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ABSTRACT 

Fesults of a comprehensive research progran to develop 

efficient transform image coding algorithms are reported in this 

dissertation.    The objective is to develop algorithms that outperform 

the conventional block-encoding procedures,  i.e.,  achieve data rates 

below the one bit/picture element which is the approximate lower 

limit for conventional transform coders. 

The dissertation includes a detailed analysis of image modeling 

aspects of the transform coding problem.    Two alternate prediction 

algorithms are analyzed for the transform sample variance estima- 

tion; the first technique uses a two-dimensional polynomial to model 

the image power spectral density; the second technique is a simple 

recursive approach based on previously quantized values.    The 

actual coding algorithms utilize the latter approach. 

The generalized phase concept is developed and plays a vital 

role in the coding algorithms.    Both the Fourier and Walsh trans- 

forms are utilized,   the former being demonstrated to have superior 

performance.    A non-negative image constraint is explored via the 

Lukosz bound. 

The experimental phase of the study includes two dimensional 

coding of monochrome,  and three dimensional coding of color,   as 

well as interframe images with coding at 0.38,   0.55,  and 0.25 bits 

per pixel,   respectively.    It is ascertained that decoded and recon- 

structed images are not significantly degraded.    It is also demonstra- 

ted that adaptive transform domain modeling is important,  and that 
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large-size transforms,  in conjunction with the proper image model, 

can significantly outperform block-encoding techniques. 

A requirement for large-size transforms can easily discourage 

hardwired usage.    Techniques can be developed,  however,  that could 

advantageously be employed for computer-to-computer image 

transfer. 

Although the new coding-decoding methods are sensitive to 

channel errors,  it is demonstrated that they produce data which are 

statistically equivalent to a discrete memoryless source.    Thus, 

conventional channel coding techniques can be used. 
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I.    INTRODUCTION 

The human visual system can absorb and evaluate vast amounts 

of pictorial information.    The i   nge of the visual data includes many 

different clatses such as graphics, biomedical images or aerial 

photographs.    The human eye responds to color as well as intensity; 

consequently the general description of an image also contains spec- 

tral information.    If the time history of the image is to be character- 

ized,  the dimensionality of the description is further increased. 

Mathematically,  an image can be represented by a function of 

four variables,   I = I(x,  y,  t,   \).    The spatial coordinates are x,  y, 

the variable t represents time and \ is the wavelength representing a 

particular spectral component.    The I represents the energy to which 

»he eye as a photoelectric detector responds.    The energy is a non- 

negative quantity; consequently,  the following constraint must be 

satisfied for an image 

I(x,  y,  t,   X) 5 0 

This simple non-negative constraint introduces various addi- 

tional constraints for image sampling and filtering. 

This dissertation is devoted to an adaptive technique of image 

coding.    In terms of the definition of an image,  image coding is 

specified as a process by which the analog image function I is repre- 

sented as a sequence of binary digits.    Clearly,  the binary represen- 

tation must be unique and invertable for a given coder.    The relative 
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efficie.'.-y c£ image coders can be directly compared in terms of the 

binary digit sequence length generated to characterize a given image. 

1. 1      Review of Coding Objectives,   Techniques,  Results 

Although the primary objective of image coding has been 

communication bandwidth reduction for pictorial data,  there are addi- 

tional equally important considerations.    The general availability of 

increasingly powerful digital computers has permitted numerical 

implementations of many image operations.    The degrees of freedom 

in a typical image are quite large; consequently,   the storage and 

access of pictorial data itself represents a significant problem. 

The definition of image coding given on page 1 is essentially a 

source coding process.    A schematic of the simplified communication 

system is given in Figure  1. 1-1. 

It is the source encoding/decoding which is relevant to the 

nature of pictorial information.    Specifically,  an efficient source 

coding process will utilize the statistics and dimensionality (space, 

time,  and color,  as previously indicated) of the pictorial data.    The 

conversion or the analog image into a binary stream involves various 

distinct steps which may include an analog ore- or two-dimensional 

prefilter,  sampler,  quantizer, digital preprocessor,  and statistical 

encoder.    All of these operations are largely determined by the 

nature of the source. 

The channel encoding/decoding, unlike source encoding/decod- 

ing,  should be insensitive to the original character of the data. 

  HMUMAUI 
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Although consideration of the channel and related parameters is im- 

poitant in the overall communication problem,  the relevant encoding/ 

decoding process is not unique to the nature of pictorial data.    It can 

be expected that the source encoding process will produce a sequence 

of binary digits which are statistically equivalent to a set produced 

by a memoryless discrete source.    Classical channel encoding tech- 

niques should,   therefore,  be applicable to the source coded image 

data without specific reference to the pictorial nature of the informa- 

tion. 

Although the sampling and quantizing process should be con- 

sidered as an integral part of picture coding,  it is rarely done.    Con- 

ventionally,  the input to the coder is a sampled and quantized image 

which the coding algorithm will process such that its output consists 

of a reduced number of binary digits.    The conventional sampling is 

performed over a rectangular grid and the analog samples are quan- 

tified to 64-256 quantum levels.    A picture coding algorithm reduces 

the source rate,  or equivalently the transmission bandwidth require- 

ment, by reducing the number of samples and/or reducing the number 

of quantum levels. 

The well-known and accepted technique of differential pulse 

code modulation (DPCM) reduces the number of quantum levels with- 

out sample reduction (Cutler,   1952; Graham,   1958; O'Neal,   1966). 

DPCM achieves the rate reduction by encoding sample differences 

rather than the samples themselves.    Many different categories exist 

for this coding technique.    Compared with the 8-bit conventional 

— - -■- 
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PCM code,  a well-de.igned DPCM system ca„ achieve . factor or 

thr.e rate reduction,  2.5-3 bit per „Hgina. „.Cure element. 

The varioua   algorithms that decompose the image or Its deriva- 

tives into contours can achieve significant rate reduction lor specific 

types of images, namely,  the ones that can be described by a few 

number of contours.    The disadvantage of this technique is the high 

degree of computational complexity and large buffer requirement 

(Graham,   .967,.    This requirement is that the entire image must be 

simultaneousiy available to the processing algorithm.   Contour 

tracing algorithms have been adapted to frame-to-frame image 

coding (Habibi,   1,73,.    In this case, the frame-to-fram. image 

difference is subjected to the coding algorithm.    The receiver,  upon 

decoding the difference image, update, the previous frame.   Frame- 

to-frame coders of this type can achieve a rate of one bit. 

Coders that adapt to the local statistics of the image can achieve 

additional rate reductioo over nonadaptive algorithms.    The dual coder 

is an example of this technique (Frei. Schindler, and Veitinger,  1972). 

m this case, the sampling rate is changed „ccording to the amount of 

local picture detail. 

As stated earlier,  the general image representation requires 

four dimensions,  two for space,  one for time,  and one for color. 

Most coding techniques consider only monochrome images.    Only 

recently has color coding acquired more attention (Bhushan.   1970; 

P-tt. 1971).    Use of frame-to-frame redundancy in images is another 

research topic which has not been extensively explored. 
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1.2      Transform Techniques for Image Coding 

Most classical spatial domain coding techniques (contour coding 

is the exception) generate code words based on the original picture 

elements (PEL) through a one-to-one mapping.    In other words,  the 

bandwidth reduction is achieved by requantization.    Although the 

mapping is one-to-one, inter-element correlations are often utilized 

by the coding algorithm (Habibi,   1971).    What is fundamentally dif- 

ferent for transform coding is that part or ail of the image is trans- 

formed into another domain via an invertable mapping.    The sample 

reduction and requantization are performed on the transformed 

values and the resultant code words are then transmitted through the 

channel.   The receiver will attempt to reconstruct the original image 

utilizing the inverse of the transform upon receiving the appropriate 

code words. 

Numerous techniques have been de/eloped for transform coding 

over the last five years (Wintz,   1972).    Although practical ranking 

cannot be made, many of these techniques result in data rates as low 

as 1 bit/pel.    The theoretical justification and motivation behind 

transform coding has been rather varied.    Transform coding has been 

analyzed essentially by statistical tools.    One basic motivation has 

been sample reduction.    The "useful" transforms have the property 

that most of the image energy is concentrated in relatively few trans- 

form samples.    Stating it differently,  many transform samples have 

very small amplitudes and can therefore be discarded without being 

transmitted through the channel. 
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The Karhunen-Loeve (K-L) transform is the optimum transform 

for images describable by second orde- statistics (Thomas.   1968).    It 

has been shown that for correlated Gaussian sources the optimum 

quantizer will uncorrelate the samples via the K-L decomposition and 

the bit rate is determined in proportion to the transformed variance 

samples.    The K-L transform,  by definition,  diagonalizes the image 

covariance function.    The diagonal terms are the eigenvalues and are 

ordered in decreasing magnitude. 

The K-L transform is almost synonymous with optimum image 

coding, and sometimes the relevant assumptions are neglected.    In 

the practical sense.  K-L transform has somewhat less universal 

utility.    Even theoretically,   the K-L transform is optimum in the 

mean-square error sense and only through second order statistics. 

For a correlated Gaussian source,  the optimality is achieved in fact. 

Practical image sources are not Gaussian and have higher than second 

order moments which cannot be derived from the first two. 

The lack of availability of the covariance function is another 

difficulty.    There are two fundamental questions to be analyzed: 

(1) How meaningful is the concept of covariance to images?    Stated in 

another way: is image covariance a valid statistical concept for 

images which are likely to be nonstationary?    (2)   If we ignore the 

first question, how will the functional form of the covariance function 

be determined? 

Question number one is,  in fact, ignored in practice; and the 

perhaps oversimplified statement can be offered that because of the 
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lack of better statistical understanding of images,  no better param- 

eter has yet been offered. 

The approximation of the covariance function or its transform 

domain equivalent can be done either numerically or by a closed 

form function.    For the first case,  one can directly determine the 

transform sample variances experimentally and make the bit- 

assignment accordingly.    An example for the functional form is: 

exp (-a|x|-9|yl) 

This simple experimental form has been used successfully in spite 

of its gross simplicity (Habibi and Wintz,   1972).    The parameters 

a and 0 represent the horizontal and vertical correlation,  and 

directional separability of these principal axes is assumed.    The 

exponential form of the covariance function is attractive.    It is 

simple and the parameters a and 0 are easily estimated. 

A small number of statistical parameters is desirable in any 

coding scheme.   Since both the receiver and transmitter must know 

these parameters,  their transmission may require non-negligible 

bandwidth and should be considered as part of the overall bit rate. 

The separable form of the covariance function,  although not 

necessarily characteristic of actual image fields themselves,  has 

served a useful purpose. 

Let 

R(x,y) =R   (x)R   (y) x. y 
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be the covariance function.    Let T represent the transformation 

operator,  then,  symbolically,  if T = T   T 
x   y 

T|R(x.y)| = TxJRx(x)[TyJRy(y)(  :  Sx(u)Sy(v) 

where 

Tx|Rx(x)}     Sx(u) 

T
y{R

y(y)l-sy(v) 

The generalized power spectral densities S   ,S    should decrease 

for increasing values of the transform domain coordinates,  u, v if the 

transform operations are to be useful for image coding.    This fact is 

achieved by the proper choice of the transform operator T.    The bit 

assignment is proportional to log S  (u) + log S   (v).    The clear im- 
x y 

plication is that the principal axis in the transform plane (e.g. ,  when 

either u or v is zero) will receive a relatively large fraction of the 

available bits.    Most transform image coding techniques operate 

on adjacent sub-blocks rather than the whole image itself.    The 

separable covariance function results in effective superior recovery 

of the horizontal and vertical image structure.    The block boundaries, 

however,  become an integral part of the image statistics and their 

objectionable visual appearance is greatly diminished by the utiliza- 

tion of the separable covariance model.    On the other hand,  at very 

low bit rates,  excess amount of the bandwidth may be required to 
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maintain the horizontal and vertical structure at the expense of a 

greater amount of resolution loss than may be justified. 

The choice of the actual transforms have been dictated by the 

requirement of computational ease and the potential of practical 

implementation.    The transformations,   considered to date,  are 

Fourier,  Hadamard,  K-L,   (on sub-blocks) and more recently,  the 

Slant transform.    (Habibi and Wintz,   1971; Anderson and Huang, 

1971; Pratt,   1972; Pratt,  Welch and Chen,   1972. )   All of these 

except K-L can be implemented by "fast" algorithms. 

1. 3      Research Objectives 

The amount of visual data generated in commercial and 

scientific applications is enormous.    The ordinary home television 

set generates over 500 x 500 samples 30 times a second.    The Earth 

Resources Technology Satellites and weather satellites typically 

produce in excess of 4000 x 4000 and 8000 x 8000 data points,  re- 

spectively.    Data storage and transmission becomes a major prob- 

lem for pictorial sources because of the excessive amount of data. 

Clearly,  techniques that permit greater efficiency (e.g.,  reduction 

in the required bandwidth) are urgently needed. 

Numerous approaches have been considered for efficient pic- 

ture coding.    While these techniques are based on widely different 

considerations,  they are all motivated by the required simplicity of 

potential implementation.    Consequently,  the developed algorithms 

are relatively simple,  utilize simple models, and are somewhat 

inflexible in terms of their adaptivity to the image structure. 
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The philosophy on which this dissertation is based,  emphasizes 

flexibility and maximum efficiency at the possible expense of 

increased computation and buffer requirements.    Demonstration of 

a highly efficient coding scheme,  even if impractical for actual 

implementation,  provides a new lower-bound for other bandwidth 

reduction schemes.    Secondly,  even if the implementation of a 

"hard-wired" configuration of the particular algorithm is not 

warranted,  it may be valuable in the computer-to-computer 

communication environment. 

Development of computer networks whose individual computer 

members may be separated by vast geographical distances is a 

modern concept which allows higher utilization of the modern "super" 

computers.    The Defense Advanced Research Projects Agency 

(DARPA) of the U.S.  Department of Defense netwo.-k is an operational 

example,  other networks are likely to follow.    By design,  a large 

scale computer network can perform arithmetic operations inexpen- 

sively.    The data transmission, however,   remains a relatively 

important cost factor.    Image manipulation within the network will 

probably be expensive because of the requirement fur large-volume 

data transmission.    On the other hand,  implementation of arithmeti- 

cally complex coding/decoding algorithms may be easily programmed 

for the local "host" computers.    The extra amount of computation 

may be offset to a significant degree by cost reduction for the 

transmission of the visual data. 

- - ---■   
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Most of the picture coding techniques have considered mono- 

chrome imagery only.    Multispechral.  color,  and frame-to-frame 

coding requirements have been addressed only very recently and 

there is still a great deal of research needed in these areas. 

Another objective of this dissertation is to extend the concepts 

developed for *     nochrome imagery to the  -third dimension": specifi- 

cally,  color imagery and frame-to-frame redundancy are considered. 

1.4     Overview of the Dissertation 

Description of a research project on adaptive transform domain 

coding is given in this dissertation.    The presentation of the objec- 

tives,  development,  and experimental results follow what the author 

believes to be a carefully developed logical presentation which is 

summarized in this section. 

Chapter  1 is the Introduction and as such lays the groundwork 

for the basic body of the dissertation.    This chapter also places the 

research project into perspective relative to the largP amount of 

research previously conducted in the field of picture coding.    The 

primary objectives of the dissertation are also spelled out in this 

chapter. 

Images are a specific class of signals and require careful con- 

sideration if extreme redundancy reduction is desired.    Chapter 2 

addresses this important point of how images can be modeled and 

characterized in terms of statistical and deterministic, parameters. 

Generation of the sampled image is considered,   and important com- 

parisons with the one-dimensional classical sampling theorem are 

■MMMHilMMHMM    II MMWIlllllflft -'—- 
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given.    The image model as a statistical representation is also given. 

A review of the Fourier transform constraints is provided.     Errc r 

criteria and image structure are briefly considered.    The extremely 

important non-negative bound due to Lukosz is analyzed as related to 

sampling and relative importance of amplitude vs phase. 

Chapter 3 presents the theoretical basis for the adaptive 

transform domain coding technique.    It begins with the comparison 

of source and channel coding and consideration of schematic repre- 

sentation of adaptive techniques.    Statistical properties of the Fourier 

and Walsh domain are analyzed.    Phase and amplitude coding are 

considered in terms of quantization,  sampling,  and relative amount 

of information.    Nonlinear effects of phase quantization are consi- 

dered.    Relative importance of phase is demonstrated via nonlinear 

filtering and gross reduction of amplitude information. 

Chapter 4 is the first of three chapters discussing the experi- 

mental results.    Monochrome image coding is considered in this 

chapter.    Detailed discussion is given of the following topics: the 

algorithm,  preprocessing,  error analysis.    Comparison is made 

with the conventional Markov model.    Sensitivity analysis of noise 

effects on the coding algorithm is performed.    Pictorial examples are 

included. 

Experimental results of color coding are presented in Chapter 

5.    This chapter briefly reviews the theory of color perception and 

representation of color images.    Extension of the monochrome  algo- 

rithm of Chapter 3   is discussed and is followed by pictorial examples. 

--■ ■         
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Frame-to-frame coding is considered in Chapter 6.    Algorithm 

development is discussed and implementation includes both the 

Fourier and Walsh transforms.    Pictorial results are provided. 

Unfortunately,  the actual visual performance of the frame-to-frame 

coder can only be demonstrated in a realistic time-variant medium 

such as video presentation. 

Chapter 7 summarizes the dissertation. 

Appendix A contains the original test images.    The numerical 

noise generation process of the large Fourier transform is considered 

in Appendix B. 

HlM-MHWrMi 
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2.    IMAGE MODELING 

The fundamental objective of the research project presented in 

this dissertation is the development of a very efficient source coding 

method for images.    The emphasis is on the efficiency even at the 

expense of more complex algorithms and data handling.    Clearly,   the 

coder/decoder process must utilize as much a priori information as 

possible.    The model should utilize both statistical and deterministic 

information. 

This chapter addresses the role of image modeling in the image 

coding process. 

2. 1      Generation of the Discrete Image 

Virtually all operations and transforms discussed in this disser- 

tation are performed numerically on discrete samples.    It is tempting 

to follow the general approach to image coding and restrict the 

analysis to the discrete equivalent of the image.    However,  it should 

be remembered that images are generally viewed in analog form. 

The discretization of the image plays a fundamental part in the image 

coding process.    In addition to the higher dimensionality of the prob- 

lem,  there are very important factors that distinguish image sampling 

from sampling of one-dimensional time dependent signals.    These 

concepts will now be considered. 

Let the image be represented by I = I(x,y), where x,y are 

spatial coordinates and I represents the analog image.    The image is 

sampled on a square grid of lattice distance A.    Let the sampled 

image be defined I . 
s 

15 
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The actual image sampling is always,  almost by definition, 

performed by an optical system.    The image (normally a photographic 

transparency,  print, or an actual scene) sample of location x,y is 

imaged onto a photo detector whose output,  ideally,  is linearly pro- 

portional to the image brightness of that location. 

The sample area can be considered via an aperture function 

A(x,y).    Typically A(x, y) has the value of 1 in a small region around 

x,y and 0 elsewhere.    Allowing for the finite aperture size,  the 

sampled image has the following definition. 

Ig{x,y) = combf jjcombf Ml(x,y) *A(x,y) 

(2.1-1) 

jJCOTnh\)  comb(f-)I(P's) A(x-p, y-s) dpds 

where 

00 

(x) - 22 comb (x) -   £^   6(x-n) 

and 6(x) is the Dirac delta function. 

Considering the Fourier integral of this equation, one obtains 

(Goodman,   1968) 

Is(u,v) = <comb tAu) comb (Av) * I(u, v) I A(u, v)   (2. 1-2) 

The frequency domain coordinates are u, v and the symbol ~ indicates 

the Fourier transform. 

MüHMHHMi ^^^■MMMte ""'—'•-■""-'• m -   ■  ■ Man -■-"^-"" 
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Equation (2. 1-2) is the classical result of sampling theory, 

however,  one must be careful in its interpretation for image-related 

applications.    The image I is always bandlimited.    Visual scenes 

have structure at all levels,   at the extreme,  down to the micro or 

molecular structure.    Permanent recordings do limit the spatial 

frequency extent and therefore become bandlimited.    However,   they 

introduce their own characteristic structure, for example,  film 

grain.    The bandlimiting is also performed by the optical system 

that performs the imaging. 

The bracketed term in Equation 2. 1-2 indicates that the funda- 

mental frequency band Ifu, v) is replicated at locations n(l/A). 

mUM),  n,m = 0,  ± 1,  ± 2, ..  in the frequency plane.    If twice the 

bandlimit of Tis larger than the sampling rate,   1/A,  the replicated 

bands will partially overlap and undesirable aliasing occurs.    The 

aperture function A should separate the fundamental band from its 

replicas.    The requirement on A in this case is that 

Ä(U,V,   =   1;U,VC[-^.^] 

A(u, v) = 0   otherwise 
(2.1-3) 

"^quivalently. 

A(u, v) = rect (Au) rect (Av) (2.1-4) 

___^_  Murmln   ■      ■  —-■  ■■■  -— 
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Equation (2. 1-4) contradicts the physical constraint that the 

aperture function must be non-negative.    Equation (2. 1-4) leads to 

the unrealizable condition that 

A(x,y)=A    sine 2i sine ^■ (2. 1-5) 

where 

sine x = sin TTX/TTX. 

A similar argument indicates (a more formal argument will be 

presented under the Lukosz bound section) that an optical system can- 

not perform the bandlimiting without attenuation in the band pass. 

On the other hand,  the minimization of the attenuating effect of the 

optical system and/or the sampling aperture may lead to aliasing. 

2.2     Statistical Consideration 

The image sampling process and the non-negative image con- 

straint are deterministic bounds.    There are other descriptive con- 

straints on images which can only be utilized through statistical 

consideration. 

A wealth of knowledge has been developed in statistical commu- 

nication theory and related disciplines which can be very useful in the 

design of image coding algorithms.    The image can be considered as 

a sample function generated by a stochastic source.    The statistics 

of the source may be available or can be estimated or,  as is usually 

done,   calculated from the image itself.    For the latter case to be 

„„_, -^..^■^i.. .„      . 
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valid,  ergodicity for the calculated parameters usually must be 

assumed. 

Knowledge of the image second order statistics can provide 

significant assistance in the development of efficient image coding 

algorithms.     The image correlatioi   function,  Rfx^x   -y., y_) is 

defined as 

R(x1.x2;y1.y2) = (Ifrj.yj) - Ifc^Yj) (I(x2.y2) - I(x2,y2)) 

(2.2-1) 

The over-bar indicated ensemble averaging.    I is the image 

which in this case is considered as a random process,  and I(x.,y.) 

is a sample of that process and is considered as a random variable. 

The correlation function is usually estimated by involving the 

ergodicity argument and the assumption of wide sense stationarity. 

If R can be decomposed into the product of vertical and horizontal 

correlation functions; then 

R{x.y) =Rx(x)R  (y) (2.2-2) 

The approximation of R    and R    by exponential function has 

been utilized for coding (Habibi and Wintz,   1971) as well as filtering 

(Pratt,   1972) of images,  and for this case the correlation function is 

given by 

R(x>y)     e-alxle-0M (2.2-31 
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Although the actual image coding techniques discussed in this 

dissertation do not utilize Equation (2.2-3),   the discussion of this 

structure is desirable since many transform image coding algo- 

rithms are relying on the separable exponential form.    In subsequent 

chapters comparison will be made between such approaches to image 

coding and the new algorithms presented in this dissertation.    Some 

of the later analysis will require an explicit form for the correlation 

function; for example,  the effect of additive noise on the coder,  and 

the use of the exponential form because of its simplicity. 

One should emphasize that Equation (2.2-1) refers to the 

recorded sampled image.    The correlation properties of the analog 

visual scene are rarely available and can only be inferred from 

detailed knowledge of the sampling parameters. 

The Fourier transform of Equation (2.2-1) is the conventional 

definition of power spectral density. S(u,v).    Using the aperture 

function A of subsection 2. 1.  it is straightforward to show that 

Sa(u,v) -|A(u.v)|2 S(u,v) (2.2-4) 

here,  the subscript s denotes the sampled version.    As indicated 

previously,  the lack of precise knowledge of the sampling parameters 

does not permit accurate modeling of the original image.    The 

structural form of Equation (2.2-4) permits a somewhat different 

interpretation.    The sampled image can be considered as one which 
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has been prjcessed by the linear spatial filter A(u, v).    Consequently, 

the conventional PCM code available to the image coder reflects the 

essentially low-pass filtering effect of the sampling process. 

2.3     Consideration of the Transform Domain 

Image coding algorithms generally operate on image elements 

directly.    The significant advances in digital hardware technology 

stimulated research in a new approach to image coding which have 

come to be known as transform coding.    In this section,  a short 

overview is given to the transform domain. 

Let the image be denoted by I as in Chapter 1, I = I(x, y, \, t), 

indicating the functional dependence on the spatial coordinates (x, y), 

color (X) and time (t). 

A transform coder algorithm operates in a domain other than 

the original described by the four parameters: x, y, \, t.    The 

following symbolic representation can be written 

I(u1,u2,u3,u4) = T|l(x,y, \,t)[ (2.3-1) 

T is the operator which performs the transformation between the two 

domains and it should be invertible.    The latter requirement is due to 

the fact that without coding no ambiguity should be present in the 

image transformation.    Consequently, 

T(x,y, \,t) -- T"  {KUJ.^.UJ.U^J (2.3-2) 

and 
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TT-1      T^T =T 
(2.3-3) 

where T is the identity operator. 

Other than the requirement for invertability.   T is completely 

general.    Specifically,  it may he linear or nonlinear.    The operator 

T may be decomposable and it can operate on the continuous analog 

image or its sampled equivalent. 

The choice of T is motivated by hope that I(V V «^ can 

be coded more emciently. 

Practical requirements reatrlcl T to mathematical forms 

which are numerically implementahle without excessive computation 

The transform algorithms which have heen successfully implemented 

can be grouped into three classes. 

a)       Karhunen-Loeve (K-L) Transform 

The image I is expanded into the eigenfunctions of the 

image covariance matrix.    Although this transform is important 

from the theoretical viewpoint, its practical value is much iess 

»ignificant.    The difficulties are lack of "fast" implementation, and 

« addition, the exact form of the covariance function usuaUy is no, 

available,    m the presence of noise,  the eigenfunction expansion 

wtll become degenerate.    This is very significant and has not been 

considered in the context of image coding.    The K.L transform 

emphasises the second order image statistics.    Its optimality is 

achieved for Gaussian processes which do not closely represent 
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images in general.    The K-L transform assumes stationarity which 

is an additional assumption that is rarely met for typical images. 

b) Trigonometric Decomposition (Fourier Transform) 

The image energy tends to concentrate for low frequen- 

cies,  e.g.,   low values of Uj, u2, u3, u4.    These deterministic and 

statistical properties are useful to the transform coding algorithm 

and will be further considered in Chapters 3 and 4.    The multidimen- 

sional Fourier transform is decomposable into a set of one-dimen- 

sional transforms and it can be implemented by the "fast" Fourier 

transform algorithm.    The Fourier domain is also constrained by 

the Lukosz bound (subsection 2.5). 

c) Other Orthogonal Decompositions 

Transform coding has also been successful in utilizing 

various fast orthogonal decompositions.    The most weil known among 

them is the Walsh transform.    Although,  no simple mathematical 

justification can be offered for their successful utilization,  it can be 

shown that these functions are "approximately" trigonometric 

functions. 

The particular value of the transforms under this 

category is their close similarity to the Fourier transform, however, 

they are suboptimai to it.    What is meant by optimality in this case 

is deferred to the experimental chapters.    In spite of this subopti- 

mality,  the non-trigonometric,  orthogonal function decomposition 

may be preferred because of the ease of numerical implementation. 
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The Walsh decomposition can be accomplished without multiplication 

or division,  and,   consequently,   its digital implementation is superior 

to that of the Fourier transform (Harmuth,   1972); although,  this fact 

is more significant for smaller computers without hardware floating 

point multiply and divide registers. 

Equations (2.3-1) and (.3-2) are implemented in numer- 

ical form; therefore,  the discrete representation will be considered. 

If T is restricted to be a linear operator, these equations can be 

represented in (generalized) matrix notation. 

KUj, u2, u3, u4) = X E E E A(u , u , u , u , x, y. X, t) I(x, y, \, t) 
x   y   \   t t     J     t 

(2.3-4) 

In all practical cases,  the multidimensional operator can 

be factored into a number of operators equal to the dimension of the 

problem.    Let A = A1A2A3A4 and equivalently A = A.^x) 

A2(u2,y) A3(u3, \) A4(u4,t). 

Specification of A.,  i = 1, 2, 3, 4 defines the transform and 

the numerical implementation.    The following well-known representa- 

tion exists for the discrete Fourier transform (Andrews,   1970) 

A(u,x) =(\/N)'   exp -^ ux (2.3-5) 
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n-I 

Eu.x. 

i^O 

A(u.x) =(>/N)    (-1) (2.3-6) 

N is the order of matrix A(u ,x).    It is arbitrary for the 

Fourier transform but restricted for the Walsh transform to values 

2   , where n is a positive integer.    The variables x.,u. in Equation 

(2. 3-6) are the binary representation of x and u respectively. 

2.4     Error Criteria 

Between the source and the destination,  the image is subjected 

to significant processing.    It is important to note again that the com- 

munication link of Figure 1. 1-1 is digital and the source, the visual 

scene,  is analog.    It is highly desirable to quantify the image degra- 

dation due to the coding algorithm.    Let I be the input to the coder 

and I its estimate at the destination.    A measure of error,  E may be 

schematically specified as a functional dependence G on the difference 

between I and I, 

E = G(I -'l) (2.4-1) 

with the constraint that G(0) = 0. 

Although the practical implementation of Equation (2.4-1) is 

extremely useful,  it is still an unsolved problem. 

1       -  "- ■—- ^ — ~  
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Determination of a useful error measure for image evaluation 

is extremely difficult because even the most approximate mathema- 

tical modeling of the human vision is available only in limited cas 

A conventional compromise to Equation (2.4-1) is the mean- 

square error between I and t which can be written in terms of the 

previously-developed notation as 

es. 

E"   J J JJ [Hx.Y.^t) .%,y,X.t)]Z 

x  y  \ i 
dxdydXdt 

The equivalent form of Equation (2.4-2) for the discr 

(2.4-2) 

ete case 

is 

E = TEEE {l(x,y, X.t) -^(x,y, X.t)!2 (2.4-3) 
x   y   \   t ' 

The image energy.  1^  is obtained from the above two equations by 

lettmg I = 0.    Consequently,  the normalized mean square error as 

used in Chapters 4 through 6 is given by 100 x E/Ie in percentages. 

2.5      Non-Negative Bound (Lukosz) 

The Fourier transform of a non-negative signal obeys various 

well-known constraints.    Perhaps tue most important is the amplitude 

constraint. 
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g(x) e-2njUX dx 
-00 

(2.5-1) 

if 

then 

g(x) i 0 

G(tt)|s G(0) (2.5-2) 

The inequality (2.5-2) is well known (Goodman,   1968).    The 

very important extension of this inequality to bandlimited non-nega- 

tive signals has unfortunately been relegated to obscurity.    A pro- 

perly sampled image does represent a non-negative band-limited 

signal and as such obeys the inequality discovered by W.   Lukosz 

(Lukosz,   1962) and is designated in this dissertation as the Lukosz 

bound. 

In his original paper Lukosz was concerned with the modulation 

transfer function properties of optical systems as related to incoher- 

ent imaging. The Fourier transform of the modulation transfer 

function (the point source image) of an optical system is non-negative 

and has an absolute cutoff frequency. Given this information, Lukosz 

intended to determine if any additional constraints are applicable 

beyond Equation (2.5-2).    Structurally,  the incoherent optical 

**mm*mm —   
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ion- transfer function and the Fourier transform of a band-limited m 

negative image are equivalent; that is to say that by definition they 

satisfy the same requirements.    Consequently,   the mathematical 

derivation of the Lukosz bound is applicable to a band-limited image 

as well as to the optical transfer function. 

The Lukosz bound can be derived for any number of dimensions. 

The bound becomes stronger with increasing numbers of dimensions. 

The mathematical derivation of this bound will be demonstrated in 

this section.    For derivation of the two-dimensional case,  the reader 

is referred to the original Lukosz paper. 

Consider the Fourier transform paid as in Equation (2.6-1), 

with the additional constraint: 

G(u) - 0,  for u 2 u 
m (2.5-3) 

where um is the cutoff frequency,    x^ote also that Equation (2. 5-2) is 

already applicable. 

Let h(x) be another non-negative function, not restricted to 

be band-limited. Clearly, the convolution of h and g is also non- 

negative. 

h * g =   /     h(s) g^x - s) ds ^ 0 12.5-4) 

i . 
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Assume h to be Fourier transformable, 

H(u)        /■CDh(x)e-2TTJuxdx 

Furthermore,   it is easy to show that h * g satisfies Equation 

(2.5-4) by utilizing the Fourier transform properties of the convolu- 

tion integral.    The previous statements become even more obvious in 

the framework of linear system theory,  as Lukosz argued, where g 

represents a low-pass filter function and h is the input signal.    How- 

ever,  the specific physical argument, while intuitively satisfying,  is 

unnecessary to the mathematical derivation. 

Let h(x) be the Dirac comb function,  comb x/L,  as defined 

previously in Equation (2. 1-1).    The comb x/L is a periodic function, 

where the period is L.    Therefore,  a Fourier series representation 

of comb x/L exists,   and it is (see also Figure 2. 5-1 for the graph- 

ical demonstration): 

oo 

comb ^ = 1 + 2 2^ cos 2TTnx/L 
n -1 

(2.5-5) 

Let 

and let 

G(u) =|G(u)|exp je(u). 

1/Läu    /2 m 

1 
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then the convolution integral will preserve only the n -   1 term in 

Equation (2. 5-5): 

h *g  -  G(0) +2|G(1/L|  cos|2nx/L 4 G(l/L)[      (2.5-6) 

Clearly,  the inequality (2.5-2) is not sufficient to prevent the viola- 

tion of inequality (2. 5-4).    The additional constraint must be imposed 

that 

|G(1/L)| si G(0) for I/L in    /2 1      ^ m (2.5-7) 

Equation (2.5-7) is,   in fact,  the Lukosz bound for the region 

um/2 s u < um.    The derivation of other segments is based on 

choosing appropriate forms for h(x).    Specifically,   let h(x) have the 

following form 

h(x) = i {comb ^-L/S , comb ^4-iZ* 

Equation (2.5-8) has the following Fourier series representation 

(see again Figure 2. 5-2 for graphical demonstration). 

oo 

h(x) = 1 + 2 £ C08 fa cos 2nnx/L 
n -1 

oo 

1  +/Zcos (2TT X)/L + 2 ^  cos J n cos 2nL x/L 
no 

(2.5-8) 
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For 1/L > u    /3,  the form of h ♦ g is 
m 

h * g = G(0) + /I|G(l/L)|cos|2nx/L +e(l/L)[       (2.5-9) 

Since h * g must not be negative, 

|G(1/L)|   s 1//2  G(0) for l/L > um/3 (2.5-10) 

Inequality expression (2.5-10) provides the next section of the 

Lukosz bound,  namely,  u    /3 ^ u < u    /2.    It is equally valid for m 

u    /2 ^ u < u    ,  but it is weaker than (2. 5-7),  therefore,   not useful m m 

for that region. 

The general form of the non-negative bound is obtained by 

choosing more complicated forms for h(x).    The general inequality 

is the following 

|G(u)|   <: G(0) cos -^r for u    /n £ u s u/{n-l) • ! n + 1 m m 

(2.5-11) 

and it is demonstrated in Figure 2.5-3.    The argument u in in- 

equality (2.5-11) is equivalent to 1/L in inequalities (2.5-7) and 

(2.5-10). 

Inequality (2.5-11) is the Lukosz bound for one-dimensional, 

non-negative,  band-limited signals.    Its extension to higher dimen- 

sions can easily be obtained by successive Fourier decomposition 

mmmm ■MMMBMiMBMB 
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of the various dimensions.    As previously stated,  only the results 

will be given here. 

Let g be non-negative,  have two-dimensional Fourier trans- 

forms,  G,  and have band limits,  u    ,  v    • 
m      m 

G(u.v)=   /7g(x,y)e-2nJ(xu + yv)dxdy (2.5-12) 

G(u, v) = 0,   for u > u     or v ^ v 
m m (2.5-13) 

The functional form of the inequality for G is (Figure 2. 5-4): 

j{|G(u,v)| 4|G(-u,v)||      |-{|G(u.v)| +|G(u,.v)|| 

^G(0,0) cos -IU. cos      " 
n + 1 mil 

for 

and 

(2.5-14) 

u    /n s u ^ u    /(n-1) m m  v       ' 

v    /n s v ^ v    /(n-1) m m  x       ' 

The actual derivation (Lukosz,   1962) is straightforward 

although somewhat involved.     By letting G(u, v) = G  (u) G   (v) and 

__— mt^mm 
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applying the one-dimensional bound to G and G individually the 

validity of Equation (2.5-14) was demonstrated by Lukosz. Note 

if G has directional symmetry,   then 

|-||G(u.v)|   + |G(-u,v)|j    -|-||G(ufv)|   f |C(U.-V)||      |G(u,v)| 

(2.5-15) 

Equation (2.5-15) can easily be proven by the well-known property of 

the Fourier transform of real functions in which G obeys: 

G(u,v) - G'(-u,-v) (2.5-16) 

It easily follows that 

|G(u,v)|  =|G(..u,-v)[ (2.5-17) 

and 

(2.5-18) |G(-u.v)|    |G(u.-V)| 

It can easily be shown via Equation (2.5-18) that if |G| is symmetric 

around the u axis,  it has symmetry around the other axis as well. 

Before proceeding to the derivation of additional constraints 

based on inequality (2.5-14),  a few general comments on the impor- 

tance of this inequality are in order. 

The Lukosz bound restricts the amplitude range in the Fourier 

domain,  it does not,  however,   constrain the values the phase may 

assume.    One can qualitatively argue that in some sense the phase 

mmmm. ■M _^ 
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carries more "information" about the non-negative sampled image 

than the amplitude.    This statement,  which will later be considered 

in a more formal presentation,  is quite significant for the various 

areas of image processing,  including holography,  where,  in fact, 

the superiority of phase information has been observed experimen- 

tally (Kermisch,   1970). 

Actually the inequalities (2.5-11) and 2.5-14) can further be 

strengthened.    The average values of Figures 2.5-3 and 2.5-4 are 

clearly larger than 1/2 and 1/4,  respectively.    It can,  however,  be 

shown,  and again the reader is referred to the original paper for the 

derivation,  that,   1/2 G(0) and 1/4 G(0, 0) are the appropriate limits 

for the one- and two-dimensional cases,  respectively.    For the one- 

dimensional case 

u /m . 
|G(u)| du ^G(O) 

and for the two-dimensional case 

(2.5-19) 

u v 
m        -m /in       /• i 

/       (G(u,v)| dudv ^7G(0,U) (2.5-20) 

! 

The implication of Equations (2.5-19) and(2.5.20) is that for 

no image,  can G actually assume the upper bound in the Fourier 

—-—    _^   ^ 
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domain.    The functions which,  in fact,   satisfy Equations (2.5-19) 

and (2. 5-20) with equality are for the one-dimensional case: 

|G(u)| =G(0)[l -Mj, |uhum (2.5-21) 

For the two-dimensional case: 

Icu.v.l   o,o,o, [.-Mj^.Mj. |u|£Um.|v|£Vm 

(2.5-22) 

It is interesting to note that G reaches the bound at a single point: 

G(lUm)4G(0)'  and 

Gfiu   , iv    ) -4 G(0, 0). 
\2    m   2    m/      4 

Except for this point, G as defined in Equations (2.5-21) and (2.5-22) 

lies below the appropriate non-negative limit.    The two special 

functions,   (2.5-21) and (2.5-22),  represent for the optical case the 

modulation transfer function for the uniformly lit slit and rectangular 

aperture,  respectively. 

The various inequalities (2. 5-7), (2. 5-14),   (2.5-19),  and 

(2.5-20),  allow an information theoretic interpretation of the 

Fourier domain for non-negative signals. 

The entropy associated with an image is invariant under the 

Fourier transform as well as any other transform for which the 

   - —  —- mlM 
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Jacobian of transformation is unity.    If no a priori information is 

available,   the image entropy is uniformly distributed in the frequency 

domain by assumption.    This type of reasoning yields upper bounds 

on the entropy rather than entropy estimates for actual images 

whose correlation properties are known.    Given,  thus,  that the 

image entropy is divided between amplitude and phase,  it is im- 

portant to learn what affects the constraints (2.5-7),   (2,5-14), 

(2.5-19),   and (2. 5-20) will have on the entropy division.    Assump- 

tion of no a priori information implies,   on the basis of Equation 

(2.5-2) alone,  that the Fourier domain represents a uniform entropy 

density for spatial frequencies below the band limit.    Restriction of 

the allowed amplitude range will proportionally limit the entropy. 

The ratio of the entropies with and without the Lukosz bound is  1/2 

and  1/4 for the one-dimensional and two-dimensional cases,  respec- 

tively.    This statement follows from the inequalities (2.5-19) and 

(2.5-20).    One can argue that,  for band-limited, non-negative 

images,  the entropy associated with the phase is larger by a factor 

of 2 and 4 for the one- and two-dimensional cases,   respectively. 

The optical analog is the case of incoherent imaging,  for which 

it can be argued,  as Lukosz did,  that the optical system by virtue of 

its low-pass filtering will limit the information transfer by 1/2 and 

1/4 for one and two dimensions,  respectively. 

The Lukosz bound is a significant contribution to the science of 

tie signal processing of non-negative band-limited signals.    The 

I 
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implication of the importance of phase over amplitude in digital 

image processing is useful information and has strongly motivated 

the research in this dissertation. 

i 
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3.    IMAGE SOURCE CODING 

The transmission of data consists of two distinct coding steps: 

source coding and channel coding.    Schematic representation of the 

classical communication problem was reviewed in Chapter 1.    This 

dissertation treats the image coding problem as one  which fits into 

the domain of source coding.    This approach permits structural 

separation of image coding from the consideration of channel errors. 

In this chapter various aspects of image coding are considered. 

The basic theme of the dissertation is that the phase (yet to be 

explicitly defined) is the primary parameter whose fidelity should 

be maintained in the coding process.    The various steps that con- 

stitute the coding process are considered in the context of phase 

coding.    The primary transform domain is that of the Fourier,  how- 

ever,  extension is made to the Walsh domain as well.    In fact, 

successful utilization of phase in other than the Fourier domain is 

a discovery which,  prior to this dissertation,  has not appeared in 

the literature as far as the author is aware. 

3. 1      Statistics of the Fourier Transform 

The various coding schemes of Chapters 4 through 6 utilize 

the properties of the transform domain.    The primary transform is 

the Fourier which has extremely advantageous properties from the 

coding standpoint.    The close similarity between the Fourier and 

Walsh decompositions makes the latter transform also useful.    The 

statistical properties of the Fourier transform domain are explored 

in this section,  the extension to the Walsh domain is the topic of the 

next section. 

41 
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Let I(x) and I(u) be a Fourier transform pair.    To simplify 

notation,   the image coordinates are condensed into vector form. 

Vectors u, x have a number of components equal to the dimension 

of the coding problem.    The monochrome problem has two dimen- 

sions for this case, 

u = )u, v} 

x = |x,y} 

The frame-to-frame,  or color coding problem is of three dimen- 

sions,   for this case. 

ans - 

u = ju, v, w[ 

x = |x,y, t[ 

The vector notation permits statistical analysis of the Fourier tr 

form of an image without specification of the dimension. 

In addition,  the infinite extent of the image plane implies that 

the Fourier domain is uncorrelated in the limit as the number of 

samples grows to infinity (Davenport and Root,   1958, Section 6-4). 

The functional form of the power spectral density is required, 

if quantization of the transform samples is to be accomplished 

efficiently.    All transform coding techniques require an estimate 

of the power spectral density,  their overall performance is largely 

determined by how well the power spectral density estimation is 

accomplished. 

^^^^g 
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Information-theoretic discussion of the frequency plane,   based 

on the Lukosz bound,  already implied a certain superiority of the 

phase.    Stochastic consideration of the Fourier domain allows addi- 

tional interpretation,  in fact,   a general definition of the phase.    This 

dissertation expands the phase concept to what will be referred to as 

the unconventional definition. 

a) Conventional Definition 

The complex valued function I is the sum of real and 

imaginary components. 

I(u) =lR{u)  +j tyu) 

the phase e(u) associated with u is normally defined as 

e(u) = tan-1 T^uJ/L^u) (3.1-1) 

The definition in Equation (3. 1-1) is required if the various well- 

known phase-related deterministic properties of the Fourier trans- 

form are to be utilized. 

b)        Unconventional Definition 

Under the assumption,  based on experimental evidence, 

that IR and Ij are approximately Gaussian,   0 is uniformly distributed 

and uncorrelated for different values of u,  that is 

  ^tanNüiiMiiüift^^ ...w- 
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Ejeiuj).   9(u2)}  = 2/3 TT
3
 e^j  - u2) (3. 1-2) 

and 

E{M2} = E{|lR<u)|2}4s(u) (3.-13) 

In most practical situations S(u) is a smooth surface,  which means 

that S^) ^ S^) for [uj  - i^ I < M.    The expression luj - uj  is the 

Euclidean distance for vectors Uj and i^.    For the sampled case,   a 

reasonable value for M might be at least 5 (in harmonics).    The 

comment should be interjected that the I can be only approximately 

Gaussian since its components are restricted in range by the D. C. 

term and for the band-limited case by the additional Lukosz bound. 

Based on the smoothness of S,  the following stochastic 

unconventional phase definitions can be made, with the previously- 

made restriction ju.  - u-j < M. 

eCUj, Ug) = t™'1^^)/!^)] (3. 1-4) 

Subscripts K and L represent the actual independent subscript assign- 

ments from I and R (imaginary and real) if ^  t v^.    K and L repre- 

sent different subscripts if Uj  = Ug.    The following forms for 9 are 

allowed under the unconventional definition 

-'   I  Müll 
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e(ü1' ^ = tan"  {^^I'^R^^I' Ü1 ^ Hg 

9(1»!' Hg) =tan'1{IR<üi)/II<«i)} 

The following definition is not permitted 

since,  in this case,  0 is a single value rather than a random var- 

iable.    The stochastic phase definition is important because it gives 

validity to phase coding in domains other than the Fourier.    Exper- 

imental demonstration of the utility of the stochastic phase will be 

given in this chapter. 

3.2      Extension to the Walsh Domain 

The Fourier transform of an image tends to be uncorrelated. 

The existence of uncorrelated samples permitted definition of the 

generalized phase.    Although the Fourier transform is unique in 

having the above-mentioned properties,  other linear transformations 

may approximate the Fourier transform in some sense.    One spec- 

ific implementation will involve the Walsh functions. 

Let f,   be an element of an N component vector (that is 

K = 1,   2,   ...N).    Two distinct transforms off.   and a. and b. which 
k i j 

are also elements of N component vectors, therefore 

■AMBHM MUM, ^J,, " -llillllm Hrtr 
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li = S G, kfk (3,2-1) 

b. = 52 H4i*i i      rr     ik k (3.2-2) 

where matrices G and H are invertible matrices of order N.    The 

summation in Equations (3.2-1) and (3.2-2) is over N components, 

the same convention will remain in force for the rest of this section. 

Although,  Equations (3.2-1) and (3.2-2) can represent any 

linear decomposition,  the specific assignment will be made where 

G will represent the Walsh and H the Fourier decomposition. 

By s-traightforward manipulation,  it can be shown that 

f.   =  52 G'^a. =   2 H. .  b 
j        kJ    J        j        kj 

(3.2-3) 

and,  therefore. 

a,  =   A]   /^ G.. H. .  b. 
] j       k      lk    kj     J 

(3.2-4) 

The following definition is introduced for notational convenience 

zi- =  S   G..   H. . 
lj k        Jk     kj (3.2-5) 

Consequently,  the transform values are related through the linear 

relationship: 
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i. = y] z..b. (3.2-6) 

Let {g^3^)? and jh^Xj^)^ be orthonormal basis vectors generating 

the space in which £k is defined.    Note that g^XjJ is the k-th element 

of the i-th vector.    Obviously, both i and k have index values  1 

through N. 

For the special case where Gk.  = g^XjJ and H      = h.(x   ),   it 

is easy to demonstrate that G..   = G"    and H..   = HT   . 
xk ki ik ki 

It is desirable to treat the a.'s and b.'s as zero mean real 

random variables and consider transformation of the second order 

statistics.    Clearly, 

EKan}=   S^VnkMVk} (3.2-7) 

If the Fourier designation is given to H..,   then,  according to the 
1K 

results of the previous section, 

^AKS. (3.2-8) 

where 

6jk = 1 j = k 

= 0 j iik 

-   ■-- 
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={«*■»}'?V..J
6

J (3,2-9) 

:K> • ? -f-J J 
(3.2-10) 

The previous section indicated that Fourier transform sam- 

ples have Gaussian distribution.    By Equation (3.2-6),  it is observed 

that the a.'s also tend toward a Gaussian stochastic process.    If the 

choice for G..   is such E 
ik Kan/" 6tk EH} '  that is'  the al8 are 

also uncorrelated,   one can define amplitude and phase on pairs of 

random variables,  say a.»  a  . 7    -C      n 

^ Eia't,/ ~ Eianl '  the functional form of appropriate proba- 

bility density functions for the amplitude and phase should be the 

same as the ones defined for the Fourier transform.. 

The specification of G for the Walsh decomposition can be 

written in terms of the appropriate orthonormal basis vectors. 

Utilizing the conventional notation (Harmuth,   1972) 

Gki = Wal (i' Xk) (3.2-11) 

Walsh functions can be generated through the following 

difference equation. 

—1IMMM«—t>OM—i«a»^^—^--J_^^.^.—■—..  
 ■  '-^ ■ -  -     —— 
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wal (2j + P, x) = 

v[j/2]+P 
(-1) jwal^j,  2|x+{)   +(-l)j+Pwal fj,(2(x - |) 

(3.2-12) 

P = 0 or 1; j = 0,1,2. 

wal (0, x) = 1 for - I £ x  £ | 

= 0  otherwise 

and [j/2] is the largest integer smaller than or equal to j/2. 

The Z matrix can be generated by decomposing each Walsh 

function into a Fourier series.    Walsh functions have similar sym- 

metry as the sines and cosines.    Denoting the even and odd Walsh 

functions as cal and sal,  respectively,  it follows 

wal (2i, x) = cal (i,  x) 

wal (2i - 1, x) =   sal (i, x) (3.2-13) 

As previously indicated,  real Fourier decomposition is where 

the basis functions, h's are sine and cosine functions,   similarly the 

g/s are the cal and sal functions.    Because of the even-odd sym- 

metry of both sets of basis vectors,  even functions of one set can be 

represented by only even functions of the other set.    Similar repre- 

sentation holds for odd basis vectors.    The same symmetry results 

in the following restriction for the Z matrix. 

Jik 0  for |i - k| = odd integ er (3.2-14) 

j—":-""'  IllillllliMigÜMIIlliiiM—MM  ^__ ^*m 
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The specific result of Equation (3.2-14) is that elements in 

the Walsh domain which are separated by odd-number elements will 

be uncorrel-ted.    The choice of adjacent element pairs for amplitude 

and phase specification is strongly motivated by the symmetry 

consideration. 

Although,   simple functional form does not exist for the Z 

matrix,  numerical generation of the elements can easily be per- 

formed for specific transform pairs.    As an example,   consider the 

Walsh into Fourier decomposition for N = 1024 values.    For a spec- 

ific choice of I,  e.g. ,   the t-th Walsh function,   l-th row of the Z 

matrix is generated.    The inverse of Z is similarly generated by the 

decomposition of particular sine and cosine functions into Walsh 

functions.    Numerical examples are shown in Figures 3.2-1 through 

3.2-8.    These figures indicate the recognized similarity between the 

Walsh and trigonometric functions.    It is interesting to observe that 

diagonal elements of Z dominate each row. 

For completeness,   the "fast" computability of the Walsh and 

Fourier transforms should be pointed out.    The straightforward 

application of Equations (3.2-1) and 3.2-2) requires N2 operation 

(operation 4 one complex multiplication for Fourier and 4 one addi- 

tion or one subtraction for Walsh).    The particular form of G and H 

permits a much more rapid implementation of these transforms 

where the number of operations is reduced to N log N (Andrews, 

1970; Harmuth,   1972; Cooley and Tukey,   1965). 

■a^acMb^^MdUHnU ■'—- "■■■»■"■    -■ 
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Figure 3.2-1.    Sixty-Third Trigonometric Function 

   ' 

i I i r          '' 
i i i i I ' ' ' " 

0  100 200 300 400 500 600 700 800 900 1000 
X 

Figure 3.2-2.    Walsh Decomposition of Sixty-Third 
Trigonometric Function 
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Figure 3.2-3.    Sixty-Fourth Trigonometric Function 
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The "fast" algorithms are important for efficient coding 

implementation.    Particularly for large data blocks,  the efficiency 

factor N/log N can be significant.    The "fast" algorithm is available 

for the Z matrix as well and it was utilized for the generation of 

Figures 3.2-1 through 3.2-8. 

3.3     Quantization 

The continuous image parameters must be expressed in 

discrete,  that is to say quantized, form before numerical operation 

on them can be performed.    Formally,  quantization is equivalent to 

a noninvertible mapping of the real numbers onto a finite set of 

integers.    It is also equivalent to a one-to-one mapping of finite or 

semiinfinite sections of the real axis to a finite set of integer 

numbers. 

According to the last definition,  each member of a set is 

assigned an integer designation.    All members of a set are assigned 

the same integer assignment.    Conversely,  given a particular integer 

assignment,  no unique determination of the original real value can 

be made. 

It is obviously imperative to optimize the appropriate quanti- 

zation procedures.    This step involves the selection of the optimum 

quantization rules,   based on the statistical model of the parameter 

to be quantized. 

The discretization of a continuous parameter always results 

in a permanent,   hopefully negligible,  distortion.    This distortion may 

appear as an effective noise term or an actual structural distortion. 

L. _ 
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For the first case,  the number of quantization levels are large and 

the appropriate effects can be modeled by additive white noise.    The 

second case occurs for coarse quantization, for which the nonlinear 

aspect of quantization dominates. 

The following basic model will be considered.    Let x be a 

continuous random variable with a probability density function P(x). 

The functional form of the quantization can be expressed in terms of 

the previously-introduced rect function as 

N 

Q(x) . x. rect 
1    J J     J-1 

(x   -i^.+x.^)) (3.3-1) 

In Equation (3.3-1) there are N integer assignments.    To each 

integer another real value,  x. is assigned.    The x. is the reconstruc- 

tion value or the estimate of x.    The specification of the parameters 

in Equation (3.3-1) should be such that x. should closely "approxi- 

mate" x.    If the mean-squared error (MSE) is the performance 

measure,  then 

1/ Error = min | / P(x) (Q(x) - x)     dx (3.3-2) 

/^ 
Where minimization is performed over all x.'s and x 's for a given 

N.    The solution of Equation (3.3-2) is well known (Max.   I960); it is 

x.  = -s- (x. - x.   .),  j = 2,. 
J      2     J        J"1 N (3.3-3) 
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X. 
J 

(x -x ) P(x) dx =0, j = 1,2,...N        (3.3-4) 

Equations 3.3-3) and (3.3-4) can be solved by iterative tech- 

niques for given density functions.    A note of caution should be inter- 

jected.    Equations (3.3-3) and (3.3-4) are formal solutions given 

the P(x).    In image coding,  the relevant parameters are themselves 

estimated.    Utilization of an erroneous model may resul* in a poor 

quantization procedure even though the solutions in Equations (3.3-3) 

and (3.3-4) are faithfully followed. 

If P(x) is uniform over a finite region,  say [XQ,  XNJ , 

Equation (3.3-1) becomes the uniform quantizer. 

Qu(x) = E  ^ (xN - x0) "ctj^i^ (x - (^-) (xN.x0j)| 

(3.3-5) 

Another often-used quantization strategy,   known as compand- 

ing (Smith,   1957) involves a two-stage process.    First x is mapped 

into y,  y = f(x), which is random variable uniformly distributed 

between [0,   1].    The random variable y is operated on by the uniform 

quantizer.    The reconstruction levels of x and y are determined by 

the inverse mapping,  f"  ,  (x1. = f    y".).    The mapping is the distribu- 
J J 

tion function of x: 

.-,^. :.,._-■-.--,- 
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y = f(x) -    /      P(u) du (3.3-6) 

The reconstruction levels x. and y. are uniquely related by 

the one-to-one mapping,  f.     By construction,   y. occurs with equal 

probability,  thus,  this case corresponds to the maximum entropy the 

quantized values may have.    This latter type of quantizer procedure 

is suboptimal when MSE is the performance criterion; however,  for 

numerous density functions,  optimum performance is closely 

approached. 

Quantization schemes can be closely approximated by sim- 

plified procedures for fine quantization (Panter and Dite,   1951). 

The coding schemes of Chapters 4 through 6 involve coarse quanti- 

zation in the transform doma;:i,   thus,  these procedures are not 

relevant and will not be further explored. 

3.4     Amplitude vs Phase Quantization Effects 

The underlying theme of this dissertation is the superiority 

of phase information.    It is particularly relevant to consider distor- 

tions introduced by the quantizing process.    In this subsection,  the 

generalized phase and amplitude will be considered.    The assumption 

is made that application of the image transform (Fourier or Walsh) 

results in uncorrelated samples.    Amplitude and phase are defined 

over pairs of values as in subsection 3.3 under the unconventional 

definition. 

 i  
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Let 0 and r be a phase and amplitude pair where 6 is uniformly 

distributed in [  -n,  n] and r has Rayleigh distribution (Thomas,   1968, 

Chapter 4).    The followiig procedure will be implemented.    Ampli- 

tude and phase will be independently quantized,   one at a time,  and the 

appropriate MSE generated will be compared. 

a)        Phase Quantization 

The uniform quantizer is optimum for the phase.    The 

actual error in the N level quantization process of a single phase 

value in one of the N regions,  say [0,  2n/N],  is 

Error = A ie e      - e 

. rr 
lN 

(3.4-1) 

2 . 
The A    is the energy associated with random variable r.    Mean- 

squared phase error (MSE) is obtained by averaging Equation (3.4-1) 

over 9 and all N quantization regions.    Because of the symmetry in 

9,  each of the quantizing sections is statistically equivalent, 

therefore 

*»_ ^  *■* 
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MSE - A    E je       j N e-'     - eJ 

{. - E cos (e - S)} 2A   <1  - E co 

n/N 
(3.4-2) 

?A2).      N    .    TT 2A   < 1 sin n 
/        n N 

The more meaningful expression is the relative mean-squared error 

(RMSE) or,  equivalently,  where r is assumed to have unit energy, 

RMSE. 2 {l -^sing} (3.4-3) 

The approximate form of Equation (3.4-3) for large values of N is 

RMSE (N is large),* 3-(2.) 

Quadratic dependence of the MSE on N is typical for all quantization 

procedures for large N. 

b)        Amplitude Quantization 

Amplitude i-; assumed to be Rayleigh-distributed. 

JL. "2(a) P(r) =^-e     -^,,r<0 (3.4-4) 
0" 
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Maximum entropy quantization (companding)of sub- 

section 3.6 will be utilized (Habibi,   1973).    The function £ is re- 

quired, which is the appropriate distribution function: 

fW=/rjr ■m ds 

1  - e m 
The inverse of f is also available in closed form of 

(3.4-5) 

,-1 
f   (s) = a v/-2 log (1 - u) (3.4-6) 

Let a - 1; the RMSE for the Rayleigh process using the formalism of 

subsectirn 3. 3 is 

RMSE 
1=1  ri.i 

r_ 
2 

)    r e dr (3.4-7) 

Note that the energy for the normalized (a = 1) Rayleigh process is 2, 

/ 

00 o 

r3e-r2/2dr.2 (3.4-8) 
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Evaluation of Equation (3.4-7) requires numerical tech- 

niques.    The appropriate numerical integration utilized a Hermitian 

sixth order formula.    Each region,   [r.^,   r.].  was evaluated at 100 

equidistant values.    In addition to the integrand (denoted by R),   the 

particular numerical integration requires evaluation of the first and 

second derivatives as well. 

R(r) 3      _  2/\   ./vZ   \    -r2/2 r    - 2r    r.  + rrr) e       ' 

R^r) = (. r4 +2^.  + (3 -^) r2 - 4r ^ +^\ 

(3.4-9) 

.r2/2 

(3.4-10) 

(3.4-11) 

+ (6 - 3^    r - 4^    e-   /2 

Numerical integration is performed over each of the N 

sections and summation then performed over the N sections.    The 

RMSE due to phase or amplitude quantization is shown in Table 3.4-1. 

The   relative importance of phase over amplitude is effectively 

demonstrated by this table,  particularly for coarse quantization. 

Ignoring amplitude completely causes 21.5 percent error of the total 

image energy.    The single-level quantizer collapses the entire range 

- ■    ■ 
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of the random variable into a single a priori known value.    Conse- 

quently,  all randomness associated with that variable is removed, 

thus the associated entropy is zero.    Essentially,  the same result is 

obtained in holography (Kermish,   1970) utilizing a much more com- 

plicated physical model.    The phase requires 2 bits (N = 4) to main- 

tain the same amount of MSE that is achieved by zero bits for ampli- 

tude.    Similarly,   1 bit amplitude is "worth" 3 bits of phase.  Since 

the majority of transform values in the experimental chapters 

requires a very low degree of quantization,  the quantitative results 

of Table 3.4-1 are highly relevant,  and demonstrative of the phase 

superiority. 

TABLE 3.4-1 

THE RMSE INTRODUCED BY PHASE AND 
AMPLITUDE QUANTIZATION 

Number of 
Quantum Levels Ph. 

RMSE 
ise Quantization A] 

RMSE 
nplitude Quantization 

1 2.0 0.215 

2 0.73 0.042 

4 0.20 0.025 

8 0.05 0.011 

16 0.013 0.0048 

32 0.0031 0.0020 

-■ -- ■ ^**~*^^*^L*M^~*~^ MHHMMIliU _~- i    ■   iiiif-'-— "--■ —d 



-~~*^ mmm^i m i .W'W 

64 

3.5      Non-Linear Effects of Phase Quantization 

The general comment was made in subsection 3. 5 regarding 

the nonlinearity of the quantizing process which is quite significant 

for the case of coarse quantization.    The appropriate effects are 

structural and for them,   the MSE may not be a descriptive parameter. 

The importance of phase information has been emphasized. 

Also,   the achievement of a high degree of redundancy reduction 

requires that most transform domain samples be quantized at few 

quantum levels.    Therefore,  it is of value to demonstrate the type 

of global distortion that results from quantizer nonlinearity.    Spec- 

ifically,  coarse phase quantization will be considered. 

The effect of phase quantization has been previously considered 

in relation to holography (Goodman and Silvesteri,   1970; and Dallas, 

1971,   a and b).    Their analysis is applicable to image coding,  with 

some important modifications.    The primary difference is that unlike 

a digital image display,  in holography,   the final image inherently is 

an energy representation.    Consequently,   extraneous images and 

ghosts diminish quadratically with the number of quantum levels for 

holography.    A similar dependence is linear for image coding,   thus 

the distortion is more emphasized. 

In the following, conventional phase definition will be utilized 

for the two-dimensional case. Let g and G be a Fourier transform 

pair: 

^^M BMMMMM _-____J^. [■^BM>iM<i—i<Hriili«M-t-|ii ■  ii ■ ill 
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CJÜ 

/Y*   g{x.y) e-
2ni<xn +yv) dxdy =G(u.v) = |G(u,v)| exp je(u.v) 

(3.5-1) 

The phase,  9,  is linearly quantized to N levels and the inverse 

Fourier transform is performed.    The result is denoted by g(x,y) 

and it is of the following form (Dallas,   1971,  a); 

00 

g(x,y) =   2^    8inc {m +N}em<x'y) (3.5-2) 
m = -oo 

The sine function can be expanded as 

m 
sine (m + 1/N) = sine (1/N) (-ir7(mN + 1) 

and g     is defined as "m 

00 

gm(x,y) =   /Y|G(u,v)|  expj(mN   +l)e(u,v) 

(3.5-3) 

X exp 2TTJ(UX + vy) du dv 

Note that for m = 0,  the g     is the original image.    For m ^ 0,  g 
'm m 

represents extraneous images or "ghosts. " 

■■■■MUM   ■      ■ ■ 
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The following additional observation  can be made 

a) From Parseval theorem: 

00 " 

y/ gm(x'y)   d*dY=JJ   gn(x'y)   ^dy (3.5-4) 

for all integers m and n 

b) Each ghost image decreases in intensity by the factor 

l/(mN  t- 1) relative to the unquantized original. 

c) In holography, as a result of the squaring operation per- 

formed by the optical system,  the ghost image intensity decrease 

factor is  l/(mN + 1)  .    In digital processing,  this factor is 

l/(mN + 1). 

d) The largest ghost is g   .,  whose relative weight is 

1/(1 - N) with respect to g-. 

e) One can also observe from Equation (3. 5-2) that 

lim 
N ..„ g = g.   since 

sine [m] 

0 m ^ 0 

1 m = 0 

(3.5-5) 

In digital implementation,  the continuous Fourier transform. 

Equation (3.5-1),  is replaced by its discrete equivalent,  the Fourier 

series.    The implied periodicity of the latter results in the reappear 

ance of ghost images which have been cyclically shifted out of the 

basic image region. 

L ^mm — ■- 
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It is possible to interpret the various ghost images,   and the 

display of the distorted image can be quite dramatic.    A computer 

experiment,   similar to one which was holographically implemented 

by Dallas,  was performed. 

Except for the 64 x 64 element upper right sub-block,  the 

"couple" imige was zeroed out.    This image was Fourier- 

transformed and the phase was uniformly quantized at N « 2,   3,  4, 

and 32 levels.    The final Images are reconstructed via the inverse 

transform.    The result of the experiment is shown in Figure 3.5-1. 

The worst case,  m = - 1,  requires special attention for the 

two-level quantizer.    Note that the weight factor for this case is 

identical for m = - 1,  and m = 0.    Furthermore,  from Equation 

(3.5-3) 

g_1 (x, y) =     //|G(U»V)    exp [- je(u, v)] exp 2nj(ux +vy)dudv 

(3.5-6) 

or,   equivalently 

[g.i^y)! = |go(-x'-y)| (3*5-7) 

By experimental construction,  g0(-x, -y) does not overlap 

with gn(x,y),  the largest ghost image is the  "mirror image" of the 

original. 
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Although the above described experiment is rather specialized, 

it does emphasize the importance of the global nature of distortion 

introduced by the phase quantizer nonlinearity.    Availability of the 

relevant MSE provides little if any information about the nature of the 

distortion. 

The digital experiment was repec ed for the Walsh domain and 

results are shown in Figure 3.5-2.   The significant difference can be 

explained by the symmetry of the decomposition rather than by the 

functional properties of the eigenfunctions.    Actually,  the analysis 

related to Figure 3.5-2 is much simpler than the one associated with 

the Fourier care. 

Conner the decomposition of f(x . y ) in terms of the evon and 
il 

odd Walsh function: 

N/2-1   n/2-1 

^i'V =   /]       TJ   {bcc<k' ») ^'V cal(l,y.) 

+ b8c(k, 1) sal(k,x.) cal(l,y.) 

+ bc8(k' 1) cal(k,xi) 8al(l,y.) 

+ bs8(k, 1) saKk.x.) 8al(l,y.)i 

(3.5-8) 
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The conventional sequency-ordered Walsh transform will yield 

the "b" matrix for the two-dimensional case. Consider the following 

"unconventional" pi ase definition such that 

N/2-1   N/2-1 

«VV X /   .     Bc(k. 1) cos e^k, 1J ca^k.x.) cal(l, y.) 

where 

+ Bc(k. 1) sin BjCk, 1) saKk.x.) cal(l,y.) 
J 

+ Be{k, 1) cos e2(k> 1) cal(k,x.) sal(l,y.) 
J 

+ 38(kf 1) sin e2(k, I) sal(k,x ) 8al(lfy.) (3.5-9) 

B2=b2     +b
2 

c        cc        sc 

B2
=b2     +b

2 

s        cs        ss 

0,  = tan'  (b     /b     ) 
1 sc     cc' 

I- = tan"   (b     /b     ) 
C. 88        CS7 
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For the particular original of Figure 3.5-1,  the coefficients are 

equal,   b^k. 1)  = b^k, 1) = b^k. 1)  = b^k. 1) = b(k, 1).    This can 

be shown by letting ffr-.y.) ^ 0 in Equation(3. 5-18).    Because of the 

symmetry of the image,  it follows that f(-x.,y.) = f(x., -y.) 
J J 

fC-Xj, -y )  = 0.    Simple algebraic manipulation of Equation (3.5-18) 

will yield the equality of the coefficients.    Consequently,   8,  = 8    =n/4. 

If f(xi, y^) is the image in Figure 3. 5-la Equation (3.5-8) 

becomes 

N/2-1 ^1 N/2-1 

!=0 

b(k, ^/ca^k.x.) cal(l,y.) 

+ sal(k,x.) cal(l,y.) 
J 

+ cal(k,x.) 8al(l,y.) 

+ 8al(k,x.) 8al(l,y.)l 

(3.5-10) 

Consider the application of a two-level uniform phase 

quantizer- Equation (3.5-10) will become 

-   -   mmm L_._ 
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Kk.x.) ■»l(l,yl)| 

(3.5-11) 

The result for the three-level quantizer ii 

N/2-1 N/2.1 

^I'V =2J     XJ    ^Ib^DlcaKk.x^cald.y^) 

+ cfl(k.xi) 8al(l,y.)l 

(3.5-12) 

For the four-level quantizer,  the quantized result is identical 

to the original (unquantized).    The symmetry of the quantized images 

in Figure 3. 5-2 is equivalent to the symmetry expressed by the 

related Equations (3.5-21) and (3.5-22). 

The Walsh domain phase quantization experiment provides 

another indication regarding the nonlinear nature of the quantizer. 

The phase definitions 9, and 9-, may appear artificial, how- 

ever,   it is convenient in the sense that they are defined on adjacent 

transform pairs in the conventionally ordered two-dimensional Walsh 

transform. 

UHMMMtlMU _. mmmm —-^  
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3.6     The a Processor 

In the context of the phase superiority vs amplitude  the per- 

formance of the so-called a processor is not unexpected. 

Consider the image Fourier transform for tha two-dimensional 

case 

I(u.v) =     ff  I(x.y) e" 

• 00 

2nj(xu + yv) 
dx dy 

=|T(u.v)|   e-W*'^ (3.6-1) 

The a processor is defined as the nonlinear operator,   T    which 
CK 

raises the transform amplitude to the power a: 

Tjl(u.v)}   =|T(u.v)|%-Je(u'v) (3.6-2) 

Consider the effect for ae[0, I].    One can explicitly designate the 

transform amplitude,    I(u, v)   by two terms where R(u, v) is the image 

power spectral density and r(u,v) the amplitude fluctuation around 

the power spectral density: 

|T(u,v)|   = R(u,v) +r(u, v) (3.6-3) 

therefore. 

H(u,v)T(u,v) =|H(u,v)R(u,v) +H(u,v) r(u,v)|e"•'e(u'v, 

(3.6-4) 

HMH^ -■  
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Here H(u,v) is a linear filter.    Consider the application of T   acfO, ll 
a 

T^Tiu.v) ^Ku.v^e-J0111'^ 

= |R(u.v) +r(u.v)|Q'e-je(u'v) 

Ra +aRa-1 r (3.6-5) 

The ratio of the amplitude fluctuation and the power spectral 

density has decreased in Equation (3.6-5) from r(u. v)/R(u. v) to 

ar(u,v)/R(u, v).    One guarded observation is that amplitude entropy 

has decreased by an amount related to (1 - Q-). 

For a = 0.  image transform amplitudes are identically unity. 

Consequently, uhe image in this case became a white process,  since 

image power spectral density is also a constant.    The a = 0 case 

demonstrates two interesting image properties.    First,  under con- 

ventional ergodic assumptions the image becomes uncorrelated.    Yet, 

visual inspection of the appropriate images inoicates (Figure 3.6-1) 

that ba,«ic image features have not changed.   The a = 0 filter dras- 

tically changed image statistics,  yet the apparent visual image 

structure remained relatively unaltered. 

3.7     Phase-Only Image (Polynomial Magnitude Fit) 

The "a processor" has decreased the amplitude entropy in the 

transform domain,  however,   it also changed the image power spectral 

density.    It is important to separate the two effects.    An approximate 
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linear inverse filter to T    could restore the power spectral density 
a 

to its original form.    A more straightforward technique is to fit a 

particular type of surface to the image transform amplitudes.    This 

second approach is considered in this section. 

Consider the two dimensional transform domain of an image, 

T(u, v).    It is not necessary to specify the particular transform.    The 

discretized version of I will be used,   such that transform parameters 

u and v are integers. 

The image transform amplitudes will be least square fitted by 

a two-dimensional surface,  Z(u, v) of the following form: 

Z(u,v) =R(u,v)|a00 +a10u +a0I v + a20 u2  +-..+a0NvN| 

(3.7-1) 

or in a more compact notation: 

N-l  N 

Z(u,v) = R(u,v) i    j a., u   vJ 

j=0x 

(3.7-2) 

The weight function R(u, v) is specified in advance and the 

coefficients a.-'s are the unknowns to be determined.    For a given N, 

the number of coefficients is 1/2 (N + 1) (N + 2). 

The mathematical objective is to minimize the mean-square 

deviation between I I(u, v)| and Z(u, v),  that is 

■i 

BBMMMHM - filiitüi- - ii    i —- ■     -■^~--^«^- " 



Wr wmmm*mmm •"       ""   -^'^JirJW,*« -"MUWWMl^l 

78 

U        V 

N-l    N 
R(u,v)   ^     £   a.-uV 

j=0    i=0    1J ■|I(u,v) - rmmmum 

(3.7-3) 

The minimization is accomplished by differentiating (3.7-3) 
with respect to a, , for k - 1 N- 7   - i MI kl *» • • • W, -0 - 1,.. .N - k and solving the 
1/2 (N + 1) (N +2) linear equations. 

E E 
U        V 

R 
TN-l    N l 

(u.v)   E  E ^.uV^v1; 
L j=o i=o   lJ       j 

=   E E   R(u,v)|l(u,v)| ukv1 

U       V 
(3.7-4) 

Equation (3.7-4) can be rewritten in the following matrix notation: 

«■MMM* ■     -    
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ES 
U V 

R   (u,v) 

u 

L 

uv 

N 

I      U     V     UV   . .      V 
N 

I   U    V    uv 
N 

00 

10 

l01 

11 

ON 

EZ 
U       V 

IMu.vjlT^v)! 

R(u.v)|T(u,v)| u 

R(u, v)|T(u, v)| v 

R(u.v)   I(u,v)   v N 

{3.7-5) 

Equation (3. 7-5) is in the form of a conventional linear matrix 

equation with the column matrix of the a..'s being the unknown.    For 

a given image transform and a specified weight function,   Equation 

(3.7-5) may be solved by many conventional techniques for the solu- 

tion of systems of linear equations (Blum,   1972). 

The actual least square fit is dependent on the choice of the 

weight function,  R(u, v).    Note also that Z   (u, v) is an estimate of the 

image power spectral density.    Any a priori image information should 

be incorporated into R(u, v). 

m 
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Under the conventional separable Markov model,   the image 

correlation function is of the form e"a^'X'   + lyl' and the appropriate 

power spectral density is of the form-4(u    + »2)(v2  + .y2)]"1.    A 

reasonable choice of R(u, v) can therefore be picked as 

R(u.v) = [(u2  +a2)(v2 +(y2)] " 1/2 
(3.7-6) 

For the adjacent element correlation of 0. 95 the value of a is In 0. 95. 

The utilization of Equation (3.7-6) for the least square fit 

problem indicates how good (or bad) the Markov model is.   If the 

Markov model perfectly represented the image statistics,   except for 

the A      term, all other coefficients would be zero.    The ratios of the 

appropriate coefficients (e.g.,  A   /A00,  i +j > 0) provides quantita- 

tive information on the deviation between the actual power spectral 

density and the one predicted by the Markov model. 

The replacement of the individual amplitude values by the 

appropriate related power spectral density values provides an impor- 

tant demonstration of the phase superiority.    The L2 image values for 

an L X L image are represented by 1/2 L   amplitude and 1/2 L2 

phase values.    The power spectral density surface is prescribed by 

a negligible (relative to 1/2 L  ) number of coefficients.    The avail- 

ability of the least square fitted surface permits the replacement of 
2 

1/2 L   values,  in effect,  by a few parameters. 

Equation (3. 7-5) was implemented numerically utilizing the 

Fourier domain.    The Markov model was used for the weight function 

■ir'lUMk ■ililMlillltffl"' -" ' ■  —^-"^ 
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with 0.95 as the element-to-element vertical and horizontal corre- 

lation.    The highest degree of the two-dimensional polynomial was 2 

through 5 for the five cases considered.    The respective number of 

terms in the polynomial ranged from 6 through 21.    Table 3. 7-1 

shows the various cases. 

Table 3.7-1 

Degree and Number of Terms in the 
Surface Fitting Polynomials 

N 

1 

2 

3 

4 

5 

(1/2)(N + 1)(N  +2) 

3 

6 

10 

15 

21 

The images generated by the above-outlined procedure have 

good visual correlation with the original (Figure 3. 7-1).    The high 

spatial frequency details are completely preserved.    Not unex- 

pectedly,  the basic apparent distortions are in the very low-frequency 

region.    Generally,  it is the low-frequency region which does not 

lend itself to good statistical characterization.    The reason is that 

the low-frequency amplitudes can be recovered from a very coarsely 

sampled image, thus the law of large numbers which is always 

implied in an ergodic approximation,  does not apply.    On the other 
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00 

hand,  one may be too generous in allocating extra bits for the very 

low-frequency region since the impact on the overall bit rate will be 

negligible. 

The pictorial representation of the actual polynomial surfaces 

is shown in Figure 3. 7-2 while the calculated coefficients are given 

in Table 3.7-2. The large value for coefficients other than the a, 

term indicates that the exponential Markov correlation model 

requires higher ordei  corrections. 

The amplitude .arface fitting procedure could be utilized on 

the development of an actual transform coding algorithm,  however, 

it was abandoned in favor of the recursive approach which is the topic 

of Chapters 4 through 6.    The solution of Equation (3. 7-5) and the 

recalculation of the amplitude surface is likely to generate such 

additional computation load in addition to the actual transform 

algorithm,  that any practical implementation would be prohibitive. 

For the fifth degree polynomial approximation a 21st order matrix 

equation must be solved.    Each surface element reticulation 

requires in excess of 21 addition and multiplication operations.    The 

latter operations amount to a higher number of arithmetic steps than 

required by the full size Fourier transform.    In auction,   both the 

solution of the matrix equation and the reconstruction of the surface 

are somewhat ill-conditioned.    The numerical implementations of 

this section were done on a 60-bit wordlength computer.    It is 

j 
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anticipated that the round-off errors might not be negligible had the 

same calculations,   particularly the matrix equation,  been performed 

on a computer with shorter word length.    In which case,  the require- 

ment for double precision would further increase the computational 

load of the coding-decoding procedures. 

i 
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Table 3. 7-2 

Calculated Coefficients for the  "Girl" Image 

86 

1 Number of Coefficients 
Coefficients 6 10 15 21 

aoo 0.617 0.617 0.624 0.633 

aio 0.069 0. 130 0. 119 0. 158 

aoi 1.22 1.37 0.871 0.227 

'20 -3.22 -   0.695 -   1. 14 -   1.93 

ail -0.075 -   0.298 0.374 1.96 

a02 -1.57 -   2.82 1.04 8.29 

a30 -  0.161 -  0.156 -   0.660 

a21 10.1 18.7 43.4 

a12 0.327 -   2.70 -22. 1 

a03 1.18 -   7.25 -35.2 

a40 0.423 1.57 

a3i -   0.226 1.79 

a22 -15.5 -44.0 

a:.3 2.90 49.8 

a04 5.37 46.0 

a50 0.524 

a4i -31.0 

a32 -   2.94 

a23 26.7 

au -30.0 

a05 -19.7 

MM -  
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4.    EXPERIMENTAL RESULTS 1 (MONOCHROME) 

The concepts developed in the preceding chapters have been 

implemented.    Computer algorithms have been developed for the 

coding and decoding of various images.    This chapter considers the 

algorithm for monochrome images. 

For practical reasons,  the coding algorithms only included 

digital input and output.    For the monochrome image coding examples, 

the input is a square image sampled over a 256 x 256 grid.    Each 

sample is linearly quantized to 256 levels. 

The significant achievement of the adaptive phase coding process 

discussed here is that the transmitter is slaved to the receiver with- 

out any overhead information.    Yet complete adaptivity is possible, 

as well as arbitrary sample reduction.    The drawback of adaptive 

procedures is the requirement for large buffers.    This requirement 

is unavoidable but it is not likely to be important in the environment 

of computer.to-computer communication.    In this case,  the undecoded 

images can easily be stored,   for example,  on magnetic tapes. 

The most demanding computational step is the large size, 

256 by 256,  image transforms.    It is interesting to note that the 

computational complexity,   that is the number of arithmetic operations, 

increase rather slowly from the case when the sub-block transforms 

are replaced by one single large transform.    For example,  the ratio 

of the number of operations for the entire image transform (256 x 256) 

vs  16 x )6 sub-blocks is log 256/log 16 = 2.    A factor of two increase 

in arithmetic complexity is not too extreme in computer implementa- 

tion. 
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The 256 x 256 size is generally too large to permit the two- 

dimensional transformation entirely in core.    The cost of the addi- 

tional I/O operations should also be included. 

4. 1      Description of the Algorithm 

The importance of image representation by amplitude and phase 

was demonstrated in Chapter 3.    In particular,   the phase superiority 

was established.    The coding algorithm should incorporate these 

important properties of the transform domain. 

The following assumptions are made:   (1) the transform values 

are uncorrelated and normally distributed,   (2) the power spectral 

density,  equivalent to the sample variances,  is a smooth surface. 

It is significant to note that these assumptions are,  in fact,   related. 

It can be shown that the Fourier transform will produce uncorrelated 

samples under the assumption of smooth power spectral density 

(Papoulis,   1965; Chapter  13). 

The basic two assumptions lead to the equivalent amplitude and 

phase representation.    Furthermore,  the amplitude is Rayleigh and 

the phase is uniformly distributed.    Specifically,  an N x N image is 

decomposed into 1/2 N? amplitude and 1/2 N2 pnase terms,  which 

are,  by assumption,  mutually independent.    Two separate coding 

schemes were developed depending on the transform symmetry.    One 

coder utilizes the complex Fourier transform.    The conventional 

odd and even function decomposition into amplitude and phase is 

used by the second coding scheme for which the Walsh transform is 

-- t^kaki 
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used.    The two types of representation are related by a simple 

mapping,   thus either coding scheme is sufficient for both Fourier 

and Walsh transformations.    The schematics of the coding-decoding 

process are shown in Figure 4. 1-1. 

Detailed descriptions of the algorithms for both the Fourier 

and Walsh transform are provided in this section. 

The 256 x 256 image is Fourier-transformed.     The conven- 

tional representations of die Fourier domain are shown in Figures 

4. 1-2 and 4. 1-3.    The arrows indicate increasing harmonics in the 

horizontal and vertical directions.    The number pairs in parentheses 

indicate the ordering of the amplitudes (or phases) according to 

harmonics.    The discrete fast numerical transform yields Figure 

4. 1-2.    The more familiar diffraction pattern is shown in Figure 

4. 1-3.    By interc'.anging the two halves of the pattern either repre- 

sentation can be easily mapped into the other one. 

An ordering must be established which specifies the sequence 

for the Fourier domain qua. vization.    The rows are indexed according 

tc the natural ordering.    Referring to Figure 4. 1-3,   the first row is 

the top of the pattern and then the coder proceeds downward.    The 

significant practical advantage of this scheme is that the computer 

algorithm will not require a large memory block.    It is not required 

to store more than a small fraction of the discrete transform in 

memory; this,  however,   depends on the complexity of the predicting 

algorithm. 

-  II «Ml II 1^—M I 
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IMAGE 1 TRANSFORM 
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FILTER 
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CODER 
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BINARY 
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TRANSFORM DECODER 

STREAM 

,'0 

Figure 4. 1-1.    Schematic of the Codirjg.Decoding Procedur« 

(0.   0) 

t 
(128,  0) 

 ^            (0.   128)           ^., 

jy \ vv 
(0.  -1) 

(128,   128) 
1128,   -1) 

Figu.e 4. 1-2.    Conventional Fourier Domain Representation I 

(-128, 0)      ~m (128,  0) 

(-128,   126) (128,  0) (128,   128) 

Figure 4.1-3.    Conventional Fourier Domain Representation II 

(Note:   Column« 128 and -128 are identical) 
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Within each row,  the coder starts with the lowest horizontal 

harmonic,  then it proceeds to the right (refer again to Figure 4. 1-3 

following which it repeats the process moving to the left from the 

center. 

The code words are generated by the quantization of the ampli- 

tude and phase values.    The phase values are uniformly quantized. 

The amplitude is companded and then processed b, a uniform 

quantizer.    The number of quantum levels is set in linear proportion 

to the variance of the transform samples.    The number of quantum 

levels for the phase is twice as high Is that for the amplitudes.  * en 

this number is ..our or larger.    For the two-level amplitude quanti- 

Zation.   eight phase quantum levels are specified.    The transform 

domain variance is estimated from the previously quantized amplitud. 

values.    Clearly,  the estimate based on the amplitudes prior to 

quantization would be preferable,  however,  it would lead to an 

undecodable process.    The decoder will also perform the estimation 

process and it only has access to the previously quantized amplitudes. 

Estimation of the variance of the next amplitude to be quantized 

follows a rather simple rule.    The density function for the Rayleigh 

distribution is given by 

P(x) - -^ 

x 

2c' 
x ^ 0 

ina 
(4.1-1) 

= 0 otherwise 

IMM MB ■i 111  ■      ■     - 
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The first two moments ar< 

E(x) -^  a 

E|x2 - E(x)J . VAR(x)  . fz - J^a 

(4.1-2) 

(4.1-3) 

For each transform amplitude,   the compander needs ~,  and the 

number of quantum levels is determined by the variance.    Equations 

(4. 1-2) and (4, 1-3) can be rewritten in a   nore useful form as 

VAR(x) (H E2(x) 

(4.1-4) 

(4.1-6) 

Equations (4. 1-4) and (4. 1-5) indicate that the estimate of the average 

amplitude also specifies the Ptandard deviation and the variance.   The 

amplitude estimate is determined by averaging the previously quan- 

tized amplitudes in a neighborhood surrounding the estimate.    This 

neighborhood is determined by the ordering of the transform domain. 

The d.c.  value is transmitted without requantization.    The 

estimate of this term is.  therefore,   perfect.    Tue estimate of the 

next value is also the d.c.  valae.    This term will be quantized and 

the reconstructed value is available for the estimate of the n.xt 

amplitude.    The estimate of the third value is the arithmetic mean 

of the d. c.   term and the first quantized harmonic.    For all other 

_. -   - -  - 
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values on the first row,  the amplitude estimate is the average of the 

three previously reconstructed terms. 

The estimation of the amplitudes on the zero column (the 

column containing the d. c.  term) is the exact symmetrical equivalent 

of the first row.    All other estimates are generated from four pre- 

viously quantized values by simple averaging.    These samples are 

three values from the previous row and the just previously quantised 

amplitude on the same row.    Equations  (4. 1-6) through (4. 1-15) are 

mathematical forms of these sample    stimates.    The subscripts refer 

to the horizontal and vertical harmonic ordering of Figure 4. 1-3. 

xo,o =xo.o (4.1-6) 

xo. 1 =xo,o (4.U7) 

*0.2  ^0.0   +*0.1,/2 

X, 
O.j  MX0.j-l   f«0.j-2   +X0.j.3)/3'  J>2 

0.j=^0.j+l   +*0>j+2   + Vj+3)/3'  J<0 

A A 
xi.o = x0,0 

(4.1-8) 

(4. 1-9) 

(4. 1-10) 

(4.1-11) 

A 
x 
2.0 •^1.0  f*0.0,/2 (4. 1-12) 

A 
M 1,0 = ^i-1.0  +Xi-2,0   +\.3.0)/3'   i>2 (4.1-13) 

. .  
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X 
I.J       l.j-1      1-1,J' 

+ X,     ,     .    + X. 
1  T   i-l.j     Ai-l.j+l)/4.  i >0, j >0 

(4. I.U) 

A x 

(4.1-15) 

The estimation of the zero row [Equations (4. 1-6) through 

(4. 1-10)] and the zero column [Equations (4. 1-11) through (4, 1-13)] 

are separated from the general form of estimation [Equation (4. 1-14) 

for the right and Equation (4. 1-15) for the left half of the Fourier 

plane].    The zero row and column usually have a higher degree of 

energy concentration than their immediate neighborhood,  due to 

windowing,  and thus require special consideration. 

The mapping utilized by the compander is the distribution func- 

tion associated with the appropriate probability density function.    It 

is given by the following expression for the Rayleigh distribution: 

1 /x 

y =F(x) = 1 - e    2    a/    , xf[0,~] (4. 1-16) 

Its inverse is 

- F'V) . a v/-2 in (i - y), jrclo, 1] (4.1-17) 

In terms of the previous equations,   the coding-decoding process 

may be explicitly specified (see Figures 4. 1-4 through 4. 1-6). 

--- 
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Figure 4. 1-4.    Various Functions Associated with Companding 
the Unit Variance Rayleigh Process,    (a)   Density 

Function (Equation 4. 1-1),  (b)   Companding 
Transform (Equation 4. 1-16),   (c)   Inverse 

Mapping (Equation 4. 1-17) 
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1) 

2) 

4) 

5) 

6) 

7) 

B) 

1) 

2) 

Coding Steps 

Transmit d. c.  phase and amplitude    perfectly" 

Estimate current amplitude from those previously quan- 

tized,  utilizing one of the set of Equations (4. 1-6) through 

(4.1-15) 

Determine variance of Rayleigh distribution from 

Equations (4. 1-4) and (4. 1-5) by letting E(x)^x 
i.j 

Compand amplitude through Equation (4. 1-16) 

Specify the number of quantum levels.  2N according to 

the amplitude variance 

Quantize companded amplitude and phase by uniform 

quantizer and transmit the appropriate code word.    (Its 

length is 2N  + 1 bits if more than 2-level amplitude quan- 

tizer is used,  otherwise it is 4. ) 

Utilizing Equation (4. 1-17).   determine the actual recon- 

structed amplitude and save for further estimation 

Unless the entire transform plane is quantized proceed 

to Step 2 for the next amplitude and phase value pro- 

cessing. 

Decoding Steps 

Receive exact d. c.  phase and amplitude 

Estimate current variance of Rayleigh distribution from 

Equations (4. 1-4) and (4. 1-5) by letting E(x) =£ 

x^ . is determined via the estimator Equations (4. 1-6) 

through (4.1-15) 

■-     - -  MMtfBMaMüMd 
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6) 
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Determine code word length from the amplitude variance 

Reconstruct inputs to the uniform quantizer (this is the 

companded amplitude and phase) 

Reconstruct amplitude utilizing Equation (4. 1..7) 

Unless the entire transform plane is decoded,   proceed to 

Step 2 for the next amplitude and phase decoding. 

Several important observations should be made at this point. 

The coding-decoding process is clearly decodable.    The decoding 

must be done in the same order in which the encoder operated.    In 

other words,   eelected decoding of individual code words or sequence 

of code words is not possible.    The code words are clearly of the 

variable-length type.    The set of binary digits which represents the 

entire coding process does not possess any particular algebraic 

properties.    It should be pointed out that although the coding process 

is decodable the actual binary sequence is not decodable according to 

the conventional definition of algebraic decodability.    The quantiza- 

tion of the Rayleiph process can effectively be demonstrated via 

input-output diagrams as shown in Figures 4. 1-7 through 4. 1-10. 

Since the decoding process is recursive,  the errors made in 

the decoding process can be catastrophic.    A catastrophic error will 

propagate throughout the decoding process,  thus,  all decoded values 

will be in error past the one in the sequence where the first error 

occurred.    The primary source of error is channel noise which will 

be considered in Section 4. 4.    A catastrophic error will occur when 

- MW^ft^Htf^H 
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10.0 

5.0 

3.0 
2.0 

%     1.0 

0     0.5 

0.3 
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0.2   0.3     0.5 1.0 

INPUT 

Figure 4, 1-7.    Two-Level Quantizer 

2.0   3.0     5.0 

IU. u 

5.0 
3.0 
2.0 

1.0 r J 

0.5 
0.3 
0.2 

0.2   0.3 0.5 1.0 
INPUT 

2.0   3.0 5.0 

Figure 4. 1-8.    Four-Level Quantizer 
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0.2   0.3     0.5 1.0 2.0   3.0     5.0 
INPUT 

Figure 4. 1-9.    Eight-Level Quantizer 

10 0 r 

5.0 

3.0 
2.0 

^ 

1.0 ^r-r^ 

0.5 _^ 

0.3 
0.2 

0.2   0.3     0.5 1.0 2.0   3.0 5.0 
INPUT 

Figure 4. 1-10.    Sixteen-Level Quantizer 
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the estimated variance is sufficiently incorrect to yield an incorrect 

bit assignment.     The result is loss of synchronization. 

The bit assignment is based on Equation (4. 1-5) and it i8 simply 

of the form 

N = [olog    (VAR(x))] (4.1-18) 

As previously indicated,  the amplitude and phase,  in general,  are 

specified by 2N  + 1 or 2N + 2 bits.    The a is the proportionality con- 

stant; the brackets [ ] specify the largest integer whose value does 

not exceed the value within the brackets.    Both the encoding and 

decoding algorithms include a large number of arithmetic operations; 

specifically,   Equations (4. 1-4) through (4. 1-17) are utilized before 

Equation (4. 1-18) can be applied.    In order to assure that the result 

of Equation (4. 1-18) is identical for both the encoding and decoding 

processes,  it is important that the sequence and accuracy of the 

arithmetic operations be the same.    The correct sequence is achieved 

by proper programming.    The accuracy consideration is much more 

involved.    Clearly,  if the coding and decoding algorithms are imple- 

mented on computers of different word-length,  the deviation in round- 

off error could lead to different bit assignments through Equation 

(4. 1-18).    Even for the same computing equipment,  the minor varia- 

tion in ce-tain arithmetic steps, for example,   different logarithm 

evaluation for the coding and decoding operations could result in 

ambiguity.    The ambiguity consideration is important; however, the 
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related difficulties can,  again, be eliminate I by careful programm- 

ing.    In a universal version of the coding-decoding algorithms, table 

look-up should be used instead of functional evaluation,  and integer 

arithmetic should replace all floating point operations.    The same 

programming considerations also result in improved efficiency for 

most general purpose computers. 

The utilization of Equation (4. 1-18) for sample reduction actu- 

ally incorporates the novel features of both the zonal and threshold 

approach to transform coding.    Whenever the image power spectral 

density significantly decreases for higher harmonics,   Eouation 

(4. 1-18) should lead to significant sample reduction.    The coding 

reduction procedure thus far outlined is highly image-dependent 

(unlike zonal coding) and requires no additional bookkeeping informa- 

tior. (unlike threshold coding).    The decoder is completely uninformed 

of the degree of sample reduction; this information it can only 

ascertain upon completion of the decoding process. 

The natural form of the image power spectral density may not 

lead to a sufficient degree of sample reduction.    Appropriate applica- 

tion of the filtering process in Figure 4. 1-1    discussion of which 

was delayed to the present,  can significantly alter the bit rate. 

Generally,  the filter function is of the low-pass form (it can also be 

image-dependent).     The coder-decoder will operate on the modified 

power spectrum.    Thus any degree of sample reduction can be 

achieved by selecting the appropriate filter.     It should be observed 

■ -  - 
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that,  again,  the application of the filter requires no buokkeeping bits 

to the receiver.    In fact,  t'.e decoding algorithm has no information 

as to the type or structure of the filter if.   in fact,   one was utilized. 

The small amount of white noise in the image significantly 

alters the power spectral density for the higher harmonics. *   In fact, 

for the higher harmonics, the sample variances are basically speci- 

fied by the noise spectral density.    The code;   cannot differentiate 

between the true image and noise.    Applicat.on of the filter may lead 

to its more conventional role,   that is,  to increase the S/N of the 

image. 

The adaptive philosophy can easily be extended to other 

orthogonal decompositions.    The Walsh transform was utilized for 

this implementation.    The conventional schematic representation of 

the sequency-ordered Walsh transform is shown in Figure 4. 1-11. 

The Walsh transform of the 256 x 256 matrix is another 256 x 256 

matrix.    The "unconventional" phase concept permits the description 

of the tranc'orm plane by an equal number of phase and amplitude 

terms.    The following definition was used.    In Figure 4. 1-11 each 

row is considered as  128 number pairs.    These pairs are used for 

the amplitude and phase definition in a similar manner to the 

The effects of noise on coding are further discussed in subsection 
4. 2. 
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(0.  0) 

I 

(255,  0) 

*-        (0,   255) 

(255,   255) 

Figure  4.1-11.     Conventional Walsh Domain Representat ion 

(0,  0) *►  (0.   127) 

I 

(255,  0) (255.   127) 

Figure 4. 1-12,     Walsh Amplitude Domain Representation 
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Fourier case.    Let (Ai( 2j_ j. a.^ .,.) be one such pair,   then the 

corresponding amplitude and phase values are defined respectively 

2 2       \l/2 as x 
i.j =(ai.2j.l +*f.2j)1/2"dto»«i.J

s*i.2j.I- The 

corresponding representation of the Walsh amplitudes is shown in 

Figure 4.1-12. 

Once the amplitude plane is specified it is obvious that the 

various equations used for coding the Fourier plane.   Equations 

(4. 1-4) through (4. 1-17).   are equally appropriate.    There are only 

two basic differences: (a) the estimator equations for the negative 

(left) side are not needed and (b) the sequence of operation must 

correspond to the symmetry of Figure 4. 1-12.    The coder will 

again proceed downward row by row.    Within each row it will always 

proceed from the zero column to the right. 

Once the coding algorithm is adjusted for the two minor differ- 

ences listed above,  the coding ani decoding steps listed for the 

Fourier domain are equally valid for the Walsh domain.    Similarly, 

the various comments relating to bit assignment,   ambiguity,  and 

implementation of computer-to-computer communications are equally 

valid for the Walsh coder. 

4.2      Effects of Noise in the Original Image 

Noise efft Jts are considered in this section via a simplified 

analytic model. 

For the purpose of analysis the image correlation is modeled 

by the simple exponential Markov expression 
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R(x.y)      e-*lXl   e-ßM   «pWp^ (4.7.-1) 

Further simplification is obtained by the assumption of identical 

horizontal and vertical statistics.    The:efore,   iel B  - a and 

Pi   =   Py   =   0'   t^en 

Rix.y) =e-^lxl   +|y|) = 0|x|   ♦ |y| (4.2-2) 

Note also that a > 0,   c <  \,   ct = -Ino. 

The application of the MarKov model [Equation (4.2-2)] leads 

to interesting quantitative results.    In the following,   the image is 

assumed to be normalized such that its mean is zero and its variance 

is unity.    It is assumed that the image is corrupted by additive white 

noise of power spectral density N.    The average S/N in the image is. 

therefore,   1/N.    The local S/N in the transform domain, denoted by 

Q,  is the ratio of the image and noise power spectral densities: 

Q(u,v) =S(u,v)/N (4.2-3) 

Restricting the discussion to the Fourier transform,  the power spec- 

tral density is given by 

CD 

S(u,v) - >//'R(x,y)e-2TTJ(ux4vy)dxdy (4.2-4) 

1 

Utilizing Equation (4.2-2) for R, 
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Q(u.v)     ^ 
a    + (Z"u) 

2a 

*Z  + (2nv)2 
(4.2-5) 

Before proceeding with Equation (4.2-5) the problem must be 

discretized. As before, the image is assumed to be properly sam- 

pled,  e.g.,  no  >,iasii.g,  on a rectangular grid at locations 

(xn'ym) = ("AK»mAy)s n, m > 0,  ±1,  ±2, (4.2-6) 

The appropriate frequency band limits in the transform domain 

are [- l/2Ax,   + l/2Ax] and  [ -l/ZLy,   l/2Ay] for the horizontal and 

vertical directions,   respectively.    For computational convenience, 

let Ax = Ay = 1.    Thus,  both the horizontal and vertical extent of the 

frequency domain is  -  1/2 to  + 1/2. 

The behavior of Q ip considered along the diagonal in the fre- 

quency plane,  e.g.,  u = v = f.    Whenever the noise dominates, 

Q(u,v) <  1.    Letting Q(f, f) .  1,   one can solve for the transition 

region.    Considerable simplification is achieved by the assumption 

that at Q(f,f) = 1,  2nf » a.    The latter inequality is realistic for 

most images and it will be demonstrated for the specific example 

utilized in this section.    Equation (4.2-5) can be rewritten according 

to the previous assumptions as 

N  = 4^2/(2nf)4 
(4.2-7) 

therefore 
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I = {v f4m  N) (4.2-8) 

Since 4TT   fc 400 

( 

1/4 

2.5xlO-J^ (4.2-9) 

For the numerical utilization of Equation (4.2-9), a and N 

must be specified. Let N = 0. 001 and o = 0. 05 corresponding to 

0 =0.95 in Equation (4.2-2). The value used for N is very con- 

servative since it corresponds to the image S/N of 1000. The 

p = 0.95 is a typical value. The test images in this dissertation 

have an average sample-to-sample correlation approximately 

corresponding to this value. The evaluation of Equation (4.2-9) 

for specified values leads to the following: 

1/4 
f = [2.6 x 10"3 x 103 x (0. 05)2] 

^0. 1(60)1/4 =0.27^(~) (0.5) 

According to this numerical demonstration,  at 1/2 of the 

highest vertical or horizontal harmonic the image power spectral 

density drops below the noise level. 

Further observations are also in order.    Note should be taken 

that a = 0.C5 « 0. 27 x 2TT, thus the simplification that led to the 

derivation of Equation (4.2-7) was,  in fact,   permitted.    One can 

—.  _ 
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also note that whenever the same implication is allowed,  the lines 

of constant S/N in the transform plane are parabolas.    Fr( 

Equation (4. 2-5).   letting a « 2nu.  ry « Znv, 

•om 

uv =*   aZ/(4vr4NQ) (4.2-10) 

Equation (4.2-10) is the function of a parabola,  whenever the right- 

hand side is a constant. 

The maximum value of Q is at the u - v - 0 location in the 

frequency plane.    It is 

Q(0,0) = 4/a
2N = 1.6x 106 

(4.2-11) 

for the previously-specified values of a and N.    The demonstrated 

example indicates that the presence of even a small amount of 

white noise will have a very significant effect.    In this example,  the 

majority of transform domain samples are below the noise level 

despite the fact that the noise level is approximately six order« of 

magnitude below the peak of the power spectral density. 

The previous analysis can be easily extended to the case where 

the image correlation model is isotropic.    For this case 

R^/JT: R(x, y) - 

Letting (x2  +y
2)1/2  = r>   and (u2  ^2,1/2 . 

replaced by the Hankel transform: 

-ON/(x2   +y2) 
(4.2-12) 

f.   Equation (4.2-4) is 

*■■---■  — 
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S(f)  3  j    z^r R(r) j  (2nr) dr (4.2-13) 

and thus 

1 2 2    -3/2 

Q(f)  - 5J (2n«) W  + (2nf)Z] (4.2-14) 

as in the derivation of Equation (4. 2-7) the inequality 2nf » a can be 

used,  therefore whenever Q(f) ■ 1, 

N = —*| f 
(2n) 

(4.2-15) 

Furthermore, 

i 

f = 
. »/3 

(2n)£ N 
(4.2-16) 

The utilization of the previously-specified parameters (a = 0.05 and 

N - 0.001) indicates that f > 1/2,  therefore the transform domain 

S/N in this instance will remain above unity in its region of definition. 

Although both of the previous models can be expected to deviate 

from the actual image power spectral density,  the qualitative results 

are useful in that they demonstrate the importance of image noise. 

4. 3      Pictorial Examples 

The coding procedures previously outlined in this chapter were 

programmed for computer implementation.    The results,  using the 

, 
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monochrome test images of Appendix A,  are shown in this sub- 

section. 

The logarithmic amplitude and linear phase displays are shown 

in Figure 4.3-1 for the Fourier and Walsh transforms.    The same 

figure includes a demonstration of entropy associated with these 

phase images.    To make the visual comparison between the two 

transforms more meaningful,  the conventional Walsh presentation 

(Figure 4. I-11) is remapped and is shown according to the schema- 

tics of the conventional Fourier display.    All pictorial Walsh domain 

presentations in this dissertation are done in this manner.    The 

entropy images are obtained in two steps.    First,   the phase range 

[- n,  TT] is uniformly quantized by a 64-level (6 bit) quantizer.    Next, 

the two-dimensional probability density function (e.g.,   histogram) 

corresponding to the simultaneous occurrence of phase values 

corresponding to adjacent row neighbors is calculated.    The a« cual 

entropy map is obtained by taking the base 2 logarithm of the two- 

dimensional histogram.    The actual entropy value corresponding to 

this map is obtained by summing all 4096 elements and it is  11.99 

bits (the maximum possible is   12 bits) for both transforms.    The 

obvious conclusion is that the various phase values are,   in fact, 

uncorrelated.    The higher intensity level along the phase image 

diagonals does indicate a small amount of residual correlation. 

The processed images are shown in Figures 4. 3-2 and 4. 3-3 

corresponding to the Fourier and Walsh transforms,   respectively. 

 i 



(a)   Amplitude (Fourier) 

  # 
(c)   Phase (Fourier) 

(b)   Amplitude (Walsh) 

(d)   Phase (Walsh) 

(e)   Entropy (Fourier Phase) (f)   Entropy (Walsh Phase) 

Figure 4.3-1.    Transform Domain Display of GIRL Image 
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In the coding-decoding process,  the image is always converted into 

a sequence of binary digits corresponding to the actual data rate. 

The decoder uses the same sequence as its input. 

In Figure 4.3-4,  the decoded transform planes are shown.    For 

this case,  the sample reduction is obtained by rotationally symmetric 

low-pass filtering.    It should agair be stated that the decoder is 

uninformed about the type,   or even the existence,  of this low-pass 

filter. 

Typical examples of the "dynamically" determined bit planes 

are shown in Figures 4.3-5 and 4.3-6. 

Typical performance curves are shown in Figure 4.3-7.    The 

various curves were generated according to the following procedure. 

Let T(o, 6) and T(p, 0) represent the original and decoded image 

transforms in polar coordinates; also the normalization relative to 

integrated variance is assumed: 

in    <*> 

f j   T(p,e) p dp de = i (4.3-1) 

The lower limit e indicates that the d.c.  term is excluded in the 

integration.    The letter designations a through e correspond to the 

following five functions designated as Z    through Z   ,   respectively: 

.TT       P 

Za(o)=y*   y*   |T(s,9)|2 sds de (4.3-2) 

_     
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20 ^0      60       80      100      120     140      160     180 
HARMONICS 

(a)   Fourier Domain 

0       20       40      60      80      100     120     140     160     180 
HARMONICS 

(b)   Walsh Domain 

Figure 4.3-7.    Typical Performance Curves for Coding- 
Decoding Examples (see text for various 

letter designations) 
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Zb(p) = 1 - Za{o) (4.3-3) 

Zn 

zc(p) « /   /|T(8.e) -T(S.G)|
2
 sds de        (4.3-4) 

Zd(p) ' 2^" dp a 

e CTT o  r' P      c 

(4.3-5) 

(4.3-6) 

The curves in Figure 4.3-7 were generated from the discretized 

versions of Equations (4.3-2) through (4. 3-6).    These functions con- 

vey considerable information about the coding process (although in a 

forced rotational symmetry).    Z    is the integrated transform 

variance.    Z,   corresponds to the truncation error.    The integrated 
b 

overall coding error is Z   .    The image power spectral density is 

Zj.    The local (in the transform plane) coding error is given by Z^. 
d 

The curves Z, and Z    merge at the location of the low-pass filter 
d e 

boundary. 

In Figure 4.3-8, the sample reduction is obtained by dis- 

carding transform samples whenever the amplitude is below a cer- 

tain value.    The subsequent coding is the same as in previous 

examples. 

The influence of apodizing,   a ten-element tapered window in 

this case,  is demonstrated in Figure 4.3-9. 
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4.4     Channel Coding Considerations 

There are two basic philosophies concerning channel noise 

sensitivity evaluation of the picture coder.    In one case,   channel 

errors are permitted to occur in the source coded data and.   conse- 

quently.   the reconstructed image will be affected by the channel 

noise.    A "well-behaved" coding process will be insensitive to 

channel errors.    The second approach implies the requirement for 

channel coding and in effect assumes that by proper channel coding 

error-free transmission is possible.    The author is a strong be- 

liever in the latter philosophy. 

Lack of sensitivity to channel errors is a desirable image 

coding feature.    It is easy to demonstrate,  however,   that,  in general, 

efficient data compression and insensitivity to channel errors are 

contradictory concepts.    The fundamental theoretical basis for any 

data compression procedure is redundancy in the data source.    The 

fact that the source output is correlated permits representation of 

the source in "compressed" form.    An efficient data compression 

procedure removes the existing source correlation and produces an 

output which,  by design,  will be uncorrelated.    In the binary repre- 

sentation of the compressed data,   each bit will acquire a.   added 

importance and its reversal is more .pt to degrade the qualify of 

the reconstructed data than a similar occurrence of error in the 

original (uncompressed) data. 

-—•   —  "—    ■ 
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It is not surprising that most efficient image coding algorithms, 

particularly contour coding techniques,  are very sensitive to channel 

errors.    For the latter method,  a single bit error is likely to prevent 

the entire image reconstruction. 

Source coding removes the source redundancy,  conversely, 

redundancy is reintroduced by channel coding.   For the channel coding 

procedure,  it is important that the input to it be of a particular 

statistical structure.    Since the channel is unlikely to have been 

designed to accommodate any particular source redundancy,  it is 

anticipated that channel usage is optimum when its input is statisti- 

cally uncorrelated. 

According to *he above statement,  source redundancy,  i.e., 

finite memory,   U undesirable for subsequent channel coding which 

assumes a memoryless source.    The PCM form of the image is 

highly correlated.    The high degree of correlation can be demon- 

strated in the binary equivalent of the image. 

A quantitatively meaningful demonstration o: correlation is 

the correlation function calculated from the binary equivalent of 

image segments.    Each value of the correlation function R   is 
j 

determined from a data segment of N values: 

N-j 

j =Trj £ (xi -^ K 
i = l 

R. = x) (4.4-1) 

•M _— 
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and 

N 
X  HXi (4.4-2) 

i = l 

The data (x.) are the actual binary representation of the image, 

that is,  each x. is either  1 or 0.    Calculation of the correlation func- 

tion for N  =  10,000 from the PCM "Girl" image is shown in Figure 

4. 4-la.    The structural form of R. in Figure 4. 4-la is consistent 

with the eight-bit representation,  each relative maximum occurs at 

multiples of eight.    R» is the variance of the binary stream. 

The similar calculation of the correlation function for the 

source coder output of Chapter 4 is shown in Figure 4. 4-lb.    The 

result indicates that the source coding algorithm output is equivalent 

to a memoryless source. 

Lack of correlation and the significant bit reduction in the out- 

put of the image coding procedure indicate that the compressed data 

are expected to be sensitive to channel errors.    This sensitivity is 

evident also upon careful examination of the coding process of 

Section 4. 1.     Both the number and the location of quantum levels are 

"dynamically" determined.    Channel error can affect both of these 

quantization parameters.    Erroneous determination of the number of 

quantum levels is a catastrophic error.    The synchronization in the 

adaptive coding procedure will be lost and all subsequent values will 

be drastically altered. 

— 
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0        10     20      30      40      50      60      70      80      90     100 
LAG (bits) 

(»)   Original PCM 

0   10  20  30  40  50  60  70  80 ~90 VoO 
LAG (bits) 

(b)   Adaptive Transform Code 

Figure 4.4-1.    Typical Bit Stream Correlation Properties 
of GIRL Image 
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It can be seen that the adaptive phase coder output should not 

be transmitted over noisy channels without channel coding.    Although 

the degree of image compression depends on the image correlation 

via the generalized power spectrai density,   it can be controlled to 

virtually any reasonable value by an appropriate linear filter.    Thus, 

the additional bandwidth requirement for the channel coder-introduced 

redundancy can easily be offset by the image coder at the expense of 

additional low-pass filtering. 

by relaxing the requirement for complete adaptivity the coding 

algorithm can be made less sensitive to channel eirors.    The prior 

specification for bit assignment according to some conventional 

models retains the flexibility for determination of quantum levels, 

however,   catastrophic errors resulting from loss of synchronization 

can no longer occur. 

Using the polynomial surface fit for the optimum quantization 

parameters (subsection 3.7) would also avoid catastrophic errors, 

providing that the transmission of the appropriate coefficients is 

without errors.    Neither technique was,  however,  employed.    In 

either case,  the additional complexity could be avoided by proper 

channel coding,  which probably would require less total effort. 

< 



5.    EXPERIMENTAL RESULTS,   II (COLOR) 

Transform coding techniques for monochrome images have 

been successfully utilized by various researchers.    For other, more 

complex,  types of images,   redundancy exists in parameters other 

than the two spatial variables.    This chapter considers the extension 

of the algorithm of Chapter 4   to color images,  while in Chapter   6 

the coding algorithm implementation is for a sequence of time-varying 

images. 

Further extensions could include the simultaneous considera- 

tion of color and time, however,  it was not done here.    It should be 

emphasized that for even the three-dimensional data,  e.g.,  color, 

or time-dependent images, the experimental difficulties become quite 

significant.    The generation and calibration of properly registered 

frames is a major effort by itself.    Similarly, the display and record- 

ing of a color image requires a g-eat deal of additional hardware and 

care as compared to monochrome images.    Furthermore, the third 

dimension significantly increases the data handling.    The experi- 

mental difficulties listed above have kept research on color and 

frame-to-frame coding at a fraction of the effort extended to the 

monochrome case. 

5. 1      Color Image Representation 

A passive, opaque (non-emitting) object becomes "visible" by 

reflecting radiation which is incident on it. The reflection process 

is selective,  thus,  the relative amount of reflected energy is 

129 
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dependent on the local characteristics of the object and it also depend« 

on the spectral distribution of the incident radiation.    The physical 

reflection process,   in effect,  specifies the image. 

The spectral dependence is "integrated out" for monochrome 

images.    The exact characterization of actual visual scenes requires 

the specification of the spectral component which is accomplished by 

the third image variable,  the wavelength (X).    Symbolically,  the color 

image is an analog function of three variables,   I(x, y, \).    Prior to 

the coding procedure,  the image must be sampled along the spectral 

axis in addition to the discretization of the two spatial coordinates. 

The sampling procedure applied to the wavelength very strongly 

depends on the ultimate purpose for which the image was recorded. 

Formally,   the spectral sampling can be written 

Kx.y.j) =y      r (X) I(x,y, X) d>.,  j  = 1,   ... N    (5.1-)) 
0       •' 

The "spectral aperture, " r.(X) determines the weighting of the 

spectral components for the determination of the j-th sample.    The 

number of samples, N,  depends on the application.    Equation (5. 1-1) 

can represent the monochrome image of Chapter 4 by specifying 

N ■ 1 and rj to be a constant over the visible portion of the spectrum. 

The value of N may be in excess of 20 for what is generally 

referred to as multispectral data.    The functional form of r.,  in this 

case,  is usually an approximate delta function a ntered at a specific 

wavelength value,   \..    Not all X.'s are necessarily in the visible 

i 
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spectral region.    Multispectral data are generally utilized in 

computer classification algorithms rather than for the actual repro- 

duction of the visual scene for human viewing. 

The spectral sampling is greatly simplified for the case when 

the purpose of image recording is for subsequent display for human 

visual viewing.    The human eye does not respond individually to the 

infinite number of spectral elements present in a visual scene.    It is 

rather a triplet of photoelectric detectors whose individual responses 

cover the low (red), medium (green) and high (blue) spectral regions. 

The human visual process determines the color on the basis of the 

simultaneous "readings" of these detectors (Cornsweet,   1970). 

In effect,  the human eye perceives the complex visual scenes 

corresponding to its three detectors.    Within this somewhat over- 

simplified model the eye performs the mapping of the continuous 

wavelength axis into a set of three values.    The mapping is of the 

form of Equation (5. 1-1) and it is given by the following three 

equations. 

R(x,y) =y      rR(\) I(x,y, \) d\ (5.1-2) 

G(x,y) «jf     rG(\) I(x,y,\) d\ (5.1-3) 

B(xly) =y      rB(M I(x,y,\) d\ (5.1-4) 

mtm —•—  .   . .    -.. .       -^t 
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Letter indices R.  G.  and B designate the spectral region in 

which the appropriate   'eye detector" reaches its maximum response 

(red.  green,   and blue,   respectively).    Equations  (5. 1-2) through 

(5. 1-4) imply the nonunique spectral sensitivity of the human eye. 

According to these equations,  the change of I(x, y. X) will not be 

perceived as long as the left sides of these equations are not 

altered. 

From the standpoint of this bandwidth reduction algorithm,  the 

coding-decoding process will simultaneously consider the three 

image signals R(x.y).   G(x.y).   and B(x.y).    The redundancy reduction 

is achieved by considering the correlation among the three color 

planes in addition to the spatial correlation within each plane. 

5.2      Description of the Algorithm 

The coding scheme for the multidimensional data which is 

presented in this dissertation can be put into the simple form,   shown 

in Figure 5.2-1.   in a manner similar to the monochrome case of 

Figure 4.1-1. 

The three-dimensional transform of the R.  G.   B planes yields 

three transform planes I,,   L,. 1^,    By assumption,   the samples are 

uncorrelated within each transform plane as well as among the 

various transform planes. 

The actual implementation utilized the Fourier transform.    The 

three-dimensional transform is performed in two stages.    The con- 

ventional two-dimensional Fourier transform is applied to the R, 

■»■       —   — 
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C,   B planes individually.    Each triplet of complex values corres- 

ponding to identical locations in the three transformed planes is sub- 

jected to the one-dimensional,  three-point complex Fourier trans- 

form.    The 3x3 complex unitary transform matrix is shown in 

Figure 5.2-2. 

11 1 

1 0.5 (-1  ij/I) .0.5 (1   +j/3) 

1       -0.5 (1   +j/3r) 0.5 (-1   ij/I) 

Figure 5.2-2.    Three-Element Fourier Transform Matrix 

The structure of the 3 x 3 complex matrix indicates that the 

first of the three final transform planes (Tj) is simply the average 

of the two-dimensional transform of the R.  G,   B planes,   respectively. 

In effect,  the first plane,  f,,   contains the brightness,   or luminance, 

information.    The L, and Lj planes designate the fluctuation around 

the average of the three planes and thus represent the chrominance 

information.    It is not necessary,  however, to make reference to 

luminance and chrominance designations in order to implement the 

coding procedure. 

The coding-decoding procedure of Chapter 4 is applied to the 

three transform planes  (Tj.   L,.  Tj) individually.    The only inter- 

dependence among the three separate coding processes is that the 

- taaMMaMHaaaia 
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scale factor that relates the number of quantization levels to the 

sample variance is determined for T, and the same value is utilized 

for T, and I, as well. 

As in the procedure utilized for the monochrome case in 

Chapter 4, the three filters can be used by the transmitter to modify 

the coding process.    The receiver will adapt to the filtered planes 

without any control information.    The close similarity of the R,  G, 

B and their two-dimensional transforms implies that the largest 

image energy component will be concentrated on the first transform 

plane. 

The low-pass filtering effects of the Tj, l^  and Tj planes are 

similar to the procedure previously used for the Y,   I,  Q system 

(Pratt.   1971).    The "luminance" plane Tj,  in effect represents the 

spatial resolution,  which will be degraded by a high degree of low- 

pass filtering.    The "chrominance" planes ^ and T3 can be subjected 

to rather strong low-pass filtering without serious image degradation. 

The replacement of every value by zero in the T2 and I3 planes 

reduces the color Imag« to a monochrome equivalent.    This mono- 

chrome image is simply the average of the R,  G,   and B signals. 

The value of the adaptive nature of the color coding process 

as indicated in Figure 5.2-1 cannot be overemphasized.    The appro- 

priate filters can be specified for a specific color system.    For the 

general case,  the R.  G.   B signals may be referenced to a wide 

variety of primaries.    The degree of low-pass filtering which may 

 ■ 
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...e tolerated will depend on the original color digitizing equipment 

and the subsequent calibration procedure,   if any.    The low-pass 

filter band limits are  implemented by the transmitter and the spec- 

ification is very likely the result of human visual inspection.    When- 

ever the cost in effort associated with color image transmission is 

high,  optimization of the three filters is likely to require consider- 

able effort. 

The significant property of the adaptive procedure is that once 

the transmitter decides on an optimized set of filters (i.e.,   the 

tolerance of the transform planes to low-pass filtering has been 

determined) none of this information is required by the receiver. 

All informition bits relate to the quantized transform domain,   and 

no bookkeeping information is required. 

The same comments made in Chapter 4 regarding advantages 

and disadvantages apply for the adaptive color coder as well.    The 

adaptive procedure includes the benefits of both zonal coding (non- 

uniform bit assignment and quantum levels) and threshold coding 

(adaptivity in deciding which regions can be discarded).    The funda- 

mental disadvantage of the adaptive coder is the variable buffer 

requirement for the receiver.    The bit rate,  or equivalently,  the 

degree of compression,   is determined by the transmitter and only 

after decoding will this information be available to the receiver. 

The three-primary color system utilized the three-dimensional 

Fourier decomposition only.    The one-dimensional,   3-point Walsh 

mmm  , .— - «&•*« 
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transform is not defined.    An alternate composite system could 

include the two-dimensional Walsh transform of the R,  G,   B planes 

followed by the one-dimensional Fourier transform.    The alternate 

system was not actually implemented.    If the number of the color 

planes N is of the form N = 2  ,  where n is an integer,   the Walsh 

decomposition is possible for the third dimension.     The three- 

dimensional Walsh decomposition of Chapter 6 could be directly 

utilized for multispectral data of four input planes. 

5.3      Pictorial Examples 

As with the monochrome coder of the previous chapter,  the 

color coding algorithm has been programmed.    The three-dimensional 

Fourier transform was utilized. 

Figure 5.3-1 shows the three transform planes corresponding 

to the three-dimensional transform.    Results of the coding-decoding 

experiments are shown in Figure 5.3-2.    Tristimulus color planes 

for one of the decoded images are shown in Figure 5.3-3.    Decoded 

transform planes for a typical case are shown in Figure 5.3-4. 

This figure also indicates the varying amount of low-pass filtering 

in the different transform planes.    The transform statistics can be 

significantly altered by apodizing.    The influence of a ten-element 

image window is demonstrated in Figure 5.3-5. 

It should be noted that the d. c.  term for the three-dimensional 

transform is located in the first transform plane.    For the other 

transform planes,   the relative maximum amplitude location is not 

predictable. 
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(a)   Amplitude (Plane 1) 

(c)   Amplitude (Plane II) 

(1))   Pha«e (Plane I) 

(d)   Phase (Plane II) 

(e)   Amplitude (Plane III) (f)   phase (plane m) 

Figure 5.3-4.    Decoded Transform Planes for Color GIRL 
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(a)   Amplitude (Plane I) 

(c)   Amplitude (Plane II) 

(e)   Amplitude (Plane III) 

(b) Phase (Plane I) 
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6.    EXPERIMENTAL RESULTS III ( INTERFRAME CODING 

It is obvious that significant redundancy exists among members 

of image sequences representing the temporal variation of visual 

scenes.    An efficient interframe coder removes the redundancy in 

the sequence of similar images as well as within each image 

(Haskell,   Mounts,   and Candy 1972), 

In a manner similar to the color coding approach of the pre- 

vious chapter,  the image sequence can be considered as three- 

dimensional data consisting of two spatial coordinates and one time 

coordinate.    An additional similarity between interframe and color 

coding is that they both exploit the limitation of the human visual sys- 

tern.    For most practical applications,  three primary color compo- 

nents are sufficient to represent most apparent colors within the 

spectral range of the human visual response.    The limited temporal 

resolution of the human eye permits the sampling of the temporal 

variable at approximately 60 Hertz. 

It is important to note that the sampling procedure thus 

specified by the inadequacy of the human visual process does not 

necessarily correspond to the classical sampling requirement. 

Consequently,  emphasis by the coder is on preservation of the 

appearance of the image rather than on the actual image itself. 

There are many applications for interframe coding,   the most 

obvious being television.    Although various spatial domain techniques 

have been successfully utilized for redundancy reduction in video 

signals,  transform techniques have not been previously considered. 
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This chapter considers the theoretical implications for 

transform domain coding.     The adaptive phase coding technique of 

Chapter 4 is extended to the interframe case.    Detailed discussion of 

the algorithm as well as examples of the coding procedures are also 

given. 

6. 1      Analysis of the Interframe Case 

A sequence of images can formally be written as I(x, y, t).     The 

spatial variation is indicated by x and y and the temporal variation by 

t.     The three-dimensional function I represents the continuous  (non- 

discrete) variation of a visual scene.    The physical nature of the 

imaging process requires that I(x,y,t) be non-negative. 

If I is band-limited with respect to all three of its variables, 

then the Lukosz bound applies,  at least formally.    In fact,   the dis- 

cussion in subsection 2. 6 indicated the tightening of this bound for 

increasing numbers of dimensions.    If the Lukosz bound is to be valid 

for the sampled version of I,   the sampling rate must be at least twice 

the band limit for each dimension.    The various imaging devices 

band-limit the spatial frequency spectrum of images; however,  no 

similar band-limiting occurs for the temporal variation.    Further, 

sampling along the time axis is performed to match the limitations of 

human visual process and bears no relation to the structural form of 

the actual image.    Consequently,  the Lukosz bound does not apply for 

the temporal portion of interframe imagery. 

The utility of statistical coding should also be discussed as 

applicable to the interframe case.    Statistical coding procedures 
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utilize    the stochastic rule that exists among the elements that are 

to be coded 

The existence of strong nonstochastic dependence among ele- 

ments of a multidimensional image implies that a purely statistical 

approach to image coding is suboptimal.    The intraframe and color 

images can be sufficiently characterized by statistical means.     The 

statistical approach can be extended to the interframe case,   (as is 

done in the remaining subsecfions of this chapter).    However,  it is 

interesting to note various deterministic relations which apply to the 

interframe case and which are ignored by the statistical approach. 

The above indicated deterministic rules can be formally repre- 

sented by operator notation.     Let I. (x, y) s I(x, y,t.) and 1    (x, y) = 

Mx»y»t.) be two individual images in a sequence of images describing 

a time-dependent visual scene.    Specifically,  I. and 1    represent the 

image at times ^ and t^.    The  following specific question should be 

addressed:   given the image pair I. and L , is there a nonstochastic 

operator L,   such that, at least approximately, 

I^y) = LJlj^y)] (6.1-1) 

Any statistical coding approach which ignores Equation (6. 1-1) 

and the inherent redundancy it implies cannot be optimal. 

In the following,  the various basic forms of the operator L are 

considered.    The appropriate influence in the transform domain are 

addressed. 

■_ 
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The operator L can represent local as well as global changes 

between I. and I, .    The former case implies that only a relatively 
J k 

small part of the image is changing.    Under global changes,  the entire 

image is understood to be changing in some (nonstochastic) systematic 

manner.    The local image variation indicates the temporal evolution 

of a visual scene as observed by a stationary imaging device.    Global 

image variation is the probable result of the movement of the appro- 

priate imaging device. 

Some of the obvious global variations are image shift,   rotation, 

defocus and magnification.    Other more complicated global image 

changes as well as the simultaneous occurrence of the ones listed 

above clearly are possible.    These global image variations cannot be 

characterized statistically; thus,   the statistical encoder is not likely 

to remove the entire redundancy which is present in interframe 

imagery. 

The extension of the adaptive phase coder of Chapter 4 to the 

interframe case is likely to be sub-optimal because of the statistical 

approach taken.    For local variations and/or small global changes, 

the statistical correlation among neighboring frames is relatively 

high,  thus utilization of the statistical approach will lead to modest 

bandwidth reduction over the intraframe approach. 

Appropriate changes in the transform domain, resulting from 

the affects of the operator L in Equation (6. 1-1), can be modeled by 

the use of simplified examples. 

-   - 
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Local Variations 

Consider the following case of frame-to-frame change as 

indicated in Figure 6. 1-1.    Let g3(x, y) represent a subregion in 

frame A which is shifted a distance a in the horizontal direction by 

the time that frame B is generated.    The unchanging background is 

represented by gjlx, y).    The altered parts of the background are 

denoted by g2(x, y) and g4(xf y).    In frame A,  g2(x, y) is part of the 

frame while g4(x, y) is covered by g3(x, y).    The roles of g   (x, y) and 

g4(x, y) are interchanged in frame B.    Equivalently,   this can be 

expressed as 

^A   "  ll    +8,    +g: (6.1-2) 

gB ' gl  +g3(x +a'y)  +*4 (6.1-3) 

Here gA and gB rePresent frames A and B.    Note also that the argu- 

ment (x,y) is omitted for notational convenience.    Although Equations 

(6. 1-2) and (6. 1-3) model a rather simplified interframe change,   it 

approximates actual applications such as the Picturphone model.    For 

the latter case,  g3 can be considered as the model for the Picturphone 

speaker and gj,   g^ and g4 represent the various background 

segments. 

In terms of the previously developed notation,  the frame-to- 

frame change can be made in a simpler form.    First,  the following 

additional definitions are made 

ga ^ g2 + g3 (6.1-4) 
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(b)   Frame B 

Figure 6. 1-1.    Geometry of Frame Movements 

.... 

m^tmmm 



therefore 

gb = gjlx + a) + g^ 
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(6.1-5) 

«A =8I   +g. (6. 1.6) 

•B     Bl gi   +8» (6.1-7) 

Equations (6. 1-6) and (6. 1-7) indicate that,   for the model under 

discussion,   each frame can be decomposed into a varying part and 

one that remains unaltered between consecutive frames. 

Specifying the discussion to the Fourier transform,  the above 

described model permits qualitative predictions for iuerframe 

changes in the frequency domain.    Let G   (u, v) be the Fourier trans- 
s 

form of g8(x, y).    The subscript s may represent any of those pre- 

viously utilized:    1.2,3,4,a,b,A,  and B.    Consequently. 

G   (u,v) =G 
8 S /      g8(x, y) exp - 2nj(ux + vy) dxdy 

-CO 

(6. 1-8) 

Gs  -|GS|  
exPJe8  ^G8R  +jG8l (6.1-9) 

9    « tan-1 (G   T/G   _ ) 
s \    si      sR' (6.1-10) 

Note that the subscripts (u, v) are dropped whenever possible for 

notational convenience. 

- 
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Using the developed notation for the frequency domain,  the 

Fourier transforms of Equations (6. 1-6) and (6. 1-7) can be written 

as 

G.  = G.  + G Ala 
(6.1-11) 

GB ^ Gl + Gb 
(6.1-12) 

The interframe variations in the frequency plane given by 

Equations (6. 1- 11) and (6. 1-12) can be demonstrated by phasor dia- 

grams.    Simultaneous display of Equations (6. 1-11) and (6.1-12) is 

shown in Figure 6. l-2a.    This figure indicates a "typical" example 

of the interframe variation and should only be viewed as a qualita- 

tively demonstrative example.    The following assumptions are also 

inherent in this graphical demonstration:    (1) g.,   g   ,  and g,   have 

"similar" Fourier decompositions,   (2) the region over which g. is 

defined is larger than the similarly-specified regions for g    and g, . 

The above assumptions imply that the power spectral density functions 

are similar for g.,  g    and g,   except for different scale factors. 

The graphical representation implies that both the amplitude 

and phase values are strongly correlated.    Furthermore, the follow- 

ing inequalities for phase and amplitude changes are easily obtained 

from Figure 6. l-2a. 

M = |*A ■ ^BI S tan -ifb tan 
<   G 
1     a (6.1-13) 
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REAL 

(a)   Phasor Representation of Interframe Changes 

REAL 
(b)   Maximum Interframe Phase Deviation Between 

G.  and G„ 
A B 

(c)   Maximum Interframe Amplitude Deviation 
Between GÄ and G 

A B 

Figure 6. 1-2.    Vector Representation of Interframe Changes 
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|AC| IGAI - |GB| *|0*l + lcb|        <6-1-14) 

The conditions for equality in Equation» (6. 1-13) and (6. 1-14) 

are illustrated in Figures 6. l-2b and c. 

As a further demonstration of the phase and amplitude corre- 

lation, quantitative evaluation of Equations (6. 1-13) and (6. 1-14) can 

be made by substituting "reasonable" values for G,,  G   ,   and G. .    In 
la b 

particular,   let [GJ  ■ JG  I      IGJ .    This condition implies that the 

areal extent of the changing and unchanging image segments are 

equal,   with similar power spectral densities.    Although the amplitude 

change constraint is not significant,   as indicated by Equation (6. 1-14), 

the maximum phase change is restricted to n/2 which is a fourfold 

reduction on the phase range. 

For a  10 percent image area change,   and similar assumptions 

as before,   the application of Equation (6. 1-14) indicates a phase 

change of less than n/lS which is a reduction of the phase range by 

a factor of 30. 

6.2      Description of fhe Algorithm 

The extension to the interframe case of the adaptive algorithm 

of Chapter 4 is structurally quite similar to the color coding imple- 

mentation.    The coding procedure utilizes the three-dimensional 

transform (Fourier or Walsh) to uncorrelate a set of four subsequent 

image frames.    A schematic diagram similar to the one given for the 

color coder is shown in Figure 6.2-1. 



»3 

«Do 

IS3 

1  , 1   1               1 II 

hhh JC nn f     f              u 

a       a.        a tt 
a       a 
UJ           UJ UJ         UJ                            '— UJ        UJ         tu 

8   8    8 
o     u      o 

UJ 

8 8    8 
u      o 
UJ          UJ 

Q        O                         *< 
o    o              « 
u      u                   C 
UJ         UJ                            — 

Q         O 

III I 
h 

(0 ■ 
• 

a       or        a oc 

0 

0. 
UJ         UJ          UJ UJ 
»-         1-          K 
-1         -J          _) _l <,_*   <,_^  <,. * O-T                    j 
ik   c   c u. 

u 
i 

i 
ill 1               1      1 00 

IT c 

--|,-~l,_"  ,_»                         1 u o II                                     i 1 r     i i                Q 

t S                             o 

ii 
t 

«j 
1! 2                   1 

!5u. 
UZ ii 

<                                       • 
u 

52 2i i 
OH 

1 5J 
1   L 

0 
c 
■                        7 

ft 
1 

i | ■ 
7                                      <-• 3 

•                                              «•) 5C 
r»                                       < — ' ■-" 

Öl hi 
JVJ                                         < —^ 

- <: 

i 
L. - . 



154 

The three-dimensional transformation consists of the subse- 

quen; application of the two-dimensional 256 x 256 transform of each 

image plane and the one dimensional four-point transform along the 

temporal axis.    The four-point transform matrices are shown in 

Figures 6.2-2 and 6.2-3 for the Fourier and Walsh matrices, 

respectively. 

By assumption,  the four transform planes are uncorrelated 

individually as well as relative to each other.    After the application 

of the three-dimensional transform (either Fourier or Walsh) the 

first transform plane is the average of the two-dimeiisional trans- 

forms of the four input images.    The other three transform planes 

represent fluctuations around the average.    One could qualitatively 

argue that the first transform plane represents the unchanging image 

segment while the other three transform planes contain information 

relating to temporal variation. 

Like the color coder of Chapter 5,  each of the four transform 

planes is individually filtered and coded.    Unlike,  however,  the color 

coding procedure,  one cannot arbitrarily low-pass filter transform 

planes 2 through 4.    Drastic low-pass filtering of these planes will 

result in the blurring of the time-varying areas without reducing the 

resolution of unchanging areas. 

It has been demonstrated (Budrikas,   1972) that the resolution 

loss in rapidly changing areas is visually much less objectionable 

than for image segments that are relatively stationary.    By 

-^ -    -  ^mm 
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Figure 6.2-2.    Four-Element Fourier Transform 
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appropriately "tuning" the four two-dimensional filters in Figure 

6.2-2,  the psychophysical properties of the human visual system 

could be exploited.    Although the computer-implemented algorithm 

of this chapter could be utilized for the study of the relative impor- 

tance of resolution loss in moving and stationary image segments, 

it was not done experimentally.    The unavailability to this research 

effort of the hardware required to display the decoded interframe 

images in their natural medium (such as television) restricted the 

visual evaluation of the decoded image sequences to the viewing of 

individual (stationary) images. 

The structure of both the Fourier and Walsh transform 

matrices indicates that for statistically correlated image frames 

the image energy will concentrate in the first transform plane. 

Therefore,  even without the application of different spatial filters 

to the various transform planes,  the adaptive procedure will result 

in bandwidth reduction.    The transform values in transform planes 

2 through 4 will require fewr r quantization levels because of uneven 

energy distribution. 

The advantages of the adaptive phase coding procedure indicated 

in Chapters 4 and 5,  are applicable to the interframe coder as well. 

Specifically, the coder will "track" the three-dimensional power 

spectrum and make the bit assignment adaptively.    The number and 

location of quantum levels will be specified according to the local 

estimated value of the power spectral density.    The adaptivity feature 

!!■    —I ^m 
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has an added benefit for the interframe transform coder.    Unlike the 

monochrome exponential correlation model,   the interframe case 

cannot be modeled by a simple correlation function.    In fact, the 

highly non-stationary nature of the interframe image precludes any 

fixed nonaduptive modeling of the transform domain. 

6. 3      Pictorial Examples 

Examples for the three-dimensional Fourier and Walsh inter- 

frame coder are shown in this subsection.    Figure 6.3-1 is the 

three-dimensional transform domain display.    The coding examples 

are given in Figures 6. 3-2 through 6. 3-9.    An example for the 

decoded transform planes is given in Figure 6. 3-10. 

The visual inspection of Figures 6. 3-1 and 6. 3-10 demonstrate 

the "non-stationary" character of the three-dimensional transform 

for the interframe case and the capability of the coding method to 

adapt to the particular form.    The structure of transform planes 

2 through 4 is the result of the significant amount of image motion 

in this example. 

The Fourier transform coder similarly to the monochrome 

case outperforms the Walsh coder both in terms of mean square 

error as well as visual appearance. 

I 
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(a)   First Image (b)   Second Image 

(c)    Third Image (d)    Fourth Image 

Figure 6,3-3.    Decoded BELL-GIRL Image Sequence,  II (Fourier), 
Bit Rate 0.55 Bit; M.S.E.:   0.99% (normalized 

relative to image energy) 

This page is  raprodond at the 
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(a)   First Image (b)   Second Image 

(c)    Third Image (d)    Fourth Image 

Figure 6. 3-4.    Decoded BELL-GIRL Image Sequence, 
III (Walsh).    Bit Rate 0. 38 Bit; M.S. E. :    2.24% 

(Normalized Relative to Image Energy) 

This page1 is reproduced at the 
back of th«- report by a difft-mit 
reproduction method to provide 
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(a)   First Image (b)   Second Image 

(c)    Third Image (d)    Fourth Image 

Figure 6.3-7.    Decoded BELL-DUMMY Image Sequence, 
II (Fourier).    Bit Rate:   0. 43 Bit; M. S. E. :    1.05TJ 

(normalized relative to image energy) 

This page is reproduced at the 
Iwck of the nporl In a different 
reproduction method to provide 
better detail. 
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(a)   First Image (b)   Second Image 

(c)    Third Image (d)    Fourth Image 

Figure 6. UO.    Decoded BELL-DUMMY Image Sequence, 
IV (Walsh).    Bit Rate 0.69 Bit; M.S. E. :    1. b^'o 

(normrli/.ed relative to image energy) 

This page is rrprculnced at the 
lack of thv it-port hv a different 
reproduction method to provide 
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7.    SUMMARY 

A new approach to transform image coding has been presented 

in this dissertation.     The generalized phase concept plays a dominant 

role in currently developed coding algorithms.     The important advan- 

tage of the coding algorithms is a high degree of adaptivity in the 

determination of both the number and location of the quantum levels. 

Significant adaptivity to the image power spectral density is 

accomplished without the assumption or specification of any a priori 

statistical image model.     In addition,  no bookkerping information is 

required.    The actual image model is "dynamically" determined from 

previously quantized and reconstructed transform samples. 

The new transform coding approach was implemented through 

discrete Walsh and Fourier transforms.    The Fourier transform was 

found to be superior to the Walsh transform.     The fundamental supe- 

riority of the Fourier transform is explained by the general image 

insensitivity to (frequency domain) low-pass filtering. 

Although the image transform is performed on the entire 

(256 X ^56) image rather than on smaller blocks,  the increase in com- 

putational complexity is modest.    For example, the number of com- 

putational steps will only increase a factor of two from  16 X  16 block 

transforms to the entire 256 X 256 transform.     The large-size trans- 

form is a disadvantage if a hard-wired configuration is required, 

however,  this fact is unimportant when the coding-decoding algorithm 

is implemented via general purpose computers.    This latter case has 

168 

■■■  teM ,  



169 

the potential practical utility for computer-to-computer image 

transmission. 

The new image coding techniques utilizing large-sze trans- 

forms significantly outperform the block-encoding transform tech- 

nique.    The usual block size (16 X 16) exceeds the number of picture 

elements over which the image is significantly correlated; it was 

therefore oreviously postulated that larger-size transform blocks 

may result in negligible performance improvement.    However, block 

encoding,  particularly at low data rates, assigns a significant fraction 

of the available bits for reconstrucHon of block-to-block boundaries. 

Stated in another way,  the image statistics arc significantly altered 

by grouping into adjacent image blocks.    Discovery and analysis of 

this fact provides a sound theoretical basis for the experimental 

success of the coding algorithms in this dissertation. 

The experimental portion of the dissertation includes coding 

algorithms for monochrome,   color,  and interframe images.    It has 

been found that the date rate can decrease to 0. 38 bit for monochrome, 

0. 55 bit for color and o. 25 bit for interframe images.    The imple- 

mentation included both the Fourier and Walsh transforms.    Visual 

image degradation, however,  was more significant for the Walsh than 

for the Fourier transform. 

The coding scheme is susceptible to channel errors.    It was 

shown that the coder output is statistically equivalent to a discrete 

memoryless source,  thus,   conventional channel encoding techniques 

are applicable.    The coding procedure is capable for a wide range of 

__ —.   
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b) 

data compression thus the requirement for algebraic redu. dancy 

(channel coding) can be offset by additional image data compression 

(source coding). 

The non-negative image constraint has been studied via the 

Lukosz bound. 

The conclusions of this dissertation are 

a)        Determination of the proper transform domain image 

model is important. 

Utilization of large-size transforms and adaptive phase 

coding permits significant additional rate reduction when 

comparison is made with bio  k encoding. 

The superiority of phase has been demonstrated as a 

random variable for coding. 

The development of improved predicting algorithms and 

preprocessing filters may result in additional bandwidth 

reduction.    The polynomial surface fit algorithm,   in 

addition,  could be utilized for the image model. 

Adaptivity is important to deal with non-stationary image 

structure,  particularly for the interframe case,   and 

residual noise.    The latter consideration was shown to 

be important for most practical situations. 

c) 

d) 

•1 
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APPENDIX A 

ORIGINAL TEST IMAGES 

Various test images used in experimental sections of this 

dissertation are shown in this appendix.    Figure A-l shows  redisplay 

of the two original monochrome images.    Color test images are 

shown in Figure A-2.    Their three primary components (tristimulus 

values in the NTSC receiver phosphor primary system) are shown in 

Figure A-3 in monochrome presentations.    Two image sequences 

used for interframe coding are shown in Figures A-4 and A-5. 

Image differences for these sequences are presented in Figure A-6. 

The monochrome (Figure A-l) and color test images (Figure 

A-2) were obtained by digitization of photographic transparencies. 

The image sequences for the interframe case were obtained from 

digitized video signal.    All sampled images consist of 256 X 256 

picture elements and each original sample is uniformly quantized to 

256 levels (8 bits).    The monochrome images were displayed on a 

flying spot scanner and photographed on Polaroid-type 52 film.    The 

color images were displayed on the Aerojet Model SG-D2219 video 

display and photographed on high-speed Ektachrome film. 
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Figure A-4,    Image Sequence:    BELL-GIRL 

This page is rcprrxluced at the 
hack of the report l>v a different 
reproduction method to provide 
lietter detail. 
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(a)    First Image (b)   Second Image 

(c)    Third Image (d)   Fou -th Image 
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APPENDIX B 

NUMERICAL NOISE GENERATED BY LARGE- 
SIZE FOURIER TRANSFORMS 

Results of a simple computer experiment are shown in this 

appendix, to demonstrate that large (256 X 256) numerical Fourier 

transforms are expected to generate a negligible amount of numerical 

noise.    The "girl" image was Fourier-transformed and then the 

result inverse-transformed and the appropriate mean squared error 

was calculated.     This cycle was repeated two more times on the 

retransformed images.    The results are shown in Table B-l.    All 

calculations were performed on an IBM 360/44 computer with single 

precision (32 bit) arithmetic. 

TABLE B-l 

DEMONSTRATION OF FOURIER TRANSFORM- 
GENERATED NUMERICAL NOISE 

Cycle MSE 

1 9* 10" 8% 

2 49 X 10"8% 

3 100 X 10"8% 

Table B-l demonstrates that the large-size transform-generated 

generated numerical noise probably will have negligible influence on 

image coding problems. 
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