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ABSTRACT

High frequency radiation patterns of on-aircraft antennas are
analyzed using ray optics techniques. This is a basic study of
aircraft-antenna pattern performance in which the analytic aircraft
is modelled in its most basic form. The fuselage is assumed tc be
a perfectly conductixg convex surface. The wings are simulated by
arbitrarily many sided flat plates and the je* engines are trealed
as finite circular cylinders. The three principal plane patterns are
analyzed in great detail with measured results taken to verify each
solution. A volumetric patterr study is initiated with the fuselage
modelled by an zrbitrarv convex surface of revolution,
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CHAPTER 1

INTRODUCTION

Radiatior pattern analysis of on-aircraft antennas at high fre-
quencies is the object of this research. It is a basic study of
aircraft-antenna pattern problems in which the antenna is rounted
on the fuselage near the top or bottom. Since it is a study of
general-type aircraft, the analytic aircraft is modelled in its most
basic form., The fuselage is assumed to be a perfectiy conducting
convex surface. Thus, the effects ot the cock-pit ard radome are
neglected at present. However, based on the advances made on metailic
radomes, the radomes used in fuiure aircrafts may to a good approxi-
mation be perfectly conducting. The wings and horizontal stabilizers
are modelled by "n" sided flat plates which lie in a plane that is
parallel to the fuselage axis. The engines are approximated by finite
circular cylinders. This is a rather crude approximation; yet, it is
shown that the engines have little effect on the overall pattern.
Thus, it is not necessary at present to consider & more general
engine model.

The need for this tyvpe of solution is basically two fold. First,
there are upwards to 200 antennas mounted on a single aircraft. If
these antennas can be located on the aircraft at the design stage,
then one can expect better performance in that optimum locations and
necessary structural changes can be anticipated. Secondly, antenna
systems are normally added or changed in the course of an aircraft's
useful Tifetime. Such relocation or addition of antennas has always
required a great deal of engineering time and money. For example,
it is net uncommon for one to spend six months buildirg a model and
a second six months measuring radiation patterns for an’ennas mounted
at various locations around the structure. On the othrr hand, it is
not inconceivable that one could accomplish the same result in a
fraction of the time (perhaps a day) using computer simulated models
of the aircraft. Once an optimum region is determined, the antenna
can simply oe flight tested to ascertain its actual performance. Not
only can these computer simulated results be used to determine the
location, but they can, also, determine the optimum antenna design for
a given application. Note that these aralyses consider the three
mutually orthogonal delta function sources which can be used to solve
for the pattern of an arbitrary fuselage mounted antenna simply by
integrating over the equivalent aperture currents.
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One of the first solutions used to compute on-aircraft antenna
patterns were the modal solutions for infinitely long circular’ 1,2 .
and elliptical 3. cylinders. The fuselage was modelled by a cylinder
whose elliptical cross-section approximated the fuselaae cross-section
at the antenna location. Arbitrary antennas were considered and the
antenna could be mounted on or ahove the fuselage. Results were guite
adequate provided the aircraft structure was not illuminated too
sirongiv. In fact, these solutions have been the primary high fre-
quency anaiysis to date. However, with the desire to improve system
performance, versatility, and coverage the antenns pattiern must be
shaped for the desired application in such a way that it can actually
illuminate the structure quite strongly. In fact, in many cases the
system's performance is dependent on the pattern effects of the
secondary contributors. For example, too strong a ripple in a pattern
may cause a system to function on a secondary lobe rather than the
desired main beam. Conseguently, the demands of modern sophisticated
applications regquire that the analytic moZel represent the actual
aircraft in more detail than assumed by the modal solutions alone.

Hith the advent of mcdern digital compu:ers, one has been able to
obtain integral equation solutions for antenna patterns and impedance
using moment methods. Usiny this approzch the surface currents are
assumed to be of a given form which in turn radiate in all directions.
The values of the complex currents are found by forcing the tangential
component of the electric field to vanisk on the surface. One of the
first moment solutions applied to aircraft antenna problems used the
wire grid technique which incorporates a point matching scheme[4].
This solution requires approximately 100 unknown currents per square
wavelength to be found in order that the wire grid adequately model
a2 perfectly conducting surface. A more sophisticated approach has
been developed by Richmond[5] which uses a reaction technique to solve
for the unknown currents. Yet this solution still requires the wire
grid model of the aircraft with approximately 100 unknown currents per
square wavelength. An exhaustive study of this approach has been
made by Lin[6] in which he actually treated the bistatic scattering
problem; however, the same conclusions apply for the antenna problem.
A third approach might be to divide the surface into patches with each
patch having two unknown complex currents. Using this approach per-
haps 20 unknown currents per square wavelength need to be found.
However, all of these solutions are restricted to lower frequencisas
based on the fundamentai limitation on the size of matrices whict
modern computers can invert without excessive loss of accuracy.

Another approach that has found great succ ss at solving this
type of problem is the Geometrical Theory of Diffraction (GTD). GTD
is basically a high frequency solution which is divided into two
basic problems; these being wedge diffraction and curved surface dif-
fraction. The wedge diffraction solution has been applied to de-
termine the radiation patterns of such basic antennas as parallel
plate antennas{7,8,9], parallel plate arrays[10,11] horns
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antennas’12,13°, parabolic reflectors 14,15_, and rectangular wave-
guide antennas”16_. Both these diffraction solutions have been
applied in computing the pa:terns of antennas maunted on cylin-
ders(17,18,19°, rockets 20", and wings 217, The only limitation of
these solutions is that the source and various scattering centers be
separated by at least a wavelength. In some cases even this require-
ment can be relaxed. Using this approach one applies a ray optics
technigue io deter-ine the fields incident on the various scatterers.

rays which are summed with the geometrical optics terms in the far
fiela. The rays frem a given scatterer tenc to interact with the
other structures causing various high-order terms. 1n this way one
can trace out the various possible combinations of rays that interact
between scatterers and determine and include unly the dominant

terms. Thus, one need only be concerned with the important structural
scattering components and neglect all other higher-order terms. This
makes the GTD approach ideal for a general high frequency study of
on-aircraft antennas in that only the most basic structural features
of the aircraft need to be modelled.

The basic approach applied here is to break the aircraft up into
its simplest structural forms. Analyze these structures using ray
optics techniques with numerical values obtained using modal solutions,
physical optics, and GTD. Once the scattering from these structures
is found and verified by measured data, they are adapted to the
aircraft model simply by adjusting the incident field. Tn this way the
aircraft begins to grow out of simple forms into a structure that
actually resembles a modern aircraft in a general way.

Using these theoretical models the radiation patterns of arbitrary
antennas mounted on the fuselage of various aircraft shapes are com-
puted. The principal plane patterns of Chapter IV include only those
structural components whose scattering was predetermined to be of
some consequence in the resulting pattern. In the wol.metric pattern
study of Chapter V only the fuselage, which is approximated by an
arbitrary convex surface of revolution, is considered. However, based
on the principal plane studies the fuselage shape plays the dominant
effect on the resulting radiation pattern with the wings and/or
horizontal stabilizers being the strongest secondary contributors. As
a result of these studies, various near field scattering problems and
associated numerical techniques have been developed which may find
application elsewhere.
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CHAPTIR I1
THEORETICAL BACKGROUND

A. Introduction

As stated in the introduction the modal solutions for the
radiation patterns of an antenna mounted on or near a fuselage nave
previously been the primary tool for high frequency analyses of on-
aircraft antenna problems. In fact, these solutions can be quite
adequate provided the source does not illuminate much of the aircraft
structure. Consequently, the approacn of this reseaich is not to
replace the modal solutions for fuselage mounted antenna problems
but, to improve the solutions by adding modelled aircraft scattering
structures in the analysis. This is accomplished by using the ray
optics technique which ailows one to apply various high frequency
solutions in its format by casting these solutions into ray form.

The modal solutions for a plane wave field incident on a per-
fectly conducting circular cylinder are presented and used, fre-
quently, for numerical computations. The ray optics techniques will
provide insight into the actual mechanisms involved as the rays
interact with the cylindrical structures. Wedge and curved surface
diffraction solutions, which constitute the Geometrical Theory of
Diffraction (GTD), are presented in that they provide the solutions
necessary to introduce the additional structures needed to improve
the analyses. Each of these solutions are presented in basic terms
in this chapter and applied to specific structural scattering problems
in the following chapters.

B. Modal Solutions for Infinite
Circular Cylinders

The modai solutions for the total field at any point in space
for a plane wave field incident on a perfectly conducting infinitely
long circular cylinder are presented in Appendix I. These solutions
are divided into the problems of perpendicular and parallel polari-
zations incident on the cylinder as illustrated in Fig. 1. For
the perpendicular polarization case the total field at any point is
given by
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o N L L cdind
ERY I
wor ey

At




, —~

(1)

jkz cos , : in -
f‘ = i__s,m_1 = ong™! (ke sin ) - J'(‘ga )
- - i n=1 Hn (ka sin vi)
O S
Hn (k- sin ~])_ sin n(.-.i)
jkz cos =, « J'(ke sin =)
Ef:‘ = 'je : €n jn:‘];l(k: sin '.i) = ??‘)l !
: n=0 ™' (ka sin =)
(2) - ..
Hy (k. sin .i)J cos "("'i)
t
£’ =0
1z _ jkz cos =,
jcos <. e -
t i - N~ N
Hl = - R | _J'(k: 5in :-.) -
Lo Zy o 0 n i
J'(ka sin #.) ‘
?2). 1 Hﬁz) (ke sin 3500 cos n(:-2.)
H (ka sin ;)
n i
jkz cos ei
cos =. e =
t _ i - N+l Cein o Y L
HL¢ = - é 2nj [Jn(kp sin ”i)

H

ko Z0 sin ei

Jn(ka sin 91)

n=1

Bk ng)(ko sin 2.)] sin n(s-s;)
H (ka sin e.)
n i
sin 6. jkz cos 8, =
t . .
[, = = 1 e 1 ) ean[Jn(kp sin ei) -

0

Jé(ka sin ei)

(2) N 8.
Hn (ka sin 6;)

n=0

ng)(ko sin 91)3 cos "(¢”¢i)

At
¥




P

NIy, FE

2 otherwise.

For the parallel polarization case the total field is given by
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The patterns of small antennas mounted on a cylinder (fuselage)
can be found using the previously derived solutions. The antennas
considered are a radial monopole and an arbitarily oriented slot.

A11 have dimensions that are small in terms of the wavelength.

The radial monopole and slot are considered to receive, respectively,
an open circuit voitage and a short circuit current, so that they

will cause negligible distortion to the field which would exist

there with the antenna absent. Thus, the antenna responsa is directly
related to the total field component at that point.

For the radial monopole, the open circuit voltage is equal to
the product of the effeciive height of the monopole times the component
of electric intensity parailel to its axis (Eg). For the slot the
short circuit current is egual to the product of the effective height
times the component of magnetic intensity parallel to its axis (cos =
H% + sinzz HE) with the slot orientation defined by « as iliustrated
in Fig. 2.

Ay

ARBITRARILY

ORIENTED
7 <z SLOT
§a

X

Fig. 2--Arbitrarily oriented slot on cylinder.

It is shown in Ref. 1 that the effective height of the radial
monopole for arbitrary plane wave incidence (ei,¢1) is given using
Eqs. (1) and (2) by

TR S ~ b,
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where ; is the effective length of the monopole without the cylinder
present and b is the distance of the radiai monopole from the center
of the cylinder.

The effective height of the slot can be written similarly as

-

(4) &

“'“t = < :t = E tA= .
1ot - -8 Hu:(o a) sin o+ :[H" (0=a) sin x + H  (; a)cos«1}.

Note that in each case the antenna is located at (:=0, z=0) and tre
phase is referred to the center of the cylinder.

The transmitied field, wher the antenna elements are used for
transmission, is[1]

iz 1ee K"
n -
(5) E{r3eie¢’i) = —?-r'— h(ei,$.i)

which can be cast into ray form using
~-jkr
€ Jk
r

E(raeia':’.i) = ﬁ(ei :¢’.i)

It is convenient now to consider a new current (I%} such that

[ i -
(6) ﬁ(ei’¢i) - Ie h(G]'s‘i’i)
m
where .
JZOIm
I' =
P

Applying the above solution to a A»/4 radial monopolie it was
determined that the series converged for practical purposes (three
significant figures) after summing (7a sin e; + 8) terms. The

solutions for the slot antenna converged after summing (7.5a sin 6, +

10) terms.

Since these expressions for the distant Tields radiated are
based on infinitesimal elements of electric and magnetic currents,

the far fields of an arbitrary antenna can be determined by integrating

across equivalent aperture currents. This is ‘one numerically by
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superposition ¢f discrete elements which approximate the actual
aperture distribution. This technique can be shown to be valid
provided the element spacing is much smaller than the wavelength[227,
that is, one may write

i -

2:) o ° I h(=.,:.-:%,2)

*tota](“ _
eats) - :
171 n=1 P np"1"1 NN

(7) R

where I is the current of the nth element, (:n,%y) defines its
position, anu h, is the appropriste effective height. For example,
some of our slot measirements were taken using open-ended waveguide
whose aperture distribution can be adequately approximated by six
infinitesimal sources. HNote however that an infinitesimal antenna
is considered in each case except where it is stated otherwise.

These solutions (Eqs. (1) and 2)) are not just limited to finding
the radiation patterns of antennas mounted on or near an aircraft
fuselage as used previously. They are applied in Chapters III and
IV to determine the near scattered fields by aircraft engines which
are modelled as infinite cylinders in Section IV-B and finite
cylinders in Section III-C. 1In addition, they are used to compute
the currents on an infinite cylinder and then integrated over a
finite length to obtuin an approximate solution for the far field
specular scatter of a finite cyiinder. Conseqiently, these solutions
are used extensively throughout this report.

C. Wedge Diffraction

It has been shown in the last sectica that a cylindrically
shaped fuselage can be analyzed using conventional modal solutions.
However, aircraft shapes are, in general, quite complex involving
many complicated structures. Thus, to improve the radiation pattern
over that simply obtained using the modal solutions, one must take
these various scattering structures into account. Based on past
performance. the ceometrical theory of diffraction nas proven itself
well suitea .v unis type of analytical study. HNot only does this
approach fit nicely in terms of the ray optics format but it also
provides a means for analyzing the effect of three-dimensional
structures. Consequently, a brief description of tl.e wedge dif-
fraction probiem is presented here. The diffraction by a curved
surface is treated in the following section. Note that these two
basic diffraction probiems censtitute the geometrical theory of
diffraction (GTD).

An asymptotic solution for the diffraction from a conducting
wedge was first solved by Sommerfeld[23]. Originally, GTD[2] as
applied to diffraction by a wedge was based on plane wave diffraction
coefficients; however, as shown in Ref. [25] the use of diffraction
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of cylindrical waves has been found necessary in the treatment of
antennas. Consequently, differert formulations of wedge diffraction
were substituted for the plane wave diffraction coefficient which is
the basis for wedge diffraction theory. Pauli[26] introduced the

Vp function as a prac:ical formulation ¢to the solution for a finite-
angle conducting wedge. Recently, however, Hutchins and
Kouyoumjian[27,28] presented a formulation for the diffracted

field (V¥g), which significantly improves the accuracy over that ob-
tained from Pauli's form.

This improved diffraction solution”27,28" is beiter in the
transition regions {near the incident and reflected shadow
boundaries). It can be written in the form

(8) Vp(L,e,n) = 1__(L,3.n) + I,_(L,=,n)
where
~j (kL+-/4) .
I, (L,g,n) ~ e Vaicot () x
YN o
. T L2
eJkla J ed" dr + Chigner order terms]
vkLa

and where the higher order terms are negligible for large kL and
with n defined from the wedge angle WA = (2-n)n, alsoa =1+
cos(g-2nnN) and N is a positive or negative integer or zero, which-
ever most nearly satisfies the equations

2niN-g = -5 for I__TT

2nmN ~g= +n for I+Tr

The variabies L and g are defined later.

The three dimensional wedge diffraction problem is pig¢tured
in Fig. 3. A source whose radiated E field is given by E'(s) is
located at point s'(p',¢',2'). It can be an arbitrary electric or
magnetic source causing plane, cylindrical, conical, or spherical
wave incidence on the wedge tip. The diffracted vectcr field at
point s(p,$,2z) can be written in terms of a dyadic diffraction
coefficient. Kouyoumjian and Pathak[29] have given a more
rigorous basis for the GTD formulation and have shown that the
diffracted fields may be written compactly if they are iun terms of
a ray-fixed coordinate system. The ray-fixed coordinate system
is centered at the point of diffraction Qf, (or points of dif-
fraction in the case of plane wave incidence). QE is a unique
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SIDE VIEW
Fig. 3--Geometry for three-dimensional
wedge diffraction problem.
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point or points for a given source and observation point. The
incident ray diffracts as a cone of rays such that 29 = :§ (see
Fig. 3).

The relationships betheen the orthogonal unit vectors associated
with these coordinates (s* ,,0,. ,s,-o,.) are given bv

~s'

) )
{1} 1
w

bad

wn
]

where I is the incident direction unit vector, and s is the dif-
fraction direction unit vector. The diffracted fiele is now given

by

£(s)

E(s) = £ (0p) - T(5,1) A(s) 3K,

For our purpose, it is more convenient to write the diffracted field
in terms of the VB function in Ec. (1) as,*

)] [ 0] el

J7 kL ik
® | N
edis)d Lo vl LE) °
(s : Vg BN
where
¥ - - +
vB = VB(L,B ,n) + VB(L,B ,n).

The minus sign (Vg) applies for the E-field component parallel to
the edge with boundary condition

(E1wedge) = 0.

The plus sign (V ) applies for the E-field vector perpendicular to
the edge with boundary conditions

*If a fixed coordinate system is used Eq. (9) takes the form of a
3 x 3 matrix.
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The anaular relatfons are expressed by

+ 3.t
3:3 = J—:

where the minus sign (3°) is associated with the incident field and
the plus sign (3*) with the reflected field. The quantity A(s) is
a ray divengence factor given by[297]

1 plare, cylindrical (s=;),
&S and conical wave incidence

s
A(S) = s! - . - -
’sTgngj—-spher1ca1 wave incidence

and L is given by[29]

[
,s sin280 plane wave incidence
z I
1]
L =g £¥% cylindrical wave incidence
pto
s's sine o
b mE, conical and spherical wave =
3k incidence. %ﬁ”‘
s j -
7] For the two-dimensional wedge problem, illustrated in Fig. 4, i
where there is cylindrical wave incidence with By = 200, Eq. (9) o
! reduces to give
( d 4 - 1‘ ] ] —— j' ¢
Ell(p’¢) N -VB 0 El.l(p s 9 ) Jpl ejkf" e-jko B
e,0)) Lo - i) LENete )N ot
In the far field (p>>p') this becomes J§¢
@
E9(0,4) -V 0 Eo',4") -jk g
niPs N B 1 ’ o jko' eI |
d5,0) o - v i °e J :
E_L(p’d’ - Vg El(p.’¢' P
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~ LINE ¢ OURCE
~
~ ¢
~
REGION II - . TIITTTTTTTTT7 77777775 %
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BOUNG/. -, ¢ REGION I % '
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?SL Fig. 4--Two-dimensional wedge diffraction geometry. E
S |
o~Jko
o] Putting t%is in ray form and factoring out - , we have
© v ~e
, Ritt) Vg 0 | [Ry(e") )
(10) d 'y + ;
; R (4), 0 - Vg | |R(s") r
1
N The ray form used here is given by
Floe) = Rlo) o i
Psd) = $ .
o

Thus, R(¢) is related to the far field pattern function.
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For the three-dimensional wedge problem where there is spherical
wave incidence, Eq. (9) reduces to give

. iks's sin"g .
E‘?(s,so,:) ‘ -VB 0 E:l(s',eé,:l) o Q_W_o) é’vks.
s+s’

+
Ed(s,e00)] L0 - Vpd LENs 80,0

In the far field (s>>s'), we have

d - i, . . 2. .
E“(s,eo,:) ‘ -Vg 0 El(s ,36,:' . jks'sin £, oJks
E(s,e ,a)] Lo - vil{El(s',et,:) S ®
'y S, 0:‘* = B 'y S, 09-
-jks
Putting this in ray form and factoring out S , it is seen that
1) Rﬂ(so,¢) Vg 0 Ri(8l,8')|  -iks! coszf’o
d ™ + i e .
R_L(809¢) 0 - VB R_|_(80a¢ )J

It is interesting to note that in the principal plane (8 = 900) the
ray form of the three-dimensional case takes on the same form as
the two-dimensional problem.

The total ray value at the observation point s is given by the
sum of the geometrical uptics terms and the diffracted terms

R1(s) = B0 (s) + ”(s) |
where
(’ﬁﬁ(s) + R'(s) incident and reflected region I 1
ﬁG‘O'(s) =< R (5) incident region II
0 shadowed region III »

and R'(s) may be determined from the image of the source term using
basic geometrical optics techniques. These three regions are il-
lustrated in Fig. 4 for a two-dimensional wedge diffraction problem. °
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D. Curved Surface Diffraction

When an incident ray strikes a smooth, curved perfectly con-
ducting surface at grazing incidence, i.e., at the sradow boundary,
a part of its energv is diffracted into the shadow region. To
describe this phenomenon Keller[ 30~ introduced a c¥iss of curved
surface diffracted rays. These ray paths include the points Qp and
Q2 which form a curve on the diffracting surface as illustrated in
Fig. 5. However, the actual concept of creeping waves was introduced
by Franz and Depperman.”31,32” The basic concept as presented in
the following discussion is basically taken frc~ "Asymptotic High-
frequency Methods" by Houyoumjian. 33~

SHADOW \

'/ gounpary
Q, /= \
W SRR - dq(Qz’, * P
!

ST 1 Q
e R—— S = T causTIC
| dn (@

A
@]‘ \ b 2 /—r‘
WAVEFRONT
TOP VIEW
SHADOW
BOUNDARY

N
DIFFRACTING SURFACE S {; WAVEFRONT
'))% S
/ /
DIFFRACTED RAY” YP

SIDE VIEW

Fig. 5--Diffraction by a smooth curved surface.

The diffraction by a smooth curved surface is shown in Fig. 5
in which 0 is the source point and P is the observation point in
the shadow region. Applying Fermat's principle, the Tine 0QjQ2P
is the shortest distance between 0 and P which does not penetrate
the surface. In detail, a ray ircident on the snadow boundary at
Q1 divides; one part of the incident energy continues straight on
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as predicted by geometrical optics, a second part follows the
surface s into the shadow region as a surface ray chedding dif-
fracted rays tangentially as it propagates. With t, n and b being
the unit vectors in the direction ¢f irgidence, normal to the
surface s and binormal to the surface (b = t x n), respectively, the
incident field E'{Ny) may be resglved into its normz1 and tangential
ccmponents (n - E¥(03) and 6 - E(0y)). It is assumed that these
two components induce surface ray fields which propagate inde-
pendently of each other along the geodesic arc between Qy and Qp.
From Reference “33_ the surface ray field Aels at ﬂ] is related to
the incident fields at Q] by

(12)  AQ) e =0(0) by« E(Q)

where Dg(03) is the scalar diffraction coefficient for a soft surface.

The amplitude of the surface ray is assumed to be governed by the
conservation of energy between a pair of adjacent surface rays.
Hence, the amplitude behavior of the fields is given as

rQZ
-1 S oa(t) dt!
dn, [-'01 }
(13) A(02)=A(Q]) 3@ e”

where

dn] and dn2 = the separation between a pair of rays at
Q] and 02, respectively.

a(t) = the attenuation constant which is a function
of t, the coordinate along the surface ray,
because it depends on the local radius of
curvature and its derivatives.

The attenuation constant «(t) is introduced due to the tangential
shedding of rays as the surface rav propagates. It is seen from
Fig. 5 that Q2 is a caustic of the diffracted field and the second
caustic is located at a distance p from Qp. Thus, the tangential
component of the diffracted field which radiates from Q2 towards P
can be found, as in the previcus edge diffraction case, with one of
the caustics used as a reference point and is given by

. 3o Q)
(14) b, . t(p) = D_(0,) A(Q,) e 2 \/—?(ﬁ;_sy e™3ks,
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From Eqs. (12), (13) and (14) there results

r =d I =i d“'] ‘
(15) b, - E°(P) = | by - E'(0y)) D(0Q;) D(0,) T, 5T

0
0,
_j[g(t+s) + J #(t*) dtl

%

e .

It is found that by - Eq(Q]) excites an infinity of surface
ray modes each with its own diffraction coefficient and attenuaticn
constant. Thus, the expression in Eq. (15) is replaced by

. O N
(P) =[b] . ?‘(Q])} 3712\,7—75 7 e 3[k(tes)

Q,
o

L

(16) b, - E

_{
[ z Dsm(Ql) Dsm(QZ) € IQ]
m

Equation (16) relates the diffracted fielc at P to the incident field
at Q1 for the soft surface boundary condition.

An expression similar to Eq. (16) is also obtained for the
normal component of the incident field; in this case, the scalar
diffraction coefficients and attenuation constants for the hard
surface replace those of the soft surface. Therefore, the vector dif-
fracted field at P can be written in terms of the electromagnetic
field incident at Q] as

(1) ER) = [ighy v(1,2) + 88y ut1,2)] - T ey eI

in which v({1,2), u(1,2) are eyual to 5

- - 1 dtl
dn . o J O‘m(t )
’_ Mo jkt \ 1
(18) dnz e % Dm(]) Dm(2) e

with the subscripts h, s, respectively, added to Dy and ap. Note
that Q1 and (2 have hean replaced by 1 and 2 for the sake of brevity.
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Finding dny, dnp, and o is simply a matter of differential geometry
involving the rays and surface; this is discussed at length in Levy
and Keller[30]. The generalized diffraction coefficient and
attenuation constant can be found in Reference [347].

The diffraction thus far discussed is applied to the open
curvec surface. For a closed surface, each surface ray mode
produced at Q7 encircles the surface an infinite number of times.
The length of the surface ray path for the n-th encirclement is
t + nT where T is the circumference of the closed surface. These
multiple-encircling rays may be summed to contribute

(T
~3KT = | o (t') dt'-l
[] -e 0 |

to the denominator of the diffracted field. It is interesting to
note that there must be another pair of diffraction points Q3 and
Q4 for the closed surface as shown in Fig. 6. Therefore, the field
at any point P in the shadow region is the sum of these two dif-
fracted fields frem Q1-Q2 and Q3-Q4. The total field at any point
in the illuminated region is, by the superposition principle, the
sum of incident, reflected and diffracted fields. A detailed
discussion of this subject can be found in Reference [34].

An important special case of this GTD solution is the one in
which the antenna is mounted directly on the curved surface. This
problem has been studied by Kouyoumjian[35] in which he analyzed
by asymptotic methods the far field patterns of various antennas
mounted on an infinitely long perfectly conducting circular
cylinder. In this solution the reciprocity theorem is employed so
that the radiation pattern is derived from the plane wave scattering
by a cylinder. The physical optics approximation for the surface
current is used to describe the field in the region in which the
source is directly illuminated by the incident plane wave (the 1it
region). The Fock approximation[36] is used for the penumbra
(transition) region; whereas, in the deep shadow region of the
cylinder the geometrical theory of diffraction solution is applied
to give the far field expression. It is noted that a launch coeffi-
fient, which relates the creeping wave (GTD field) to the actual
surface field or current, is introduced so that the GTD solution
can be properly employed. This launch factor is deduced from the

exact solution for the surface current on the circular cylinder; and,

in its asymptotic form, involves the well-known Airy function.

The far-zone principal plane* pattern for an infinitesimal
slot mounted on an infinitely long perfectly conducting circular

*The principal plane being a plane cutting across the cross-section
of the cylinder.
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Fig. 6--Diffraction by a smooth closed cylindrical surface.

cylinder, equivalent to a magnetic line source kv, with radius "a" as
shown in Fig. 7 can be obtained by employing the aforementioned GTD
asymptotic expressions for the various regions and is given by [35]

1) Lit Region: Geometrical Optics Description

ika cos(eo—e)

(19) Ry(p,e) =2e
2) Transition Region: M-]§p<ﬂ-M-]
"‘jka‘&"] ‘jka'v”z
(20) R (0,0) = [g*(zy) e tg*(g,)e J
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Fig. 7--Antenna mounted on a circular cylinder: GTD solution.
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where

17 9% -/

I

2 F el
¥ay1/3

M= (3

= E e s ~[2<2<3-/2
k

q= (313,

r o= ( ka )]/3

2TV

The functions g*(¢7) and g*(:») are the conjugate of g(x7) and g(:zp),
respectively. The function g%g) is the so called Fock's function
for hard boundary condition (5u/+n = 0) and is given as

and 7 and Iy are contours in the complex plane as shown in Fig. 8.

The magnitude and phase of the Fock function Ca(x)] are given in
Reference [367.

3) Deep Shadow Region: Surface Ray Description

13 3
(@) R(o,0) = (2m) () e T2

h X
% =L (a)] s, -jks
I ha)T Aitg)e ™ e !
m=0
+ [D,(a)] Ai(-qm) e " e }
23

o nm

3t

gy et

PR
Ky

3] “1‘\['" R e Rt P i
A i Gk PRLCATEIR) e Ea
; \\‘;’.'_vixn’ﬁ'«ﬁiﬁz,u.\s'm%wwu-v My ey

i
' P

1K

R

3
"t




k323 >
-

‘m
ré
'-\\\ZW'
\
—n, S
)ﬁ = Re
|
}

Fig. 8--Contours for compiex plans integrations.

aw]

and ¥ and w% were defined earlier and q is the root of Ai! qm),

that is,

the surface attenuation constant

roots qp

Ai'(-gy) = £. The d1ffraﬁt1on coefficient [Dg(a)ﬂ and
(a) are given in Table I. The

and AI(-qy) are given in ab]e IT. It is noted that the

surface ray expres ion in Eq. (21) can be rewrittern in the following

way

. ™ _ . -v(a)s
(22) Ryfo,0) = (-20) (273 T2 1 (ooh@) P mi(g)e !
=)
hyva2 g =y 3)S
+ [0,(a} 3" Ai(-qp)e }

where y(a

) =a g(a) + jk, propagation constant of the surface ray.

O
g
¢




3

Jadmt

i,
N

S U PR LR T

—— P

< PR 1.8 ;M Y e o Qlﬂ\ & <& s Y iy : N [ Qo v
- _ Sk BB ~ e Sy ? .
{
Al
0 ul, o) g ... u,
e (85 o~ =8 -2 &+ el - ) R -
/5, 5.4 . L u3 [
(rag Soom-m)s) (). (8802 )%) (%)
?mlvo\.m.nlu N:..wwsw_“w»:u_ n 1
et 2 2/ep=e /L 9/s-t2/L-
g o Wv.w Ylay (o1 W
2.?%%. 7 i AR O R erne->( - e () &
- 6 uj B 2433502,
6 8,6 L) 9
(st oo -m ) (%), (Bt - o)) )
5 «
g TR, Y RN Al 2 2 [ V]
(o558 4 O 3 . @)% Amuv (52) 8o (8 Uiy %)% Amwv S (0=)shvg 1 i AM
20 P SR Sl 2 ) ! o/ B Qesap-® M Pl F A 3 M I edd
e/ e ™ k = £z 214" “a/sZen 3498 ~
SWUd] UL '3INII0Y  °Q ILOSDY 5,41 D SULdL U0EINAL0) °8 ILNSAY S, Y :
(0 wnjog) + {2 uwantod) = o (8 vanog) - (v wni0d) = 70
JUNISUOCY UOYIRAUIIIY JUDPD} 40D UOEIDVLLIEA 4O S4unbs 9204405 )
SINVLISNOD NOILVAN3LLY QNV SIN3IJI44305 NOILOWYA4IAQ G3ZITVY3N3D 3”_
1
I 378vL 3
)
{
, ~ A _ . - - Y, v - . . [ |\\:il|l[ll\




TABLE II
AIRY FUNCTIONS AND ROOTS

BOUNDARY COMDITION

MODE SOFT HARD

m a, A.(-q,) Q. Ai(-q.)
0 2.33811 0.70121 1.01879 0.53566
1 4.08795 -0.83911 3.24820 -0.41902
2 5.52056 0.86520 4.82010 0.38041
3 6.78671 -0.91085 6.16331 -0.35791
4 7.94413 0.94734 7.37218 0.34236

The calculated radiation patterns using Eqs. (19) to (22) in the
xz-plane (principal plane) of Fig. 7 for various cylinders have been
shown to agree very favorably with those obtained from the modal
solution, especially for ka > 3.0. These formulations also predict
the radiation pattern fairly well for small cylinders with radii down
to the range from 1/3 to i/4 wavelength,[37]

The results for the circular cylinder are extended to cylinders
with general cross-sectional shape in which the curvature varies
along the ray path. This variable curvature has a strong effect on
the attenuation constant which in turn affects the energy propagation
ﬂL quite significantly. Thus, the representations for fields in the

) 1it, transition «1d deep-shadow region are modified to include the
variable curvature effect and again are given by

\ R

Lit Region: 5

jkrS cos(e-ep)

! (23) R0 =2e

2) Transition Region: p

(24) R (e) = {g*(gp) e

1 ’ 3
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3) Deep-Shadow kegion:

k. -1/ j= . 172
W) = —2-5 0 +2 3 dk
(25) R 2[2) 3]e ()
p P
. h
= -J.;A '1m(S) ds

h h -
m‘_ZO{D",(P) D(R) Ai(-q_) e - F(A)
P

-3

im(s) ds
+0"(p) o) Ai(g)e ° F(B)}

where A and B are the points that thz surface rays diffract toward
the direction of the observation point, ~; (rf,wg) defines the source

locations; and cg is the radius of curvature of the curved surface;

Pr ., \l/3
E‘A = [ k k ) ds
A\ 25

o N

and

The increment of the arc length along the rav trajectorvy is ds;

F(A), F(B) are the phase correction factors at the tangent points
A and B; g*(gp), 9*(gpg) are the conJugatea of g(¢ % and g(tg ) the
Fock function as defined previously; and D (P), ﬁ (A), and D
are the diffraction coefficients at the solrce 1ocat1gn and ﬁo1nts
A and B respect1ve1y The propagation constant is vy (s) = o (s) + jk, i
where aﬁ is the ray trajectory attenuation factor for the harg boundary
case and k is 2u/x. The genera] expressions used for the diffraction
and attenuation constants are given in Table I. HNote that the phase
reference point for these formulations is at the origin. Some calcu- 1
lated radiation patterns in xz-plane (the elevation plane) employing <.
) these formurations for en elliptical cylinder are also given in

) Reference [37]. These results compare fairly well with the exacc
solution obtained by Sinclair[1] as shown in Fig. 9.
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Fig. 9--Principal plane patterns with a circumferential
slot mounted on an elliptical cylinder.

The same technique is also employed to derive the generalized
i expressions for a slot antenna with soft boundary condition and in-
A finitesimal monopole antenna. The equations again contain the Fock
. functions. A summary of the far field expressions for the circumfer-
] ential slot, axial slot and infinitesimal monopole are presented in
Table ITI[35].
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CHAPTER III
NEAR FIELD SCATTERING BY FINITE STRUCTURES

A. Introduction

Two relatively new near field scattering problems are considered
in this chapter using various nigh frequency approximations. In
these problems the antenna is in the near field of a finite three-
dimensional scattering body; whereas, the observation point is in
the far field. However, it is assumed that any point on the
scattering body s in the far field of the source. Thus, if a 1 rge
antenna illuminates one of these scattering bodies, one must in-
tegrate over the equivalent aperture currents using the equivalence
principle to obtain the currents and the radiation integrals to
compute the far field pattern. However, as shown in Ref. [22], this
integration can be accomplished numerically using a finite number
of discrete infinitesimal sources. This point was discussed in
Section II-B.

The scattering body is defined in terms of its location and
dimensions in a general coordinate system, and the antenna is defined
by its location and far field pattern. HNote that some assumptions
are made in terms of the geometry sv that these r :ults ultimately
find application in terms of our approximate on-aircraft antenna
problem.

These analyses are applications of the fundamental problems
considered in the previous chapter. Similar types of studies have
been made vreviously such as the near field scattering by various
geometric bodies considered by Lentz[38]. Mear field scattering
effects must be included in an analysis of radomes such as the plane
wave spectrum analysis done by Wu[39]. Thus, near field scattering
problems are of recent interest and can have application beyond the
on-aircraft antenna problem considered here.

B. Near Field Scattering by a Finite Plate

The near field scattering by a finite flat plate is a relatively
new topic at higher frequencies where the plate is large in terms
of the: wavelength. The solution presented here is a practical appli-
cation of the three-dimensional wedge diffraction theory given earlier,
The flat plate geometry is illustrated in Fig. 10. Tne source is
defived by its location and far-field pattern. The far-field pattern
of the source is appropriate in that the plate is located at least
202/ away from the source where D is the maximum dimension o7 the
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ampeo The Dintte tlat plate i4 simply specified by the location of
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Hts bnown that tor a given scatter direction there is only
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Fig. 11--Geometry for diffraction point along the mth edge. 5
{a
It is known that the angle of incidence (g}) is equal to the angle ,
| of diffraction (8p), which in turn is defined by the given scatter »
direction which is given by
’) A= ] X i 1 v ~ 5
d = sin es oS ¢.X + sin es sin oY + coz esz .
s Since these angles are equal (B' = g8_ ) the cosines of these angles D
SO 0 0
must be equal which implies
§ 32
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sdp ~ m m
where
5 ce = *sdp (xmﬂ m) + sdp(ymﬂ Y ) + stp(zmﬂ m)
sdp m A A R
. . sine_cos s (x 4-x)  sin o sin s (y -y
.0 = s s mHl “m’ s smtl “m’

m ] H

cos es(zm+1~zm)
M .

Thus, one finds that

t(x _.i-x ) tly .-y )
m+1 “m w1 m
(xm ¥ H - Xs) (xm+]'xm) +(ym * M - ys)'

t(z41-2p)
(Va1 -¥) # (zm S R zs) (Zpey2) = Ay
or
(28) t= %-[Av-(xm-xs)(xm+]-xm)-(ym—ys)(ym+]- Yo~ (z-z Mz y-2,) ]

where

= 2 2 2
: _f(xmﬂ'xm) t W)™ * (24072,)

v = sin o  cos ¢S(xm+]--xm)+s1'neS sin ¢S(ym+]-ym)+cos es(zm+]-zm) ;‘;g_
and o ) "
2 2 o

A =[x -x_+ ot 4y +{y -y_+ t(ym+]-ym)) +
m"s M YmYs M ’
- ‘ Al
+ z -z_ + H Zm)f .
m-s M . 7
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An iteration technique can now be applied using the above
equations by placing the present (or assumed) value of t in the
above equation for A and then proceed to solve for a new value for
t using Eq. (28). It can be shown analytically that this iteration
appreach will always converge to the desired value of t, which
locates the point along the edge. However, iteration techniques
often are not efficient in numerical computations as was found
in this case. It was found that in certain regions too many
iterations were required which resulted in a loss of numerical
accuracy. Comsequently, a search approach has been developed in
which the values of esdp - €p are determined at the end points of
an edge of the_plate and at its midpoint. These values are then
compared with d - ey for which one can easily determine whether the
diffraction point falls within the 1imits of the finite edge and
if so which side of the midpoint. These tesis are all based on the
dot product comparisons. For examp]e, if the value of d - ey does
rot fall between the values of egdp - €y for the two end points,
then a diffraction does not occur from the mth edge tor that scatter
direction. If the scatter direction dot product falls between an end
point and the mid point, one then determines egdp - ép for the midpoint
of the new region within which a diffraction occurs. From these values
one finds a smaller region within which a diffraction must occur. This
process continues until the diffraction point is found within certain
minimum limits.

Once the diffraction point is located, one must find the dif-
fracted field value from the mth edge. The far field pattern of the
source can in general be written as

jks' -JkS
(29) E(6,6) = [6 Fle,e) + §G(6,0)] 2o = R(5,3) 2o
where s' is the range from the source to the field point. Using the
geometry illustrated in Fig. 12a and applying the results presented
in Section I1-C one finds tnat
d - i
R, -VB 0 Ry -j[k(: )k % <.
(30) = e } -
d + i
Ry L 0 -VB RL }
where ¢
} ] K n Lo °
= . ' N
R" (e-i"b-i) BO v(
:f -| _ -> A P
R,\, = R(91,¢1) ° ¢0 [6&‘3‘
. 2
= 1
kop ks' sin By
34
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Fig. 12a--Edge diffraction geometry.
Yy = xdp sin 6. COS ¢ + ydp sin b sin ¢ + zdp cos o
oyt . 3 '
VB = VB\koO, V“Woaz) + VB(prs U+¢032)- =
L%
The incideni field direction (ei’¢i) from the source to the point of 1
diffraction is defined by
2 2
X + Y. 1
0. = tan"] J:;gg——-—igﬂ , and L
i sdp o
RYM )
by - () ,
\sdp/ . %
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Note that these anglec as well as all others are defined in terms of
an arctangent in that for numerical results the Fortran arctangent
routines define the angle between -1800 and 180°. It is easily shown
that

where
0% < g,< 180°.

In order to find the diffraction angles it is necessary to define a
ccordinate system at the diffraction poynt as illustrated in Fig. 12b.

(Xsds tz;) //

POINT OF
DIFFRACTION

b 34

Fig. 12b--Edge coordinate system at point of diffraction.
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The three orthogonal unit vectors are ém the _unit vector along the

edge, n the normal to the surface, and ey = n x en. The incident
vector direction can now be written ir terms of this coordinate
system as

-1 = &' sin <4 +nsine sine e .
o sin o coc 5+ nsin ¢ sin e, cosé,

Using the above expression one finds that

v = b = tan'](-’l—'—:“-)
-1 - e
m

The scatter direction unit vector can, also, be decomposed
in terms of this coordinate system by

d = é sin 6 cos ¢ + n sin & sin s + e, Cos ©

which results in giving

=4 = tan'-](d ° lj_.\

~

. el
d i

.

The vector directions of the diffracted field are defined by the
following expressions:

3 = ~a' si +h
o e, Sin o, + ncos ¢,
d= «eé sin ¢ + n cos ¢

A':’\ 7 A=A p
Bo ¢0 X I and B ¢ x d.

Once these terms are determined the total diffracted field from a
general mth edge is given (Eq. (30)) by

3d - pda ds
(31) Ral6gs0) = RyB + Ryo .
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Using the superposition principle the total singlv diffracted field
by the n edges of the flat plate is given using Eq.(31) by

#d R
(32) (ti5) = 1 Ry (65005) -

The reflected field from the flat plate is considered next. The
first step ir this calculation is to find the location of the image
source, which is uniquely determined once the plane of the flat plate
is defined relative to the source location. In Tact, the image is
located alonu a line which is orthogonal to the piate and positioned
an equal distance on the opposite side of the plate. This locatior
can be found analytically using the geometry illustrated in Fig. 13a.

SOURCE
LOCATION
(x ? lz )
42 s1Ys 125
 ARY
J. v .
[y
’
- - cé
RS y £
o
°
&
Y IMAGE °
M. LOCATION 1,
-R'i (Xi. yivzi) )
.
il
’y 0
{
x T
Fig. 13a. Geometry for location of image source, i’«N
¢ o
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The image position vector (Ri) can be d:ztermined using the a1irwing
expressions:

~

(33) En = - R ='2[§] + 4 %] + tztz]
Ry = (xy=x )% + (y7-%)y + (24-2)z
n= nxi + ny} + nzi
£ =ty * t]y; * 2
ty =ty + tz_vﬁ; + ty,2

which result in the following matrix equation

n
X
P Lox ‘n 8
n
- o by -ty a1 " oY
n_
L e -
ol e P ta, *2 S T

Note that ﬁ, t1, and tp are, respectively, the unit normal and tangent
vectors associated witﬁ the plane of the flat plate. The above matrix
can now %e inverted giving the values of «p, a1, and up which in turn
defires R,. Knowing the vectcr (Rp), the image vector location is
simpl defined using Eq. (33) by

-> - -
Ri B Rs * Rn ?

where
=-> ~ -~ A
Rs = XX + YsY + 2.2 .

With the image position known, one needs to determine if the
reflected field contributes to the total scattered field using the
geometrical optics approach. If the reflected field is a con-
tributor, the ray from the image source in the scatter direction
must pass through the finite plate limits. Thus. one must find
the location of the intersection point of this ray and the plane
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containing the flat plate. This is accomplished using the geometry
illustrated in Fig. 13b. The relationship necessary to find this
point 1is

Yy Foigty - vgd =Ry - G
which results in

tly tZy -sin §. sIn 3. i | [ Y5 - ¥

Again the above matrix can be inverted to solve for the point of

intersection.
SOURCE
LOCATION
A 2z
Ry
INTERSECTION
POINT OF IMAGE
RAY AND PLANE
- r~ l\+

A
#1 ///7&" >
J,\q IMAGE B
»T LOCATION
{ (X'l 'Yi )Zi ) na ‘
( 4
o, ) Q’ S
) .
Q-
e '] .
4
s 2 o
>T )
o Fig. 13b--Intersection of image ray with flat plate.
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One must now decide if this point falls within the finite limits
of the flat plate, which can be accomplished many ways. The scheme
used here is simply to determine if the angle (-nj) between one of
the edges of a general corner and a line going from the general
corner to the intersection point is greater than the angle (-y) between
the edaes making up the corner. If »pj is greater than +y for any of
the cornersz, then reflections do not occur. Examples of this technique
are shown in Fig. 14. Hote that reflections occur for the gecmetry
of Fig. 14a since :pj ~ sy for all m; whereas, refiections .> not
occur in Fig. 14b since 3pj > &, at the mth corner.

Once it is determined that reflections do occur, it is necessary
to find the value of the reflected field. It is known that the
reflected field from the image source can be written as

-jkr;

- i

Ple .« ) =M s, AAK PR

(38) (s = T F (eg) + 6 (500

)] &

S Y.

1

using the geometry illustrated in rig. 15, The ray form of the
reflected field is given simply by

“rc,& =r;rr " :rr.n'.
(35) R ("Savs) l F (‘:’S,‘v's) + 3 G (‘JS"S)]

ikl x. sin o 4 +y.sin s sin s+ Z. COS -
eJ [ ; sin o, cos ¢ + y; sin o s < ; as]

with 6" and gr being related to the image source coordinate system.
The above quantities can be found from the boundary conditions that
must be satisfied on the flat plate and which are given by

| (36) n Er (on plate) = n - £ (on plate) o
'j’ E] - E" (on plate) —E] . ES (on plate) |

~

t, . " (on Llate)

'£2 . ES (on plate).

-> -> o
Note that E' and E° are, respectively, the image and source field ’Q)
values at the point of intersection on the flat plate. The geometry s
used to detine these various terms is shown in Fig. 13b with

> > - - ~ A e°,
° R. =Ry = Ro= (xp = x)x # (y=y )y + (z,-2.)z K
N
; .
5 )

- A e A —
I e

v i ’ - ~




INTERSECTION 7
POINT

(a)

Fig. 14a--Reflections occur.

POINT

(b)

Fig. 14p--Reflections do not occur.
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Fig. 15--Reflected field geometry.

and

= gi . .A+i . Si .A+c .A
Rr sin 8, COS ¢; X sin 61 sin ¢y 05s 612

which results in the incident field direction defined by

-1(szt'xs)2+(yt"ys)2.)
(z )

t " %

ei = tan

Ve
o5 = tan 1()("'_)(5)
t7s/ ¢
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Thus, at the point of intersection one finds that

-jkr,
’S = ‘:S a :S el a T e :
E> (on plate) =[5°F(a,,25) + : 6(25525)3 e
(37) - kr;
r raTer . el .y &8
E™ (on plate) =[5'F (5,3 ) +:'6 (5,:)] >
vith

r_ = r.. Substituting the above expressions in:o Eq. (36) one

finds that'

A ~ ~ ~ ~ ~ ~ PN A -~ ~
n-£> = [Fas.x + G¢S.x]nx + [FE.y + G:°.y] ny - [F5°.z +

G2 .21 n
i

A G ~ ~ ~ -~ _ ~ A ~ ~
neE’ = [Fle .x + Gr¢r-xJnx + [FreTey + Gr:r-yj]ny
rh ~ A N
+[Fe" . 246" 2] n,
with
65 = X cOS 6. cOS 4. + y cOS 8. sin ¢; - Z 5in 8,
i i i i i
AS _ ~ . ~ ~
97 = -x sin¢; *y cos ¢,
Ar ~ ~ . ~ .
= + -
) X €0S 8. COS ¢, *+ ¥y COS 6, sin o - Z sin 6
;r = -; sin ¢_ + ; cos 4. .
s s

Onehcan,aa]sg, write similar equations for (u]%1+a2%2)°gs and
(a]ti+a2t2)-tf. The resulting equations can be summarized by

~ r s r
ne B = F Gyt GGy
N85S =FC,+6C
n =43 14
2 - Zr _ er r
(oqty + apty) - B = FF Gy + 6 Gy
CoN 2s _
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which can be written in matrix form using Egs. (36) and (37) as

€., C el
1 Y12 \z(chwa

r - ,
o1 Lo G j \‘“23 ~ Gl IE
The above matrix can be easily inverted to give

SF O3+ 6 Cploy + [F Cy3 + G Coplyy

Fr(és,is) =
C11 Coo - G4z Oy
and ) ) ]
Gr(; )= _F C23 + G CZAJC]] + °F C]3 + G L]4=c2]
A € C Cy, C
1 ~22~ 1122 .

These solutions can then be substituted into Eq. (35) to give tne
reflectec field component of the scattered field. The total scattered
field from the flat plate is then given, using Egqs. (32) and (35), by

'PS o 4 = *d re S -’r ey &
(38) R0t = RiCegoe) + R (egaz )

This solution has been compared with measured results using a
short dipole antenna mounted above a flat square plate as shown in
Fig. 16. In Fig. 17 a dipole is mounted above the center of a square
plate with resultant patterns shown for 0C < ¢5 < 3600 and 85 = 900,
In Fig. 18 the dipole is mounted near one edge of the plate. In
Fig. 19 the geometry is the same as the last case except the dipole
is now rotated by 909, Note that good agreement is obtained in
each case between the calculated and measured results even through
the back lobe region.

In order to illustrate the versatility of this solution, it is
used to approximate the scattering effect of a disc. This is done
by computing the pattern of a monopole mounted on plates with in-

creasingly many sides. In Fig, 20 the calculated results for plates

with 4, 6, 8 and 10 sides are illustrated and compared with the e

measured result taken on the disk[40]. Note that as the number of o

sides is increased the closer the computed and measured results N

agree. Kﬁ“
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FIG. 19

Fig. 16--Geometry for flat plate measurements.

Even though the above resuits show good agreement one must
realize the inherent approximations in this solution. It is based
on edge diffraction with just singly diffracted edge rays being
considered. Thus, it has been assumed that the plate is large in
terms of the wavelength such that double diffraction is normally
negligible. However, neglecting double diffraction may cause
some error especially when the pattern is computed in the plane of
the flat plate. Secondly, a diffraction term from each of the
corners should be included but is not available in practical form
at present. Nevertheless, it has little effect on the overall
pattern except when the diffraction point approaches a corner,

In these two cases our solution can be somewhat in error although
only a small angular region is involved.
] |
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Fig. 17---Ee radiation pattern for a small dipole mounted above a ,
rectangular plate for 6. = 90° and 00 < o < 3600,
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Fig. 18-~-Ee radiation pattern for a short dipole mounted above a
rectangular plate for 6. = 90° and 0° b 2 360°,
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Fig. 20b--Radiation pattern of a stub on a ground plane.
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T1is solution, of course, yields the radiation pattern for antennas
mounted 2bove flat plate reflectors. As stated earlier a large antenna
or array can be handled simply by using the superposition principle and
summing the scattered {ields from delta function or array elements.

As is shown in the next chapter, this solution can be modified somewhat
and applied to the aircraft antenna problem in order to handle the
scattering by wings and/or horizontal stabilizers which arg approximated
by "n" sided flat plates. Another possible application of this study

is in solving the near field scattering of buildings. This is a problem
of recent interest in terms of the overal! airport/aircraft antenna
system performance in that the scattering from buildings may adversely
affect the desired antenna performance.

C. HNear Field Scattering by a Finite Cylinder

Even though many authors; 41,427 have previously studied the far
field scatterinc properties of finite cylinders, the near field scat-
tering of large finite cylinders has received little attention. It is
this near field problem that is examined here basically to study the
engine effect in the or-aircraft problem. The geometry of this near
field scattering problem is illustrated in Fig. 21. The solution
developed is basically an application of ray optics techniques.

3
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Fig. 21. Near field finite cylinder geometry. ryfo
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The modal solution for the circular cylinder is used to detemine
the scattering properties of the cylinder portion, wedge diffraction
is applied .0 the edges at the end caps and physical optics is

used to determine the specuiar scatter from the end caps. In the
process of developing the near field scattering properties, the far
field problem is presented using similar solutions. Again this

far field solution is ubtained by applying several solutions which
are known to be adequate in certain regions. Thus, this apprcach

is not an attempt to =xtend a solution beyond its capability but
only uses previousiy developed solutions which are knuwn to be

valid in certain sectors. The most interesting point is that there
is an adequate over'lap between the various regions in which eacn
solution provides & good approximation thus giving complete coverage.

ret us first consider the physical optics solution applied to
determine the specular scatter from the disc-shaped end caps. The
geometry used for this analysis is illustrated in Fig. 22. 1In this
solution as well as the ones to follow, the parailel and perpendicular
components of the incident E-field are considered separately. Con-
sidering the perpendicular component of the incident field, one finds

that
a: A Jk{z cos 6. + x sin 6.)
2 i i
L=ye

and
i R R jk(z cose.+x sing.)
H' = (x cos «, - z sin uv.) e 1 1
1 i i Z0

The physical optics current is, then, given by[43]

jk x sin ei
T4t o - o0 . e
- oy =2z x H'|,_,= 2y cos 6, Z
L -
This current is substituted into the radiation integrals to find the e
s scattered far field as given by “
4707
a (2m - .
s _ . ( Jklp"' coc(o-¢"')sine] ' .
ELe = -Z0 cos o sin ¢ JO JO le e o'de'dp! N
and 1.
ES = -Z_ n0s ¢ Ja [?'J e 0'cosloe")sing ugyagos
L o " 0oy p d¢ dp .
with the factor [%%F e"Jkr} removed. This results in >
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Fig. 22--Plane wave field incident on finite cylinder end cap.

3 a (2n
(39) E., = -2 cose sing cose; J J o
‘ 00

. ejkp'[sineicos¢'+sine(cos¢cos¢'+sin¢ sin¢')]d¢.dp.

and
() S a (2n
4Q E° = -2 cos ¢ cos e.J J p'.
+9 Yo Jo
e s _ .
' eJko [sine;cos¢ +sing(cos¢ cose'+sing 51"¢')]d¢'dp'.
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In order to simplify this solution let

sin -, cos :' + sin-{cos : cos :' + sin : sin :')

1

<>

= - {cos 5 cos ' *+ sin z sin :')=. cos(:z-:")

where

. . . . 2
(41) T =,js1n2 z; v 2sin 7. sin 6 cos ¢ + sinvs L

Substituting the above expression into Eq. (39) one finds that

rd (2'

Mm
[}

) ikt P
1 -2 cos = sin : CO3 e , 2! el cos (&= )d:'dc'
’ -0 -0

m
w
|

{
= - a 3 - ia A1 L .3
e -4~ cos = sin : cos CPRR A Jo(k, L )da
0

-

or

* COS &, sin -

B
-
[=1]
[m)]
Q
w
X

S -
(42) .= - Jq (kay)

and similarly

473 cos 9; €OS ¢

(43) 5 = - — J, (kay) .

41¢ Y

Let us now consider the parallel component of {he incident field,
which is given by

i - jk(z cos 85 + X sin ei) ke
E,=¢ee ? s
and b
jk(z cos 8: *+ X sin ei)
-1 _ A e [
Hu ==y 7
0

. .

Again the physical optics current is simply given by

3 1 4 1
2 eJkO s$in 6, COS ¢ }
Zo ‘

=)
"

2 ¢ x R, = X
'@ z=0
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with the far scattered fields given by

. a 20 k. 'isinegcos:t+sinecos(. =) Ty
(44) E =-2cos -cos; , . .'e s

@ g2 Jke'Isinz.cos:'+sin.cos{s-:")]
|

(45) E3 =2 sin : e d-"d:"

9 }0 0

These integrals can be evaluated using the same technique as applied
earliar giving

(46) ﬁ?e - . 4-a Egs T Cos & J](kay) ,

and

s _ 4na sin ¢ Lol
(47) En: Sl aea J](xa,).

In order to consider the total scattered field, one must treat
an arbitrary plane wave incident on the end cap. In so doing let us
assume that the incident field is, in general, given in ray form by

> it it
(48) Rt origin 1+ ¥ * Raf

Then the totail scattered far field is simply given using the super-
position principle and Eqs. (42), (43), (46), (47),(48) by

(49) Efar field

_ Sl S i.S
end caps (8,4) = 0(R' E> + RE> ) +

L CLg e
AT PR i .S
¢(RLEL¢ * Ru En¢)'

Note that the phase of the above solution is referenced to the center
of the end cap disc. If the above solution was for the rear end cap
with its phase referenced to the center of the cylinder, then Eq.
(49) must be multiplied by the additional phase factor

jk 2/2 (cos 85 + cos 9)
Ce ]

]




It is well-known that the physical optics solution is a very
good approximation in the specular region of the scattered field.
The center of this region is defined by setting Eq. (41) equal to
zero (+=0). This region is bounded by the zeros of Jj(ka.) as
discussed in Ref. (44). However, these bounds may change depending
on the size of the disc which in turn varies the region of overlap
between the physical optics solution for the end caps and the wedge
diffraction solution for the circular edges of the finite cylinder.
In any event, the validity of this approach is illustrated by the
results presentea later.

Now the question arises as to how this solution can be applied
to the near field scattering problem. Hote that this near field
problem will ultimately be adapted to simulate the scattering from
aircraft engines. Even though this flat structure does not simulate
the ends of engines, it is a convenient means of closing off the
surface, Further, as shown later the engine,has very 1little effect
on the over-all pattern. In general, aircraft type engines are
inherently long in comparison to their diameter; thus, the source
can be in the near field of the engine yet in the far field of the
relatively small discs at the ends of the engine. As a result, the
far field solution of Eq. (49) can be adapted te this problem simply
by assuming that field intensity of the incident plane wave is that
radiated by the source and incident at the center of the end cap.
This simply implies that the field incident at any point across the
end cap is very nearly the same as the field at the center of the
end cap (or nearly a plane wave). The geometry for this situation
is illustrated in Fig. 23 with the source located behind the
cylinder.

As was done for the flat plate problem it is known that the far
field pattern of a general source can be written as

} . ~Jjkr
g o ’ . Jjke
sourcelParta) TLo Flogatg) + 0,68(6,,45) ) T ,
jke-jkr )
where - is factored out as done earlier. This field is then
decomposed into parallel and perpendicular components such that @
g ¢ y 2 jke"ijr A "
(30) Esource(ea9¢’a) - D’(FJ_”' GJ_) +6(F"+G")] —a_‘ﬂ—R_;—_ ’ "'O o
which is the field incident on the rear end cap. The vzlues of 65 and >

63 are known once the center of the end cap is located in terms of
the source coordinate system. The total near field scatter from the
rear end cap is then given using Egs. (42), (43), (46), (47), (50) by
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Fig. 23--Near field specular scatter by rear cylinder end cap.

Zznear field, _ s =S
(51) Eond cap  0»¢) = (60F +6 JE] + (F +6 )E T+
ijr
" S =S jke Jjk 2/2 cos 65
¢E(F.L +G.L)E.L ¢+(Fu+Gu)tu ¢>] s E“Rr €
for kay < (approximately) 3.8317. Note that in this case the phase q0°

is referenced to the center of the cylinder. A similar expression
can be written when the source is located in front of the cylinder
where it is possible that the specular scatter from the front disc
can dominate.
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It is usually extremely difficult to analyze the more complex
end shapes of actual engines. Thus, one must have a real need for
such results to make a thorough investigation of that topic. As will
be shown in the following chapter the engine has little effect on
the principal plane patterns. Consequently, the {lat plate end cap
simply serves to close off the structure.

Once removed from the specular region of the end caps, the
diffractions from the circular edges become dominant. In order to
include these effects, the problem requires more sophistication than
the striaght-forward wedge diffraction problem of Section II-C.

The curvature of the diffracting edges must be included in this
solution by appiying an equivalent current technique such as that
presented in Ref. 45.. Using this approach an equivalent current
is found on the diffracting edge using the appropriate two-
dimensional diffraction soiution. The resuiting current is then
used in the radiation integrals to find the far scattered field.

tet us first consider the perpendicular component of the
incident plane wave on the back edge of the cylinder as illustrated
in Fig. 22. This component is given by
- jk(z cos ¢, + x sin 4;)
i_- i i
E, =ye

vhich results in giving

; jkx sin 8;
(52) EL¢ =0 = €08 te and
s 5 cos 6, sin '  jkx sin 85
\53) H.L¢ Z=O = - Z e .

(¢]

The equivalent electric and magnetic currents are given, respectively,
by Ref. [20] as

e _ 2 Ge(%') i
(54) Lug 7 k sin‘g fuglz=a s 2
[o]
Gy 232,6"(s") ¥
N

which are related to the ray form of the diffraction function. The
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various terms of the above expression are defined later in the dis-
cussion. In any event, these currents are given using Eqs. (52)-(55)

by

. jka sin . s!
e 25 68(:')cos +* jka sin -, cos
.L" - .‘2 e s and
v Z k sin"z
0
n 2th(:‘) cos £, sin :* jka sin 25 COS !
E." = > e .
v k sin3

Substituting these currents into the radiation integrals one finds
that

o {21 e jka[sineicosa'+sin9cos§(:-¥)]
E°, = -a cos @ J°.1 sin(¢-¢')e d;*.
19 4‘0 R R
e 27 e jka[sin&icos:'+sinecos(¢-¢')3
EJ_¢ =-a | J . cos(s-:")e do'
J
(56)
m 2n jka[sineicoso'+sinecos(¢—¢')]
E;¢ = a cos 8 {0 JLQ. sin(¢-2")e de'
m 27 n jka[sineicos¢'+sinecos(¢-¢')]
ELG = -3 J JL¢,cos(¢-¢')e de'
0
where
s €71 o '
(57) Je¢|(¢') _2) G (¢’2)COS ] and
L k sin“g
o 2j Gh(¢') cos 6, sin 6!
1 -
-!-‘.b((b ) - 2

k sin"8 :

Note that the phase feference is at the center of ihe end cap and
the factor %%F e~JKr
Now using the method of stationary phase one can evaluate the previous
integrals asymptotically using[46]

has been removed from the above expressions.
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'2“’ Shaafal

! F(:l)eJl‘.a‘(-' )d:l F( )J______I »
-0 ka | (S)|
ejlka:(:;) + ﬁ-sin o“(c;)J

where ! is the stationary phase point or points defined by (s ) 0.
A1l of the above inteyrals {Eq. (56)) are of this form with

~

4(:') = sin &5 cos sV + sin & cos(2-¢")

giving the relation that

in < sin ;
; tan” -1 S sin
sin ei + sin 2 cos ;/ ,

which has two solutions for 0 < ¢¢ < 360° (¢575 ¢4592). Hak1ng the
appropriate substitutions in the above 1ntegra1 expressions one finds
that

e " e 1 sofa_at Al
(58) E19(0,¢) . -3 COS @ ¥ JL¢'(¢S)51"(V @S) X(as)

=

*s10%s2

Er (6,6) ~-a [ JF,(eg)cos(o-og) Xloc)

512952
" (8,6) ~acoso ] I (6d)sin(4-0L) X(sd)
172 16" 9S S S
*s1°%s2
and
E" (0,6) v -a T ", (ol) cos(e-6¢) X(6)
1072 Lo Siet Vs b5/ Aes
*si29s2
where

> ejEka¢(¢§) + 7 sign " (¢g)]
kale"(65)

62

N . - - Am——— *_/'\f‘\\g.‘l..&_w,__‘_h,\ - P e, - =

o —n




and

s(al) = —an(a = sin &. <!+ osip @ ot
(¢) (:g) = sin & cas 1L + sin 2 cos(¢-:¢)

The total perpendicular component of the scattered far field for
the circular diffracting edge is then the sum of the electric and
magnetic components and is given using Eqs. (57) and (58) by

X(s8)

P F_68( 1 Vcose cosisin(ans!
(59) E;e(”') = 2ja i ) . sinzs L-G (,S)cosv c05g§1n(. 'S) +
*S12782 S
Gh(r') cos €. sin 28 cos(s-¢d)]
S i > cs FTe
q . X(og) e, . .
(60) E.,(650) =-2ja ] ——5— [G (sg)cos 3¢ cos(s-3g) +

h 1] - 1 4 1
G (@S)cos 6 Cos 8; sin ¢¢ s1n(¢-¢s)] .

The diffraction terms are yet to be defined in terms of the
stationary phase points (¢57.452). The gecmetry pertinent to this
discussion is illustrated in Fig. 24. The ray forms of the dif-
fracted field are given by

e
Gh(¢§) = R(y-v,,3/2) * R(yty, 3/2)

where it is shown in Ref, [20] that

( ) %-sin %3
R(4.3/2) =
coS %3 - COS %i

The values of the diffraction angles are based on the two-dimensional
wedge problem and are given by

~ ~

-1 .y coS 6.
b= tan'](f————;g) = tan”! ( ! \

-COoS ¢é sin 95/

e
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Fig. 24--Diffracted field geometry for finite cylinder edge.

i3
. tan'1{\ i’e) - tan“]( cos 6 )

sin 6 cos(¢—¢;)

The three-dimensional effect on the wedge diffraction problem is
introduced by the angle Bs which is defined by

RV T 2,3 o2
(<Iex )"+ (-1 - y) ) (d « x )+(d - y)
Bg < tan'] J U— € |= tan 1 j - £ )
—I-ze d-ze
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where 0) < 3g :_1800. Finally, if tne condition exisis wherz . or
s0 > n-, then diffractions do not occur from “hat stazionary phase
point in that the cylindar shadows tnat terw

The parallel component of the incident field is given by

. . R jk{z cos &, + x sin 6.)
E} = (x cos 8; - z sin s;)e ! 1

vhich gives

i jk« sin éi
E:*i = -cos 5, sin ' e , and
ity
z=)
. jkx sin 2.
yi . _ cos ¢’ eJ SN2y
4 z .
n+iz=0 o

Then using the same approach as before, the parallel component of
the scattered field for the diffracting edge is given by

X(:g)
¥ —_———

¢S1:°SZ k sin’eS

d . - . :
(61)  E° (e,2) = 2ja [6%(s8)cos ¢ sin =g sin(s-:g)

* Gh(¢§)cos ag cos{¢-4¢)]

. o)) o )
2ja ] ——5— [G(sg)cos 3, sin o5 cos(s-¢¢)
512950 K SIN B¢

(62) &% (0,0)

-Gn(¢§)cos 6§ COS ¢ sin(¢—¢§)3
with the various terms being defined previcusly.

The total scattered far field from the rear difiracting edge
is given using Eqs. (48), (59), (60), (61), (62) by
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=far field ;. _y _ .-~ (pigd id -
(63)  Eogge gifr. (727) = HREL *+ R E L)
. A ik (-/2)cos: ;+cos+)
@Red + R Ed) e 1 :
H

L oLs [

Note that in this case the phase is referenced to the center of the
cylinder. In addition, a similar expression can be generated for
the scattered field which results from diffractions off the front
edge of the finite cylinder. These two diffracted field solutions
are then summed using the superposition principle and applied
between the specular regions of the end caps and cylinder section.
The cylinder specular term is presented later in the discuzsion.

Tt was assumed by using the statio .ary phase method that only
two points around each of the cylindrical rims could contribute to
the scattered Tfield. However, there are certain regions (caustics)
where diffractions from the complete rim contribute to the scattered
field. In these regions one must carry out the complete integ-ations
around the edges rather than using the stationary phase method.

The expressions have been developed but are not included in our
numerical computations in that this solution is applied only to
simulate the engine near field scattering effect. Thus, a complete
investigation of the finite cylinder is beyond the scope of our
final objective. For this reason, our numerical sclutions can tend
to diverge near the caustic regions as is noted when the results are
presented later.

As was done for the end cap specular regicn, it will be assumed
that the edges of the finite cylinder are in the far field of the
source for the near field scattering problem., With this being
the case and using the geometry illustrated in Fig. 22, the dif-
fracted field from the rear edge is given using Egs. (50), (59), (6G,,
(61), (62) by

(64) Enear Fieldg oy Lir(r, 46, ), + (F,+6,)ES, 1+

edge diff. o
-ijr )
d d jke jk(2/2)cos ¢
[(FL+GL)EL¢ + (ﬁl+G")E"¢]} -7532:-——— e .

A similar expression can be found for the diffracted field from the
front edge of the cylinder. The total diffracted field is then the

superposition of the diffracted fields from the twc edges of the
cvlinder,
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Since in this case the range of the source is not an infinite
distance ‘rom the edge, one must apply the VB form of the diffraction
function in which

o2
J(LRrswn et /4)

R{:,372) = V (R s1n L -,372)e - \|2—er sin i
giving
e 2
b 7 J(kR. sinT.o +- /8y
Y = .
67(:¢) VBe J2-kRr sin i,
d d d

One then simply subst tutes ims result for the termms E_ , E_., E -,
and EE- for the near “ield scattering soiution of Eg. (64) 0therw1se
the terms are the same as found previousiy. Finally, in the near field
problem the diffracted fields from the two finite cylinder edges are
included everywhere except in the specular ~egion of the end caps.

This is somewhat cifferent from that ot the far field solution y .ere
the diffracted fielis are only present between the specular regions

of the end caz and cyiindrical sections.

The final region to be considered is th~ specular region of the
long cylindrical section. The solution for this region is found
similar to the physical optics solution used for the end caps;
however in this case, the current used in the radiation integral is
the exact current found on an infinitely long cylinder. This current
is, then, integrated over the finite iength of the cylinger as
presented in Ref. [427. This type of solution generally has good
acruracy throughout the specular region of the cylindrical section much
as the physical optics solution.

With a perpendicular component E-field incident on the cylinder,
it is shown in Appendix I that

¢ sin 55 Jkz cos 6, : J'(Re)
H,=-—— e 7" (s0) - B
7 ;o 3¢
0 =<« n HHZ) (7a)
Hr(12)(‘%°)] g INe
t CoS %, jkz cos A, =
H* = - L — e Y onid (&)
1 ko Zn sin 6, ne J L B
J!(ga) .
n (2) . né
H'*7(30)] e
ng) (ga) M
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where ; = k sin ;e The equivalent surface current density is given
by

T - £ o~ .t - I 2P R AP

J o= 0x (HLZ z+ HL¢ ")|»=a : HLZ(. a) +z H;:(’ a)

The =- comporent of the far scattered field is given by

c "2' "5/2 .
. =1, . £-J, sin(:-z")ces -+ J, sin
- ‘0 -./2 ;
eJk%a cos(:-:")sin - + z' cos a dz' d:
or
(65)
c © 20/ 2 jkz'(cos~i+cos%)
B, =-sin o i Xn(a) } : e sin{:=:")cos -
n=- - ‘0 -./2
inal 3 A iV Yeq T
RALE oJka cos(2-:")sin “dz' g

c 5.
oS 71

,ZT;/Z jkz'(cosei+cosa)
" ka sin P €

) nj" Xn(a) | sin =
n=-x 0-2/2

e-jn@' ejka cos(:=4')sin » d

2t dg!
where Xn(a) = Jp(ea) - géfiiz———- H(z)(”a) These integrals can be
eva]uatgd usingn an) (ga) " e ) ?
L/2 jkz'(cos 65 + COS 8) g sin[%i-(cos by + COS e)‘
e dz' = K3 = ’
-2/2 Y (cos b+ Cus 8)

e
0

2r Lo s NS
J -jn¢ eJka cos(s=¢")sin Osin(e-s')do’

2N (6+7/2) ,
= H_S—'rn_-\‘)——— n Jn(ka sin 8)

63




and
- s . e s
e 3" e‘ﬂ"a sin  cos{:-: )d:' = Z—eJn('+ /2) Jn(ka sin ).
-0
Substituting these results into En. (65) one finds *hat
. cos -.sin
[66) EC (-,:) = :—g-‘)—(cm 3 __2_‘__>
- k~a sin®-.
j
kl ~ s
sin 5= (=05 - + cos ) n Jn(La sin )
p - n(“]) (ZT - — sin n:.
7~ (€os -+ cos ) n=0 Hn {ka sin 'i)

Similarly the :-component of the scattered field is given by

. 2l /2
EL‘(":,:) = -7 a

J cos(*-~')ejkta cos(:-:")sin"+z" cos -
0 "0:-‘/2 .

4dzld:l

which can be evaluated as above to give

s k. .
. 5 sin [—— (cos -.+cos ?ﬂ
(67) S () =2 : 1

=

>

Hi~13F

o

£y (D"

™
3

(cos -5+ COs )

Jn(ka sin )

—1271————————-— cos nr, .
Hn (ka sin ui)

For a paraliel component E-field incident it is shown in
Appendix I that

J kz cos 6.

€x0

- I 3" [ (ee)

N=ew
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In this case, the equivalant surface current densitv is given by

Jo= 0.t by =zt (=),
" ll-:‘=a il

Substituting this current into the radiation integrals one finds
that

(69) EE_ =0, and
;2?1/2 3 sin - edklacos(e-ct)sine+zicoss] oy g
e (d) _'0;_"/2 nZ o

This integral car pe evatuated as done previously giving

i k - + e
(70) g€ o =43 sin 2 C 5‘"[2— (cos -, * cos ﬂ

ur o kosin oty %L (cos -, + cos ~)

un(ka sin )

Z v ("] )n

n cos n; .

Héz)(ka sin )

The total scattered field in this region is then given using the
superposition principle and Eqs. (66), (67), (69), (70) by

>far field

¢ ] ;:~ ) @ ¢ 2t 3 ¢ VA 1
(71) By TEMas0) = FIR (g0t ES, (0) + R, (0,05)ES, (046)]

1 né
N ¢ C (5 4y

+ . . + st s .
o EFE_(G.lsc’])EL@((aQ) + R"(g'l”'l) EIIQ( a:‘),l

where R, and R, are definzd in Eq. (48). Note that in this case
the phase is already referenced to the center of the finite cylinder.

As stated earlier this solution gives a good approximate solution
for computirg the specular scattered fields of the long cylindrical
section. As was done earlier this region is normally defined
between the irst nulls about tke main beam of the specular scatter
directior. These boundaries are each defined by

Ve
%ﬁ (cos 65 + cos 8) = nr
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where n=0 gives the specular main beam direction and n = -1 defines the
first nul} directions. This is the only term necessary thrcugh the
cylindrical specular scatter region. However, as is shown later the
edge diffracted fieids must be included through this region for the
near scattered field solution.

This solution completes our study of the scattered far field
from a finite cylinder which is given using Eqs. (49), (63), (71) by

(

~far fieid, ] )

front cap(" ) k' frong 2 () 3.8317
~far field, " (

Erear cap ( 2°) kav o< () 3.8317

(72) E. () =
far* ? .t .
7 grar f1e]d(;,:) : %i(cos g+ cos )iiw

cyl.
cfar fiela , _y,efar field, y
EfY‘OHt edge( ")+Erear edge( - 1-) otherviise.

\

In order to compare this solution with previcusly measured scattered
far field data it was found that backscatter data was most readily
available. In Fig. 25 the results of Eq. (72) are compared

with measured backscatter data taken from Ref. [41.. It was
extremely difficult to extract the measured data from their graphs
in that the finite cylinder measured was quite large which resulted
in much ripple. In any event, the agreement between the resuits for
the points choser does indicate the validity of our solution. HNote
that both incident polarizations were considered which covers the
complete problem at least for the backscatter case.

The far field soli:tions could be applied to the near-field
problem in the two other regions since the cylinder was assumed to
be long and thin. However, that approximation can not be made for
this cylindrical specular region unless the source is moved a large
distance (2:2/») away from the cylinder. This implies that the
spherical wave front radiated bv the source must be considered in
the approximating currents. This is a very difficult problem to
solve except for cylinders short in terms of the wavelength. Thus,
a different approach must he applied o solve for the scattered near o
field solution in this specular region. J

This obstacle is overcome by applying a technique similar to
that employad for the finite flat piate problem, in which the re- }
flections from the plate are added only when the point of reflection %
falls within the limits of the finite plate. I this case, the Ky
modal solution can be used to obtain a similar scattered field term
from an infinite cylinder which is only included when the origin of cqF
the scattered term falls within the 1imits of the finite cylinder. ‘
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Based on a ray optics description, it is known that for the reflectec
terms the angle of incidence (-j) is egual to the angle cf refliection
(). Secondly, it is known that the creeping wave terms attach to
the cylindrical surface tangentially and propagate around the surface
in a helicai path with constant pitch, such that =+ remains constant.
For these reasons, one can affirm that to a good approximation the
bounds of this region can be specified in terms of "5 as shown in

i £ T s, <
Fig. 26, for * < =5 < “..

INCIDENT PLANE
WAVE DIRECTION

; — 91/?\\_:::7_ —— t
—— 4 2a
\ ———_ FINITE CYLINDER __:_Z i
e l ////,
4\ 2/2 :}: 1/2

SOURCE
LOCATION

Fig. 26--Cylindrical specular region for near zone cylinder,

In order to apply the results of Appendix I one must use a
reciprocity argument in that it is assumed there that a plane wave
is incident. 1n this case, the source is in the near field and
the scattered far field is desired which can be solved using
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cly 2 cos 5 jkz cos 4] JA(;a)
L (+52) = k. sin - . & - nJ @y,
i n=1 Hn (:a)
(2) ),y s
H (20) sin n (:- 1)
. jkz cos 5, = J'(za) (V0
ESY(e,0) = e Iei™ B w8 ()cos n(i-.)
° n=0 Hy :a)
(73)
jkz cos 5. - J_(za)
ly,. J i - NN - e . ou(2), v
Ec; (f,3) = e - e —pyosin &y sin s HYS (22)+7
Iz n=0 n an (Sa) J n
COS 5. COS™ Héd) (2:)7 cos n(:-:i)
and
2 cos *. jkz cos ». - J_(ra)
clyin oy = j i ¢ .n#l n (2) e (e
By, (254) RS e ni]nJ aT?Sz:;;Hn (8o)sin n(e-:5)

n

where 8=k sin »i. Note that the above equations give the ¢ and ¢ com-

ponancs of the field at the source position which is defined by (0,¢,2).

The received signal by the antenna can be found using the far
field pattern as defined by
~jkr

-

. _ra ~ : e
Esource‘ea’¢a) '[eaF(Ga’¢a) * ¢a G(ea”a):l

r

Thus, the pattern function of the source can be expressed in terms
of the ¢ and ¢ coordinates by

(74) Rsource(ea’¢’a) - e(Fe ¥ GG) * ¢(Fi> ¥ G(b)

where 65 and ¢5 are defined in terms of the incident field direction
in the source coordinate system. The radiated field by tne source
using the reciprocity theorem is then given by

=near field I cly - ciy
(75) Ecly. (65595) = 0, LK+ G IE " (0,0)+(F +6,)E | 7(0.4)]

" cly cly
+oL(F+GIE 7 (0,0) + (F 46 )E 7 (6,0)]
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for »p < 3 - ~¢ &s defined in Fig. 26 and where -4 and 3; now
define the scatteres field dicection. In this case the phase is
already referred to the center of the finite cylinder. 1In addition,
the diffractions from the edges of the cylinder must be included
throughout this region. HNote, also, that the directly radiated
field by the source must be included in every region of the near
field problem.

To illustrate the validity of this near field solution, it
is compared wich measured results for two cases. A vertical and
horizontal dipole are, respectively, mounted in the rear zone of
a fin.te cylinder as shown in Fig. 27a and b. One sheculd note
that the agreerent is quite good except near the caustic regions where
our solution tends to diverge. The reason is that the diffractions
from the circular edge are not coming from just two points but from
the complete circular edge, which can be included in our solutjon by
actually integrating Eq. (56). However, it is shown in Section IV-D
that when this solution is used in solving for the azimuth principal
plane pattern, the engine (finite cylinder) has very little effect.
Thus, an extensive study of this topic is not necessary at present.
In any event, the basic tools are presented in the previous discussion.

DIPOLE
LOCATION

Fig. 27a--Short dipole i1luminating a finite cylinder.
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Fig. 27b--Radiation pattern of a horizontal dipole (E.)
with -1800 < o < 1800, ‘
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Fig. 27c--Radiation pattern of a vertical dipole (E )
with -1800 < o < 1800, *
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CHAPTER 1V
ON-ATRCRAFT ANTENNA PRINCIPAL PLANE PATTERN STUDY

A. Introduction

This chapter illustrates the application of solutions previously
discussed to determine radiation patterns in three principal nlanes
for fuselage mounted aircraft antennas. Most of these resuits have
been presented elsewhere_ 47,48 ; nowever, tney are pertinent to the
present discussion. Furthermore, several improvements have been
made in the present work. The complete detailed equations for each
solution will not be presented except in the cases wnere improvements
have been made.

The basic aircraft to be analyzed in this studv is shown in
Fig. 238. 1t is composed of flat plates, cvlinders, cones, ana spheres.
It is assumed that the source is mounted on the fuselage and re-
stricted to the regions near the top or boitom of the aircraft. As
is shown later in this discussion some of these restrictions and
models are revised in order to obtain better approximate solutions
for the desired pattern. In this wav models are considered that
approximate a wide variety of aircraft structures with the solutions
derived in such a form that arbitrary antennas can he considered
simply by integrating the equivalent aperture currents.

The lower frequency limit of these solutions is dictated by the
ray optics format which ~equires that the various scattering bodies
be no closer than aprroximately a wavelenyth with the overall
aircraft being large in terms of the wavelength. The upper frequency
1imit is dictated by the model representation of the actual aircraft
considered,

B. Roll Plane Analysis

This section is a synopsis of the material presented in Ref. [47]
along with recently developed improvements. Tne two-dimensional
problem is considered initially in order to develop the necessary
aaalytical tools to attack the much more difficult three-dimensional
roll plane problem. The geometry of the two-dimensiona! problem is
illustrated in Fig. 29 with and without the engines included. The
‘uselage and engines are assumed circular in cross-section and
mounted symmetrically aout the finite wing. Since wedge diffraction
is applied to handle the finite length wing, the radiated field must
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STATION

1-2 SPHERE

2-3 CIRCULAR CYLINDER

3-4 CONE
5 CIRCULAR CYLINDER
6 PLANAR CONDUCTOR
7 PLANAR CONDUCTOR

Fig., 28--Simplified aircraft model.

80




X
ANTENNA

l

LOCATION\?gi{_ A,
NS
|<'. Vo

(a)

TWO DIMENSIONAL MODEL FOR THE ROLL PLANE W/0 ENGINES.
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(b)

TWO DIMENSIONAL MODEL FOR THE ROLL PLANE W/ ENGINES.

rig. 29--Two-dimensional model for the roll plane.
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ke described in terms of ravs. Fouwever, one of ¢the nicer features of
this approach is that other solutions such as rodal soluticns can be
cast into a ray formt and then applied to a diffraction problem. Con-
seouently, it was found that the rodal -olutions {Ecs. (3) and (4)) for
an arbitrary antenna raounted orn an infinite circular cylinder w35 iteal
for treating the antennz rmounted cn the fuselage. In fact, tais
solution has been applied in past vears as the sole sclution for hign
freguency on-aircraft antenna analvses.

Yeing irage theorwv the wing reflections are analvzed using the
gesmetry illustrated in Fig. 30. liote that due to the finite length
wing the reflected field contributes onlv in a given region. The
wedge diffraction solution is applied to include the effect of the
wing tip. The field scattered by the engines is included using the
modal solutions (Appendix I) for a near field source illuminating an
infinitely long circular cylinder. In addition, a portion of the
energy scattered by the engine is incident upon the wing tip which
is included as a higher-order term. The phase of these various terms
is then referenced to the center of the fuselage, and the terms summed
to give the total radiated field. There were other higher-order terms
considered in this study but found to be negligible so they are not
included here or in the following numerical results. There are
basically three infinitesimal sources considered in this analysis
(monopole and axial and circumferential slots). These solutions
allow for an arbitrary antenna to be considered using a numerical
anerture integration as presented in Section II-B.

The radiation patterns for three fini.e sources are shown in
Fig. 31 on a model withcut engines. The monopole is approxi-
mately /4 and the slots are simply open-ended X-band wvaveguides.
These solutions compare very favorably with measured results taken
on the two-dimensional aircraft model of Fig. ¢3. It is observed
that the direct term from the antenna has the dominant effect on
the pattern in the 1it region. The reflected term adds the slowly
varying ripple to the 1it portion of the pattern. The scattering
from the wing tips causes the rapidly varying backlobes in the
pattern. The backlobes are not shown in these figures in that
they were well below the noise level of our equipment and thus, the
measured result was not accurate through that region. The radiation
patterns for the same configurations with the engines added are
illustrated in Fig. 32. Again verv good agreement is obtained
between our calculated and measured results. These results indicate
that the scattering from the engines tend to smooth out the pattern by
filling the nulls and lowering the peaks especially near ¢ = 90° and
2700,
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Even though the two-dimensional sclution should be more accurate
in some cases than the previously used modal solutions which only
models the fuselage, one must model the wing width as well as the
length in order to make the solution really practical. In order to
accomplish this feat, the near field flat plate scattering sclution of
Section III-B is adapted to this new model such as illustrated in
Fig. 28. Note that each wing can be located arbitrarily with any
number of edges provided only that the wings are flat and horizontal.
The following discussion is presented with more detail in that
selected improvements have been made over our previous solution as
presented in Ref. {47].

Let us first find the effective source location for the reflected
field. Recall that in our flat plate result the source was imaged
and the reflected field added to the total solution provided the
image ray passed through the finite flat plate (wing) limits. So
one must initially determine the effective source position which in
turn results in giving the desired reflected field. With the source
mounted on an infinitely long circular cylinder one can easily show
that the surface rays from the source propagate around the cylinder
on helical paths (geodesics), which in turn diffract energy tangentially.
Now let us assume that the source does not illuminate the right wing
directly (as illustrated in Fig. 33) and proceed to determine the
unique helical path that diffracts energy from a known tangent point
which is then reflected off the wing in the desired radiation (or
zcatter) direction., This helical path can be specified in general

Y

X

a cos ¢

y=ag sin ¢

%f;’ z b('b"'i’so) 25 : [ »

where (af, 0gq, Zgq) defines the actual source location on the fuselage. S
oy Let the desired ragiation direction be given by (ec,4g). Then using |
( Fig. 33a one finds that the tangent direction at tﬁe effective source 1b/%%5
| location is defined by 1
. Jo 1{

dx .

= -3 Sih ¢

@ (XgsYgsZg) ¢ b
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or

H

xI

which result in ¢g = 90° - Oge Using Fig., 23b the tangent direction
is given by

dz

% - P
(XgsYg22e)

= -cot % = - cot(90°—¢s)

(xe,_vesze)

&

a; COS &
f e
(XgsYosZo)

or

dz _ b

_ 0
] -————-—af s 7 = tan(90 -es)

- wnich gives b = ag cos ¢ tan (90°~es). The above equations uniquely
e specify the effective source position for reflections from the right
N wing in terms of the given radiation direction by

"

0
] Xq = 8 c0s(90° - ¢.)

(+ (76) A

A

a sin(40° - 6)

£

0 0 3 o M»::&
2 cos(90" - ¢S)tan(90 -es)(J/Z bs go) + 2z 3 ‘

z S0 T

e

which in turn can be used in the flat plate problem as the effective .
: source location. MNote that as the desired radiation direction is %o

" varied the effective source location changes. In addition, if the e R
1 source directly illuminates the wing for a given reflection term then

) the effective source location is simply the actual source location.

A result similar to Eq. (76} can be found for the reflections from ’
the left wing, Finally, the actual source field value used to
compute the reflected term is determined from the modal solutions of '
Appendix I. e

Aa

N

S

s

Using a similar technique the effective source locations for the
diffracted “ield components must be found. Recall that our flat plate 2o
solution used a search technique to find the diffraction point by o
g computing the diffraction angles at selected test points along a given :
£ o edge. Once a test point (x4, ¥4, z4) is specified along the edoce one I !

4 92

it - - e ‘\‘-‘ N . e, _" e L . O
B ‘N




*;"\ - e M‘FJM——';*}%}\"M*“

&
® can find the effective source location (xs, ye, ze) using the gecmetry ° Q'
: illustrated in Fig. 34. Again it is assuuec that the source does not . B
directly illuminate the test point. Using Fig. 34a cne finds that the
tangent direction at the effective source is given by
) dx . ’
& Z Ir = -ag sin i, = -y, ?
i ’ (xe’ye’ze’
]
T dy = 2. €08 & =X
) d¢ (x - ) f e e —
° ee’’e o
. or ]
n =} e - 4
’;‘ dx i .f(_"d_‘ ."_e_?r J Y
e, o (Xg9Ygr24) Yd = e e
L e
=
P/ 2_ 2.2 . .2_
‘;) \ Wnich gives ,.1:_- Xa * Yg &0C 2F ',{‘exd_* YeYd- !’he.value.of ) )
ww\ﬁ (b) of the helical path on the cylindrical suriace is defined using 4
o Fig. 34b by {
4 iz_ ; b . ')‘
= ds ]
a (xe’ye’ze) 73
d L
E d _ B )
oA %(x y AR R |
« 29 eayesze Fo T
5
or Vﬁ
dz _b U4 % 7
& (xgs¥gsze) Yo Jd 7 Ye ° .
4 Zd - Zo\ “‘ ¢
which gives b = L (}-——-7"-} . Using the atov« relstions one finds »:.%:W
d " Je s
that for the wing on the right side the «ffective sour-: location for
the test diffraction point is given by s
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Xa Z, [fxd+yd yd+xd'af_
yd)

.

a
A Y [afyd - g5 + - af
(xd + .Yd)

XeZ4 (¢e"so) * zso(yd'ye)

z
e X (3 3) F (gyg)
RYAS
where ¢ = tan 1 (;fi) . Given the effective source location for the
e

chosen test point, the search technique of Section III-B is applied
to find the actual diffraction point along a given edge. iiote that
once the actual diffraction point is detemined, che effective source
of the diffracted field is specified by Eq. (77}, and the source
field value is, again, computed using the modal solutions.

The total field is found by summing the directly radiated field
with the scattered fields fron the wings using the superposition
principle. Several different configurations have been tested using
this solution and compared with measured results. The roll plane
radiation patterns for the three infinitesimal sources are shown
in Fig. 35, when the antennas are mounted directly above the
wings. The patterns are shown in Fig. 36 when the antennas
are mounted on the fuselage over the back 1imit of the wing. In
Fig. 37 the patterns are shosn when the antennas are mounted
over the wings but rotated 450 from the straight up direction. Only
the monopole is considered for measured comparisons since it was
the only source available at the time. In each of these cases,
one can note the good agreement obtained between the calculated and
measured results. The s1ight deviations being attributad to the
assumptions made in solh1ng the flat plate problem of Section III-B.
For example, the jump in the calculated result of Fig. 36 near ¢ = 900
and 270° can be attributed to the lack of doubly diffracted terms in
the solution.

It was originally assumed in the aircraft model of Fig. 28 that
the wings were attachied such that they were contained in the horizontal
plane which also contains the axis of the fuse]age. This meant that
no diffractions occurred from the junction edge in that image theory
could be appiied to handle the cylinder/plate junction problem. This
is not the case when the wing is moved away from this location.
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Fig. 35c--Rol1 plane pattern of axial slot (E ¢).
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However, in order to make th33 solution even mo-e practical one must

! be able to move the wing from its former centra* position. As a i B
bz result, a technique has been developed to handle the case with the

w” K wing mounted above the central position or closer to the source

o location. Again the flat plate analysis of Sectinn I1II-B is applied

’Piﬁz but in this case the edge formed by the junction of the wing and «Q

o fuselage must be included. This is done by including the diffraction
’ from the interior wedge illustrated in Fig. 38. lote that once the
o diffraction point is known only the wedge angle (which is defined e
. by "n" in the diffraction {uistion) is changed from the previous -
< solution. In this case the effective source is found by using the

Qﬁ};i helical path solution for the surface rays on the fuselage except now G?;
T the path intersects the edge formed by the fuselage-wing junction.

S The tangent direction of the path at that point gives the incident

bl

field direction with the effective source ocation for the diffracted °
field calculation being shown in Fig. 38. Hote again that the in- -
cident field values are actually given by the modal solutions of
Section II-B. However, in this case the field is incident along the 1 7
surface of the wedge; thus, the incident field for the diffracted field
= solucion from this edge must be one half the value given by the modal
s solution as discussed in Ref. [49]. 1In Fig. 39 the radiation pat- \
’ terns for the three infinitesimal sources are shown with the wings t
maved up such that ¢, = 450 as shown in Fig. 38. The validity of this
i s¢iution is verified by the measured result taken for the monopole
° case of Fig. 39a.

A,

Even though tne previous results look good in comparison with
I the measured results, several improvements in the solution could be
made. For example, it was assumed that the fuselage is an infinitely
ii//% long cylindrical structure. T7This can be improved by including the
AN three-dimensional effects of the fuselage as introduced in the
| following chapter. Nevertheless, based on data taken at the Naval
Air Development Center the circular shaped fuselage appears to be
adequate for present needs. Other possible changes that might be
considered are tilting the wings, mounting the antenna off the
fuselage, introducing other possible scattering structures in the
analysis, etc.

o C. Elevation Plane Analysis )
. This section is basically a synopsis of the material presented °
in Ref. [48]. It is presented here to illustrate the validity of the
% GTD approach for treating antennas mounted on a convex two-dimensional 5
% body. Note that this material is an essential step in determining [
the volumetric pattern of «n antenna mounted on a three-dimensional |
surface as considered in the next chapter, ¢
T ¢
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Based on our original aircraft model of Fig. 28, the fuselage is
composed of cylinders, cones, and spheres. Il was shown by Ryan in
Ref. [20] that a two-dimensicnal diffraction analysis could be
adapted to solve for the elevation plane pattern for an antenna
mounted on a rocket model composed of cylinders and cones. Yith the
antenna, in our problem, being mounted on the fuselage near the top
or bottom of tha aircraft one can to a good approximation just con-
sider the fuselage effect in the elevation plane in that the other
terms have normally a secondary effect. Thus, Ryan's approach is
applied here with only the spherical nose cone being included in
his soiution in order to complete our analysis of the originally
specified model.

Some of the results of the present study are illustrated in
Fig. 40. In Fig. 40a Ryan's calculated result is compared with the
the measured result for a circumferential slot mounted on the
fuselage with good agreement obtained between the two results.
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Fig. 40a--Elevation plane patterns,
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In Fig. 40b a monopole is placed on the fuselage with the analytic
results compared with the isolated dipole pattern showing that in
the 1it region the fuselage-mounted antenna radiates much 1ike the
isolated antenna. However, the on-aircraft antenra pattern deviates
greatly outside the 1it region. Thus, one must be careful when
approximating the on-aircraft antenna performance using simply an
isolated antenna pattern. Finally, in Fig. 40c the radiation patterns
of monopoles mounted or different fuselages are considered to il-
lustrate the effect of the fuselage shape on the resulting pattern.
Note that with the spherical nose cone the ripple is greatly reduced
with much more energy radiated in the forward direction.
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In the previous fuselage models as well as the ones to follow,
the nose radome has not been treated as a special case. In other
words, it is assumed that the nose rademe is a perfect conductoer as
is the rest of the fuselage. These solutions can be in error due
to this approximation especially for dielectric radomes. However,
it appears that metallic radomes will find widespre3d use in the
future; in which case, our model could be a good approximation in
the rad~me region especially cutside its pass-band.

The simple models described above are not general enough to
include the wide variety of aircraft fuselages encountered in
practice. An aircraft fuselage is predominantly a convex body which
can not be completely described by simple analytic equations. In

practice, an aircraft fuselage is often specified by a set of points.
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Consequently a new approach, called "Section Matching GTD lethod,"

is developed in which a set of discrete points is used to outline the
profile of the fuselage. In this way any convex fuselage shape can bhe
inctuded in our general solution in a straighi-forward manner. Hote
that this solution is still two-dimensional but in many cases this is

2 good approximation in computing the three-dimensional elevation plane
pattern. Hevertheless, the complete three-dimensional shape and
volumetric pattern will be treated in the next chapter which will
remove this present restriction.

It was shown in Section II-[ that one can write high frequency
asymptotic expressions for the far zone radiated fields of an
antenna mounted on a general two-dimensional convex surface. This
solution is broken up intv solutions for the three regions which
were illustrated in Fig. 7. Th- forms of these expressions are
given in general terms by Egs. (23), (24) and (25). Hote that the
solution in the 1it region is just the geometrical optics field for
the isolated antenna and is not affected by the surface geometry. On
the other hand, the solution in the transition region is dependert on
terms of the form

J( k Vo d
g = 5 S an
299(5)

-ij ds

e which are characteristic of the convex surface. HNote that in
the above equations pg(s) is the radius of curvature and s is the
arclangth along the appropriate geodes:r path. If the surface is

now approximated by a set of points, or~ can evaluate the above
integrals numerically using

K 1/3
) -—2—-——) bs;  and
1 209(5;)
dfkes TEESE ks,
e 2 e = I.I e .
i

These expressions require that the incremertal arclength between points
(as4) and the radius of curvature at each pvint (pg) be found based

on the set of defining points. If the actual surface is given by

f(x) which is known only at a finite number of points, one can

make a pnlynomial approximation to a segment of the surface which

is given by
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B - n-1

(18)  yx) =] Cx.

The gzometry for this problem is iilustrated in Fig. 41. Equating

- 7 the abcve polynomial solution with the surface equation at "n"
oo f consecutive surface defining points one can find a matrix of the
(f. form
o0 2 w1y [ ]
F 2 n-1
% f(xz) 1 Xo X5 ... X C1
= 2 n-1
- f(x ) 1 X, X eee X c
= n n n n-1] .
o L _i 1 n Al L i
3 . This matrix equation can then be inverted to solve for the values
- of the c's., Substituting these values into Eq. (78) one obtains

an equation which locally describes the surface and from which one
can determine the radivs of curvature zad incremental arclength.

A fix)

. it POINT DEFINING THE
i CONVEX SURFACE

Fig. 41--Numerical description of convex surface.
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The radius of curvature can be defined in many ways. In this
case it is given by

3
(19) o E‘lb *('% 1" ‘l
d
o

which is applied unless dy/dx approaches infinity in which case let
X be defined in terms of y then

d™x
4yl :

The values of the various derivatives are then found from the
polynomial expression of Eq. (78) which is evaluated at the mid point
(xn+]) of the approximating section by

¢

d U

a%‘x = i=z'l i C,: Xn 4] and
g T

2 n-1 .

L = 1A e

dx j=2 1 -'12-
Xn+1
2

giving

n"'] . .i_'] 2 ]3/2
[1 + igl i Ci xn+])
5

7

n-1

.t Y4
izz 1(1'1)Ci x;+]
o=

Using this technique the radius of curvature is defined at each

surface defining point. Note, however, that this requires a new
polynomial solution (Eq. (78)) for each pg calculation. Onre should
realize that the arclength as well as the radius of curvature must
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be determined tc a good approximation in that they will ke used in
the deep shadow region to find dpg/ds and dng/ds . Consequently,
using the straight line distance getween adjacent points is not the
best method t5 find the incremental arclength based on our limited
comparisons. These comparisons were made between various numerical
solutions and the known solutions for s, pgs 59, and pg along an
elliptical surface. A better approximation appears to”be one which
takes into account the curved nature of the surface between points.
One such approach is illustrated in Fig. 42 where

i} °g(xi) + °g(xi+1)

8o; =

(81) bs; ;

)

- A.i
[pg(xi) + pg(xi+])351" (;g(xi) + Dg(xi+1):)

with

2 2
M‘il\kyiﬂ =¥ Xy - x5)”

This information can then be used in Eq. (24) to determine
the values of the radiated field in the trancition region. Recall
that g*(£) and g*(¢) are Fock functions which were defined in
Section II-D and are tabulated in the literature[50]. These
tabulated values can be applied to a simpie interpolation procedure
that can be employed to compute the complete set of values, which
completes the approach used in the transition region.

In the deep shadow region additional information is needed about
the surface. For the diffraction and attenuation constants one
needs information about pg, dpg/ds, and d2pg/ds? at each point
[f{Xi)] along the surface. The values of the radius of curvature
pg(x;) and incremental arclength sj have been defined by Eqs. (80) and
(g1). These values can now be used to compute the other terms using

Dg(xi) = pg(xi—1) N Dg(xi+]) = pg(xi)

BS: As

(82) Bg(xi) =

Og(xi+]) - Og(xi_])
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and

Bg(%s) = B (x: 1) BglXsiq) = b, (x5)
. - 9\ gt "i-1 Fglhi+l g\"i
(83) pg(xi) 855 1 ¥ bs

iq(xiﬂ) - pg(x'i-'l)
ASi-] + ASi

which are numerical averaging solutions specifically designed to
compute derivatives based on discrete data as presented in Ref. [511].

The only undefined terms remaining are the values of A;i(qy) and
Aj(-qp) which are tabulated Airy functions. In our solutions for
the GTD fields in the deep shadow region only two modes are considered.
The values of these terms for the first five modes are given in
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Section II-D. Thus, it has been shown that the GTD solution in the ‘
deep shadow region can be completely defined in terms of our general

two~dimensional convex surface which is only defined by a finite

number of points.

For the actual computations, the tangent values at each of the
defining points were determined using the polynomial approximation
to a section of the surface. These tangent directions in turn
specify the radiation direction of the fields diffracted frem that
point. HNote that curved surface diffraction is a lucal surface
phenomenon as shown in Ref, [52]. Thus, the points which define
the surface must be spaced close enough together such that the
tangent directions of adjacent points do not vary too rapidly. -
Otherwise, the pattern can only be determined for large angular -
changes, which means some of the pattern structure can be lost due ' |
to the large pattern change between data points.

It was found for the cases considered in this study that a B
4th order polynomial was sufficient to locally describe the surface. o
This was based on a comparison of our numerical data with known L
results for various convex surfaces. Note that the values of Pgs > (s
fg» and pq could then be computed at the center point of each approxi- t
mated section. It is this section approximation of the surface that )
leads to the term Section Matching GTD Solution. Actual numerical
calculations are presented in Ref. [48] to show the validity of these
various approximations.

At

In order to verify our solution, it was first compared with the
modal solution (Egs. (3) and (4)) for an antenna mounted on a
circular cylinder. These solutions are compared for the infinitesimal >,
antennas as shown in Figs. 43 for a one wavelength radius cylinder. ¥
In each case there is very good agreement between the two results.
These results do tend to verify this approach. However, this
fuselage profile is circular (pg = pq = 0) and the circular case
is not a true test for our more gene?a] solution.

D

o

This section matching GTD solution now is extended to obtain
radiation patterns in the elevation plane for a simulated fuselage N
model with an elliptical profile. The calculated radiation patterns {
for infinitesimal antennas such as circumferential slot, axial siot
and infinitesimal monopole mounted on an infinitely long elliptical
cylinder with a semi-major axis a = 0.637x and semi-minor axis
b = 0.3901 are shown in Figs. 44 to 46. The comparison between 1
the continuous GTD solution[37] and the section matching GTD
solution, again, is very satisfactory. In addition these methods
have been applied to more general fuselage models such as composite
elliptical cylinders. The radiation patterss in the elevation plane
for a circumferential slot mounted at various locations on a composite .
elliptical cylinder are shown in Fig, 47. The results, again, compare T
very favorably with the continuous GTD solution[37]. The elevation
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plane patterns Jor an axial slot and infinitesimal monopole are

also shovn in Figs. 48 and 49, respectively. Based con these results,
the pattern in the 1it region is simply the direct radiation by the
antenna itself. On the other hand, the pattern in the shadow

region is completely dominated by the fuselage structure through the
diffraction mechanisms. Thus, the complete radiation pattern for an
anterna mounted on a fuselage is greatly affected by the fuselage as
one should expect. The Tocation at which the antenna is mounted is
also an important factor ir determining the radiation pattern. The
radiation patterns in the elevation planz for a smaller composite
elliptical fuselage, with aj = 1.5% and ap = 2.0x and b = 0.5,

are presented in Fig. 50. From the comparison between these figures
one notices that there are fewer backlobes but more energy radiated
in the shadow region For the smaller structure. The larger structure
has more backlobes at a Tower average energy level. This is simply
due to the size of the fuselage and the interaction between the two
surface waves propagating in opposite directions from the source; in
which case, the two ray paths play a most important role. That is,
the longer the ray path, the more the surface ray attenuates.

Again, this shows the significant effect which the structure of the
aircraft fuselage plays in terms of the antenna's performance.

D. Azimuth Plare Analysis

Hith an antenna mounted near the top or bottom of the fuselage,
it is quite apparent that the dominant aircraft structure effect in
the azimuth plane is the fuselage. However, in this case one is
not dealing simply with the cross-sectional shape of the fuselage
as in the roll-plane or the profile of the fuselage as in the
elevation pl.ne. In fact, in order to deal with this problem to a
good approximation, a more complete threa-dimensional study must be
made of the fuselags as is considered in the next chapter. On the
other hand, this section i: conczrned with characteristic features of
the azimuth pattern in tevms of the important secondary components.
Two such contributors considered here are the enginz and wing
scattering effects.

In order to apply our previous solutions with onlv mipor modi-
fications it is again assumed that the antenna is mounted on an
infinitely long circular cylinder (fuselage). &< in the roll plane,
the modal solutions are applied to determine the radiation pattern of
the fuselage mounted antenna. Using this approach one can again
consider an arbitrary antenna by integrating the equivalent aperture
currents as discussed in Section II-B. These patterns will be com-
pared with patterns including additional scattering structures. This
should allow one to determine if these secondary scattering structures
are important in the azimuth plane.
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Let us first consider the engine effect, which is modelled as
a finite circular cylinder. Recall that in the roll plane the engines
had 1ittle effect and were neglected in the more general three-
dimensional roll plane problem, which was a great simplification in
the analysis. The solution of this problem is simply an extension of
the finite cylinder scattering problem treated in Section ITI-C. The
teometry used in this problem is illustrated in Fig. 51. MNote that
only the source fields incident on the engine have been modified in
this situation which is accomplished using the techniques developed
in the roll plane analysis of Section IV-B, in order to find the
effective source locations. For example, the source field incident
on the rear end cap of the eigine is illustrated in Fig. 52. The
Tocation of the center of th2 cap is given by

(xd =0, ¥q = d, z4 =-z"+ 2/2).

With this location known one can apply Eq. (76) to find the ef-
fective source location on the fuselage which is given by

& 2 .2

Y, = a&/d
> , . xe(-z+2/2)(¢e-¢so)\ B
e X (ég-¢.) + (d-y,)

"Q&L
E—

.

a
wnere b = tan_q(;;fg%?—). With the effective source location
-2
f

known one can apply the end cap scattering effects as given by
Eqs. (51), (64). The source field value incident on the rear end

:
f
defined by ] g

i
N P g It gy

cap is given by the modal solutions with the radiation direction
. dx)? + (ay )
. 9 = tan 2/2—- z:_ ze A
d-y
¢ = tan-]( X e) °
e L[] ]
o

¢ §
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Similar expressions can be developed for the effective source
location and field value for the front end cap.

In order to include the effect of the cylindrical section one
can apply the geometry illustrated in Fig. 53. The field incident
on the engine is dependent on the desired radiation direction (es,
és = 909) and determined using the modal solutions with the
direction given by

8 =

-
1]

O
,dz_az \
tan'] f )
-T—

.

Again the results of Section IV-B can be applied to determine the
effective source position which in turn can be used in the near field
cylinder problem., Using Eq. (77) ore finds that

Xo = cos(30°-¢)
Yo = 8¢ <in(90°-5)
z, = a; cos(90°-¢)tan (900-6)(n/2 -¢-¢so).

with the actual source location on the fuselage defined by (af,¢ 0>

Zgo = 0). MNote that this term is only included over the finite ?1mits
of the cylindrical section as shown in Fig. 53. This discontinuity

in the cylinder scattered field should be compensated for by the

edge diffracted field contributions from the ends of the finite engine.
The engine scattered field is then added tc the directly radiated source
field using the superposition principle to cbtain the total radiation
pattern.

Some of the results of this study are presented in Figs. 54. Note
that in each case the engine has very little effect on the total
solution. The maximum deviation, for the cases considered, is less
than 2 dB between the above solution and the solution that considers
only the directly radiated term. This implies that one can to a good
approximation leave the engine effect out of the solution in the
azimuth plane provided that the source is limited to the region
originally assumed. Finally, measured patterns were taken for the
monopole case in Fig. 54a in which it was found that the engine played
such a little effect that it was difficult to observe the measured
pattern changes with and without the engine (finite cylinder).
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The wing and possibly horizontal stabilizer effect in the azimuth
plane must also be considered. To analyze these structures one can
simply apply the solutions presented for the three-dimensional roll o
plane problem of Section IV-B with only the desired radiation direction ~A

it

(9s,¢5) being changed to those angles dictated by the desired azimuth
pattern. Again these results are compared with and without the finite e
wing effect in order to ascertain their significance in the overall o
azimuth plane pattern. B

Some of the results of this study are presented in Figs. 55. l
Again it is observed in each case tnat the wing has little effect on o
the azimuth plane patterns. In fact, what 1ittle effect it does % "i
have occurs in the small sector aft of the aircraft which mirht only
be significant for ocur assumed infinite cylinder model. Thus, the :
wing can be neglected to a good approximation in the azimuth plane -
provided that the assumed geometry and source location are adequate -
to represent the actual on-aircraft antenna problem. j 2

As a result of this study, it is apparent that the dominant
scatterer in the azimuth plane is the fuselage. This effect must be
taken into account in terms of a three-dimensional model of the
fuselage if the resulting pattern is to be representative of. actual
;. on-aircraft antenna patterns. This problem is considered in the
. next chapter. Nevertheless, based on the results of this section
- one can to a good approximation compute the azimuth plane pattern
s simply by treating the antenna mounted on a reasonable model of

- the fuselage without analyzing the other secondary scattering
effects.
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CHAPTER V

VOLUMETRIC PATTERHS OF ANTENNAS MOUNTED
O CONVEX SURFACES OF REVOLUTION

As stated earlier, for a source mounted on the fuselage of an
arbitrary aircraft near the extreme toy or bottom the fuselage
shape has the dominant effect on the resulting antenna pattern. The
wings and other flat plate structures can have strong effects in
certain sectors of the pattern but they are not as dominant as
the fuselage espzcially when the complete volumetric pattern is con-
sidered. For these reasons the volumetric pattern of an antenna
mounted on a three-dimensional isolated fuselage is analyzed by the
method presented in this chapter. Nevertheless, the wings and
various other structures could be added to this solution in the
future as was done in t:2 three-dimensional roll plane problem.

In the previous chapter, aircraft models were considered that
would resemble a wide variety of aircraft shapes and yet could also
be analyzed with reasonable accuracy. In this case, it is quite
obvious that the three-dimensional nature of the fuselage must be
modelled if one is to adequately determine volumetric patterns.

In the elevation plane it was found that the profile of the fuselage
had to be accurately represented. This resulted in the development
of the Section Matching GTD solution in which the profile was
described by a finite number of points. Whereas in the roll plane,
the circular cross-section was found to be adequate. One obvious
extension of these ohservations is to consider a fuselage which is
analytically described by a surface of revolution. In this case
the profile is again described by a set of points which in turn are
revolved about the axis of the fuselage. In this way the important
features of our past studies in the three principal planes are in-
corporated in this new three-dimensional study. Not only is this
shape quite versatile but it can also be analyzed by extending the
techniques that were developed previousiy. This will become
apparent in the following discussion.

As presented in Section II-D the rays which propagate outward
from a source travel around the surface along geodesic paths while
energy is continually being diffracted in the tangent direction at
each point along the path. Thus, the first obstacle in computing
the volumetric pattern of an antenna mounted on a three-dimensional
convex body is finding a numerical technique to specify the geodesic
paths. One such solution is based on tensor analysis from which two
differential equations are given in Appendix II as
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2
RIdR, g dR
dze de dez (de R sin o(R cos e+ T sin 9)(d¢ 2
— .a.i.) ::0

+ -
2 2 ds 2
41 (R 2 dr 2
(84) (a‘o) * R (a‘n) *R

dR

d2s . 2(R cos o + gosin 8) 4o 4. - o
) . di dv

ds R sin ¢

where £ is the arclength of the geodesic path. the geometry of this
problem is illustrated in Fig. 56. lote that the surface is defined
by a set of points, which are used to specify R{e) for 0 < 6 < 1800,
For the cases considered here R(s) is defined every %0 which requires
a total of 361 points to define the surface.

Consider a point on the surface defined by 6 and ¢ which is a

function of the arclength (z). Using a power series expansion one
finds that

(m)
o(2) = [ £-L0m H
m=0 m. i
P I
If it is assumed that one moves a very short distance (a2) along a B
o given geodesic path then i

a(atag) ~ o(z) +%—;’- AL 4-7-(1——2-
gs) " de

(85)

A

o(a+ae) ~ () + —‘ﬁl b+ %—9—9
2

)
Now referring back to the differential equations of Eq. (84) one
must define the source location and starting direction in order to o
completely specify a geodesic path. However, with this knowledge one
can use Eq. (84) to find the second derivatives of 6 and ¢ with respect ?
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to « at the point (6,s) as given hy

dR [ d2R
do
1

i 2
SOk
(86) ®

Q.
>

e

di.

Q.

+ R . dR _.
If ) (do)z _ R sina(R cos + o Sin 0) [ds

ds *R

( gz_)r 2 \HE)JL

dR _.
d2¢l _ rg Rcos 6 + Hsine 4o 4. ]
E;Z 2 [_ R sin ¢ di @ i

Thus by defining the initial conditions of the d;fferential equation

9, %%’ &, and %% > one can solve for :—% and d—;—
2

dz

using the above

expressions. Substituting these results into Eq. (85), the values of

8(2+a2) and #(e+a2) are located approximately which in turn defines a
new point along the geodesic path. The derivatives of & and ¢ at the
new point are given by

2
de de d-s
= + At , and
dz 2+AL 3?!2 E;? 8
(87)
2
d d | d
= + AL .
H% 2+AL 3% ¢ defly
. dze
Knowing these terms one can again use Eq. (86) to find — and
de~latag

2
9—%’ which can be used to Tocate a third point along the given
2+AL

geodesic path. By continuing this process one can completely trace
out a geodesic ray path on an arbitrary surface of revolution. Some
examples of geodesic paths on surfaces of revolution are illustrated
in Figs. 57 and 58. Note that the gecdesics on a sphere are great
circles as is found to be the case in checking our formulation and
is shown in Fig. 57.

An important question yet to answer is just how large can A2 be
without causing our solution to be inaccurate. This is a difficult
question to answer; however, some knowledge of the error can be
found using Clairaut's theorem[53] which states that

r sin « = constant

for a given geodesic curve on a surface of revolution. Note that r
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at 8, = 900, by = 00,

Fig. 57--Geodesic curves on a sphere with the source )
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is the radius of the parallel passing through the given point on
.he geodesic path and « is the solid angle between the geodesic
direction and the meridian passing through that point, the meridian
being the profile shaped curve that is revolved about the fuselage
axis. Thus, one can examine the error by the variance of the constant
defined above as he progresses along a given geodesic path. For
example, on a prolate spheroid with semi-major and semi-minor
dimensions given, respectively, by 41 and 2) and with az = 0.005)
it was found that Clairaut's theorem was satisfied to within 3
significant figures for several geodesic paths as illustrated in
Table IV,

As stated earlier R(6) is defined every 12 for 0 < 6 < 180°%;
however,_as observed in the previous equation, not only R{e) but

2
g%-and g—%-must be known over the complete surface. To determine
de

this information a simple 4th order polynomial was found that passed
through 5 consecutive points defining the surface. The derivatives
of R(e) are then determined at the center point of each section using
the same apprcich presented in Section IV-{. The values of these
terms between the surface defining points are found using

2
2 (6-6-)
dR d"R 1
: R(e) ~ R(8y) + g, (0-07) * dezle 2
o 1

dr(e) _ dR d2R

) ' R
i n * (6-67) !
G{ 5 T dale; T ge2le, T %rj
d® I ) dZRle ’
(o) %R, et @l |
V2 (6,-67) 1 .
de de 89 271 :
) 1 b t
where 6 is an arbitrary position parameter, 87 is the clcsest 1,2 value gT

to 6 which is also less than @ and 8y = 6y + 10,

3 A second solution for the geodesic paths is found using the

0 calculus of variations. Using this approach one forms an integral of e
the arclength along a path on the surface which can be solved for an 1
i extremum, This extremum curve is simply the geodesic path. In this
' case, the integral of the arclength is given by .
) )
e 2 2
- dR 2 2 .2 d¢
WT L Jj(ag + R™ + R™ sin"e (de) de - b
159 {.
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which has an extremum given byl 53]

c[(&] - ¢

de

4 .4

R" sin 6- CR™ sin#

with C being a constant.

2 2

One can then reiate C to the
of a given geodesic curve and compare this resvlt with

initial direction
the previous

solution,
TABLE 1V
CLAIRAUT'S CONSTANT OHl A SPHERQID
USING TENSOR ANALYSIS SOLUTIOHN
v = 100° y = 120°
Clairaut Clairaut
E 0 ) Constant 9 $ Constant
o 89.97513 0.141061 1.96962 | 89.92838 0.12405 1.73205 f‘f:
ST 87.00310 | 17.07253| 1.96961 { 85.07056 8.56457 1.73199 s
] 85.01104 | 28.65405| 1.96961 { 80.00671 | 17.53570 1.73193 :
84.01189 | 34,59238] 1.96960 | 75.03504 | 26.70357 1.73188 . .
, 82,00377 | 46.91133| 1.96960 { 70.04465 | 36,49352 1.73184 - o
g 80.01470 | 59.82879{ 1.96960 { 65.02831 | 47.23272 1.73181 4 <
79.00000 | 66.8C015} 1.96960 | 60.02371 | 59.28953 1.73178 4 -
9 78.01033 | 73.926221 1.96959 | 55.03424 { 73.37006 1.73177 Ao
/ 76.01345 | 89,650471 1.96959 { 51.51429 | 85.24570 1.73176 ]
R y = 140° v = 160° B
; Clajraut Clairaut =
i ¢} ¢ Constant 6 $ Constant ) -
o 89,89027 0.09207 1 1.28557 | 89.86540 0,04899 0.68404
80.08774 8.39953 | 1.28533 | 79,97284 3.68367 0.68382 | B
69.99167 | 17.49768 | 1.28513 | 70.08763 7.52630 0.68362
> 60.03110 | 27.70494) 1.28496 { 60.02801 { 11.92162 0.68247 '
55.04909 | 33.58741 | 1.28491 | 50.06772 | 17.15761 0.68336 o
45,00158 | 48.15512 1 1.28483 | 40.02862 | 24.04913 0.68325 Lo
40.04995 | 57.48482 1 1.28479 | 30.02665 | 34.07472 0.68300 .
Ty 35.04354 | 69.43960| 1.28473 | 25.04869 | 41.34835 0.68273 ol e
33.00055 | 75.42781 1 1.28470 | 20.13786 | 51.48320 0.68226 =
/f{"i:t
3
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As illustrated in Fig. 59 the values of the position parameters
(8,4) for the given curves compare extrerely w211 for the two
solutions. MNote that the above integra” soluzior i5 evaluated
simply using Simpscn's rule. In addition, it is shown in Fig. 60
that the tangent directions (et,¢t) of the varic.s geodesic curves
found using the two solutions compare very favorahly. Recall that
the radiation direction is specified by the tangeit to the geodesic
path. The actual solutions used to compute the tangent directions
will be presented later.

100

TENSOR ANALYSIS SOLUTION

90 ® o 0 0 ¢ CALCULUS OF VARIATION SOLUTION
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Fig. 59--Comparison of geodesic paths using tensor analysis S
and calculus of variatiors sulutiuns. 1
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Finally, in Table V the values of Clairaut's constants are shown
for various values of C using the above integr.l solution for the e
geodesic path. Again this constant remains unchanged through 3 )

significant figures for the cases considered, i
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TABLE V
CLAIRAUT'S CONSTANT QN A SPHERCID
USING CALCULUS OF VARIATION SOLUTION
+ = 100° y = 120°

Clairaut Clairaut

] ¢ Constant ) 4 Constant
89.97513 0.00000 1 1,96962 | 89.92338 0.00000 1.73205
87.30310 § 16.98105 | 1.96961 | 85.07056 8.67377 1.73199
85.01104 { 22.38179 1 1.96961 | 50.00671 | 17.48598 1.73193
84.01189 | 34.1592% | 1.96960 | 75.03504 | 26.62195 1.731<8
82.00377 | 45.96819 ( 1.96360 | 70.04465 | 36.30131 1.73184
80.01470 | 58.27633 | 1.5696C ! 65.02&31 | 46.80939 1.73181
79.00000 | 64.69234 | 1.96960 | 60.02371 | 58.55346 1.73178
78.01033 | 71.33482 | 1.96959 | 55.03424 | 72.18228 1.73177
76.01345 | 85.51688 | 1.96959 | 51.51429 | 83.44494 1.73176

y = 140° v = 160°

Clairaut Clairaut

B é Constant 8 ¢ Cconstant
89.89%027 0.00000 | 1.28557 | 89.86540 0.00000 0.68404
80.08774 8.46014 | 1.28533 | 79.97284 3.606851 0.68382
69.99167 { 17.42221 | 1.28513 | 70.08763 7.54001 0.68362
60,03110 | 27.56524 | 1.28496 | 60.02801 | 11.87875 0.68347
55.04909 | 33.38832 ! 1.28491 | 50.96772 | 17.07832 0.68336
45,00158 | 47.60200 { 1.28483 | 40.02862 | 23.83207 0.6832%
40,04995 | 56.76%227 | 1.28479 | 30,02665 | 33.6G774 0.68300
35.04354 | 68,30339 | 1.28473 { 25.04869 | 40,67232 0.68273
33,00055 | 73.91109 | 1.28470 | 20.73786 | 50.59393 0.6822¢
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i Using the geometry illustrated in Fig. 61 a set of test curves O e
% is defined as a function of the starting direction angle () where ltg;
'gﬁ C - - 180. HNote that the source positicn is defined by IR(48g), .
& Nps %o = 0. The vectors e] and e are the unit tangent vectors to -
:/)} the surface which are defined in the : = 0 plane by = ?
= . %%-sin 6 + R cos 0]2 + [%% cos ¢ - R sin 9}2 i
e] = - )
s dR 2 ¢ .
L ° (Tj o
i e, = Y ¢
e2 y - : ’
The starting ~irection of any aroitrary ray path is defined by
| OQ [ e 3 - :i;;f»-:‘
3 S = C0S v € + sin y e s R
& [ where these terms can be related to de/d:. and ds/d.. by 07 [
N C’/<c;1 ! '—:"‘
P de . _€Os ¥
| ai-e ;;"’TT‘"""
o [{dR 2 i
J&) -
'
? { )
R ) d sin Y ° Fa
e i 3%19 ZRsin 6 | s % f
... 0 0 io 3
o’ o These expressions give the initial conditions used to solve the 1
1 differential equations or Eq. (84).
e .
. 2 | Based on our results, solving for the test curves with
: by = 20 was satisfactory to find adequate values for the actual 3
- curves used in the pattern calculation. For example, the test o
° curves are shown in Fig, 62 for a source mounted at the top of ;
» o a prolate spheroid. Then any desirec radiation direction can be
. plotted on this graph, which in turr can be used through an
° interpolation procedure to determine the value or values of the
. starting directions (y) from the source. in this way all the
e s dominant ray paths can be traced out with the associated field
I oo values summed in the far field to give the compiete radiatior
pattern. Note that the test curves need cnly Le determined for
| 'y 0 <y < 1800, since for a surface of revolution the results in
. the other half space are simply the mirror image.
b
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PATH DIRECTION
g, SOURCE

Y

Fig. 61--Starting direction of geodesic path which is
defined by the angle (y).

To illustrate the validity of this technique the resulting
radiating angles are presented in Table VI for various desired
radiation directions. Note that as the errors increase, the
resulting amplitudes of the field values are decreasing which tends
to reduce the total error in the firal result. This results from
the fact that the error increases with path length (2) due to the 1
numerical computations but the longer the path the more the field -
is attenuated due to e~®% in the GTD field expressions.

Now that the various gcodesic paths are identified, one must
determine the various parameters necessary for the field calculations °
using the GTD approach presented in Section 1I-C., First, let us )
consider the longitudinal and transverse radius of curvature.
In order fo0 define fhese terms consider the curvilinear coordinates 5
given by t, n, and b as illustrated in Fig. 63, Note that t is
the unit tangent vectoyr, ft_is the uni% normal vector, and b is the
gnit binormal vecter (b = t x n). The radius of curvature is defined
Y 7
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TABLE VI

RADIATION DIRECTIONS DESIRED VERSUS ACTUALLY COMPUTED TANGENT
DIRECTION OF GIVEN GEODESIC CURVE USING INTERPOLATIOH PROCEDURE

_ an0 _ 5n0
®desired = 90 Sdesired = 70
ecomp. ®desired ¢comp. ecomp. ®desired °comp.
90. 000° 100° 99.969° 70.002° 100° 100.011°
90,000 110 110.053 69 998 110 110.019
90.000 120 120.023 70.002 120 120.016
90,000 130 129,992 70.007 130 130.001
90,000 140 139.962 69.990 140 139.960
90,000 150 150.046 70.004 150 150.059
90.000 160 169.015 69.997 150 159,945
90.000 ! 170 169,985 69.969 170 169.925
X
f
n SOURCE
L) L LOCATION
A
%»
. 1/
A /

o>

T

Fig. 63-~Curvilinear coordinate alorg a geodesic path.
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(88) p =

2
where t(2) is the derivative of T with respect to the arclength ().
The unit tangent vector to the geodesic path is given by

(89)  i(z) = dfc(ig,c;) _ dgée,fb) %e_ . dé(g,g) %%

where E(e,¢) js the position vector which defines the geodesic path.
The values of de/ds and d¢/ds are defined at each point along the
path; however, 4C/de and dC/ds must be found using

-> ~ - ~
C(8,6) = R(8) sin 6 cos ¢ x + R(#) sin 6 sin ¢ y + R(e)cos o z
or
g%-=(%§- sin 6 cos ¢ + R cos 8 cos ¢);( +(g—§— sin @ sin ¢ +
R cos ¢ sin %)& % (g%-cos 8 - R sin 6)2

and

= -R sin 6 sin ¢ x + R sin 6 cos ¢ y.

&8,

Thus, the tangent vector is defined at each point (6,4) along a given
geodesic path by substituting the above expressions in Eq. (89).
Since the diffracted rays radiate in the tangent direction, this
solution defines the radiation direction at every point along a

given path.

The derivative of the unit tangent vector is given by

. 2 2 2> > 2
: _d°C{de d°C de d¢ dC d™e
(90) t‘”‘gf(&f} “zmazaz o 27

ds
2 2z 2
dC (de ¥ , o€ d%
() &5
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The terms found in the above equation have all been defined earlier
except for

2z 2
g—%-= g—%-sin 0 C0S & + 2 %%-cos g cos ¢ ~ R sin & cos %)x

de de

+ dZR sin 6 sin 4 + 2 dr cos 3 sin & - R sin 6 sin o)y
Ez ? de n ¢ o1y

2
d"R dR . -
4-<£;§-cos 9 ~ 2 ey sin 6 - R cos ?)Z s

42 - -

—5 = <R sin 8 cos ¢ x - R <in ¢ sin ¢y , and

d¢é

2

¢ _ . dR . \2 dr - ~

M--s1n¢(ags1ne+Rcos e}x+cos ¢(£s1ne+Rcos e)y.
\

A1l of these terms are then determined once the geodesic path is

traced out to the point E(e,¢) on the surface. The longitudinal radius
of curvature is then simply obtained by substituting these guantities
into Eq. (88).

In order to solve for the transverse radius of curvature, one
must find similar relations for the curve on the surface of revolution
which is orthogonal to our given geodesic path at the point C(6,¢).

In so doing the geodesic path orthogonal to our original path must
first be found. This will aliow us to use the previously derived
equations which in this case give us the transverse radius of
curvature. The unit tangent vectors at any point on the surface are
given by

" 1 dR . -
S [(33'S1n 6 + R cos q)cos o X +

(91)
dR_. LA dR : -
TSin o+ R cos 8)sin ¢y + cos 8 - Rsinejz|, and
] de

P

e, = -sin ¢ X + COS ¢y .
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The unit tangent vector to the original geodesic path (t) and the
transverse path (b) can be written, respectively, as

t= t] e + t2 € » and
b= b] € + b2 e,

Since E . B = 0, one finds that
. . . dC
b= -t? e + t] & = I (6,¢)

where C (8,¢) is the position vector of the transverse geodesic path.
Subst1tuc1ng Eq. (91) into the above expression it is seen that

-t
o ___Z____[(%E sin & + R cos e)cos 6 X +(g§ sin 8 + R cos v)"‘ndav
2 3
@) % =
dR ~ - ~ dct g
CL (Er-cos 6 - Rsin s ] + t][fsin ox + COS ¢y | = I -
) S
, . p
However, dCt¢/d2 is defined by Eq. (89) which when substituted into é
o the above equation gives ? “J
> TN
%. -tz ard ’ ;9:?
ar —e— :
'; trans (gﬂ)z A gg (
P 9 I
s : N 1!
], " TS
) £rans R sin o foi
g Note that the vaiues of ty and ts are defined at each point along “
> the original geodes1c path by Eq (89% With these quant1t1es known .

one can find d26/del|pans and d2¢/de
solutions of Eq. (86). Knowing this information the transverse
radius of curvature is simply found as before using Eq. (88) with T
the transverse path terms being used in this case.
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The accuracy of this approach is illustrated by a comparison with
various analytic solutions for the longitudinal and transverse
radii of curvature. Our approximate values were compared with the
known values for a sphere and found to be in agreement through 5
significant figures. Our values are compared with the analytic
solutions on a prolate spheroid along a meridian geodesic path in
Table VII. Good agreement is obtained between the two solutions
for the cases considered. HNote that the derivatives of the radius
of curvature are not included in this study to date in that the
numerical complexity would be too great to warrant its insertion
at this time. However, a method of computing sucn quantities has
been presented in Section IV-C so that it covld be introduced
if desired at a later date.

TABLE VII

COMPARISON OF ACTUAL AND COMPUTED VALUES OF LONGITUDINAL AND
TRANSVERSE RADIT OF CURVATURE

Prolate Spheroid (4x x 2))

® Pt actual| Pt comp. Pg actual Pg comp.
0.0 1.00 1.00 1.00 1.00
10.0 1.15 1.15 1.54 1.54
20.0 1.43 1.43 2.9 2.93
30,0 1.65 1.66 4.47 4,58
40.0 1.79 1.80 5.76 5.85
50.0 1.88 1.89 6.69 6.78
60.0 1.94 1.94 7.32 7.36
70.0 1.98 1.98 7.71 7.75
80.0 1.99 2.00 7.93 7.97
90.0 I 2.00 2.00 6.00 , 8.02

Another quantity necessary in our calculations is the spread
factor (Jdyo/dy), which is representative of the amount of separation
between adjacent geodesic paths as they propagate around the surface.
This type of separation is illustrated in Fig. 64. This parameter
is obtained numerically by considering two adjacent rays initially
separated by d 5, then determine d which is the included angle between
the adjacent tangent vectors at the point of diffraction. Thus, if
tangent directions at the point of diffraction are given by t] and
t2’ then

dy = cos"] (E] . %2).
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Fig. 64--I1lustration of the spread factor J dwoldw) terms. ‘o

A study was made to determine just how large dyg cculd be made 4
without greatly distorting the value ofVY dyo/dy at the diffraction

point. It was found chat dyg could be as large as 240 which meant

that the values of<Jdup/dy could be computed and stored along with R
the test curves. Consequently, one need only specify the radiation
direction which in turn specifies the initial diractions (y) of the
geodesic paths and the associated spread factors (J dyg/dy). These
data are stored at the beginning of the program in that they are )
characteristic of the body and source location being considered. 4§%

< 3
L The far field patterns can now be computed using the previously i%g}
‘ o

&k

-

N’

defined terms which provide information about the convex surface of
revolution under consideration. Since the antenna is assumed to A3
be mounted on the fuselage of the aircraft, one needs only consider :
two general types of antennas. These being the monopole type which %%
has a normal componeni electric current with respect to the surface 7
and a slot type antenna which has a tangential component magnetic S e
current. It i assumed that the fields launched by infinitesimal
T antennas follow the solutions specified for the two-dimensional T
’ preblem of Section II-D. Note that in this case the three-dimensional
geometry is introduced in terms of the geodesic paths and associated
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Tongitudinal and transverse radii ol curvature which appear in the
diffraction and attenuation coefficients. It is further assumed that
the normal and tangential component boundary layer fields propagate
around the surface independently. This approximation might be

rather poor if the torsion along the geodesic curve varies too greatly;
however, this point is not well understood at this time. In any event,
the results presented hers will be compared with actual measurements
to illustrate the validity of these assumptions. On the other hand,
torsion is a surface-curve relatiocn which can be computed using
techniques similar to the previously derived relations.

At this time only a convex hody is considered in order that the
radiation direction can be simply defined by the geodesic tangent
direction as was indicated eariier. However, the study of a concave
body is an important topic worthy of future consideration.

Let us first investigate the monopole antenna type whose surface
rays propagate outward in all direciions from the source with a
normal component E-field (or follow the hard boundary condition).
The following is a summary of the solutions in the three different
regions for the monopole case using the geometry illustrated in Fig.
65:

A X

¢

GEOD
OIFFRACTION PATEIS|C

T 7
ll'

Fig. 65-~Geometry of monopole problem.
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Lit Region

(92) E(n,t) = - sin o am F(source)

m

Transition Region

a) Lit side
. 1/3
zT . ke k
(93) E = n<&in 6_)% e g*[— ) ) M..] . F(wangent)
nD 3 2pa(215 i

b) Shadow side

(948) E “»deo -Jka *[ K 3 ] F(tangent)
=n e g = IAEE angen
2Ndy i(?pgizii ) i

Deep Shadow

my
n
1

~ _h
(95) ny Ej Fj (tangent)

where

dy 1 ~ (7.)a%,

Note that the summation over "j* in the above expression indicates
that several terms can centribute in the deep shadow. An example
of this situation is illustrated in Fig. 66 where four rays con-
tribute to the far field pattern. The only term in the above

<3
expressions that is yet to be defined is the launch coefficient
X which is given by[35]
\3,'} N 72
i (96) L = %e D (-——) }A. (-q_) at cource location.
m m \ko i m
Q{ g
> (¢
17
X 4
OO
LI
o
i o
SN R
e et ss T TN N i et P Pt N A R o e e o, e ¢




Y4 SOURCE,

~LOCATION

£

DIFFRACTION
POINTS

: \
3 ‘
4 Vg
- DITFRACTION
-~ POINTS
;{ Fig. 66--The four dominant GTD terms that radiate at
S, (9=900, ¢=1450),
‘0
o Note that n is the unit normal at the tangent (or diffraction) point
) of a given component of the far field pattern, and F ( ) is a
% y phase factor used to reference the phase to the center uf the surface
y 3 of revolution.
. 01 In order to obtain measured patterns off the principal planes

using a conventional pattern range, which only revolves about a
vertical axis, the body is first rotated by an angle (&) as shown in
Fig. 67, Thus, as the body turns about the z'-axis, one obtains the
8' and ¢' components of the radiated field. In Fig. 68 the ¢'~
component of the field is illustrated with £ = 00 for a short
monopole mounted on a 4x x 2x prolate spheroid. For this principal
plane pattern the comparison between the measured and calcuiated
results is quite good. The 3' and ¢' components of the radiated
field for the same body are illustrated in Figs. 69 and 70 for

£ = 200 and 400, pespectively. In these off-principal planes casas

e the agreement between the results is again quite good.
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Fig. 67--Rotation of convex surface in order to obtain
off-principal plane patterns.

¢ -

Even though the above probliems considered seem to be rather
special cases of the more general problem originally treated at the
outset, the results are encouraging especially for the off-principal 0
plane cases. They do tend to verify this approach and the associated 8 o
approximations at least for the monopole cases considered. oo

The next case to be considered is that of an arbitrary oriented . o
slot mounted on a convex surface of revolution. It was shown in o
Section Ii-D that for the two-dimensional problem with the slot mounted
parallel {(orthogonal) to the cylinder axis that the slot radiated .
according to the hard (soft) boundary condition in the principal g
plane. If an arbitrary orientation of the slot were considered _—
then one could assume that the pattern is given in the principal
plane by

-

97 E=¢ ' 3
(97) E=E e Sin B+ E. 4 cOSB

sof
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using the gesmetry illustrated in Fig. 71. Thus, for a2 slot antenna
mountad arbitrarily on a three-dimensional surface with a volumetric
pattern decsired one can extend this approach by considering that the
boundary layer field has a tangential component given by

-+ -+ -~
Etang = Esoft cos{v-g) = Esoft cos(y-8)b

and a normal companent given by

>

vhere y is the starting direction of the geodesic path defined
earlier. Hote that the above solutions agree with Eq. (97) in the
principal plane (y= 909). It is then assumed that these two
components propagate around the surface independent of one

another according to the formulas specified in Section II-D.

FINITE SLOT

GEODESIC ./ GEODESIC
STARTING
DIRECTION PATH

Fig. 71--Finite slot geometry.
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Using these results one can define the slot far field pattern in terms

of the three regional solutions by:

Lit region

(98)

- F(source)

Transition region

a) Lit side

.~ . 1/3
(99) E ={n [lae Jk" (: ) 2p (2 ) ) Azi)sin(yw)}*

oo
1

b) Shadow side

oo 1 i Y]

- d.
o e e )
1

i/3
k /.2
Zp;(zi) ) M”)(“—%)

Deep Shadow Region

(101)

where

K 1/3 :> 2 1/3
— AL .
299(11)) ! (‘E,;- )

A

COS(Y‘*'B)] .

at source

- F(tangent)

. F(tangent)

1/3
cos(y-8
at source

ra ~oeh s TS )"
E= ] [nj Ej sin{y=-g) + bj Ej cos{y= g)JF(tangent)

J
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/5.2

v

G

dy 1 - (v.)a%.
ES=J——° 5oL e ™V T,
m=

Again the summation over "j" in the abuve expression indicates that
several terms can contribute in the deep shadow region as shown
previously in Fig. 66. The launch coefficient for the hard boundary
condition is given by Eq. (96); whereas, the soft boundary condition
launch coefficient is given by[35]

)2/3 -i 15 ]
s _ 2 s
(102) Lm _k(r‘)g e D A%(-qm) at source location .

Note that n and b are, respectively, the normal and binormal to the
geodesic curve at the point of diffraction and F( ) is simply a
phase factor to i1efer the phase to the center of the surface of
revolution.

In eorder to measure the pattern of a slot antenna, a finite
length slot is considered. Actually for our measured patterns an
open-ended waveguide is used except the width is cut down to ap-
proximately one-tenth of the wavelength. For this antenna one
can compute the pattern by numerically integrating the patterns from
three infinitesimal slot antennas which approximate the aperture
fields as shown in Fig. 71. This approach is described in Ref. [22]
and successfully applied in Ref. [47]. Using this solution the
computed principal plane pattern [£=0°0 in Fig. 67]is compared with
the measured result as shown in Fig. 72 for a circumferential slot
(8=900). Note that these results are again taken on a prolate
spheroid. The calculated and measured off-principal plane patterns
for £=20° and 400 are shown, respectively, in Figs. 73 and 74, In
each case, good agreement is obtained between the measured and cal-
culated results.

Again the slot cases treated are rather idealized as compared
to the more general problem originally outlined. However, off-
principal plane radiation patterns from antenna: mounted on three-
dimensional surface which are large in terms of the wavelength have
not been analytically computed with much success to date. Thus,
one must begin by treating specitic cases which are easily modelled
and computed. In this way one is able to ascertain the validity of
his solution. The above results, then, indicate that the high
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frequency solutions of Keuyoumjian{35] can be applied at least to
this idealized problem. One must, now, extend these solutions to
cdetermine for what type fuselage m>dels they tend to break-down if
in fact they do.
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CHAPTER VI
COLCLUSION

High frequency solutions for the radiation patceris of general-
type on-aircraft antennas mounted on the fuselage is the object of
this research. 1t has been shown previously that the modal sclutions
are quite adeguate Tur computing these patterns provided the structure
ic not iliuminated too strongly. However, rodern applications
requ:ire antennas which can strongly interact with the aircraft
structure. Thus, improved analytic models rust be applied in order
to deselop useful theoretical solutions. These solutions can then be
used to compute the antenna design and location for a given appli-
cation.

The basic approach app®ied here is to add fo the modal solutions
by including additional structural components in the analytic model.
This is accompiished using a ray optics technique in which the
1:odal soluticns are written in a ray form. Using this scheme, one
is able to c¢or=ider isclated structural ccmponents, which have been
removed from the aircraft, and then add it to the model simply by
adjusting the field incident on the structural scatterer.

Two near field scattering problems are initially studied in
Chapter III. These are a finite flat plate, which is used tu
simulate the wing, and a finite cylinder, which is used to ap-
proximate the jet engine<. The flat plate scattering is scivad
using three-dimensional wedge diffraction techniques. Various
measured results are presented to verify our theoretical solutions.
The finite cylinder scattering is soived using physical optics, the
Geometrical Theory of Diffraction, and modal solrtions. Again
measured results are presented to illustrate thz validity of this
solution.

These near field scattering solutions are then added to analytic
aircraft models to compute the principal plane patterns in Chapter IV.
In the roll plane, it is found that the jet engine has 1ittle effect
for a two-dimensional model and is, thus, neglected in the more
general three-dimensional study. The resulting roll plane model is
basically an infinitely long circular cylinder to whick wings and
horizontal stabilizers can be attached. Note that the wings and
horizontal stabilizers are approximated by arbitrarily many sided
flat plates. The elevation plane model approximates the profile
of the fuselags by a set of discrete points with ithe resulting
surface being convex. The fuselage is found to be the dominant
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scatterer in the elevation plane. Finally, the azimuth plane madei
consists of an infinitely long circular cylinder to which wings
and engines can be added. However, it is shown the wings and
engines have such a small effect that they can be neglected to a
good approximation in the azimuth plane. In each case, measured
results were taken in order to verify the various solutions.

These sclutions provide a high-speed analytic tool for determining
the design and location of antennas based on their principal plane
performance. For example, the programs delivered to the Nava: Air
Development Center typically run 2 pattern in 30 seconds or less
on their CDC 6630 cigital computer.

An additional featurz2 of these solutions, which can be very
important in certain critical cases, is that one can trace out
the dominant pattern terms as they are scattered by the various
aircraft structures. In th's way one can quickly ascertain which
structural scatterers are distorting the pattern in a critical
region. This gives him the option of taking corrective action by
changing the structure or by properly placing absorber. So these
solutions not only provide fast pattern computations, but they,
also, provide the antenna designer with a means of analytically
considering several alternatives to improve the antenna's per-
formance.

The final problem considered in Chapter V is the volumetric
pattern analysis of an antenna mounted on a convex surface of
revolution. This model describes the fuselage profile by a set
of points which are revolved about the fuselege axis in order to
analyticaily approximate a complete surface. The wings and jet
engines are not, presently, considered in this study in that the
fuselage scattered fieids tend to dominate the overall pattern as
determined by the principal plane studies. Nevertneless, these
structural components can be considered in the future as was done
in the principal planes. The volumetric patterns of monopoles and
slots using the asymptotic high frequency solutions of Kouyoumjian[35]
cre numerically derived. The geodesic paths are found and verified
as well as the radii of curvature, etc. The principal and off-
principal plane patterns are computed and compared with measurements
made on a prolate spheroid. In each case, good agreement is obtained
which tends to verify the numerical solutions.
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Now using the cylindricaly separable fields{54] from Table VIII
one finds that

. jkz cos 9, « .
i s i e P oo, . -jna
§L¢ je né-m 3 Jn(kp sin ei)e .

The form of the scattered field can now be postulated giving

jkz cos 8. = ' .
S _ s i - u(2) . ~jng
EL¢ =je nz_w a H (kp sin ei)e

where the ap's are unknowns, Using the beundary conditions at the
gprfzce of the cvlinder, at which the tangential component of the
L.field must vanish, one finds that

t ) jkz cos 0 ? A )
Em(p-a) =je ¥ =i Jn(ka sin 91.) ta

N=ec
ng)'(ka sin ei)] e 22 g
which implies

. Jﬁ(ka sin ei)

a =] 'L
n ui2) .
Hy (ka sin ei) .

The total field is now specified hy the above relations in
conjunction with Table VIII and is given by
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J
gt

= 2 v opit i
1e ko sin oy g=] 2nj [9n(kp sin 6;) - mek
n

kz cos o; Jp(ka sin e.)

(ka sin 91)

ng)(kp sin eii]sin né

. .
Jn(ka sin ei)

Wt =

1z

where

1

. _"*’-“\____a_.._fw_/\./\’

jkz cos 6. T
t . J i Z .n[ .
Er. =-je e. J {3 '(kp sin 8;) - T
19 n=0 " n 1 ng) (ka sin e;)
4 1
(104) ng) (kp sin ei)] CO0S n¢
t _
E.LZ =0
] jkz cos 95 ( )
£ Jj cos o, e o 'nP . Ja ka sine;
H* = - Y €3 Pko sin 0.) - 7
10 Ly n=0 " LM 1 ng) (ka sinei)
211
ng) (kp sin e.)] coSs né
1 -
Jjkz cos 0 |
£ cos o, e ® .n+1[ ] JA(ka sin e,
H' = - . Y 2nj J _(kp sin s;) -
1 Kp ZO sSin 6,i n=1 n 1

(2)° :
Hy (ka sin ei)
ng)(kp sin ei)} sin n¢

sin 0 jkz cos 6, Ja(ka sin ei)

Ty enj"[qn(kpsin 0:) -

- e T
Zo n=0 Héz) (ka sin ei)
Hr(lz)(kp sin ei)Jcos ne ,
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1T n=0
n 2 otherwise,

Note that these solutions give the total field at every point in
space for a plane wave with a perpendicular component E-field in-
cident on an infinitely long cylinder of radius (a).

The total field for the parallel component E-field incident is
found in the same way. In this case, the incident field is given
by

o - jk(z cos 8, + X sin ei)

i _ 4 .
E, = (x cos 8; - z sin ei) e .

Using £q. (103) it is easily shown that

Ei Jjkz cos 6, =

= i .n . ~jng
iz = -sine;e n=§m j Jn(kp sin ei)e .
) Again the form of the scattered field can be postulated as
‘?Q
= Jkz cos 6, ;
: S - _gj i .n ,(2) : -jn¢
. E"z sin 6 e ng-m a  §° Hy (ko sin ei)e . _ r
f L
t,b The total tangential E-field must vanish on the perfectly ) 4 4
. conducting cylindrical surface in which case ,
j . 5,
% <
o S ) Jjkz cos 8; = g ) X
R E"z(p=a) = -sin o, e Zm j EJn(ka sin ei) +
l
(2) -Jing 4
N Hn (ka sin ei)]e YW=
which implies !
- Jn(ka sin ei)
‘ n {2) .
R Hy (ka sin ei) . g
T g
CG o
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Using these results along with the separable fields of Table VIII one
finds that

t Jkz cos 6; = n
= .3 . j ! j -
ﬁlp J cos 0. e ngoen Jj [Jn(kp sin ei)

Jn(ka sin ei)

(2)! .
- H (ko sin 6.)7 cos ns
Héz)(ka sin ei) n ° 1

Jjkz cos ei
t _ Cose e w ntl )
Eue " " " kp sin R n§] 2n J I:‘Jn(kpsm ei) -

Jn(ka sin ej)

(2) .
Hn (ka sin ei)

(105) 12 (ko sin 6.)1 sin no

s . Jkz cos ei o« n ]
ﬁnz =-sine. e nZOEnJ [Jn(kps1n ei) -
Jn(ka sin ei) (2)
) Hy
Hn ‘(ka sin ei)

(ko sin ei)] cos n¢

Jkz cos 9, J (ka si )
¢ 0 S ! _ ptka sin e,
H - ?Bi;'??ﬁ"ﬁ; nzl 2n 3703, (ke sin 8:) -

||p=

(2) .
Hy (ka sin ei)

Hézzkp sin ei)] sin n¢

. Jjkz cos 9. w 3 (ka sin o.)
:¢ = e 1 Z enjn[\];l(kp sin 91) - ?2) 1
n=0 H"'(ka sin 0;)

Y

Héz)‘(kp sin ei)Jcos ng

nz =
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Hote that these solutions give the total fields at any point in
space for a parallel component plane wave field incident.

The solution for an arbitrary plane wave field incident can be
easily found by decomposing the field incident into its perpendicular
and parallel components multipiying these values by the above
solutions and summing the terms.

It was assumed for convenience in the above modal solutions that
the plane wave was incident at s7 = 0; however, this restriction 1s
simply removed by replacing ¢ in Egs. (104) and (105) by b=%s where
&j is the general incident ¢ direction.
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TABLE VIII i
TE AND TM FIELDS SEPARABLE IH THE CYLINDRICAL COORDINATE SYSTEM
\,
{ The harmonic electromagnetic fieids listed below satisfy Maxwell's
equations in a homogeneous souvce-~free region.
TE Fields TH Fields
Ep = - (Juu/p) RP' Z Ep = R' P 2'
Eg = jur R' P2 E,= (/) RP 2
. Eg = 0 Ep = B2RP 2z
Hy = R' P2z Hy = (Jue/p) RP' 2
ol Hy= (/o) RP' 2’ Hy= ~juc R'PZ
; Hy = B2RPZ Hy = 0
é(
The time depandence ej“Jt i8 understood. R is a function of p only, .
P is a function of ¢ only, and Z is a funciion of z only. Primes indicate 1' °°
¢ d:fferentiation with respect to p, ¢ or z. The functions satisfy the ;
o d following differential equations:
- = ?’
. t O (
og—d%R—)- +(382p2-n?) R=0 ije,?
J I
‘:! P =~ m2 P ; :
' 2" =-h22z
13 4
where 1 /
© 82 + hz - mzue, and B8 and h are constants., ) B
M <
}\c Some solutions of these differential equations are ligted below.
R(p) = Jn (8p) P(¢) = cos mp Z(z) = cos hz %
7 ok Nn (Bp) sin né sin hz %
. B (B) en el —
o 2?0 &I bz oy
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APPENDIX II

The geodesic differential equations for an arbitrary surface of
revolution are developed in this section using tenscr analysis. Using
the geometry illustrated in Fig. 56, any point on this surface is
defined by

R(e) sin ¢ cos @

x(e,¢)
(106)  y(s,¢)

z(8,5) = R(8) cos s.

R(a) sin o sin &

The unit tangent vectors on the surface are given by

é](e,d;r) = [§ (—g— sin 8 + R cos e)cos ¢+ v(gf- sin 8 + R cos e sin ¢
, dR
(107) 2 (de cos & - R sin :
{ and ‘ {
0\ ?‘ ~ ~ ) - J{'__?_ ?
. e,(4,6) = -x sin ¢ +y cos ¢. ‘.
& °
The metric tensor is given by
2
dR) 2 ‘
; ~— ] + R ;
(& 0 |
.) dR 2-l~R2(1+s1'n20) 4
¢ g de
0 R sin e c
\K )2+R (1+sin%) / . ’
o ke @
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Using the above information, the christoffel symbels are given by

2
dR /d"R
ds (—75 * R)
N de
RN
(&) +w
. - Rsin o (R cos e+-g%sin 8)
r =
22 2
dR 2
(36) *®
dR _.
rz ) r2 ) R cos 9+H’65"' 6
21 12 R sin o
1 1 _2 _ 2 .
T M2 =Ty =M =Tp=0.
3
o 1 Substituting these results into the geodesic differential equations[53],
. ?, one finds that the geodesics paths are defined by
° dR (dzR . R) . &R . .
) d26+'d'e' d—e? (de)z_ R sin e(R cos g + gz sin e)(g-e-2=0
: a? (dR)z L2 & dR)2 . R 2 e
B o ) .
4 A
(108) dR . )
d2+2(Rcose+a-5$1ne) do %—Q=0 5
2 Rsin o dy dp ’ 1
where ¢ is the arclength along the geodesic path. HNote that these »
¢ solutions are valid only for a surface of revolution such that the @
( ST z-axis coincides with the axis of revolution.
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