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EVACUATION OF A YULE PROCESS WITH IMMIGRATION

by

el e e e e

Mark Brown, Sheldon Ross, Richard Shorrock

1. Introduction ‘ ' : . S

In the second section of this paper we obtain a
correspondence between the joint distribution of the epochs

of birth in a Yule process and the order statistics of a

sequence of independent and identically distributed (i.i.d.)
exponential random variables. This correspondence is then
used to obtain simple proofs of some Yule process results.
In particular a simple proof of a result due to Neuts and
Resnick [1l] concerning the conditional distribution of the
birth epochs given the number of such epochs in (o,t) is
presented.

In the final three sections we deallwith the problem
that motivated this paper. gﬁamely if a population of indi-
viduals arrives at a contaminated geographical area in accord
with a Yule process with immigrhtioh, and if all people in f
the area are to be evacuated at time. T because of tha
unhealthy conditions in the area, thén'if'we are allowed an

additional evacuation time in (0,T) how can we choose it in

an optimal manner? .




2. The Yule Process

The Yule process is a pure birth process with
birth parameters Aj = jA, 3 > 0 . In other words, each
individual in the population independently gives bixth
in accordance with an exponential distribution with rate ).
We assume that there is a single person in the population
at time t=0, Define T,, i > 1, to be the time of the
i-th birth, and let N(t) equal the number of births in
(o,t).

Let xl' e W xk be k i.i.d. exponential
random variables with rate A and let x(i) equal the

i-th Smallest Of xllaoo’x for i‘l,uo.'k . It directly

k
follows, from the lack of memory of exponential random

variables, that

(C) Tl'Tz'...'Tk

has the same joint distribution as

(C) x(k)-X(k_l) lx(k)-x(k_z)looOIX(k).

We shall refer to this fact as the correspordence C.

As an application of the corresponde-~ce we note that

14K
P{T, < t} = P{X,, < t} = [1-e AE)
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and thus

P{N(t) = k} = P{N(t) > k} - P{N(t) > k + 1}

P{'rk < t} - P{Tk+l < t}

e Mt (1 - e-xtjk

which, of course, is just the well known result that the

transition probabilities in the Yule process are given by

§ "
Py er(®) = et (=™

It easily follows from the above that

1im P{e "t N(t) > x} = e ¥

t+o

and, in fact, it can be shown, by regarding '1‘k as a
weighted sum of i.i.d. exponential random variables, that
Tk/log k -+ %“with probability 1, and this can easily be

shown to yield that

logtN (t) , ) with probability 1.

The correspondence C immediately yields the

following

Proposition 1: Given T, =t,T,,...,T} 4 have the same

joint distribution as the order statistics from a sample

et . s .
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of k-1 i.i.d. random variables having density function |

=\ (t-x)
-At

Ae

T

£(x) = 0<x<t

0 otherwise

Proof: From the correspondence C we note that the
conditional distribution of T,,...,T,_; 9iven T =t |

is the same as the conditional distribution of

t-x(k—l)"" t-x(l) given t-x(k)' As f(x) is just

L the conditional density of t-Y given that Y < ¢t,

where Y is an exponential random variable with rate A,

L =

the result follows.
While Proposition 1 yields the conditional dis-
tributiop of times of birth given Tkst, it is more

r useful to obtain their conditional distribution given

information about N(t). To obtain this, note that the

L | conditional distribution of Tk+1 given N(t)zk,'rl,...,'l‘k
is the same as the conditional distribution of T+l

given N(t)=k. Therefore, given N(t)=k, Tk+1 is .
conditionally independent of T;,...,Ty, and thus the

. conditional distribution of Tl""’Tk given N(t)=k

) and T =t {8 the same as the conditional distribution

k+1
' of TyreeesTy given N(t)=k. Hence, as the event that

N(t)=k and Tk+1-t is, with probability 1, equivalent to

the event that Tk+1-t, we obtain from Proposition 1.




Proposition 2: Given N(t)=k,;1‘l,...,Tk are distributed

as the order statistics from a sample of size k from a

population having density

Ae—x(t-x)
f(x) = e Y 0 <x<-1
l-e
0 otherwise

Proposition 2 can be used in establishing re-
sults about the Yule process in the same way that the
corresponding result for Poisson Processes is used. For

example, consider the random variable Y(t) defined by

N(t)
Y(t) = 1.2_1 gy (£-T,)
where g;(+), 1 > 1, are i.i.d. random functions that
are independent of the Yule process. (Yule shot noise
would probably be an appropriate name for the stochastic
process {Y(t), t > 0}). Letting wt(u) = E[éiuY(t)
be the characteristic function of Y(t), we obtain

wt(u) by conditioning on N(t) as follows.

E[;iuY(t)] - E{E:EiuY(t)lN(t) i} k]}

Now, since given N(t)=k, the unordered set {Tl,...,Tk}

are distributed as i.i.d. random variables with density

STRIpE .
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given in Proposition 2 it follows that 1

iuy (t) - ] - A t -A(t-x) ku) k
E[e |N(t) k| = r;-::rec{ e lpg(t__x) dx]

-

— . k
A t -Ax

where

iug (x)
Vg (x) (W = E[? ]

Hence,

© k
=it t -AX
wt (u) = e Z [I Ae wg(x) (u) dx]

k=0 o
-\t
- e
t , =-Ax '
.;1 £ xe wg(x)(u{ o

Differentiatioh yields, assuming the moments exist, that

E[Y(t)] = e’ [* ™ Elg(x)] ax
(o]

2

- t - "

Var([Y(t)] = Aert ft arix Elg?(x)] dx + AzeZA#[ e AhE[g(x)]d:%]
0 , ‘ o .
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3. Optimal Evacuation of a Yule Process with Immigration

Individuals arrive ct a geographical area that is
initially empty, in accordance with a pure birth process

with birth paraméters Aj = jA + 6; 3 20 . Due to contami-

t

e . st

nation, this geographical area is unsafe for its popuiation

and at some fixed time T in the future everyone in the

area will be evacuated and no further immigration will he
allowed..

If an individual spends a totdl time of x units in
the area before being evacuated then let us suppose that a
cost of g(x) is %ncurred (by society). .We‘are interested
in deriving an expression for the total expected cost incur-
red by time T. To do so let us at first assume that a
single individual is present at time t=o and that the im-
migration parameter 6 equals 0. In this case, we have by

(2) that the expected cost incurred by time T is

Cl(T)E g(T) + le e ¥ g(x) dx

T
AT I -
o)
When there is a single individual present at time 0 but
8 ¥ 0 then, since each immigrant can be thought of as
starting his own Yule process when he arrives, we obtain by
conditicning on the total number of immigrants that arrive 1

in (0,T) that C,(T), the expected cost incurred, is given

by
T
dx
C,(T) = cl('r) + 0T (f) cl('r - x) =




T
=C,(T) +8 cf) cl('r - x) dx

Finally, when there is no one present at time t=o, we
obtain, by conditioning on the arrival time of the initial
immigrant, that the total expected cost incurred i;

T

c(r) = C,(T - s) @ e %8 gg
0

In the special case in which the loss incurred is equal to
the time spent in the contaminated area, i.e., in the case

g(x) = x, a simple computation yields that.

LZiBS. _anca

c(T) = 27 [eAT =AT - 1] .when g(x) = x

A
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3. Optimal Evacuation of a Yule Process with Immigrat.ion

Individuals arrive at a geographical area that is
initially empty, in accordance with a pure birth process
with birth paraﬁeters 'Aj'-‘jk 4'9; >0 . Due to confami_
nation, this}geograbhical'area is unsafe for its p6§ﬁiétion
and at some fixed time T in the futuré everyone in the
area will be evacuated and no further immigration will be
allowed.. ' *

If an individual spends a total time of x wunits in
the area before being evacuated then let us suppose that a
cost of g}x) isvincutred (by_socigty). ‘We are interested
in deriviné an expéessioﬁ for the totai expected cost incur-
red by time T. To do so let us at firs+ assume that a
single individual is present at time t=0 and that the im-

migration parameter 6 eguals 0. In this case, we have by

(2) that the expected cost incurred by time T is
T
C,(T)= g(T) + reT ) e ** g(x) ax
0

When there is a single individual present at time 0 but

6 ¥ 0 then, since each immigrant can be thought of as
lt#rting his own Yule process when he arrives, we obtain by
conditioning on the total number of immigrants that arrive

in (0,T) that CZ(T)' the expected cost incurred, is given

by

C(T)-C(T)-FGT}‘C(T-x) dx
2 1l ol T




P

T
=C,(T) + 0 [ C (T - x) dx
Finally, when there is no one present at time t=o, we
obtain, by conlitioring on the arrival time of the initial
immigrant, that the total expected cost incurred is
T

c(T) -fcz('r-s) 8 e
0

-08 as
In the special case in which the loss incurred is equal to
the time spent in the contaminated area, i.e., in the case

g(x) = x, a simple computation yields that

c(T) = = AT - 1) when g(x) = x
A

o
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4., Optimal Intermediate Evacuation Time

|
»
Suppose now that an intermedjiate evacuation time 1t , l
0 < T < T, at which time everyone present in the area would |
be evacuated, is to be chosen. The area would then again ‘
£i11 up with individuals bétween times T and T, ancd, at !
T, the final -evacuation would be made and the area would be {
permanently sealed off. The problem is to choose T 80 =
to minimize the total expected cost incurred hy time T.

Let us say that we are in state (t, xl,...,xn) if

the intermediate evacuation has not yet been made and if

there are n individuals of respective ages XyseesrX,
present at time T-t. If we are in state (t, xl,...,kn) and
we decide to evacuate immediately then our total éxpected' |

cost is

n
c(t) + | gix;) :
i=1

e e

on the other hand if we wait a fixed additional time ¢

befoi'2 evacuating then our total expected cost is

n €
c(t - ) + 121 glx; + €) + (nk +0) [ g(s) ds + ol(e)
= 0 -

Hence evacuating in state (t, xl,.,.,xn) is better than
waiting a fixed additional time ¢ before evacuating if
$ o AR VLD B R : | S € b
cit) + ) g(xy) < Clt -~ ¢) + ) glx, +¢) + (nX + 0)f g(s)ds + d(e) §
i=}. ., . : i=]1 ' ' 0 ' 1

; )
L. 4




or, equivalently, if

n g(x, +¢€) - g(x,;) ' €
C(t) - C(t -~ €) . ) i - i 4 (n + 0) [ g(s)ds + o(e) 1
€ — i=1 € 0 € €

€
Letting ¢+0 shows that if [ g(s) ds = o(g), then evacuating
0 “ ’

when in state (t, xl,...,xn) is better than waiting an infini-

tesimal additional amount of time if

a _
c'(t) ¢ I g'(x))
' i=1
. . € TR ™
We shall assume that g(s) is such that f g(s)ds = o(e), and
o. 3 K}

thus the above defines the infinitesimal look ahead rule (see
[2]) - it says to evacuate when n individuals of,respactiyg

are present at time T-t if

ages, xlpooo'xn K "y

n
I g'(xy) > c'(t)
i=1

Proposition 3:

Agsume (i) g(0) = 0
(1) g'(x) > 0
(111) g''(x) > 0

(iv) . lim ?Jg(szds =% e SR R
€+0 0o ¢ . '

Then the infinitesimal look ahead rule is optimal. That
. . Y a Al S S (A
is, assuming (i), (i4), (iii), (iv), the intermediate

evacuation time that minimizes the total expected cost




8

is the one that evacuates at :he smallest t such that
th)

g'(x;) 2 C'(T - ¢)
i=]

where N(t) ie the number of individuals in the area at time
t and their respective ages are xl""'xN(t) . In other
words, the intermediate evacuation should be made the first
time that the instantaneous rate of cost increase due to those
present in the area is greater than the instantaneous cost
increase if an evacuation is made.

Proof: It was proven in [2Z] that if the set of states that the
infinitesimal look ahead rule tells us to evacuate at is a
closed set of states, in the sense that once we are in one of
these states then we can never leave ghe set, then this rule

is optimal. 1In our case since th) g'(xi) cannot decrease
i=1
as t increases (until an evacuation occurs) vwe will establish

the result if we can show that C'(T - t) is a nonincreasing
function of ¢t. That is we must show that C(T) is a convex

function of T.

Now
2 AT T _-ax
Ci (T) = g' (T) + g (T) + 2" e"" [ e ™" g (x) ax > 0
 NETu 5
and thus
. 3 AT T -ax 2
C] (T) =g“ (T) + A g' (T) + 1" e [ e g (x) ax + \“ g (T)
, : ' - 0




T
C, (T) =cC, (T) + 6 é c, (y) dy

and thus

(T) = Ci (T) + 6 c, (T)

N

Differentiating again yields

Cy (T) =cC] (T) +8¢C] (T) >0

Finally,

c(r) =0 & 7T / ey c, (y) dy
0o

%

_—
ctim) = -0 ™ [ &Y ¢, (y) ay + 6 c, (T)

0 2

7
ctlim=-o?c, (m) + 0% ™% [ ¥, i
0

(y) + 6 ci (T)

Hence, we need to show that

T
62 o787 | &9 C, (y) dy + ¢} (T) > 6 C, (T)

0 2 2
Integrating by parts yields that
T T T
Joec, (y)ay=c, () ¥ | - [ e ¢! (v) ay
0 2 2 o o 2

T o
=c, m & -] % ¢y
0

(y) dy




and thus we need to show that

T

6c, (1) -6e T [eYcr(y)ay+ct (m) >0cC, (T)
2 5 2 2 299G
or, equivalently, that
~8T ¥ oy
C! (T) >0 e [ e’F ¢l (y) dy
2 2 5 2

Now, since Cg (Y)

fv

0, it follows that

T T
o oo / Y cr (y)ay <o e crm e gy
0 2 =\ 2 0
-6T

=C,(T) (1 -e "7)

ia
(@)
Ne=-

(T)

which proves the result.

Henéc, in the special case g(x) = x where we are
interested in minimizing the total expected time spent in the
area by all individuals, it follows that it is optimal to
evacuate at time ¢t if

N (0 > $lt T o

When A = 0O, this-roducel to evacuating for the first t such
that N (t) > 6(T - t), a result first established in [3].

The optiﬁalzcvacuation time given by Proposition 3
was derivead unduf the assumption that we are, at all times,

aware 6f the number 6£ individuals in the area. However, it
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is quite possible f:hat we might not have any information -about.

the population size before the evacuation is made. 1In this
case we would thus be forcea to choose a constant time for the
intermediate evacuation. Since evacuating at the ﬁixed time t
leads to an expected cost of C(t) + C(T - t) it follows from
convexity that, under the assumptions of Proposition 3, the
optimal constant’evacuation time is t = T/2. 1In fact this
result easily generalizes to the case where there are n con-
stant intermediate evacuations to be made. Under the assump-
tions of Proposition 3, it again follows by convexity that the

optimal times would be T/n+l, 2T/n+l, ... nT/n+l .

5. The Unknown Parameter Case

Up to this point we've agsumed that A and 6 were
known parameters. However, it may well be the case that one
or even both of these values are unknown. What proeedure should
we employ in this case?.
To make explicit its dependence:on .A and 6: let
us write C(T, A, 0) --for C(T). PFrom Proposition 3, it would
seem that a reasonable procedure would be to evacuate at the: -
first time t such that
t) A ~
f g' (xi) > 2 c(r - t, A(t), 6(t))

i-l i . Rt i 2T . A, IS d PR

where x,, f" xN(t) afe the reapectiVe ages ef‘those'ih'the

area at time t, and A(t) ' and e(t) are respective estimates

vy, ot ert ot

of A and & at time t.' (Naturally we are aesuming that .

4




g(x) satisfies the conditions of Proposition 3). Thus we are

led to determining estimates for ) and 6.
If we let I(t) denote the number of immigrants to

the area in [c,t] then 6 = EéEL

is the obvious estimate for
0.

Letting A(t) denote the sum of the amount of time
that has been spent in the area by those present at time ¢,
and letting B(t) denote the number of births that occur in the
area in [o,t], it turns out that the maximum likelihood esti-
mate of A is A(t) = g{%% . (This is the same as the total
time on test statistic used in exponential sampling schemes).
Since the increase from birth to birth of the sum of the times
spent in the area are independent and identically distributed
exponential random variables with mean 1/), it easily follows
that, when 6 > 0, i(t)+k as t+» with probability 1.

Thus, for instance, a reasonable procedure for de-

termining the intermediate evacuation time in the case where

g(x)=x, would be to evacuate the first time ¢t for which

N(D) 2 I(e) ALe) exp {:(3 (T - t)} =

It should be noted that th: intermediate evacuation time defined
above may not be optimal in any sense. However it is clearly

the procedure suggested by Proposition 3. It is interesting to

note that wvhen B(t) = 0 the above reduces to evacuating at

S

e e
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the first t for which

N(t) > I(t)(T - ¢t)
t

But since N(t) = I(t) + B(t+), the above'inequality is equiva-
lent to

£t >T/2

Hence if no births occur by time T/2 then the 1ntermediate

evacuation should be maile at T/..
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