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ABSTRACT

High frequency radiation patterns of on-aircraft antennas are
analyzed using ray optics techniques. This is a basic study of
aircraft-antenna pattern performance in which the analytic aircraft
is modelled in its nost basic form. The fuselage is assumed tc be
a perfectly conducting convex surface. The wings are simulated by
arbitrarily many sided flat plates and the jet engines are treated
as finite circular cylinders. The three principal plane patterns are
analyzed in great detail with measured results taken to verify each
solution. A volumetric pattern study is initiated with the fuselage
modelled by an Erbitrary convex surface of revolution.
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CHAPTER I

INTRODUCTION

Radiation pattern analysis of or-aircraft antennas at high fre-

quencies is the object of this research. It is a basic study of
aircraft-antenna pattern problems in which the antenna is mounted
on the fuselage near the top or bottom. Since it is a study of
general-type aircraft, the analytic aircraft is modelled in its mostbasic form. The fuselage is assumed to be a perfectly conducting

convex surface. Thus, the effects o+ the cock-pit and radome are
neglected at present. However, based on the advances made on metallic
radomes, the raaomes used in future aircrafts may to a good approxi-
mation be perfectly conducting. The wings and horizontal stabilizers
are modelled by "n" sided flat plates which lie in a plane that is
parallel to the fuselage axis. The engines are approximated by finite
circular cylinders. This is a rather crude approxiliation; yet, it is
shown that the engines have little effect on the overall pattern.
Thus, it is not necessary at present to consider a more general
engine model.

The need for this type of solution is basically two fold. First,
there are upwards to 200 antennas mounted on a single aircraft. If
these antennas can be located on the aircraft at the design stage,
then one can expect better performance in that optimum locations and
necessary structural changes can be anticipated. Secondly, antenna
systems are normally added or changed in the course of an aircraft's
useful lifetime. Such relocation or addition of antennas has always

required a great deal of engineering time and money. For example,
it is not uncommon for one to spend six months building a model and
a second six months measuring radiation patterns for antennas mounted
at various locations around the structure. On the other hand, it is
not inconceivable that one could accomplish the same result in a
fraction of the time (perhaps a day) using computer simulated models
of the aircraft. Once an optimum region is determined, the antenna
can simply oe flight tested to ascertain its actual performance. Not
only can these computer simulated results be used to determine the
location, but they can, also, determine the optimum drtenna design for
a given application. Note that these analyses consider the three
mutually orthogonal delta function sources which can be used to solve
for the pattern of an arbitrary fuselage mounted antenna simply by
integrating over the equivalent aperture currents.

Z
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One of the first solutions used to ccipute on-aircraft antenna
patterns were the modal solutions for infinitely long circular'l ,2
and elliptical-3 cylinders. The fuselage was modelled by a cylinder
whose elliptical cross-section approximated the fuselage cross-section
at the antenna location. Arbitrary antennas were considered and the
antenna zould be mounted on or above the fuselage. Results were quite
aaequate frovided the aircraft strocture was not illuminated too
strongly. In fact, these solutions have been the primary high fre-
quency analysis to date. However, with the desire to improve system
performance, versatility, and coverage the antennP pattern must be
shaped for the desired application in such a way that it can actually
illuminate the structure quite strongly. in fact, in many cases the
system's performance is dependent on the pattern effects of the
secondary contributors. For example, too strong a ripple in a pattern
may cause a system to function on a secondary lobe rather than the
desired main beam. Consequently, the demands of modern sophisticated
applications reqvre that the analytic moqel represent the actual
aircraft in more detail than assumed by the modal solutions alone.

With the advent of modern digital compu:ers, one has been able to
obtain integral equation solutions for antenna patterns and impedance
using moment methods. Usintj this approach the surface currents are
assumed to be of a given form which in turn radiate in all directions.
The values of the complex currents are found by forcing the tangential
component of the electric field to vanish on the surface. One of the
first moment solutions applied to aircraft antenna problems used the
wire grid technique which incorporates a point matching scheme[4].
This solution requires approximately 100 unknown currents per square
wavelength to be found in order that the wire grid adequately model
a perfectly conducting surface. A more sophisticated approach has
been developed by Richmond[5] which uses a reaction technique to solve
for the unknown currents. Yet this solution still requires the wire
grid model of the aircraft with approximately 100 unknown currents per
square wavelength. An exhaustive study of this approach has been
made by Lin[6] in which he actually treated the bistatic scattering
problem; however, the same conclusions apply for the antenna problem,
A third approach might be to divide the surface into patches with each
patch having two unknown complex currents. Using this approach per-
haps 20 unknown currents per square wavelength need to be found.
However, all of these solutions are restricted to lower frequencies
based on the fundamental limitation on the size of matrices which
modern computers can invert without excessive loss of accuracy.

Another approach that has found great succ ss at solving this
type of problem is the Geometrical Theory of Diffraction (GTD). GTD
is basically a high frequency solution which is divided into two
basic problems; these being wedge diffraction and curved surface dif-
fraction. The wedge diffraction solution has been applied to de-
termine the radiation patterns of such basic antennas as parallel
plate antennas[7,8,9], parallel plate arrays[l0,ll] horns
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antennas'l 2,13, parabolic reflectors-14,15-, and rectangular wave-
guide antennas16]. Both these diffraction solutions have been
applied in ccmputinq the pa:terns of antennas rrAunted on cylin-
ders17,18,19, rockets_20, and wings21l. The only limitation of
these solutions is that the source and various scattering centers be V
separated by at least a wavelength. In some cases even this require-
rent can be relaxed. Using this approach one applies a ray optics
techniq'e to deter-ine the fields incident on the various scatterers.
The fields diffracted are found using the GTD solutions in terms of
rays which dre sumied with the geometrical optics terms in the far
fip'a. The rays from a given scatterer tenc to interact with the
ochcr structures causing various high-order terms. In this way one
can trace out the various possible combinations of rays that interact
between scatterers and determine and include only the dominant
terms. Thus, one need only be concerned with the impnrtant structural
scattering components and neglect all other higher-order terms. This
makes the GTD approach ideal for a general high frequency study of
on-aircraft antennas in that only the most basic structural features
of the aircraft need to be modelled.

The basic approacn applied here is to break the aircraft up into
its simplest structural forms. Analyze these structures using ray
optics techniques with numerical values obtained using modal solutions,
physical optics, and GTD. Once the scattering from these structures
is found and verified by measured data, they are adapted to the
aircraft model simply by adjusting the incident field. Tn this way the
aircraft begins to grow out of simple forms into a structure that
actually resembles a modern aircraft in a general way.

Using these theoretical models the radiation patterns of arbitrary
antennas mounted on the fuselage of various aircraft shapes are com-
puted. The principal plane patterns of Chapter IV include only those
structural components whose scattering was predetermined to be of
some consequence in the resulting pattern. In the vol.oaetric pattern
study of Chapter V only the fuselage, which is approximated by an
arbitrary convex surface of rEvolution, is considered. However, based
on the principal plane studies the fuselage shape plays the dominant
effect on the resulting radiation pattern with the wings and/or
horizontal stabilizers being the strongest secondary contributors. As
a result of these studies, various near field scattering problems and
associated numerical techniques have been developed which may find
application elsewhere.

3
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CHAPTZR II

THEORETICAL BACKGROU14O

A. Introduction

As stated in the introduction the modal solutions for the
radiation patterns of an antenna mounted on or near a fuselage hava
previously been the primary tool for high frequency analyses of on-
aircraft antenna problems. In fact, these solutions can be quite
adequate provided the source does not illuminate much of the aircraft
structure. Consequently, the approac;i of this research is not to
replace the modal solutions for fuselage mounted antenna problems
but to improve the solutions by adding modelled aircraft scattering
structures in the analysis. This is accomplished by using the ray
optics technique which allows one to apply various high frequency
solutions in its format by casting these solutions into ray form.

The modal solutions for a plane wave field incident on a per-
fectly conducting circular cylinder are presented and used, fre-
quently, for numerical computations. The ray optics techniques will
provide insight into the actual mechanisms involved as the rays
interact with the cylindrical structures. Wedge and curved surface
diffraction solutions, which constitute the Geometrical Theory of
Diffraction (GTD), are presented in that they provide the solutions
necessary to introduce the additional structures needed to improve
the analyses. Each of these solutions are presented in basic terms
in this chapter and applied to specific structural scattering problems
in the following chapters.

B. Modal Solutions for Infinite
Circular Cylinders

The modal solutions for the total field at any point in space
for a plane wave field incident on a perfectly conducting infinitely
long circular cylinder are presented in Appendix I. These solutions
are divided into the problems of perpendicular and parallel polari-
zations incident on the cylinder as illustrated in Fig. 1. For
the perpendicular polarization case the total field at any point is
given by

4
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where

2 otherwise.

For the parallel polarization case the total field is given by

jkz cos
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H 2)(ka sin e.) n -

n1
jkz cos ei
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E = kp sin e. L 2n= n j [Jn(ko sin ,) -

1 n=1

n (ka sin ei) H 2)(kp sin ei)]sin n(-i )

H(2)(ka sin e.)

= -sin e jkz cos ei I Cnjn [J (ko sin i -
0z n=O

(2) J n(ka sin oi) Hn"  sc'2'"s -
H ( p sin 6)i cos n( - i)

H72T(ka sin .) 1 I
nl I

jkz cos e.
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Fig. 1--Plane wave incident on an infinitely long
cylinder of radius (a).
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The patterns of small antennas munted on a cylinder (fuselage)
can be found using the previously derived solutions. The antennas
considered are a radial monopole and an arbitarily oriented slot.
All have dimensions that are small in terms of the wavelength.
The radial monopole and slot are considered to receive, respectively,
an open circuit voltage and a short circuit current, so that they
will cause negligible distortion to the field which would exist
there with the antenna absent. Thus, the antenna response is directly

related to the total field component at that point.

For the radial rroiopsle, the open circuit voltage is equal to
the product of the effective height of the monopole times the component
of electric intensity parallel to its axis (Et). For the slot the
short circuit current is equal to the product of the effective height
times the component of magnetic intensity parallel to its axis (cos
lit + sin , Ht) with the slot orientation defined by a as illustrated
in Fig. 2.

ARBITRARILY/"ORIENTED

x

Fig. 2--Arbitrarily oriented slot on cylinder.

It is shown in Ref. 1 that the effective height of the radial
monopole for arbitrary plane wave incidence (ei, i) is given using
Eqs. (1) and (2) by

(3) hmonopole = [o Et (p=b) + Et (p=b)]

8
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where ; is the effective length of the monopole without the cylinder
present and b is the distance of the radial monopole from the center
of the cylinder.

The effective height of the slot can be written similarly as

(4) hot A. Ht (P=a) sin + [H (p=a) sin z+ Htz( :a)cos±J}.

Note that in each case the antenna is located at (;=0, z=O) and tie
phase is referred to the center of the cylinder.

The transmitted field, wher the antenna elements are used for
transmission, is[l]

jZoIee j kr
(5) r - 2___ii

v 1 7r I I

which can be cast into ray form using

(r ' i = e-jkr

It is convenient now to consider a new current (I ) such that

(6) O(i, i) = I '(Ei,4 i )

ii e 11m

where jZ 1JQoe

Ie  m

m 2x

Applying the above solution to a x/4 radial monopole it was

determined that the series converged for practical purposes (three
significant figures) after summing 17a sin ei + 8) terms. The
solutions for the slot antenna converged after summing (7.5a sin 0. +
10) terms.

Since these expressions for the distant fields radiated are
based on infinitesimal elements oF electric and magnetic currents,
the far fields of an arbitrary antenna can be determined by integrating
across equivalent aperture currents. This is !one numerically by

9
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superposition cf discrete elements which approximate the actual
aperture distribution. This technique can be shown to be valid
provide, the element spacing is much smaller than the wavelength[22],
that is, one may write_

(7) R I h ('z
n=l P n 1 1 n n

where In is the current of the nth element, (:n,%n) defines its
position, and hn is th: appropriate effective height. For example,
some of our slot meas'jrements were taken using open-ended waveguide
whose aperture distribution can be adequately approximated by six
infinitesimal sources. Note however that an infinitesimal antenna
is considered in each case except where iZ is stated otherwise.

These solutions (Eqs. (1) and 2)) are riot just limited to finding
the radiation patterns of antennas mounted on or near an aircraft
fuselage as used previously. They are applied in Chapters III and
IV to determine the near scattered fields by aircraft engines which
are modelled as infinite cylinders in Section IV-B and finite
cylinders in Section III-C. In addition, they are used to compute
the currents on an infinite cylinder and then integrated over a
finite length to obtain an approximate solution for the far field
specular scatter of a finite cylinder. Conseqjently, these solutions
are used extensively throughout this report.

C. Wedge Diffraction

It has been shown in the last section that a cylindrically

shaped fuselage can be analyzed using conventional modal solutions.
However, aircraft shapes are, in general, quite complex involving
many complicated structures. Thus, to improve the radiation pattern
over that simply obtained using the modal solutions, one must take
these various scattering structures into account. Based on past
performance,. the neometrical theory of diffraction has proven itself
well suitea .. Lnis type of analytical study. Not only does this
approach fit nicely in terms of the ray optics format but it also
provides a means for analyzing the effect of three-dimensional
structures. Consequently, a brief description of tI.d wedge dif-
fraction problem is presented here. The diffraction by a curved
surface is treated in the following section. Note that these two
basic diffraction probiems constitute the geometrical theory of
diffraction (GTD).

An asymptotic solution for the diffraction from a conducting
wedge was first solved by Somerfeld[23]. Originally, GTD[2] as
applied to diffraction by a wedge was based on plane wave diffraction
coefficients; however, as shown in Ref. [25] the use of diffraction

10



of cylindrical waves has been found necessary in the treatment of
antennas. Consequently, difftrert formulations of wedge diffraction
were substituted for the plane wave diffraction coefficient which is
the basis for wedge diffraction theory. PauliF26] introduced the
VB function as a prac :ical formulation to the solution for a finite-
angle conducting wedge. Recently, however, Hutchins and
Kouyoumjian[27,28] presented a formulation for the diffracted
field (VB), which significantly improves the accuracy over that ob-
tained from Pauli's form.

This improved diffraction solutionS27,287 is better in the
transition regions (near the incident and reflected shadow
boundaries). It can be written in the form

(8) VB(L,6,n) = I__(L,Bn) + l+_(L,,n)

where

Ie'acot ( L.±. ) x

e a j e j 2 dT + Chigner order terms]

e kLa

and where the higher order terms are negligible for large kL and
with n defined from the wedge angle WA = (2-n)7, also a = 1 +
cos(B-2n7N) and N is a positive or negative integer or zero, which-
ever most nearly satisfies the equations

2nnN-B = -7 for I

2nTN - = +Tr for I+T

The variables L and are defined later.

The three dimensional wedge diffraction problem is piqtured
in Fig. 3. A source whose radiated Ffield is given by V'(s) is
located at point s'(p', ',z'). It can be an arbitrary electric or
magnetic source causing plane, cylindrical, conical, or spherical
wave incidence on the wedge tip. The diffracted vector field at
point s(p, ,z) can be written in terms of a dyadic diffraction
coefficient. Kouyoumjian and Pathak[29J have given a more
rigorous basis for the GTD formulation and have shown that the
diffracted fields may be written compactly if they are in terms of
a ray-fixed coordinate system. The ray-fixed coordinate system
is centered at the point of diffraction QE, (or points of dif-
fraction in the case of plane wave incidence). QE is a unique

11
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point or points for a given source and observation point. The
incident ray diffracts as a cone of rays such that o = - (see
Fig. 3).

The relationships between the orthogonal unit vectors associated
with these coordinates (s',,:';S, o,:) are given b

0 0Sby

I 'X~ l

0
S = 0 x :,

0

where I is the incident direction unit vector, and s is tie dif-
fraction direction unit vector. The diffracted fielo is now given
by

E(s)= Ei(Q) -E(S,I) A(s) e-jks

For our purpose, it is more convenient to write the diffracted field
in terms of the VB function in Ee. (1) as,*

BI

S e j 1LL -jks(9) 1sin P. 0 A(s) jk

E Ed(s) 0 -VB+ l i(0

where

-= VB(L,6-,n) T VB(L,B+,n).

The minus sign (V5) applies for the T-field component parallel to
the edge with boundary condition

(*Fwedge) O.

The plus sign() applies for the E-field vector perpendicular to
the edge with boundary conditions

*If a fixed coordinate system is used Eq. (9) takes the form of a

3 x 3 matrix.
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The annular relations are expressed by

where the minus sign ( -) is associated with the incident field and

the plus sign (it) with the reflected field. The quantity A(s) is
a ray diver ence factor given byL29]

1 plare, cylindrical (s=,),
A s) and conical wave incidence

s) s s spherical wave incidence

fss'+s)

and L is given bv[29]

s sin 2 o  plane wave incidence

L p p cylindrical wave incidence

Ssin2B conical and spherical wave

S+S' incidence.

For the two-dimensional wedge problem, illustrated in Fig. 4,
where there is cylindrical wave incidence with o = 90 , Eq. (9)
reduces to give

L 1 (P',') o vB  , e i ejLd [ 1E(I)1
E 0(p V B 0 IK', II p jp' ek

In the far field (p>p') this becomes

[E"c~) [_V B 10 El(p', ')] '1 ee3  e3 kp

LE( 0  )J 0 - ELP
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Fig. 4--Two-dimensional wedge diffraction geometry.

-Sk

Putting t",is in ray form and factoring out-- we have

R-V- 0+ R,

The ray form used here is given by

-Qp,) = 7W e-jkp

0

Thus, R( ) is related to the far field pattern function.
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For the three-dimensional wedge problem where there is spherical
wave incidence, Eq. (9) reduces to give

E -ks s sin 'o) j-ks,e t) ._ [V 0 E'I(s 0 s 11e

± (s,a'o,) - V B E.,(s',o,, ') s+s'

In the far field (s>>s'), we have

r -[V i .,1 .2
d Ao,) -V - 0 E, ' ' jks'sin 2o ks
Ells' B 1s '30-' si e-jk =

Eds + s eJ. 0'e[j(So) ] v(' Bo,: 0 _ --,(

Putting this in ray form and factoring out ek it is seen that

o-V 0l l -jks' cos2 o

B6 1 0( B ,A'

It is interesting to note that in the principal plane (0 = 900) the
ray form of the three-dimensional case takes on the same form as
the two-dimensional problem.

The total ray value at the observation point s is given by the
sum of the geometrical uptics terms and the diffracted terms

T(s) -G.O.(s) + Rd(s)

where

R'~s) + Rr(s) incident and reflected region I

R'0°(s) = fi(s) incident region II

0 shadowed region III

and Rr(s) may be determined from the image of the source term using
basic geometrical optics techniques. These three regions are il-
lustrated in Fig. 4 for a two-dimensional wedge diffraction problem.
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D. Curved Surface Diffraction

When an incident ray strikes a smooth, curved perfectly con-
ducting surface at grazing incidence, i.e., at the sh.adow boundary,
a part of its energy is diffracted into the shadow region. To
describe this phenomenon KellerF30I introduced a class of curved
surface diffracted rays. These ray paths include the points Ql and
Q2 which form a cbrve on the Jiffracting surface as illustrated in
Fig. 5. However, the actual concept of creeping waves was introduced
by Franz and Depperran.C31,32Z The basic concept as presented in
the following discussion is basically taken frc7 "Asymptotic High-
frequency Methods" by 'ouyoujian.-33-

SHAADOWx

IOBOUNDARY

- 02 dr (0 2),

d C - ..5CAUSTIC

WAVEAFRONT
TOP VIEW

SHADOW
BOUNDARY

SURFACE RAY $

DIFFRACTING SURFACE S ' AERN

DIFFRACTED RA/ P

SIDE VIEW

Fig. 5--Diffraction by a smooth curved surface.

The diffraction by a smooth curved surface is shown in Fig. 5
in which 0 is the source point and P is the observation point in
the shadow region. Applying Fermat's principle, the line OQIQ 2P
is the shortest distance between 0 and P which does not penetrate
the surface. In detail, a ray ircident on the snadow boundary at
Ql divides; one part of the incident energy continues straight on

17
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as predicted by geometrical optics, a second part follows the
surface s into the shadow region as a surface ray shedding dif-
fracted rays tangentially as it propagates. With t, ; and 6 being
the unit vectors in the direction of incidence, normal to the
surface s and binormal to the surface (b : t x n), respectively, the
incident field E_(91) may be resolved into its normal and tangential
ccmponents (n •E'(Of) and E-i(QI)). It is assumed that these
two components induce surface ray fields which propagate inde-
pendently of each other along the geodesic arc between Ql and Q2-
From Reference -33' the surface ray field AeJ3 at r is related to
the incident fields at Q1 by

J: (QI)

(12) A(Q) e = Ds(O.) 1 a-(Q-)

where Ds(Ql) is the scalar diffraction coefficient for a soft surface.
The amplitude of the surface ray is assumed to be governed by the
conservation of energy between a pair of adjacent surface rays.
Hence, the amplitude behavior of the fields is given as

d 1(t') dt

(13) A(Q2 ) = A(QI) Zn e

where

dnI and dn2 = the separation between a pair of rays at
Q1 and Q2 ' respectively.

a(t) = the attenuation constant which is a function
of t, the coordinate along the surface ray,
because it depends on the local radius of
curvature and its derivatives.

The attenuation constant a(t) is introduced due to the tangential
shedding of rays as the surface ray propagates. It is seen from
Fig. 5 that Q2 is a caustic of te diffracted field and the second
caustic is located at a distance p from Q2. Thus, the tangential
component of the diffracted field which radiates from Q2 towards P
can be found, as in the previous edge diffraction case, with one of
the caustics used as a reference point and is given by

(14) b2 Ed(P) : D(e 2 ) A(Q 2 ) e Fs- . e ks

18
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From Eqs. (12), (13) and (14) there results

(15) 2 m(p)= bl "i(QI Ds(QI) Ds(Q 2 )j 24 s

Q21
j k(t+s) + Q - (t') dt'

QIe

It is found that b1  ' (Qi) excites an infinity of surface
ray modes each with its owm diffraction coefficient and attenuaticen
constant. Thus, the expression in Eq. (15) is replaced by

(16) £2 
-d(P) = e-J(t+ s

Q2 t' n+7
{i -JQ2 Wm ) dt

Dsm(QI) Dsm( 2) e .

Equation (16) relates the diffracted fiele at P to the incident field
at Q( for the soft surface boundary condition.

An expression similar to Eq. (16) is also obtained for the
normal component of the incident field; in this case, the scalar
diffraction coefficients and attenuation constants for the hard
surface replace those of the soft surface. Therefore, the vector dif-
fracted field at P can be written in terms of the electromagneticfield incident at Q, as

(17) E(P) [n2n1 v(l,2) + b2b u(,2)1 (l) e-j s

in which v(1,2), u(l,2) are equal to

1 am (t')dt'

(- ejkt Z Dm() Dm(2) e(18) e m

with the subscripts h, s, respectively, added to Dm and am. Note
that Ql and Q2 have hPen replaced by 1 and 2 for the sake of brevity.
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Finding drl, dn 2 , and p is simply a matter of differential geometry
involving the rays and surface; this is discussed at length in Levy
and Keller[30]. The generalized diffraction coefficient and
attenuation constant can be found in Reference [34].

The diffraction thus far discussed is applied to the open
curved surface. For a closed surface, each surface ray mode
produced at Ql encircles the surface an infinite number of times.
The length of the surface ray path for the n-th encirclement is
t + nT where T is the circumference of the closed surface. These
multiple-encircling rays may be surned to contribute

.jkT - T(t') dt.1

1 e o

to the denominator of the diffracted field. It is interesting to
note that there must be another pair of diffraction points Q3 and
Q4 for the closed surface as shown in Fig. 6. Therefore, the field
at any point P in the shadow region is the sum of these two dif-
fracted fields frcm QI-Q2 and Q3-Q4. The total field at any point
in the illuminated region is, by the superposition principle, the
sum of incident, reflected and diffracted fields. A detailed
discussion of this subject can be found in Reference [34].

An important special case of this GTD solution is the one in
which the antenna is mounted directly on the curved surface. This
problem has been studied by Kouyoumjian[35] in which he analyzed
by asymptotic methods the far field patterns of various antennas
mounted on an infinitely long perfectly conducting circular
cylinder. In this solution the reciprocity theorem is employed so
that the radiation pattern is derived from the plane wave scattering
by a cylinder. The physical optics approximation for the surface
current is used to describe the field in the region in which the
source is directly illuminated by the incident plane wave ithe lit
region). The Fock approximation[36] is used for the penumbra
(transition) region; whereas, in the deep shadow region of the
cylinder the geometrical theory of diffraction solution is applied
to give the far field expression. It is noted that a launch coeffi-
fient, which relates the creeping wave (GTD field) to the actual
surface field or current, is introduced so that the GTD solution
can be properly employed. This launch factor is deduced from the
exact solution for the surface current on the circular cylinder; and,
in its asymptotic form, involves the well-known Airy function.

The far-zone principal plane* pattern for an infinitesimal
slot mounted on an infinitely long perfectly conducting circular

*The principal plane being a plane cdtting across the cross-section

of the cylinder.
20
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Fig. 6--Diffraction by a smooth closed cylindrical surface.

cylinder, equivalent to a magnetic line source ky, with radius "a" as
shown in Fig. 7 can be obtained by employing the aforementioned GTD
asymptotic expressions for the various regions and is given by [35]

1) Lit Region: Geometrical Optics Description

jka cos(eo -e)
(19) Ry(0,0) = 2 e

2) Transition Region: M-I_<7-M-

-j ka~ l  -jkaP 2
(20) R y(p,e) =[g*( ) e + g*(F2 )e
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Fig. 7--Antenna mounted on a circular cylinder: GTD solution.
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where

0 -1"I = ( Ka1 2

3 -

0

( k)/3 Q

2 ka )1/3 ;'2

The functions g*(pl) and g*(t-) are the conjugate of g( l) and g( 2),resDectively. The function g() is the so called Fock's functionfor hard boundary condition (u/n = 0) and is given as

g() = L f e1 - d

where 3pw 2( T)  el Ir Tt- t3/3 dt

and r1 and r2 are contours in the complex plane as shown in Fig. 8.The magnitudp and phase of the Fock function Ca(x)] are given in
Reference [36].

3) Deep Shadow Region: Surface Ray Description

(21) Ry(p,e) (-2)( 3  3
eh

CO h[c (a)] s sh a)] Aij #m)e- h  e-jkS1
m= 0

-[ h (alls jks
+ [Dh(a)]2 Ai(--q) e e 2mV
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Fig. 8--Contours for complex plaiie integrations.

where

sI 1 a l

s = a p2

and i and p were defined earlier and qm is the root of Ai'(-q'm),
that is, Ai' - Cm)=,. The diffraction coefficient [D(a)32 and
the surface attenuation constant h(a) are given in Table I. The
roots qm and AI(- 1 ) are given inaable II. It is noted that the
surface ray expres ion in Eq. (21) can be rewritten in the following
way

h ka)1/3 e' 2 -y(a)sl
(22) R(p,O ( 7) + 2- pa th)]2 A ce )

h(a) + jk4, propagation constant of the surface ray.
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TABLE II

AIRY FUNCTIONS AND ROOTS

BOUNDARY CONDITION

MODE SOFT HARD

m Ai(-qm) qA(-q A!(-_m)

0 2.33811 0.70121 1.01879 0.53566
1 4.08795 -0.83011 3.24820 -0.41902
2 5.52056 0.86520 4.82010 0.38041
3 6.78671 -0.91085 6.16331 -0.35791
4 7.94413 0.94734 7.37118 0.34236

The calculated radiation patterns using Eqs. (19) to (22) in the
xz-plane (principal plane) of Fig. 7 for various cylinders have been
shown to agree very favorably with those obtained from the modal
solution, especially for ka > 3.0. These formulations also predict
the radiation pattern fairly well for small cylinders with radii down
to the range from 1/3 to 1/4 wavelength.[37]

The results for the circular cylinder are extended to cylinders
with general cross-sectional shape in which the curvature varies
along the ray path. This variable curvature has a strong effect on
the attenuation constant which in turn affects the energy propagation
quite significantly. Thus, the representations for fields in the
lit, transition id deep-shadow region are modified to include the
variable curvature effect and again are given by

1) Lit Region:

(23) Ry(e) = 2 e jkr cos(-

2) Transition Region: p p,-JiA kds -jf kds

(24) R(e) {g*( e A F(A) + g*(.B)e F(B)}
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3) Deep-Shadow Region:

(25) Ry(-) -2-j - - )1 e (-.

p rpm
P

-j! , hm (s) ds )
+ Dn(P) D (B) Ai(-q-m) e F(B

where A and B are the points that the surface rays diffract toward
the direction of the observation point, -; (r ) defines the source
locations; and Og is the radius of curvature of he curved surface;

A =A ds
2.g

and

1/3

7-, ~ ~B f k ds .fz

The increment of the arc length along the ray trajectory Is ds;
F(A), F(B) are the phase correction factors at the tangent points
A and B; g*(WA), g*(FB) are the conjugates of g( A) and g(&B), the
Fock function as defined previously; and Dn(p), m(A), and Dn(B)
are the diffraction coefficients at the source locmatin, and points
A and B respectively. The propagation constant is y(s) = S(s) + jk,
where am is the ray trajectory attenuation factor for the harT boundary
case anl k is 2,,/X. The general expressions used for the diffraction
and attenuation constants are given in Table I. Note that the phase
reference point for these formulations is at the origin. Some calcu-
lated radiation patterns in xz-plane (the elevation plane) employing
these formuiations for an elliptical cylinder are also given in
Reference [37]. These results compare fairly well with the exarc
solution obtained by Sinclair[l] as shown in Fig. 9.
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Fig. 9--Principal plane patterns with a circumferential
slot mounted on an elliptical cylinder.

The same technique is also employed to derive the generalized
expressions for a slot antenna with soft boundary condition and in-
finitesimal monopole antenna. The equations again contain the Fock
functions. A summary of the far field expressions for the circumfer-
ential slot, axial slot and infinitesimal monopole are presented in
Table III[35].
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CHAPTER III

NEAR FIELD SCATTERINC BY FINITE STRUCTURES

A. Introduction

Two relatively new near field scattering problems are considered
in this chapter using various high frequency approximations. In
these problems the antenna is in the near field of a finite three-
dimensional scattering body; whereas, the observation point is in
the far field. However, it is assumed that any point on the
scattering body s in the far field of the source. Thus, if a 1 rge
antenna illuminates one of these scattering bodies, one must in-
tegrate over the equivalent aperture currents using the equivalence
principle to obtain the currents and the radiation integrals to
compute the far field pattern. However, as shown in Ref. [22], this
integration can be accomplished numerically using a finite number
of discrete infinitesimal sources. This point was discussed in
Section II-B.

The scattering body is defined in terms of its location and
dimensions in a general coordinate system, and the antenna is defined
by its location and far field pattern. Note that some assumptions
are made in terms of the geometry so that these r- ults ultimately
fiyid application in terms of our approximate on-aircraft antenna
problem.

These analyses are applications of the fundamental problems
considered in the previous chapter. Similar types of studies have
been made oreviously such as the near field scattering by various
geometric bodies considered by Lentz[38]. Near field scattering
effects must be included in an analysis of radomes such as the plane
wave spectrum analysis done by Wu[39]. Thus, near field scattering
problems are of recent interest and can have application beyond the
on-aircraft antenna problem considered here.

B. Near Field Scattering by a Finite Plate

The near field scattering by a finite flat plate is a relatively
new topic at higher frequencies where the plate is large in terms
of th: wavelength. The solution presented here is a practical appli-
cation of the three-dimensional wedge diffraction theory given earlier.
The flat plate geometry is illustrated in Fig. 10. Tne source is
defi',ed by its location and far-field pattern. The far-field pattern
of the source is appropriate in that the plate is located at least
2D2/A away from the source where D is the maximum dimension of the
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Fig. 11--Geometry for diffraction point along the mth edge.

It is known that the angle of incidence ( ) is equal to the angle
of diffraction (Bo), which in turn is defined by the given scatter
direction which is given by

d = sin es cos s + sin os sin sy + co: Os z

Since these angles are equal (o = 60) the cosines of these angles
must bE equal which implies
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(27) esdp *e;m 6m

where

exd sdpx (x -x) y -s) z (z -z
e e1m + sdp~y+1 + dMl

sinl e s C S (xm+i -X ) sin - s sin ; S~ yn+rYm)

Cos e (z +-M

Thus, one finds that

('X+ t(Xm+*j-Xm) 
+t(ym 1 , rii.

(y1.) + (m+ t(zm+i- M.z) - (ziZ) Ay

or

where

+1 mm+1 m)

=sin esCos S5(xm+i-x )+sino sin ~s(ym+f-ym)+cos Oe~m~ ( z

and

A = + l t( M+I ) )2 ( t(Ym+i~ym) 2
x +m,_s + -1(x---- +

+ / t(Z~. -z
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An iteration technique can now be applied using the above
equations by placing the present (or assumed) value of t in the
above equation for A and then proceed to solve for a new value for
t using Eq. (28). It can be shown analytically that this iteration
approach will always converge to the desired value of t, which
locates the point along the edge. However, iteration techniques
often are not efficient in numerical computations as was found
in this case. It was found that in certain regions too many
iterations were required which resulted in a loss of numerical
accuracy. Coisequently, a search approach has been developed in
which the values of esdp - em are determined at the end points of
an edge of the~plate and at its midpoint. These values are then
compared with d - em for which one can easily determine whether the
diffraction point falls within the limits of the finite edge and
if so which side of the midpoint. These tests are all based on the
dot product comparisons. For example, if the value of d •m does
not fall between the values of esdp " em for the two end points,
then a diffraction does not occur from the mth edge for that scatter
direction. If the scatter direction dot product falls between an end
point and the mid point, one then determines esdp - em for the midpoint
of the new region within which a diffraction occurs. From these values
one finds a smaller region within which a diffraction must occur. This
process continues until the diffraction point is found within certain
minimum limits.

Once the diffraction point is located, one must find the dif-
fracted field value from the mth edge. The far field pattern of the
source can in general be written as

e-jks' -jks'
(29) Ls(O,@) = [e F(e, ) + G(op)] = (&, ) e

where s' is the range from the source to the field point. Using the
geometry illustrated in Fig. 12a and applying the results presented
in Section II-C one finds that

d,R : V B 0e1

(30) L Lp

where

R,,i = (i0i -^B

i ARA. = 0(i @ ) "

kpp= ks' sin2 o
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X

Fig. 12a--Edge diffraction geometry.

y = Xdp s cos s + Ydpsin es sin s + Zdp cos

VB = VB(k0o !-q0,2) VB(k p, t+%o,2).

The incident field direction (ei, i) from the source to the point of

diffraction is defined by

-l Xsdp + sdp
tan sd , and

1i  sdp

tan- (Ysdp)

_sdp
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Note that these angles as well as all others are defined in terms of
an arctangent in that for numerical results the Fortran arctangent
routines define the angle between -180o and 1800. It is easily shown
that

sin 60= jcl xe;f

where

00 < %< 1800.

In order to find the diffraction angles it is necessary to define a
coordinate system at the diffraction point as illustrated in Fig. 12b.

( x ZS ,z 5 )

A
i

A #M+A

em

/ J POINT OF

j J DIFFRACTION

A

x

Fig. 12b--Edge coordinate system at point of diffraction.
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The three orthogonal unit vectors are eD the unit vector along the
edge, n the normal to the surface, and ei = n x em. The incident
vector direction can now be written in terms of this coordinate
system as

-I = e' sin o co-, Yo + n sin eo sin eo  em coseo"

Using the above expression one finds that

S= 1 o tan( I

The scatter direction unit vector can, also, be decomposed
in terms of this coordinate system by

d = e' sin e cos + n sin e sin + em cos e

m

which results in giving

Iil d.-

The vector directions of the diffracted field are defined by the
following expressions:

;o em sin o + Cos

$- -e' sin p + n cos

^' =% x I and 0 = x d.

Once these terms are determined the total diffracted field from a
general mth edge is given (Eq. (30)) by

-d d^ dL

(31) (s R + R%
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Using the superposition principle the total singly diffracted field
by the n edges of the flat plate is givwn using Eq.(31) by

(32) s " R (e ss )

rn=l

The reflectad field from the flat plate is considered next. The
first step in this calculation is to find the location of the image
source, whic, is uniquely determined once the plane of the flat plate
is defined relative to the source location. In fact, the image is
located alongi a line which is orthogonal to the plate and positioned
an equal distinx on the opposite side of the plate. This location
can be found analtically using the geometry illustrated in Fig. 13a.

SOURCE
LOCATION

"z X, yY ZZ)

40

3 2
R9.

#C

RnQ

I MAGE

T Fig. 13a. Geometry for location of image source.
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The image position vector (Ri) can be dzternined using the Inllriing
expressions: _

(33) P.n = -- n 2[R 1 + I t I + 2't2

(x S%) + y-y5)y + (z1-z5)z
R 1 = (X1-Xs):X + (Yl-s + (-Z)

A A A

nxX + n^+ nz

t I = tlx + tlyy + tlzz

t 2 = t2xx + t2 y + t2zz

which result in the following matrix equation

- x-~~- x -x

T tlx t2x n I s

nZ 2 -t 1y 2y '11 l-Y

-z -z tj2 - 1 -Zs

Note that n, tl, and t are, respectively, the unit normal and tangent
vectors associated with the plane of the flat plate. The above matrix
can now ke inverted giving the values of un, al, and a2 which in turn
defires . Krowing the vectcr (Rn), the image vector location is
simpli deined using Eq. (33) by

Ri :R + Rn

where
-~ A

R= x X + ysy + z z

With the image position known, one needs to determine if the
reflected field contributes to the total scattered field using the
geometrical optics approach. If the reflected field is a con-
tributor, the ray from the image source in the scatter direction
must pass through the finite plate limits. Thus. one must. find
the location of the intersection point of this ray and the plane
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containing the flat plate. This is accomplished using the geometry
illustrated in Fig. 13b. The relationship necessary to find this
point is

1 + f2 t 2 -dd Ri - C

which results in

t lx t2x -sin CO Is - - ( xi - x1

(tlz t2z -cos 6s Yd zi zl /

Again the above matrix can be inverted to solve for the point of
intersection.

SOURCEZiJ" LOCATION -. ,--1.

z

INTERSECTION
POINT OF IMAGE
RAY AND PLANE

' 1"1 yr,+ LOCATION

A~ y

Fig. 13b--Inte,-section of image ray with flat plate.
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One must now decide if this point falls within the finite limits
of the flat plate, which can he accomplished many ways. The scheme
used here is simply to determine if the angle ('.mi) between one of
the edges of a general corner and a line going from the general
corner to the intersection point is greater than the angle ("im) between
the edges making up the corner. If ,mi is greater than em for any of
the corners, then reflections do not occur. Examples of this technique
are shown in Fig. 14. Note that reflections occur for the geometry
of Fig. 14a since mi - ;m for all m; whereas, reflections .) not
occur in Fig. 14b since Ami > e at the mth corner.

Once it is determined that reflections do occur, it is necessary
to find the value of the reflected field. It is known that the
reflected field from the image source can be written as

ejkr

(34) Er( s, ) = (Ar Fr ( ) + Ar s )

using the geometry illustrated in Fig. 15. The ray form of the
reflected field is given simply by

(35) r( I s) = r r( + *r (,,

jkex i sin cos + yi sin t sin ,. + zi cos. ]

with rand being related to the image source coordinate system.
The above quantities can be found from the boundary conditions that
must be satisfied on the flat plate and which are given by

(36) E . Er (on plate) = nE s (on plate)

Er (on plate) = -tl " Es (on plate)

E r (on plate) = -t2  E s (on plate).

Note that E and E are, respectively, the image and source field
values at the point of intersection on the flat plate. The geometry
used to define these various terms is shown in Fig. 13b with

Rr =Rt -R s s (xt -x s)X + (yt-ys)y + (zt-Zs)
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Fig. 14a--Reflections occur.
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A m
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Fig. 14o--Reflections do not occur.
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Fig. 15--Reflected field geometry.

and

R = sin e. cos i x + sin e. sin i y + cos oiz

which results in the incident field direction defined by
~an . n-((tX)+(Yt'Ys)2

' (A) = tanl,(t _ s)
i . _l(Yt. ys

" (Fi= l~an £ t-s
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Thus, at the point of intersection one finds that

-jkrs

Es (on plate) =[eSF(ei,: i) + : G(;i,

(37)

ir (or plate) [rFr( ) G -

with

r = r. Substituting the above expressions in-;o Eq. (36) one
finds that1

.E s [F .x + G s. x + [F;s.y + G:s. ny - [F s. +-

n.Es= [Frr*x + Gr;r.]n + [Frr + Gr+r- n

x L

n s E : [ F s i n +  G cr +i] n

with

^r^= x cos . s Cos + y cos 0s sin s - s sin es

4r =-x sin + y Cos
Ar A

One can,alsa, write similar equations for ((altl+a2t2)-E s and
(iti+a t.r. The resulting equations can be summarized by

E r Fr C11 + Gr C12

n E E = F C13 + G C14

(alt + 2 t2) E r : Fr C21 + Gr C22

(ctl + 2t2 • F C23 + G C24
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which can be written in ratrix form using Eqs. (36) and (37) as

C 11 C12  F 3 + G C14

~C2  C ,) G r) =~ c~ ( JC.

The above mratrix can be easily inverted to give

- F C + G Cl -C + [F C + G C -CF r(,:s 1-C3 14-22 C23 C24- 12

ss ) C1! C22  - C12  C2 1

and

Gr(.. -F C23 + G C24 C11 + -F C13 + G C141C21
ss C11 C22 - C12 C2 1

These solutions can then be substituted into Eq. (35) to give tne
reflected field component of the scattered field. The total scattered
field from the flat plate is then given, using Eqs. (32) and (35), by

(38) RS(s Rd v s + R ,s

This solution has been compared with measured results using a
short dipole antenna mounted above a flat square plate as shown in
Fig. 16. In Fig. 17 a dipole is mounted above the center of a square
rplate with resultant patterns shown for 00 s < 3600 and es = 900.
In Fig. 18 the dipole is mounted near one edge of the plate. In
Fig. 19 the geometry is the same as the last case except the dipole
is now rotated by 900. Note that good agreement is obtained in
each case between the calculated and measured results even through
the back lobe region.

In order to illustrate the versatility of this solution, it is
used to approximate the scattering effect of a disc. This is done
by computing the pattern of a monopole mounted on plates with in-
creasingly many sides. In Fig. 20 the calculated results for plates
with 4, 6, 8 and 10 sides are illustrated and compared with the
measured result taken on the disk[401. Note that as the number of
sides is increased the closer the computed and measured results
agree.

45
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OLOCATION OF

FIG. 19

Fig. 16--Geometry for flat plate measurements.

Even though the above results show good agreement one must
realize the inherent approximations in this solution. It is based
on edge diffraction with just singly diffracted edge rays being
considered. Thus, it has been assumed that the plate is large in
terms of the wavelength such that double diffraction is normally
negligible. However, neglecting double diffraction may cause
some error especially when the pattern is computed in the plane of
the flat plate. Secondly, a diffraction term from each of the
corners should be included but is not available in practical form
at present. Nevertheless, it has little effect on the overall
pattern except when the diffraction point approaches a corner.
In these two cases our solution can be somewhat in error although
only a small angular region is involved.
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Fig. 18--E radiation pattern for a short dipole mounted above a
00rectangular plate for e, = 900 and 00 < < 3600.
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Fig. 19--E radiation pattern for a short dipole mounted above a
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Fig. 20b--Radiation pattern of a stub on a ground plane.
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Fig. 20c--Radiation paLtern of a stub on a ground plane.
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This solution, of course, yields the radiation pattern for antennas
mounted above flat plate reflectors. As stated earlier a large antenna
or array can be handled simply by using the superposition principle and
summing the scattered Fields from delta function or array elements.
As is shown in the next chapter, this solution can be modified somewhat
and applied to the aircraft antenna problem in order to handle the
scattering by wings and/or horizontal stabilizers which are approximated
by "n" sided flat plates. Another possible application of this study
is in solving the near field scattering of buildings. This is a problem
of recent interest in terms of the overall airport/aircraft antenna
system performance in that the scattering from buildings may adversely
affect the desired antenna performance.I;C. Near Field Scattering by a Finite Cylinder

Even though many authorsL41,42' have previously studied the far
field scatterino properties of finite cylinders, the near field scat-
tering of large finite cylinders has received little attention. It is
this near field problem that is examined here basically to study tie
engine effect in the on-aircraft problem. The geometry of this near
field scattering problem is illustrated in Fig. 21. The solutiondeveloped is basically an application of ray optics techniques.

YI

1/2/

SOURCE
LOCATION +(' ~ ( xs ' Ys, Zs)

Fig. 21. Near field finite cylinder geometry. i
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The modal solution foe the circular cylinde- is used to determine
the scattering properties of the cylinder portion, wedge diffraction
is applied Lo the edges at the end caps and physical optics is
used to determine the specular scatter from the end caps. In the
process of developing the near field scattering properties, the far
field problem is presented using similar solutions. Again this
far field solution is jbtained by applying several solutions which
are known to be adequate in certain regions. Thus, this apprcach
is not an attempt to extend a solution beyond its capability but
only uses previously developea solutions which are knuv!n to be
valid in certain sectors. The most interesting point is that there
is an adequate over"lap between the various regions in which each
solution provides a good approximation thus giving complete coverage.

Let us first consider the physical optics solution applied to
determine the specular scatter from the disc-shaped end caps. The
geometry used for this analysis is illustrated in Fig. 22. In this
solution as well as the ones to follow, the parallel and perpendicular
components of the incident F-field are considered separately. Con-
sidering the perpendicular component of the incident field, one finds
that

a jk(z cos 6i + x sin 6i)

and

-i 1 jk(z cosei+x sinei)H = (x cos , i - z sin i) e

The physical optics current is, then, given by[43]

jk x sin e
-= -~ e1: 2z xHI11:O 2y cos oi

This current is substituted into the radiation integrals to find the
scattered far field as given by

S a 27r jkLP' cosC(-')sine] 13le _Zo cosesin J e

and

: -Z0 'os J' @ e , p'OScos(-)sino 'd'dp'

with the factor JT- e-jkrj removed. This results in
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In order to simplify this solution let

sin cos :' + sin..(cos : cos :' + sin : sin

-,(cos cos : sin i sin :'=, cos(--:')

where

(41) -, sin2 + 2 sin sin e cos : + sin

Substituting the above expression into Eq. (39) one finds that

S =,Ira (2- j -; cos(- -')d-,'d ,
F -2cos sin :cos e O~, 1

E = -4- cos sin cos a.. ! ;-
1' 0

6 0

or

s 47a cos cos i sin ;
(42) E= = Jl(kay)

and similarly

s  _ 4a cos 9i cos
(43) Ek Jl(kay)

Let us now consider the parallel component of the incident field,
which is given by

jk(z cos oi + x sin e)e, ee

and
jk(z cos 9i + x sin ei)

iH,= -" e11
0 0 .

Again the physical optics current is simply given by

2 jkp' sin oi cos ¢
, 2 L X = L i

'z=O Z0e
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r
with the far scattered fields given by

-a r27r ik. 'sin.,icOs: '+sin-,cos(- dd,
(44) E,=-2 cos cos , : e

-0 -o

s ( r7 k ' Tsi n .cos-I +sin ..cos( € -;')

(45) El 2 sin a ' ' e d:'d'

These integrals can be evaluated using the same technique as applied
earlir giving

(46) s= 4-a cos : cos Jl(kay)

ky

and

(47) Es  - 4ra sin ki¢ ky Jl(a)

In order to consider the total scattered field, one must treat
an arbitrary plane wave incident on the end cap. In so doing let us
assume that the incident field is, in general, given in ray form by

(48) Rat origin =RI y + R. j

Then the total scattered far field is simply given using the super-
position principle and Eqs. (42), (43), (46), (47),(48) by

(49) E far field( (R1 E5  + RiEs +
end caps I Es + i1s

+ s Ri s
+ 4(R1E5  + R E ).

Note that the phase of the above solution is referenced to the center
of the end cap disc. If the above solution was for the rear end cap
with its phase referenced to the center of the cylinder, then Eq.
(49) must be multiplied by the additional phase factor

ik t/2 (cos o. + cos o)
[e
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It is well-known that the physical optics solution is a very
good approximation in the specular region of the scattered field.
The center of this region is defined by setting Eq. (41) equal to
zero (,=0). This region is bounded by the zeros of Jl(ka,.) as
discussed in Ref. (44). However, these bounds may change depending
on the size of the disc which in turn varies the region of overlap
between the physical optics solution for the end caps and the wedge
diffraction solution for the circular edges of the finite cylinder.
In any event, the validity of this approach is illustrated by the
results presenteG later.

Now the question arises as to how this solution can be applied
to the near field scattering problem. Note that this near field
problem will ultimately be adapted to simulate the scattering from
aircraft engines. Even though this flat structure does not simulate
the ends of engines, it is a convenient means of closing off the
surface. Further, as shown later the engine,has very little effect
on the over-all pattern. In general, aircraft type engines are
inherently long in comparison to their diameter; thus, the source
can be in the near field of the engine yet in the far field of the
relatively small discs at the ends of the engine. As a result, the
far field solution of Eq. (49) can be adapted to this problem simply
by assuming that field intensity of the incident plane wave is that
radiated by the source and incident at the center of the end cap.
This simply implies that the field incident at any point across the
end cap is very nearly the same as the field at the center of the
end cap (or nearly a plane wave). The geometry for this situation
is illustrated in Fig. 23 with the source located behind the
cylinder.

As was done for the flat plate problem it is known that the far
field pattern of a general source can be wtitten as

Esorce (a'a) =[Pa F( a ''a) + aG(a 'a) 1j-jr

jke-jkr
where jke is factored out as done earlier. This field is then

decomposed into parallel and perpendicular components such that

ke-j kRr
(50) Esource(6 a a =[(F_+ G) +(F, 1+G,,)] 4krr0

which is the field incident on the rear end cap. The v7lues of Oa and

a are known once the center of the end cap is located in terms of
the source coordinate system. The total near field scatter from the
rear end cap is then given using Eqs. (42), (43), (46), (47), (50) by
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Fig. 23--Near field specular scatter by rear cylinder end cap.

(near field[(51) end cap +G.) Es. + (FE ) Jo1+

jkR r
;[(F +G-)Es +(F,,+G,)Es ike eJk /2 cos oi

for kay < (approximately) 3.8317. Note that in this case the phase
is referenced to the center of the cylinder. A similar expression
can be written when the source is located in front of the cylinder
where it is possible that the specular scatter from the front disc
can dominate.
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It is usually extremely difficult to analyze the more c')mplex
end shapes of actual engines. Thus, one must have a real need for
such results to make a thorough investigation of that topic. As will
be shown in the following chapter the engine has little effect on
the principal plane patterns. Consequently, the flat plate end cap
simply serves to close off the structure.

Once removed from the specular region of the end caps, the
diffractions frc(m the circular edges become dominant. In order to
include these effects, the problem reqtires more sophistication than
the striaght-forward wedge diffraction problem of Section II-C.
The curvature of the diffracting edges must be included in this
solution by applying an equivalent current technique such as that
presented in Ref. -45-. Using this approach an equivalent current
is found on the diffracting edge using the appropriate two-
dimensional diffraction solution. The resulting current is then
used in the radiation integrals to find the far scattered field.

Let us first consider the perpendicular component of the
incident plane wave on the back edge of the cylinder as illustrated
in Fig. 22. This component is given by

i .jk(z cos ei + x sin 6i
)

Ej =y e

which results in giving

(52) Ei C jkx sin ei
(52)1 z=O cos ' e and

i cos ei sin ¢' jkx sin ai1%53) H, ze Z

The equivalent electric and magneti . currents are given, respectively,
by Ref. [20] as

(54) ie 2j Ge E '(' Zk sin0 Zksin' and

0

m 2jZ0Gh( W) Hi(55) 1.L, - i2 H".4z=O

k sin 6

which are related to the ray form of the diffraction function. The
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various terms of the above expression are defined later in the dis-
cussion. In any event, these currents are qiven using Eqs. (52)-(55)
by

ie 2j Ge(;)cos e jka sin cos :-; ' -2 e, and
Z k sin 

2

0

2jGh (') cos sin : jka sin cos c'I m  e

k sin 2  e

Substituting these currents into the radiation integrals one finds
that

e 2,T e ka[si n; i cos ;0 +s i ncos1 ( "-t'1.

e 0 ee= -a cos 0 f J* sinJedot

joEe = -aO je' cos(;-:. ')ejk  i ~ c s '+sinecos(;- ')]d ' !

(56)
Em = a cos jka[sineicos '+sinecos(. - ')]E acos o m sin( -¢')e d'

Em = 27 m jka[sinoicos '+sinecos( - ')] W
Em = -a Jo Jmcs(A.I)e 1

where

(57) je ( ) 2j G e( ')cos E'
(57 -W and

k sin2

2j Gh( ') cos 0. sin
3m iWm( ) 2

k sin 2

Note that the phase reference is at the center of the end cap and

the factor I e-jkrl has been removed from the above expressions.

Now using the method of stationary phase one can evaluate the previous
integrals asymptotically using[46]
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T2 F2 jka::' )d2-F( s ' 2-

0d~ F() 
a

-o J ka! -s() I

jtka;(:') + sin s

where s is the stationary phase point or points defined by '(t-s)=0.
All of the above integrals (Eq. (56)) are of this form with

sin i cos V' + sin cos(,-.')

giving the relation that

61~~ ~ ~~ =+a- -- i sin
s t sin i sin cos

which has two solutions for 0 < , < 3600 (¢S1, $2)" Making the
appropriate substitutions in the above integra expressions one finds
that

(58) Ee (o, ) -a cos e je N)sin( - ) X( .)

ISI ,S2

Ee (o,¢) -a j Je N)cos( - ) x(b)
Sl'S2

Em (o,f) l a cos a jm()sin( -4F) X(4 )

Sl ' S2
and

Em (e, ),-a Jm, cos(- ) X( )
SiMS2

where

2X-, , j[kap( ) + sign "( S)]
S kaI4"(45)I e
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and

5= -v() : sin cos + sin cos(,-:,).i S

The total perpendicular component of the scattered far field for
the circular diffracting edge is then the sum of the electric and
magnetic components and is given using Eqs. (57) and (58) by

d u( cs
(59) E (,) = 2ja -Gs cosin(:-:) +

I, k sin 2 c c

Gh(,) cos ei sin ± cos(:-¢.S)]

dx( )co; co(,_
(60) E =-2ja z ( [ge(3)o > cos(,-: S) +

'SI'*S2 k sin 2 a S

G h( )cos o cos 6i sin sin( - )]

The diffraction terms are yet to be defined in terms of the
stationary phase points (Sl,$2)- The geometry pertinent to this
discussion is illustrated in Fig. 24. The ray forms of the dif-
fracted field are given by

e
Gh(@t) : R(,-q, ,3/2) T R(,+, o , 3/2)

where it is shown in Ref. [20] that

2sin 2T

R( ;3/2) = 2 2
cos - cos 3

The values of the diffraction angles are based on the two-dimensional
wedge problem and are given by

% =tanl(-_- ' = a 1 ( cos Si

-Cos O in

q o t a n - I  Ye t a n- I  -o i

si oil

63

i>



Ze

A ONE STATIONARY
DI../?ACTr~e0 Ye PHASE POINTD." I:.'To

DIDICTIO..C

e i

eeJ

INCIDENT FIELDD IRECTION

~Fig. 24--Diffracted field geometry for fi'nite cylinder edge.

=1 tan - --1- e tan- Cos - --
\d ( e sin e cos( - s) ) .

The three-dimensional effect on the wedge diffraction problem is
introduced by the angle S which is defined by

-l lXe) 2 + (4I Ye 2 - 2+(a Y )2 !

0 S t a n e- e- -- - - - - t a n e e -

\ - ze  J ' e
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where 0 < S < 1800. Finally, if tne condition exists where . or

,o > n-, then diffractions do not occur from -hat stationary phase

point in that the cylinder shadows tnat ter,

The parallel component of the incident field is given by

-11,jk(z Cos ~.+ x sin ei)
El = (x cos ei - z sin ei)e c 1

which givesEii jkx sin * i

E- i :-cos ei sin :' e , and

i Cos jkx sin
H d = - 0 e.

Then using the same approach as before, the parallel component of

the scattered field for the diffracting edge is given by

(61) Ede (e,.) = 2ja y S Ge(¢.)cos sin : sin('- )

SIS2 k sin-e s

+ Gh(bs)COS cos(Y-T ,

and

(62) , = 2ja ( ) [Ge()cos ei sin c
Sl' S2 k sin as

-Gh( )cos e cos

with the various terms being defined previously.

The total scattered far field from the rear diffracting edge
is given using Eqs. (48), (59), (60), (61), (62) by
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(6) ~ ar field (; d + i Ed)edge diff. L' .( R 9 -j1, - + O -

(RiE d + Ri Ed ),e i
.L L , 1 fl : I.

Note that in this case the phase is referenced to the center of the
cylinder. In addition, a similar expression can be generated for
the scattered field which results froi diffractions off the front
edge of the finite cylinder. These two diffracted field solutions
are then suumned using the superposition principle and applied
between the specular regions of the end caps and cylinder section.
The cylinder specular term is presented later in the discu:sion.

It was assumed by using the static ,ary phase method that only

two points around each of the cylindrical rims could contribute to
the scattered field. However, there are certain regions (caustics)
where diffractions from the comp1tte rim contribute to the scattered
field. In these regions one must carry out the complete integrations
around the edges rather than using the stationary phase method.
The expressions have been developed but are not included in our
numerical computations in that this solution is applied only to
simulate the engine near field scattering effect. Thus, a complete
investigation of the finite cylinder is beyond the scope of our
final objective. For this reason, our numerical solutions can tend
to diverge near the caustic regions as is noted when the results are
presented later.

As was done for the end cap specular region, it will be assumed
that the edges of the finite cylinder are in the far field of the
source for the near field scattering problem. With this being
the case and using the geometry illustrated in Fig. 22, the dif-
fracted field from the rear edge is given using Eqs. (50), (59), (6W),
(61), (62) by

-near field( d d
(64) ee diff.e ' ¢) ={<(FL+G)Eie + (+Gii)Ed ] +

-j kRr

(F +G)Ed + (F +G )Ed ]) jke eJk(/ 2)cos e[(FzGz)E d 1 ,1llg 4TR r

A similar expression can be found for the diffracted field from the
front edge of the cylinder. The total diffracted field is then the
superposition of the diffracted fields from the twc edges of the
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Since in this case the range of the source is not an infithite
distance from the edge, one must apply the V B form of the diffraction
function in which

j(kRrsi 2S+-/4
R(:,3/2) : V (Rr sin ;.S,:,3!2)e rsin r sin -S

giving
e ~k sin2

e(kR s2 +-/4)
= e 12-kRr sin -S.

One then simply subst tutes this result for the terms Ed d d
and Ed: for the near 'ield scattering solution of Eq. (64). Othervise

the terms are the same as found previously. Finally, in the near field
problem the diffracted fields from the two linite cylinder edges are
included everywhere except in Vie specular -egion of the end caps.
This is somewhat different from that of the far field solution v..ere
the diffracted 4ipljb are only present between the specular regions
of the end ca dnd cyiindrical sectioiis.

The final region to be considered is thn specular region of the
long cylindrical section. The solution for this region is found
similar to the physical optics solution used for the end caps;
however in this case, the current used in thc radiation integral is
the exact current found on an infinitely long cylinder. This current
is, then, integrated over the finite length of the cylinder as
presented in Ref. r42]. This type of solution generally has qood
accuracy throughout the specular region uf the cylindrical section much
as the physical optics solution. 0

With a perpendicular component E-field incident on the cylinder,
it is shown in Appendix I that

sin i jkz cos c. J'(Pa)
Z co0 1 1 T, j nJ

z0n=.... H,2'  ( )
n

Cos . jkz cos j.

H _ 1 -- e 1 7 njnLJn(,) -
k 0 1 n e1

an(Ba) (2)
a (8p)] ejn-

n ) g 0
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where k : sin i" The equivalent surface currcat density is qiven,

by

5 = 2 x (Htz + Ht ) - H (.=a) + t -a)
Z I I. =:a - "z

The component of the far scattered field is given by

C 12- 1,A./2

Ec =z Z°  F-J sin(:-:')c(s + J sin"0 :-,/2 z_

ejkFa cos(:-:')sin + z' cos a dz' d:'

or

(65) [M,12 jkz' (Cos-.i+Cos,-,)
Ec C -sin . n x (a e/2  sin(:-: ')cos

11n=-, :-./

e-jn' eJka cos(t-.')sin edz' a:'

Cos z/2
1 i  njn Xn(a) e sin

ka sin HI n=-ni n= - 1

eJnt' eJka cos(;-¢')sin dz' de'

J'(ra) (2)

where Xn(a) = Jn(,a) - 72)'a H (,,a). These intpgrals can be

evaluated using H (6a)
n

i/2 jkz'(cos ei + cos o) sin -  (cos fi + cos e)1

e -12 2- 1 1
e t/2 kz (cos H1 + Cos 6)

2r en'Jka cos( - )sin osn_ ¢ d'

2 ieJn( +7/2) si' d

= kae sin _ _ n J (ka sin e)
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and

e -Jn:' eJka sin cos(:-:')d : = 2-eJfn(:+-/2) n(ka sin

Substituting these results into Eq. (65) one finds that

Cos si
(66) Ec(,:) O 8 oV ka (sin2 -.

,sin[ k, (-.OS + Cos ] )nJ ( k a s i n

[, ] n(-1 )n n-( sin n:.

(cos + Cos.) n=0 n ka sin

Similarly the :-component of the scattered field is given by

2 /-Z a I2rr2 Jcos(::)e jka cos( :-:)sin;-+z' cos dz'd '11 0 '0,1-./2 "

which can be evaluated as above to give

(67) Ec(,¢) 4j __ 2i (cos - i+cos -) ()f

k, cos + cos ;.) On

s(ka sin )

4j cos (cs !'_

Hn2(ka sin - Cos r:H( 2) '(ka sin oi )

n

For a parallel component [-field incident it is shown in

Appendix I that

Ht 0

j kz cos o. - J (a)
,-t e 1 2)n [an() nn aH) -

n=- n Hn  sa
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In this case, the equivalent sdrface current density ;s qiven by

(i = (.a).

Substituting this current into the radiation integrals one finds
that

(69) Ec 0 , and

E = ! i ej ika cos(:-:')sin.-+z'coseldz, d:'.EC = Za Jzsin e

" (1 0. -,/2cz

This integral car. De evaiated as done previously giving

s sin - (Cos -& Cosi
(70) c -4j sin IT-

k sin (cos + Cos )

On 'n(_ On (ka sin )
I",) co s  n ;

n=2)(ka sinn O Hn

The total scattered field in this region is then given using the
superposition principle and Eqs. (66), (67), (69), (70) by

(71) far field( [R (.,, i)Ec (-,f) + R (,i i)Ec (c,f)]
cyl. ' - . i ' ,

+ [R(e., )Ec*6 - + R Ec (,)

where R. and R,, are defined in Eq. (48). Note that in this case
the phase is already referenced to the certer of the finite cylinder.

As stated earlier this solution gives a good approximate solution
for computing the specular scattered fields of the long cylindrical
section. As was done earlier this region is normally defined
between the :irst nulls about the main beam of the specular scatter
directior. These boundaries are each defined by

. Z (cos ai + cos a) =n
11
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where n=O gives the specular main beam direction and n = -1 defines the
first iull directions. This is the only term necessary through the
cylindrical specular scatter region. However, as is shown later the
edge diffracted fields must be included through this region for the
near scattered -ield solution.

This solution completes our study of the scattercd far field
from a finite cylinder which is given using Eqs. (49), (63), (71) by

-far field ( ) 3.8317

front cap front

;far field , < 3

rear cap rear-

(72) Efar( , :) far field

(E,-) L.(cos i+ cos -
cy.2 i

-far fiela )_tfar field
Efrort edget ':)+rear edge" -',:) otherwise.

In order to compare this solution with previously measured scattered
far field data it was found that backscatter data was most readily
available. In Fig. 25 the results of Eq. (72) are compared
with measured bac .scatter data taken from Ref. [41]. It was
extremely difficult to extract the measured data from their graphs
in that the finite cylinder measured Wds quite large which resulted
in much ripple. In any event, the agreement between the results for
the points chosen does indicate the validity of our solution. Note
that both incident polarizations were considered which covers the
complete problem at least for the backscatter case.

The far field solutions could be applied to the near-field
problem in the two other regions since the cylinder was assumed to
be long and thin. However, that approximation can not be made for
this cylindrical specular region unless the source is moved a large
distance (2,2/x) away from the cylinder. This implies that the
spherical wave front radiated by the source must be considered in
the approximating currents. This is a very difficult problem to
solve except for cylinders short in terms of the wavelength. Thus,
a different approach must be applied Lo solve for the scattered near
field solution in this specular region.

This obstacle is overcome by applying a technique similar to
that employed for the finite flat plate problem, in which the re-
flections from the plate are added only when the point of reflection
falls within the limits of the finite plate. In this case, the
modal solution can be used to obtain a similar scattered field term
from an infinite cylinder which is only included when the origin of
the scattered term falls within the limits of the finite cylinder.
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Based on a ray optics description, it is known that for the reflecteo
terms the angle of incidence (i) is equal to the angle of reflection
(;r). Sec:ndlv, it is known that the creeping wave terms attach to
the cylindrical surface tangentially and propagate around the surface
in a helical path with constant pitch, such that -- remains constant.
For these reasons, one can affirm that to a good approximation the
bounds of this region can be specified in terms of as shown in
Fig. 26, for < ;.r i - f"

WAVE DIRECTION

inS4 2a-- FINITE CYLINDER /

I r

SOURCE
LOCATION

Fig. 26--Cylindrical specular region for near zone cylinder.

In order to apply the results of Appendix I one must use a
reciprocity argument in that it is assumed there that a plane wave
is incident. In this case, the source is in the near field and
the scattered far field is desired which can be solved using
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ECly 2 cos jkz cos .-. i . n+l J'(;a)2 cos-'i. e .nj ()
(.t ' ) : ,, sin i n-1 H (2 '(.a)

i nk,, H(e2)1

H ( ) sin n C:- :i)

fl 1_

ECI( , ) = e r 7 .n H 2 ( ;)cos n(;-± i )
Sn~o~n H(2)'(;a) 1

n
(73)

jkz cos J. Jn(sa) sin(H+(2)
co ti coskH (2)

EcnY(,)e H cos n(-

II& ~n=O H2 (a

n

2 cos jkz cos i (j (a)
cly,.) = n n (2n

IIn=k H n=l H()(a) n
n

and_

where B=k sin "i. Note that the above equations give the e and , com-
ponents of the field at the source position which is defined by (P, ,z).

The received signal by the antenna can be found using the far
field pattern as defined by

-jkr
Esource(0a 'a) :[OaF(ca' a) + a G(e a'a)] er

Thus, the pattern function of the source can be expressed io terms
of the e and coordinates by

(74) Rsource(ea,,a) =O(F +G 0 ) + ;(F + G)

where Oa and a are defined in terms of the incident field direction
in the source coordinate system. The radiated field by tne source
using the reciprocity theorem is then given by

(near field (Oii)= ;i[ Fe+ G o)Ecly(o,)+(F +G )EciY(o,,)]
(75) Ecly.

+ i[(F +G )EclY(o,') + (F +G )Ec'y(,',)]
1 0 6 16 ' 0
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for -r < ;A s defined in Fiq. 26 and where --i and +i now
define the scattered field di.-ection. In this case the phase is
already referred to the center of the finite cylinder. In addition,
the diffractions from the edges of the cylinder must be included
throughout this region. Note, ilso, that the directly radiated
field by the source must be included in every region of the near
field problem.

To illustrati the validity of this near field solution, it
is compared with measured results for two cases. A vertical dnd
horizontal dipole are, respectively, mounted in the rear zone of
a fin~te cylinder as shom in Fig. 27a and b. One should note
that the agreement is quite good except near the caustic regions where
our solution tends to diverge. The reason is that the diffractions
from the circular edge are not coming from just two points but from
the complete circular edge, which can be included in our solution by
actually integrating Eq. (56). However, it is shown in Section IV-D
that when this solution is used in solving for the azimuth principal
plane pattern, the engine (finite cylinder) has very little effect.
Thus, an extensive stuJy of this topic is not necessary at present.
In any event, the basic tools are presented in the previous discussion.

5.64x

SHORT X
DIPOLE
LOCATION

Fig. 27a--Short dipole illuminating a finite cylinder.
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MESUE

Fig. 27b--Radiation patter-n of a horizontal dipole (Eq)
with -180 < o < 1800.
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Fig. 27c--Radiation pattern of a vertical dipole (E)
with -1800 < o < 1800.

78



CHAPTER IV

ON-AIRCRAFT ANTENNA PRINCIPAL PLANE PATTERN STUDY

A. Introduction

This chapter illustrates the application of solutions previously
discussed to determine radiation patterns in three principal planes
for fuselage mounted aircraft antennas. tMost of thest results have
been presented elsewhereZ47,48_; nowever, tney are pertinent to the
present discussion. Furthermore, several inprovements have been
made in the present work. The complete dezailed equations for each
solution will not be presented except in the cases where improvements
have been made.

The basic aircraft to he analyzed in this study is shown in
Fig. 23. It 4s composed of flat plates, cylinders, cones, and spheres.
It is assumed that the source is mounted on the fuselage and re-
stricted to the regions near the top or bottom of the aircraft. As
is shown later in this discussion some of these restrictions and
models are revised in order to obtain better approxiimite solutions
for the desired pattern. In this way models are considered that
approximate a wide variety of aircraft structures with the solutions
derived in such a form that arbitrary antennas can he considered
simply by integrating the equivalent aperture currents.

The lower frequency limit of these solutions is dictated by the
ray optics format which -equires that the various scattering bodies
be no closer than approximately a wavelenyth with the overall
aircraft being large in tErms of the wavelenqth. The upper frequency
limit is dictated by the model representation of the actual aircraft
considered.

B. Roll Plane Analysis

This section is a synopsis of the material presented in Ref. [47]
along with recently developed improvements. Tne two-dimensional
problem is considered initially in order to develop the necessary
aialytical tools to attack the much more difficult three-dimensional
roll plane problem. The geometry of the two-dimensional problem is
illustrated in Fig. 29 with and without the engines included. The
Fuselage and enaines are assumed circular in cross-section and
mounted symmetrically aout the finite wing. Since wedge diffraction
is applied to handle the Finite length wing, the radiated field must

7
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STATION

'.-2 SPHERE
2-3 CIRCULAR CYLINDER
3-4 CONE
5 5CIRCULAR CYLINDER
6 PLANAR CONDUCTOR
7 PL-NAR CONDUCTOR

Fig. 28--Simplified aircraft model.
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be described in terms of rays. Ho.,e'er, one of the nizer features of
this approach is that other solutions such as rrdal solutions can be
cast into a ray form and then applied to a diffraction problem. Con-
sepuently, it was found that the rodal :olutions (Ecs. (3) and (4)) fCr
an arbitrary antenna rounted on an infinite circular cylinder vas ideal
for treating the antenna Founted cn the fuselage. In fact, t}is
solution has been applied in past years as the sole sclution for high-
frequency on-aircraft antenna analyses.

Using irage theory the wing reflections are analyzed usinq the
geometry illustrated in Fig. 30. n1ote that due to the finite length
winq the reflected field contributes only in a qiven region. The
Kedge diffraction solution is applied to include the effect of the
wing tip. The field scattered by the enqines is included using the
moDdal solutions (Appendix I) for a near field source illuminating an
infinitely long circular cylinder. In addition, a portion of the
energy scattered by the engine is incident upon the wing tip which
is included as a higher-order term. The phase of these various terms
is then referenced to the center of the fuselage, and the terms summed
to give the total radiated field. There were other higher-order terms

considered in this study but found to be negl'gible so they are not
included here or in the following numerical results. There are
basically three infinitesimal sources considered in this analysis
(monopole and axial and circumferential slots). These solutions
allow for an arbitrary antenna to be considered using a numerical
anerture integration as presented in Section 1I-B.

The radiation patterns for three finie sources are shown in
Fig. 31 on a model withcut engines. The monopole is approxi-
mately )/4 and the slots are simply open-ended X-band iaveguides.
These solutions compare very favorably with measured results taken
on the two-dimensional aircraft model of Fig. 29. It is observed
that the direct term from the antenna has the dominant effect on
the pattern in the lit region. The reflected term adds the slowly
varying ripple to the lit portion of the pattern. The scattering
from the wing tips causes the rapidly varying backlobes in the
pattern. The backlobes are not shown in these figures in that
they were well below the noise level of our equipment and thus, the
measured result was not accurate through that region. The radiation
patterns for the same configurations with the engines added are
illustrated in Fig. 32. Again very qood agreement is obtained
between our calculated and measured results. These results indicate
that the scattering from the engines tend to smooth out the pattern by
filling the nulls and lowering the peaks especially near j = 900 and
2700.
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i. .

Even though the two-dimensional solution should be more accurate
in some cases than the previously used modal solutions which only
models the fuselage, one must model the wing width as well as the
length in order to make the solution really practical. In order to
accomplish this feat, the near field flat plate scattering solution of
Section III-B is adapted to this new model such as illustrated in
Fig. 28. Note that each wing can be located arbitrarily with any
number of edges provided only that the wings are flat and horizontal.
The following discussion is presented with more detail in that
selected improvements have been made over our previous solution as
presented in Ref. [47].

Let us first find the effective source location for the reflected
field. Recall that in our flat plate result the source was imaged
and the reflected field added to the total solution provided the
image ray passed through the finite flat plate (wing) limits. So
one must initially determine the effective source position which in
ttrn results in giving the desired reflected field. With the source
mounted on an infinitely long circular cylinder one can easily show
that the surface rays from the source propagate around the cylinder
on helical paths (geodesics), which in turn diffract energy tangentially.
Now let us assume that the source does not illuminate the right wing
directly (as illustrated in Fig. 33) and proceed to determine the
unique helical path that diffracts energy from a known tangent point
which is then reflected off the wing in the desired radiation (or
scatter) direction. This helical path can be specified in general
by

x =af cos

y = af sin 4
z = (-s)+ Zs

so so

where (af, eso, ZSn) defines the actual source location on the fuselage.
Let the desired radiation direction be given by (es). Then using
Fig. 33a one finds that the tangent direction at t e effective source
location is defined by

dx yz = -a sin e
T(XeYeZe)

§.(Xee = a cos e
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or

(x ,v ,z )cot(90

which result in e 900 Using Fig. 33b the tangent direction
i s g i v e n by = - s U s i n g F ....

dzj b
l(XeiYeZe)

(XeY = af cos e

or

dz b _tan(gos)af e

which gives b = af COSe tan (9oo-es). The above equations uniquely
specify the effective source position for reflections frorr the right
wing in terms of the given radiation direction by

xe = af cos(90° - S)
0o

(76) ye = af sin(90° - *s)

ze = af cos(90°  0 )tan(9O0 -es)(r/2- s - o + Zso

which in turn can be used in the flat plate problem as the effective
source location. Note that as the desired radiation direction is
varied the effective source location changes. In addition, if the
source directly illuminates the wing for a given reflection term then
the effective source location is simply the actual source location.
A result similar to Eq. (76) can be found for the reflections from
the left wing. Finally, the actual source field value used to
compute the reflected term is determined from the modal solutions of
Appendix T.

Using a similar technique the effective source locations for the
diffracted 'ield components must be found. Recall that our flat plate
solution used a search technique to find the diffraction point by
computing the diffraction angles at selected test points along a given
edge. Once a test point (xd, Yd, zd) is specified along the edge one
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can find the effective source location {xz, Ye, ze) using the geometry
illustrated in Fig. 34. Again it is assuaeL that the source dries not
directly illLminate the test point. Using Fig. 34a one finds that the
tangent direction at the effective source is given by

dxI  -- af sin =
T (XeIYZe e e

Sf cose Xe
(x elYe, 7: e)

or

I dxi (xd - xe) Ye
k° Xe,Ye, e) e

wi 2 2 2 2
whicn gives - : xe + Ye an. :f xexd + YeYd- rhe value of
(b) of the helicalepath on the cylindrical sur.ace is defined using

Al Fig. 34b by

Al< dz b•d -I (XeYeiZe)

aI o U (XYe af Cos = xe

or

Q 0 dzJ b d C

which gives b e ( ) Using the a 'o''e relbtion s one fi n dsI

that for the wing on the right side the .ffective sour.% location for
the test diffraction point is given by

Q V
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af 2 .2 21I

afd d A~e
af

af 2 ,2 . 22

Xe~ (¢-s)+ZoY- eze= Xe(ed.so) + (d-Ye)

where (7 e 7) n-  Given the effective source location for the

chosen test point, the search technique of Section III-B is applied
to find the actual diffraction point along a given edge. Note that
once the actual diffraction point is determined, the effective source
of the diffracted field is specified by Eq. (77), and the source
field value is, again, computed using the moakl solutions.

The total field is found by sunming the directly radiated field
with the scattered fields from the wings using the superposition
principle. Several different configurations have been tested using
this solution and compared with measured results. The roll plane
radiation patterns for the three infinitesimal sources are shown
in Fig. 35, when the antennas are mounted directly above the
wings. The patterns are shown in Fig. 36 when the antennas
are mounted on the fuselage over the back limit of the wing. In
Fig. 37 the patterns are shown when the antennas are mounted
over the wings but rotated 450 from the straight up direction. Only
the monopole is considered for measured comparisons since it was
the only source available at the time. In each of these cases,
one can note the good agreement obtained between the calculated and
measured results. The slight deviations being attribud to the
assumptions made in solving the flat plate problem of Section III-B.
For example, the jump in the calculated result of Fig. 36 near * = 900
and 2700 can be attributed to the lack of doubly diffracted terms in
the solution.

It was originally assuned in the aircraft model of Fig. 28 that
the wings were attached such that they were contained in the horizontal
plane which also contains the axis of the fuselage. This meant that
no diffractions occurred from the junction edge in that image theory

0 could be applied to handle the cylinder/plate junction problem. This
0 is not the case when the wing is moved away from this location.
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Fig. 35a--Roll plane pattern of monopole (E 0).
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Fig. 35c--Roll plane pattern of axial slot (E )
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Fig. 36b--Roll plane pattern of circumferential slot (E 6).
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Fig. 36c--Roll plane pattern of axial slot (E )
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Fig. 37b--Roll plane pattern of circumferential slot (E 0).
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However, in order to make th3 solution even rro'e practical one must
be able to move the wing from its former central position. As a
result, a technique has been developed to handle the case with the

jwing mounted above the central position or closer to the source
location. Again the flat plate analysis of Section III-B is applied
but in this case the edge formed by the junction of the wing and
fuselage must be included. This is done by including the diffraction
from the interior wedge illustrated in Fig. 38. Note that once the
diffraction point is known only the wedge angle (which is defined
by "n" in the diffraction fuwtion) is changed from the previous
solution. In this case the effective source is found by using the
helical path solution for the surface rays on the fuselage except now

the path intersects the edge formed by the fuselage-wing junction.
The tangent direction of the path at that point gives the incident
field direction with the effective source .ocation for the diffracted
field calculation being shown in Fig. 38. Note again that the in-
cident field values are actually given by the modal solutions of
Section II-B. However, in this case the field is incident along the
surface of the wedge; thus, the incident field for the diffracted field
solucion from this edge must be one half the value given by the modal
solution as discussed in Ref, [49J. In FKg. 39 the radiation pat-
Ierns for the three infinitesimal sources are shown with the wings

moved up such that ew = 450 as shown in Fig. 38. The validity of this
solution is verified by the measured result taken for the monopole
ca,'e of Fig. 39a.

Even though tue previous results look good in comparison with
the measured results, several improvements in the solution could be
made. For examnle, it was assumed that the fuselage is an infinitely
long cylindrical structure. Yhis can be improved by including the
three-dimensional effects of the fuselage as introduced in the
following chapter. Nevertheless, based on data taken at the Naval
Air Development Center the circular shaped fuselage appears to be
adequate for present needs. Other possible changes that might be
considered are tilting the wings, mounting the antenna off the
fuselage, introducing other possible scattering structures in the
analysis, etc.

C. Elevation Plane Analysis

This section is basically a synopsis of the material presented
in Ref. [48]. It is presented here to illustrate the validity of the
GTD approach for treating antennas mounted on a convex two-dimensional
body. Note that this material is an essential step in determining
the volumetric pattern of an antenna mounted on a three-dimensional
surface as considered in the next chapter.
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Fig. 39c--Roll plane pattern of axial slot (E )
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Based on our original aircraft model of Fig. 28, the fuselage is
composed of cylinders, cones, and spheres. It was shown by Ryan in
Ref. [20] that a two-dimensional diffraction analysis could be
adapted to solve for the elevation plane pattern for an antenna
mounted on a rocket model composed of cylinders and cones. With the
antenna, in our problem, being mounted on the fuselage near the top
or bottom of the aircraft one can to a good approximation just con-
sider the fuselage effect in the elevation plane in that the other
terms have normally a secondary effect. Thus, Ryan's approach is
applied here with only the spherical nose cone being included in
his solution in order to complete our analysis of the originally
specified model.

Some of the results of the present study are illustrated in
Fig. 40. In Fig. 40a Ryan's calculated result is compared with the
the measured result for a circumferential slot rmunted on the

-- fuselage with good agreement obtained between the two results.

II f0__ MEASURED

.

Fig. 40a--Elevation plane patterns.
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Fig. 40b--Elevation plane patterns.

In Fig. 40b a monopole is placed on the fuselage with the analytic
results compared with the isolated dipole pattern showing that in
the lit region the fuselage-mounted antenna radiates much like the
isolated antenna. However, the on-aircraft antenna pattern deviates
greatly outside the lit region. Thus, one must be careful when
approximating the on-aircraft antenna performance using simply an
isolated antenna pattern. Finally, in Fig. 40c the radiation patterns
of monopoles mounted on different fuselages are considered to il-
lustrate the effect of the fuselage shape on the resulting pattern.
Note that with the spherical nose cone the ripple is greatly reduced
with much more energy radiated in the forward direction.
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Fig. 40c--Elevation plane patterns.

In the previous fuselage models as well as the ones to follow,
the nose radome has not been treated as a special case. In other
words, it is assumed that the nose radome is a perfect conductor as
is the rest of the fuselage. These solutions can be in error due
to this approximation especially for dielectric radomes. However,
it appears that metallic radomes will find widespreid use in the
future; in which case, our model could be a good approximation in
the rae-me region especially outside its pass-band.

The simple models described above are not general enough to
include the wide variety of aircraft fuselages encountered in
practice. An aircraft fuselage is predominantly a convex body which
can not be completely described by simple analytic equations. In
practice, an aircraft fuselage is often specified by a set of points.
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Consequently a new approach, called "Section Matching GTD Method,"
is developed in which a set of discrete points is used to outline the
pro-ile of the fuselage. In this way any convex fuselage shape can be
inciuded in our general solution in a straight-forward manner. Note
that this solution is still two-dimensional but in many cases this is
a good approximation in computing the three-dimensional elevation plane
pattern. Nevertheless, the complete three-dimensional shape and
volumetric pattern will be treated in the next chapter which will
remove this present restriction.

It was shown in Section II-P that one can write high frequency
asymptotic expressions for the far zone radiated fields of an
antenna rmunted on a general two-dimensional convex surface. This
solution is broken up into solutions for the three regions which
ware illustrated in Fig. 7. Th* forms of these expressions are
given in general terms by Eqs. ('23), (24) and (25). Note that the
solution in the lit region is just the geometrical optics field forthe isolated antenna and is not affected by the surface geometry. On

the other hand, the solution in the transition region is dependent on
terms of the form

ks) ds and
\2pg(s)

e-Jfk ds which are characteristic of the convex surface. Note that in
the above equations pg(s) is the radiLs of curvature and s is the
arclength along the appropriate geodes;c path. If the surface is
now approximated by a set of points, or" can evaluate the above

£integrals numerically using

t ) si  and

jJk ds -J " kAsi =k~ i

e j  e 1 e

These expressions require that the incremertal arclength between points
(Asi) and the radius of curvature at each point (pg) be found based
on the set of defining points. If the actual surface is given by
f(x) which is known only at a finite number of points, one can
make a polynomial approximation to a segment of the surface which
is given by

113



n-1
(78) y(x) Cx .

The geometry for this problem is illustrated in Fig. 41. Equating
the above polynomial solution with the surface equation at "n"
consecutive surface defining points one can find a matrix of the
form

f(xl) 1 x1  x2  ••n• CO
1 1 0

2 n-lf(x2) 1 x2  x2  x2 C1

2 n-iSf(X)J Xn Xn -X Cnnl

This matrix equation can then be inverted to solve for the values
of the c's. Substituting these values into Eq. (78) one obtains
an equation which locally describes the surface and from which one
can determine the radius of curvature and incremental arclength.

___h POINT DEFINING THECONVEX SURFACE

iX

Fig. 41--Numerical description of convex surface.
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-A The radius of curvature can be defined in many ways. In this
case it is given by

(79) Pg

dx
which is applied unless dy/dx approaches infirity in which case let
x be defined in terms of y then[ +(d

P9 dx

The values of the various derivatives are then found from the
polynomial expression of Eq. (78) which is evaluated at the mid point
(x,+l) of the approximating section by

= i C4 Xn+ 1l and
Xn I T~

T6

d~_ In+l= -l i

d n-l i-2
4 Z iCxn+l
x (n+l i -l

giving

n- 
i- /

(80) Og9 Xn+l)-- + 7 iC X+

Tn-1 i -

Using this technique the radius of curvature is defined at each
surface defining point. Note, however, that this requires a new
polynomial solution (Eq. (78)) for each pg calculation. One should
realize that the arclength as well as the radius of curvature must
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be determined to a good approximation in that they will he used in
the deep shadow region to find dpg/ds and d2pg/dsz. Consequently,
using the straight line distance 5etween adjacent points is not the
best method to find the incremental arclength based on our limited
comparisons. These comparisons were made between various numerical
solutions and the known solutions for s, pg, g, and ig along an
elliptical surface. A better approximation appears to be one which
takes into account the curved nature of the surface between points.
One such approach is illustrated in Fig. 42 where

(81) AS= 2 xi = 
I

wpgXi g g +l)xsin -g(Xi) + pg (Xi+l))

with

At2.Yi+l - Y)2 + (Xi 1 - xi) 2

This information can then be used in Eq. (24) to determine
the values of the radiated field in the transition region. Recall
that g*( ) and g*(t) are Fock functions which were defined in
Section II-D and are tabulated in the literature[50]. These
tabulated values can be applied to a simple interpolation procedure
that can be employed to compute the complete set of values, which
completes the approach used in the transition region.

In the deep shadow region additional information is needed about
the surface. For the diffraction and attenuation constants one
needs information about pg, dpg/ds, and d2p /ds2 at each point
[f xi)] along the surface. The values of te radius of curvature
poqxi) and incremental arclength si have been defined by Eqs. (80) and
(81). These values can now be used to compute the other terms using

Sg(Xi) Pg (il Pg(xi+l) Pg(xi)

(82) g (xi) 1 ASix.) AS

Pg(xi+) P g(xil)

ASi-l + ASi

116

- - -



CONVEX
SURFACE

, (xi,Y i )

( xi ,- Yits)

iILx ... xi+ I

Pg 00 .Pg (Xi.4 )

Fig. 42--Geometry describing the arc length computation.

and

(83) g X xi) 9 - (xi l) + B(xi+l) - Pg(xi)(3 x)AS i-l AS si

g(Xi+l) - 1g(xi~i)

ASi-l + Asi
which are numerical averaging solutions specifically designed to
compute derivatives based on discrete data as presented in Ref. [51].

The only undefined terms remaining are the values of Ai(T'n) and
A'(-q% ) which are tabulated Airy functions. In our solutions for
the GTD fields in the deep shadow region only two modes are considered.
The values of these terms for the first five modes are given in
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Section II-D. Thus, it has been shown that the GTD solution in the
deep shadow region can be completely defined in terms of our general
two-dimensional convex surface which is only defined by a finite
number of points.

For the actual computations, the tangent values at each of the
defining points were determined using the polynomial approximation
to a section of thf surface. These tangent directions in turn
specify the radiation direction of the fields diffracted from that
point. Note that curved surface diffraction is a local surface
phenomenon as shown in Ref. [52]. Thus, the points which define
the surface must be spaced close enough together such that the
tangent directions of adjacent points do not vary too rapidly.
Otherwise, the pattern can only be determined for large angular
changes, which means some of the pattern structure can be lost due
to the large pattern change between data points.

It was found for the cases considered in this study that a
4th order polynomial was sufficient to locally describe the surface.
This was based on a comparison of our numerical data with known
results for various convex surfaces. Note that the values of pg,

and could then be computed at the center point of each approxi-
mated section. It is this section approximation of the surface that
leads to the term Section Matching GTD Solution. Actual numerical
calculations are presented in Ref. [48] to show the validity of these
various approximations.

3In order to verify our solution, it was first compared with the
modal solution (Eqs. (3) and (4)) for an antenna mounted on a
circular cylinder. These solutions are compared for the infinitesimal
antennas as shown in Figs. 43 for a one wavelength radius cylinder.
In each case there is very good agreement between the two results.
These results do tend to verify this approach. However, this
fuselage profile is circular (Pg = Po = 0) and the circular case
is not a true test for our more geneal solution.

This section matching GTD solution now is extended to obtain
radiation patterns in the elevation plane for a simulated fuselage
model with an elliptical profile. The calculated radiation patterns
for infinitesimal antennas such as circumferential slot, axial slot I
and infinitesimal monopole mounted on an infinitely long elliptical
cylinder with a semi-major axis a = 0.637x and semi-minor axis
b = 0.390X are shown in Figs. 44 to 46. The comparison between
the continuous GTD solution[37] and the section matching GTD
solution, again, is very satisfactory. In addition these methods
have been applied to more general fuselage models such as composite
elliptical cylinders. The radiation patterns in the elevation plane
for a circumferential slot mounted at various locations on a composite
elliptical cylinder are shown in Fig. 47. The results, again, compare
very favorably with the continuous GTD solution[37]. The elevation
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plane patterns -or ai axial slot and infinitesimal monopole are
also shown in Figs. 48 and 49, respectively. Based on these results,
the pattern in the lit region is simply the direct radiation by the
antenna itself. On the other hand, the pattern in the shadow

o region is completely dominated by the fuselage structure through the
diffraction mechanisms- Thus, the complete radiation pattern for an
antenna mounted on a fuselage is greatly affected by the fuselage as
one should expect. The location at which the antenna is mounted is
also an important factor in determining the radiation pattern. The
radiation patterns in the elevation plane for a smaller composite
elliptical fuselage, with al = 1.5N. nd a2 = 2.0) and b = 0.5),
are presented in Fig. 50. From the comparison between these figures
one notices that there are fewer backlobes but more energy radiated
in the shadow region for the smaller structure. The larger structure
has more backlobes at a lower average energy level. This is simply
due to the size of the fuselage and the interaction between the two
surface waves propagatiog in opposite directions from the source; in
which case, the two ray paths play a most important role. That is,
the longer the ray path, the more the surface ray attenuates.
Again, this shows the significant effect which the structure of the
aircraft fuselage plays in terms of the antenna's performance.

D. Azimuth Plare Analysis

With an antenna nounted near the top or bottom of the fuselage,
it is quite apparent that the dominant aircraft structure effect in
the azimuth plane is the fuselage. However, in this case one is
not dealing simply with the cross-sectional shape of the fuselage
as in the roll-plane or the profile of the fuselage as in the
elevation pline. In fact, in order to dual with this problem to a
good approximation, a more complete three-dimensional study must be
made of the fuselage as is considered in the next chapter. On the
other hand, this section i, concerned with characteristic features of
the azimuth pattern in terms of the important secondary components.
Two such contributors considered here are the engine and wing
scattering effects.

In order to apply our previous solutions with only minor modi-
fications it is again assumed that the antenna is mounted on an
infinitely long circular cylinder (fuselage). A, in the roll plane,
the modal solutions are applied to determine the radiation pattern of
the fuselage mounted antenna. Using this approach one can again
consider an arbitrary antenna by integrating the equivalent aperture
currents as discussed in Section II-B. These patterns will be com-
pared with patterns including additional scattering structures. This
should allow one to determine if these secondary scattering structures
are important in the azimuth plane.
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Let us first consider the engine effect, which is modelled as
a finite circular cylinder. Recall that in the roll plane the engines
had little effect and were neglected in the more general three-
dimensionil roll plane problem, which was a great simplification in
the analysis. The solution of this problem is simply an extension of
the finite cylinder ' attering problem treated in Section III-C. The
geometry used in this problem is illustrated in Fig. 51. Note that
only the source fields incident on the engine have been modified in
this situation which is accomplished using the techniques developed
in the roll plane analysis of Section IV-B, in order to find the
effective source locations. For example, the source field incident
on the rear end cap of the etgine is illustrated in Fig. 52. The
location of the center of the cap is given by

(xd = y Yd d, zd =-z'+ /2).

With this location known one can apply Eq. (76) to find the ef-
fective source location on the fuselage which is given by

a

Ye= aj/d

z=X e (-z4I2/2)( e-4s,)
Ze = e( e-(so) + (d-YeI

e e so e

where e = tan-l( 2 af 2 ). With the effective source location

known one can apply the end cap scattering effects as given by
Eqs. (51), (64). The source field value incident on the rear end
cap is given by the modal solutions with the radiation direction
defined by

e = t n ( 'X e) 2  + (d y e )2 )
1/'l 2/ - Z'-yze

, tan-l(d. Ye)
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Similar expressions can be developed for the effective source
location and field value for the front end cap.

In order to include the effect of the cylindrical section one
can apply the geometry illustrated in Fig. 53. The field incident
on the engine is dependent on the desired radiation direction (es,
s = 900) and determined using the modal solutions with the

direction given by

=B s

2 2S=tan-1 (4d a.

Again the results of Section IV-B can be applied to determine the
effective source position which in turn can be used in the near field
cylinder problem. Using Eq. (77) ore finds that

xe = af cos(9O°-)

Y= af in(900-p)

Ze = af cos(900-)tan (900- )(i/2 SO).

with the actual source location on the fuselage defined by (af, sq, i

Zso = 0). Note that this term is only included over the finite limits
of the cylindrical section as shown in Fig. 53. This discontinuity
in the cylinder scattered field should be compensated for by the
edge diffracted field contributions from the ends of the finite engine.
The engine scattered field is then added to the directly radiated source
field using the superposition principle to obtain the total radiation
pattern.

Some of the results of this study are presented in Figs. 54. Note
that in each case the engine has very little effect on the total
solution. The maximum deviation, for the cases considered, is less
than 2 dB between the above solution and the solution that considers
only the directly radiated term. This implies that one can to a good
approximation leave the engine effect out of the solution in the
azimuth plane provided that the source is limited to the region
originally assumed. Finally, measured patterns were taken for the
monopole case in Fig. 54a in which it was found that the engine played
such a little effect that it was difficult to observe the measured
pattern changes with and without the engine (finite cylinder).
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0. Fig. 53--Cylinder section scattered field.
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The wing and possibly horizontal stabilizer effect in the azimuth
plane must also be considered. To analyze these structures one can
simply apply the solutions presented for the three-dimensional roll
plane problem of Section IV-B with only the desired radiation direction
(es, s) being changed to those angles dictated by the desired azimuth
pattern. Again these results are compared with and without the finite
wing effect in order to ascertain their significance in the overall
azimuth plane pattern.

Some of the results of this study are presented in Figs. 55.
Again it is observed in each case that the wing has little effect on
the azimuth plane patterns. in fact, what little effezt it does
have occurs in the small sector aft of the aircraft which mipht only
be significant for our assumed infinite cylinder model. Thus, the
wing can be neglected to a good approximation in the azimuth plane
provided that the assumed geometry and source location are adequate
to represent the actual on-aircraft antenna problem.

As a result of this study, it is apparent that the dominant
scatterer in the azimuth plane is the fuselage. This effect must be
taken into account in terms of a three-dimensional model ol the
fuselage if the resulting pattern is to be representative of actual
on-aircraft antenna patterns. This problem is considered in the
next chapter. Nevertheless, based on the results of this section
one can to a good approximation compute the azimuth plane pattern
simply by treating the antenna mounted on a reasonable model of
the fuselage without analyzing the other secondary scattering
effects.
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CHAPTER V

VOLUMETRIC PATTERNS OF ANTENNAS MOUINTED
ON CONVEX SURFACES OF REVOLUTION

As stated earlier, for a source mounted on the fuselage of an
arbitrary aircraft near the extreme top or bottom the fuselage
shape has the dominant effect on the resulting antenna pattern. The
wings and other flat plate structures can have strong effects in
certain sectors of the pattern but they are not as dominant as
the fuselage especially when the complete volumetric pattern is con-
sidered. For these reasons the volumetric pattern of an antenna
mounted on a three-dimensional isolated fuselage is analyzed by the
method presented in this chapter. Nevertheless, the wings and
various other structures could be added to this solution in the
future as was done in t;, three-dimensional roll plane problem.

In the previous chapter, aircraft models were considered that
would resemble a wide variety of aircraft shapes and yet could also
be analyzed with reasonable accuracy. In this case, it is quite
obvious that the three-dimensional nature of the fuselage must be
modelled if one is to adequately determine volumetric patterns.
In the elevation plane it was found that the profile of the fuselage
had to be accurately represented. This resulted in the development
of the Section Matching GTD solution in which the profile was
described by a finite number of points. Whereas in the roll plane,
the circular cross-section was found to be adequate. One obvious
extension of these observations is to consider a fuselage which is
analytically described by a surface of revolution. In this case
the profile is again described by a set of points which in turn are
revolved abojt the axis of the fuselage. In this way the important
features of our past studies in the three principal planes are in-
corporated in this new three-dimensional study. Not only is this
shape quite versatile but it can also be analyzed by extending the
techniques that were developed previously. This will become
apparent in the following discussion.

As presented in Section II-D the rays which propagate outward
from a source travel around the surface along geodesic paths while
energy is continually being diffracted in the tangent direction at
each point along the path. Thus, the first obstacle in computing
the volumetric pattern of an antenna mounted on a three-dimensional
convex body is finding a numerical technique to specify the geodesic
paths. One such solution is based on tensor analysis from which two
differential equations are given in Appendix II as
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a2

RDf dR
+2do R sin e(R cos e+T- sin e)d 2

(84) T Tr-

dR

2 2(Rcos e + sin e) de d,d - + = 0
d5gIR sin e

where t is the arclength of the geodesic path. 'he geometry of this
problem is illustrated in Fig. 56. Note that the surface is defined
by a set of points, which are used to specify R(e) for 0 < 0 < 1800.
For the cases considered here R(e) is defined every 1 whTch requires
a total of 361 points to define the surface.

Consider a point on the surface defined by e and which is a
function of the arclength (z). Using a power series expansion one
finds that

O(n)
OW = ) , and

n=O n!

,(2)(0 Z m.
m=0 m!

If it is assumed that one moves a very short distance (At) along a
given geodesic path then

+do At I At2, and

(85)

_ + ~ 1 l 2 ~ 2

(I+Ak)2L (k) + 1 At + Lt

dx~ I d 2 19

Now referring back to thr differential equations of Eq. (84) one
must define the source location and starting direction in order to
completely specify a geodesic path. However, with this knowledge one
can use Eq. (84) to find the second derivatives of e and * with respect
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Fig. 56--Surface of revolution described by a finite
se'. of points.
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to i at the point (o,€) as given by

r I d(d R Rd
2 - R) o 2 R sin(R cos +R sin o)
d = - 2 d _o d

(86) (dR) k ( )2 +
dR

22 Rcos e+Lsin ed]

d' R sino d

Thus by defining the initial conditions of the d~fferential equation
do oA cadov o 2

o, -d €, andL one can solve for and using the above
dZz d t

expressions. Substituting these results into Eq. (85), the values of
o(z+Az) and (z+az) are located approximately which in turn defines a
new point along the geodesic path. The derivatives of e and € at the
new point are given by

deJk+k dojk + d n

(87)

ddl+z= ~l] + 4d. 1A

d2ol anI

Knowing these terms one can again use Eq. (86) to find d-- + and

d4 l which can be used to locate a third point along the given

geodesic path. By continuing this process one can completely trace
out a geodesic ray path on an arbitrary surface of revolution. Some
examples of geodesic paths on surfaces of revolution are illustrated
in Figs. 57 and 58. Note that the geodesics on a sphere are great
circles as is found to be the case in checking our formulation and
is shown in Fig. 57.

An important question yet to answer is just how large can At be
without causing our solution to be inaccurate. This is a difficult
question to answer; however, some knowledge of the error ca~n be
found using Clairaut's theorem[53] which states that

r sin a = constant
- Vfor a given geodesic curve on a surface of revolution. Note that r
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Fig. 58a-.-Geodesic curves on a 4x x 2x pro~ate spheroid with
the source at =o 900, 0
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is the radius of the parallel passing through the given point on
.he geodesic path and a is the solid angle between the geodesic
direction and the meridian passing through that point, the meridian
being the profile shaped curve that is revolved about the fuselage
axis. Thus, one can examine the error by the variance of the constant
defined above as he progresses along a given geodesic path. For
example, on a prolate spheroid with semi-major and semi-minor
dimensions given, respectively, by 4x and 2x and with At = 0.0051
it was found that Clairaut's theorem was satisfied to within 3
significant figures for several geodesic paths as illustrated in
Table IV.

As stated earlier R(e) is defined every 0 for 0 < 0 < 1800;
however, as observed in the previous equation, not onTy RTe) butdR ,2 dR
e- and d-7must be known over the complete surface. To determine

do
this information a simple 4th order polynomial was found that passed
through 5 consecutive points defining the surface. The derivatives
of R(o) are then determined at the center point of each section using
the same apprcach presented in Section IV-C. The values of these
terms between the surface defining points are found using

R() R(o + ol + d2R ( l)2
dl

d2R dZR

2 2 T 11
ddo 2 do (2-0i),

2 '7 dI e2-
do do _To'(2_01)

where e is an arbitrary position parameter, 01 is the closest 0 value
to 0 which is also less than a and 02 = 01 + o.

A second solution for the geodesic paths is found using the
calculus of variations. Using this approach one forms an integral of
the arclength along a path on the surface which can be solved for an
extremum. This extremum curve is simply the geodesic path. In this
case, the integral of the arclength is given by

F(dR - 2 2 .2 (ds 2

= R + R sino 0 dTv do
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which has an extremum given by[53]

d-j 2J

_ 4 4 2 2 do
JR sin -CR sine6

with C being a constant. One can then relate C to the initial direction
of a given geodesic curve and compare this result with the previous
solution.

TABLE IV

CLAIRAUT'S CONSTANT ON A SPHEROID
USING TENSOR ANALYSIS SOLUTION

y 1000 y 120 o

Clairaut Clairaut
o Constant 6 Constant

89.97513 0.14106 1.96962 89.92838 0.12405 1.73205
87.00310 17.07253 1.96961 85.07056 8.56457 1.73199
85.01104 28.65405 1.96961 80.00671 17.53570 1.73193
84.01189 34.59238 1.96960 75.03504 26.70357 1.73188
82.00377 46.91133 1.96960 70.04465 36.49352 1.73184
80.01470 59.82879 1.96960 65.02831 47.23272 1.73181
79.00000 66.80015 1.96960 60.02371 59.28953 1.73118
78.01033 73.92622 1.96959 55.03424 73.37006 1.73177
76.01345 89.65047 1.96959 51.51429 85.24570 1.73176

y =1400 y =1600

Clairaut Clairaut
Constant Constant

89.89027 0.09207 1.28557 89.86540 0.04899 0.68404
80.08774 8.39953 1.28533 79.97284 3.68367 0.68382
69.99167 17.49768 1.28513 70.08763 7.52630 0.68362
60.03110 27.70494 1.28496 60.02801 11.92162 0.68247
55.04909 33.58741 1.28491 50.06772 17.15761 0.68336
45.00158 48.15512 1.28483 40.02862 24.04913 0.68325
40.04995 57.48482 1.28479 30.02665 34.07472 0.68300
35.04354 69.43960 1.28473 25.04869 41.34835 0.68273
33.00055 75.42781 1.28470 20.13786 51.48320 0.68226
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As illustrated in Fig. 59 the values of the position parameters
(e, ) for the given curves comrpare extremely ill for the two
solutions. Note that the above integra' solu ion is evaluated
simply using Simpscn's rule. In addition, it is ;hown in Fig. 60
that the tangent directions (et,4t) of the varioLs geodesic curves
found using the two solutions compare very favora~ly. Recall that
the radiation direction is specified by the tange;it to the geodesic
path. The actual solutions used to compute the tangent directions
will be presented later.

! TENSOR ANALYSIS SOLUTION

90 • • • • CALCULUS OF VARIATION SOLUT10ON

80-

70-
IO--

0 0 20 0 40 50 6 70 80 90

Fig. 59--Comparison of geodesic paths using tensor analysiso

03

Finally, in Table V the values of Clairaut's constants are shown
for various values of C using the above integrul solution For the
geodesic path. Again this constant remains unchanged through 3
significant figures for the cases considered.
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Fig. 60--Comparison of tangent direction (etqt) using
the geodesic Solutions.

NOW that the geodesic paths are known to a god approximaton
on an arbitrary surface of revolutiolp, the radiation direction
(or geodesic tangent) must be found for each path. In otherwords, if the radiated field in a given direction is desired one
must know the appropriate 

geodesic path or paths to take in

0 order that the tangent be in the desired radiation directinn. To
obtain this information one must first generate a set of test
curves which are formed using k;lown geodesic paths and Plotting the
resulting tangent angles (et,oc). In order to g!t a uniform set of
test curves one must consider rays which propagte outward fromthe source in all directions.
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TABLE V

Cl.AIRAUT'S CONSTANT ON A SPHEROID
USING CALCULUS OF VARIATION SOLUTION

100<t "Y= 10 y = 120 °

Clairaut Clairautl0 Constant 6 Constant

89.97513 0.00000 1.96962 89.92838 0.00000 1.73205
87.00310 16.98105 1.96961 85.07056 8.67377 1.73199
85.01104 28.38179 1.96961 80.00671 17.48598 1.73193
84.01189 34.15927 1.96960 75.03504 26.62195 1.7318
82.00377 45.96819 1.96960 70.04465 36.30131 1.73184
80.01470 58.27634 1.96960 65.02831 46.80939 1.73181
79.00000 64.69234 1. 96060 60.62371 58.55346 1.7,3178

78.01033 71.33482 1.96959 55.03424 72.18228 i 73177
76.01345 85.51688 1.96959 51.51429 83.44494 1.73176

y = 1400 y =1600

c Clairaut' Clairaut
Constant I Constant

89.89027 0.00000 1.28557 89.86540 0.00006 0.68404
80.08774 8.46014 1.28533 79.97284 3.66851 0.68382
69.99167 17.42221 1.28513 70.08763 7.54001 0.68362
60.03110 27.56524 1.28496 60.02801 11.87875 0.68347
55.04909 33.38832 , 1.28491 50.06772 17.07832 0.68336
45.00158 47.60200 1.28483 40.02862 23.33207 0.68325

40.04995 56.76927 1.28479 30.02665 33.60774 0.68300
35.04354 68,30339 1.28473 25.04869 40.67232 0.6827-
33.00055 73.91109 1.28470 20."3786 50.59393 0.68226
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Using the geometry illustrated in Fig. 61 a set of test curves
is defined as a function of the starting direction angle (-) where

0, 180. Note that the source position is defined by [R(A0),
. Th etr['~ n '

0 0 0. The vectors B1 and e2 are the unit tangent vectors to
the surface which are defined in the * = 0 plane by

dRsin o + R cos x + dRCos e R sin z.]-

~~ [~5i 6 + o~Rsn~
=

e12 =y•

The starti% "irection of any aroitrary ray path is defined by

= cos y e1 + sin , e 2 ,

where these terms can be related to de/d, and d,/d, by

do cos y

+ R
Z- R sino I

6 0 6 0

These expressions give the initial conditions used to solve the
differential equations oif Eq. (84).

Based on our results, solving for the test curves with
Ay = 2 0 was satisfactory to find adequate values for the actual
curves used in the pattern calculation. For example, the test 6

curves are shown in Fig. 62 for a source mounted at the top of
a prolate spheroid. Then any desired radiation direction can be
plotted on this graph, which in turn can be used through an
interpolation procedure to determine the value or values of the
starting directions (y) from the source, in this way all the
dominant ray paths can be traced out with the associated fielI
values summed in the far field to give the complete radiatio
pattern. Note that the test curves need only be determined for
0 < y < 1800, since for a surface of revolution the r,:sults in
the otFer half space are simply the mirror image.
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X GEODESIC

GEODESIC STARTI NG
PATH DIRECTION

0,

Az

Y\

Fig. 61--Starting direction of geodesic path which is
defined by the angle (y).

To illustrate the validity of this technique the resulting
radiating angles are presented in Table VI for various desired
radiation directions. Note that as the errors increase, the
resulting amplitudes of the field values are dEcreasing which tends
to reduce the total error in the firal result. This results from
the fact that the error, increases with path length (Z) due to the
numerical computations but the longer the path the more the field
is attenuated due to e-ak in the GTD field expressions.

Now that the various geodesic paths are identified, one must
determine the various parameters necessary for the field calculations
using the GTD approach presented in Section I-C. First, let us
consider the longitudinal and transverse radius of curvature.
In order to define these terms consider the curvilinear coordinates
given by t, n, and 6 as illustrated in Fig. 63. Note that t is
the unit tangent vector, n is the unit normal vector, and S is the
unit binormal vector (b = t x n). The radius of curvature is defined
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TABLE VI

RADIATION DIRECTIONS DESIRED VERSUS ACTUALLY COMPTED TANGENT
DIRECTION OF GIVEN GEODESIC CURVE USING INTERPOLATION PROCEDURE

0desired 90 desired 70

0cornp. desired ~ comp. 0comp. desired1 ~comp.

90.0000 10 99.9690 70.0020 1000 100.0110
90.000 10 110.053 69 998 110 110.019L90.000 120 120.023 70.002 120 120.016
90.000 130 129.992 70.007 130 130.001
90.000 140 139.962 69.990 140 139.960
90.000 150 150.046 70.004 150 150.059
90.000 160 160.015 69.997 160 159.945
90.000 1 170 169.985 69.969 170 169.925

SOURC

K I
y0

4 r Fig. 63--Curvilinear coordinate alon~g a geodesic path.
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(88) - 1

where t(z) is the derivative of £ with respect to the arclength (z).
The unit tangent vector to the geodesic path is given by

(89) t()= d ,) dt(o, ) do + dt(e, _) d-

where C(o, ) is the position vector which defines the geodesic path.
The values of de/d and d /dk are defined at each point along the
path; however, dt/de and dt/d must be found using

Co, ) = R(e) sin e cos x + R(e) sin e sin y + R(e)cos e Asla;

or

dC =dR cdR
T = Z0sin o cos + R cos e cos + in e sin +

R cos o sin + dR cos e - R sin
~ do 0)J

and
dC sn c ,y

= -R sin e sin + R sin e cos

ol
Thus, the tangent vector is defined at each point (e,4) along a given
geodesic path by substituting the above expressions in Eq. (89).
Since the diffracted rays radiate in the tangent direction, this
solution defines the radiation direction at every point along a
given path.

The derivative of the unit tangent vector is given by

d(2= d I do)'2  d2C do d4) + dC d2 0
(90) +2 --- - do +

0

d d24d2C + dZ" d2@ ,
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The terms found in the ab3ve equation have all been defined earlier
except for

d-C (dR dR
-.- = - sin e cos 2T- 2 W cos e cos ¢ - R sin c cos

de+ sin e sin € + 2 cos a sin , - R sin e sin>

+(deR

R cos e -2 sin e - R cos

ed

: -R sin e cos € x - R ,in e sin y ,and

d C sn (dRR
-sin -sin a + R cos x + cos sin e + R cos ) .-

All of these terms are then determined once the geodesic path is
traced out to the point C(0,€) on the surface. The longitudinal radius
of curvature is then simply obtained by substituting these quantities
into Eq. (88).

In order to solve for the transverse radius of curvature, one
must find similar relations for the curve on the surface of *evolution
which is orthogonal to our given geodesic path at the point C(6,0).
In so doing the geodesic path orthogonal to our original path must
first be found. This will allow us to use the previously derived
equations which in this case give us the transverse radius of
curvature. The unit tangent vectors at any point on the surface are
given by

e1 dR sin e + R cos Cos 0 x +

+ R2dR) + R

(91)

(pin e + R cos sin Oy + cos e - R sin ,and

e2 =-sin 4 x + cos 0.
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1, 7The unit tangent vector to the original geodesic path (t) and the
transverse path (l) can be written, respectively, as

t t eI +t 2 e 2 , and

b b e + b2 e2

Since t • b =0, one finds that

dC
b= -t2 el + t e

where tt(e, ) is the position vector of the transverse geodesic path,
Substituting Eq. (91) into the above expression it is seen that

2'sn+ cs'cs A( (dRA
t 2  sin + R cos Cos x+ L-sin o + R cos .in.by
dRI + R2  -

+ cos 6 - R sin i + t[1 sin 4x + cos =

However, dCt/dt is defined by Eq. (89) which when substituted into
the above equation gives

trans (fdR2 R2ad

-tdi1 trans FTi

Ptrans R sin 6

Note that the values of tI and to are defined at each point along
the originial geodesic path by Eq. (89 . With these quantities known
one can f4nd d2e/dk2 trans and d4/dz Itrans using the geodesic
solutions of Eq. (86). Knowing this information the transverse

r radius of curvature is simply found as before using Eq. (88) with
the transverse path terms being used in this case.
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The accuracy of this approach is illustrated by a comparison with
various analytic solutions for the longitudinal and transverse
radii of curvature. Our approximate values were compared with the
known values for a sphere and found to be in agreement through 5
significant figures. Our values are compared with the analytic
solutions on a prolate spheroid along a meridian geodesic path in
Table VII. Good agreement is obtained between the two solutions
for the cases considered. Note that the derivatives of the radius
of curvature are not included in this study to date in that the
numerical complexity would be too great to warrant its insertion
at this time. However, a method of computing sucn quantities has
been presented in Section IV-C so that it could be introduced
if desired at a later date.

TABLE VII

COMPARISON OF ACTUAL AND COMPUTED VALUES OF LONGITUDINAL AND
TRANSVERSE RADII OF CURVATURE

Prolate Spheroid (4X x 2x)

Pt actual ot comp. Pg actual Pg comp.

0.0 1.00 1.00 1.00 1.00
10.0 1.15 1.15 1.54 1.54
20.0 1.43 1.43 2.91 2.93
30.0 1.65 1.66 4.47 4.58
40.0 1.79 1.80 5.76 5.85
50.0 1.88 1.89 6.69 6.78
60.0 1.94 1.94 7.32 7.36
70.0 1.98 1.98 7.71 7.75
80.0 1.99 2. 00 7.93 7.97
90.0 2.00 2.00 J 8.00 8.02

Another quantity necessary in our calculations is the spread (
factor (7d*), which is representative of the amount of separation
between adjacent geodesic paths as they propagate around the surface.
This type of separation is illustrated in Fig. 64. This parameter 0

is obtained numerically by considering two adjacent rays initially
separated by d o, then determine d which is the included angle between
t~e adjacent tangent vectors at the point of diffraction. Thus, if
tangent directions at the point of diffraction are given by t and

t2, then

d* =cos"  (tI t 2 ) "
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Fig. 64--Illustration of the spread factor (4 do/d) terms.

A study was made to determine just how large d~o could be made
without greatly distorting the value of VdTpo/dyi at the diffraction
point. It was found hat dio could be as large as 2 0 which meant
that the values ofJdF7Ud could be computed and stored along with
the test curves. Consequently, one need only specify the radiation
direction which in turn specifies the initial dirictions (y) of the
geodesic paths and the associated spread factors (4 dTo/T). These
data are stored at the beginning of the program in that they are
characteristic of the body and source location being considered.

The far field patterns can now be computed using the previously
defined terms which provide information about the convex surface of
revolution under consideration. Since the antenna is assumed to
be mounted on the fuselage of the aircraft, one needs only consider
two general types of antennas. These being the monopole type which
has a normal component electric current with respect to the surface
and a slot type antenna which has a tangential component magnetic
current. It i.; assumed that the fields laui.ched by infinitesimal

r antennas follow the solutions specified for the two-dimensional
problem of Section II-D. Note that in this case the three-dimensional
geometry is irtroduced in terms of the geodesic paths and associated
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longitudinal and transverse radii of curvature which appear in the
diffraction and attenuation coefficients. It is further assumed that
the normal and tangential component boundary layer fields propagate
around the surface independently. This approximation might be
rather poor if the torsion along the geodesic curve varies too greatly;
however, this point is not well understood at this time. In any event,
the results presented here will be compared with actual measurements
to illustrate the validity of these assumptions. On the other hand,
torsion is a surface-curve relation which can be computed using
techniques similar to the previously derived relations.

At this time only a convex body is considered in order that the
radiation direction can be simply defined by the geodesic tangent

direction as was indicated earlier. However, the study of a concave

body is an important topic worthy of future consideration.

Let us first investigate the monopole antenna type whose surface
rays propagate outward in all directions from the source with a
normal component E-field (or follow the hard boundary condition).
The following is a summary of the solutions in the three different
regions for the monopole case using the geometry illustrated in Fig.
65:

GEODES IC em
DIFFRACTION PATH

PO INT ,k - M O OP LE
COMPONENT

~OF FAR FIELD
PATTERN

Fig. 65--Geometry of monopole problem,
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Lit Region

(92) E(o,F) = - sin n m F(source)

Transition Region

a) Lit side

(93) E = n n 8m) e g .- F(Langent)

b) Shadow side

(4)dy -jkz *k

Deep Shadow

(95) E F (taigent)

where
Eh Jd%~ lDh h n e Ym (Pi)A 9,i

m=O I

Note that the summation over "j" in the above expression indicates

that several terms can contribute in the deep shadow. An example
of this situation is illustrated in Fig, 66 where four rays con-
tribute to the far field pattern. The only term in the above
expressions that is yet to be defined is the launch coefficient
which is given by[35]

(96) Lh e h (g  ] (- q at source location.

[ lA
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LOCATION

DIFFRACTION
POINTSI NN

DIFrFRACTION

Fig. 66--The four dominant GTD terms that radiate at
(e=900 , =145o).

Note that n is the unit normal at the tangent (or diffraction) point
of a given component of the far field pattern, and F ( ) is a

Nl phase factor used to reference the phase to the center of the surface
of revolution.

In order to obtain measured patterns off the principal planes
using a conventional pattern range, which only revolves about a
vertical axis, the body is first rotated by an angle (t) as shown in
Eig. 67J Thus, as the body turns about the z'-axis, one obtains the
e' and €' components of the radiated field. In Fig. 68 the €'-
component of the field is illustrated with = 00 for a short
monopole mounted on a 4X x 2X prolate spheroid. For this principal
plane pattern the comparison~betweep the measured and calculated
results is quite good. The a' and p' components of the radiated
field for the same body are illustrated in Figs. 69 and 70 for
= 200 and 400, respectively. In these off-principal planes casas

the agreement between the results is again quite good.
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eo<x

P-4 0

Fig. 67--Rotation of convex surface in order to obtain
off-principdl plane patterns.

, 0

Even though the above problems considered seem to be rather
special cases of the more general problem originally treated at the
outset, the results are encouraging especially for the off-principal
plane cases. They do tend to verify this approach and the associated
approximations at least for the monopole cases considered.

The next case to be considered is that of an arbitrary oriented
slot mounted on a convex surface of revolution. It was shown in C
Section II-D that for the two-dimensional problem with the slot mounted
parallel (orthogonal) to the cylinder axis that the slot radiated
according to the hard (soft) boundary condition in the principal
plane. If an arbitrary orientation of the slot were considered
then one could assume that the pattern is given in the principal
plane by

r (97) E = Esoft sin B + Ehard cos 0

00

176

0



033-
0 13

El.

(SP) UJ3M0d 3AIlVI38J

CL

I- )
.5- 1
Ci <

LLJ wLa

ol0

177 '



o 
a

41N

I~ o-
(SP) 31,%d 3A~VI38go C

CL

z 4-

0 z4-

C)

0'

4- 400c

0'

H O~178



'0 N

0 40

00

1. 4

0a

0 u

z 4-

0 z C0
130~

-I-

0. Z

4q 0-

00

'00

179



131

E
°4-

0 0

c4 
4-)-
4J0

I (SP) 83,",'Od 3AlI8 oC

CL
Cl
0--

00

U

w~L

CL Z

/ - 4-

00

D o 0

00

0 430 -O- --

K

180

- - - --------------- - - - - ,________



13 C)1

4-.

00

0 0 0

9-

0 0.

olo

oo

CDC

z z 0

U)-

00

181



using the gernetry illustrated in Fig. 71. Thus, for a slot antenna
mounted arbitrarily on a three-dimensional surface with a volumetric
pattern desired one can extend this approach by considering that the
boundary layer f~eld has a tangential component given by

Etang = Esoft cos(y-B) = Esoft cos(,-Th

and a normal comp.nent given by

Enormal Ehard sin(y-e) = Ehard sin(-)n

where y is the starting direction of the geodesic path defined
earlier. N(ote that the above solutions agree with Eq. (97) in the
principal plane (y= 900). It is then assumed that these two
components propagate around the surface independent of one
another according to the formulas specified in Section II-D.

0
FINITE SLOT

-INFINITESIA
SLOTS\/

GEODESIC GEODESI C
STARTING PATH

DIRECTION

r Fig. 71--Finite slot geometry.
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Using these results one can define the slot far field pattern in terms
of the three regional solutions by:

Lit region A4

(98) E =[(cos sin 3) + -(sin e cos e sin .: - sin e cos 0]

F(source)

Transition region

a) Lit side

(9) E !i-at source c Y+
_

* F(tangent)

b)Shadow side

(10) ~I~n[ d% -jkt,(( k )1/3 sinY )1_

L 1

-ik. k /3 /2 1/3b ' -2 e k 2p() at source

* F(tangent)

Deep Shadow Region

(101) E [n Eh sin(y-s) + bj cos (y. )JF(tangent)
JJ

where
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- -- --------

Eh h 1 hh -mi)1
0 Id 0 o O L M He

m=0 i

mm -m Lm )e .

Again the sunation over "j" in the abve expression indicates that
several terms can contribute in the deep shadow region as shown
previously in Fig. 66. The launch coefficient for the hard boundary
condition is given by Eq. (96); whereas, the soft boundary condition
launch coefficient is given by[35]

VT 1(12 s [ ( -j A' °q
2 m _ e D I A(-qm at source location .

Note that n and b are, respectively, the nodral and binormal to the
geodesic curve at the point of diffraction and F( ) is simply a
phase factor to tefer the phase to the center of the surface of
revolution.

0In order to measure the pattern of a slot antenna, a finite
length slot is considered. Actually for our measured patterns an
open-ended waveguide is used except the width is cut down to ap-
proximately one-tenth of the wavelength. For this antenna one
can compute the pattern by numerically integrating the patterns from
three infinitesimal slot antennas which approximate the aperture
fields as shown in Fig. 71. This approach is described in Ref. [22]
and successfully applied in Ref. [47]. Using this solution the
computed principal plane pattern [=0o in Fig. 67]is compared with
the measured result as shown in Fig. 72 for a circumferential slot
(a=90o). Note that these results are again taken on a prolate
spheroid. The calculated and measured off-principal plane patterns
for E=20o and 400 are shown, respectively, in Figs. 73 and 74. In
each case, good agreement is obtained between the measured and cal-
culated results.

Again the slot cases treated are rather idealized as compared
to the more general problem originally outlined. However, off-
principal plane radiation patterns from antennas mounted on three-
dimensional surface which are large in terms of the wavelength have
not been analytically computed with much success to date. Thus,
one must begin by treating specific cases which are easily modelled
and computed. In this way one is able to ascertain the validity of
his solution. The dbove results, then, indicate that the high
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frequency solutions of KCuYourjiar,[35] can be applied at least to
this idealized problem. One must, now, extend these solutions to
determine for what type fuselage -dels they tend to break-down if
in fact they do.
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j
CHAPTER VI

CONCLUSIOaS

High frequency solutions for the radiation pdtcen.,t of general-
type on-aircraft antennas mounted on the fuselage is the object of
this research. it has been shown previously that the modal solutions
are quite adequate fic compiting these patterns provided the structLre
is not illuminated too strongly. However, rodern applications

0 require antennas which can strongly interact with the aircraft
structure. Thus, improved analytic models must be applied in order
to de-lelop useful theoretical solutions. These solutions can then be
used to compute the antenna design and location for a given appli-
cat i.

The basic approach app'ied here is to add to the modal solutions
by including additional structural components in the analytic model.
This is accomplished using a ray optics technique in which the
r.,odal solutions are written in a ray form. Using this scheme, one
is able to corider isolated structural components, which have been
removed from the aircraft, and then add it to the model simply by
adjusting the field incident on the structural scatterer.

Two near field scattering problems are initially studied in
Chapter III. These are a finite flat plate, which is used to
simulate the wing, and a finite cylinder, which is used to ap-
proximate the jet enginec. The flat plate scattering is solved
using three-dimensional wedge diffraction techniques. Various
measured results are presented to verify o ,r theoretical solutions.
The finite cylinder scattering is solved using physical optics, the
Geometrical Theory of Diffraction, and modal sol,'tions. Again

measured results are presented to illustrate the validity of thisI solution.

These near field scattering solutions are then added to analytic

aircraft models to compute the principal plane patterns in Chapter IV.
In the roll plane, it is found that the jet engine has little effect
for a two-dimensional model and is, thus, neglected in the more
general three-dimensional study. The resulting roll plane model is
basically an infinitely long circular cylinder to which wings and
horizontal stabilizers can be attached. Note that the wings and
horizontal stabilizers are approximated by arbitrarily many sided
flat plates. The elevation plane model approximates the profile
of the fuselage by a set of discrete points with Lhe resulting
surface being convex. The fuselage is found to be the dominant
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scatterer in the elevation plane. Finally, the azimuth plane modei
consists of an infinitely long circular cylinder to which wings
and engines can be added. However, it is shown the wings and
engines have such a small effect that they can be neglected to a
good approximation in the azimuth plane. In each case, measured
results were taken in order to verify the various solutions.

These solutions provide a high-speed analytic tool for determining
the design and location of antennas based on their principal plane
performance. For example, the programs delivered to the Iaval Air
Development Center typically run i pattern in 30 seconds or less
on their CDC 6600 digital computer.

An additional feature of these solutions, which can be very
important in certain critical cases, is that one can trace out
the dominant pattern terms as they are scattered by the various
aircraft structuree. In tn;s way one can quickly ascertain which
structural scatterers are distorting the pattern in a critical
region. This gives him the option of taking corrective action by
changing the structure or by properly placing absorber. So these
solutions not only provide fast pattern computations, but they,
also, provide the antenna designer with a means of analytically
considering several alternatives to improve the antenna's per-
formance.

The final problem considered in Chapter V is the volumetric
pattern analysis of an antenna mounted on a convex surface of
revolution. This model describes the fuselage profile by a set
of points which are revolved about the fuselage axis in order to
analytically approximate a complete surface. The wings and jet
engines are not, presently, considered in this study in that the
fuselage scattered fields tend to dominate the overall pattern as
determined by the principal plane studies. Nevertneless, these
structural components can be considered in the future as was done
in the principal planes. The volumetric patterns of monopoles and
slots using the asymptotic high frequency solutions of Kouyoumjian[35]
ire numerically derived. The geodesic paths are found and verified
as well as the radii of curvature, etc. The principal and off-
principal plane patterns are computeJ and compared with measurements
made on a prolate spheroid. In each case, good agreement is obtained
which tends to verify the numerical solutions.

C~)
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Now using the cylindricaly separable fields[54] from Table VIII
one finds that

Ei ~ ~~~~~~jkz cos oi  . J(psnie-n

E e C Ji'(kp sin - e1

The form of the scattered field can now be postulated giving

Es¢ jekz cos ai . a H (2)'(kP sin ei)e Jn

E5  Ij n ah~ k in-m

where the an's are unknowns. Using the boundary conditions at the
F}urfice of the cylinder, at which the tangential component of tha
-field must vanish, one finds that

E (p=a)  e J'(ka sin 6i) + a

H 2)(ka sin o) mn}

which implies

a n n (ka sin ei)

Ji')(ka sin ei)

n1

The total field is now specified by the above relations in
conjunction with Table VIII and is given by
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t ejkz cos O.i cr n ~ (ka sin e.)
Et eI 2ni (kp sin e.) - n1jp kp sin a i r~ [iLn ' H(2)(ka sin o.)n1

Hi(2)(kp sin 6 )sin n

Et ~ ~ c =-e -J'(ka sin e.)
jkzco e jJ( kp sne.) nEen=o Ln n1) H(2)(ka sin e.)

n*

(104) H(2)1(kp sin e.) cos nn i

Et =
.LZ 

0

jkz Cos a.

rp n 1(Ht~ n= - o .'e1sn . '(ka sine.)nn 1

H(2'(kp sin ei) cos n

ejkz cos e.i c n~k i i
co s i . 1 2n(k sin e.)in ei)-- J

-ot 1T7 fl 1~ 21(k i

H~ (2) sn.L(kp sin e si) nn 
-i

Ho i k o i CinJ(pi 1i n= Hn (ka sin e)

-T4 sn e.)si)n

n.0 L0' V 1 H n '(ka sin e.

H (2)(kp sin e ~cos n

where
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=fl n=0
oe 2 otherwise.

Note that these solutions give the total field at every point in
space for a plane wave with a perpendicular component E-field in-
cident on an infinitely long cylinder of radius (a).

The total field for the parallel component E-field incident is
found in the same way. In this case, the incident field is given
by

• ^ jk(z cos oi + x sin 6i)
E = (x cos ei - z sin oi) e i

Using Eq. (103) it is easily shown that

jkz cose i j (e
Ei =-sin e e n jn(kP sin ei)e-jn .

Again the form of the scattered field can be postulated as

E jkz cos ei c n n (2)(kp sin oi)eJn@.

EY n=i i  an H n 1
n=-=O

The total tangential E-field must vanish on the perfectly
conducting cylindrical surface in which case

jkz cos ei
ES (p=a) = -sin ei e jn[J (ka sin oi) +

1Z 1 n= n

a H(2)(ka sin ei)]e'Jn 0

nn 1

which implies

J n(ka sin ei)an n . 1Ik
n H( sin ei )
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Using these results along with the separable fields of Table VIII one
finds that

E t jkz cos o
Et -j cose i e £ 1 i j (kp sin ei)utP 1

n=On n

Jn(ka sin ei)
H(2)(ka sin i) n (kp sin 60) cos n,

jkz cos .oEt  cos o.ei
Et 1 n j [j (kpsin ei) -

li 10 S ksn 02 j.
1n=ln

J n (ka sin e ) '2 (kp
(105) H 2 (ka sin e) sin n

ncT(ka s in e.

jkz cos o.

n=O . .

i 2nn13(ka sin o.)112

Jn~k si oi) H 2(kp sin ei) ] cos no

"I)(ka sin sin nHn oi

jkz cos ei o k s
tI = P 2n j"+l[EJn(k P sin oi) n )k sijo)

kpZ 0 sin e ) -

Ht0 = Jkz cos i  Jn (ka sin oi)

n

H(2) kp sin oi)] cos n

r Ht =0.
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Note that these solutions give the total fields at any point in
space for a parallel component plane wave field incident.

The solution for an arbitrary plane wave field incident can be
easily found by decomposing the field incident into its perpendicular
and parallel componerts multiply hty these values by the above
solutions and sunning the terms.

0

It was assumed for convenience in the above rrdal solutions that
the plane wave was incident at ¢i = 0; however, this restriction is
simply removed by replacing ¢ in Eqs. (104) and (105) by - where
i is the general incident direction.
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TABLE VIII

TE AND TM FIELDS SEPARABLE IN THE CYLINDRICAL COORDINATE SYSTEM

The harmonic electromagnetic fields listed below satisfy Haxwell's
equations in a ho=ogeneous source-free region.

TE Fields TM Fields

E - -Cju/p) R P' Z E R' P Z'

E= juui R P Z E¢= (lip) R P Z'

Ez 0B2 R P Z

R' Pz' Hp - (Jwclp) R F' Z

HO (l/p) RP' Z' 1 - -Juc R' P Z

B2 R P Z Hz  0

The time dependence ejWt is understood. R is a function of p only,

P is a function of € only, and Z is a function of z only. Prime3 indicate

d.ffferentiation with respect to p, 0 or z, The functions satisfy the

following differential equations:

dP ( + (S2 p2 - m2) R 0

p" a - m2 P

Z" - - h2 Z

where

02 + h2 . Ac, and 8 and h are constants.

Some solutions of these differential equations are listed below.

R(p) J 3 m (8p) P() - cos mO Z(z) , cos hz

NM (0p) sin mn sin hz

H( 1) (6p) •j m i j hz

(2) -JM ''jhz

UP(8) ee

203

- - \- -' -- '



APPENDIX II

0- The geodesic differential equations for an arbitrary surface of
revolut-ion are developed in this section using tenscvr analysis. Using
the geometry illustrated in Fig. 56, any point on this surface is

x(e, ) = R(e) sin e cos

(106) y(e, ) R(e) sin e sin

=~, R(e) cos e.

The unit tangent vectors on the surface are given by

e1(e,) [ ( sin 0+ R cos eCos + v .sin e + R cos esin

(107) (d' in 2

and

e 2(4,q) =-x sin 4+ y cos C

The metric tensor is given by

re 2 0

dR 2  2 ( ino

0~d R+snR IIsn
0 ~ R 2 sinn2 /
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Using the above information, the christoffel symbols are given by

-de"

K R+ R

-Rsin o (R cos + sin e)

ri2  /dR 2 dR 2

dR

cos o + To-sill e

r21 =  12 R sin e

1 2 2
12 r21 = = 2=

Substituting these results into the geodesic differential equations[53],
one finds that the geodesics paths are defined by

dR td d2 Rd2e (7 d +- R) 2 R sin e(R cos o + dR sin O)(d)2

di 2  
- dR 2  R2

k/+ R 0-01 + R

(108) 2 2 R cos o +dRsin e

4 + R sin .6 d 0 ,

where t is the arclength along the geodesic path. Note that these
solutions are valid only for a surface of revolution such that the
z-axis coincides with the axis of revolution.
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