AD-779 141

FINDING MINIMUM SPANNING TREES
WITH A FIXED NUMBER OF LINKS AT A
NODE

Fred Glover, et 2l

Texas University

Prepared for:

Office of Naval Research

April 1974

DISTRIBUTED BY:

Kational Technicas Information Service i
U. 5. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

e U e e




w

e AD 772 7%/

DOCUMENT CONTROL DATA-R&D

‘Security classilication of title, body of abstract and indexing annotation must be entered whon the overall report is rl.usilu'd)
1 ORIGINATING ACTIVITY (Corporate author) 20, REPORT SECUNHITY CLASSIFICATION

Center for Cybernetic Studies Unclassified

University of Texas 2b. GROUP

3. REPORT TITLE

Finding Minimum Spanning Trees with a Fixed Number of Links at a Node

4. DESCRIPTIVE NOTES (Type of report and, inclusive dates)

5. AUTHORI(S) (First name, middie initial, last name)

F. Glover
D. Klingman

6. REFPORTY DATE 7. TOTAL NO. OF PAGES 76. NO. OF REFS
April 1974 15 15
88. CONTRACT OR GRANT NO. Sa. ORIGIN‘AYOR’S REI'ORYT NUMBE R(S)
N00014-67-A-0126-0008: 0009 center for Cybernetic Studies
b. PROJECT NO. Research Report CS 169
NR 047-021
9. OTHER REPORT NOIS) (Any other numbers that may he assigned
this report)
d.

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its
distribution is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research (Code 434)
Washington, D. C.

13 ABSTRA:

This paper addresses a variant of the minimum spanning tree
problem in which a given node is required to have a fixed number of incident
edges. We show that this problem, which is combinatorially a level of com-
plexity beyond the ordinary minimum spanning tree problem, can be solved
by a highly efficient "'quasi-greedy' algorithm. Applications include a tele-
communication linking problem and a new relaxation strategy for the traveling
salesman problem via appropriately defined order-constrained one-trees.

A N R a7 T

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
of Commerce

(PAGE 1)

DD 1 NOV u‘473

¢ Unclassified
S/N 0101-807-6811 { ty

A-31408



Unclassified
Security Classification

i R

LINK A \
KEY WORDS BN LINR €

ROLE wT ROLE wTY ROLE wT

Spanning Trees
Constrained Spanning Trees

Graph Theory

DD =.1473 Unclagsifid
1 NOV o8 (BACK)
5N 0102-014-6800 ‘.. O— Security : ssification A-31409




Research Report
CS 169

FINDING MINIMUM SPANNING TREES WITH
A FIXED NUMBER OF LINKS AT A NODE

by

Fred Glover*
Darwin Klingman

April 1974

*Professor, University of Colorado, Boulder, Colorado 30302

This research was partly supported by ONR Project NR 047 021, Contracts
NO00014-67-A-0126-0008 and N00014-67-A-0126-0009 with the Center for
Cybernetic Studies, The University of Texas. Reproduction in whole or in
part is permitted for any purpose of the United States Government.

CENTER FOR CYBERNETIC STUDIES

A. Charnes, Director
Business-Economics Building, 512
The University of Texas
Austin, Texas 78712




- - -

ABSTRACT

This paper addresses a variant of the minimum spanning tree

problem in which a given node is required to have a fixed number of

incident edges. We show that this problem, which is combinatorially a
level of complexity beyond the ordinary minimum spanning tree problem,
can be solved by a highly efficient ''quasi-greedy'' algorithm. Applications

include a tele-communication linking problem and a new relaxation strategy

for the traveling salesman problem via appropriately defined order-constrained

one-trees.




1. 1Introduction

The minimum weight spanning tree problem has enjoyed a good deal of noto-
reity ever si.ce Kruskal first provided a greedy algorithm for solving it [12].
Interest in the problem at least in the beginning, appeared to center primarily
around the novelty that something with a nontrivial statement could be solved
by an "almost trivial" procedure. Philosnphically, this was both intriguing
and unsettlings and other manifestations and generalizations of greedy algorithms
were sought [1, 13]. A broad characterization of such methods in the context of |
matroid theory was accomplished by Edmonds [3], who coined the term "greedy
algorithm."

With rare exception (e.g., [4]), the precise form assumed by a greedy
algorithm is usually one of the first possibilities that springs to mind, and
the validity of such an approach can typically be established without notable
effort. The early applications secmed for some time to have little practical
significance and little relevance outside their immediate contexts. Recently,
however, things have changed. Practical applications in such diverse areas as
least cost electrical wiring, minimum cost connecting communication and
trensporiation networks and minimum stress networks have found their way into
the literature and textbooks (see, e.g., [1l0a, 11, 15]). A variation of
the minimum spanning tree problem, called the minimum "l-tree" problem was
shown by Held and Karp [8,9] to be extremely useful as a relaxation of the }
traveling salesman problem. In addition, Dakin [1], Kershenbaum and Van
Slyke [11] have shown that there is more to the implementatirn of greedy
algorithms than previously suspected, and have developed rather ingenious
procedures for organizing and updating the information used by a gireedy algorithm

to improve its efficiency

Throughout all this flurry of activity, an extremely important relative of o
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the minimum spanning tree problem has surprisingly been neglected: that of
determining a minimum weight spanning tree subject to the additonal restric-
tion that a given node be constrained to a specified order (i.e., have a fixed
number of incident edges). Such a problem is directly relevant in the traveling
salesman context, where nodes are constrained to order 2. The problem also
arises, with perhaps greater practical immediacy, in a telecommunications set-
ting. Here the objective is to find the minimum cost way of setting up trans-
mission cables to connect users in various cities to a common computer
installation. The "order constraint' derives from the requirement that the
immediate links to the computer facility must be at least of a certain number,
in order to accommodate the fact that too few links will be unable to support
the anticipated transmigsion load. {The requiremert that a node be constrained to
"at least" or '"at most" a certain order can be handled as a simple variant of
constraining it to be exactly of that order.)

In view of the foregoing remarks, the purpose of this paper is to address

the following problem: P(K) - Find a minimum weight spanning tree with node

0 constrained to order K. Here, as customary, we implicitly have reference

to an underlying graph of nodes and edges, and the weight of a subgraph (hence
a spanning tree) is defined to be the sum of the weights of the edges in that
subgraph. Node 0 may of course represent any sclected node in the grash, and
K is assumed to be a positive number for which a spanning tree with exactly K
edges jincident to node O exists. (Otherwise, the solution of P (K) will deter-
mine the nonexistence of such a tree -)

Our principal results for characterizing optimal spauning trees with a
constrained order at node 0 consist of a "primal theorem" and a "dual theorem'".
The former gives a method for constructing an optimal tree beginning with uny
tree that alreai; satisfies the order requirement at node 0, and the latter
gives a method for constructing an optimal tree of order K+ 1, or K - 1 at

node 0 (as desired) from an optimal tree with order K at node 0.




The dual theorem is in fact a cha~acterization of a ''quasi-greedy'" algorithm,
for 1: makes the very best move from the categury available to it, not by
"put:ing things into a bucket" (in Edmond's terminology) but by trading
things between two buckets.

We also piovide special labeling procedures that enable the primal and

' analogous to the

dual methods to be applied by means of "modified pivot steps'
basis exchange steps employec in specialized linear programming procedures for
solving minimum cost flow network problems. The '"modified pivot stepﬁu of
course, do not involve the use of a specialized linear programming algorithm,
since the problem under cousideratinn is combinatorial and has no LP network
equivalent; however, the amount of calculation of these modified pivot steps
is in fact on the same order as--or somewhat better than--tb.c of an LP basis
exchange in a network. Further in the dual case each step immediately gives
an optimal spanning tree of the next higher or lower order at node 0, thereby
producing an algorithm of considerable efficiency. In the concluding section
we discuss how this ''quasi-greedy" algorithm can be similarly applied to the

constrained minimum one-tree problem enhancing the significance of this method

for the traveling salesman problem.

2. Notatior and Results

To lay the groundwork for the primal and dval theorems for constructing
optimal crdered-constrained trees we introduce the following definitions and
notational conventions. T and T' will denote distinct spanning tree:, defined
on a commcn graph. We also allow T and T' to represent thLe sets of edges for
these trees, writing for example, eeT - T' to indicate that e is an edge in T
but not in T'.

The unique edge-simple path in T couanecting the endpoints of an edge e will
be denoted T(e)(and likewise will interchangeably be used to represent the set

of edges for this path). For two edges e, e' such that e ¢ T and e¢' £ T, we will

e et et
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Lemma 2. Assume that U T, eo', e' ¢ T and e, and e

Proof: For the "only if" part, assume e

e

call the process of adding e' to T and deleting e from T an admissible exchange

(relative to T) if the result ia also a spanning tree. Thus, in particular,
such an exchange is admissible if and only if e € T (e').

Using these definitions, we will first state a theorem of [7] concerning
the existence of a special "matching" of edges from T and T' that is particu-
larly useful for establishing the main results of this paper. (Due to its

subordinate role in the present setting, we state it as a lemma.)

Lemma 1. F.r any two distinct spanning trees T and T', there is a way of

pairing the edges of T - T' with those of T' - T (in a one-one matching) so
that every pair gives an admissible exchange relative to T.

The proof of this result in [7] gives a constructive procedure for producing
a pairing that satisfies the stated conditions. Such a construction will not
concern us here, but we require an additiomal preliminary (and somewhat non-

intuitive) result to complete the foundation for our principal theorems.

' are incident to

0 0

the same node. Further assume that at least one of the pairs e, e' and ey

e'0 does not give an admissible exchange relative to T(by deleting the first

member of the pair and adding the second). Then ey e' and e, ' both yield an

0
admissible exchange relative to T if and only if the addition of
e' and eo' and the deletion of e, and e result in a spanning tree (hence, if

and only if the pairs ey e' and e, eo' yield successively admissible

exchanges, executed in either order).

o€ T(e') and e eT(eo'). Swapping e'

and e still give an admissible exchange

and e, gives a tree T' in which eo'

0

unless T’ (e'o) ¢ T(e'o), which occurs only if e, € T(eo'), implying e_ can

0 0

exchange admissibly with eo'. By assumption it follows that e ¢ T(e')

(else e and e' could exchange admissibly). Thus e € T(eo') - T(e"), and it




follows that the edge simple path T(e') ) { e'} VU T(eo') - (T (e') - T(eo'))

in fact contains e and is T' (eO'). Thus the second exchange is admissible in

T', proving that a tree results. (A similar argument leads to the same con-

clusion by considering the swaps in reverse order.) For the "if" part of the
1

lemma, assume that T‘U {e.', e } - {eo, e} 1is a tree. By Lemma 1 there

is some way of pairing the edges, eO', e' with the edges ey © 80 that every

pair gives an admissible exchange relative to T. If e

cannot be paired with
0 0
e' by default. The equivalence of the statement that these two pairings give
successively admissible swaps when executed in either order follows immediately
from the foregoing.
For the _statement of the-zfollowing "primal" theorem, we call an admissible

exchange improving if the resulting ti'ee has a smaller weight than the
original (hence if the weight of “he added edge is less than the weight of

the deleted edge). We also follow the convention that an edge is incident to

node 0 1if and only if it is subscripted with a "0".

Theorem 1 (Primal Approach): A spanning tree T with order K at node 0 is

optimal for problem P(K) if and only if
(1) There are no improving admissible exchanges involving a pair e,

e', vhere e € T, e' ¢ T { and neither edge is incident to node 0);

(2) There are no improving admissible exchaunges involving a pair ey
1

e, €T, e,' ¢ T( and both edges are incident to node 0);

0 0
(3) There are no two exchanges, both admissible relative to T, involving

, where e

a pair ey e' and a pair e, eo', such that ep> © €T, eo', e' ¢ T, which together

yield a net improvem:ut--i.e., for which the sum of the weights of eo' and e'

are less the” the sum of the weights of e and e. (In particular, this says

that coupling the "best admissible pair" of the form g e' with the best admis-

sible pair" of the form e.' , e does not yield a net improvement, disregarding

0

e or if e' cannot be paired with e, this leaves the two pairings, e, ¢.' and e

O!
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whether the exchanges can actually be carried out in sequence.)

Proof: First we prove the "only if" part of the theorem. Clearly if there
are any improving exchanges of the type indicated in (1) or (2), then T is
nonoptimal. If there are no such exchanges but there exists a pair of

e '

exchanges such as described in (3), then we may assume that either eo, 0
or e, 2' cannot give an admissible exchange, else at least one would be
improving, contrary to assumption. But chen by Lemma 2 the two exchanges

of (3) can in fact be carried out sequent.ally, again establishing that T

is nonoptimal. To prove the "if'" part of the theorem, suppose that (1), (2)

and (3) hold, but that there exists a spanning tree T' which is feasible for
P(K) and hLas a smaller weight than T. By Lemma 1 we can match the edges of

T - T' with those of T' ~ T so that each pair gives an admissible exchange in

T. Since node 0 has the same order in both T and T', it follows that these
admisgible exchanges consist exactly of the types indicated in (1) and (2)
together with the two types of exchanges indicated in (3), where the number of
each of these two latter types is equal. Since the weight of T' is less than
that of T, and since no admissible e, e' and no admissible ey eo' exchanges are
improving, it follows that the sum of weights of all the admissible exchanges

' and the e ,e' type must be negative (adding the weights of

0 0’
the edges in T' and subtracting those of the edges in T). But then the sum of

of the e, e
the weights of some admissible e, eo' exchange and some admissible eo,e'
exchange (in particular, the '"best" of each type) must be negative, contrary to
the assumptions of (3). The contradiction establishes the theorem.

By means of the foregoing theorem we can now state and prove the two
forms of the '"dual" theorem for order-constrained spanning tre:s (expressed
as Theorem 2 and its corollary), which show how to obtain optinal solutions

for P(I'+1) and P(K-1) from an optimal solution for P(K).




Theorem 2 (M:al Approach-.ncreasing order). (

Assume T 1s optimal for P(K) and T' is obtained from T by applying a

single admigsible exchange involving the edges eo',e where e ¢ T, eo' £ T

(eo' is incident to node 0 and e 18 not incident to nclde 0), and the weight of
eo' less the weight of e is minimum over all admissible exchanges of the (
specified type. Then T' is optimal for P(K+l).

Proof: We will show that T' satisfies the optimality conditions of Theorem !.

First, we show that (1) holds. We may restrict attention to admissible ex-

changes of the form e,, el' in T' that were not available in T. Such an

exchange yields a tree T" = T} {eo',e '} - {e,el} and by Lenma 1 eo', e, and

1
r el', e must both give admissible exchanges in T. But the first of these is no
better than eo', e and the second is a nonimproving move, and hence T'" is not

better than T'. Next we establish condition (2). The admissible exchange of

the form indicated in (2) applied to T', gives a tree T" = T\ (e, ', "} -{e,e,]
0 v 0

where e0 e T' hence e0 e T (disregarding e0 = eo' which reduces to a tree

already known to be no better than T') and eo" ¢ T' hLunce eo" ¢ T. By Lemma
1, and the fact that ey eo" cannot give an admissible exchange in T, both e, ',
€ and eo", e must give admissible exchanges in T. But the first is nonimproving
rwé and the second no better than eo', e, and hence T' again cannot be improved.
Finally, we show that (3) holds. A double exchange involving e ', e, and e'l,
eo* which yields a net improvement must be capable of being executed in sequence,
applying Lemma 2 and the fact that conditions (1) and (2) have been established
for T'. Here e, eo* € T' hence ¢ T, and eo", el' ¢ T' hence ¢ T, disregarding ;
eo* = eo' and e = e'l, both of which reduce to earlier casec.
N Thus we have a tree T" = TU{eo',eo",el'} - {e,el,eo*} where the latter

set of edges is from T and the former is not. Applying Lemma 1, these two sets

.. -
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of edges may be matched in some way so that all resulting pairs give admissible
exchanges in T. W shall examine the relevant "possible" matchings to deter-
mine their implications for T". First the pairing {eo*,el'},{el,eo"},

{eo',e} is not possible, because if the first two pairs had been admissible
(i.e., given rise to admissible exchanges) in T they would have implied the
nonoptimality of T in the same way we assume they imply the nonoptimality of
T'. Similarly {eo*,eo"},{el,el'},{eo',e} is impossible, because at least

onz of t+> first two pairs must be improving by the assumed improvement of T"
over T', and the admissibility of such a pair in T violates its presumed opti-
wality. This leaves the following cases: {eo",e},{el,eo'},{eo*,el'}; {eo",e},
{e).e;"}o{eg*,ey'}; {eg*,e ), (e " e}, (e " e)' )5 (e ", ),{e; "se}, (e * e, ).

All of these may be ruled out because in each case the last two pairs are non-

im~~oving (due to the optimality of T) and the first pair gives a tree no better

than T'. This contradicts the postulated improvement of T" over T' and completes

the proof.

From this theorem we may infer the following "inverse'" result.

Corollary (Dual Approach-decreasing order): Assume T is optimal for P(K) ani
T' is obtained from T by applying a single admissible exchange involving the
edges eo.e', where e, € . ML (eo is incident to node 0 and e' is not), and
the weight of e' less the weight of e is minimum over all admissible exchanges
of the specified type. Then T' i: optimal for P(k-1).

Proof: The corollary follows by essentially the same reasoning used to
establish Theorem 2.

In Theorem 2 and its corollary, the absenze of an admissible exchange that
increasexs of decreases the number of edges incident to node 0 of course implies
the nonexistence of a spanning tree of the resulting order at this node. (This
is a direct consequence of the stated results and the use of "infinite weight"

edges to represent those not contained in the graph.)

We now show how to take advantage of these theorems in an efficient manner.

Y



3. Labeling Procedures

) . The identification of an admissible exchange that 1s the '"best' of
all admissible exchanges in its categury, which is required by both Theorem '
2 and its corollary (and also, indirectly by Theorem 1) appears at first

glance to involve the computation of "exchange values' over a potentially
vast number of partial chains. We will show in this section how to apply
labeling procedures (different, but comparably efficient, in each of the

three cases) that succeed in generating all such relevant values, with an

amount of computation essentially no greater than that of evaluating updated
} objective function coefficients for nonbasic variables in specialized linear
programming approaches to ordinary network problems. (We refer here to
"gstreamlined" basis evaluation procedures such as those of [5,6,14].) 1In
addition, we show how to apply the foregoing primal and dual results itera-
tively by means of correspondingly refined updating steps that impose mini-
mal amounts of recalculation (likewise, comparable in efficiency to the

approaches of [5,6]).

in all of the iabelirz procedures, it is assumed that the current span-
ning tree T is recorded as an arborescence with Johmson's "triple label"
scheme [10], with the root at node 0. As customary, a node r will be

called an jimmedjiate successor of node q if there is an edge in T incident i

on nodes q and r and if the unique path in the arborescence from r to the
root contains node q. A node r will be called a successor of node q if the

unique path from r to the root contains node q.

Labeling Rule For The Dual Approach - decrea:ing order

1. Assign a label tq-r to each successor q of an immediate successor r of

node 0. To each immediate successor node r of node O also assign a

)
e adm 2

label of tr- r. Assign node 0 a label of 0.
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2. For each edge (i,j) ¢ T whose node labels are not the same and for which
neither i nor j is node 0, set

)
i

where "ph denotes the weight on edge (p,i1). Set 6 1 j-w for all other

ey " gy T W0 ("0:1’"0:

edges.
3. To determine the ey e' exchange of the corollary to Thuorem 2: let
6 = min 6

i ey
edge associated with max (w

0
) in step 2. If 6" is infinite,

1f 9" is finite, then edge (r,s) = e', and e, is the
ot,’ 'Otj
no spanning tree of the desired order exists.

The validity of the foregoing procedure follows from the corollary to

Tueorem 2 and the fact that e, e' gives an admissible exchange if and only

0

if e.' € T(e').

0
The above procedure is clearly quite easy to implement. Adlditionally,
the labels used in the procedure can easily be updated. Specifically,
suppose an optimal spanning tree T for P(K) is known and an optimal spanning
tree T' for P(K-R) (where R < K) is desired. The the above procedure can
be successively used without completely re-labeling the nodes for each inter-
mediate spanning tree. This is readily accomplished by using the API method
[5] to update the rooted t: : pointers (predecessor, successor, and brother
indexes) and ueing the following observations to update the node labels.
Delecing edge e splits T into two disjoint trees. One of these trees
(say 'ra) contains the root (node 0) and the other tree (say 'rl) does not.
(Note that all the node labels of T, are the same.) The addition of edge e'=

1

(r,8) reconnects these trees. When 1'1 is re-attached to 'ro via edge (r,s)

thennllnodchbclsofl‘oarcctmeortoctmmnodohbchof‘l'l

shouldbochaqodtoritretooruiflefo.
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Labeling Rule For The Dual Approach - increasing order

1. Assign a label e 0 to each immediate successor r of node 0, and assign
node 0 a label of 0. To each immediate successor r of a node t whose
node label has been set, assign a label wr- max (wt. wtr)’ where wtr is
the weight on edge (t,r).

2. To determine the e, eo' exchange of Theorem 2:

For each edge (0,j) ¢ T, set 90 “¥e W and let 8. = min eOJ'

3 3 ] Oq (0,)¢ T

Then edge (0,q) = eo' and e is the edge in T (e' 0) whose weight is
equal to wq. (If this edge is not unique pick any such edge that is not
incident to node 0).

The validity of this procedure follows directly from Theorem 2. As
in the case of decreasing node order, the procedure is quite easy to imple-
ment and the labels can be updated with minimal effort. In particular,
suppose an optimal spanning tree T for P(K) is known and an optimal spanning
tree T' for P(K+R) is desired. Then the node labels can be easily updated
using the observations similar to those made earlier. Deleting edge e split
the minimum spanning tree into two disjoint trees. As before, one of the
trees (say '1'0) contains the root (node 0) and the other tree (say Tl)
does not. The addition of edge e' K re-connects these trees. When '1'1 is

0

re-attached to 'l'o via edge e' 0" (0,q) then all node labels of To are

still correct and thus only tree node labeis of Tl need to be updated.

The updating of the node labels in Tl occurs by setting 'q = 0 and then
assigning a node label W, to each immediate successor r of each node
te '1'1 (whose node label has been set) equal to W, = max ("t’ 'tr)‘

The comments made with respect to implementing the decreasing node

order procedure apply in the present setting. Further the above procedure
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is even more efficient since only the edges incident to node 0 and not

in T have to be evaluated.

Labeling Rules For The Primal Approach

The roregoing labeling procedures can be adapted and integrated to

yield an efficient labeling procedure for Theorem 1. In this zpproach,

two labels must be kept for each node. One label corresponds to the

node lapbel used in the Dual Approach-decreasing order procedure &nd the

other label corresponds to the node label used in the Dual Approach-increasing

order procedure. These labels are determined as follows.

1. Assign a label tr- r and label . 0 to each immediate successor node

r of node 0. Assign node 0 a label to = (0 and a label vo " 0. Then

to each immediate successor k of a node r whose node labels have been
set, assign a label tk = r(-tr) and a label vk- max ('r' "kr)’ where

Vir is the weight on edge (k,r).

The procedure to determine if the conditions of Theorem 1 are satisfied is:

a) Case 1:

For each edge (i,j) £ T not incident to node 0, set °13 = iy "
‘“('1";]) if ttf tj; otherwise, set 9“ equal to iy less the maximum
weight associated with the arcs on the unique path between nodes i and j.
If min oid > 0, then condition (1) of Theorem 1 is satisfied.

(1,3
b) Case 2:

For each edge (0,3j) ¢ T, set er = 'Oj = Vop If min oOj >0,

then condition (2) of Theorem 1 is satisfied.

¢) Case 3:
For each edge (i,j) £ T not incident to node 0, set Gu = "lj -

For each edge (0,i) # T, set

-ax(vo vo':)lndltte--inﬂ

Ry ™ e, W R
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B..= w.~w, and let B = min B,,. If 6 + B > 0, then conditio 3 f
0™ “037 0.3 0 2 21 e

4 Theorem 1 is satisfied.

If any of the cases of Theorem 1 are not satisfied, improving exchanges

can be easily determlned via the above evaluation. The labels can be updated

after any of these exchanges .n the manner discussed in the dual approaches.

4, Order-Constrained One~Trees and Matroid Extensions

By rough analogy to the characterization of a one-tree in [8] we can

define an order-constrained one-tree to be a subgraph which as a spanning

L tree with order at most k at node 0 when node 1 is deleted, and in which node
1 has exactly two incident edges. For k equal to two the minimum order-
constrained one-tree problem (defined in the natural manner) is easily
established to be a relaxation of the traveling salesman problem. Also an

optimal solution to this problem results simply by solving the ordinary

’ minimum spanning tree problem with node 1 deleted, then solving P(2)
S utilizing the quasi-greedy algorithm of the corollary to theorem 2 if node
' 0 has an order exceeding two, and finally re-introducing node 1 together
/
F‘ with its two incident edges of least weight. Thus the results of this
paper provide the basis for a new relaxation strategy for solving the
L traveling salesman problem. Moreover, as might be expected, these results

‘ have direct analogs of greater generality in the context of matroids. These

considerations are treated in [7a]. :
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