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ABSTRACT 

This paper presents a "one pass" algorithm that determines an "advanced" 

dual basic f easible solution for a class of capacitated generalized network 

problems. Special cases in this clasF. of problems include transportation and 

transshipment problems. Compu+.ational results are included which show that 

this new start subs~antially imp~oves the solution performance oi the dual 

method f or transportation and transshipment problems. In f act, a dual code 

employing this advanced s t art is found to be faster (in terms of total solution 

time ) than the f astest out-of-kilter code SUPERK 0n ldghly rectangular trans

portation problems. 

; t,l 



This paper presents a "one pass" algorithm that deteroines an "ad-

anced" dual basic f easible solution f or a class of capacitated generalized 

network problems. Special cases in this class of problems include the 

standard transp rtation problem and the pure network or transshipment prob

lem. 

Th~ algori thm pr sented is "advanced" in that it determines a solution 

whic~ is no only f easible but relatively close to the optimum of the dual 

of a generalized network problem. ~he advanced algorithm is a direct ex-

tensirm the dt:&l start algorithm of Glover, Klingman and Napier [13]. 

Their al orithm w8s the f irst to obtain dual feasible solutions for a class 

of multi-sour ce, multi-sink, capacitated generalized network problems, and 

ext ended t he one pass algorit hm of Charnes and Raike [ 4 J for determining 

an optimal solution f or another class of generalized networkProblems The 

advanced algorithm ot t hi s paper differs f rom the earlier dual start [13] 

i, that obj ect ive functi on information is used in constructing the dual 

f easi ble solution . 

This research was mot ivated by recent computational investigations 

[1, , 11, 12, 17 , l ] which have f ound thet special dual simplex approaches 

t o t ransshipment and t ransportation problems are generally inferior to 

speci al purpose primal simplex and primal dual {or out-of-kilter) approaches 

on l arge problems. In parti cular t hese studies have found that the special 

p rpOZG primal simplex approaches [9,11,17] are substantially {4-10 times) 

f as t er t han out-of- kilter approaches and that the out-of-kilter codes are 

f ast er t har.. dual codes which employ the dual start in [13]. Since the 

st dy [1] showed that it is possible to increase the efficiency of the out

of - kilter method by at least a f actor of four, we felt that further com

put at ional investigation on dual approaches 111as warranted. Furthermore, 

since t he report ed computational testing on the dual approach [9, 12] 

indicated t hat its maj or computational weakness lies in the large time re

quired t o execute a pivot, it seemed reasonable that starting procedures 

which would reduce t he number of pivots required to find an optimal solution 

should be designed and computationally tested. 

Computational investigation on the advanced start developed herein 

shows tha t it acleives this reduction. In particular, the results indicate 

that the ~dvanc d start reduces both the s~lution time and number of pivots 

over other au~~ ~proe~hes using the start in [13] by roughly 50% . 
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~~ile this result still is not able to make the dual approach competitive 

with the pri•mal approach or. most transportation and transshipment prob

lems, our computational testing does indicate that for highly rectangular 

t ransportation problems (i .e., transportation problems with only a few 

origins and a large number ·of destinations) the dual approach using the 

advanced start proce ure is superior to the fastest known out-of-kilter 

code [1] and competitive wi t h the fastest primal codes [9, ll, 17]. 

A princi pal motivation cited by other pbpers [3, 20) for applying the 

dual method to network problems is the possibility that the problem's 

'supp1i es' and 1 demands' may not be permanently fixed, but rather are sub

j ect to change. I n such a situation, the ability to begin from an optimal 

bas ~. s t o a given problem and proceed via the dual method to an optimal sol

utj on fo r the altered problem is extremely useful. Our oomputational. resnlts 

i niicate t hat the advanced start procedure, however, off ers a new motivation 

fJr the use of the dual method--namely, by use of our algorithm, it ic ~os

sible to empl oy t he dual method not only fo 'postoptimization, ' but also 

f or solvi ng the origi nal problem di rectly . 

2 . Problem Statement 

A t ransshipment problem will be def ined as consisting of m nodes that 

are connecte~ pairwise by a collection of n directed arcs. Let N denote 

the set of all admi ssible arcs (i,j) in a transshipment problem! then a 

capacitated generalized tr&1sshipment problem can be stated mathematically 

as: 

1. 

2 . 

3-

minimize 

subject to 

where 

l: 
(i,j)€N 

C •. X .. 
l.J l.J 

-l: X + Z k .iX . e b., 
( · ) iJ' (J•, 1•) ~v ·J J l. J. , j EN "-rt 

L .. ~ x .. :§ u. . , 
l. J l.J l.J 

x . . is the f low from node i to node j. 
l.J 

(i = 1,2, ... ,m) 

[(i, j )€N] 

c .. is the cost of sending a single unit of flow from node i to node j . 
l.J 

b. is t he amount of supply (demand) et node i, where the supply (demand) 
l. 

at node i is denoted by a ne3ative (positive) b .• 
l. 

k . . is the attenuation f actor affecting the amount of flow leaving the 
l. J 

initial node i and flowing into terminal node j. 

(1) 



The dual to Problem (1) 

iD 
maximize ~ b . w. + 

i=l l. l. 

subj ect t o 
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may be stated as: 

L s. 
(~j) eN l.J Lij 

"'· unrestricted 
1 

s .. t .. > 0 
l. J l.J -

L t .. u . . 
(i,j)€N l.J l.J 

[(i, j ) EN] 

(i = 1,2, .•. ,m) 

l ~ i, ,i ~ E N] 

(2) 

The advanced algo~lthm presented in the next section finds a basic f easible 

s.:-1 •1ti or ( if i t exists) f or ProbleDl (2) provided (a) c ~ O, (i, j ) E N, 
i J 

(b) 0 < k . . ~ 1, ( i, · ) e N, and {c) the rank of the incidenct matrix 
l. J 

i s m - 1. 

Condi t ions (a) - (c) are not as restrictive as they may appear. 

Requi rement (a) is generally innocuous in operations research. applications 

[22, p. 178 ]. Restriction (b) prohibits the inclusion of a loop in 

t he dual f easible basis determined by the algorithm. Condition (c) 

i s always sati sf ied by transportation ~d pure network problems; it 

i s only rest rict i ve i n t he generalized network case when the rank of 

the i nci dence mr ~rix is m. Even in this caae, the algorithm will generate 

a dual f easible spanning tr~e solution, although not a basic solu~ion. 

Requirement ( c) can be cir~umvented if the generalized network contains 

a singl e master source wi t h an unlimited supply. 

In order t o gener1:.te a dual basic feasible solution to Problem (2), 

the algorithm f irst deri ·.:ee ~ 'hasic feasible solution to the problem: 

- ln 

maximize 1: b . w. 
i=l l. l. 

subj ect to k .. w. - w < c .. [(i,j) E N] (3) 
l. J J i- l.J 

wi unrestricted 

Problem (3) is the dual to Problem (1) in uncapacitated form. 

The algorithm presented in t ~ ~ next section will generate a basic 

feasible solution to Proolem (3) . Clearly such a solution will yield a 

~easible solution to Problem (2). · The algorithm proceeds by first 

selecting an appropriate starting node and determining the generalized 
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longest path f rom all other nodes that can reach the starting node by 

a directed arc. One of the above nodes is then selected (and its a~so

ciated due.l variable value fixed) in such a manner that dual feasibility 

is preserved and the objective function (at this iteration) is ~~imized. 

At each subsequent stage gene.,.alized snortest and longest paths are 

determined f rom fixed to non-fixed nodes; one node is again selected 

whose dual variable value preserves feasibility and yields the best 

return for t ht:: obj ective function. The process is repf"ated unti l all 

m nodes of the network have been selected. The algorithm is a "one-pass" 

method in the sense of Charnes and Raike [4] in that at each interation 

one new node is selected; the process then yields a succession of m single 

steps which determine the solution. 

Algorithm 

Le , 

T(p) = t he set of "f ixed" nodes at iteration p. 

s = the set of arcs from f ixed nodes to nonfixed nodes. 

R = the set of arcs from nonfixed nodes to fixed nodes 

B = the set of arcs currently selected to be in the basi s 

1. Select the starting node t to be a source node. Set the dual vari

able,wt, of thi s nc~~ equal M = ~ 
u c . . 

(i,j)€N~J 

n k • . 
~J 

(i,j) EN 

(For the pure network problem, any node can be selected arbitrarily 

as the starting node t and M can be set equal v zero. ) Initialize 

by setting T( l) = (t} aud B • ¢. Set q = t; in eeneral q denotes 

the node whose dual variable was last set. Set p = 1; in generAl p 

denotes the current iteration of the ~gorithm. 

i I T(l) and w~ (0) = 0 fori I T(l). 
~ 

1 Set w1 (0) = = f or 

2. If S = ((i, j ) E N: i€ T(p), j i T(p) } is empty, proceed to step 3; 
otherwise f or each node j i T(p), let 



1 
w. (p) 

J 
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{ 1 ( 1) w + c · ) wj p- , q qJ. 
k . 
qJ 

if (q,j) E N 

if (q,j)f N 

3· I f R= {(i, j ) r N: if T(p), jr. T(p)) is empty, proceed to step 4; 
otherwise f or each node j¢ T(p), let 

~
ax { w~ (p-1), 

= J 
2 

w. (p-1) 
J 

k. w -c. ) 
Jq q Jq. 

if (j,q) E N 

if (i,q)f N 

4. I f SUR is empty and there exists a node jf T(p), then stop forth~ 

network is disconnected; otherwise if sr ¢ set wf=i'n (w~(p)) 
• m( )J 

(where f equals the J~ T(p) yielding the minimum) J d.l.i¥ Rr ¢ set 

wr=jt~(~)~(p)) (wtere r equals the j, T(p) yielding tne maximum). 

Next comput~ the "effective net stock"for node f (if Sr ¢) as 

b
1
f = bf + L: b./kf. + L: k.fb . 

( , j)E N J J (j,f) E N J J 
j / T(p) jf T(p) 

and if Rr ¢ compute 

b1 = b + ~ b ./k . + L, k. b. 
r r (r,j)€ N J rJ (j,r)E N Jr J 

j / T(p) j / T(p) 

Then if wfbfl > w b
1 

, set q = f and augment T(p) by q; otherwise 
- r r 

set q = r and augment T(p) by q. If q = f augment B oy the arc 

(p,f) f or which w, = wp+ cpf otherwise augment B by the arc 
1 k 

pf 

(r,p) for which w = k w -r. • In either case, if tt··re is more 
r rpp rp 

than one arc then choose any such arc. Finally, if T(p) contains 

all the nodes the algorithm is completed; otherwise set T(p+l)= T(p), 

p = p+l, and return to step 2. 

4. Validity 

In order to establish the validity of the algorithm, it is necEssary 

to first prove the following lemma: 



Lemma: At each iteration p, 

min{w~(p)} > max{w~(r)) 
l - l 

i/T(p) i/ T(p) 

(i.e., i wf and w are both defined at iteration p, then wf > w ). 
r - r 

Proof : 

The result is established by induction. By the lemma in (13], we 

can assume w.l.o. g. that all w~(p) and w~(p) at every stage p are nnn-
l l 

negative if the first dual variable is set equal to M. Additionally, 

we assume that the nodes have ueen renumbered in theorder in which 

their w. 's are f ixed. 
l 

(i) For t he 

wf and wr are 

f irst iteration (p=l), we may as!ume w.l.o.g. 

defined and 11ave the values wf= M + '1.f and 

~f 

that 

w = k M - crl Since c .. > 0 for all (i,j)E N and 0 < k .. < 1 r rl l.J - lJ -

f or all (i, j ) E , wf > w and th~s 
- r 

min{w~(p)} > max(w~(p)). 
l - J. 

i/ T(l) il T(l) 

(ii) 
th Now assume the hypothesis is true for the p stage. 

Thus 

min (w~(p)) > w > max(w~ (p)) (4) 
J. - p- l 

i/ T(p) i/ T(p) 

and f or each i/ T(p) 

~ 
1 

1 min{w.(p), 
w.(p+l) = 1 

l 1 
w. (p) 

l 

and 

w + c . ) p pl 
k. pl 

k w - c . ) ip p lp 

We may assume w.l.o.g. that for each i/ T(p) 

1 ) 1( w + c . ) w. (p+l = min(w. p), p pl 
l l k . 

pl 

and 

w2 (p+l) = max{w~(p), k. w - c. ) i 1 1p p 1p • 

if (p,i)E N 

if (p,i)/ N 

if (i,p)E N 

if (i,p)/ N 

-. 
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Therefore, 

min (w~(p+l))~ min { w7(p), 
w + c . 

~ ~ 

i/ T(p+l) i/ T(p+l) 

and 

p p~ 

k . 
p~ 

2 .. 
max{ w. (p+l)) = 

~ 

2 max{w.(p), k. w -c. ). 
~ ~p p ~p 

i/ T(p+l) i/ T(:o+l) 

To establish that min ( W: (p + 1)) > 
~ . -

2 max ( w. (p+l) ) , 
~ 

if. l'(p+i) i E T(p+i) 

it suffi ces to show that the following cases are true: 

(a) 1 oin ( w. ( p) } > max 
~ 

2 (w.(p)} 
~ 

i/ T(p+l) 

(b \ . ( w + c . , m~n p ;p~ 

k . 
i/ T(p+l)P~ 

i/ T(p+l) 

> max (kipwp - cip) 

i/ T(p+l) 

(c) min (w~(p)) >max 
~ 

{k. w c. ) 
~p p ~p 

i/ T(p+l) 

(d) min {wp+ cpi) > 

i~ ·T(p+lfpi 

i/ T(p+l) 

2 
max {w.(p)) • 

~ 

i/ T(p+l) 

Case (a) follows directly from the induction hypothesis since 

and 

max {w~(p)) <max {w~ (p)) 
~ - ~ 

i/ T(p+l) i/ T(p) 

min (w~(p)) 
~ 

i/. T(p+l) 

2 >min {wi (p)). 

i I T(p) 

Since, by the lemma in [13], w > 0, and c .. > 0 and 0 < k .. < 1 for (i,j)E N, 
p - ~J - ~J -

case (b) is clearly true. Cases (c) and (d) follow from expression (4), 
c . . > 0 for (i,j) E N, and 0 < k .. < 1 for (i,j)E N. Therefore, the lemma 
~J - ~J -

follows by induction. 

Theorem: The algorithm obtains a feasible basis for Problem (2) or determines 

that the network associated with Problem (2) is disconnected. 
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Proo : The algorithm terminates .fter at most m iterations, .because at each 

iteration T(p) is augmented by one node or else the algorithm stops with the 

assert ion that a feasible basis has been obtained or that the .network is ~i~

connected. 

The assertion that the network is disconnected occurs when S ana 

R are empty and there exist s sore.e node jl T(p). Ur:<ter these conditions the 

network is split into at least two disconnected parts. 

Ruling out discom1ectedness, it must be demonstrated that the 

values assigned to thew. are feasible, i.e., k .. w.- w. <c .. for all 
1 1J J 1 - 1J 

(i, j ) e N. Again the method of proof is induction. Assume the nodes are 

numhered in the order in which they are fixed. At iteration r, the number 

of nodes in T(r) is r. Suppose that thew . values for these nodes represent 
J 

a f easible solution to t he dual subproblem obtained by considering all nodes 

in T(r) and all links j oining the nodes in T(r). We shall show that the 

process of augmenting the (r+l)st node to T(r) assigns to its dual variable 

w 
1 

a value t hat is feasible for the dual subproblem obtained by considering r+ 
the (r+l) nodes in T(r+l), thereby yeilding the desired inductive result. 

(i) To begin , let r = 1. The assignment w1~ M clearly provides a feasible 

solution t o the subproblem ~onsisting of the f irst node. For r = 2, the 
M + c -possibilities are that w

2
= 12 or w

2
= k

21 
M - c

21
. 

kl2 

I f w = M + cl2 
2 ~2 

f or (i, j ) e N. Thus, the values of w
1 

and w
2 

satisfy the feasibil

ity c ·nditions not only for the arc (1,2), but also for the arc (2,1) if it 
exists. On the other hand, if w2= k21 M - c

21 
then w2 ~ w1. Therefore, 

the values of w
1 

and w2 satibfy the feasibility conditions not only for the 

arc (2,1) but also for the arc (1,2) if it exists. 

(ii) Now assume that the 1' uodes :i.n T(r) have node values which yield a 

dual feasible solution. It will be shown that adding the (r+l)St node then 

yields a dual feasible solution. 

Let 

let 

p(r+l) = {j 

q(r+l) = { . 
j E T(r), (j, r+l) e N) and 

j e T(r), (r+l, j) E N). 

Suppose that node r+l is being added in the "forward direction" 
r . • {w. + c . l)) .. :.. • e • _. w r+ 1 = m1n J J r+ • 

je p(r+l) kj r+l 
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Then autornati r!ally w 1 sati sfies t he condition k. 
1 

w - w. < c 
r+ J ,r+ r+l J - j ,r+l 

f or jc p(r+l) . B.; t he previous lemma, w 1 > max { k 1 . w.- cr+l, J.} r+ - r+ ,J J 
j q(r+l) 

wd theref ore t "le condition k 
1 

.w .- w 
1 

< c 
1 

. for j e q,(r+l) is satisf ied. 
r+ , J J r+ - r+ , J 

Likewise, suppose node r+l is '>eing f.l.dded in the :rreverse direction" 

(i.e. w 
1 

=max {k 1 .w.- c +l .)). Then the condition k 
1 

.w.- w 
1 r+ je q(r+l)r+ , J J r ,J r+ , J J r+ 

c 
1 

. f or j q(r+l) is automatically satisfied. Again by the lemma r+ , 

< . {w. + c . ) th d. t. k < f wr+l _ .ml.n f J , r +!.. , e con 1. 1.on . 1w 1 - w. c. 1 or 
( J , r+ r+ J - J , r+ J p r+l k . 1 J,r+ 

c p(r+l) is satisf ied. This completes the feasibility proof. 

The f inal s t ep of t he proof is to show that the feasible solution 

thus determined by t he algorithm is in fact basic feasible, i.e., the arcs 

i n B f orm a basis when t he algorithm terminates. First, upon termination B 

contains m-1 arcs because one new arc is added to B each time a node is added 

t o T(p) , except at initialization. The arcs in B clearly span the network. 

Fur ther, t he arcs i n B contain no cycles. To verify this, assume the con

t rary and let ( r, s) be the first arc added to B that creates a cycle with 

the previous arcs. Then there must be an arc (r,j) e B and an arc (i,s) e B. 

But t his i s impossible when (r,s) is added to B, since all arcs (i, j ) e B 

sati sfy i e T(p) and j T(p), whereas to augment B with the arc (r,s) either 

r /.. T(p) or s/.. T(p). Thi s completes the proof. 
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To t est t he advanced start procedure, the dual codes developed in [9, 
12] were modified to use this start. These codes use the dou lepricing pro

cedure [12 ,1 ~] for determining the unique updated linear equation which 

expresses the basic variable, leaving the basis in a pivot, as a l inear 

combinat i o of the current nonbasic variables (for a complete description 

see [12,14]). The important aspect i s that the double pricing procedure is 

quite efficient f or c~lc1uating these coef ficients. Thus these codes should 

be effi cient in t he pivo~ phase cf the simplex dual method [20]. 

All of the co _es used in t his s~u.:.'ly are in-core codes; i.e., the 

pr ogram and all of the probl em data simultaneously reside in fast-access mem

or y. They are all coded in FORTRAl~ and none of them have been tuned for a 

part icular compiler . All of t he problems were solved on the CDC 6600 at the 

Ur~versity of Texas Computation Center using the Run compiler. The computer 

Jobs were executed during periods when the machh1e load was approxi mately 

the same, and all ol ution times are exclusive of input and output, i.e., 

t he total t lioe spent solving the problem was recorded by calling a Real 

Time Clock upon starting to solve the problem aad again when the solution 

was obtained. 

Initially, the advanced <lual start code was tested on eighteen of 

t he benchmarked problems in [19) since these problems had already been 

solved sing the code s by Bennin: ton [2], Boeing, General Motors, SHARE 

[5,21], SUPERK [1] , Texas Water Development Board, PNET-I [9], and DNET 

[9]. The fi1st f ive of these codes are variants of the out-of-kilter method 

[7,8] except ~~r B~nnington [2]. PNET-I [9] is the fastest known special 

purpose primal simplex code f or solving capacitated and uncapacitat ed trans

shipment probl ems. DNET is a special purpose dual simpl~x code usi ng t he 

start procedure in [13 ] f.:>r solving transshipment probJ em3. DNET was mod.'

f i ed ~o use the advanced dual start and this version will be ref erred to, 

hencefor th a s DNET-I. 

Additionally, these 18 problems were chosen since they are gener· 

ally avail able to other researchers and the problem set is reasonably sr.all. 

The specificat ions of t hese 18 problems as required on the input cards to 

the network generat or in [19] are given in Table i. Problems 1-5 are 100 x 

100 transportation probl ems , problems 6-10 are 1~0 x 150 transportation 

problems, problems 11-15 are 200 x 200 assignment ~~oblems, and problems 

16-18 are 1000 node transshipment problems. Table II contains the solution 
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t i mes for each o these problems for each of the codes. 

Comparing t he advanced start dual code DNET-I against the 

previous dual code DNET indicates that our initial premise (i.e., s~1ce 

t e maj ority of t he computational time spent in the dual procedure is de

vot ed to t e selection of an in-coming arc, a considerable amount of t ime 

could be devoted to f i nding t he starting basis, if the start provided a 

suLs t ial reduct ion i n t he number of pivot s to reach optimality) is correct. 

I n particular, the results show that the difference in start times for the 

two codes is negligi ble and in some cases (surprisingl y) the advanced start 

takee less t i me to f i nd the starting asis. In terms of pivot reduction, 

t he advanced start is qui t e extraordinary. For example at least a 1~ re

duction is achieved on every problem and i f ive cases, the reduction is 

more th~ )~ . Thi s pi t reduction is directly reflected in the total 

solution t i me since ~·-I stri ctly dominated DNET in each case and the 

percent reducti on in t ot al solution time is almost identical to t he percent 

p' v t r educt ion. Unf ortunat e! , t his subst antial reduction is not enough 

t make i e dual met od competiti ve with PNET-I or SUPERK on tm~s b~aad elaas 

o probl ems . Howeve r ~ T- I is co parable with t re othex- codes Bennington, 

St , Boei n , eneral 1<1. tors, and Texas '\-Tater Development Board. Another 

notewor t h f eature of t he computat ional results is t hat PNET-I strictly 

dominat es all o t he codes. In f act PNET~I is roughly twice as fast as 

SUPERK, t he astest known out-of -kilter code. This result is extremely 

i mpor t ant si nce it completely contradicts t he f olklore that the out-of-kilter 

met ' od i s t he f ast est ( i n t erms of total solution time) means for solving 

t ransport a . ~.on and transshipment problems. 

Mot i vated by Harris' [15] hypothesis that the dual simplex method 

mi ght be an effective solution approach for solving extremely rectangular 

t ransportation pro lems (i.e., problems which have only a few origins and 

many destinations), we decided to solve some rectangular problems using 

t he f astest code of each type. In order to make our research results 

availa le t o f el low researchers, we used NETGEN [19] to generate 12 highly 

r ectangular t ransportaticr. problems. Table III contains the specifications 

or t hese problems as required on t he input cards for NETGEN. The computa

tional results on these problems are ~iven in Table IV. 

Important results which can be gleaned from Table IV are that 

DNET- I takes less time t han SUPERK in all but one of these problems; how

ever, DNET-I again assumes its secondary role to PNET-I, being slower on 
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all f t ' e pr blems . Even though DNET-I is slower than PNET-I on these 

r er:tar, ular pr ~ lems 'Lt magnitude of the differences is quite small com .. 

part:d wl U. i,he 'J'a l e Il results. Thus Harris' hypothesis appears to have 

een well f unded. 

Unlike t he square problems of Table II in which start sel~ction 

time is a f ai r l y Slliall proportion of the total computation time, rectangular 

problems cause the dual to spend a great deal of time picking the start. 

For example, t11e problems where DNET-I performed best, in particuJ.ar, 

problem!', 1, 5, , 7, and 11, the start ttiDY constituted 94%, 8~, 71%, 

76%, and 7g~ respectively of the total computation time. 7his appears to 

reinforce our original premi se that quite a bit of time co~ld be devoted 

to start selection if t hat start r.eciuces the ·nwabat · of p:i.vots being 

performed . 

Mor e r e search is needed in the area of determining precise bound

ari es wit hin which DNET-I performs best . Initial results indicate t hat it 

?er forms better as t e number of seurces decreases, but there are also trends 

indicating t hat arc density plays an important role. Problems 8 and 9 show 

tha t as the arc ensity increa ses f rom 5o% to ~ the number of pivots re

qui r ed to reacl an optimal sol ution nearly doubles. Yet in problems 3 and 

4, an increase f r om r oughly 55% to roughly 7~ caused nearly a 3o% reduction 

i the number of pivots . In contrast, PNET-I is not as sensitive to arc 

den sity ranges , s ince the number of pivots is proporti nal t o the number 

of ares. 



W5- 

•-< 
« 
> 

1 

m^aorjoor^^T^-jrrvroa^Ov»—<   2?O*00 moor^Oir>rivfOvCr'    "^' 
4» v ^ r» ^j fi o m r ( o -    r«.    •-*-• 

>OOOl"ioocC'vJ>-'Cr   co    O*^ 1 >   C > c 
«4    0 •    ■••*»**•••»•••     *    •    • ■^   0 
w  -^ r^o»^«>j<N«Nf^iA»ni«^(nfn«Nr<*   SOi-< U   -ri »O K» \C IO ^ t^  o -7   •■»   «t    ^^^ . 
u  *-» o w at ^i^H^j^ji^rir^r^ovX    '/t^- ' 
*   y «us m a<  W   f-  —<  ^^ '"-   O   "^   C    "-♦""• 
•n C •    •••»•••••                                *«« •r-,  c ^ »                        •     p                          #      • 

£   3 (N^^^^HiNCNtN-irM                              rj"^»* .o  3  ai ^^                                       r^     F—                                         ^-       ^N 

O U. 2J  O 00 o u. > 

1 u 
V 

1 
1 
I 

ooooooooooooooo 2oo 
^D  vD ^D ^D ^D  ^D ^D ^3 vO ^D ^JD ^3 ^D  ^D ^D   ^^   vO ^D 

OOOOOOCOOC   oc 
z 3 >C^»0^vCvOvC>C^   vC    ^o>c 

■o as <r   >»   vT   -t   <T   »T   vT   »t   -T   ^T    -TVf 
B   V 

ooooooooooooooo Soo 
•T3 >N  fN   r>l  (N  CM   (N  (N   rj   ri   r J    r(rl ' 

0   V 
5   0) 

cooo©©©©©^:   OC 
"O «/) m m u"i m in in m i^ i/'  tr   ^nin 
c 

ee 

-nmnrommr^for^mrommmm   ^nfi TJ  10 
C 

mmror^tim^i—  -^r^   r-«r** i 

i - 
oe 

ooooococc o oo, 
©oooooocc c oo 
ooooooccccool 

p        #        Ik        *        •        #        #         *         •          #          *     *i 

0
0
,
0
0
0
 

0
0
,
0
0
0
 

0
0
,
0
0
0
 

0
0
,
0
0
0
 

0
0
,
0
0
0
 

5
0
,
0
0
0
 

5
0
,
0
0
0
 

5
0
,
0
0
0
 

5
0
,
0
0
0
 

5
0
,
0
0
0
 

2
0
0
 

20
0 

20
0 

2
0
0
 

2
0
0
 

0
0
0
,
0
0
0
 

00
0,

 O
OC
 

,0
00

,0
01
 

M 

6 i« a « a oooooccooo CO, 
*J a M 4J a 

¥-1 
M 5 :s .0 :3 

1^ 
u -'■'~"-'-'-^-^'■^'-"■,                             Jr-T^ M Ui 

J u u ►J 01 

9 ac 
c   X oooooooooooooooo oo 

©ooooooooooooooo o© 
9 00 

C   X oooooococc  oo 
H 

s 55 H <2£ OOOOOOOOOO   OC' 

w u 1 

i 
a. 

§5 _ — _I_1_I-J_._l_l_._l_l-I_l_l_i ^-1 
w c 

U X 1 

;^r 

0 

©©©©ooo«^^©©©©©©© 9 © 
©0©©©ir«0»rir^oOiAOinoo  2  © 

1  

IM 
o 

Q 
u 

ooooooocc c oo,  < 
V kl inoo©©occ - c oo, 
ja  us (>"ii/i©CMCT>i-iini-HO<"'>i'"if^Oi^"">^ 2  ** 01 ^, in C m in oc  O O LT. o   ^C     j| 

3   ki 
X)   (A 
B   u 

z < 3   ki 
- 

1    u 

IM U-l 1 « 
0 o 

oom a 
kl ©©©©©0©©©©©0©0©0°   © U a0iniOvCQ000r».'ninu-i   O^C^ -j 
11   'J) OO©©Ou^u-iinminO0O©©iOt0  in a> ai ^0\(yi^O^O^a>CTO-  --t   ■^•■■'i   c 
4 ■* —<^^-4r^^r-<^-H^«N(NrM(Nrsi •5 -^ i-l   ~»   -T   ^   ^   O  C»    O^   -C   •-1' •    — 
1 s §5 3 -^ dj 

■ V Z oo 

<*-< 
IM 0 fl! 

O©©©000©00©00©©©°   © 
10 

u  <U rw in <}  vj   "i '"i '"• !/■■ •/"    "   '-i i-n'_^ 
V.    o it  u ■  TI 
«J   '' ©©©©©"-»^^^^©©©OOm1"   m J3   k. , > 
ja  u _l~H~H.-l~Hr-«^pH~4i-l(N(N'rM(N(N S   3 

N
u
m
 

S
o
u
 

3   O M Z W ^ 

tw UH 1   " 
0 0 
U 0000000©©©00©OOü2   O 

0©0©0©0©©©00©©©©S   © 
kl oooooooc^o gc. 

0)   CA 41   A oooooooc Cl"  oc 
JO   V X;   it ^ (N in m o c c o o <y   '"^^ 
§ "? .-(   —     rH e -a r-<f-Ht—'•-^•—'•"*     •"■,'— 

3   0 
Z Z    | Z  2 

-Htv(*>»jin>or^ooo*0^f^fnvymvcr~oo »-«r'jrOvttnNOr^J"   ^   C   "^fN 
PH^,H^,-|-^I-)^H-4 ^-<   ■—■ — 



t? 

T3 
C 
o 
o 

I/) 

W      0) 

3 I 
c 
o 

o 

fO O^ f*^ o 
r>i #*> ^ sO   »i 

'^- 

^4 ^H 00 r» 
fN   IN   fN   P«» 

$$$$$$$$$$$$$$ 

 R sr 5; 
v©  (»> i/^  O O  r-j r>  O 00 r>.  >A ao  F-4 O) n  n  fj  Q 

>.-<  «a 
o *-> 

o 
•  > 

0   -H z a. 

n  a 
en H 

2 ä 

to 
o 

0 
• > 

O   -H 
z a- 

1-   01 
n)   B 

(0   <U 

ftpif-yr) ^.gr; 

lA  <£  <£  i/*l O  O 
P^  r^ vr>  >J  -<  O 

«y ^. rj O 
c pc o: ct   » ■ •   o   7 p ps f^ 

rM(N'*i'*^iAvO ^< f»i CN r i 

ixi >o<t^f^r^O<NOi-i«9,rOf~.^mmr^i/>r»l 

r^ ^-l\omO>Cl/^»-, >-i~y(yvi—iiA^r^-or^i—i 
■-iiNrvicNm^'CacaooOr-itNrsrMrstinm^o 

■-(r^r~»jr^Omr^f^iin^Hvr(T>iA3\vO>ni-i 

00f^fnf-iv0<-(O—(ffoc^) n -i  crv r» CT» in 

r>-, -j^j-:fi/"r^r-~6J'.Cfi<"    f   (^ i'"  ^» ol M fn 

p-» in oo 
in m o f^ ^ 'O -j CT^ (N o r" •/ ^J .y »-(  •■»' <0 0» 
oo oo ^ CT< t^   • "D oo a> c> ^r f 'O £> ^    •    •   • 

•      •      •      •  •      •      •   CN  (M  <M 
•-(.-«-H.-HPIf.ltSfMtSINr-t.-t.-l 

^rx.-^oOvrfHf^r^vCtvi^O'^OO^Or"! 
\O00>C9iv£ u0inmO'/ir->o<y>»^>ß|nu-im 

r^O<N^coinvOOMvofNOvrr^oooOCT«xo 
,_( ,-(  ,-H  .-H  (M  rl -3   -3-  p^   p-H fi  r-t r-J  r-.  f^   TO O 

PMf^r^OooQtNMoomoPO 
Mroinp*rN«OvOmcvinr--»3-< 
mmr^mvO^-ti/^oo Oinv£)i>.OZZZZZ 

a>«,OiniH'Nror-fOpg(Nr>.^0 
invor«.ooomr^.o>jin'vi«nr». < < < 

■Ü Z z ZZ 

vooo^vo^ocofoino.^oooo 
ooinsj(jifn^ooa>o^ooinro-i;<<<<  z z z z z 
pgrn^(r^ro>0»»r^iH-na>0(N 

-HtNcis^tn^r^oo^OrHCMCivjinvOf^oo 

> < 

o 
2 

< z 

a: 

H 

§ 
a 
M 
a 

i 



• r 

TABLES IV 

Sclutl an TlBt-H (In aecunds) 

FrcbJem 

DNKT 

Tine    1 

- I 

Pivot» 

PNKT - 

Time    1 

I 

PlVOtB 
SUPERX 
Time 

1 .292 1 .079 18 .882 

2 1.960 58 .447 84 3.397 

3 10.249 182 2.414 203 13.330 

4 9.656 122 2.782 139 12.424 

5 18.996 43 3.927 129 35.287 

6 22.214 88 4.557 128 36.721 

7 21.866 65 2.734 60 37.547 

8 32,717 261 5.852 259 39.104 

9 56.926 493 10.314 338 43.726 

10 58.106 313 »,♦.286 316 67.459 

11 43.735 90 5.553 114 71.042 

12 124.822 758 18.024 424 DNR 

DNR - DID NOT RUN 
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