested 

in deriving an expression for the total expected cost incur- 

red by time T. To do so let us at first assume that a 

single individual is present at time t=o and that the im- 

migration parameter  6 equals 0.  In this case, we have by 

(2)  that the expected cost incurred by time T is 

T 

C,{T)=  g(T) + XeXT / e'Xx g(x) dx 
■L 0 

When there is a single individual present at time 0 but 

6^0 then, since each immigrant can be thought of as 

starting his own Yule process when he arrives, we obtain by 

conditioning on the total number of immigrants that arrive 

in  (0,T)  that €2(7), the expected cost incurred, is given 

by 
T 

C0(T) - C, (T) + 9 T / C. (T - x)  ^ 
2      1 ^1        T 

  ,■-"-■■■ —- 
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C, (T) + 9 / C. (T - x) dx 
1       0 i 

Finally, when there is no one present at time t=o, we 

obtain, by conditioning on the arrival time of the initial 

immigrant, that the total expected cost incurred is 

C(T) » / C,(T - s) 6 e -es ds 

In the special case in which the loss incurred is equal to 

the time spent in the contaminated area, i.e., in the case 

g(x) = x, a simple computation yields that 

C(T)  = ^  [eXT -XT -  1] 
X^ 

when    g(x) 

, A    m mmmmm 
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nation, this geographical area is unsafe for its population 
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area will be evacuated and no further immigration will be 

allowed.. ' 
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When there is a single individual present at time 0 but 

9^0 then, since each immigrant can be thought of as 

starting his own Yule process when he arrives, we obtain by 
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■ ■ ~W 



*r ^wm T$ 

-8- 

C, (T) + 8 / C.(T - x) dx 
1       0 1 

Finally, when there is no one present at time t^o, we 

obtain, by conditioning on the arrival time of the initial 

immigrant, that the total expected cost incurred is 

C(T) / C,(T - s) 6 e -es ds 

In the special case in which the loss incurred is equal to 

the time spent in the contaminated area, i.e., in the case 

g(x) = x, a simple computation yields that 

C(T) - ~ (eXT -XT - 1] when g (x) 

• 1 ^Bbl m - m rtMM  g^~~ & 
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4.  Optimal Intermediate Evacuation Time 

Suppose now that an Intermediate evacuation time T , 

0 £ T < T, at which time everyone present in the area would 

be evacuated, is to be chosen. The area would then again 

fill up with individuals between times x and T, and, at 

T, the final evacuation would be made and the area would be 

permanently sealed off. The problem is to choose - T  SO • ■ 

to minimize the total expected cost Incurred by time T. 

Let us say that we are in state (t, x.. f... ,x )  if in 

the intermediate evacuation has not yet been made and if 

there are    n    individuals of respective ages    x..,.,,,x 

present at time    T-'t.     If we are in state  (t, x.f...rx )   and 

we decide to evacuate Immediately then our total expected 

cost is 

n 
C(t)   +    I    g(x ) ; 

1-1        1 

on the other hand if we wait a fixed additional time e 

before evacuating then our total expected cost is 

n e 
C(t - e) + I g(x. + e) + (nX + 6) / g(s) ds + o(e) 

1-1   x 0 

Hence evacuating in state (t, x,,.,. ,x  ) is better than 
x ■  ■ n 

waiting a fixed additional time e before evacuating if 

n     :.'.■::■- 'ft e        '• :i- 
C(t)  +    I    g(x.)  < C(t - e)  + I g(x.  -f ej  +  (n^ + 8)/ g(s)ds + d (e) 

i-1 ,      *    ""; i*l       * 0 

.  -•    ■..   ■• .:,K;.:K .■......'■■'■ 

A      . 
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or, equivalently, if 

~n.^      o#i. ~x n    9(x. + e) - g(x.) e 
C(t) - C(t - t)   <    v     i , JL + inx  + 0) / g(8)ds . o(e) 

e - i-i e o     E    + ~r~ 
v 

e 
Letting e^O shows that if / g(s) ds * o(e) » then evacuating 

0 
when in state  (t#  x.,..,,x )  is better than waiting an Infini- 

tesimal additional amount of time if 

n 
C'(t)   <    I    g'(x.) 

~ i-1 1 

e ■ -; '»■•;.. 
We shall assume that g(s)  is such that / g(s)ds = o{e), and 

0 
thus the above defines the infinitesimal look ahead rule (see 

[2]) - it says to evacuate when n individuals of respective 

ages, x.,...^  are present at time T-t if 

I    gMx.) > c'(t) 
i-1    1 

Proposition 3i 

Assume (i) g(0> - 0 ,        t 

(ii) g'Cx) > 0 

(iii) g''(x) > 0 

(iv)  lim j g(s)ds .n ^ ■ 

Then the infinitesimal look ahead rule is optimal. That 

is, assuming (i), (ii), (iii) f (iv), the intermediate 

evacuation time that minimizes the total expected cost 

tl^w^p^'" 
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ls the one that evacuates at :he smallest t such that 

N(t) 
I      gMx.) > C'(T - t) 

i-1     1 

where N(t)  ie the number of individuals in the area at time 

t and their respective ages are xi'**"xMft) ' In otller 

words, the intermediate evacuation should be made the first 

time that the instantaneous rate of cost increase due to those 

present in the area is greater than the instantaneous cost 

increase if an evacuation is made. 

Proof:  It was proven in [2] that if the set of states that the 

infinitesimal look ahead rule tells us to evacuate at is a 

closed set of states, in the sense that once we are in one of 

these states then we can never leave the set, then this rule 

is optimal.  In our case since  f ' g* (x.)  cannot decrease 

i-1 

as t increases (until an evacuation occurs) we will establish 

the result if we can show that C (T - t) is a nonlncreaslng 

function of t.  That is we must show that C(T) is a convex 

function of T. 

Now 

2  XT -Xx C' (T) - g" (T) + Xg (T) + X^ eA1 / e"AX g (x) dx > 0 
x 0 

and thus 

Cj (T) g" (T) + X g' (T) + X3 eXT / e"Xx g (x) dx + X2 g (T) > 0 
0 

J 
—» .  . ...» i Ji 11 —Mr"***" 

■ 
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C, (T) - C, (T) + 6 / c, (y) dy z      x 0 1 

CJ (T) - C| (T) + 0 C1 (T) 

Differentiating again yields 

C"  (T) - C"  (T) + 9 C' (T) > 0 

Finally, 

T 
C (T) - 6 e"eT / eey C, (y) dy 

Cm - -e2 e"8T / e8y c, (y) dy + 9 C, (T) 
0 * * 

T 
C11^)- -e2 C, (T) + e3 e"eT / eey C, (y) + e C« (T) 

' 
Hence, we need to show that 

e2 e_8T / e9y C2 (y) dy + C' (T) > 6 C2 (T) 

Integrating by parts yields that 

T T       T 
/ 8 e9y c,   (y)  dy - C,  (y)  eey  |  - / •** Cl   (y) dy 
0 * * 0       0* 

C,  (T)  eeT - / eey Ci   (y)  dy 

/ 

   , ■ ."•—; ' T : . ■'•■ "?"'•  '"'* ■ -■—• " -—-———-— 
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and thus we need to show that 

6 C-,   (T)   - 6 e"eT / eey Cl   (y)  dy + C'   (T)   > 6 C,   (T) 

or, equlvalently,  that 

CJ   (T)  > 6 e"9T / eey CJ   (y)  dy 

Now, since CjJ  (y) > 0, it follows that 

e e"9T / eey Ci (y) dy < 8 e"eT C» (T) / 
O     2 '    0 

- CJ (T) (1 - e"eT) 

< CJ (T) 

which proves the result. 

Hence,  in the special case    g(x)  • x   where we are 

interested in minimizing the total expected time spent in the 

ares by all individuals, it follows that it is optimal to 

evacuate at time    t    if 

N  (t)  > tleX(T " ^  -11 

When X « 0, this reduces to evacuating for the first t such 

that N (t) > e(T - t), a result first established in [3]. 

The optimal evacuation time given by Proposition 3 

was derived under the assumption that we are, at all times, 

aware of the number of individuals in the area. However, it 

" "■■        - ■.  -  -: ■'■"!  I ^ ■Mill 
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is quite possible that we might not have any information about 

the population size before the evacuation is made.  In this 

case we would thus be forced to choose a constant time for the 

intermediate evacuation.  Slice evacuating at the fixed time t 

leads to an expected cost of C(t) + C (T - t)  it follows from 

convexity that, under the assumptions of Proposition 3, the 

optimal constant evacuation time is t » T/2.  In fact this 

result easily generalizes to the case where there are n con- 

stant intermediate evacuations to be made.  Under the assump- 

tions of Proposition 3, it again follows by convexity that the 

optimal times would be T/n+1, 2T/n+l, ... nT/n+1 . 

5.  The unknown Parameter Case 

Up to this point we've assumed that X and 6 were 

known parameters.  However, it may well be the case that one 

or even both of these values are unknown. What procedure should 

we employ in this case? 

To make explicit its dependence on \    and Eh let 

us write C(T, X, 8)  for C(T). Prom Proposition 3, it would 

seem that a reasonable procedure would be to evacuate at the 

first time t such that 

N(t) 
J^  g' (x^ >   ^ C(T- t, x(t), e(t)) 

where    x.,   ...  ^c./^*     are the respective ages of those in the 

area at time    t,  and    X (t)       and    6 (t)     are respective estimates 

of    X    and    6    at time    t.     (Naturally we are assuming that 

■ 

i 
1 

LJ 
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g(x)  satisfies the conditions of Proposition 3).  Thus we are 

led to determining estimates for X and 6. 

If we let I(t)  denote the number of immigrants to 
A  I (t) 

the area in  Io,t]  then  9 « £   is the obvious estimate for 

6. 

Letting A(t)  denote the sum of the amount of time 

tnat has been spent in the area by those present at time t, 

and letting B(t) denote the number of births that occur in the 

area in  [o,t], it turns out that the maximum likelihood esti- 

B (t) 
mate of A is X (t) » jrfrr •     (This is the same as the total 

time on test statistic used in exponential sampling schemes). 

Since the increase from birth to birth of the sum of the times 

spent in the area are Independent and Identically distributed 

exponential random variables with mean 1/X, it easily follows 

that, when 9 > 0,  X(t)-»'X as t-**» with probability 1. 

Thus, for instance, a reasonable procedure for de- 

termining the intermediate evacuation time in the case where 

g(x)»x, would be to evacuate the first time t for which 

N^) > I(t) A(t) 
t B(t) 

exp [mn -tf}-] 
It should be noted that the intermediate evacuation time defined 

above may not be optimal in any sense.    However it is clearly 

the procedure suggested by Proposition 3.    It is interesting to 

note that when    B(t)  »0    the above reduces to evacuating at 

\ 
V„ 

■ 

M^—J^JJL mi M mm^*lm 



■=^! ^ ^■l mmm 
^ 

-16- 

the first t for which 

N(t) > I(t)(T - t) 
t 

But since N(t) = I(t) + E(f-), the above inequality is equiva- 

lent to 

t  > T/2 

Hence if no births occur by time T/2 then the intermediate 

evacuation should be made at T/'/. 

i ,«i ^ i »I ii  ." 
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