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ABSTRACT

This paper presents a "one pass" algorithm that determines an "advanced"
dual basic feasible solution for a class of capacitated generalized network
problems. Special cases in this class of problems include transportation and
transshipment problems. Computatioanal results are included which show that
this new start substantially improves the solution performance of the dual
method for transportation and transshipment problems. In fact, a dual code
employing this advanced start is found to be faster (in terms of total solution
time) than the fastest out-of-kilter code SUPERK on Lighly rectangular trans-

portation problems.
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Introduction

This paper presents a "one pass" algorithm that determines an "ad-
vanced" dual basic feasible solution for a class of capacitated generalized
network problems. Special cases in this class of problems include the
standard transportation problem and the pure network or transshipment prob-
lem.

The algorithm presented is "advanced" in that it determines a solution
which is not only feasible but relatively close to the optimum of the dual
of a generalized network problem. The advanced algorithii is a direct ex-
tension of the dusl start algorithm of Glover, Klingman and Napier [13].
Their algorithm was the first to obtain dual feasible solutions for a class
of multi-source, multi-sink, capacitated generalized network problems, and
extended the one pass algorithm of Charnes and Raike [4) for determining
an optimal solution for another class of generalized network Problems The
advanced algoritnm of this paper differs from the earlier dual start [13]
in that objective function information is used in constructing the dual

teasible solution.

This research was motivated by recent computational investigations
[1, 9, 11, 12, 17, 19] which have found that special dual simplex approaches
to transshipment and transportation problems are generally inferior to
special purpose primal simplex and primal dual (or out-of-kilter) approaches
on large problems. In particular these studies have found that the special
purpose primal simplex approaches [9,11,17] are substantially (4-10 times)
faster than out-of-kilter approaches and that the out-of-kilter codes are
faster than dual codes which employ the dual start in [13]. Since the
study [1] showed that it is possible to increase the efficienecy of the out-
of-kilter method by at least a factor of four, we felt that further com-
putational investigation on dual approaches «~as warranted. Furthermore,
since the reported computational testing on the dual approach [9, 12]
indicated that its major computational weakness lies in the large time re-
quired to execute a pivot, it seemed reasonable that starting procedures
which would reduce the number of pivots required to find an optimal solution

should be designed and computationally tested.

Computational investigation on the advanced start developed herein
shows that it acheives this reduction. In particular, the results indicate
that the advanced start reduces both the solution time and number of pivots
over other aua. aporoeches using the start in [13] by roughly 50%.
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While this result still is not able to make the dual approach competitive
with the primal approach on most transportation and transshipment prob-
lems, our computational testing does indicate that for highly rectangular
transportation problems (i.e., transportation problems with only a few
origins and a large number of destinations) the dual approach using the
advanced start procedure is superior to the fastest known out-of-kilter
code [1] and competitive with the fastest primal codes [9, 11, 17].

A principal motivation cited by other papers [3, 20] for applying the
dual method to network problems is the possibility that the problem's
"supplies’' and 'demands' may not be permanently fixed, but rather are sub-
ject to change. In such a situation, the ability to begin from an optimal
bas’s to a given problem and proceed via the dual method to an optimal sol-
ution for the altered problem is extremely useful. Our eomputational results
inlicate that the advanced start procedure, however, offers a new motivation
for the use of the dual method--namely, by use of our algorithm, it ic pos-
sible tc employ the dual method not only for 'postoptimization,' but also

for solving the original problem directly.

2. Problem Statement

A transshipment problem will be defined as consisting of m nodes that
are connected pairwise by a collection of n directed arcs. Let N denote
the set of all admissible ercs (i,j) in a transshipment problem, then a
capacitated generalized transshipment problem can be stated mathematically
as:

minimize Z ci. b'4 s
(i,d)en * M

subject to -2 x . * I K. = =b, (1 =1,2,...,m (1)
(i,5)eN 3 (3,1)endtd 1

L =x, , Su,, , [(i,,j)eN]

where
1. xij is the flow from node i to node j.
2. cy is the cost of sending a single unit of flow from node i to node j.
3. b, is the amount of supply (demand) et node i, where the supply (demand)
at node i is denoted by a nezative (positive) bi'
L, kiJ is the attenuation factor affecting the amount of flow leaving the
initial node i and flowing into terminal node j.
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The dual to Problem (1) may be stated as:

n
meximize & b, w, + 2 N AL T |
fa1 1 REyey w4 e gyap WK

subject to
k. W, =W kg = b, e, 3
3787 TR T W 3 ) e wy o 1R)
w, unrestricted ; (1 = 3,8,400,m)
$: L. >0 L(1,3) € N]
ij 1 —

The advanced algorithm presented in the next section finds a basic feasible
solautior (if it exists) for Problem (2) provided (a) c >0, (i,j) e N,
i)
(v) 0 < ki: <1, (i,3) € N, and (c) the rank of the incidence matrix
j=
ism - 1.

Conditions (a) - (c) are not as restrictive as they may appear.
Requirement (a) is generally innocuous in operations research applications
(22, p. 178]. Restriction (b) prohibits the inclusion of a loop in
the dual feasible basis determined by the algorithm. Condition (c)
is always satisfied by transportation ard pure network problems; it
is only restrictive in the generalized network case when the rank of
the incidence me“rix is m. Even in this case, the algorithm will generate
a dual feasible spanning tree solution, although not a basic solution.
Requirement (c) can be eircumvented if the generalized network contains
a single master source with an uniimited supply.

In order to gener:tte a dual basic feasible solution to Problem (2),
the algorithm first derives a hasic feasible solution to the problem:

“m
maximize o bw
te) * 3
subject to kij v, - v < 4 [(i,§) € N] (3)
Wy unrestricted

Problem (3) is the dual to Problem (1) in uncapacitated form.

The algorithm presented in 1h= next section will generate a basic
feasible solution to Proolem (3). Clearly such a splution will yield a
feasible solution to Problem (2). The algorithm proceeds by first
selecting an appropriate starting node and determining the generalized
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longest path from all other nodes that can reach the starting node by

a directed arc. One of the above nodes is then selected (and its asso-
ciated duel variable value fixed) in such a manner that dual feasibility
is preserved and the objective function (at this iteration) is maximized.
At each subsequent stage generalized shortest and longest paths are
determined from fixed to non-fixed nodes; one node is again selected
whose dual variable value preserves feasibility and yields the best
return for the objective function. The process is repeated until all

m nodes of the network have been selected. The algorithm is a "one-pass"
method in the sense of Charnes and Raike [4] in that at each interation
one new node is selected; the process then yields & succession of m single

steps which determine the solution.

Algorithm
Let
T(p) = the set of "fixed" nodes at iteration p.
S = the set of arcs from fixed nodes to nonfixed nodes.
R = the set of arcs from nonfixed nodes to fixed nodes

= the set of arcs currently selected to be in the basis

to

1. gSelect the starting node t to be a source node. Set the dual vari-
able,w,,of this no.e equal M= Biw.
(i:j)eNlJ
Il k
ij
(i,3) eN
(For the pure network problem, any node can be selected arbitrarily

as the starting node t and M can be set equal . zero.) Initialize

by setting (1) = [t} and B = @ Set g = t; in general q denotes

the node whose dual variable was last set. Set p = 1; in general p
denotes the current iteration of the slgorithm. Set wi (0) = » for
i ¢ T(1) end wf (0) =0 for i ¢ T(1).

2. If 8= {(i,j)e N: ie T(p), jf T(p)} is empty, proceed to step 3;
otherwise for each node j¢ T(p), let
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min tw§ (p-1), g * ®qj)  if (gyi)e N
w. (p) kqj
W§ L 4 (Q:J)f N

If R= ((i,j)c N: if T(p), jc T(p)} is empty, proceed to step 4;
otherwise for each node j{ T(p), let

2
max {w5(p-1), k. w -c. } if (j,q)e N
wo(p) = J Ja a Jaq

J 2
wj(p-l) if (i,Q)f N

If SUR is empty and there exists a node j¢ T(p), then stop for the

network is disconnected; otherwise if S# ¢ set o n {w+ (p))

(where f equals the j¢ T(p) yielding the minimum) a21 £¥)R# ¢ set
= max, { ‘(p)) (where r equals the jf T(p) yielding the maximum).
i (p)d

Next compute the "effective net stock"for node f (if S# @) as

b s 2 L W A 7 s
TR i w phns (3,£)e ¥ 9T J
if 1(p) if T(p)

and if R# ¢ compute

Sl Ve e R Sl B
T (r,3)eNd T (5,r)e N ITI
if T(p) 3¢ T(p)

Then if wfb% W bl , set @ = f and augment T(p) by q; otherwise

set @ = r and augment T(p) by q. If q = f augment B oy the arc

(p,f) for which e w2+ cgf . otherwise augment B by the arc

H
kpf

(r,p) for which w =k Mot In either case, if there is more

than one arc then choose any such arc. Finally, if T(p) contains
all the nodes the algorithm is completed; otherwise set T(p+l)= T(p),
p = p+l, and return to step 2.

Validity

In order to establish the validity of the algorithm, it is necessary

to first prove the following lemma:



b

Lemma: At each iteration p,

min(wi(p)} > max(w3(x))
ifT(p) if 7(p)
(e, dF W and w_ are both defined at iteration p, then w, > wr).
Proof;
The result is established by induction. By the lemma in [13], we
can assume w.l.0.g. that all wi(p) and w?(p) at every stage p are non-
negative if the first dual variable is set equal to M. Additionally,

we assume that the nodes have uveen renumbered in theorder in which

their wi's are fixed.

(i) For the first iteration (p=1), we may assume w.l.0.g. that
wf and wr are defined and lLiave the values wf= e clf and
K

v, =k Mo, Since ¢ > 0 for all (i,j)e N and O < kij <3

for all (i,j)e N, w_ > v and thus

T
minIWi(p)} > max{wg(P)}-
if T(1) if T(1)
(ii) Now assume the hypothesis is true for the pth stage.
Thus
min{W§(p)) w2 max{wf (p)} (%)
if 7(p) if 7(p)
and for each if T(p)

S
win{w, (p), b ; °pi) if (p,i)e N

|
wi(p+l) = 4 =
w (p) if (p,i)¢ N
and )
wf(p+1) = max{wi(p), kipwp' cip} if (i,p)e N
W. A o
i (p) if (i,p)f N

We may assume w.l.0.g. that for each if T(p)
1 3 g + i
w, (p+1) = minfw(p), % )
kpi
and

2 2
Wi (p+1) = max{wi(p), kipwp - cip]
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Therefore,

W_+C.

min (wi(p+l)]= min wi(p), HE_E_TEl )
if T(p+l) if T(p+1) pi
and _

max[w?(p+l))= max(wf(p), kipwp-cip]'

if T(p+l) if T(p+l)
To establish that min [wt (p+1)> max [Wi (p+1)},
if T(p+i) ie T(p+i)

it suffices to show that the following cases are true:

(a) min  (wj(p)} >max (wi(p))
if T(p+l) if T(p+l)

N W+ c. =
() min { E pi } > mex {kipwp ¢ip)

if m(p+1)Pt if T(p+l)

(e) min [wi(p)} >max (k. w_-c. }

i
if T(p+l) if T(p+l§ \ =
(a) min ("p* %pi) > max (W (p)] .
1 m(p+1fpi if T(p+l)

Case (a) follows directly from the induction hypothesis since

max {wi(p)] < max {wf (p))
if T(p+l) if 7(p)

and
min {wf(p)] > min {Wi {p)}.
if T(p+l) i ¢ 7(p)

Since, by the lemma in [13], wp > 0, and e >0 and 0 < kij <1 for (i,j)e N,

case (b) is clearly true. Cases (c) and (d) follow from expression (L),

¢ >0 for (i,j)e N, and 0 < kij <1 for (1,j)e N. Therefore, the lemma

follows by induction.

Theorem: The algorithm obtains a feasible basis for Problem (2) or determines

that the network associated with Problem (2) is disconnected.
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Proof: The algorithm terminates alter at most m iterations, because at each
iteration T(p) is augmented by one node or else the algorithﬁ stops with the
assertion that a feasible basis has been obtained or that the network is 4is-
connected.
The assertion that the network is disconnected occurs when S and
R are empty and there exists some node j¢ T(p). Under these conditions the

network is split intc at least two disconnected parts.

Ruling out disconnectedness, it must be demonstrated that the

values assigned to the w, are feasible, i.e., k.. w.- w, < c¢,., for all
i 13 73 =

(i,j)e N. Again the method of proof is induction. Assume the nodes are
numbered in the order in which they are fixed. At iteration r, the number

of nodes in T(r) is r. Suppose that the wj values for these nodes represent
a feasible solution to the dual subproblem obtained by considering all nodes
in T(r) and all links joining the nodes in T(r). We shall show that the
process of augmenting the (r+l)St node to T(r) assigns to its dual variable
w a value that is feasible for the dual subproblem obtained by considering

r+l
the (r+l) nodes in T(r+l), thereby yeilding the desired inductive result.

(i) To begin , let r = 1. The assignment W= M clearly provides a feasible
solution to the subproblem consisting of the first node. For r = 2, the

M+ =
possibilities are that w,= . 12 or W= k21 M - Cpy*
12

M+ e, g
If W= 1z , then Wy > w, since 0< kij < 1 and cij >0
K12
for (i,j)e N. Thus, the values of Wy and LA satisfy the feasibil-
ity c «nditions not only for the arc (1,2), but also for the arc (2,1) if it
exists. On the other hand, if Wy k21 M - s then w2 S_wl. Therefore,

the values of w, and w,. satisfy the feasibility conditions not only for the

1 2
arc (2,1) but also for the arc (1,2) if it exists.

(ii) Now assume that the r uodes in T(r) have node values which yield a
dual feasible solution. It will be shown that adding the (r+l)st node then
yields a dual feasible solution.

Let p(r+l) = {j ;3 j € T(r), (j, r+l) € N} and

et q(r+l) = (j 3 § € T(r), (r+l, j) € N}.

Suppose that node r+l is being added in the "forward direction"
™5t cy

li.e., W ™ min jr+1})
je p(r+1$ Jr+l
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i : ¥ S cis =
Then automatically wr+l satisfies the condition kJ,r+l wr+l wj = cj,r+l

tor jec p(r+l). E; the previous lemma,wlqi > max {k

Je q(r+l)
for je a(r+l) is satisfied.

r+1,3%" Cr+1,3)

<ec

ard therefore the condition kr+l,jwj- wr+l <

r+l,;

Likewise, suppose node r+l is heing added in the "reverse direction"

.}). Then the condition k W

(i.e. w = max (k o ey

™ je q(ra)
for je q(r+l) is automatically satisfied. Again by the lemma

r+1,3 5" Cr+l,;

C

(WA

r+l,j

Yosd < min yg Jgr.+1 }, the condition kg,r+l i wj S-cj,r+l for
je p(r+l J il

Jjc p(r+l) is satisfied. This completes the feasibility proof.

The final step of the proof is to show that the feasible solution
thus determined by the algorithm is in fact basic feasible, i.e., the arcs
in B form a basis when the algorithm terminates. First, upon termination B
contains m-1 arcs because one new arc is added to B each time a node is added
to T(p), except at initialization. The arcs in B clearly span the network.
Further, the arcs in B contain no cycles. To verify this, assume the con-
trary and let (r,s) be the first arc added to B that creates a cycle with
the previous arcs. Then there must be an arc (r,j)e¢ B and an arc (i,s)e B.
But this is impossible when (r,s) is added to B, since all arcs (i,j)e B
satisfy ie¢ T(p) and je T(p), whereas to augment B with the arc (r,s) either
r ¢ T(p) or sf T(p). This completes the proof.
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Computational Results

To test the advanced start procedure, the dual codes developed in [9,
12] were modified to use this start. These codes use the double pricing pro-
cedure [12,14] for determining the unique updeted linear equation which
expresses the basic variable, leaving the basis in a pivot, as a linear
combination of the current nonbasic variables (for a complete description
see [12,14]). The important aspect is that the double pricing procedure is
quite efficient for calculating these coefficients. Thus these codes should

be efficient in the pivot phase of the simplex dual method [20].

All of the codes used in this study are in-core codes; i.e., the
program and all of the problem deta simultaneously reside in fast-access mem-
ory. They are all coded in FORTRAN and none of them have been tuned for a
particular compiler. All of the problems were solved on the CDC 6600 at the
Uriversity of Texas Computation Center using the Run compiler. The computer
Jobs were executed during periods when the machiue load was approximately
the same, and all solution times are exclusive of input and output, i.e.,
the total time spent solving the problem was recorded by calling a Real
Time Clock upon starting to solve the problem amd again when the solution

was obtained.

Initially, the advanced dual start code was tested on eighteen of
the benchmarked problems in [19] since these problems had already been
solved using the codes by Benninrton [2], Boeing, General Motors, SHARE
[5,21), SUPERK [1], Texas Water Development Board, PNET-I [9], and DNET
[9]. The first five of these codes are variants of the out-of-kilter method
[7,8] except for Bennington [2]. PNET-I [9] is the fastest known special
purpose primal simplex code for solving capacitated and uncapacitated trans-
shipment problems. DNET.is a special purpose dual simplex code using the
start procedure in [13] for solving transshipment provlems. DNET was mod. -
fied Lo use the advanced dual start and this version will be referred to,

henceforth as DNET-I.

Additionally, these 18 problems were chosen since they are gener:
ally available to other researchers and the problem set is reasonably srall.
The specifications of these 18 problems as required on the input cards to
the network generstor in [19] are given in Table 1. Problems 1-5 are 100 x
100 transportation problems, problems 6-10 are 1.9 x 150 transportation
problems, problems 11-15 are 200 x 200 assignment problems, and problems

16-18 are 1000 node transshipment problems. Table II contains the solution
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times for each of these problems for each of the codes.

Comparing the advanced start dual code DNET-I against the
previous dual code DNET indicates that our initial premise (i.e., since
the majority of the computational time spent in the dual procedure is de-
voted to the selection of an in-coming arc, a considerable amount of time
could be devoted to finding the starting basis, if the start provided a
substantial reduction in the number of pivots to reach optimality) is correct.
In particular, the results show that the difference in start times for the
two codes is negligible and in some cases (surprisingly) the advanced start
takes less time to find the starting basis. In terms of pivot reduction,
the advanced start is quite extraordinary. For example at least a lh% re-
duction is achieved on every problem and in five cases, the reduction is
more than “0%. This pivot reduction is directly reflected in the total
solution time since DNET-I strictly dominated DNET in each case and the
percent reduction in total solution time is almost identical to the percent
pivot reduction. Unfortunately, this substantial reduction is not enough
to make the dual method competitive with PNET-I or SUPERK on this broad class
of problems. However DNET-I is comparable with tre other codes Bennington,
SHARE, Boeing, General Motors, and Texas Water Development Board. Another
noteworthy feature of the computational results is that PNET-I strictly
dominates all of the codes. In fact PNET~I is roughly twice as fast as
SUPERK, the fastest known out-of-kilter code. This result is extremely
important since it completely contradicts the folklore that the out-of-kilter
method is the fastest (in terms of total solution time) means for solving

transportation and transshipment problems.

Motivated by Harris' [15] hypothesis that the dual simplex method
might be an effective solution approach for solving extremely rectangular
transportation proolems (i.e., problems which have only a few origins and
many destinations), we decided to solve some rectangular problems using
the fastest code of each type. In order to make our research results
available to fellow researchers, we used NETGEN [19] to generate 12 highly
rectangular transportaticr problems. Table III contains the specifications
for these problems as required on the input cards for NETGEN. The computa-

tional results on these problems are given in Table IV.

Important results which can be gleaned from Table IV are that
DNET-I takes less time than SUPERK in all but one of these problems; how-
ever, DNET-I again assumes its secondary role to PNET-I, being slower on
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all of the problems. Even though DNET-I is slower than PNET-I on these
rectarngular protlems ihe magnitude of the differences is quite small come
pared with the Table II results. Thus Harris' hypothesis appears to have

been well founded.

Unlike the square problems of Table II in which start selection
time is a fairly swall proportion of the total computation time, tectangular
problems cause the dval to spend a great deal of time picking the start.

For example, tlie problemswhere DNET-I performed best, in particular,
problems 1,%,6,7, and 11, the start simea  constituted 9k%, 82%, 714,
76%, and 7% respectively of the total computation time. This appears to
reinforce our original premise that quite a bit of time could be devoted
to start selection if that start reduces the numbew - of pivots being

performed.

More research is needed in the area of determining precise bound-
aries within which DNET-I performs best. Initial results indicate that it
performs better as tne number of seurces decreases, but there are also trends
indicating that arc density plays an important role. Problems & and 9 show
that as the arc density increases from 50% to 90% the number of pivots re-
quired to reach an optimal solution nearly doubles. Yet in problems 3 and
L, an increase from roughly %% to roughly 75% caused nearly a 30% reduction
in the number of pivots. In contrast, PNET-I is not as sensitive to arc
density ranges, since the number of pivots is proportional to the number

of ares.



0107 dae pHIEDd] Uy

Jjou Saniea T\

c14 1367, cosei looo:oe 1 Tgoi) 1 009 | Sey. D Sy Jz
16 481+, 84756t 1000 0t s “ 0062 seoi | : ooet | £
! SLitvrut 0y7Z0sE T {0007 0f oot 1 0007 SHul . 0cnl 0l
918 76¢ 09%20¢(1 0v0 ot 001 1 oSy Sbh ¢ 001 6
001°%¢o | 09%20¢e 1 Jooo‘ot 001 1 000 Cot. N D001 5
508! 09vzosti  |000°of 201 1 000s. L66 ¢ 0001 L
€e8 L1 09%Z06SEl {000 ‘ug oot| 1 | 0081 866 5 0001 9
SO8°E61°1 09%20S<T {000 ‘0¢€ 00t} 1 00S T 866 7 0001 S
0tg ey 09%20s¢tl 1000°0¢€ 001 1 0061 96% Vi 00¢ Yy
£20°9%6 09%Z0SET  {000°0¢ oo1] 1 | o001 96% 5 006 €
8L0°%16 09%Z0SET | 000°0¢€ 001 1 00¢ S61 S 00¢ z
€99°91¢€°1 09%70s€1l  {000°0¢€ 001 1 051 86 4 001 1 _
anT2A - At = )
uoyiounyg pa93s A1ddng xep! UlN SD1Y)| SNUTS $321nog <aroON g
2a113123(qQ laquny wopuey 12301 |38uey 1so) ﬁ JOo 1aquny] Jo iaqunp | jo 1aquny] 3jO 134mny
111 3719v1
. [} . Py 1 _
gsy1ee ‘98 09%Z0SE1 00°‘000°‘1! oO0T1] 1 00%% (119 I (119 0001 =
6T1°050°S0T 09%Z0SET  P00°000°T o001 T 00%¢ o< 0s 000 | 41
. 1€5°zgs et 09%Z0SE 1 000°000°T  o01| 1 0062 0S (119 2027 91
o | O A 4 09%20S€1 002 001 T 00S % 002 002 00% ST
~ 9L 2 09%20S€1 00z 00T| 1 05L¢€ 002 002 00% 51
\ 0L0°€ N9%Z0S€1 00z o01| Y 000€£ 002 002 00% €1
68t ‘¢t 09%20S€1 00z 00tT| 1 0522 00z 002 0% Z1
£€9G°y 09%205€1 007 ootr! 1 00sT 002 00z oGY 11
(89°S91°Z 09%20G€1 000°0ST| 001]| 1 00€£9 0s1 0S1 00¢€ o1
7SSl 09%Z0S¢€1 000°0ST{ 001; 1 SL09 0S1 0ST 00¢€ 6
9SE°SST T 09%20S€1 000°0ST| o001 1 119 (9 0S1 0SSt 00¢ )
9€0°4L%0°C 09%20S€1 000°0ST|{ o001] 1 005y ng1 0S1 00¢ L
LLntzog e 09%20<¢€1 000°0ST 001 1 119 §3 0s1 0s1 00t 9
8S0°‘Z9€" 1 09%20S¢€T 000°‘00T| o001 1 0062 001 001 00¢ S
TELT9%"T 09%20S¢€1 000°00T{ OOT| 1 00Z¢ 00T 001 002 vy
8Z6°S965°1 09%20S€1 000°00T; 001 1 0002 001 00T 002 €
188°056°1 09%20S¢€1 000°00T| OOT| T 00ST 001 001 00?7 %
€0L‘EsT T 09%20Sf 1 000°001 ocd_ 1 00€1 oot 00T 007 1
anievpA uojlIdUNg pa3s £1ddng xmtﬂ\:«: soay SHUTIS s3:anog SAPON
3A1123(qQ | 13quny wopuey Teiol |23uey 31s0)| jo 1aquny Jo 1aquny JOo aaqunp| Jo aaquny

»SNOILVOIJdIO3AdS WITHOUd
I 318Vl




- 14 -

NNd 1ON 4aig -

4Nd

ITIVIIVAV LON - VN

. T T - e
YX o T7°7¢T ) ouxa | | una e 19| | 00791 ~ o1°s | ¢8ET | 86721 |€5°001 VN VN VN 8T
VN L o€gITT L uNa v | une voysszs) | tster ! gsro Ll eser | 9tzT |og-ee ) VN N |21
VX | gets | ¥Na !l ouNa o 1/8°€S! | T€°€T _ (9" I ARRIELE 4 SN TTSYY, ¥N VN VN 19T
YN 8071z 'sviez | !t wna | ojsocez| TR 16°S 6 | 1.7z |o9-s¢ VN VN VN 1
VX U TUCT 129781 ¢ lowtiz | jse°wz| | <69 9 ¢ |t wse | =g fot-se VN vy VN |91
VN 170707 lef-1e b 126 %z mﬁm.mmﬂ z i 167y “ 8 “ 2977 |L6°LT €907 0L°T (8£°Zy IeT
WX e0°zz €8T 1 10T | etttz | oawee LA »s 2 100793 cLt 1€°T  [86°9z {ZT1
X 6£°0E  1£9°GE | lwn 7 _ g5 61| | oo 4 ol S A T I L A LT 59 L€°T {18761 |11
VX setw8T 1zetseT ' | ouana | lwgregl | gt | 25 8Tgr | ou°c |zstTe 82ST | 25" l96°¢6 |OT
vx 667981 :1C°8ST | ' ¥NG | |1Z°Ts| | 0% €1 lcey | | oTe | z6'T (9079 TSOT | Z%°Z 1S9°10T(6
VN | 0T1°S¢T |tec09t | | una | jooiwt | e5-€T | 0Z°% | | Teg t 68°T |L€°27 2981 | €0°Z |€6°L6 |8
YN ZTCETY Gt€csST ) uNa C izetsel | 9grzi beste b boor  owert lestoe 00ST | £L°T |88 ws !¢
YN 9999 2¢°75 | {00°19 ' lOo%v-9% SO° 11 | 90°¢ v T0z 1 et T |18°6T 8811 €€°T joT°9% |9
YN ) €07y (01706 _ 01°cS ¢ {60t | ¢¢9 YR N EETY (5 |99°81 0(9 20°1T |ve-€z |S

09°LZ | (%98 Ivso¢ ¢v 1f i oigrtszl | L5 b T | o 76" |86°T1 LLs 18° 9671 |

€)°82 ! L7718 |aetsor |ojestwe | oi9To9z| | w9 LT )| ey 06° |%9°21 (St L 9y 1z €
6€°1Z | 65717 |0€°€9 | {9¢-wz | |%e 1zt | ¢%9 e 1 | | soy <g"  |18°01 4% €9 85" €T |
€2°1Z | SZ0f ST 99 sz°0z | |9 e | €9°¢ LTt 81t sg”  |19°¢ €S 65 |98-21 |T
1 SI0ATd| awWyl | owrl SI0ATd| 9WIL | owWil| K
e | Smiacd i WD nas | lauvns| | cmaans | | 1-1ana) O "ON) mamas | TR0l 3O ON| 31=35 | TEI0L
I = 173ra L3NG

(SpPuodas u]) S3wWI] uUOFJINTOS

IT1 379Vl

. ¥




_FPreb.em

1

2
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TABLES 1V
Solution Times (In seconds)

DNET - ] PNFT - 1
Time # Pivots Time # Fivots
. 292 1 .079 18
1.960 58 447 84
10.249 182 2.414 203
9.656 122 2.782 139
18.996 43 3.927 129
22.214 88 4.557 128
21.866 65 2.734 60
32.717 261 5.852 259
56.926 493 10.314 338
58.106 313 t.286 318
43.735 90 5.553 114
124.822 758 18.024 424

DNR - DID NOT RUN

SUPERK

Tim

.882

13.
12.
35.
36.
37.
39.

43.

6?7

71.

. 397
330
424
287
721
547
104
726
.459
042

DNR
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