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ABSTRACT

Eesults of a comprehensive research prograra to develop

efficient transform image coding algorithms are reported in this | |

dissertation, The objective is to develop algorithms that outperform
the conventional block-encoding procedures, i.e. , achieve data rates ]
below the one vit/picture element which is the approximate lower
limit for conventional transform coders.

The dissertation includes a detailed analysis of image modeling
aspects of the transform coding problem. Two alternate prediction
algorithms are analyzed for the transform sample variance estima-
tion; the first technique uses a two-dimensional polynomial to model
the image power spectral density; the second technique is a simple E
recursive approach based on previously quantized values. The

actual coding algorithms utilize the latter approach,

The generalized phase concept is developed and plays a vital
role in the coding algorithms. Both the Fourier and Walsh trans -
forms are utilized, the former being demonstrated to have superior
performance. A non-negative image constraint is explored via the
Luknsz bound.

The experimental phase of the study includes two dimensional
coding of monochrome, and three dimensional coding of color, as
well as interframe images with coding at 0.38, 0.55, and 0. 25 bits
per pixel, respectively. It is ascertained that decoded and recon-
structed images are not significantly degraded. It is also demonstra-

ted that adaptive transform domain modeling is important, and that

ii




large-size transforms, in conjunction with the proper image model,
can significantly outperform block-encoding techniques.

A requirement for large-size transforms can easily discourage
hardwired usage. Techniques can be developed, however, that could
advantageously be employed for computer -to -computer image
transfer.

Although the new coding-decoding methods are sensitive to
channel errors, it is demonstrated that they produce data which are
statistically equivalent to a discrete memoryless source. Thus,

conventional channel coding techniques can be used.

iii
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I. INTRODUCTION

The human visual system can absorb and evaluate vast amounts
of pictorial inforination. The 1 nge of the visual data includes many
different classes such as graphics, biomedical images or aerial

photographs. The human eye responds to color as well as intensity;

consequently the general description of an image also contains spec-

tral information. If the time history of the image is to be character-
ized, the dimensionality of the description is further increascd.
Mathematically, an image can be represented by a function of
four variables, I = I(x, y, t, A\). The spatial coordinates are x, vy,
the variable t represents time and \ is the wav'elength representing a
particular spectral component. The I represents the energy to which
the eye as a photoelectric detector responds. The energy is a non-
negative quantity; consequently, the following constraint must be

satisfied for an image
I(x, y, t, \) 20

This simple non-negative constraint introduces various addi-
tional constraints for image sampling and filtering.

This dissertation is devoted to an adaptive technique of image
coding. In terms of the definition of an image, image coding is
specified as a process by which the analog image function I is repre-
sented as a sequence of binary digits. Clearly, the binary represen-

tation must be unique and invertable for a given coder. The relative
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efficiesicy cf image coders can be directly compared in terms of the
binary digit sequence length generated to characterize a given image.
I.1 Review of Coding Objectives, Techniques, Results

Although the primary objective of image coding has been
communication bandwidth reduction for pictorial data, there are addi-
tional equally important considerations. The general availability of
increasingly powerful digital computers has permitted numerical
implementations of many image operations., The degrees of freedom
in a typical image are quite large; consequently, the storage and

access of pictorial data itself represents a significant problem,

The definition of image coding given on page 1 is essentially a

source coding process. A schematic of the simplified communication -_
system is given in Figure 1.1-1. l
[ |

It is the source encoding/decoding which is relevant to the

nature of pictorial information. Specifically, an efficient source

coding process will utilize the statistics and dimensionality (space,
time, and color, as previously indicated) of the pictorial data. The
conversion of the analog image into a binary stream involves various y
distinct steps which may include an analog ore- or two-dirnensional
prefilter, sampler, quantizer, digital preprocessor, and statistical L,.
encoder. All of these operations are largely determined by the
nature of the source.
The channel encoding /decoding, unlike source encoding/decod- -

ing, should he insensitive to the original character of the data.

s - —— i3
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Although consideration of the channel and related parameters is im-
poitant in the overall communication problem, the relevant encoding/
decoding process is not unique to the nature of pictorial data. It can
be expected that the source encoding process will produce a sequence
of binary digits which are statistically equivalent to a set produced
by a memoryless discrete source. Classical channel encoding tech-
niques should, therefore, be applicable to the source coded image
data without specific reference to the pictorial nature of the informa-
tion.

Although the sampling and quantizing process should be con-

sidered as an integral part of picture coding, it is rarely done. Con-

ventionally, the input to the coder is a sampled and quantized image
which the coding algorithm will process such that its output consists
of a reduced number of binary digits. The conventional sampling is
performed over a rectangular grid and the analog samples are quan-
tified to 64-256 quantum levels. A picture coding algorithm reduces
the source rate, or equivalently the transmission bandwidth require-
ment, by reducing the number of samples and/or reducing the number
of quantum levels.

The well-known and accepted technique of differential pulse
code modulation (DPCM) reduces the number of quantum levels with-
out sample reduction (Cutler, 1952; Graham, 1958; O'Neal, 1966).
DPCM achieves the rate reduction by encoding sample differences
rather than the samples themselves. Many different categories exist

for this coding technique. Compared with the 8-bit conventional




PCM code, a well-designed DPCM system can achieve a factor of
three rate reduction, 2.5-3 bit per original Picture element,

The various algorithms that decompose the image or its deriva-
tives into contours can achieve significant rate reduction for specific
types of irnages, namely, the ones that can be described by a few
number of contours. The disadvantage of this technique is the high

degree of computational complexity and large buffer requirement

(Graham, 1967). This requirement is that the entire image must be

simultaneously available to the Processing algorithm. Contour
tracing algorithms have been adapted to frame-to -frame image
coding (Habibi, 1973). In this case, the frame-to-frame image
difference is subjected to the coding algorithm. The receiver, upon
decoding the difference image, updates tha Previous frame. Frame-
to-frame coders of this type can achieve a rate of one bit,

Coders that adapt to the local statistics of the image can achieve
additional rate reduction over nonadaptive algorithms. The dual coder
is an example of this technique (Frei, Schindler, and Veitinger, 1972),
In this case, the sampling rate is changed according to the amount of
local picture detail,

As stated earlier, the general image representation requires
four dimensions, two for Space, one for time, and one for color,

Most coding techniques consider only monochrome images. Only
recently has color coding acquired more attention (Bhushan, 1970;
Pratt, 1971), Use of frame-to-frame redundancy in images is another

research topic which has not been extensively explored.
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1.2 Transform Techniques for Image Coding

Most classical spatial domain coding techniques (contour coding
is the exception) generate code words based on the original picture
elements (PEL) through a one-to-one mapping. In other words, the
bandwidth reduction is achieved by requantization. Although the
mapping is one-to-one, inter-element correlations are often utilized
by the coding algorithm (Habibi, 1971), What is fundamentally dif-
ferent for transform coding is that part or all of the image is trans-
formed into another domain via an invertable mapping. The sample
reduction and requantization are performed on the transformed
values and the resultant code words are then transmitted through the
channel. The receiver will attempt to reconstruct the original image
utilizing the inverse of the transform upen receiving the appropriate
code words,

Numerous techniques have been deeloped for transform coding
over the last five years (Wintz, 1972), Although practical ranking
cannot be made, many of these techniques result in data rates as low
as 1 bit/pel. The theoretical justification and motivation behind
transform coding has been rather varied. Transform coding has been
analyzed essentially by statistical tools. One basic motivation has
been sample reduction. The '"useful" transforms have the property
that most of the image energy is concentrated in relatively few trans-
form samples. Stating it differently, many transform samples have
very small amplitudes and can therefore be discarded without being

transmitted through the channel.

T




The Karhunen-Loeve (K-L) transform is the optimum transform
for images describable by second order statistics (Thomas, 1968). It
has been shown that for correlated Gaussian sources the optimum
quantizer will uncorrelate the samples via the K-L decomposition and
the bit rate is determined in proportion to the transformed variance
samples. The K-L transform, by definition, diagonalizes the image
covariance function., The diagonal terms are the eigenvalues and are
ordered in decreasing magnitude.

The K-L transform is almost synonymous with optimum image
coding, and sometimes the relevant assumptions are neglected. In
the practical sense, K-L transform has somewhat less universal
utility., Even theoretically, the K-L transform is optimum in the
mean-square error sense and only through second order statistics.
For a correlated Gaussian source, the optimality is achieved in fact,
Practical image sources are not Gaussian and have higher than second
order moments which cannot be derived from the first two.

The lack of availability of the covariance function is another
difficulty. There are two fundamental questions to be analyzed:

(1) How meaningful is the concept of covariance to images? Stated in

another way: is image covariance a valid statistical concept for

images which are likely to be nonstationary? (2) If we ignore the

first question, how will the functional form of the covariance function
be determined?
Question number one is, in fact, ignored in practice; and the

perhaps oversimplified statement can be offered that because of the
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lack of better statistical understanding of images, no better param-

eter has yet been offered.

The approximation of the covariance function or its transform

domain equivalent can be done either numerically or by a closed
form function. For the first case, one can directly determine the
transform sample variances experimentally and make the bit-

assignment accordingly. An example for the functional form is:
exp (-Glx'-B'yl)

This simple experimental form has been uszd successfully in spite
of its gross simplicity (Habibi and Wintz, 1972). The parameters
o and B represent the horizontal and vertical correlation, and
directional separability of these principal axes is assumed. The
exponential form of the covariance function is atiractive., It is
simple and the parameters o and B are easily estimated, I
A small number of statistical Parameters is desirable in any
coding scheme, Since both the receiver and transmitter must know
these parameters, their transmission may require non-negligible
bandwidth and should be considered as part of the overall bit rate.
The separable form of the covariance function, although not
necessarily characteristic of actual image fields themselves, has

served a useful purpose.

Let

R(x,y) = Rx(X) Ry(y)
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be the covariance function. Let T represent the transformation

operator, then, symbolically, if T = Tva

T{R(x,y)} = 'rx{Rx(x);Ty{Ry(y)} = 8, (WS (v)

where

T AR ()} - S (u)
] =
L WBNT) } 5,(v)

The generalized power spectral densities Sx’ Sy should decrease
for increasing values of the transform domain coordinates, u, v if the
transform operations are to be useful for image coding, This factis
achieved by the proper choice of the transform operator T, The bit
assignment is proportional to log Sx(u) + log Sy(v). The clear im-
plication is that the principal axis in the transform plane (e.g., when |

b either u or v is zero) will receive a relatively large fraction of the

available bits, Most transform image coding techniques operate -
on adjacent sub-blocks rather than the whole image itself. The |
separable covariance function results in effective superior recovery
of the horizontal and ver‘ical image structure. The block boundaries,
however, become an integral part of the image statistics and their
objectionable visual appearance is greatly diminished by the utiliza-

tion of the separable covariance model. On the other hand, at very

low bit rates, excess amount of the bandwidth may be required to

S A
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maintain the horizontal and vertical structure at the expense of a
greater amount of resolution loss than may be justified.

The choice of the actual transforms have been dictated by the
requirement of computational ease and the potential of practical
implementation. The transformations, considered to date, are
Fourier, Hadamard, K-L, (on sub-blocks) and more recently, the
Slant transform. (Habibi and Wintz, 1971; Anderson and Huang,
1971; Pratt, 1972; Pratt, Welch and Chen, 1972.) All of these
except K-L can be implemented by '"fast' algorithms.

1.3 Research Objectives

The amount of visual data generated in commercial and
scientific applications is enormous. The ordinary home television
set generates over 500 x 500 samples 30 times a second. The Earth
Resources Technology Satellites and weather satellites typically
produce in excess of 4000 x 4000 and 8000 x 8000 data points, re-
spectively. Data storage and transmission becomes a major prob-
lem for pictorial sources because of the excessive amount of data.
Clearly, techniques that permit greater efficiency (e.g., reduction
in the required bandwidth) are urgently needed,

Numerous approaches have been considered for efficient pic-
ture coding. While these techniques are based on widely different
considerations, thev are all motivated by the required simplicity of
potential implementation. Consequently, the developed algorithms
are relatively simple, utilize simple models, and are somewhat

inflexible in terms of their adaptivity to the image structure.

S
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The philosophy on which this dissertation is based, emphasizes
flexibility and maximum efficiency at the possible expense of
increased computation and buffer requirements. Demonstration of
a highly efficient coding scheme, even if impractical for actual
implementation, provides a new lower-bound for other bandwidth
reduction schemes. Secondly, even if the implementation of a
'"hard -wired' configuratior of the particular algorithm is not
warranted, it may be valuable in the computer-to-computer
comrnunication environment.

Development of computer networks whose individual computer
members may be separated by vast geographical distances is a
modern concept which allows higher utilization of the modern ''super"
computers. The Defense Advanced Research Projects Agency
(DARPA) of the U.S. Department of Defense netwo-k is an operational
example, other networks are likely to follow. By design, a large
scale computer network can perform arithmetic operations inexpen-
sively. The data transmission, however, remains a relatively
important cost factor. Image manipulation within the network will
probably be expensive because of the requirement {.r large-volume

data transmission. On the other hand, implementation of arithmeti-

cally complex coding/decoding algorithms may be easily programmed

for the local "host'" computers. The extra amount of computation
may be offset to a significant degree by cost reduction for the

transmission of the visual data.
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Most of the picture coding techniques have considered mono -
chrome imagery only, Multispectral, color, and frame-to-frame
coding requirements have been addressed only very recently and
there is still a great deal of research needed in these areas,

Another objective of this dissertation is to extend the concepts
developed for . :nochrome imagery to the '"third dimension''; specifi-
cally, color imagery and frame -to-frame redundancy are considered, 1

l.4 Overview of the Dissertation ]

Description of a research Project on adaptive transform domain

coding is given in this dissertation., The Presentation of the objec-
tives, development, and experimental results follow what the author
believes to be a carefully developed logical presentation which is

summarized in this section.

Chapter 1 is the Introduction and as such lays the groundwork

A i e AT i 7

for the basic body of the dissertation. This chapter also places the

e B

: research project into Perspective relative to the large amount of
research previousiy conducted in the field of picture coding. The i

Primary objectives of the dissertation are also spelled out in this

chapter.

U R T Vit e

Images are a specific class of signals and require careful con-
sideration if extreme redundancy reduction is desired. Chapter 2
addresses this important Point of how images can be modeled and
characterized in terms of statistical and deterministic Parameters, 3
H Generation of the sampled image is considered, and important com-

Parisons with the one-dimensional classical sampling theorem are

P ——




given. The image model as a statistical representation is also given,
A review of the Fourier transform constraints is provided. Errcr
criteria and image structure are briefly considered., The extremely
important non-negative bound due to Lukosz is analyzed as related to
sampling and relative importance of amplitude vs phase.

Chapter 3 presents the theoretical basis for the adaptive
transform domain coding technique. It begins with the comparison
of source and channel coding and consideration of schematic repre-
sentation of adaptive techniques. Statistical Froperties of the Fourier
and Walsh domain are analyzed. Phase and amplitude coding are
considered in terms of quantization, sampling, and relative amount
of information. Nonlinear effects of phase quantization are consi-
dered. Relative importance of phase is demonstrated via nonlinear

filtering and gross reduction of amplitude information.

Chapter ¢ is the first of three chapters discussing the experi-

mental results. Monochrome image coding is considered in this
chapter. Detailed discussion is given of the following topics: the
algorithm, preprocessing, error analysis, Comparison is made
with the conventional Markov model. Sensitivity analysis of noise
effects on the coding algorithm is performed. Pictorial examples are
included,

Experimental results of color coding are presented in Chapter
5. This chapter briefly reviews the theory of color perception and
representation of color images. Extension of the monochrome algo-

rithm of Chapter 3 is discussed and js followed by pictorial examples.




Frame-to-frame coding is considered in Chapter 6. Algorithm

development is discussed and implementation includes both the
Fourier and Walsh transforms. Pictorial results are pProvided.
Unfortunately, the actual visual performance of the frame -to -frame
coder can only be demonstrated in a realistic time-variant medium
such as video presentation.

Chapter 7 summarizes the dissertation.

Appendix A contains the original test images. The numerical
noise generation process of the large Fourier transform is considered

in Appendix B.
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2. IMAGE MODELING

The fundamental objective of the research project presented in
this dissertation is the development of a very efficient source coding
method for images. The emphasis is on the efficiency even at the
expense of more complex algorithms and data handling. Clearly, the
coder/decoder process must utilize as much a priori information as
possible. The model should utilize both statistical and deterministic
information.

This chapter addresses the role of image modeling in the image
coding process,

2.1 Generation of the Discrete Image

Virtually all operations and transforms discussed in this disser -
tation are performed numerically on discrete samples. It is tempting
to follow the general approach to image coding and restrict the
analysis to the discrete equivalent of the image. However, it should
be remembered that images are generally viewed in analog form.

The discretization of the image plays a fundamental part in the image
coding process. In addition to the higher dimensionality of the prob-
lem, there are very important factors that distinguish image sampling
from sampling of one-dimensional time dependent signals. These
concepts will now be considered.

Let the image be represented by I = I(x,y), where x, y are
spatial coordinates and I represents the analog image. The image is
sampled on a square grid of lattice distance A. Let the sampled

image be defined IS.
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The actual image sampling is always, almost by definition,
performed by an optical system. The image (normally a photographic
transparency, print, or an actual scene) sample of location x, y is
imaged onto a photo detector whose output, ideally, is linearly pro-
portional to the image brightness of that location.

The sample area can be considered via an aperture function
A(x,y). Typically A(x,y) has the value of 1 in a small region around
X,y and 0 elsewhere. Allowing for the finite aperture size, the

sampled image has the following definition.

- }i %k
Is (x,y) = comb (A) comb ( f) I(x,y) * Ax,y)

(2.1-1)

:ffcomb (%) comb (%) I(p,s) A(x-p, y-8) dpds

where

[e0]
comb (x) = Z 6(x-n)

n=-«

and 6(x) is the Dirac delta function.
Considering the Fourier integral of this equation, one obtains

(Goodman, 1968)

~

I(u,v) = {comb {&u) comb (Av) * I(u, v)}A(u, v) (2.1-2)

The frequency domain coordinates are u, v and the symbol ~ indicates

the Fourier transform.
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Equation (2. 1-2) isthe classical result of sampling theory,
however, one must be careful in its interpretation for image -related
applications. The image I is always bandlimited. Visual scenes
have structure at all levels, at the extreme, down to the micro or
molecular structure. Permanent recordings do limit the spatial
frequency extent and therefore become bandlimited. However, they
introduce their own characteristic structure, for example, film
grain. The bandlimiting is also performed by the optical system
that performs the imaging.

The bracketed term in Equation 2. 1-2 indicates that the funda -
mental frequency band I(u, v} is replicated at locations n(l/4),
mfl/8), n,m =0, £ 1, +2, .. in the frequency plane. If twice the
bandlimit of 1 is larger than the sampling rate, 1/4, the replicated
bands will partially overlap and undesirable aliasing occurs. The
aperture function A should separate the fundamental band from its

replicas. The requirement on A in this case is that

K(u, v) = liu,v € [- L -L]

247 2A
(2.1-3)
K(u, v) = 0 otherwise
aquivalently,
Afu,v) = rect (du) rect (Av) (2.1-4)

SR i
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Equation (2. 1-4) contradicts the physical constraint that the
aperture function must be non-negative. Equation (2. 1-4) leads to
the unrealizable condition that

Ax,y) = Az sinc ’i—sinc % (2.1-5)

where
sinc x = sin mx/nx.

A similar argument indicates (a more formal argument will be
presented under the Lukosz bound section) that an optical system can-
not perform the bandlimiting without attenuation in the band pass.

On the other hand, the minimization of the attenuating effect of the
optical system and/or the sampling aperture may lead to aliasing.
2.2 Statistical Consideration

The image sampling process and the non -negative image con-
straint are deterministic bounds. There are other descriptive con-
straints on images wlich can only be utilized through statistical
consideration.

A wealth of knowledge has been developed in statistical commu-
nicatior. theory and related disciplines which can be very useful in the
design of image coding algorithms. The image can be considered as
a sample function generated by a stochastic source. The statistics
of the source may be available or can be estimated or, as is usually

done, calculated from the image itself. For the latter case to be
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valid, ergodicity for the calculated parameters usually must be
assumed.

Knowledge of the image second order statistics can provide
significant assistance in the development of efficient image coding
algorithms. The image correlation function, R(xl,xz;yl, yz) is

defined as

R(Xl»xziyl» yz) = (I(Xl»yl) - I(XI’ Yl) (I(XZ’YZ) = I(XZ’ Yz))
(2.2-1)

The over-bar indicated ensemble averaging. Iis the image
which in this case is considered as a random process, and I(xi,yj)
is a sample of that process and is considered as a random variable.

The correlation function is usually estimated by involving the
ergodicity argument and the assumption of wide sense stationarity,
If R can be decomposed into the product of vertical and horizontal

correlation functions; then

Rix,y) = R_(x) Ry(y) (2.2-2)

The approximation of Rx and Ry by exponential function has
been utilized for coding (Habibi and Wintz, 1971) as well as filtering
(Pratt, 1972) of images, and for this case the correlation function is

given by

R(x,y) - e olx] -8l (2.2-3)




Although the actual image coding techniques discussed in this

dissertation do not utilize Equation (2.2-3), the discussion of this
structure is desirable since many transform image coding algo-
rithms are relying on the separable exponential form. In subsequent
chapters comparison will be made between such approaches to image
coding and the new algorithms presented in this dissertation. Some
of the later analysis will require an explicit form for the correlation
function; for example, the effect of additive noise on the coder, and
the use of the exponential form because of its simplicity.

One should emphasize that Equation (2.2-1) refers %o the
recorded sampled image. The correlation properties of the analog
visual scene are rarely available and can only be inferred from
detailed knowledge of the sampling parameters.

The Fourier transform of Equation (2.2-1) is the conventional
definition of power spectral density, S(u,v). Using the aperture

function A of subsection 2. l, it is straightforward to show that
i~ 2
S,(w,v) = | A, v)|® 5, v) (2.2-4)

here. the subscript s denotes the sampled version. As indicated
previously, the lack of Precise knowledge of the sampling parameters
does not permit accurate modeling of the original image. The
structural form of Equation (2.2-4) permits a somewhat different

interpretation. The sampled image can be considered as one which




has been processed by the linear spatial filter X(u,v). Consequently,
the conventional PCM code available to the image coder reflects the
essentially low-pass filtering effect of the sampling process.

2.3 Consideration of the Transform Domain

Image coding algorithms generally operate on image elements
directly. The significant advances in digital hardware technology
stimulated research in a new approach to image coding which have
come to be known as transform coding. In this section, a short
overview is given to the transform domain.

Let the image be denoted by I as in Chapter 1, I =I{x,y,\,t),
indicating the functional dependence on the spatial coordinatez (x,y),
color (A) and time (t).

A transform coder algorithm operates in a domain other than
the original described by the four parameters: x,y, A, t. The

following symbolic representation can be written

Iu),up,u5,u,) = T{I(x, y, A, t)} (2.3-1)

T is the operator which performs the transformation between the two
domains and it should be invertible. The latter requirement is due to
the fact that without coding no ambiguity should be present in the

image transformation. Consequently,

T(x, Vs Ast) = T'I{I(ul,uz,u3,u4)}
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TT ~ - T7'T =1 (2.3-3)

where T is the identity operator,

Other than the requirement for invertability, T is completely

general, Specifically, it may be linear or nonlinear. The operator

T may be decomposable and it can operate on the continuous analog

image or its sampled equivalent,

The choice of T is motivated by hope that T(ul,uz, u3,u4) can

be coded more efficiently,

Practical requirements restrict T to mathematical forms
which are numerically implementable without excessive computation,

The transform algorithms which have been Successfully implemented

can be grouped into three classes,
a) Karhunen-Loe%e (K-L) Transform

The image Iis expanded into the eigenfunctions of the
image covariance matrix. Although this transform is important

from the theoretical viewpoint, its practical value is much less

significant, The difficulties are lack of "fast" implementation, and

in addition, the exact form of the covariance function usually is not

available. In the presence of noise, the eigenfunction expansion

will become degenerate, This is very significant and has not been

considered in the context of image coding. The K-L transform
emphasizes the second order image statistics, Its optimality is

achieved for Gaussian processes which do not closely represent

P
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images in general. The K-L transform assumes stationarity which
is an additional assumption that is rarely met for typical images.
b) Trigonometric Decomposition (Fourier Transform)

The image energy tends to concentrate for low frequen-

cies, e.g., low values of Uy Uy, Uug, Uy, These deterministic and

statistical properties are useful to the transform coding algorithm
and will be further considered in Chapters 3 and 4. The multidimen-
sional Fourier transform is decomposable into a set of one-dimen-
sional transforms and it can be implemented by the ''fast' Fourier
transform algorithm. The Fourier domain is also constrained by
the Lukosz bound (subsection 2.5).

c) Other Orthogonal Decompositions

Transform coding has also been successful in utilizing
various fast orthogonal decompositions. The most wel! known among
them is the Walsh transform. Although, no simple mathematical
justification can be offered for their successful utilization, it can be
shown that these functions are "approximately' trigonometric
functions.

The particular value of the transforms under this
category is their close similarity to the Fourier transform, however,
they are suboptimal to it. What is meant by optimality in this case
is deferred to the experimental chapters. In spite of this subopti -
mality, the non-trigonometric, orthogonal function decomposition

may be preferred because of the ease of numerical implementation.
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The Walsh decomposition can be accomplished without multiplication
or division, and, consequently, its digital implementation is superior
to that of the Fourier transform (Harmuth, 1972); although, this fact
is more significant for smaller computers without hardware floating
point multiply and divide registers.

Equations (2.3-1) and (. 3-2) are implemented in numer-
ical form; therefore, the discrete representation will be considered.
If T is restricted to be a linear operator, these equations can be

represented in (generalized) matrix notation.

I(ul,uz,u3,u4) = z}{:%z}\; A(ul,uz,u3,u4,x, Yo Mt) I(x, v, A, t)

(2.3-4)

In all practical cases, the multidimensional operator can
be factored into a number of operators equal to the dimension of the
problem. Let A = A1A2A3A4 and equivalently A = Al(u,x)
Ay (uy,y) Ag(ug, A) Ayfuy, t).
Specification of Ai' i=1,2,3,4 defines the transform and
the numerical implementation. The following well-known representa-

tion exists for the discrete Fourier transform (Andrews, 1970)

-1 .
A(u, x) = (/N) exp - E-Tll]—l ux (2.3-5)
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Similarly for the Walsh transform

n-1

E u.X.
11

i=0
-1
Atx) = (VN) (-1) (2.3-6)
N is the order of matrix A(u,x). It is arbitrary for the
Fourier transform but restricted for the Walsh transform to values
Zn, where n is a positive integer. The variables X, 0, in Equation
(2.3-6) are the binary representation of x and u respectively,
2.4 Error Criteria
Between the source and the destination, the image is subjected
to significant processing. It is important to note again that the com-
munication link of Figure 1. 1-1 is digital and the source, the visual
scene, is analog. It is highly desirable to quantify the image degra-
dation due to the coding algorithm. Let I be the input to the coder
and/I\its estimate at the destination. A measure of error, E may be

schematically specified as a functional dependence G on the difference

A
between I and I,
E -G(1-1) (2. 4-1)

with the constraint that G(0) = 0.

Although the practical implementation of Equation (2.4-1) is

extremely useful, it is still an unsolved problem.

L
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Determination of a useful error measure for image evaluation
is extremely difficult because even the most approximate mathema -
tical modeling of the human vision is available only in limited cases,

A conventional compromise to Equation (2.4-1) is the mean-
square error between I and/i\, which can be written in terms of the

previously-developed notation as
@ 2
E = (16, v, A, t) = I(x, y, A, £)]° dxdyd Adt
Xy At

(2.4-2)

The equivalent form of Equation (2.4-2) for the discrete case

E - ZZ‘L;:Z I,y L) =Ty, L0} (20423
Xy t

The image energy, Ie’ is obtained from the above two equations by
letting /I\= 0. Consequently, the normalized mean square error as
used in Chapters 4 through 6 is given by 100 x E/Ie in percentages.
2.5 Non-Negative Bound (Lukosz)

The Fourier transform of a non-negative signal obeys various
well-known constraints. Perhaps ti.e most important is the amplitude

constraint,




|G(u)| < G(0) (2.5-2)

The inequality (2.5-2) is well known (Goodman, 1968), The
very important extension of this inequality to bandlimited non-nega-
tive signals has unfortunately been relegated to obscurity., A pro-
perly sampled image does represent a non-negative band-limited
signal and as such obeys the inequality discovered by W, Lukosz
(Lukosz, 1962) and is designated in this dissertation as the Lukosz
bound.

In his original paper Lukosz was concerned with the modulation
transfer function properties of optical systems as related to incoher-
ent imaging. The Fourier transform of the modulation transfer
function (the point source image) of an optical system is non-negative
and has an absolute cutoff frequency. Given this infor:nation, Lukosz
intended to determine if any additional constraints are applicable

beyond Equation (2.5-2), Structurally, the incoherent optical
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transfer function and the Fourier transform of a band-limited non-
negative image are equivalent; that is to say that by definition they
satisfy the same requirements. Consequently, the mathematical
derivation of the Lukosz bound is applicable to a band-limited image

as well as to the optical transfer function.

The Lukosz bound can be derived for any number of dimensions.

The bound becomes stronger with increasing numbers of dimensions,
The mathematical derivation of this bound will be demonstrated in
this section, For derivation of the two-dimensional case, the reader
is referred to the original Lukosz paper.

Consider the Fourier transform paid as in Equation (2. 6-1),

with the additional constraint:

G(u) =0, foru=> u (2.5-3)

where u is the cutoff frequency. Note also that Equation (2,5-2) is
already applicable.
Let h(x) be another non-negative function, not restricted to

be band-limited. Clearly, the convolution of h and g is also non-

negative,

w
h * g :f h(s) gix -s)ds >0 \2.5-4)

-




Assume h to be Fourier transformable,

Hu) - f h(x) e-anux dx
Lo

Furthermore, itis easy to show that h * g satisfies Equation
(2.5-4) by utilizing the Fourier transform properties of the convolu-
tion integral. The previous statements become even more obvious in
the framework of linear system theory, as Lukosz argued, where g
represents a low-pass filter functionand h is the input signal., How-
ever, the specific physical argument, while intuitively satisfying, is
unnecessary to the mathematical derivation.

Let h(x) be the Dirac comb function, comb x/L, as defined
previously in Equation (2. 1-1). The comb x/L is a periodic function,
where the period is L, Therefore, a Fourier series representation
cf comb x/L exists, and it is (see also Figure 2.5-1 for the graph-
ical demonstration):

o0

combx-I: =1+2 nz—:l cos 2mnx/L

Gu) = |G(u)| exp jo(u),

1/L 2 um/Z
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then the convolution integral will preserve only the n = 1 term in

Equation (2.5-5):
h*g -_G(0)+2,G(1/Ll cos {2n x/L +6(1/L)} (2.5-6)

Clearly, the inequality (2.5-2) is not sufficient to prevent the viola-
tion of inequality (2.5-4). The additional constraint must be imposed

that
|G(1/L)| s-é— G(0) for 1/L > u_/2 2.5-7)

Equation (2.5-7) is, in fact, the Lukosz bound for the region
um/Z su<u . The derivation of other segments is based on
choosing appropriate forms for h(x). Specifically, let h(x) have the

following form

x-1/8 |

h(x) = -é- {comb —1— + comb LI/B}

L

Equation (2.5-8) has the following Fourier series representation

(see again Figure 2,5-2 for graphical demonstration),

o0
h(x) =1+ 2 Z cos g—n cos 2nnx/L
n=1

o0

1 +\/—2—cos (2 x)/L + 2 Z cos -Z—n cos 2nL x/L
n=3

(2.5-8)
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For 1/L = um/3, the form of h * g is

h * g = G(0) +V2|G(1/L)| cos {2mx/L +8(1/L)}  (2.5-9)

Since h * g must not be negative,

|G(1/L)| <1/J2 G(0) for 1/L = u_ /3 (2.5-10)

Inequality expression (2.5-10) provides the next section of the
Lukosz bound, namely, um/3 su< um/Z. It is equally valid for
um/z su<u_, but it is weaker than (2.5-7), therefore, not useful
for that region.

The general form of the non-negative bound is obtained by
choosing more complicated forms for h(x). The general inequality

is the following

]G(u)| <G(0) cos —Zqforu_/nsusu_/(n-1)

(2.5-11)

and it is demonstrated in Figure 2.5-3, The argument u in in-
equality (2.5-11) is equivalent to 1/L in inequalities (2.5-7) and
(2.5-10).

Inequality (2.5-11) is the Lukosz bound for one-dimensional,
non-negative, band-limited signals. Its extension to higher dimen-

sions can easily be obtaincd by successive Fourier decomposition




Figure 2. 5-3. One-Dimensional Lukosz Bound
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Figure 2.5-4. Two-Dimensional Lukosz Bound




of the various dimensions. As previously stated, only the results

will be given here.

Let g be non-negative, have two-dimensional Fourier trans-

forms, G, and have band limits, um, vm:

Glu,v) = [f glx,y) e 2 YY) g 40 (205212

G(u,v) =0, foruz2u orvav (2.5-13)
m m

The functional form of the inequality for G is (Figure 2.5-4):

%—“G(u,v)' + ,G(-u,v)l} :-;-{IG(u.V)I + IG(u. -V)l}

m
< G(0,0) cos =

(2.5-14)

um/n <us um/(n-l)

vm/n < v < vm/(n-l)

The actual derivation (Lukosz, 1962) is straightforward

although somewhat involved. By letting G(u, v) = Gu(u)Gv(v) and




36

applying the one-dimensional bound to Gu and Gv individually the
validity of Equation (2.5-14) was demonstrated by Lukosz. Note

if G has directional symmetry, then

ol fots ol - Hfetn +Jotos

} - |G(u,v)|

(2.5-15)

Equation (2.5-15) can easily be proven by the well-known property of

the Fourier transform of real functions in which G obeys:

G(u,v) = G (-u, -v) (2.5-16)
It easily follows that
|G, v)] = |G(-u, -v) (2.5-17)
and
lG(—u,v)l ==|G(u, -v) | (2.5-18)

It can easily be shown via Equation (2.5-18) that if lG' is symmetric
around the u axis, it has symmetry around the other axis as well.
Before proceeding to the derivation of additional constraints
based on inequality (2.5-14), a few general comments on the impor-
tance of this inequality are in order.
The Lukosz bound restricts the amplitude range in the Fourier
domain, it does not, however, constrain the values the phase may

assume. One can qualitatively argue that in some sense the phase

Sl Rr—e——
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carries more "information' about the non-negative sampled image
than the amplitude. This statement, which will later be considered
in a more formal presentation, is quite significant for the various
areas of irnage processing, including holography, where, in fact,
the superiority of phase information has been observed experimen-
tally (Kermisch, 1970).

Actualiy the inequalities (2. 5-11) and 2.5-14) can further be
strengthened. The average values of Figures 2.5-3 and 2.5-4 are
clearly larger than 1/2 and 1/4, respectively. It can, however, be
shown, and again the reader is referred to the original paper for the
derivation, that, 1/2 G(0) and 1/4 G(0, 0) are the appropriate limits
for the one- and two-dimensional cases, respectively, For the one-

dimensional case

um 1
/ | 6w du = 3 G(o) (2.5-19)
0

and for the two-dimensional case

u v

m m 1
/ f |G(u,v)| dudv < 2 G(0, 0) (2.5-20)

0 0

The implication of Equations (2.5-19) and(2. 5-20) is that for

no image, can G actually assume the upper bound in the Fourier
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domain. The functions which, in fact, satisfy Equations (2.5-19)

and (2.5-20) with equality are for the one-dimensional case:

|ow)| = G0 [1 . ﬁil]  lufsu (2.5-21)
m

For the tvo-dimensional case:

|cw v)] -G, 0 [1 -Juil-] [1 . !,-‘LJ] lul<u_, |v|sv,,
m m
(2.5-22)

It is interesting to note that G reaches the bound at a single point:

1 1
G(Eum) = 3 G(0), and

1 1 1
= = = = G(0, 0).
G(Zum’ va) 4 ( )

Except for this point, G as defined in Equations (2.5-21) and (4. 5-22)
lies below the appropriate non-negative limit. The two special
functions, (2.5-21) and (2.5-22), represent for the optical case the
modulation transfer function for the uniformly lit slit and rectangular
aperture, respectively.

The various inequalities (2.5-7),(2.5-14), (2.5-19), and
(2.5-20), allow an information theoretic interpretation of the
Fourier domain for non-negative signals.

The entropy associated with an image is invariant under the

Fourier transform as well as any other transform for which the
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Jacobian of transformation is unity. If no a priori information is
available, the image entropy is uniformly distributed in the frequency
domain by assumption., This type of reasoning yields upper bounds
on the entropy rather than entropy estimates for actual images
whose correlation properties are known, Given, thus, that the
image entropy is divided between amplitude and phase, it is im-
portant to learn what affects the constraints (2. 5-7), (2,5-14),
(2.5-19), and (2.5-20) will have on the entropy division, Assump-
tion of no a priori information implies, on the basis of Equation
(2.5-2) alone, that the Fourier domain represents a uniform entropy
density for spatial frequencies below the band limit. Restriction of
the allowed amplitude range will proportionally limit the entropy.
The ratio of the entropies with and without the Lukosz bound is 1/2
and 1/4 for the one-dimensional and two-dimensional cases, respec-
tively, This statement follows from the inequalities (2.5-19) and
(2.5-20). One can argue that, for band-limited, non-negative
images, the entropy associated with the phase is larger by a factor
of 2 and 4 for the one- and two-dimensional cases, respectively.

The optical analog is the case of incoherent imaging, for which
it can be argued, as Lukosz did, that the optical system by virtue of
its low-pass filtering will limit the information transfer by 1/2 and
1/4 for one and two dimensions, respectively,

The Lukosz bound is a significant contribution to the science of

the signal processing of non-negative band-limited signals. The
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implication of the importance of phase over amplitude in digital

image processing is useful information and has strongly motivated

the research in this dissertation,




3. IMAGE SOURCE CODING

The transmission of data consists of two distinct coding steps:
source coding and channel coding. Schematic representation of the
classical communication problem was reviewed in Chapter 1. This
dissertation treats the image coding problem as one which fits into
the domain of source coding. This approach permits structural
separation of image coding from the consideration of channel errors.

In this chapter various aspects of image coding are considered,
The basic theme of the dissertation is that the phase (yet to be
explicitly defined) is the pPrimary parameter whose fidelity should
be maintained in the coding process. The various steps that con-
stitute the coding process are considered in the context of phase

coding. The primary transform domain is that of the Fourier, how-

ever, extension is made to the Walsh domain as well, In fact,

successful utilization of phase in other than the Fourier domain is
a discovery which, prior to this dissertation, has not appeared in
the literature as far as the author is aware.
3.1 Statistics of the Fourier Transform

The various coding schemes of Chapters 4 through 6 utilize
the properties of the transform domain., The primary transform is
the Fourier which has extremely advantageous properties from the
coding standpoint, The close similarity between the Fourier and
Walsh decompositions makes the latter transform also useful. The
statistical properties of the Fourier transform domain are explored
in this section, the extension to the Walsh domain is the topic of the

next section,
41




Let T(g) and T(g) be a Fourier transform pair. To simplify

notation, the image coordinates are condensed into vector form.
Vectors u, x have a number of components equal to the dimension
of the coding problem. The monochrome problem has two dimen-

sions for this case,
= {u, v}
x = {x,y}

The frame -to-frame, or color coding problem is of three dimen-

sions, for this case.
= {u,v,w}

x = {x,y,t}

The vector notation permits statistical analysis of the Fourier trans-
form of an image without specification of the dimension,

In addition, the infinite extent of the image plane implies that
the Fourier domain is uncorrelated in the limit as the number of
samples grows to w:finity (Davenport and Root, 1958, Section 6-4).

The functional form of the power spectral density is required,
if quantization of the transform samples is to be accomplished
efficiently, All transform coding techniques require an estimate
of the power spectral density, their overall performance is largely

determined by how well the power spectral density estimation is

accomplished.




Information-theoretic discussion of the frequency plane, based

on the Lukosz bound, already implied a certain superiority of the

phase. Stochastic consideration of the Fourier domain allows addi-
tional interpretation, in fact, a general definition of the phase. This
dissertation expands the phase concept to what will be referred to as
the unconventional definition,
a) Conventional Definition
The complex valued function Tis the sum of real and

imaginary components,

T(w) = T (w) +j T )

the phase 6(u) associated with u is normally defined as

8(u) =tan'1 TI(E)/%(E) (3.1-1)

The definition in Equation (3.1-1) is required if the various well-
known phase-related deterministic properties of the Fourier trans-
form are to be utilized,
b) Unconventional Definition
Under the assumption, based on experimental evidence,

that TR and II are approximately Gaussian, ¢ is uniformly distributed

and uncorrelated for different values of u, that is




Efo(w)), 8(s,)} =2/3 77 s(u, - u,) (3.1-2)

E{nw]®} = 2{jr@|?} - 45w (3. -13)
| e ()]

In most practical situations S(u) is a smooth surface, which means

that S(gl) A S(y._z) for IEI - E‘ZI < M. The expression IEI is the

- P‘-ZI
Euclidean distance for vectors u, and 4,. For the sampled case, a
reasonable value for M might be at least 5 (in harmonics). The
comment should be interjected that the I can be only approximately
Gaussian since its components are restricted in range by the D.C.
term and for the band-iimited case by the additional Lukosz bound.
Based on the smoothness of S, the following stochastic

unconventional phase definitions can be made, with the previously-

made restriction '21 - BZI < M.
8(u,, u,) =tan-l{1 (u,)/I (u )} (3.1-4)
=1’ =2 K'=1"""1,'= :

Subscripts K and L represent the actual independent subscript assign-
ments from I and R (imaginary and real) if v, # Y,. K and L repre-
sent different subscripts if 4, =y,. The following forms for 8 are

allowed under the unconventional definition




i

P i

45

olw, ) = tan” {Ipw))/Ip )} vy F i,

-1
The following definition is not permitted
Buy, u,) = tan'l{x (u,)/L (u )} =
LI R/ Ry)f =7

since, in this case, 6 is a single value rather than a random var-
iable. The stochastic phase definition is important because it gives
validity to phase coding in domains other than the Fourier. Exper-
imental demonstration of the utility of the stochastic phase will be
given in this chapter.
3.2 Extension to the Walsh Domain

The Fourier transform of an image tends to be uncorrelated.
The existence of uncorrelated samples permitted definition of the
generalized phase. Although the Fourier transform is unique in
having the above-mentioned properties, other linear transformations
may approximate the Fourier transform in some sense. One spec-
ific implementation will involve the Walsh functions.

Let £ be an element of an N component vector (that is

k

K=1, 2, ...N). Two distinct transforms of fk and a, and bj which

are also elements of N component vectors, therefore




bi = zk: Hikfk (3.2-2)

where matrices G and H are invertible matrices of order N, The

summation in Equations (3.2-1) and (3.2-2) is over N components,

the same convention will remain in force for the rest of this section.
Although, Equations (3.2-1) and (3.2-2) can represent any

linear decompositicn, the specific assignment will be made where

G will represent the Walsh and H the Fourier decomposition,

By straightforward manipulation, it can be shown that

o\
50
£, - ZJ: Crs 3 = ; Hy b (3.2-3)

and, therefore,

-1
- XJ: Xk: Gy Hy; by (3.2-4)

The following definition is introduced for notational convenience

-1
2 = E : G, H . 3.2-5
1j T Jk Tkj ( )

Consequently, the transform values are related through the linear

relationship:




(3.2-6)

Let {gi(xk)} and {hi(xk)} be orthonormal basis vectors generating
the space in which fk is defined. Note that gi(xk) is the k-th element
of the i-th vector. Obviously, both i and k have index values !
through N.

P2

For the special case where Gki = gi(xk) and Hki = hi(xk)

. | R |
is easy to demonstrate that Gik = Gki and Hik = Hki'
It is desirable to treat the ai's and bi's as zero mean real

random variables and consider transformation of the second order

statistics, Clearly,

E{aL a } = ; ; ZLjanE{bjbk} (3.2-7)

If the Fourier designation is given to Hik’ then, according to the

results of the previous section,




Consequently,

(3.2-10)

The previous section indicated that Fourier tranaform sam-
ples have Gaussian distribution. By Equation (3. 2-6), it is observed

that the aj's also tend toward a Gaussian stochastic process, If the

choice for Gik is such E{aLan}a 6Lk E{ai} , that is, the aL's are

also uncorrelated, one can define amplitude and phase on pairs of
random variables, say a,,a .

If E{ai} = E{ai} » the functional form of appropriate proba-
bility density functions for the amplitude and phase should be the
same as the ones defined for the Fourier transform.

The specification of G for the Walsh decomposition can be

written in terms of the appropriate orthonormal basis vectors.

Utilizing the conventional notation (Harmuth, 1972)

Gki = wal (i, xk) (3.2-11)

Walsh functions can be generated through the following

difference equation.




wal (2j + P, x) =

(plil2P ;wal [j, 2(x+ %)] + (-1'F wal [j,(Z(x ; )]}

(3.2-12)

j=0,1,2,"°

i
2

—1for-%5x5

0 otherwise

and [j/2] is the largest integer smaller than or equal to j/2.

The Z matrix can be generated by decomposing each Walsh
function into a Fourier series. Walsh functions have similar sym-
metry as the sines and cosines. Denoting the even and odd Walsh

functions as cal and sal, respectively, it follows

wal (2i, x) = cal (i, x)

wal (2i - 1, x) = sal (i, x) (3.2-13)

As previously indicated, real Fourier decomposition is where
the basis functions, hi's are sine and cosine functions, similarly the
gi's are the cal and sal functions. Because of the even-odd sym-
metry of both sets of basis vectors, even functions of one set can be
represented by only even functions of the other set. Similar repre-
sentation holds for odd basis vectors. The same symmetry results

in the following restriction for the Z matrix.

Zlk = 0 for |4 - k| = 0dd integer (3.2-14)
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The specific result of Equation (3.2-14) is that elements in
the Walsh domain which are separated by odd-number elements will
be uncorrel-ted. The choice of adjacent element pairs for amplitude
and phase specification is strongly motivated by the symmetry
consideration.,

Although, simple functional form does not exist for the Z
matrix, numerical generation of the elements can easily be per-
formed for specific transform pairs. As an example, consider the
Walsh into Fourier decomposition for N = 1024 values. For a spec-
ific choice of 4, e.g., the 4-th Walsh function, 4-th row of the Z
matrix is generated. The inverse of Z is similarly generated by the
decomposition of particular sine and cosine functions into Walsh
functions, Numerical examples are shown in Figures 3, 2-1 through
3.2-8, These figures indicate the recognized similarity between the
Walsh and trigonometric functions. It is interesting to observe that
diagonal elements of Z dominate each row, §

For completeness, the 'fast" computability of the Walsh and

-

Fourier transforms should be pointed out, The straightforward
application of Equations (3,2-1) and 3. 2-2) requires N2 operation
(operation 2 one complex multiplication for Fourier and 2 one addi-
tion or one subtraction for Walsh). The particular form of G and H
permits a much more rapid implementation of these transforms
where the number of operations is reduced to N log N (Andrews,

1970; Harmuth, 1972; Cooley and Tukey, 1965),
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The "fast'' algorithms are important for efficient coding
implementation. Particularly for large data blocks, the efficiency
factor N/log N can be significant. The "fast'' algorithm is available
for the Z matrix as well and it was utilized for the generation of
Figures 3.2-1 through 3.2-8.

3.3 Quantization

The continuous image parameters must be expressed in
discrete, that is to say quantized, form before numerical operation
on them can be performed. Formally, quantization is equivalent to
a noninvertible mapping of the real numbers onto a finite set of
integers. It is also equivalent to a one-to-one mapping of finite or
semiinfinite sections of the real axis to a finite set of integer
numbers,

According to the last definition, each member of a set is
assigned an integer designation. All members of a set are assigned
the same integer assignment., Conversely, given a particular integer
assignment, no unique determination of the original real value can
be made.

It is obviously imperative to optimize the appropriate quanti-
zation procedures. This step involves the selection of the optimum
quantization rules, based on the statistical model of the parameter
to be quantized.

The discretization of a continuous parameter always results
in a permanent, hopefully negligible, distortion. This distcrtion may

appear as an effective noise term or an actual structural distortion.




56

For the first case, the number of quantization levels are large and
the appropriate effects can be modeled by additive white noise. The .
second case occurs for coarse quantization, for which the nonlinear
aspect of quantization dominates.
The following basic model will be considered. Let x be a
continuous random variable with a probability density function P(x).
The functional form of the quantization can be expressed in terms of

the previously-introduced rect function as

1
Q(x) = = rect -—J—_—-—-.:l(x -3 (xj +xj_1))] (3.3-1)

In Equation (3.3-1) there are N integer assignments. To each
integer another real value, /x\j is assigned. The/x\j is the reconstruc-
tion value or the estimate of x. The specification of the parameters
in Equation (3.3-1) should be such that/)?j should closely "approxi-

mate' x. If the mean-squared error (MSE) is the performance

e mm—

measure, then
Error = min 3/P(x) (Q(x) - x)2 dx (3.3-2) |

Where minimization is performed over all xj's and xj's for a given

N. The solution of Equation (3.3-2) is well known (Max, 1960); it is

-1 2 -
x; =g 68 =% ) j =2, N (3.3-3)
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and

X,
jtl P
[ (x - xj) P(x)dx =0, j=1,2,...N (3.3-4)

X,
J

Equations 3.3-3) and (3.3-4) can be solved by iterative tech-

niques for given density functions. A note of caution should be inter-

jected. Equations (3.3-3) and (3.3-4) are formal solutions given
the P(x). In image coding, the relevant parameters are themselves
estimated. Utilization of an erroneous model may result in a poor
quantization procedure even though the solutions in Equations (3,3-3)
and (3.3-4) are faithfully followed,

If P(x) is uniform over a finite region, say [xo, xN] ’

Equation (3.3-1) becomes the uniform quantizer.

Q (x) = i (-J—I'\—I—ll (xy - %) rect {X——I\_I—;- <x - (JI-\I—I) (XN-XO>}
=1 N 0 ;
(3.3-5)

L ee——ancst—

Another often-used quantization strategy, known as compand-
ing (Smith, 1957) involves a two-stage process. Firstx is mapped
into y, y = f(x), which is random variable uniformly distributed
between [0, 1]. The random variable y is operated on by the uniform
| quantizer. The reconstruction levels of x and y are determined by

| : e PN e .
the inverse mapping, f , (QJ = £ yj). The mapping is the distribu-

tion function of x:
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y = f(x) = fx P(u) du (3.3-6)
The reconstruction levels xj and yj are uniquely related by
the one-to-one mapping, f. By construction, yj occurs with equal
probability, thus, this case corresponds to the maximum entropy the
quantized values may have. This latter type of quantizer procedure
is suboptimal when MSE is the performance criterion; however, for
numerous density functions, optimum performance is closely
approached.
Quantization schemes can be closely approximated by sim-
plified procedures for fine quantization (Panter and Dite, 1951).
The coding schemes of Chapters 4 through 6 involve coarse quanti-
zation in the transform domain, thus, these procedures are not il
relevant and will not be further explored. !
3.4 Amplitude vs Phase Quantization Effects
The underlying theme of this dissertation is the superiority
of phase information. It is particularly relevant to consider distor-
tions introduced by the quantizing process. In this subsection, the y
generalized phase and amplitude will be considered. The assumption
is made that application of the image transform (Fourier or Walsh)
results in uncorrelated samples. Amplitude and phase are defined

over pairs of values as in subsection 3.3 under the unconventional

definition.




Let 6 and r be a phase and amplitude pair where 6 is uniformly
distributed in [ -n, n] and r has Rayleigh distribution (Thomas, 1963,
Chapter 4). The followiug procedure will be implemented. Ampli-
tude and phase will be independently quantized, one at a time, and the
appropriate MSE generated will be compared.

a) Phase Quantization

The uniform quantizer is optimum for the phase. The
actual error in the N level quantization process of a single phase

value in one of the N regions, say [0, 2n/N], is

Error = A%[el® _ (3.4-1)

The A2 is the energy associated with random variable r. Mean-

squared phase error (MSE) is obtained by averaging Equation (3.4-1)
over 6 and all N quantization regions. Because of the symmetry in
8, each of the quantizing sections is statistically equivalent,

therefore
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2
o
MSE = A2 E[ed® _ I N
_ 52 n
= 2A {I-Ecos (G-N)}
/N
) N [T n
= 2A 31 -Z;-/O. cos (9 -N)des (3.4-2)
_ 2 N g
= 2A gl -;smNi

The more meaningful expression is the relative mean-squared error

(RMSE) or, equivalently, where r is assumed to have unit energy,
- N . n

RMSE =241 - = sin = (3.4-3)
" N

The approximate form of Equation (3,4-3) for large values of N is

2
RMSE (N is large) ~ 5(T)

Quadratic dependence of the MSE on N is typical for all quantization
procedures for large N.
b) Amplitude Quantization

Amplitude is assumed to be Rayleigh-distributed,

2

P(r) =i2 e
a

Nll—c

'r
("), r<o (3.4-4)




Maximum entropy quantization (companding)of sub-
section 3.6 will be utilized (Habibi, 1973). The function f is re-

quired, which is the appropriate distribution function:
2

fr_sz. e-%(%) ds

0

The inverse of f is also available in closed form of

) = ov-21log (1 - u) (3.4-6)

Let ¢ = 1; the RMSE for the Rayleigh process using the formalism of

subsecticn 3,3 is

2

L
2 T2
(r - ri) Te dr (3.4-7)

Note that the eneréy for the normalized (¢ = 1) Rayleigh process is 2,

00

2
f Pe T /24 ., (3.4-8)
0




Evaluation of Equation (3. 4-7) requires numerical tech-
niques. The appropriate numerical integration utilized a Hermitian
sixth order formula. Each region, [ri-l' ri], was evaluated at 100
equidistant values, In addition to the integrand (denoted by R), the

particular numerical integration requires evaluation of the first and

second derivatives as well,

R(r) = <r3 - .21»""1-\i +’?f

R/(r) S <— r4 +2r3 /r\i

(3.4-11)

Numerical integration is performed over each of the N
sections and summation then performed over the N sections. The
RMSE due to phase or amplitude quantization is shown in Table 3.4-1,
The relative importance of phase over amplitude is effectively
demonstrated by this table, particularly for coarse quantization.
Ignoring amplitude completely causes 21.5 percent error of the total

image energy. The single-level quantizer collapses the entire range
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of the random variable into a single a priori known value. Conse-
quently, all randomness associated with that variable is removed,
thus the associated entropy is zero., Essentially, the same result is
obtained in holography (Kermish, 1970) utilizing a much more com-
plicated physical model. The phase requires 2 bits (N = 4) to main-
tain the same amount of MSE that is achieved by zero bits for ampli-
tude. Similarly, 1 bit amplitude is "worth' 3 bits of phase. Since
the majority of transform values in the experimental chapters
requires a very low degree of quantization, the quantitative results
of Table 3.4-1 are highly relevant, and demonstrative of the phase

superiority. i

TABLE 3.4-1

THE RMSE INTRODUCED BY PHASE AND
AMPLITUDE QUANTIZATION

{ Number of RMSE RMSE
' Quantum Levels Phase Quantization = Amplitude Quantization 1
1 2.0 0.215 ‘r
2 0.73 0. 042 '
4 0.20 0.025 '
8 0. 05 0.011 ‘

16 0.013 0.0048

32 0.0031 0. 0020
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3.5 Non-Linear Effects of Phase Quantization
The general comment was made in subsection 3. 5 regarding
the nonlinearity of the quantizing process which is quite significant
for the case of coarse quantization. The appropriate effects are
structural and for them, the MSE may not be a descriptive parameter.
The importance of phase information has been emphasized.
Also, the achievement of a high degree of redundancy reduction
requires that most transform domain samples be quantized at few
quantum levels. Therefore, it is of value to demonstrate the type A
of global distortion that results from quantizer nonlinearity. Spec-
ifically, coarse phase quantization will be considered.

The effect of phase quantization has been previously considered

in relation to holography (Goodman and Silvesteri, 1970; and Dallas, L
1971, a and b). Their analysis is applicable to image coding, with l
some important modifications. The primary difference is that unlike i

a digital image display, in holography, the final image inherently is
an energy representation. Consequently, extraneous images and I
ghosts diminish quadratically with the number of quantum levels for
holography. A similar dependence is linear for image coding, thus
the distortion is more emphasized.

In the following, conventional phase definition will be utilized
for the two-dimensional case. Let g and G be a Fourier transform

‘ pair:

3 R
e
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@

// gl y) e 29 YY) gydy = G, v) = |G, V)| exp jolu, v)

-

(3.5-1)

The phase, 6, is linearly quantized to N levels and the inverse
A
Fourier transform is performed. The result is denoted by g(x, y)

and it is of the following form (Dallas, 1971, a):

@

/g\(x,y) = Z sinc {m +§}gm(x,y) (3.5-2)

m=-o

The sinc function can be expanded as

sinc (m + 1/N) = sinc (1/N) (-1)™/(mN + 1)

and Bm is defined as

00
g (%, y) = f!'G(u,v)' exp j(mN +1) a(u, v)

(3.5-3)
X exp 2mj(ux + vy) dudv

. Note that for m = 0, the Bm is the original image. For m #0, 8

|
l represents extraneous images or ''ghosts."




The following additional observation can be made

a) From Parseval theorem:

ff Igm(x.y)| 2 dx dy =ff gn(x,y)|2 dx dy

for all integers m and n

b) Each ghost image decreases in intensity by the factor
1/(mN + 1) relative to the unquantized original.

c) In holography, as a result of the squaring operation per-

formed by the optical system, the ghost image intensity decrease

factor is 1/(mN + 1)2. In digital processing, this factor is

1/(mN + 1),

d) The largest ghost is g_y whose relative weight is
1/(1 - N) with respect to g

e) One can also observe from Equation (3.5-2) that

lim _ .
N - = 8 = 8» 8ince

Om #£0
sinc [m] =

lm=0

In digital implementation, the continuous Fourier transform,
Equation (3,.5-1), is replaced by its discrete equivalent, the Fourier
series. The implied periodicity of the latter results in the reappear -
ance of ghost images which have been cyclically shifted out of the

basic image region.




It is possible to interpret the various ghost images, and the
display of the distorted image can be quite dramatic. A computer
experiment, similar to one which was holographically implemented
by Dallas, was performed.

Except for the 64 x 64 element upper right sub-block, the
"couple' image was zeroed out. This image was Fourier-
transformed and the phase was uniformly quantized at N = 2, 3, 4,
and 32 levels. The final images are reconstructed via the inverse
transform. The result of the experiment is shown in Figure 3.5-1.

The worst case, m = -1, requires special attention for the
two-level quantizer. Note that the weight factor for this case is

identical for m = -1, and m = 0, Furthermmore, from Equation

(3.5-3)

00
g1 (x,y) = f!lG(u.v)l exp [- jo(u, v)] exp 2nj(ux + vy) dudv

(3.5-6)
or, equivalently
o160 9)] = gt -y)l (3.5-7)

By experirnental construction, go(—x, -y) does not overlap

with go(x, y), the largest ghost image is the '"'mirror image' of the

original,
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Although the above described cexperiment is rather specialized,
it does emphasize the importance of the global nature of distortion
introduced by the phase quantizer nonlinearity. Availability of the
relevant MSE provides little if any information about the nature of the
distortion,

The digital experiment was repez .ed for the Walsh domain and
results are shown in Figure 3.5-2. The significant difference can be
explained by the symmetry of the decomposition rather than by the
functional properties of the eigenfunctions, Actually, the analysis
related to Figure 3.5-2 is much simpler than the one associated with
the Fourier care,.

Coneider the decomposition of f(xi, yj) in terms of the even and

odd Walsh function:
N/2-1 n/2-1
Ex,s y,) = Z {Pectie 1 calk,xy) car(t, v
=0 =
+ bsc(k' 1) sal(k,xi) cal(l, yj)

+ bcs(k' 1) cal(k,xi) sal(l, yj)

+ bss(k' 1) sal(k,xi) sal(l, yj)}

(3.5-8)




(a) 2 Level Quantizer (b) 3 Level Quantizer

(c) 4 Level Quantizer (d) 32 Level Quantizer
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Figure 3.5-2. Demonstration of Phase Quantization

Effects for Walsh Domain
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The conventional sequency-ordered Walsh transform will yield
the "b'"" matrix for the two-dimensional case. Consider the following

"unconventional' plase definition such that

N/2-1 N/2-1
f(xi, yj) = Bc(k' 1) cos el(k, 1) cal(k,xi) cal(l, yj)

+ Bc(k' 1) sin el(k, 1) sal(k,xi) cal(l, yj)
+ Bs(k' 1) cos eZ(k' 1) cal(k,xi) sal(l, yj)

+ Ba(k' 1) sin ez(k, 1) sal(k,xi) aal(l,yj) (3.5-9)




For the particular original of Figure 3.5-1, the coefficients are
equal, bcc(k, 1) = bss(k, 1) = bsc(k, 1) = bcs(k, 1) = b(k, 1). This can
be shown by letting f(xi,yj) # 0 in Equation(3.5-18). Because of the
symmetry of the image, it follows that f(-xi, yj) = f(xi, -yj)
f(-.\:i, -yj) = 0. Simple algebraic manipulation of Equation (3.5-18)
will yield the equality of the coefficients. Consequently, 61 = 62 =n/4.
If f(xi, yj) is the image in Figure 3.5-1a Equation (3.5-8)

becomes

N/2-1 N/2-1
CPAR bk, 1) {cal(k,xi) cal(l, y;)

1=0 =

+ sal(k, xi) cal(l, yj)

+ cal(k,xi) sal(l, yj)

+ sal(k, xi) sal(l, yj)}

(3.5-10)

Consider the application of a two-level uniform phase

quantizer: Equation (3,5.10) will become
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N/2-1 N/2-1
2
f(x.ry.) = Z £ bk, l){sal(k,x.) cal(l, y.)
17 1 J
=0 = \/E
+sallk, x,) sal(l, yi)}
(3.5-11)
The result for the three-level quantizer is
N/2-1 N/2-1
£x;, y;) = Z \/% bk, l){cal(k, xy) cal(l, y,)
+ cal(k, xi) sal(l, yj)}
(3.5-12)

For the four-level quantizer, the quantized result is identical
to the original (unquantized). The symmetry of the quantized images
in Figure 3,.5-2 is equivalent to the symmetry expressed by the
related Equations (3.5-21) and (3.5-22).

The Walsh domain phase quantization experiment provides
another indication regarding the nonlinear nature of the quantizer.

The phase definitions 8, and 8, muy appear artificial, how-
ever, it is convenient in the sense that they are defined on adjacent

transform pairs in the conventionally ordered two-dimensional Walsh

transform.

i gl
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3.6 The o Processor

In the context of the phase superiority vs amplitud=, the per -
formance of the so-called o processor is not unexpected.

Consider the image Fourier transform for the two-dimensional

case

’f(u’ v)

ﬂ Iix, y) e-an(xu + yv) dx dy

| Ttw, v)l e~i8(u, v) (3.6-1)

The o processor is defined as the “onlinear operator, TQ which

raises the transform amplitude to the power q:
Ta{‘f‘(u,v)} = ,T(u, v)'ae-Je(u.v) (3.6-2)

Consider the effect for o€[0, 1]. One can explicitly designate the
transform amplitude, I(u,v) by two terms where R(u, v) is the image
power spectral density and r(u, v) the amplitude fluctuation around

the power spectral density:
IT(u,v)l =R(u,v) +r(u,v) (3.6-3)

therefore,

H(u, v) T(u, v) = {H(u,v) R(u, v) + H(u, v) r(u, v)}e -j6(u, v)

(3.6-4)

A




Here H(u, v) is a linear filter. Consider the application of Tcy oe[0, 1]:

Ta Tiu, v) le(u, v)l o e-je(u.v)

:lR(u,v) + r(u, v)l & e-je(u’ v

~RY + qr¥"1 ;. (3.6-5)

The ratio of the amplitude fluctuation and the power spectral
density has decreased in Equation (3. 6-5) from r(u, v)/R(u, v) to
ar(u,v)/R(u, v). One guarded observation is that arnplitude entropy
has decreased by an amount related to (1 - o).

For o = 0, image transform amplitudes are identically unity,
Consequently, ihe image in this case became a white process, since
image power spectral density is also a constant. The a =0 case
demonstrates two interesting image properties. First, under con-
ventional ergodic assumptions the image becomes uncorrelated. Yet,
visual inspection of the appropriate images inaicates (Figure 3. 6-1)
that basic image features have not changed. The o = 0 filter dras-
tically changed image statistics, yet the apparent visual image
structure remained relatively unaltered.

3.7 Phase-Only Image (Polynomial Magnitude Fit)

The "o processor' has decreased the amplitude entropy in the

transform domain, however, it also changed the image power spectral

density. It is important to separate the two effects, An approximate
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(a) Walsh Transform (b) Walsh Transform
a=0.5 a=0

(c) Fourier Transform (d) Fourier Transform
a= 0. 5 a =0

Figure 3.6-1. Demonstration of the @ Processor

This page is reproduced at the
back of the report by a different
n-pn)(]n(-ti()n method to pr(wi(le
better detail.



linear inverse filter to Ta could restore the power spectral density :
to its original form. A more straightforward technique is to fit a !
particular type of surface to the image transform amplitudes. This
second approach is considered in this section.

Consider the two dimensional transform domain of an image,

~

(u,v). It is not necessary to specify the particular transform. The

discretized version of 1 will be used, such that transform parameters

u and v are integers.
The image transform amplitudes will be least square fitted by

a two-dimensional surface, Z(u, v) of the following form:

_ 2 N
Z(u, v) = R(u,v){a00 +alO u +a01 v +azo u +t.. +a0N v }

(3.7-1)

or in a more compact notation:

Z(u,v) = R(u, v) i vj (3.7-2)

The weight function R (u, v) is specified in advance and the
coefficients aij's are the unknowns to be determined. For a given N,
the number of coefficients is 1/2 (N + 1) (N +2).

The mathematical objective is to miniinize the mean-square

deviation between|T(u,v)| and Z(u,v), that is
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N

N-1
Z Z Ru, v) Z a,.
u v j=0 i=o0 Y

Co 2
u' v -|I(u, v)' ‘ = minimum

(3.7-3)

The minimization is accomplished by differentiating (3, 7-3)
with respect to ag for k =1,,..,N;¢4=1,...N - k and solving the
1/2 (N +1) (N +2) linear equations,

u v

= T R )T v)] o} (5. 7-4)
u \'4

Equation (3.7-4) can be rewritten in the following matrix notation:

s




A\

N
y

r -
R(u,v) | I(u,v)l

R(u, v) | Ttu, v)] u

= ZZ R(UnV)'ﬁU.v)'v

u v
| Rew,v) [ Tu, o) | |

Equation (3.7-5) is in the form of a conventional linear matrix
equation with the column matrix of the aij's being the unknown. For
a given image transform and a specified weight function, Equation
(3.7-5) may be solved by many conventional techniques for the solu-
tion of systems of linear equations (Blum, 1972).

The actual least square fit is dependent on the choice of the
weight function, R (u, v). Note also that Zz(u, v) is an estimate of the
image power spectral density. Any a priori image information should

be incorporated into R(u, v).
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Under the conventional separable Markov model, the image
correlation function is of the form e-a(lxl * 'yl) and the appropriate
power spectral density is of the form r»{(u2 + Q/Z)(VZ + Q/Z)]-l. A

reasonable choice of R(u, v) can therefore be picked as

R(u,v) = [(u% +o2)v2 +a8)] "~ /2 (3.7-6)

For the adjacent element correlation of 0.95 the value of ¢ is In 0. 95.

The utilization of Equation (3. 7-6) for the least square fit
problem indicates how good (or bad) the Markov model is. If the
Markov model perfectly represented the image statistics, except for
the A00 term, all other coefficients would be zero. The ratios of the
appropriate coefficients (e.g., Aij /AOO’ i +j>0) provides quantita-
tive information on the deviation between the actual power spectral
density and the one predicted by the Markov model.

The replacement of the individual amplitude values by the
appropriate related power spectral density values provides an impor-
tant demonstration of the phase superiority, The LZ image values for
an L X L image are represented by 1/2 % amplitude and 1/2 B
phase values. The power spectral density surface is prescribed by
a negligible (relative to 1/2 L%) number of coefficients. The avail~
ability of the least square fitted surface permits the replacement of
1/2 1.2 values, in effect, by a few parameters,

Equation (3.7-5) was implemented numerically utilizing the

Fourier domain. The Markov model was used for the weight function

— L )

St e————




with 0. 95 as the element-to-element vertical and horizontal corre-

lation. The highest degree of the two-dimensional polynomial was 2
through 5 for the five cases considered. The respective number of

terms in the polynomial ranged from 6 through 21. Table 3. 7-1

shows the various cases.

Table 3, 7-1

Degree and Number of Terms in the
Surface Fitting Polynomials
(1/2)(N + 1) (N +2)
3
6
10
15

21

The images generated by the above-outlined procedure have
good visual correlation with the original (Figure 3.7-1). The high

spatial frequency details are completely preserved. Not unex-

pectedly, the basic apparent distortions are in the very low-frequency

region. Generally, it is the low-frequency region which does not
lend itself to good statistical characterization. The reason is that
the low-frequency amplitudes can be recovered from a very coarsely
sampled image, thus the law of large numbers which is always

implied in an ergodic approximation, does not apply. On the other
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This page is reproduced at the
back of the report by a different
reproduction method to provide
better detail.

(a) Original

(b) 21 Term Expansion (c) 15 Term Expansion

(d) 10 Term Expansion (e) 6 Term Expansion

‘ Figure 3. 7-1. Demonstration of Amplitude Polynomial Fit
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hand, one may be too generous in allocating extra bits for the very
low-frequency region since the impact on the overall bit rate will be
negligible.

The pictorial representation of the actual polynomial surfaces

is shown in Figure 3. 7-2 while the calculated coefficients are given

in Table 3.7-2. The large value for coefficients other than the aOO

term indicates that the exponential Markov correlation model
requires higher ordez corrections,

The amplitude s arface fitting procedure could be utilized on
the development of an actual transform coding algorithm, however,
it was abandoned in favor of the recursive approach which is the topic
of Chapters 4 through 6. The solution of Equation (3. 7-5) and the
recalculation of the amplitude surface is likely to generate such
additional computation load in addition to the actual transform
algorithm, that any practical implementation would be prohibitive.
For the fifth degree polynomial approximation a 21st order matrix
equation must be solved. Each surface element reczlculation
requires in excess of 21 addition and multiplication operations. The
latter operations amount to a higher number of arithmetic steps than
required by the full size Fourier transform. In auuition, both the
solution of the matrix 2quation and the reconstruction of the surface
are somewhat ill-conditioned. The numerical implementations of

this section were done on a 60-bit wordlength computer. It is
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This page is reproduced at the
back of the report by a different
reproduction method to provide
better detail.

(a) Original

(b) 21 Term Expansion (c) 15 Term Expansion

(d) 10 Term Expansion (e) 6 Term Expansion

Figure 3. 7-2. Fourier Domain Display of Polynomial
Fitted Amplitudes
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anticipated that the round-off errors might not be negligible had the
same calculations, particularly the matrix equation, been performed
on a computer with shorter word length. In which case, the require-

ment for double precision would further increase the computational

load of the coding-decoding procedures.




Table 3, 7-2

Calculated Coefficients for the "Girl" Image

Numter of Coefficients
Coefficients 10 15

350 0.617 .624

a

10 a 0.130 . 119

a .37 . 871

o1

a . 695 .14

20

a“ i .298

aOZ : . 82

230

221

242

203

240

234

222

%43

204

250

241

232

223

24

205




4. EXPERIMENTAL RESULTS I (MONOCHROME)

The concepts developed in the preceding chapters have been
implemented. Computer algorithms have been developed for the
coding and decoding of various images. This chapter considers the
algorithm for monochrome images.

For practical reasons, the coding algorithms only included
digital input and output. For the monochrome image coding examples,
the input is a square image sampled over a 256 x 256 grid. Each
sample is linearly quantized to 256 levels.

The significant achievement of the adaptive phase coding process
discussed here is that the transmitter is slaved to the receiver with-
out any overhead information. Yet complete adaptivity is possible,
as well as arbitrary sample reduction. The drawback of adaptive
procedures is the requirement for large buffers, This requirement
is unavoidable but it is not likely to be important in the environment
of computer-to-computer communication. In this case, the undecoded
images can easily be stored, for example, on magnetic tapes.

The most demanding computational step is the large size,

256 by 256, image transforms. It is interesting to note that the

computational complexity, that is the number of arithmetic operations,
increase rather slowly from the case when the sub-block transforms
are replaced by one single large transform. For example, the ratio
of the number of operations for the entire image transform (256 x 256)
vs 16 x 16 sub-blocks is log 256/log 16 = 2. A factor of two increase
in arithmetic complexity is not too extreme in computer implementa-

tion,

87




The 256 x 256 size is generally too large to permit the two-
dimensional transformation entirely in core. The cost of the addi-
tional I/O operations should also be included.

4.1 Description of the Algorithm

The importance of image representation by amplitude and phase
was demonstrated in Chapter 3. In particular, the phase superiority
was established. The coding algorithm should incorporate these
important properties of the transform domain.

The following assumptions are made: (1) the transform values
are uncorrelated and normally distributed, (2) the power spoctral
density, equivalent to the sample variances, is a smooth surface.

It is significant to note that these assumptions are, in fact, related.
It can be shown that the Fourier transform will produce uncorrelated
samples under the assumption of smooth power spectral density
(Papoulis, 1965; Chapter 13),

The basic two assumptions lead to the equivalent amplitude and
phase representation, Furthermore, the amplitude is Rayleigh and

the phase is uniformly distributed. Specifically, an N x N image is

decomposed into 1/2 N?' amplitude and 1/2 N2 pnase terms, which

are, by assumption, mutually independent. Two separate coding
schemes were developed depending on the transform symmetry, One
coder utilizes the complex Fourier transform. The conventional

odd and even function decomposition into amplitude and phase is

used by the second coding scheme for which the Walsh transform is
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used. The two types of representation are related by a simple !
mapping, thus either coding scheme is sufficient for both Fourier

and Walsh transformations. The schematics of the coding -decoding

process are shown in Figure 4, 1-1,

Detailed descriptions of the algorithms for both the Fourier
and Walsh transform are provided in this section.

The 256 x 256 image is Fourier-transformed. The conven-
tional representaticns of the Fourier domain are shown in Figures
4.1-2 and 4, 1-3, The arrows indicate increasing harmonics in the
horizontal and vertical directions, The number pairs in parentheses
indicate the ordering of the amplitudes (or phases) according to
harmonics. The discrete fast numerical transform yields Figure
4.1-2. The more familiar diffraction pattern is shown in Figure
4.1-3, By interc'.anging the two halves of the pattern either repre-
sentation can be easily mapped into the other one.

An ordering must be established which specifies the sequence
for the Fourier domain qua. vization., The rows are indexed according
tc the natural ordering. Referring to Figure 4. 1-3, the first row is
the top of the pattern and then the coder proceeds downward. The
significant practical advantage of this scheme is that the computer
algorithm will not require a large memory biock., It is not required
to store more than a small fraction of the discrete transform in

memory; this, however, depends on the complexity of the predicting

algorithm,
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Figure 4.1-1. Schematic of the Coding-Decoding Procedure
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Figure 4.1-3. Conventional Fourier Domain Representation II
(Note: Columns 128 and -128 are identical)




Within each row, the coder starts with the lowest horizontal
harmonic, then it Proceeds to the right (refer again to Figure 4, 1-.3)
following which it repeats the process moving to the left from the
center.

The code words are generated by the quantization of the ampli -
tude and phase values, The phase values are uniformly quantized
The amnplitude is companded and then processed by a uniform
quantizer. The number of Quantum levels is set in linear proportion
tc the variance of the transform samples. The number of quantum
levels for the phase is twice as high as that for the amplitudcs, when

this number is four or larger. For the two-level amplitude quanti -

zation, eight phase quantum levels are specified. The transform

Clearly, the estimate based on the amplitudes prior to

quantization would be preferable, however, it would lead to an

undecodable process. The decoder will also perform the estimation

Process and it only has access to the previously quantized amplitudes.
Estimation of the variance of the next amplitude to be quantized
follows a rather simple rule, The density function for the Rayleigh

distribution is given by

2
X

-27
P(x)=%e ° x>0

2no

otherwise




The first two moments are

E(x) =\/§ fo; (4.1-2)

E{x2 - E(x)} = VAR(x) = (2 - 2)02 (4.1-3)

For each transform amplitude, the compander needs o, and the

number of quantum levels is determined by the variance. Equations

(4.1-2) and (4. 1-3) can he rewritten in a »nore useful form as

¢ = \/g E(x) (4. 1-4)

VAR(x) =(;T4- - 1) E® (x) (4. 1-5)

Equations (4. 1-4) and (4. 1-5) indicate that the estimate of the average
amplitude also specifies the standard deviation and the variance. The
amplitude estimate is determined by averaging the previously quan-
tized amplitudes in a neighborhood surrounding the estimate. This
neighborhood is determined by the ordering of the transform domain.
The d.c. value is transmitted without requantization. The
estimate of this term is, therefore, perfect. The estimate of the
next value is also the d.c. value. This term will be quantized and
the reconstructed value is available for the estimate of the next
amplitude. The estimate of the third value is the arithmetic mean

of the d.c. term and the first quantized harmonic. For all other




values on the first row, the amplitude estimate is the average of the
three previously reconstructed terms.

The estimation of the amplitudes on the zero column (the
column containing the d.c. term) is the exact symmetrical equivalent
of the first row. All other estimates are generated from four pre-
viously quantized values by simple averaging. These samples are
three values from the previous row and the just previously quantized
amplitude on the same row. Equations (4. 1-6) through (4.1-15) are
matheraatical forms of these sample « stimates. The subscripts refer
to the horizontal and vertical harmonic ordering of Figure 4.1-3,

A
0

X ,0=x0,0 (4. 1-6)

a
=X

0,1 0,0 e

A
0, 0 +x0,l)/2 (4.1-8)

+§‘\0,j-3)/3’ i>2  (4.1.9)

_ A o g
= 6?0,].“ *Xo.jiz * %p, )3 i< 0 (4.1-10)

A\ /\
X =X

1,0 0,0 (4.1-11)

A _ A
% o 6‘\1,0 +%5 )12 (4.1-12)

?’

A\ /\ R
= 6‘\i-1,o ¥ 5.0 *Xil3, )3 i>2 (4.1-13)




/\ A\ +/\
%ie1,j-10 PXicn, 5 TXio1, 541074, 50, §> 0

(4.1-14)

/\ Fa . .
xi-l,j +xi-l,j+l)/4' i>0, j<o0

(4.1-15)

The estimation of the zero row [Equations (4. 1-6) through
(4.1-10)] and the zero column [Equations (4. 1-11) through (4. 1-13)]
are separated from the general form of estimation [Equation (4. 1-14)
for the right and Equation (4. 1-15) for the left half of the Fourier
plane]. The zero row and column usually have a higher degree of
energy concentration than their immediate neighborhood, due to
windowing, and thus require special consideration.

The mapping utilized by the compander is the distribution func-
tion associated with the apprcpriate probability density function. It

is given by the following expression for the Rayleigh distribution:

2
X

1
¢iol el0, =] (4. 1-16)

Its inverse is

x =F ly) o V2 In(l - y), ye[o0, 1] (4.1-17)

In terms of the previous equations, the coding -decoding process

may be explicitly specified (see Figures 4. 1-4 through 4. 1-6).




Figure 4.1-4. Various Functions Associated with Companding
the Unit Variance Rayleigh Process. (a) Density
Function (Equation 4. 1-1), (b) Companding
Transform (Equation 4.1-16), (c) Inverse
Mapping (Equation 4.1-17)
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2)

3)

4)

5)

6)

1)

8)

1)
2)
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Coding Steps

Transmit d. c. phase and amplitude ''perfectly"
Estimate current amplitude from those previously quan-
tized, utilizing one of the set of Equaticns (4. 1-6) through
(4.1-15)
Determine variance of Rayleigh distribution from
Equations (4. 1-4) and (4. 1-5) by letting E(x) Qxi,j
Compand amplitude through Equation (4.1-16)
Specify the number of quantum levels, ZN according to
the amplitude variance
Quantize companded amplitude and phase by uniform
quantizer and transmit the appropriate code word. (Its
length is 2N + 1 bits if more than 2-level amplitude quan-
tizer is used, otherwise it is 4,)
Utilizing Equation (4, 1-17), determine the actual recon-
structed amplitude and save for further estimation
Unless the entire transform plane is quantized proceed
to Step 2 for the next amplitude and phase value pro-
cessing,

Decoding Steps
Receive exact d.c. phase and amplitude
Estimate current variance of Rayleigh distribution from

Equations (4.1-4) and (4. 1-5) by letting E(x) =§{\i

'x\i i is determined via the estimator Equations (4. 1-6)

through (4, 1-15)
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Determine code word length from the amplitude variance
Reconstruct inputs to the uniform quantizer (this is the
companded amplitude and phase)

Reconstruct amplitude utilizing Equation (4.1-.7)

Unless the entire transform plane is decoded, proceed to

Step 2 for the next amplitude and phase decoding.

Several important observations should be made at this point.
The coding-decoding process is clearly decodable. The decoding
must be done in the same order in which the encoder operated. In
other words, selected decoding of individual code words or sequence
of code words is not possible. The code words are clearly of the
variable-length type. The set of binary digits which represents the
entire coding process does not pPossess any particular algebraic

properties. It should be pointed out that although the coding process

is decodable the actual binary sequence is not decodable according to

the conventional definition of algebraic decodability, The quantiza-
tion of the Rayleigh process can effectively be demonstrated via
input-output diagrams as shown in Figures 4. 1-7 through 4.1-10,
Since the decoding process is recursive, the errors made in
the decoding process can be catastrophic. A catastrophic error will
propagate throughout the decoding process, thus, all decoded values
will be in error past the one in the sequence where the first error
occurred., The primary source of error is channel noige which will

be considered in Section 4.4, A catastrophic error will occur when
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Figure 4.1-7. Two-Level Quantizer

10,0

5.0

3.0
2.0

1.0}

o

0.5

0.3
0.2

0.2 0.3 0.5 1.0 20 30 5.0
INPUT

Figure 4.1-8. Four-Level Quantizer




OUTPUT

OUTPUT

101

5.0

3.0
2.0

1.0
0.5

41—’_1_;’ | :

0.3
0.2

0.2 0.3 0.5 1.0 20 3.0 50
INPUT

Figure 4.1-9. Eight-Level Quantizer
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Figure 4.1-10. Sixteen-Level Quantizer
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the estimated variance is sufficiently incorrect to yield an incorrect
bit assignment. The result is loss of synchronization.
The bit assignment is based on Equation (4.1-5) and it is simply

of the form
N = [« log, (VAR(x))] (4.1-18)

As previously indicated, the amplitude and phase, in general, are
specified by 2N + 1 or 2N +2 bits. The o is the proportionality con-
stant; the brackets [ ] specify the largest integer whose value does

not exceed the value within the brackets. Both the encoding and
decoding algorithms include a large number of arithmetic operations;
specifically, Equations (4.1-4) through (4.1-17) are utilized before
Equation (4.1-18) can be applied. In order to assure that the result
of Equation (4, 1-18) is identical for both the encoding and decoding
processes, it is important that the sequen:e and accuracy of the
arithmetic operations be the same. The correct sequence is achieved
by proper programming. The accuracy consideration is much more
involved. Clearly, if the coding and decoding algorithms are imple -
mented on computers of different word-length, the deviation in round-
off error could lead to different bit assignments through Equation
(4.1-18). Even for the same computing equipment, the minor varia-
tion in ce:tain arithmetic steps, for example, different logarithm
evaluation for the coding and decoding operations could result in

ambiguity. The ambiguity consideration is important; however, the
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related difficulties can, again, be elirninate! by careful programm-
ing. In a universal version of the coding-decoding algorithms, table
look-up should be used instead of functional evaluation, and integer
arithmetic should replace all floating point operations. The same
programming considerations also result in improved efficiency for
most general purpose computers.

The utilization of Equation (4. 1-18) for sample reduction actu-
ally incorporates the novel features of both the zonal and threshold
approach to transform coding. Whenever the image power spectral
density significantly decreases for higher harmonics, Eguation
(4.1-18) should lead to significant sample reduction. The coding
reduction procedure thus far outlined is highly image-dependent
(unlike zonal coding) and requires no additional bookkeeping informa-
tior. (unlike threshold coding). The decoder is completely uninformed
of the degree of sample reduction; this information it can only
ascertain upon completion of the decoding process.

The natural form of the image power spectral density may not
lead to a sufficient degree of sample reduction. Appropriate applica-
tion of the filtering process in Figure 4.1-1 discussion of which
was delayed to the present, can significantly alter the bit rate.
Generally, the filter function is of the low-pass form (it can also be
image-dependent). The coder-decoder will operate on the modified

power spectrum. Thus any degree of sample reduction can be

achieved by selecting the appropriate filter. It should be observed




that, again, the application of the filter requires no bookkeeping bits
to the receiver. In fact, t'ie decoding algorithm has no information
as to the type or structure of the filter if, in fact, one was utilized.

The gmall amount of white noise in the image significantly

e
alters the power spectral density for the higher harmonics. In fact,

for the higher harmonics, the sample variances are basically speci-
fied by the noise spectral density. The coder cannot differentiate
between the true image and noise. Application of the filter may lead
to its more conventional role, that is, to increase the S/N of the
image.

The adaptive philosophy can easily be extended to other
orthogonal decompositions. The Walsh transform was utilized for
this implementation. The conventional schematic representation of
the sequency-ordered Walsh transform is shown in Figure 4.1-11,
The Walsh transform of the 256 x 256 matrix is another 256 x 256
matrix. The "unconventional' phase concept permits the description
of the trancform plane by an equal number of phase and amplitude
terms. The following definition was used. In Figure 4, 1-11 each
row is considered as 128 number pairs. These pairs are used for

the amplitude and phase definition in a similar manner to the

The effects of noise on coding are further discussed in subsection
4.2,
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Figure 4.1-11. Conventional Walsh Domain Representation
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Figure 4.1-12. Walsh Amplitude Domain Representation




Fourier case. Let (Ai, 2j-1" ai. Zj) be one such pair, then the

corresponding amplitude and phase values are defined respectively

2 2 )1/2

as xi,j = (ai' Zj=l + ai. 2j and tan ei The

3,254
corresponding representation of the Walsh amplitudes is shown in
Figure 4.1-12,

Once the amplitude plane is specified it is obvious that the
various equations used for coding the Fourier plane, Equations
(4.1-4) through (4.1-17), are equally appropriate. There are only
two basic differences: (a) the estimator equations for the negative
(left) side are not needed and (b) the sequence of operation must
correspond to the symmetry of Figure 4.1-12. The coder will
again proceed downward row by row. Within each row it will always
pProceed from the zero column to the right,

Once the coding algorithm is adjusted for the two minor differ -
ences listed above, the coding and decoding steps listed for the
Fourier domain are equally valid for the Walsh domain. Similarly,
the various cornments relating to bit assignment, ambiguity, and

implementation of computer -to -computer communications are equally

valid for the Walsh coder.
4.2 Effects of Noise in the Original Image

Noise effe :ts are considered in this section via a simplified

analytic model.

For the purpose of analysis the image correlation is modeled

by the simple exponential Markov expression




Rix,y) = e @l =8I . Il Iyl (4.2-1)

Further simplification is obtained by the assumption of identical
horizontal and vertical statistics., The:zefore, let B = o and

Py = 0, = P then

- |
R(x,y) - e a('x' +,Y') = olx' ¥ 'y'

Note also that ¢ >0, p< 1, o = -Ilng.

The application of the Markov model [Equation (4.2-2)] leads
to interesting quantitative results. In the following, the image is
assumed to be normalized such that its mean is zero and its variance
is unity. It is assumed that the image is corrupted by additive white
noise of power spectral density N. The average S/N in the image is,
therefore, 1/N. The local S/N in the transform domain, denoted by

Q, is the ratio of the image and noise power spectral densities:
Q(u, v) = S(u, v)/N (4.2-3)

Restricting the discussion to the Fourier transform, the power spec-

tral density is given by

S(u, v) = ff R(x,y) e 2T (WX HY)g 4y (4.2-4)

Utilizing Equation (4.2-2) for R,




1 20 2o
Qu,v) == (4.2-5)
N [az + (Znu?] [Q’Z + (va)Z]

Before proceeding with Equation (4.2-5) the problem must be
discretize?, As before, the image is assumed to be properly sam-

pled, e.g., no »iasing, on a rectangular grid at locations

(x,»y,,) = (nbx, may); n,m =0, =1, 22, (4.2-6)

The appropriate frequency band limits in the transform domain
are [- 1/24x, +1/2px] and | - 1/24y, 1/2Ay] for the horizontal and
vertical directions, respectively. For computational convenience,
let 4x = Ay = 1. Thus, both the horizontal and vertical extent of the
frequency domainis - 1/2 to + 1/2,

The behavior of Q is considered along the diagonal in the fre-
quency plane, e.g., u =v = f, Whenever the noise dominates,
Q(u,v) < 1, Letting Q(f, f) = 1, one can solve for the transition
region, Considerable simplification is achieved by the as sumption
that at Q(f,f) = 1, 2nf >> g. The latter inequality is realistic for
most images and it will be demonstrated for the specific example
utilized in this section. Equation (4. 2-5) can be rewritten according

to the previous assumptions as

N = 452 /(2nf)*

therefore




o (02/4n4N)1/4

Since 4114 ~ 400

1/4
=3 Q,Z
f= <2.5 x 10 W) (4.2-9)

For the numerical utilization of Equation (4.2-9), ¢ and N
must be specified. Let N = 0,001 and ¢ = 0. 05 corresponding to
p = 0.95 in Equation (4.2-2). The value used for N is very con-
servative since it corresponds to the image S/N of 1000. The
p =0.95is a typical value. The test images in this dissertation
have an average sample-to-sample correlation approximately

corresponding to this value. The evaluation of Equation (4. 2-9)

for specified values leads to the following:

1/4
£=12.5x 1073 x 10 x (0. 05)]

= 0. 1(60)" /4

- o.z7~(%-) (0. 5)

According to this numerical demonstration, at 1/2 of the
highest vertical or horizontal harmonic the image power spectral
density drops below the noise level.

Further observations are also in order. Note should be taken
that o = 0.05 << 0.27 x 2m, thus the simplification that led to the

derivation of Equation (4.2-7) was, in fact, permitted. One can




also note that whenever the same implication is allowed, the lines
of constant S/N in the transform plane are parabolas. From

Equation (4.2-5), letting o << 2mu, o << 2nv,

uv = [0/ (4nr INQ) (4.2-10)

Equation (4.2-10) is the function of a parabola, whenever the right-
hand side is a constant.
The maximum value of Q is at the u = v = 0 location in the

frequency plare. It is

Q(0,0) = 4/0,2N =1,6 x 106 (4.2-11)

for the previously-specified values of o and N, The demonstrated
example indicates that the presence of even a small amount of
white noise will have a very significant effect. In this example, the
majority of transform domain samples are below the noise level
despite the fact that the noise level is approximately six orders of
magnitude below the peak of the power spectral density,

The previous analysis can be easily extended to the case where

the image correlation model is isotropic, For this case

2 2
R(x, y) =R<Jx2 + y2> = e aV(xT +yT) (4.2-12)

1
Letting (x° +y%)1/2 - ¢, and (u? +v2)1/2 . f, Equation (4.2-4) is

replaced by the Hankel transform:




S(f) =f 2nr R(r) Jo(2nr) dr (4.2-13)
0

-3/2
Q(f) =1N (2na) [a?‘ + (an)z] (4.2-14)

as in the derivation of Equation (4,2-7) the inequality 2nf >> 4 can be

used, therefore whenever Q(f) = 1,

(4.2-15)

Furthermore,

1/3
f = —T—"’ (4.2-16)
[(Zn) N]

The utilization of the previously-specified parameters (¢ = 0. 05 and
N =0.001) indicates that f > 1/2, therefore the transform domain
S/N in this instance will remain above unity in its region of definition.

Although both of the previous models can be expected to deviate
from the actual image power spectral density, the qualitative results
are useful in that they demonstrate the importance of image noise.
4.3 Pictorial Examples

The coding procedures previously outlined in this chapter were

programmed for computer implementation. The results, using the
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monochrome test images of Appendix A, are shown in this sub-
section,

The logarithmic amplitude and linear phase displays are shown
in Figure 4.3-1 for the Fourier and Walsh transforms. The same
figure includes a demonstration of entropy associated with these
phase images. To make the visual comparison between the two
transforms more meaningful, the conventional Walsh presentation
(Figure 4.1-11) is remapped and is shown according to the schema-
tics of the conventional Fourier display. All pictorial Walsh domain
presentations in this dissertation are done in this manner. The
entropy images are obtained in two steps. First, the phase range
[- m, n] is uniformly quantized by a 64-level (6 bit) quantizer. Next,
the two-dimensional probability density function (e.g., histogram)
corresponding to the simultaneous occurrence of phase values
corresponding to adjacent row neighbors is calculated. The a¢cual
entropy map is obtained by taking the base 2 logarithm of the two-
dimensional kistogram. The actual entropy value corresponding to
this map is obtained by summing all 4096 elements and it is 11,99
bits (the maximum possible is 12 bits) for both transforms. The
obvious conclusion is that the various phase values are, in fact,
uncorrelated. The higher intensity level along the phase image
diagonals does indicate a small amount of residual correlation.

The processed images are shown in Figures 4,3-2 and 4.3-3

corresponding to the Fourier and Walsh transforms, respectively.




(a) Amplitude (Fourier)

(e) Entropy (Fourier Phase)

(f) Entropy (Walsh Phase)

Figure 4.3-1. Transform Domain Display of GIRL Image
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(a) M.S.E. 2.4%; bit rate 0.39 (b) M.S.E. 1.6%; bit rate 0. 68

(c) M.S.E. 1.26%; bit rate 0.31 (d) M.S.E. 0. 78%:; bit rate 0. 66

Figure 4.3-2. Coding-Decoding Examples (Fourier Transform).
The Mean Squared Error (M.S. E.) is Normalized
Relative to Energy in Original Image

This page is reproduced at the
back of the report by a different
reproduction method to provide
better detail.



(a) M.S.E. 3.6%; bit rate 0.51 (b) M.S.E. 2.6%; bit rate 0.7

(c) M.S.E. 1.48%; bit rate 0.50 (d) M.S.E. 1.07%; bit rate

Figure 4.3-3. Coding-Decoding Examples (Walsh Transform

The Mean Squared Error (M.S. E.) is Normalized
Relative to Energy in Original Image

This page is reproduced at the
back of the report by a different
reproduction method to provide
better Jdetail.
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In the coding-decoding process, the image is always converted into
a sequence of binary digits corresponding to the actual data rate.
The decoder uses the same sequence as its input.

In Figure 4.3-4, the decoded transform planes are shown. For
this case, the sample reduction is obtained by rotationally symmetric
low-pass filtering. It should agair be stated that the decoder is
uninformed about the type, or even the existence, of this low-pass
filter.

Typical examples of the '"dynamically" determined bit planes
are shown in Figures 4.3-5 and 4.3-6.

Typical performance curves are shown in Figure 4,3-7. The
various curves were generated according to the following procedure.
Let T(p, 8) and/T\(p. ) represent the original and decoded image

transforms in polar coordinates; also the normalization relative to

integrated variance is assumed:

2n o

ff T(p,8) p dp de = 1 (4.3-1)

o €

The lower limit ¢ indicates that the d.c. term is excluded in the

integration. The letter designations a through e correspond to the

following five functions designated as Za through Ze, respectively:

2n o

Z_(p) =f f |T(s.e)|zsds de

o €




(a) Fourier Amplitude (b) Fourier Phase

(c) Walsh Amplitude (d) Walsh Phase

Figure 4.3-4.

Examples of Decoded Transform Planes
for GIRL Image
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AMPLITUDE
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0 20 40 60 80 100 120 140750 180
HARMONICS

(a) Fourier Domain

0 20 40 60 80 100 120 180 60 380
HAR MONICS

(b) Walsh Domain

Figure 4.3-7. Typical Performance Curves for Coding-
Decoding Examples (see text for various
letter designations)




Z, (o) = 1 - Z_(p)

2n p i
Zc(p) = f f|T(8.9) - 1(s, 8) 2 sds do
o €

(4.3-5)

(4.3-6)

The curves in Figure 4.3-7 were generated from the discretized
versions of Equations (4.3-2) through (4. 3-6). These functions con-
vey considerable information about the coding process (although in a
forced rotational symmetry). Za is the integrated transform
variance. Zb corresponds to the truncation error. The integrated
overall coding error is Zc. The image power spectral density is
Zd' The local (in the transform plane) coding error is given by Ze'
The curves Zd and Ze merge at the location of the low-pass filter
boundary.

In Figure 4.3-8, the sample reduction is obtained by dis -
carding transform samples whenever the amplitude is below a cer-
tain value. The subsequent coding is the same as in previous
examples.

The influence of apodizing, a ten-element tapered window in

this case, is demonstrated in Figure 4.3-9.
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(2) M.S.E. 1.83%: bit rate 0. 6 (b) M.S.E. 1.18%; bit rate 0. 42

(c) Decoded Transform Plane (d)

Decoded Transform Plane
for COUPLE IMAGE for GIRI

. Image

Figure 4.3-8. "Threshold" Coding Experiment (Fourier
Transform). The Mean Squared Error
(M.S.E.) is Normalized Relative to
Energy in Original Image

This page is reproduced at the
back of the report by a different
reproduction method to provide
better detail.



(a) Decoded Image (0.4 bit)

(b) Original Amplitude (c) Decoded Amplitude

(d) Original Phase (e) Decoded Phase

Figure 4.3-9. Coding Experiment with Apodizing (Fourier)
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4.4 Channel Coding Considerations

There are two basic philosophies concerning channel noise
sensitivity evaluation of the picture coder. In one case, channel
€rrors are permitted to occur in the source coded data and, conse-
quently, the reconstructed image will be affected by the channel
noise. A "well-behaved" coding process will be insensitive to
channel errors, The second approach implies the requirement for
channel coding and in effect assumes that by proper channel coding
error-free transmission is possible. The author is a strong be-
liever in the latter philosophy.

Lack of sensitivity to channel errors is a desirable image
coding feature. It is easy to demonstrate, however, that, in general,
efficient data compression and insensitivity to channel errors are
contradictory concepts. The fundamental theoretical basis for any
data compression procedure is redundancy in the data source, The

fact that the source output is correlated permits representation of

the source in '"com ressed'' form. An efficient data com ression
P

Procedure removes the existing source correlation and produces an
output which, by design, will be uncorrelated, In the binary repre-
sentation of the compressed data, each bit will acquire a.' added
importance and its reversal is more zpt to degrade the quality of
the reconstructed data than a similar occurrence of error in the

original (uncompressed) data.




It is not surprising that most efficient image coding algorithms,
particularly contour coding techniques, are very sensitive to channel
errors. For the latter method, a single bit error is likely to prevent
the entire image reconstruction.

Source coding removes the source redundancy, conversely,
redundancy is reintroduced by channel coding. For the chznnel coding
procedure, it is important that the input to it be of a particular
statistical structure. Since the channel is unlikely to have been
designed to accommodate any particular source redundancy, it is
anticipated that channel usage is optimum when its input is statisti-
cally uncorrelated.

According to the above statement, source redundancy, i.e.,
finite memory, i» undesirable for subsequent channel coding which
assumes a memoryless source. The PCM form of the image is
highly correlated. The high degree of correlation can be demon-
strated in the binary equivalent of the image.

A quantitatively meaningful demonstration o correlation is

the correlation function calculated from the binary equivalent of

image segments. Each value of the correlation function Rj is

determined from a data segment of N values:

N-j
=" = 3
Rj “No (e, - X) (xi+j - X)

i=1
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and

N
x =E X, (4. 4-2)

i=1

The data (xi) are the actual binary representation of the image,
that is, each X, is either 1 or 0., Calculation of the correlation func-
tion for N = 10,000 from the PCM '"Girl" image is shown in Figure
4.4-la. The structural form of Ri in Figure 4.4-1la is consistent
with the eight-bit representation, each relative maximum occurs at
multiples of eight. R0 is the variance of the binary stream.

The similar calculation of the correlation function for the
source coder output of Chapter 4 is shown in Figure 4. 4-1b, The
result indicates that the source coding algorithm output is equivalent
to a memoryless source.

Lack of correlation and the significant bit reduction in the out-
put of the image coding procedure indicate that the compressed data
are expected to be sensitive to channel errors. This sensitivity is
evident also upon careful examination of the coding process of
Section 4. 1. Both the number and the location of quantum levels are
""dynamically'' determined. Channel error can affect both of these
quantization parameters. Erroneous determination of the number of
quantum levels is a catastrophic error. The synchronization in the
adaptive coding procedure will be lost and all subsequent values will

be drastically altered.
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It can be seen that the adaptive phase coder output should not
be transmitted over noisy channels without channel coding. Although
the degree of image compression depends on the image correlation
via the generalized power spectrai density, it can be controlled to
virtually any reasonable value by an appropriate linear filter. Thus,
the additional bandwidth requirement for the channel coder-introduced
redundancy can easily be offset by the image coder at the expense of
additional low-pass filtering.

by relaxing the requirement for complete adaptivity the coding

algorithm can be made less sensitive to channel e1rors. The prior

specification for bit assignment according to some conventional
models retains the flexibility for determination of quantum levels,
however, catastrophic errors resulting from loss of synchronization
can no longer occur.

Using the polynomial surface fit for the optimurn quantization
parameters (subsection 3. 7) would also avoid catastrophic errors,
providing that the transmission of the appropriate coefficients is
without errors. Neither technique was, however, employed. In
either case, the additional complexity could be avoided by proper

channel coding, which probably would require less total effort.




5. EXPERIMENTAL RESULTS, II (COLOR)

Transform coding techniques for monochrome images have
been successfully utilized by various researchers. For other, more
complex, types of images, redundancy exists in parameters other
than the two spatial variables. This chapter considers the extension

of the algorithm of Chapter 4 to color images, while in Chapter 6

the coding algorithm implementation is for a sequence of time-varying

images.

Further extensions could include the simultaneous considera-
tion of color and time, however, it was not done here. It should be
emphasized that for even the three-dimensional data, e.g., color,
or time-dependent images, the experimental difficulties become quite
significant. The generation and calibration of properly registered
frames is a major effort by itself. Similarly, the display and record-
ing of a color image requires a great deal of additional hardware and
care as compared to monochrome images. Furthermore, the third
dimension significantly increases the data handling. The experi-
mental difficulties listed above have kept research on color and
frame-to-frame coding at a fraction of the effort extended to the
monochrome case.

5.1 Color Image Representation

A passive, opaque (non-emitting) object becomes "visible' by

reflecting radiation which is incident on it. The reflection process

is selective, thus, the relative amount of reflected energy is
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dependent on the local characteristics of the object and it also depends
on the spectral distribution of the incident radiation. The physical
reflection process, in effect, specifies the image.

The spectral dependence is "integrated out'' for monochrome
images. The exact characterization of actual visual scenes requires
the specification of the spectral component which is accomplished by
the third image variable, the wavelength (1). Symbolically, the color
image is an analog function of three variables, I(x,y, \). Prior to
the coding procedure, the image must be sampled along the spectral
axis in addition to the discretization of the two spatial coordinates,

The sampling procedure applied to the wavelength very strongly
depends on the ultimate purpose for which the image was recorded.

Formally, the spectral sampling can be written

o0

I(x,y,j) =,{ rj(k) x,y,\)d», j =1, ... N (5.1-1)

The "'spectral aperture, ' rj()\) determines the weighting of the
spectral components for the determination of the j-th sample. The
number of samples, N, depends on the application. Equation (5, 1-1)
can represent the monochrome image of Chapter 4 by specifying
N =1 and r, to be a constant over the visible portion of the spectrum,

The value of N may be in excess of 20 for what is generally
referred to as multispectral data. The functional form of rj, in this
case, is usually an approximate delta function ccntered at a specific

wavelength value, )\j. Not all )\j's are necessarily in the visible




spectral region. Multispectral data are generally utilized in
computer classification algorithms rather than for the actual repro-
duction of the visual scene for human viewing.

The spectral sampling is greatly simplified for the case when

the purpose of image recording is for subsequent display for human
visual viewing. The human eye does not respond individually to the
infinite number of spectral elements pPresent in a visual scene. It is
rather a triplet of photoelectric detectors whose individual responses
cover the low (red), medium (green) and high (blue) spectral regions,
The human visual process determines the color on the basis of the
simultaneous ''readings' of these detectors (Cornsweet, 1970).

In effect, the human eye perceives the complex visual scenes
corresponding to its three detectors. Within this somewhat over-
simplified model the eye performs the mapping of the continuous
wavelength axis into a set of three values. The mapping is of the
form of Equation (5.1-1) and it is given by the following three

equations.

[e 0}
R (x,y) =f rR()\) I(x,y,\) d\
0

20}
G(x,y) =f rs (\) I(x,y,\) d\
0

[+ 4]
='/O. s (\) I(x,y,\)d\
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Letter indices R, G, and B designate the spectral region in
which the appropriate "eye detector' reaches its maximum response
(red, green, and blue, respectively). Equations (5. 1-2) through
(5. 1-4) imply the nonunique spectral sensitivity of the human eye,
According to these equations, the change of I(x, ¥y, A) will not be
Perceived as long as the left sides of these equations are not
altered.

From the standpoint of this bandwidth reduction algorithm, the
coding -decoding process will simultaneously consider the three
image signals R(x, y), G(x, y), and B(x,y). The redundancy reduction
is achieved by considering the correlation among the three color
Planes in addition to the spatial correlation within each plane.

5.2 Description of the Algorithm

The coding scheme for the multidimensional data which is
presented in this dissertation can be put into the simple form, shown
in Figure 5.2-1, in a manner similar to the monochrome case of
Figure 4.1-1,

The three-dimensional transform of the R, G, B planes yields
three transform planes ~1, TZ’ T3. By assumption, the samples are
uncorrelated within each transform plane as well as among the
various transform planes.

The actual implementation utilized the Fourier transform. The
three-dimensional transform is performed in two stages. The con-

ventional two-dimensional Fourier transform is applied to the R,
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G, B planes individually. Each triplet of complex values corres-
ponding to identical locations in the three transformed planes is sub-
Jected to the one -dimensional, three-point complex Fourier trans-
form. The 3 x 3 complex unitary transform matrix is shown in

Figure 5, 2-2.

1 1

1
= 0.5 (-1+jy/3)  -0.5(1 +j/3)
vE)

-0.5 (1 +j,/3) 0.5 (-1 +j,/3)

Figure 5.2-2., Three-Element Fourier Transform Matrix

The structure of the 3 x 3 complex matrix indicates that the
first of the three final transform planes (Tl) is simply the average
of the two-dimensional transform of the R, G, B planes, respectively.
In effect, the first plane, Tl' contains the brightness, or luminance,
information. The TZ and T3 planes designate the fluctuation around
the average of the three planes and thus represent the chrominance
information, It is not necessary, however, to make reference to
luminance and chrominance designations in order to implement the

coding procedure.

The coding-decoding procedure of Chapter 4 is applied to the

three transform planes (Tl, TZ' T3) individually. The only inter-

dependence among the three separate coding processes is that the
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scale factor that relates the number of quantization levels to the

sample variance is determined for Tl and the same value is utilized

for TZ and T3 as well.

As in the procedure utilized for the monochrome case in
Chapter 4, the three filters can be used by the transmitter to modify
the coding process. The receiver will adapt to the filtered planes
without any control information. The close similarity of the R, G,
B and their two-dimensional transforms implies that the largest
image energy component will be concentrated on the first transform
plane.

The low-pass filtering effects of the Tl’ TZ’ and T3 planes are

similar to the procedure previously used for the Y, I, Q system

(Pratt, 1971). The "luminance" laneT , in effect represents the
P 1 P

spatial resolution, which will be degraded by a high degree of low-
pass filtering. The "chrominance'' planes TZ and T3 can be subjected
to rather strong low-pass filtering without serious image degradation.
The replacement of every value by zero in the TZ and T3 planes
reduces the color imag: to a monochrome equivalent. This mono-
chrome image is simply the average of the R, G, and B signals.

The value of the adaptive nature of the color coding process
as indicated in Figure 5,2-1 cannot be overemphasized. The appro-
priate filters can be specified for a specific color system. For the

general case, the R, G, B signals may be referenced to a wide

variety of primaries. The degree of low-pass filtering which may




»e tolerated will depend on the original color digitizing equipment
and the subsequent calibration procedure, if any. The low-pass
filter band limits are implemented by the transmitter and the spec-
ification is very likely the result of human visual inspection., When-
ever the cost in effort associated with color image transmission is
high, optimization of the three filters is likely to require consider-
able effort,

The significant property of the adaptive procedure is that once
the transmitter decides on an optimized set of filters (i.e., the
tolerance of the transform planes to low-pass filtering has been
determined) none of this information is required by the receiver.
All inform:tion bits relate to the quantized transform domain, and
no bookkeeping information is required.

The same comments made in Chapter 4 regarding advantages
and disadvantages apply for the adaptive color coder as well. The
adaptive procedure includes the benefits of both zonal coding (non-
uniform bit assignment and quantum levels) and threshold coding
(adaptivity in deciding which regions can be discarded). The funda-
mental disadvantage of the adaptive coder is the variable buffer

requirement for the receiver. The bit rate, or equivalently, the

degree of compression, is determined by the transmitter and only

after decoding will this information be available to the receiver.
The three-primary color system utilized the three-dimensional

Fourier decomposition only, The one-dimensional, 3-point Walsh




transform is not defined., An alternate composite system could
include the two-dimensional Walsh transform of the R, G, B planes
followed by the one-dimensional Fourier transform. The alternate

system was not actually implemented. If the number of the color

planes N is of the form N = 2", where n is an integer, the Walsh

decomposition is possible for the third dimension. The three-
dimensional Walsh decomposition of Chapter 6 could be directly
utilized for multispectral data of four input planes.

5.3 Pictorial Examples

As with the monochrome coder of the previous chapter, the
color coding algorithm has been programmed. The three-dimensional
Fourier transform was utilized.

Figure 5.3-1 shows the three transform planes corresponding

to the three-dimensional transform. Results of the coding -decoding
experiments are shown in Figure 5.3-2. Tristimulus color planes
for one of the decoded images are shown in Figure 5,3-3, Decoded
transform planes for a typical case are shown in Figure 5,3-4,
This figure also indicates the varying amount of low-pass filtering
in the different transform planes. The transform statistics can be
significantly altered by apodizing. The influence of a ten-element
image window is demonstrated in Figure 5.3-5,

It should be noted that the d.c. term for the three-dimensional
transform is located in the first transform plane. For the other
transform planes, the relative maximum amplitude location is not

predictable.




(a) Amplitude (Plane I)

(c) Amplitude (Plane II)

(e) Amplitude (Plane III) (f) Phase (Plane III)

Figure 5.3-1. Three-Dimensional Fourier Transform
Display of Color GIRL Image
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Figure 5.3-2. Coding-Decoding Examples. The Mean Square
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to Energy on Original Color Image



Figure 5.3-3., Tristimulus Color Planes of Decoded
GIRL Image (0. 62 bit)
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(a) Amplitude (Plane I) (b) Phase (Plane I

(c) Amplitude (Plane II) (d) Phase (Plane II)

(e) Amplitude (Plane III) (f) Phase (Plane III)

Figure 5.3-4.

.

Decoded Transform Planes for Color GIRL
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(b) Phase (Plane I)

(a) Amplitude (Plane I)

(c) Amplitude (Plane II) (d) Phase (Plane II)

be

(e) Amplitude (Plane III) (f) Phase (Plane III)

Figure 5 3-5. Transform Domain Display Associated
with Apodized Color Girl Image
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6. EXPERIMENTAL RESULTS III ( INTERFRAME CODING)

It is obvious that significant redundancy exists among members
of image sequences representing the temporal variation of visual
scenes. An efficient interframe coder removes the redundancy in
the sequence of simnilar images as well as within each image
(Haskell, Mounts, and Candy 1972),

In a manner similar to the color coding approach of the pre-
vious chapter, the image scquence can be considered as three-
dimensional data consisting of two spatial coordinates and one time
coordinate. An additional similarity between interframe and color
coding is that they both explouit the limitation of the human visual sys-
tem. For most practical applications, three primary color compo-
nents are sufficient to represent most apparent colors within the
spectral range of the human visual response. The limited temporal
resolution of the human eye permits the sampling of the temporal
variable at approximately 60 Hertz.

It is important to note that the sampling procedure thus
specified by the inadequacy of the human visual process does not
necessarily correspond to the classical sampling requirement.
Consequently, emphasis by the coder is on preservation of the
appearance of the image rather than on the actual image itself.

There are many applications for interframe coding, the most

obvious being television. Although various spatial domain techniques

have been successfully utilized for redundancy reduction in video

signals, transform techniques have not been previously considered.
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This chapter considers the theoretical implications for
transform domain coding. The adaptive phase coding technique of
Chapter 4 is extended to the interframe case. Detailed discussion of
the algorithm as well as examples of the coding procedures are also
given.

6.1 Analysis of the Interframe Case

A sequence of images can formally be written as I (x, y,t). The

spatial variation is indicated by x and y and the temporal variation by
t. The three-dimensional function I represents the continuous (non-
discrete) variation of a visual scene. The physical nature of the
imaging process requires that I(x,y,t) be non-negative.

If I is band-limited with respect to all three of its variables,
then the Lukosz bound applies, at least formally. In fact, the dis-
cussion in subsection 2.6 indicated the tightening of this bound for
increasing numbers of dimensions. If the Lukosz bound is to be valid
for the sampled version of I, the sampling rate must be at least twice
the band limit for each dimension. The various imaging devices
band-limit the spatial frequency spectrum of images; however, no
similar band-limiting occurs for the temporal variation. Further,
sampling along the time axis is Performed to match the limitations of
human visual process and bears no relation to the structural form of
the actual image. Consequently, the Lukosz bound does not apply for
the temporal portion of interframe imagery.

The utility of statistical coding should also be discussed as

applicable to the interframe case. Statistical coding procedures
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utilize the stochastic rule that exists among the elements that are
to be coded.

The existence of strong nonstochastic dependence among ele-
ments of a multidimensional image implies that a purely statistical
approach to image coding is suboptimal. The intraframe and color
images can be sufficiently characterized by statistical means. The
statistical approach can be extended to the interframe case, (as is
done in the remaining subsections of this chapter). However, it is
interesting to note various deterministic relations which apply to the
interframe case and which are ignored by the statistical approach.

The above indicated deterministic rules can be formally repre-
sented by operator notation. Let Ij (x,y) = I(x,y,tj) and Ik (x,y) =
I(x,vy, tk) be two individual images in a sequence of images describing
a time-dependent visual scene. Specifically, Ij and Ik represent the
image at times tj and tk The following specific question should be
addressed: given the image pair Ij and I'k’ is there a nonstochastic

operator L, such that, at least approximately,

L (x,y) = L}Ij(x.w{ (6.1-1)

Any statistical coding approach which ignores Equation (6.1-1)
and the inherent redundancy it implies cannot be optimal.

In the following, the various basic forms of the operator L are
considered. The appropriate infiuence in the transform domain are

addressed.




The operator L. can represent local as well as global changes

between Ij and Ik. The former case implies that only a relatively

small part of the image is changing. Under global changes, the entire
image is understood to be changing in some (nonstochastic) systematic
manner. The local image variation indicates the temporal evolution
of a visual scene as observed by a stationary imaging device. Global
image variation is the probable result of the movement of the appro-
priate imaging device.

Some of the obvious global variations are image shift, rotation,
defocus and magnification, Other more complicated global image
changes as well as the simultaneous occurrence of the ones listed
above clearly are possible. These global image variations cannot be
characterized statistically; thus, the statistical encoder is not likely
to remove the entire redundancy which is present in interframe
imagery,

The extension of the adaptive phase coder of Chapter 4 to the
interframe case is likely to be sub-optimal because of the statistical
approach taken. For local variations and/or small global changes,
the statistical correlation among neighboring frames is relatively
high, thus utilization of the statistical approach will lead to modest
bandwidth reduction over the intraframe approach,

Appropriate changes in the transform domain, resulting from
the affects of the operator L in Equation (6.1-1), can be modeled by

the use of simplified examples.




Local Variations

Consider the following case of frame-to-frame change as
indicated in Figure 6.1-1, Let g3(x, y) represent a subregion in
frame A which is shifted a distance a in the horizontal direction by
the time that frame B is generated. The unchanging background is
represented by gl(x, y). The altered parts of the background are

denoted by g,(x,y) and g,(x,y). In frame A, g,(x,y) is part of the
2 4 2

frame while g4(x,y) is covered by g3(x, y). The roles of gz(x, y) and

g4(x, y) are interchanged in frame B. Equivaleatly, this can be

expressed as

o © 8y +g2 +g3 (6.1-2)
€ ~ 8 +g3(x ta,y) +g4 (6.1-3)

Here Bp and 8p represent frames A and B. Note also that the argu-
ment (x,y) is omitted for notational convenience. Although Equations
(6.1-2) and (6. 1-3) model a rather simplified interframe change, it
approximates actual applications such as the Picturphone model. For
the latter case, g3 can be considered as the model for the Picturphone
speaker and gy 8, and 84 represent the various background
segments,

In terms of the previously developed notation, the frame-to-
frame change can be made in a simpler form. First, the following

additional definitions are made

Ba "8z " 83




(a) Frame A

Figure 6.1-1.

(b) Frame B

Geometry of Frame Movements
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therefore

Bp "8) teg, (6.1-6)

8p “8) tgy (6.1-7)

Equations (6.1-6) and (6, 1-7) indicate that, for the model under
discussioa, each frame can be decomposed into a varying part and
one that remains unaltered between consecutive frames,

Specifying the discussion to the Fourier transform, the above
described model permits qualitative predictions for iaterframe
changes in the frequency domain. Let Gs(u, v) be the Fourier trans-
form of gs(x, y). The subscript s may represent any of those pre-

viously utilized: 1,2,3,4,a,b, A, and B. Consequently,

@

G (u,v) = G, f 8,(X,y) exp - 2mj(ux + vy) dxdy

=00

(6.1-8)

sr T stI (6.1-9)

= lel exp Jes =G

T
o, = tan (GSI/GSR) (6.1-10)

Note that the subscripts (u, v) are dropped whenever possible for

notational convenience,
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Using the developed notation for the frequency domain, the
Fourier transforms of Equations (6.1-6) and (6. 1-7) can be written

as

G, =G, +G (6.1-11)
G, =G, +G (6.1-12)

The interframe variations in the frequency plane given by
Equations (6.1-11) and (6. 1-12) can be demonstrated by phasor dia-
grams. Simultaneous display of Equations (6.1-11) and (6.1-12) is
shown in Figure 6.1-2a. This figure indicates a ''typical' example
of the interframe variation and should only be viewed as a qualita-
tively demonstrative example. The following assumptions are also
inherent in this graphical demonstration: (1) gyr 8y and 8y have
"similar' Fourier decompositions, (2) the region over which g4 is
defined is larger than the similarly-specified regions for g, and By
The above assumptions imply that the power spectral density functions
are similar for gy» 8, and 8y except for different scale factors.

The graphical representation implies that both the amplitude
and phase values are strongly correlated. Furthermore, the follow-
ing inequalities for phase and amplitude changes are easily obtained

from Figure 6. 1-2a.

-1 Gb -1 Ga
|A¢| = I¢A - ¢BI < jtan e + |tan C—l (6. 1-13)
1 1




IMAGINARY

REAL

(a) Phasor Representation of Interframe Changes

%

IMAGINARY

REAL

(b) Maximum Interframe Phase Deviation Between

GA and GB

(c) Maximum Interframe Amplitude Deviation
Between GA and GB

Figure 6.1-2. Vector Representation of Interframe Changes
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s|GJ+¢GJ (6.1-14)

lAGI:hGAl-'GBI

The conditions for equality in Equations (6.1-13) and (6. 1-14)
are illustrated in Figures 6, 1-2b and c.

As a further demonstration of the phase and amplitude corre-
lation, quantitative evaluation of Equations (6.1-13) and (6. 1-14) can

be made by substituting ''reasonable'’ values for G In

: ] ’Ga| =

areal extent of the changing and unchanging image segments are

1’ Ga' and Gb.

particular, let IGl Gb' . This condition implies that the

equal, with similar power spectral densities. Although the amplitude
change constraint is not significant, as indicated by Equation (6.1-14),
the maximum phase change is restricted to n/2 which is a fourfold
reduction on the phase range.

For a 10 percent image area change, and similar assumptions
as before, the application of Equation (6.1-14) indicates a phase
change of less than /15 which is a reduction of the phase range by
a factor of 30,

6.2 Description of the Algorithm

The extension to the interframe case of the adaptive algorithm
of Chapter 4 is structurally quite similar to the color coding imple-~
mentation. The coding procedure utilizes the three-dimensional
transform (Fourier or Walsh) to uncorrelate a set of four subsequent
image frames. A schematic diagram similar to the one given for the

color coder is shown in Figure 6.2-1.
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The three-dimensional transformation consists of the subse -
quen: application of the two-dimensional 256 x 256 transform of each
image plane and the one dimensional four -point transform along the
temporal axis. The four-point transform matrices are shown in
Figures 6.2-2 and 6.2-3 for the Fourier and Walsh matrices,
respectively.

By assumption, the four transform planes are uncorrelated
individually as well as relative to each other. After the application
of the three-dimensional transform (either Fourier or Walsh) the
first transform plane is the average of the two-dimeusional trans-
forms of the four input images. The other three transform planes
represent fluctuations around the average. One could qualitatively
argue that the first transform plane represents the unchanging image
segment while the other three transform planes contain information
relating to temporal variation.

Like the color coder of Chapter 5, each of the four transform
planes is individually filtered and coded. Unlike, however, the color
coding procedure, one cannot arbitrarily low-pass filter transform
planes 2 through 4. Drastic low-pass filtering of these planes will
result in the blurring of the time-varying areas without reducing the
resolution of unchanging areas.

It has been demonstrated (Budrikas, 1972) that the resolution

loss in rapidly changing areas is visually much less objectionable

than for image segments that are relatively stationary. By




Figure 6.2-2. Four-Element Fourier Transform

Figure 6.2-3. Four-Element Walsh Transform




appropriately ''tuning'' the four two-dimensional filters in Figure
6.2-2, the psychophysical properties of the human visual system
could be exploited. Although the computer -implemented algorithm
of this chapter could be utilized for the study of the relative impor-
tance of resolution loss in moving and stationary image segments,
it was not done experimentally. The unavailability to this research
effort of the hardware required to display the decoded interframe
images in their natural medium (such as television) restricted the
visual evaluation of the decoded image sequences to the viewing of
individual (stationary) images.

The structure of both the Fourier and Walsh transform
matrices indicates that for statistically correlated image frames
the image energy will concentrate in the first transform plane.
Therefore, even without the application of different spatial filters
to the various transform planes, the adaptive procedure will result
in bandwidth reduction, The transform values in transform planes
2 through 4 will require fewer quantization levels because of uneven
energy distribution,

The advantages of the adaptive phase coding procedure indicated
in Chapters 4 and 5, are applicable to the interframe coder as well,
Specifically, the coder will "track' the three-dimensional power
spectrum and make the bit assignment adaptively. The number and

location of quantum levels will be specified according to the local

estimated value of the power ¢pectral density. The adaptivity feature




has an added benefit for the interframe transform coder, Unlike the
monochrome exponential correlation model, the interframe case
cannot be modeled by a simple correlation function. In fact, the
highly non-stationary nature of the interframe image precludes any
fixed nonaduptive modeling of the transform domain.
6.3 Pictorial Examples

Examples for the three-dimensional Fourier and Walsh inter-
frame coder are shown in this subsection. Figure 6.3-1 is the

three-dimensional transform domain display. The coding examples

are given in Figures 6.3-2 through 6.3-9, An example for the

decoded transform planes is given in Figure 6.3-10.

The visual inspection of Figures 6.3-1 and 6.3-10 demonstrate
the "non-stationary'' character of the three-dimensional transform
for the interframe case and the capability of the coding method to
adapt to the particular form. The structure of transform planes
2 through 4 is the result of the significant amount of image motion
in this example.

The Fourier transform coder similarly to the monochrome
case outperforms the Walsh coder both in terms of mean square

error as well as visual appearance.




(b) Second Plane

(a) First Plane

(c) Third Plane (d) Fourth Plane

Figure 6.3-1. Three-Dimensional Fourier Transform Display
of BELL DUMMY Image Sequence
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(a) First Image (b) Second Image

(c) Third Image (d)

Fourth Image

Figure 6.3-2. Decoded BELL-GIRL Image Sequence I (Fourier).
Bit Rate: 0.27 Bit; M.S.E.: 1.79% (normalized
relative to image energy)

This page is reproduced at the
back of the report by a different
reproduction method to pr()\'ide
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(a) First Image

(c) Third Image (d) Fourth Image

Figure 6.3-3. Decoded BELL-GIRL Image Sequence, II (Fourier).
Bit Rate 0.55 Bit; M.S.E.: 0.99% (normalized
relative to image energy)

This page is reprodnced at the
back of the report by a different
reproduction method to provide
better detail.
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(c) Third Image (d) Fourth Image

Figure 6.3-4. Decoded BELL-GIRL Image Sequence,
[ III (Walsh). Bit Rate 0.38 Bat; M.S.E.: 2.24%
(Normalized Relative to Image Energy)

This page is reproduced at the
back of the report by a different
reproduction method to provide
better detail.

IR A i .



162

(a) First Image (b) Second Image

(c) Third Image (d)

Fourth Image

Figure 6.3-5. Decoded BELL-GIRL Image Sequence,
IV (Walsh). Bit Rate 0.68 Bit, M.S.E.: 2.15%
(Normalized Relative to Image Energy)

This page is reproduced at the
back of the report by a different
reproduction method to provide
better detail.
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(a) First Image (b) Second Image

(c) Third Image (d) Fourth Image

Figure 6.3-6. Decoded BELL-DUMMY Imzag= Sequence,
I (Fourier). Bit Rate: 0.26 Bit;
M.S.E.: 1.47% (normalized
relative to image energy)

This page is rvprmlu(-ml _;\f the
back of the report by a different
reproduction method to provide
better detail.




(a) First Image (b) Second Image

(c) Third Image (d) Fourth Image

Figure 6.3-7. Decoded BELL-DUMMY Image Sequence,
II (Fourier). Bit Rate: 0.43 Bit; M.S.E.: 1.057,
(normalized relative to image energy)

This page is reproduced at the
back of the report by a different
reproduction method to provide
better detail.




(a) First Image (b) Second Image

(c) Third Image (d) Fourth Image

Figure 6.3-8. Decoded BELL-DUMMY Image Sequence,
III (Walsh). Bit Rate: 0.29 Bit; M.S.E.: 2.247
(normalized relative to image energy)

This page is reproduced at the
back of the report by a different
reproduction method to provide
better detail.
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(a) First Image (b) Second Image

(c) Third Image (d) Fourth Image

Figure 6.3-9, Decoded BELL-DUMMY Image Sc’q\:'z‘nce.
IV (Walsh). Bit Rate 0.69 Bit; M.S.E.: 1.69%
(normelized relative to image energy)

This page is reproduced at the
back of the report by a different
reproduction method to provide
better detail.
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(a) First Plane (b) Second Plane

(c) Third Plane (d) Fourth Plane

Figure 6.3-10.

Decoded Transform Planes for BELL DUMMY
Image Sequence

This page is reproduced at the
back of the report by a different
reproduction method to provide
better detail.




7. SUMMARY

A new approach to transform image coding has been presented
in this dissertation. The generalized phase concept plays a dominant
role in currently developed coding algorithms. The important advan-

tage of the coding algorithms is a high degree of adaptivity in the

determination of both the number and location of the quantum levels.

Significant adaptivity to the image power spectral density is
accomplished without the assumption or specification of any a priori
statistical image model. In addition, no bookkeeping information is
required. The actual image model is ""dynamically' determined from
previously quantized and reconstructed transform samples.

The new transform coding approvach was implemented through
discrete Walsh and Fourier transforms. The Fourier transform was
found to be superior to the Walsh transform. The fundamental supe-
riority of the Fourier transform is explained by the general image
insensitivity to (frequency domain) low-pass filtering.

Although the image transform is performed on the entire
(256 X 256) image rather than on smaller blocks, the increase in com-
putational complexity is modest. For example, the number of com-
putational steps will only increase a factor of two from 16 X 16 block
transforms to the entire 256 X 256 transform. The large-size trans-
form is a disadvantage if a hard-wired configuration is required,
however, this fact is unimportant when the coding-decoding algorithm

is implemented via general purpose computers. This latter case has
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the potential practical utility for computer-to-computer image
transmission.

The new image coding techniques utilizing large-s‘ze trans-
forms significantly outperform the block-encoding transform tech-
nique. The usual block size (16 X 16) exceeds the number of picture
elements over which the image is significantly correlated; it was
therefore oreviously postulated that larger-size transform blocks
may result in negligible performance improvement. However, block
encoding, particularly at low data rates, assigns a significant fraction

of the available bits for reconstruction of block-to-block boundaries.

Stated in another way, the image statistics arc significantly altered

by grouping into adjacent image blocks. Discovery and analysis of
this fact provides a sound theoretical basis for the experimental
success of the coding algorithms in this dissertation.

The experimental portion of the dissertation includes coding
algorithms for monochrome, color, and interframe images. It has
been found that the data rate can decrease to 0. 38 bit for monochrome,
0.55 bit for color and 0. 25 bit for interframe images. The imple-
mentation included both the Fourier and Walsh transforms. Visual
image degradation, however, was more significant for the Walsh than
for the Fourier transform.

The coding scheme is susceptible to channel errors. It was
shown that the coder output is statistically equivalent to a discrete
memoryless source, thus, conventional channel encoding techniques

are applicable. The coding procedure is capable for a wide range of




data compression thus the requirement for algebraic redw dancy

(channel coding) can be offset by additional image data compression

(source coding),

The non-negative image constraint has been studied via the

Lukosz bound,

The conclusions of this dissertation are

a)

Determination of the pProper transform domain image
model is important.

Utilization of large -size transforms and adaptive phase
coding permits significant additional rate reduction when
comparison is made with blo k encoding.

The superiority of phase has been demonstrated as a
random variable for coding.

The development of improved pPredicting algorithms and
preprocessing filters may result in additional bandwidth
reduction. The polynomial surface fit algorithm, in
addition, could be utilized for the image model.
Adaptivity is important to deal with non-stationary image
struct.re, particularly for the interframe case, and
residual noise. The latter consideration was shown to

be important for most practical situations.




APPENDIX A

ORIGINAL TEST IMAGES

Various test images used in experimental sections of this
dissertation are shown in this appendix. Figure A-1 shows redisplay
of the two original monochrome images. Color test images are
shown in Figure A-2. Their three primary components (tristimulus
values in the NTSC receiver phosphor primary system) are shown in
Figure A-3 in monochrome presentations. Two image sequences
used for interframe coding are shown in Figures A-4 and A-5.
Image differences for these sequences are presented in Figure A-6.

The monochrome (Figure A-1) and color test images (Figure
A-2) were obtained by digitization of photographic transparencies.
The image sequences for the interframe case were obtained from
digitized video signal. All sampled images consist of 256 X 256

picture elements and each original sample is uniformly quantized to

256 levels (8 bits). The monochrome images were displayed on a

flying spot scanner and photographed on Polaroid-type 52 film. The
color images were displayed on the Aerojet Model SG-D2219 video

display and photographed on high-speed Ektachrome film.




(b) Couple

This page is reproduced at the
back of the report by a different
reproduction method to prn\'i(le
better detail.

Figure A-1. Monochrome Test Images
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(a) Girl

(b) Couple

Figure A-2. Color Test Images

This page is reproduced at the
back of the report by a different
reproduction method to provic
better detail.
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Figure A-3.

Primary Component Images. (a) Red,
(b) Green, (c) Blue

This page is reproduced at the
back of the report by a different
reproduction method to provide
better detail.



(a) First Image

(c) Third Image (d) Fou:th Image

Figure A-4. Image Sequence: BELL-GIRL

This page is reproduced at the
back of the report by a different
reprodnction method to provide
better detail.
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(a) First Image (b) Second Image

(c) Third Image (d) Fourth Image

Figure A-5. Image Sequence: BELL DUMMY
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(a) Difference Between First and Second Image

(c) Difference Between Third and Fourth Image

Figure A-6. Absolute Image Differences Among Consecutive

Images in Image Sequences of

Figures A-4 and A-5 This page is reproduced at the
- back of the report by a different
n}\nnl\uhwn method to inn\nlx‘

better detail



APPENDIX B

NUMERICAL NOISE GENERATED BY LARGE-
SIZE FOURIER TRANSFORMS

Results of a simple computer experiment are shown in this
appendix, to demonstrate that large (256 X 256) numerical Fourier
transforms are expected to generate a negligible amount of numerical
noise. The 'girl'' image was Fourier-transformed and then the
result inverse-transformed and the appropriate mean squared error
was calculated. This cycle was repeated two more times on the
retransformed images. The results are shown in Table B-1. All
calculations were performed on an IBM 360/44 computer with single

precision (32 bit) arithmetic.

TABLE B-1

DEMONSTRATION OF FOURIER TRANSFORM-
GENERATED NUMERICAL NOISE

Cycle MSE
1 9 X 10‘8%
2 49 x 10789,
3 100 x 10”87,

Table B-1 demonstrates that the large-size transform-generated

generated numerical noise probably will have negligible influence on

image coding problems.
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