AD-777 956

DOMAIN- INDEPENDENT AUTOMATIC PROGRAMMING

UNIVERSTTY OF SOUTHERN CALIFORNIA

PREPARED FOR
ADVANCED ReESEARCH PROJECTS AGENCY

MarcH 1974

DISTRIBUTED BY:

NS

National Technical Infermation Service
U. S. DEPARTMENT OF COMMERCE

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. FEPDRT NUMBER 2. GDVT ACCESSION ND.

ISI/RR-73-14

3. RECIPIENT’S CATALDG NUMBER

QO - 7111 -9%1%

4. TITLE (and Subtitie)

Domain-Independent Automatic Programming

S. TYPE OF REPORT & PERIDD COVERED

Research report

THOR(e)

" "Robert. M. Balzer, Norton R. Greenfeld, Martin J.
Kay, William C. Mann, Walter R. Ryder, David
Wilczynski, Albert L. Zobrist

8. CONTRACT OR GRANT NUMBER(e)

DAHC 15 72 C0308

9. PERF&R ING DRGA?IZATID" NAME AND A?DRESS
USC/Information Sciences Institute

4676 Admiralty Way
Marina del Rey, California 90291

10. PROGRAM ELEMENT, PRDJECT, TASK
AREA & WORK UNIT NUMBERS

ARPA Order #2223/1

11. CONTRDLLING OF FICE NAME AND ADDRESS

Advanced Research Projects Agency

12. REPORT DATE

March 1974

1400 Wilson Blvd.
Ta. MONITORING AGENéV NMAME & ADDRESS(!! ditterent from Controlling Dllice)

'Y NUMBER OF PAGES

L%

P ERFORMING ORG. REPORT NUMBER |

18. SECURITY CL ASS. (of thie report)

none

2. OECLASSIFICATION/DOWNGRAD NG
SCHEDULE

T DISTRIBUTION STATEMENT (of thle Report)

Distribution unlimited. Available from National Techni
Springfield, Virginia 22151

cal Information Service,

. DISTRIBUTION STATEMENT (of the ebetract ontared In Block 20, 1! ditferent from Report)

8. SUPPLEMENTARY NOTES

To be presented at IFIP Congress 74, 5-10 August 1974,
To be published in Proceedings of IFIP Congress 74.

Stockholm, Sweden.

. KEY WOROS (Continue on reverse elde 1 necaseary and dentify by Mock nmumber)

process transformation.

Automatic programming, domain-independent, model acquisition, natural language,
nonprocedural languages, nonprofessional computer users, problem specification,

20. ABSTRACT (Ceontinue on reveres ofde If neceseary and identily dy dlock number)
PRGE V
Reproduced by g
NATIONAL TECHN CAL_
INFORMATION SERVICE
U S Department of Commerce
Springfield VA 22151
DD ," ™, 1473 eoiTion OF 1 NOV 6318 OBSOLETE

S/N 0102-014- 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

L CURITY CLASSIFICATION OF THIS P4 GE(When Data Entered)

ABSTRACT

An automatic programming system Is di stingulshed fror a
conventlonal programmina system by its use of 2n expllicit
semantic model of the aprlication domaln to structure the
dlalogue between the system and the user, to understand the
user“s responses, and to translate these Into actjons. The
major aifferences between the desian effort reported here
(and the proJect’s maln focuses) and other automat]c
programming projects are! first, Its |Indepencence of any
particular domain and Its dialogue-driven acquisition of the
domain to produce a Loose Model} seccnd, the Inforrmal and
typlcally lii-structured manner in which both this Loose
Mode]l and the task to be programmed are specl fied and thelr
transiation Into a directly Interpretable Precise Model.

Throughout the syster, knowledae 1Is represented by
tuples, and structured by: a theory of domains and their
modei Interreiationships; ~ stronq notion of types; and tte
use of constraints on all arqurents of the tuples. Use of
compound expressions, en~blina the Interrixing of patterns
to be instantiated with expressions to be evalueted, greatly
simplifies procram contrel structure. The system aiso
enables constraints and Inferences, as well as actions, to
be represented as procedures, which can be used In both a
qoal-directed and applicative manper. A detalled example
lllustrates these capabliities.,

The research, sponsored by ARPA under Contract No.
DAHCI5 72 C 0208, ARPA Order No. 2223/1, Program Code No.
3030 and 3P10, Is directed tovard vast improvement In both
efflclency and quallty of the production of software. The
work Is of particular Importance to the larce very diverse

appillcatlon softwere packages being developed by alil
branches of the Military.

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ARPA ORDER NO. 2223/1 ‘

/ |
ISI/RR-73-14 |
March 1974 |
Robert M. Balzer
_ Norton R. Greenfeld
Martin J. Kay
Williom C. Mann g
Walter R. Ryder
David Wilczynski .
Albert L. Zobrist
RN Domain-Independent Automatic Programming
|
\
- {
{
INFORMATION SCIENCES INSTITUTE
4676 Admivalty Way[Marina del Rey/Calijornia 90291
UNIVERSITY OF SOUTHERN CALIFORNIA (213)822-1511
THIS RESEARCH IS SUPPORTED B THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO. DAHC!5 72 C 0308. ARPA ORDER ~
NO. 2223/1, PROGRAM COUE NO. 3D30 AND 3P10. ‘

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR'S AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE
OFFICIAL OPINION OR POLICY OF THE UNIVERSITY OF SOUTHERN CALIFORNIA OR ANY OTHER PERSON OR AGENCY CONNECTED WITH IT.

DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE: DISTRIBUTION IS UNLIMITED. &

I

CONTENTS

Abstract

Acknowledgiments

L Introduction
Overall System Structure

Knowledge Representation

Domaln Acquisition

Model Compl«=tion

Precise Model

Example

Concluslion

References

vi

o N U W

10
13
17

= e “7“‘\\ R e e e e e P e -

. ABSTRACT

An automatic programming system {s distlnguished from a conventional programming
system by Its use of an expliclt semantlc model of the application domaln to structure
the dlaiogue between the system and the user, to understand the user”s responses, and
to translate these Into actlons. The majJor differences between the deslgn effort
» reported here (and the projJect’s maln focuses) and other automatic programming projects
are: first, Its Iindependence of any particular domain and Its dlalogue-driven
acquisition of the domaln to produce a Loose Modei; second, the Informal and typlically
[ll-structured manner in vhich both thls Loose Model and the task to be programmed are

speclfled and their translation Into a directly Interpretable Preclse Model.

Throughout the system, knovledge Is represented by tuples, and structured by: a
theory of domains and their model Interrelatlonshipsi a strono notlon of types; and the
use of constraints on all arguments of the tuples. Use of compound expressions,
enabling the intermixilng of patterns to be Instantiated wlith expressions to be
evaluated, greatly simplifies program control structure. The system also enables
constralnts and Inferences, as well as actions, to be represented as procedures, wvhich
can te used In both a goal-directed and applicative manner. A detalled example

Iliustrates these capabliitles.

The research, sponsored by ARPA under Contract No. DAHC1S 72 C 0308, ARPA Order
No. 2223/1, Program Code No. 3D30 and 3P10, Is dlrected tovard vast |Improvement in
both efficlency and quallty of the productlon of software. The work ls of particular
importance to the large very dlverse application software packages being developed by

all branches of the M lltary.

Preceding page blank v

N

ACKNOWLEDGMENTS

This Is a group project In the true sense, and we gratefully acknowledge the

contributions to our discusslons of Rlchard Hale, Nadlne Malcolm, Robert Lingared, and

our summer visitors, Bill Mark, Andee Rubln, and Beau Sheill, We also wish to

acknoviedge the role played by the Instjtute for the Future’s FORUM teleconferenclng '

system In recording and communicating our ldeas with each other.

- - — - -~

INTRODUCTION

The work reported here represents the first phase of the automatic programming
project at the USC/Informaticn Sciences Institute (ISI). After an initial survey of
current vork in the fleid, the group developed a plan for attacking what appeared to be
the fundamental Issues. This took the form of an actual system, the design and
Iimpiementatlon of vhich is nov In its eariy stages. Rather than enter into a detailed
discussion of what wve understand automatic programming to be, it will emerge from the
discussion of the system being buiit. The resuits of the Iinitial survey and the
overall viev of the field adopted are reported eisevhere[1,2]. One point of that view
shouid be stressed here. This project is not seen as an Iincremental advance In
computer Ianguages or the art of programming, but rather as an attempt to make the
pover of the computer aval iabie to a farge class of users without the necessity of a
step similar to the one nov cailed programming. Ultimately, a ciient shouid be abie to
negotiate directiy vith a computer system in much the same terms as he nov negotiates

wvith a programmer.

Computer usage gcneralily falls into tvo categories: use of existing programs or
creation of nev ones. There Is no sharp distinction betwveen the two because data fed
Into exlsting programs can be thought of as instructions which program their behavior,
and because the creation of nev programs utliizes either compliers or Interpreters
vhich treat such instructions as data. Aiso, the techniques for transiating a task
into appropriate Input for the twvo are very simliar. Nevertheiess, wve have chosen to
deal only vith programming actlvities, wvhich ve regard as the process of transiating a
task to be per‘ormed into a computer language, taking Iinto account the constraints and
iimitations of both the computer and the domain of Interest from which the task was

drawvne.

The constraints and restrictions of the computer have increasingly been
incorporated and internalized In programming advances for several years. They are
mani fest In better languages, automatic storage mechanisms, and optimizations of many

forms.

-

On the other hand, the structure, constraints, and limitations of the probiem
domalin have generaliy not been Iincorporated into programming systems. The utiljzation
of such knowiedge is a major theme of automatic programming that characterizes the
distinction between it and conventional programm!ng, and raises a number of jssues. If
the system is to understand something of a domaln -- & particuiar universe of djscourse
-- hov is the knowiedge on which this understanding is based to be represented? What
procedures can be made aval iable for exploiting this knoviedge In guiding the system’s
Interaction with a wuser and in generating programs? How, in particujar, Is the
essentialiy nonprocedural information in constraints and fimitations to be refiected in
a procedural form? What can be done to heip identify Inconsistencies? How can the system
be given a capacity for Inference simiiar to the one that forms the malnstay of human
communication ai.d which ailows obvious details to be left unspecified? Wili the system
be able to understand its own products weii enough to be able to modify them In response
to changed requirements? Answers to these questions define the front on which important

advances in automatic programming viiil be made.

Hitherto, the deslgners of programming systems have concentrated their attention
on creating an Instrument that would be easy to play. Like all Instruments, the system
had a purely passive roie in the programming enterprise. We, on the other hand, took
the viev that the probiem of programming is largely a problem of communication and that

communication, to be easy and natural, must be with an active agent.

Thus the main distinction between conventional and automatic programming Is the
latter’s use of a semantic model of a domaln to structure the dialogue between the
system and the user, to understand the user”s responses, and to translate the user’s
responses into actilionse. The major distinctions between the work reported here and
other automatic programming efforts are: first, its Independence of any particular
domain and its acquisition of the dcmain model through a diajlogue vith the user;
second, the Iinformal and typically lil-stru¢ctured manner In which both the domain
semantics and the task to be programmed are specifled. In fact, these two areas
represent the two main focuses of the project?! diaiogue-driven acquisition of a domain

and transliation of | ii-defined speci fications into a precise form.

—

. 1T‘<:“"“""""'-'--'-"-="F"H'--’-'-v-==-=-=--—*-'-—-1qgf~*' = = -——w-‘

OVERALL SYSTEM STRUCTURE |

In our plan, the automatic programming system consists >f four processing modules
) and six data bases. The data bases consist, as much as possibie, of descrigptive

(rather than Imperative) knowledge, organized so that the system can use this knowiedge

in many different vays. These data bases have been segregated because of the di fferent
logical functions they perform and because of the wvay they are treated by the di fferent

processing modules. |

Data Bases

The Domain Knowiedge data base contains all the descriptive information about the
probiem domain, such as the types of objects which can exist in the domain and their §
descriptions, the types of actions which can occur ln the domai n, the relations which
may exlst between objJects or events (actlon occurrences), and any constralnts which

must be satisfied by the domain.

The Domaln Model contains, at any point in time, an Instantaneous snapshot of the
instantiated objects In the domain and their relatjonship with other objects In the

domain. It represents, through time, a direct simuiation of the problem domain.

h The Loose Model contains the probiem statement in an imprecise form which may be
Incompiete or amblguous and which can only be understood in the context of the

%\ Information in the Domain Knowiedge and Domaln Modei data bases.

P The Precise Modei, on the other hand, represents a precise, compiete, unambi guous,

o .

and directiy interpretable process for solving the posed problem.

The Strategy Knowliedge data base consists of Information which guides the choice

of actions and/or objects for those actions when alternative possibilities exist within

the domaln.

Finally, the Script data base contains partially fiiied In forms which guide the
dlalogue between the system and the user and are dynamically altered on the basis of

the user“s Input and by the demands of the Model Compietion moduie.

Processing Modules

Inltlally, to simpiify the Iimpiementation, the processing mcduies wi il be highly
self-contained and have oniy a iimited knoviedge of the processing and requl rements of

other modules. Later these moduies wiii be more highly Integrated and cooperative.

The Domain Acquisition moduie Is responslble for ali communications with the user,
vith bulidlng the Domain Knowiedge and Domain Model data bases, with obtaining the
Loose Model statement, with determining on syntactic grounds the well-formedness of all
this Information, with builiding and modi fying the Script, and with using It to direct
the dlalogue for the acqulsition of further Information necessary for such syntactic

weli-formedness or requested by the Model Complietion module.

The Model Compietlon module takes the Loose Modei and determines Its semantic
veli-formedness on the basls of the information in the Domain Knovwiedge and Domain
Modei data bases. It is responsible for transforming the Loose Mode: Iinto an
operational Interpretable form calied the Precise Model. Any inability to perform this
transformat)lon resuits In a description of the cause being passed back through the
Script to the Domaln Acquisition phase which then interacts with the user to correct
the deficlency (usually by adding more knowviedge about the domain to the ODomain

Knowiedge data base).

The Interpreter executes the action sequences In the Preclse Modei and updates the
Domalin Modei accordingly. It is responsibie for locating objects defined
descriptively, for evaluating conditions to select alternatlve sequences of actlons,

and for maintainlng restrictions on domain behavior.

The Data Base Handler Is responsibie for maintaining the various data bases,
deciding on store-recompute policy, malntalning consistency, and {through inference)

obscuring the difference between explicit and Implicit data.

O
d from
‘:E: uf: :ﬁ:bh copY:

A primary cbjectlve of our project has been the creation of a core experjimental
system for testlng progress on Domaln Acquisltion and Model Compietion. As such, the
Interpreter and Data Base Handler have been completely specifled, and wlli be used for
both the Precise Mcdel and the Impiementation of the automatic programming system
Itseife To fully uti!lze these Implementation capabliities, the Domaln Acqulsition and
Model Completion modules will be treated as domalns with their own actions, objects,
constraints, and rules of Infr:ences This bootstrapping will focus attention on the

real problems of using our a,nroach In complex domalns.

A more detal led description of the system Is glven In the following sectlons by
focusing on the major components: the representatlon of knowviedge, the transformatlon
performed by the Domaln Acquisition and Model Completion modules, and the form of the
Precise Model produce by Model Completion. This description Is followed by an

annotated _xampie.

KNOWLEDGE REPRESENTAT]ON

Throughout the system, knowledge Is represented as stored tuplese. The flrst
element of any tuple specifles the type of tuple and the rest of the elements are the
arguments for that tuple. Each stored tuple s assoclated with a particular domaln.
Data bases are compartmentalized Into separate domalns which form a lattice. Each
domaln ls deflned as A-KIND-OF (AKO) another domaln and this structure forms the basls
of the domaln lattice. The Interpretation of the lattlce structure Is that, unless
speci flcally prohibited, propertles (of all types) from hligher Ilevel domalns are

Inherlted by lover level ones.

The structure of knowledge In the systom)s highly constralned by two mechanl sms?
types and constraints. Each element of a tuple must be of a type acceptable for that
argument as specl fled In the definltion of that kind of tuple. Llke domalns, types are
defined by A-KIND-OF reiation and form lattices. (Thls structure Is very simllar to
MAPL{3].) An element of a tuple |'s acceptable | f Its type Is the same as that specl fled
In the tuple definition, or If Its type Is a lattice descendant of the speclfled type.

In additlon to type acceptabllity, the elements of a tuple must also satisfy arbitrary

constraints specified iIn the tuple definition. These constraints are checked at the

time that the tuple |s added to a domal n.

A domain consists of types (objects), actions, reiations, constraints, rules of
inference, and instaniiations of all of the abecve. Toaether with the type and
constraint mechanisms for tupies, this knowiedge of the kinds of Information contalned
vitnin a domain represents the syntactic basls used by the Domain Acaulsition module to

construct and mcdify its Script, and hence its dl aiogue with the user.
The following tuples are used to structure knowledce in the system:

(MO Xy 2 wend === . 1S @ subciass (A-KIND-OF) of y. z I¢ optional and
If present s a Further Speci fication of y which ensures it js also an x.
Foliowing z can be optional arcuments which specify a case frame for «x
con Isting ~f properties which FAY, MUST (must exist), REQUIRED (wust exist
and also be known), or CANNOT be present, and CONSTRAINTS which must bpe
satisfled by Instances of an Xe Any entity specified as an AKO is a TYPE in
the systen. OBJECTS, ACTIONS, CONSTRAINTS, INFERENCES, DOMAINS, and
ATTIRIBUTES can all pe specified by AKL. In an AKG, y may be either a TYPE or
an instantiation of a TYPE. Exampies:

(AKO wife person (anu (sex * female) (maritai-status * married)))
(AKO walk run (speed * sjow))

The star (*) in the above Further Specifications refer to the entjty
being further specitied. The rirst exampie defines a wife as a person vhose
sex is female and whose maritaj ttatus §s married.

(X ¥y 2 eee) === x Is a RELATION or ACTION with y 2z ... as arguments.
The arguments are ordered. The restrictions, names, and types of each
argument can be found in a prototype description of x (in the A-RELAT ION-ON
(ARQ) or ACTION tupie).

(ARO x y 2 ... (CONSTRAINTS a b eee)) === x Is the name of ARQ arguments
Y- e e specified by their pame and aliowved TYPE. The last element of the
tupie may be a sel of CONSTRAINTS which must be satisfied by an instantlation
of the tupie. Any of the arguments can be named by specifying a palr (r s)
vhere r s the name (used to identify a particuiar argurent and to help the
input system correctiy position the arguments) and s is the TYPE.

(METION % vy 2 voa 1) ~== x }$ Ehe name of an ACTION. Y 2 «ee are the
parameters of the action and use the same notation as AROC above. r is a set
of attributes of the ACTION such as CONSTRAINTS to be satisfjed by thre
parameters, who the ACTION 1Is CONTROLLED-8Y, a DESCRIPTION of the action,
POSTCONDITICNS which can be asserted after it has been compieted,
PRECONDITICNS nécessary before it s started, etc.

(INFER x y 2) -=- if Y as a pattern can be Instantiated then 2z can be
ASSERTED. x §s a iist of varjables to be bound in the patterns.

(CONSTRAINT x y) === y Is a pattern, or the negation of one, which must
be sai sfied before and after every ACTION defined In the assoc]ated DOMAIN
{(but not during those ACTIONS, and not before and after more primitive ACTIONS

In another lower DOMAIN). x Is a llst of variables to be bound In the
pattern.

OOMAIN ACQUISITION

The Domaln Acquisitlion module has responsiblllty for communicating vith the user
In natural language and extracting from the dlalogue the informatlon needed to build
the Domaln Knowledge, Domal n Model, and Loose Model data bases. The mechanlsm for
gulding this dialogue 1s the Script. The baslc ldea Is to use the regularities and
restrictions In a domaln to structure nev knovledge about that domaln and Indlcate
vhere more Informatlon Is requlred. Thus, each of the entltles of a domaln can be
thought of In terms of an extended Case Grammar[4], vhich specifles a “"frame® or form
to be fllied in for that entlity. As vith all forms, It has certaln flelds vhich must
have specifled types of Information, others which may be present, absent, or present In
varying amounts. It may also specl fy certaln vell-formedness criterla of a more glcbal
nature for entities of thls type. The form represents a template which Is to be

Instantlated In a domaln.

These Instantlated forms may be elther fully or partlally Instant]ated. Fully
Instantlated ones represent constants In the domaln. Partlally Instaatlated forms can
be used both In bullding up the intrarelated structure of one of the data bases or as a
form for further Instantlatlon. In particular, such partlally Instantlated forms can
be used In the Script as a gulding mechanlsm for the dlalogue. In addition, some forms
represent reflnements of others which elther flll In certalr flelds of that forr or
expand 1t by adding new flelds which may or may not be fllled In. Thus, forms can

create elther Instantl ated entities In a domaln or further forms.

Such a structure suggests the development of a language for the description of
forms and hov they should be fllled In. Domalin Acquisition vould then become a
table-driven module which from Its knoviedye of communlcatlon (and natural language)
and the partlcular form glven It to flll In would engage In a dlalogue vith the user to
obtaln the necessary Information. Thls vlewv strengthens the conception of Domaln
Acqulsition as the “syntactic® component, as It would not knov vhat the flelds In the
form were, or how they wvere to be used, but only thelr syntactls construction and

relatlionshlp to other flelds In the form.

g

This conception has the advantage of focusing attention on how such a form could
be used to direct the dlalogue and would greatly simpllfy any changes in those forms
necessjtated by further understandlng cf Model Completion processing. It would also
open the door for other Loose Models vhich might not be procedurally orlented. The
problem with utiiizing this technlique is finding some wvay to capltallze on the
regularity In a domaln vithout Impcsing an undue rigldity on the di alogue or the forms

of Information accepted.

One technique being utillzed to study the structuring and extraction of
Information from a dialogue Is the analysls of dlalocues In vhich the content words of
a domaln have been systematically replace’' by nonsense words[5). In these di alogues,
one member of the group plays the role of the system vhile another plays that of a
user. The analysls of these dlalogues Illustrates the dlfficulties encountered by an
automatic programmling system acquiring Information In a nev domaln and s begl nnlng to

yield a se: of applicable rules and technlques.

There are three components to the Domaln Acqulsition phase? a lingulstic front end
which translates natural language input into Internal form; a dlalectic component which
utlilzes the Script to gulde the dlalogue vith the user; and a structure extraction and
building comdonent which uses tuple restrictions on element type and constralnts to
select the intended meaning of an Input, spot inconsistencies, and determine the need
for missing Information. Work is centering on these last tvo components, leaving the

lingulstic front end for the future.

MODEL COMPLETION

The _oose lModel represents an informal statement of a problem in a domain which
can be processed vith the ald of Inforration contalned In the Domaln Model and Domaln
Knowledge data bases with the application of Intelllqence. Thus, with the right kind
of data base access and processor, the Locse Model is Interpretable. The maln functlon
of Model Completion Is to reduce the Intelljgence requirements on the run-time
processor and to Ilimit the access during run-time to the Domaln Knowledce data base.

This distinction, though not sharp, lles at the very heart of programml ng. A program

embodies an algorithm and It Is the essence of an algorithm that It does not KNOW what
it Is doing. In oth~r vords, it requlires understanding of the problem domaln to write
a program, but the .ventual program operates blindly. If a process must have recourse
to an understanding of a domain to continue with the solution of a task, then It does
not embody a method for solving that problem, and Is therefore not a program. It Is,
instead, a problem solver vhich develops solutions essentially by (heuristic) trial and
error. In programs, the need for such recourse has been anticipated and I ncorporated
into the steps of the algorithm so that the structure of the domaln and problem solving

are no longer required during execution.

Such anticination and removal of rellance on Domaln Knovledge and problem solving
can be regarded as a compiling process and Is the main function of Model Completion.
Closely related is the Issue of efficiency which represents good vays of removing such
dependencies. Our focus wiil be to produce running programs, not optimized ones.
Hence, the concern Is more vith widening the range of transformations which can be
performed on Loose Models and the freedoms thus alloved In the Loose Model
specification than in eliminating redundant checks or optimaily ordering the processing

in the produced progranms.

Thus Model Compietion is the transiator from the Loose to Precise Model. As such,
its main responsibliity Is to transform actions Into procedures. This involves filling
In procedure Invocations (fully instantiating the argument Ilists) and making these
consistent vith the procedure requirementss filling Iin missing links (making explicit
the access path to requlired data)s declding explicltly vhen to perform blindings and
evaluations In the Domain Model3 deciding explicitly hov to handle possible errorss
identifylng missing Information and removing dependence on It until (and If) It |Is used
during executiont and performing back translations from Precise to Loose, both for
describing execution behavior and for explaining why actions were selected. The
annotated example folloving the Precise Model section llilustrates the kinds of

transformations planned for Model Completion.

One transformation particulariy worth noting Is the muitiple use of actions In

both the appliicative and goal-directed forms. In Precise Model form, actions have a

set of parameters and local pattern match variables. It is assumed, upon entry to such

an action, that the parameters have been bound and that the local vaiiables are
unbounu. In a goal-directed invocation, as part of an ACHIEVE statement, an action s
belrng Invoked. It s invoked because Its resuit matches a needed, but as yet
unfulfilled, part of the form to be achieved. Since this occurs in the midst of a
pattern-match, the form is partialiy instantiated and only some of the arguments needed
for the actlon may have been determined already. Two possibilities for processing
existe The first is for the system to preselect possibie values for the undetermined
parameters, invcke the action, ond If it fails try another set of values, and so on.
The second possiblilty is that the actlon 1Is modified (iogically) so that the
undetermlned parameters are treated as local varlables to be bound by the pattern
matches withln the action rather than by Leing determined from the outside. They,
hovever, remaln bound vhen the action i< exited. Thus, conceptually, the undetermined
arguments are bound by performing the action. This second possibility is much more
reasonable, ailovlng the inherent constraints of the action to guide the bi ndings of
the unbound arguments, and occurs automatically in the Precise Modei. By definition,
the pattern matcher Instantlates all unbound variables encountered in a pattern and
lJeaves unchanged those aiready bound. Hence any parameters which have a prespeci fied
value upon entry to the routine wili have that value unchanged, vhile those that are
unbound will have an instantiated value assigned in the normai course of execution of
the action. The blnding mechanism in the Preclse Model causes these I nstanti ated
values to automatically be refiected In the arguments of the Invocation. A related
jssue is the posslbie bindlngs In the pattern-directed Invocation of varlables local to
the invoked actlon. Unfortunately, such blndings are not auLomaticalily reflected In
the Invoked actlion and a special type of entry must be performed vhen such conditions

arise.

PRECISE MODEL

The Preclse Model 1s the restatement of the user’s problem 1n the programmi ng

language AP/1[6]. Thls lianguage Is an extension of LISP[7), vhich supports assoclative

relational data bases with the domain compar tmentalization described earller, strongly

typed variables, compound pattern matches, and fallure controi. Strong typlng and
compound patterns are especially Important in simpllfylng the systems writing of the
Precise Model by minimizing the translatior between it and che Loose Model and by
reducing and simpllfylng the control structures requlred. In fact, compound patterns
have enabled backtracking to be completely eliminated and replaced by a single FOR lcop
vhich iterates through a set of Instantiations of the compound pattern. It also

enabies Inteiiigence to be appiled, vithin the pattern matches, to determine how best

to obtaln valld instantfat}ons.

Additlonally, Model Compietion utlilzes only a subset of AP/1 (which Is also the
implement ation Janguacz for the project) to further simplilify the writing and analysls
of Precise Model programs. The major dl fference Is that the Preclse Model utjilzes no
free or local varlables except for pattern match varlables which are Instantlated
during the matching process. All communication betwveen routines Is elther via expllicit

parameter passing or through data contalned In the Domain Model.

AP/] generally allows the arbitrary mixing of tuples to be Instantlated &nd
functions to be evaiuated. Thls Includes the functions AND, OR, and NOT, as vell as
any other defined LISP functions. It Is assumed that such functions have no slde
effects. Each tuple In an expression Is treated as a functlon and evaluated If It has
a function definition. If not, then It Is treated as a pattern to be Instantlated.
Because there are no free varlables, and the only local varlables are pattern match
varjables, the rule for Instantlation Is very simple. Any parameter or varlabie which
Is unbound at the time it |Is encountered within a pattern Is Instantlated. Already

bound varlables are left unchanged.

The value of a pattern Is always the Instantlated version of that pattern If the
match was successful or NIL othervise. No other possibliities exist. Thus ail pattern
matches return either the instantlated pattern or NIL and the concept of fallure does

not exlst within the pattern matcher. It always returns to Jts caller vith one of

these values.

The routines (statements) vhich Invoke the pattern matcher may take other actlons

e

with the returned vaiue. They may extract from it particuiar bindings or
subexpress!ons or cause fallure vhen a NIL vaiue Is returned. Each of the ®"statements®
in AP/1 is, in fact, a function vwhich uses the value returned from the pattern matcher
as it sees fit. In thls regard, the AND, OR, and NOT functicns are no different than

any other in the system.

One such useful function is Further Specification. It takes a typed variable and
a pattern to be Instantjated as its arguments. If the pattern is successfully
instantiated, the vaiue of the typed variable Is returned as the vaiue of the function
and NIL Is returned otherwise. Thus Further Specification can be vieved as "find the x

such that <pattern>®.

In AP/t the ATTEMPT statement Is used to deai with ail failures vhich occur in the
attempted statement. The ATTEMPT statement aiso automaticaliy creates & new context
for the execution of the attempted statement. If the statement Is successfui, then the
tuples In the context (which can be thought of as a temporary domain) are promoted to
the context existing before the attempt. If not, ail these tupies are removed from the

system. Thus the sid. effects of faiiures are automaticaliy removed from the system.

Any statement which can faii can have THEN and ELSE clauses attached to it. This
inciudes the 1S, ATTEMPT, ACHIEVE, ASSERT, REMOVE, FOR, and PERFORM statements. In
each case, |f the statement compietes successfuiiy, then the THEN ciause, if present,
s executed. Failure of the statement causes the execution of the ELSE ciause which,
if present, prevents further promuigation of tne faliure. The one exception to this is

the ATTEMPT statement which handles fallure vhether or not an ELSE cliause Is present.

The FOR statements are used to foop through a set of Instantiations of a pattern,
either performing some 6peratlon on them, or searching for a singie one which satisfies
some criteria. The suspension and contlnuation of Instantiations afforded by FOR
statements Is the only mechanism, outside the pattern matcher, for attempting a
sequence of instantlations looking for a successfui one. In this regard it is very
CONNIVER-I11ke[8], but it is oniy effective within the lcop. There is no exit- and

reentry-type capabliity. The pattern matcher has internal backtracking mechanisms for

12

searching for successful instantiations of patterns. The compound pattern matches are
largely responsibie for elimlnating the need for packtracking in the language outside

of the pattern matcher.

The 1S statement Is used to retrieve information from a data base by instantlating
a pattern. If the Instantiation fails, then, uniess explicitly prohibited, the
Instantiation is attempted again using the rules of Inference speci fled or any rules of

inference avallable In the ccintext and domalns searched.

The ACHIEVE statement Is similar except that | f both the search and inference are
insufficlent to Instantiate the pattern, then the action specified, or any avallable

actions, are used to try to achleve an instantiated pattern.

The ASSERT and REMOVE statements are used to add and delete tupies from a context
or domaln. In each case, uniess specifically prohibited, the conslstency of the data
base Is checked after the statement |s exccuted. If an Inconsistency Is found, then

the statement faiis and the changes are undone.

The PERFORM statement behaves exactly I1ke the IS statement except that |f the
pattern Is Instantiated, It Is then evaluated. Flinaliy, the FAIL statement is used to

explicitly Invoke the fall mechanlsms described earljer.

EXAMPLE

The folloving annotated example of the system”s planned behavior vas derived from

one In the QLISP Manuai[9]. The origlinal problem statement iss

To make people happy either find a compati ble marriage or make them rich. A
marriage Is compatiblie |f both people are unmarried, of opposite sex, have a
hobby In common and the vife Is not more than five years older than the man.
Someone Is rich I f thelir net vorth Is over a milijlon dollars.

After ergaging In a dialogue with the user (suppressed here), the system would

arrive at the Loose Model stage In vhich the following informal description of the

probiem and domain exlsts:

1. (AKO PERSON OBJECT)
2. (ARO SEX PERSON (ONE-OF MALE FEMALE))
3. (ARO MARITAL-STATUS PERSCN {CNE-OF MARRIED UNMARRIED))
4. (ARO EMOTION PERSON (ONE-OF HAPPY SAD BLAH))
5. (ARO NETWORTH PERSON NUMBER)
6. (AROD WEALTH PERSON (ONC-OF RIC!H 1M]1DDLE POOR))
7. (ARD HOBBIES PERSON (SET ACTIVITY))
8. (AKD BEL! Y-DALCING ACTIVITY)
9. (AKD GARDEN NG ACTIVITY)
10. (AKO PROGRAIMMING ACTIVITY)
11. (ARD AGE PERSON NUMBER)
12. (ACTION MARRY (PARAMETERS PERSON PERSONA1)
(CONTRCLLED-BY SYSTEM)
(PRECONDITIONS (AND (UNMARRIED PERSON#1)

(UNMARRIED PERSON)
(NEQ (SEX PERSON#1)
(SEX PERSON))))
(DESCRIPTION (ASSERT (MARRIED PERSCN®1 PELRSON)))
(POSTCGMDITICNS (MAERIEC PFRSCN#1 PEFSON)))
13. (CONSTRAINT
(PERSCN%1 PERSON#2 PERSONR3)
(MARRIED PERSON#1 PERSON®2)
(MARRIED PERSON#1 PERSON#3))

14. (CONSTRAINT
(PERSON) (MARRIED PERSON PERSON))
15. (IMPLJES (PERSON#1 PERSON#2) (MARRIED PERSONZ1 PERSON#®2)
(MARRIED PERSON#2 PERSON=1))

16, (IMPLIES (PERSON) (GT (NETWORTH PERSON) 1000000)
(PERSON RICH))
17. (AKO WIFE PERSON FEMALE MARRIED)
18. (AKO HUSBAND PERSON MALE MARRIED)
19. (ACTION MAKEHAPPY (PARAMETERS PERSON)
(CONTROLLED-BY USER)

(DESCRIPTION MAKEHAPPY (IF (GR (PERSON RICH)
(HAS PERSON COMPATIBLE-MARRIAGE))

(ASSERT (PERSON HAPPY)))))

20. (AKO MARRIAGE EVENT MARRY)
2i. (AKO (COM. ATIBLE-MAFRIAGE) MARRIAGE
(LT (AGE WIFE) (AGE HUSBAND+5))
(EXISTS (HOBBY#1) (AND
(HOBBY HUSBAND HOBBYw=1)
(HOBBY WIFE HOBBY#1))))

The impression to be gained from the Loose Model stage Is that the informal
description is closely related to the natural language Input given the system. The
ma Jor problems of understanding this represepntation and transforming it Into an

operational program are left for the loose to precise translatlion.

Some of the Items above are Imprecise and are mod] fled as par% of model
compietion. for example, Item 17, above, must be changed to (AKD WIFE PERSON (SEX =

FEMALE) (MARITAL-STATUS * MARRIED)).

14

R

Many other transforma.ions are needed <0 arrive at the Precise Model program given
pelov, only two of which viil be dealt vith here. The first occurs in Item 21, above,
vhich attempts to flnd a hobby In common between the husband and vife. As written, 1t
attempts to find a hobby vhich is the value of the FNBBY relation on husbands and
vlves. Reallzation that husbands and wives are persons and thus, that the HOBBY
relation 1s weli-defined In that regard, occurs automatlically within the typling
mechanlsm of the system. Hovever, In attempting to find the common hobby, it must be
notice¢ that only activities can be the value of HOBBY. Hence thls pattern must be

rewrltten to look for an activity which Is In common betveen the husband and vl fe.

More indicative of the types of probliems encountered in the translation process
are the mechanisms Invoived In the Interpretation of (HAS PERSON COMPAT IBLE-MARRIAGE)
in Item 19. The system starts by seelng } f PERSON and COMPAT I1BLE-MARRIAGE are related
by the HAS relation. They are not. Now the system knovs () that "HAS" Is used very
slopplly In English, so it looks to see hov PERSON and COMPAT IBLE-MARRIAGE are related.
COMPATIBLE-MARRIAGE Is A-KIND-OF marriage and MARRIAGE 1Is A-KIND-OF the event of
marryinge MARRIAGE Is an action I nvolving tvo persons; even more, jt asserts that the
tvo are related by the MARRIED relation. Hence, If the relation betveen "MARRIAGE* and
#*MARRIED® is linguistically known, the system assumes that "HAS MARRIAGE® is the same
as *]S MARRIED®. Notlce that MARRIED Is being used In two vays® first, as an attribute
value of maritil status, -nd second, as a relation between twvo people. In fact, the
marital status Is belng further specl fled by vhom the marrlage is withe finally, there
is the Issue of vhen the condition for compatible marrlage Is appiicabie: When the
marriage orcutred or vhen the question vas asked? In addition, notice that within Item
21, above, that wife and husband are not ex]lstentially quantified but relate to the
partners In the marriage. " hus, from the inferred fact that the person is married, the
system must plck up the partner and use that palr to bind the husband and vife by type
constralints In evailuating this condition. The result of this expansion Is shown In the

MAKE-HAPPY function below. All In all, the chain of processing required In the Iloose

to precise transiation Is rather compiex and 111-defined.

(MAKEHAPPY

[LAMBDA (PERSON)

(PROG (PERSON#1 PERSON#2 PERSON®3 ACTIVITY)
(ACHIEVE

(OR (WEALTH PERSON RICH)
(AND EMARRIED PERSON PERSON#1)
LT
(PLUS [AGE (FERSON#2 (SEX * MALE)
(IN (ONE-OF PERSON PERSON&1]

5)
(AGE (PERSON#3 (SEX * FEMALE)
(IN (ONE-OF PERSON PERSONZ1)
(HOBBY PERSON ACTIVITY)
(HOBBY PERSONX(ACTIVITY)))
THEN (ASSERT (EMOTION PERSON HAPPY])

{MARRY
[LAMBDA (PERSON PERSONZ1)
(PRCG (PERSON%2 PERSON43)

(CONSTRAIN (NOT (MARRIED "ZR30N PERSONZ2))
{NOT (MARRIED PERSON#1 PERSON43))
(MNEQ (SEX PERSONZ1)

(SEX PERSON)))
(ASSERT (MARRIED PERSON PERSCN®1])

(CONSTRAINT0001
[LAMBDA (PERSON)
(PROG (PERSON#1 PERSCN=2)
(NCT (AND (MARRIED PERSON PERSCN#1)
(MARRIED PERSON PERSCN&2])

(CONSTRAINT0002
[LAMBDA (PERSON)
(PROG NIL
(NOT (MARRIED PERSON PERSON])

(INFERENCEOQ0O1
[LAMBDA (PERSON PERSONZ1)
(PROG NIL
(IS (MARRIED PERSON PERSCNZ1)
(THEN (ASSERT (MARRIED PERSON&1 PERSON)))
(ELSE])

(INFERENCE0002
[LAMBDA (PERSON)
(PROG NIL
(IS (GT (NUMBER (NETWORTH PERSON *))
1000000)
(THEN (ASSERT (WEALTH PEPSON RICH)))
(ELSE])

16 Z

CONCLUSION

Although a vealth of problems remaln unsolved (and undi scovered), a clear
direction has been establlished. Domaln-1ndependent automatlc programming has been
divided Into tvo parts: dlalogue-driven acqulisition of the domaln semantics, and
transiation of 1ll-defined specifications Into a precise form. Work Is focusing on
creating a core system for experimentation and on explicating the transformations 1In
the Domaln Acquisition and Model Completion modules. The implementation has been
started and the Interpreter, Data Base Handler, and Preclse Model form are all well In

hand. An Initial knowiedge representation has been seiected.

Despite the early stage of the project, several technical contributions bhave
emerged In addition to the overall approach outlined above. AP/1 supports the
intermixing of patterns to be Iinstantiated and expressions to be evaluated.
This greatly simplifies program control structure by obviating the need for explicit
lov-level search and control mechanisms. Knowiedge has been highly structured
through the strong use of types and the use of constralnts on the arquments of tuples.
Finally, techniques have been described for convertina constraints and inferences,

as well as actlons, Into procedures and for using procedures in both a goal~-directed

and applicative manner.

o

(%]

18

NN —~ - N —— 7 o A c‘} e —

REFERENCES

Balzer, R. M., Autoratic Programming, USC/Inforration Sciences Inst]tute RR-73-1,
Septenber 1977, (draft).

Balzer, R. M., "A Giobal View of Automatic Programminq,* Proceedings of the Third
International Jolnt Conference on Artificial Inteliloence, Stanford University,
August 20-23, 1973, pp. 494-499,

Project MAC Progress Report X, July 1972-July 1973, The Massachusetts Instjtute of
ecnnology, Cambri dge, Mass, + PPe -17%.

Fiimore, C. J., “The Case for Case", in Universals and Linguistic Theory, E. Bach
and R. T. Harmes (eds.), Holt, Rinehart, ~nd Winston, 1968, pp. 1-88.

Baizer, R. M., Human Use of Worid Knowledae, USC/Information Sciences Institute,
RR-73-7 , March 1977,

Balzer, R. M., AP/l - A Language for Automatic Programming, USC/Informatlon
Sciences Institute, RR=73=T3 (In proaress).

Teitelman, W., 0. G. Bobrow, A. K. Hartley, and D. L. Murphy, BBN-LISP TENEX
Reference Manval, Bolit Beranek and Newman Inc., July 197].

McDermott, D. V. and G. J. Sussman, Son of Conniver The Conniver Reference
Manual, Version II, The Massachusets Institute of lechnoloay, Cambridge, Mass.,

977,

Reboh, R., and E. Sacerdoti, A Preliminary OLISP Manual, Stanford Research
Institute, Artificial Intelilaence Center, Technical Note 8), Auqust 1973.

