
^N ^r

AD-777 956

DOMAIN-INDEPENDENT AUTOMATIC PROGRAMMING

UNIVERSITY OF SOUTHERN CALIFORNIA

PREPARED FOR

ADVANCED RESEARCH PROJECTS AGENCY

MARCH 19/4

DISTRIBUTED BY:

Kram
National Technical Information Somco
U. S. DEPARTMENT OF COMMERCE

A _

^"s V

SECuniTY CLASSIFICATION OF THIS PAGE fWhmn Dmlm Enfrtd)

REPORT DOCUMENTATION PAGE
PEPO*'' NUMBER

ISI/RR-73-14

2 COVT ACCESSION NO

4. TITLE (mnd Submit)

Domain-Independent Automatic Programming

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1 RECIPIENT'S CATALOG NUMBER

5. TYPE Of REPORT » PERIOD COVERED

Research report

t. PERFORMING ORO. REPORT NUMtER

Afeobe7t';M. Baker, Norton R. Greenfeld, Martin J.
Kay, William C. Mann, Walter R. Ryder, David
Wilczynski, Albert L. Zobrist

9 PERFORMING ORGANIZATION NAME AND ADDRESS

USC/lnformation Sciences Institute
4676 Admiralty Way
Marina Pel Rey, California 90291

II, CONTROLLING OFFICE NAME AND ADDRESS

Advanced Research Projects Agency
1400 Wilson Blvd.

t. CONTRACT OR GRANT NUMiERf»)

DAHC '.5 72 C0308

10 PROGRAM ELEMENT. PROJECT, TASK
AREA ft WORK UNIT NUMBERS

ARPA Order '2223/1

12. REPORT DATE

March 1974
M^ NUMBER OF P

Arlington, Y^glnin 22209
4 MONlToVlNG AGENCY NAME ft AODR«

ACES

ESSfl/ dllUnnt from Confroll/n« Otlle») "tft SECURITY CLASS, (ol IM* r.portj

none
lla DECLASSIFICATION/DOWNGRAD MO

SCHEDULE

16 DISTRIBUTION STATEMENT (ol Sift R»por(>

Distribution unlimited. Available from National Technical Information Service,

Springfield, Virginia 22151

17. DISTRIBU BUTION STATEMENT (ol (h. .6.fr«f «.».f.* (n Block 70. II dHIW M» «^•'«J

H. SUPPLEMENTARY NOTES

To be presented at IFIP Congress 74, 5-10 August 1974, Stockholm, Sweden.

To be published in Proceedings of IFIP Congress 74.

«ary «id Idonlllr by block nambor) 1». KEY WORDS fConllnu» on nnf »Id» II «

Automatic programming, domain-independent, model acquisition, natural language,
nonprocedural languages, nonprofessional computer users, problem specification,

process transformation.

20. ABSTRACT fConllnu. on r.w« old» II n«e«««>ry antf IdnUIr »r »I««* oum**)

PR6C \/

Reprodurert by ,,-..
NATIONAL TECHN CAL
INFORMAT'ON SP \"Ct

U S Department o' Commerce
Springfield VA ?2151

DO , JA""» 1473 EB,T,0N 0F' MOV••" o•»0,■■T■ .
S/N 0102-014-6601 «tCUHITY CLAMIFIC*TiON Of TMIt ^AOt PB Dl» Mnl«*)

■ ■ ' *-

^7
^

K

UWITY CLASSIFICATION QF THIS P< GE'Wh«! Dal* Enltrtd)

An automatic
conventional prog
semantic model of
dialogue between
user's responses,
major aifferences
(and the project
programming proje
particular domain
domain to produc
typically iI1-stru
Model and the tas
translation into a

ABSTRACT

programming system Is d
ranwnl no system by Its
the aprllcation domain
the system and the user
and to translate these

between the design e
's main focuses) and
cts are' first, its
and 11?; dialogue-driven
e a Loose Model; seccn
ctured manner Ir which
k to be proqrammed are
directly Interpretable

I stIngui shed
use of an e
to structu

, to underst
Into actions
ffcrt report

other au
Independence
acqul si tion

d, the Infer
hoth thi«;

sped fled an
Preclse Mod

from a
xpliclt
re the
and the

The
ed Sere
tomatIc
of any
of the

mal and
Loose

d their
el.

Throughout the system,
tuples, and structured by
model interrelationships: »
use of constraints on al?
compound expressions, enfhM
to be Instantiated with ^xpr
simplifies prorrarr- control
enables constraints and In
be represented as procedures
qoal-directed and applicat
Illustrates these capabilltl

knowltdoe Is represented by
I a theory of domains and their
strong notion of types; ^nd the
arquments of the tuples. Use of
no the Intermixing of patterns
essions to be evaluated, greatly

structure. The system pJso
ferences, as well as actions, ♦■o
, which can be used In both a
Ive manner. A detailed example
es.

The research, sponsored by ARPA under Contract No,
0AHC15 72 C 0308. AftPA Order No. 2223/1, Proaram Code No.
3030 and 3P10, is directed toward vast Improvement In both
efficiency and quality of the production of software. The
work Is of particular Importance to the larce very diverse
application software packages bei no developed by all
branches of the Military.

SeCU^ITV CLASSIFICATION OP ''HIS PAOKWhtn DmU tnfnd)

t ä fcV«

N «
^

Robert M. Balzer
Norton R. Greenfeld

Martin J. Kay
William C. Mann
Walter R Ryder

David Wilczynski
Albert L. Zobrist

ARPA ORDER NO. 2223/1

ISI RR.71.14
March 197-f

Domain-Independent Automatic Programming

I

i ^

\

INFORMATION SCIENCES INSTITUTE

UNIVUSITY OF 501THF.RN CALIFORNIA mi 4676 AJmirally Way/Marina del Rey/Calijwiia 0029/

(213)822-1511

TH.S RESEARCH IS SUPPORTED B< "HE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO DAHCIS 72 C 030e ARPA ORDER
NO 2223/I. PROGRAM COüE NO 3D30 AND 3PIO

ViEWS AND CONCLUSiONS CONTAiNED IN TH.S STUDY ARE THE AUTHOR S AND SHOULD NOT BE .NTERPRETED AS REPRESENTING THE

OFFICIAL OPINION OR POLiCY OF THE UN.VERSITY OF SOUTHERN CALIFORNIA OR ANY OTHER PERSON OR AGENCY CONNECTED W.TH IT

DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE: DISTRIBUTION IS UNLIMITED

.JL.

"s kj
^

CONTENTS

Abstract v

Acknowledgments vl

Introduction 1

Overall System Structure 3

Knowledge Representation 5

Domain Acquisition 7

f-'odel Completion 8

Precise Model 10

Example 13

Conclusion 17

References lö

III

V

-i

«?

ABSTRACT

An «utonatlc programnlng system is distinguished fro» a conventional programming

system by Its use of an explicit semantic model of the application domain to structure

the dialogue between the system and the user, to understand the user's responses, and

to translate these Into actions. The major differences between the design effort

reported here (and the project's main focuses) and other automatic programming projects

are< first. Its Independence of any particular domain and Its dialogue-driven

acquisition of the domain to produce a Loose Modelt second, the Informal and typically

Ill-structured manner In which both this Loose Model and the task to be programmed are

specified and their translation Into a directly fnterpretable Precise Model.

Throughout the system, knowledge Is represented by tuples, and structured by! a

theory of domains and their model Interrelationships; a stronr notion of types; and the

use of constraints on all arguments of the tuples. Use of compound expressions,

enabling the intermixing of patterns to be Instantiated with expressions to be

evaluated, greatly simplifies program control structure. The system also enables

constraints and inferences, as well as actions, to be represented as procedures, which

can be used in both a goal-dlrected and applicative manner. A detailed example

Illustrates these capabilities.

The research, sponsored by ARPA under Contract No. 0AHC15 72 C 0308, ARPA Order

No. 2223/1, Program Code No. 3030 and 3P10, Is directed toward vast Improvement In

both efficiency and quality of the production of software. The work Is of particular

importance to the large very diverse application software packages being developed by

all branches of the M: lltary.

Preceding page blank

-t- i ii >lL.

-^r i^mm

^

\

ACKNOWLEDGrtFNT^

ccntrl.tl.„ t„ „ m,mm,tm o, R,chard ^ ^

oU .^ws.^.an, ^ ^ M ^ shen_ wc ^^ -

m«« in tmmmm mt MMIMU^ oür 1<,eas vlth each other_

- ^ I il >M

^

iNTfQDUCTlON

The work reported here represent:; the first phase of the automatic programming

project at the USC/Informatlcn Sciences Institute (ISI). After an Initial survey of

current work In the field, the group developed a plan for attacking what appearei to be

Lie fundamental Issues. This took the form of an actual system, the design and

Implementation of which Is now In Its early stages. Rather than enter Into a detailed

discussion of what we understand automatic programming to be. It wl 11 emerge from the

discussion of the system being built. The results of the Initial sorvey and the

overall view of the field adopted are reported elsewhere!I,2]. One point of that view

should be stressed here. This project Is not seen as an incremental advance In

computer languages or the art of programni ng, but rather ar. an attempt to make the

power of the computer available to a large class of users without the necessity of a

step similar to the one now called programning. Ultimately, a client should be able to

negotiate directly with a computer system In much the same terms as he now negotiates

with a programmer.

Computer usage generally falls Into two categories^ use of existing programs or

creation of new ones. There is no sharp distinction between the two because data fed

into existing programs can be thought of as instructions which program thulr behavior,

and because the creation of new programs utilizes either compilers or Interpreters

which treat such instructions as data. Also, the techniques for translating a task

Into appropriate input for the two are very similar. Nevertheless, we have chosen to

deal only with programming activities, which we regard as the process of translating a

task to be performed Into a computer language, taking Into account the constraints and

limitations of both the computer and the domain of interest from which the task was

drawn.

The constraints and restrictions of the computer have increasingly been

incorporated and internalized in programming advances for several years. They are

manifest In better languages, automatic storage mechanisms, and optimizations of many

forms.

*Ä

A.

^

On the other hand, the structure, constraints, and limitations of the problem

domain have generally not been incorporated Into programming systems. The utilization

of such knowledge Is a major theme of automatic programming that characterizes the

distinction between It and conventional programming, and raises a number of Issues. If

the system Is to understand something of a domain — ■ particular universe of discourse

how is the knowledge on which this understanding Is based to be represented? What

procedures can be made available for exploiting this knowledge In guiding the system's

interaction with a user and In generating programs? How, in particular, is the

essentially nonprocedural information In constraints and limitations to be reflected in

a procedural form? What can be done to help identify Inconsistencies? How can the system

be given a capacity for Inference slmilai to the one that forms the mainstay of human

communication a.,d which allows obvious details to be left unspecified? Will the system

be able to under tand Its own products well enough to be able to modify them in response

to changed requirements? Answers to these questions define the front on which important

advances In automatic programming will be made.

Hitherto, the designers of programming systems have concentrated their attention

on creating an instrument that would be easy to play. Like all instruments, the system

had a purely passive role in the progratrmlng enterprise. We, on the other hand, took

the view that the problem of programming Is largely a problem of communication and that

communication, to be easy and natural, must be with an active agent.

Thus the main distinction between conventional and automatic programming is the

letter's use of a semantic model of a domain to structure the dialogue between the

system and the user, to understand the user's responses, and to translate the user's

responses Into actions. The major distinctions between the work reported here and

other automatic programml nt; efforts are' first. Its Independence of any particular

domain and Its acquisition of the domain model through a dialogue with the user;

second, the Informal and typically I 11-struptured manner in which both the domain

semantics and the task to be programmed are specified. Jn fact, these two areas

represent the two main focuses of the projects dialogue-driven acquisition of a domain

and translation of Ill-defined specifications into a precise form.

■^

OVERALL SYSTEM STRUCTURE

In our plan, the automatic programnl ng system consists jf four processing modules

and six data bases. The data bases consist, as much as possible, of descriptive

(rather than Imperative) knowledge, organized so that the system can use this knowledge

In many different ways. These data bases have been segregated because of the different

logical functions they jerform and because of the way they are treated by the different

processing modules.

Cata Bases

The Domain Knowledge data base contains all the descrlotlve Information about the

problem domain, such as the types of objects which can exist In the domain and their

descriptions, the types of actions which can occur In ».he domain, the relations which

may exist between objects or events (action occurrences), and any constraints which

must be satisfied by the domain.

The Domain Model contains, at any point In time, an Instantaneous snapshot of the

instantiated objects In the domain and their relationship with other objects in the

domain. It represents, through time, i direct simulation of the problem domain.

The Loose Model contains the problem statement in an Imprecise form which may be

incomplete or ambiguous and which can only be understood In the context of the

Information In the Domain Knowledge and Domain Model data bases.

The Precise Model, on the other hand, represents a precise, complete, unambiguous,

and directly interpretable process for solving the posed problem.

The Strategy Knowledoe data base consists of information which guides the choice

of actions and/or objects for those actions when alternative possibilities exist within

the domain.

^r
^

Finally, the Script data base contains partially filled In forms which guide the

dialogue between the systen and the user and are dynamically altered on the basis of

the user's Input and by the demands of the Model Completion module.

Processing Modules

Initially, to simplify the Implementation, the processing modules vl 11 be highly

self-contained and have only s limited knowledge of the processing and requirements of

other modules. Later these modules will be more highly Integrated and cooperative.

The Domain Acquisition module is responsible for all communications with the user,

with building the Domain Knowledge and Domain Model data bases, with obtaining the

Loose Model statement, with determining on syntactic grounds the wel l-fcrmedness of all

this Information, with building and modifying the Script, and with using it to direct

the dialogue for the acquisition of further Information necessary for such syntactic

well-formedness or requested by the Model Completion module.

The Model Completion module takes the Loose Model and determine«; Its semantic

well-formedness on the basis of the Information in the Domain Knowledge and Domain

Model data bases. It is responsible for transforming the Loose Model into an

operational I nterpretable form called the Precise Model. Any Inability to perform this

transformation results In a description of the cause being passed back through the

Script to the Domain Acquisition phase which then Interacts with the user to correct

the deficiency (usually by adding more knowledge about the domain to the Domain

Knowledge data base).

The Interpreter executes the action sequences In the Precise Model and updates the

Domain Model accordlnoly. It Is responsible for locating objects defined

descriptively, for evaluating conditions to select alternative sequences of actions,

and for maintaining restrictions on domain behavior.

The Data Base Handler Is responsible for maintaining the various data bases,

deciding on store-recompute policy, maintaining consistency, and (through Inference)

obscuring the difference between explicit and Implicit data.

A.

—*7
^

A primary cbjectlv? of our project has been the creation of a core experimental

system for testing progress on Domain Acquisition and Model Completion. As such, the

interpreter and Data Base Handler have been completely specified, and will be used for

both the Precise Model and the Implementation of the automatic programming system

Itself. To fully uti !l2e these Implementation capabilities, the Domain Acquisition and

Model Completion modules will be treated as domains with their own actions, objects,

constraints, and rules of Infr.ence. This bootstrapping will focus attention on the

real problems of using our a^oroach In complex domains.

A more detailed description of the system Is given In the following sections by

focusing on the major components« the representation of knowledge, the transformation

performed by the Domain Acquisition and Model Completion modules, and the form of the

Precise Model produce by Model Completion. This description Is followed by an

annotated xample.

KNOWLEDGE REPRESEMTATION

Throughout the system, knowledge Is represented as stored tuples. The first

element of any tuple specifies the type of tuple and the rest of the elements are the

arguments for that tuple. Each stored tuple Is associated with a particular domain.

Data bases are compartmentalized Into separate domains which form a lattice. Each

domain Is defined as A-KIND-Of (AKO) another domain and this structure forms the basis

of the domain lattice. The Interpretation of the lattice structure Is that, unless

specifically prohibited, properties (of all types) from higher level domains are

inherited by lower level ones.

The structure of knowledge In the syst-.m is highly constrained by two mech.-»nl sms'

types and constraints. Each element of a tuple must be o* a type acceptable for that

argument as specified In the definition of that kind of tuple. Like domains, types are

defined by A-KINO-Of relation and form lattices. (This structure is very similar to

MAPL[3J.) An element of a tuple Is acceptable I f I ts type Is the same as that specified

In the tuple definition, or if Its type Is a lattice descendant of the specified type.

In addition to type acceptability, the elements of a tuple must also satisfy arbitrary

-^
^

constraints specified in the tupi e defi nl ti on. I^s. constrai nts .re checke, at the

time that the topic is aodeo to a domain.

A domain consistr of types (objects), actions, relations. constraints. roles of

Inference, and instantiations of all of ehe above. Fooether vith the type and

constraint mechanise for tuples, this Kncvled.e of the kinds of information contained

wltnin a domain repr.sen-s the syntactic basis osed by the Do.ain Acooisition mooule to

construct and modify its Script, and hence its dlalorue with the user.

The follovinc tuples are used to structure knovle.'oe in th e systemJ

^#14! r-ü 'HS^ä JH^^rii^

The star (*} in the above further Specifications r^r«.- t^ th» »t.

(x y 2 ...) — x Is a ftELATlUN or ACTION with v 2 ^c =ro.,m- r

(ARO x y z (CONSTRAINTS a b ...)) — x Is the name of ARO arguments
y * ... specified by their name and allowed TYPE. The last element 0?^
ofp,thrytuii: SC,A^ *rj"™i s^ ^be -tisfiedheb;a^ • ssSeStii:
Zl r t if! ny of **• ar9un»ents can be named by specifyinc a oai r (r mi
Tnnut ill ^ ^^ 0Led t0 '«^"V a particular argument and to help the
Input system correctly position the arguments) and s Is the TYPE.

(ACTION x y z ... r) — x is the name of an ACTION. y 2 are rh«

fsssi?!«r-ja ^ioNbe 'ass^r^r' äWI
!L? ^ Si»

PRECONOITICAS necessary before iTfs started' etc. " ^^ •^»•«^.

a«FDTrnF£R Xiy Z),.~" 'f V as a Pattern can be irstantiated then 2 can be
ASSERTED, x Is a list of variables to be bound In the patterns?

be sl^sffed^LforV l". M" " ^"^.^ the "«^tion of one, which must
(but not Jir?ng those ACHfi^ I 722 t"^ def'ned 'n the «soclated DOMAIN
in aether Vower^ir* x Is a U^t "2 ^f"^6 ^lmit,ve A"IONS
pattern. '■ '• x ls a nst of variables to be bound In tne

^

DOMAIN ACQU1blllQW

The Ooaain Acquisition module has responsibility for coM*unlcatl ng with the user

in natural language and extracting front the dialogue the Information needed to build

the Domain Knowledge, Domain Model, and Loose Model data bases. The mechanism for

guiding this dialogue Is the Script. The basic idea is to use the regularities and

restrictions In a domain to structure new knowledge about that domain and indicate

where more information is required. Thus, each of the entitles of a domain can be

thought of In terms of an extended Case Grammar(AJ, which specifies a "frame" or form

to be filled in for that entity. As with all forms, it has certain fields which must

have specified types of information, others which may be present, absent, or present In

varying amounts. It may also specify certain well-fcmedness criteria of a more glcbai

nature for entities of this type. The form represents a template which Is to be

instantiated in a domain.

These instantiated forms may be either fully or partially Instantiated. fully

instantiated ones represent constants In the domain. Partially instantiated forms can

be used both in building up the inlrarelated structure of one of the data bases or as a

form for further instantiation. In particular, such partially instantiated forms can

be used In the Script as a guiding mechanism for the dialogue. In addition, some forms

represent refinements of others which either fill In certain fields of that forr. or

expand it by adding new fields which may or may not be filled In. Thus, forms can

create either Instantiated entities In a domain or further forms.

Such a structure suggests the development of a language for the description of

forms and how they should be .'I lied In. Domain Acquisition would then become a

table-driven module which from Its knov".cdv,e of communication (and natural language)

and the particular form piven It to fill in would engage In a dialogue with the user to

obtain the necessary information. This view strengthens the conception of Domain

Acquisition as the "syntactic" component, as it would not know what tht fields In the

form were, or how they were to be used, but only their syntactic: construction and

relationship to other fields In the form.

^r
^

This conception has the advantage of focusing attention on how soch a for» could

be used to direct the dialogue and would greatly simplify any changes In those forms

necessitated by further understanding of Model Completion processing. It would als»

open the door for other Loose Models which might not be procedurally oriented. The

problem with utl lUIng this technique Is finding some way to capitalize on the

regularity In a domain without Imposing an undue rigidity on the dialogue or the forms

of Information accepted.

One technique being utilized to study the structuring and extraction of

information from a dialogue is the analysis of dialogues in which the content words of

a domain have been systematically replace' by nonsense words[5]. In these dialogues,

one member of the group plays the role of the system while another plays that of a

user. The anslysis of these dialogues illustrates the difficulties encountered by an

automatic programming system acquiring Information In a new domain and Is beginning to

yield a Ml of applicable rules and techniques.

There are three components to the Domain Acquisition phase! a linguistic front end

which translates natural language Input Into Internal form; a dialectic component which

utilizes rhe Script to guide the dialogue with the user» and a structure extraction and

building component which uses tuple restrictions on element type and constraints to

select the Intended meaning of an input, spot inconslstencle>, and determine the need

for missing Information. Work Is centering on these last two components, leaving the

linguistic front end for the future.

MODEL COMPLETION

The ..oose f-odel represents an Infernal statement of a problem in a domain which

can be processed with the aid of inforiration contained in the Domain Model and Domain

Knowledge data bases with the application of Intelligence. Thus, with the right kind

of data base access and processor, the Loose Model Is interpretable. The main function

of Model Completion Is to reduce the intelligence requirements on the run-time

processor and to limit the access during run-time to the Domain Knowledge data base.

This distinction, though not sharp, lies at the very heart of programming. A program

^A

■^
^

enU>dies an algorithm and It Is the essence cf an algorithm that It does not KNÜW what

It is doing. In oth«r words. It requires understanding of the problem domain to write

a program, but the ^ven^ual program operates blindly. If a process must have recourse

to an understanding of a domain to continue with the solution of a task, then It does

not embody a method for solving that problem, and Is therefore not a program. It is.

Instead, a problem solver which develops solutions essentially by (heuristic) trial and

error. In programs, the need for such recourse has been anticipated and Incorporated

Into the steps of the algorithm so that the structure of the domain and problem solving

are no longer required during execution.

Such anticlnation and removal of reliance on Domain Knowledge and problem solving

can be regarded as a compiling process and Is the main function of Model Completion.

Closely related Is the Issue of efficiency which represents qood ways of removing such

dependencies. üur focus wlII be to produce running programs, not optimized ones.

Hence, the concern is more with widening the range of transformations which can be

performed on Loose Models and the freedoms thus allowed In the Loose Model

specification than In eliminating redundant checks or optimally ordering the processing

In the produced programs.

Thus Model Completion Is the translator fro« the Loose to Precise Model. As such.

Its Main responsibility Is to transform actions into procedures. This Involves filling

In procedure Invocations (fully Instantiating the argument lists) and making these

consistent with the procedure requirements! filling In missing links (making explicit

the access path to required data); deciding explicitly when to perform bindings and

evaluations In the Domain Modell deciding explicitly how to handle possible errors;

Identifying missing Information and removing dependence on It until (and If) It Is used

during execution; and performing back translations from Precise to Loose, both for

describing execution behavior and for explaining why actions were selected. The

annotated example following the Precise Model section Illustrates the kinds of

transformations planned for Model Completion.

One transformation particularly worth noting Is the multiple use of actions In

both the applicative and goal-directed forms. In Precise Model form, actions have a

■ ' JM

^N
^

set of par-n-eters and local pattern ma ch väriables. It is assumed, .pen entry to such

an action, that the parameters hav« been bound and that the 1 ocai va. Iables are

unboonu. In a goal-directed Invocation, as part of an ACHIEVE statement, an action is

being Invoked. It is invoked because Its result matches a needed, but as yet

unfulfilled, part of the form to be achieved. Si nee this occurs in the midst of a

pattern-natch, the form is partially instantiated and only some of the arguments needed

for the action ^y have bee,, determined already. Two possibilities for processing

exist. The first Is for the 5 stem to preselect possible values tor the undetermined

parameters, invoke the action. ,nd If it fails try another set of values. and so on.

The second possibility is 'hat the action is modified (logically) so that the

undetermined parameters ..re treated as local variables to be bound by the pattern

matches vlthin the action rather than by Leing determined from the outside. Ihey.

however. rema!n bound wh.-n the action is exited. Thus, conceptually, the undetermined

arguments are bound by .er for mi no tN. act i on. Thi s second possi bi 1 i ty i s much more

reasonable, allowing the inherent constraints cf the action to guide the bindings of

the unbound arguments. .u,d occurs automatically in the Precise Model. By definition,

the pattern matcher Instantiates all unbound variables encountered in a pattern and

leaves unchanged those already bound. Hence ^ny parameters vhich have a prespecified

value upon entry to the routine will have that value unchanged, while those that are

unbound will have an instantiated value assigned in the normal course of execution of

the action. The bindlng machanism in the Precise Model causes these Instantiated

values to automatically be reflected In the arguments of the 1 nvocatlon. A related

Issue Is the possible bindinos In the pattern-directed invocation of variables local to

the invoked action. Unfortunately, such blndlncs are not automatically reflected in

the Invoked action and a special type of entry must be performed when such conditions

arIse.

PRfCISE MODEL

The Precise Model Is the restatement of the user's problem In the programming

language AP/U6]. This language Is an extension of L1SP[7]. which supports associative

relational data bases with the domain ccnpartmentalUatlon described earlier, strongly

10

• ■ lA *m

^

typed variables, conpound pattern matches, and failure control. Strong typing and

compound patterns are especially Important In simplifying the system's writing of the

Precise Model by minimizing the translation between It and ehe Loose Model and by

reducing and simplifying the control structures required. In fact, compound patterns

have enabled bocktracking to be completely eliminated and replaced by a single FOR loop

which Iterates through a set or instantiations of the conpound pattern. It also

enables Intelligence to be applied, within the pattern matches, to determine how best

to obtain valid Instantiations.

Additionally, Model Completion utilizes only a subset of AP/l (which Is also the

Implementation langua^s for the project) to further simplify the writing and analysis

of Precise Model programs. The major difference Is that the Precise Model utilizes no

free or local variables except for pattern match variables which are Instantiated

during the matching process. All communication between routines Is either via explicit

parameter passing or through data contained in the Domain Model.

AP/l generally allows the arbitrary mixing of tuples to be instantiated <'nd

functions to be evaluated. This includes the functions AND, OR, and NOT, as well as

any other defined LISP functions. It is assumed that such functions have no side

effects. Each tuple in an expression is treated as a function and evaluated If It has

a function definition. If not, then It Is tre/ited JS a pattern to be Instantiated.

Because there are no free variables, and the only local variables are pattern match

variables, the rule for instantiation is very simple. Any parameter or variable which

is unbound at the time It is encountered within a pattern is instantiated. Already

bound variables are left unchanged.

The value of a pattern is always the Instantiated version of that pattern if the

match was successful or NIL otherwise. No other possibilities exist. Thus all pattern

matches return either the instantiated pattern or NIL and the concept of failure does

not exist within the pattern matcher. It always returns to its caller with one of

these values.

The routines (statements) which invoke the pattern matcher may take other actions

II

. A. ^^^^^m

^N m^m
^

with th« returned value. They nay ^r^ract fro« It particular bindings or

subexpressions or cause failure when a NIL value Is returned. Each of the "statements"

In AP/J is. In fact, a function which uses the value returned from the pattern matcher

as It sees fit. In this regard, the AND, OR, and NOT functlcns are no dlff«rent than

any other In the system.

One such useful function Is further Specification. It takes a typed variable ?nd

a pattern to be Instantiated as It;, arguments. If the pattern is successfully

Instantiated, the value of the typed variabU« is returned as the value of the function

and NIL Is returned otherwise. Thus Further Specification can be viewed as "flrd the x

such th*t <pattern>".

In AP/1 the ATTEMPT statement is used to deal with all failures which occur In the

attempted statement. Ihe ATTEMPT statement also automatically creates a new context

for the execution of the attempted statement. If the statement Is successful, then the

tuples In the context (which can be thought of as a temporary domain) are promoted to

the context existing before the attempt. If not, all these tuples are removed from the

system. Thus the sld effects of failures are automatically removed from the system.

Any statement which can fall can have THEN and ELSE clauses attached to it. This

Includes the IS, ATTEMPT, ACHIEVE, ASSERT, REMOVE, FOR, and PERFORM statements. In

each cas,e. If the statement completes successfully, then the THEN clause, if present.

Is executed. Failure of the statement causes the execution of the ELSE clause which,

If present, prevents further promulgation of the failure. The one exception to this is

the- ATTEMPT statement which handles failure whether or not n ELSE clause Is present.

The FOR statements are used to loop through a set of Instantiations of a pattern,

either performing some operation on them, or searchlna for a single one which satisfies

some criteria. The suspension and continuation of instantiations afforded by ^OP

statements Is the only mechanism, outside the pattern (ratcher, for attempting a

seguence of Instantiations looking for a successful one. In this regard it is very

C0NNIVER-IIke[8J, but it Is only effective within the loop. There is no exit- and

reentry-type capability. The pattern matcher has internal backtracking mechanisms for

12

^r m m ^r

searching for successful Instantiations of patterns. The compound pattern matches are

largely responsible for eliminating the need for backtracking In the language outside

of the pattern iratcher.

The IS statement Is used to retrieve information from a data base by instantiating

a pattern. If the Instantiation falls, then, unless expllcltly prohlblted, the

Instantiation is attempted again using the rules of inference specified or any rules of

Inference available In the ccr.text and domains searched.

The ACHIEVt statement is similar except that If both the search and inference are

Insufficient to instantiate the pattern, then the action specified, or any available

actions, are used to try to achieve an Instantiated pattern.

The ASSERT and REMOVE statements are used to add and delete tuples from a context

or domain. In each case, unless specifically prohibited, the consistency of the data

base Is checked after the statement is executed. If an Inconsistency Is found, then

the statement fails and the changes are undone.

The PERI-ORM statement behaves exactly M ke the IS statement except that If the

pattern Is Instantiated, It is then evaluated. Finally, the FAIL statement Is used to

explicitly Invoke the fail mechanisms described earlier.

EXAMPLE

The following annotated example of the system's planned behavior was derived from

one In the QLISP flanuaUS], The original problem statement Is«

To make people happy either find a compatible marriage or make them rich. A
marriage Is compatible If both people are unmarried, of opposite sex, have a
hobby In common and the wife Is not more than five years older than the man.
Someone Is rich If their net worth Is over a ml 11 Ion dollars.

After engaging In a dialogue with the user (suppressed here), the system would

arrive at the Loose Model stage In which the following Informal description of the

problem and domain exists«

13

- • ■ ■ -^

^r ^T
^

1. (AKÜ
2. (ARO
3. (ARO
k. (ARO
5. (ARO
6. (ARC
7. (ARO
a. (AKO
9. (AKC

10. (AKO
11- (ARO
12. (ACT IOC

PERSON OBJECT)
SEX PERSON (ONE-OF /".ALE FEMALE))
MARI TAL-STATUS PERSON (CNE-OF MARRIED UKKARHIEO))
EMOTION PERSON (CNE-OF hAPPY SAU BLÄH))
NETWORTH PERSON NUMBER)

(ON£-OF RICH MODLE PGÜHj)
(SET ACT1VITY))
ACTIVITY)
ACTIVITY)
ACTIVITY)

NUMBER)
(PARAMETERS PERSON PERSON«!}

SYSTEM)
(AND (UNMARRIED PERSON-1)
(UNMARRIED PERSON)
(NEQ (SEX PERSONSI)

(SEX PERSON))))
(ASSERT (MARRIED PERSONS! PERSON)))
(MAMIEC PFRSCN-l PEPSON}))

WEALTH PERSON
HOBBIES PERSON
BEI I Y-DAi.CINC
GARDENING
PROGRA;V.ING
AGE PERSON
MARRY
(CONTKCLI.ED-ÜY
(PRECONDITIONS

13. (CONSTHAI

(DESCRIPTION
(POSTCONDITIONS

NT
(PERSON«!

(MARRIED
PERSONS
PERSON^l

(MARRIED PERSONS!

P£RS0N^3)
PERS0N^2)
PERS0N^3))

U.

15.

16.

17.
18.
19.

20.
21.

(CONSTRAI

(IMPLIES

(IMPLIES

(AKO
(AKO
(ACTION

(AKO
(AKO

(PERSON)

WIFE
HUSBAND
MAKEHAPPY

NI (PERSON) (MARRIED PERSON PERSON))
(PERSON-l PERSONS) (MARRIED PERSÜN^l PERS0NS2)

(MARRIED PERSONS PERSON«!)]
(GT (NETWORTN PERSON) 1000000)
(PERSON RICH))
PERSON FEMALE MARRIED)
PERSON MALE MARRIED)
(PARAMETERS PERSON)

(CONIROLLED-BY USER)
(DESCRIPTION MAKEHAPPY (IF (OR (PERSON RICH) lkt^r.% K (HAS PERSON COMPATIBLE-MARRIAGE))

(ASSERT (PERSON HAPPY)))))
MARRIAGE LVENT MARRY)
(COM ATIBLE-MAPRIAGE) MARRIAGE

(LT (AGE WIFE) (AGE HUSBAND+5))
(EXISTS (HOBBY^I) (AND

(HOBCY MoSBANO HüßBY-1)
(HOBBY WIFE HDBBY^l))))

\

The impression to be gained from the Loose Model stane is that the informal

description is closely related to the natural languane input niven the system. The

major problems of understanding this representation and transforming it into an

operational program are left for the loose to precise translation.

Son« of the Items above are imprecise and are modified as par- of model

completion. For example. Item 17. above, must be changed to (AKO WIFE PERSON (SEX •

FEMALE) (MARITAL-STATUS * MARRIED)).

14

= 'X ^

Many other transform-! ons are needed .o arrive at the Precise Model program given

belw, only KW of which »III be dealt vl th here. The first occurs .. Item 21. above,

which attests to find a hobby In common betveen the husband and wife. As written. It

attempts to find a hobby which | s the value of the HOBBY relation on husbands and

wives. Realization that husbands and wives are per-.ons and thus, that the HOBBY

relation Is well-defined In that regard, occurs automatically wlthl n the typlng

mechanism of the system. However. In attempting to find the common hobby. It most be

noticed that only activities can be the val.e of HOBBY. Hence thl s pattern must be

rewritten to look for an activity which Is 1.1 common between the husband and wife.

More Indicative of the types of problems encountered In the translation process

are the mechanisms Involved In the .nterpretatlon of (HAS PERSON COMPATIBLE-MARRIAGE)

in Item 19. The system starts by seeing If PERSON and COMPATIBLE-MARRIAGE are related

by the HAS relation. They are not. Now the system knows (I) that "HAS- 1 s used very

sloppily In English, so It looks to see how PERSON and COMPATIBLE-MARRIAGE are related.

COMPATIBLE-MARRIAGE Is A-KINO-Of marriage and MARRIAGE Is A-KIND-OF the event of

marrying. MARRIAGE Is an action Involving two persons? even more. It asserts that the

two are related by the MARRIED relation. Hence. If the relation betveen "MARRIAGE- and

-MARRIED" Is linguistically known, the system assumes that -HAS MARRIAGE- Is the same

as "IS MARRIED-. Notice that MARRIED Is being used In two ways: first, as an attribute

value of MTIUI status, .nd second, as a relation between two people. In fact, the

..arltal status Is being father specified by whom the marriage Is vl th. Finally, there

is tne issue of when the condition for compatible marriage Is applicable: When the

marriage occu.red or when the guestlon was asked? In addition, notice that within Item

21. above, that wife and husband are not exlstentlally quantified but relate to the

partners In the marriage. nus. from the Inferred fact that the person is married, the

system must pick up the partner and use that pair to bind the husband and wife by type

constraints In evaluatlno this condition. The result of this expansion Is shown in the

MAKE-HAPPY function belov. All In all, the chain of processing required In the loose

to precise translation Is rather complex and Ill-defined.

1 ii *TL 1

J -— ■ y

(MAKEHAPPY
(LAMBDA (PERSON)

(PROG (PERSONÄ1 PERSON-2 PERSONÄ3 ACTIVITY)
(ACHIEVE

COR (WEALTH PERSON RICH)
(AND (MARRIED PERSON PERSONS!)

ILT
(PLUS {AGE (PERSONÄ2 (SEX * MALE)

(IN (ONE-OF PERSON PERSONS 1]
5)

(AGE (PER.SONÄ3 (SEX * FEMALE)
(IN (ONE-OF PERSON PERSONS 1]

(HOBBY PERSON ACTIVITY)
(HOBBY PERSON.*1! ACTIVITY)))

THEN (ASSERT (EMOTION PERSON HAPPY])

(MARRY
ILAMBDA (PERSON PERSONA))

(PROG (PERSONÄ2 PERSON«)
(CONSTRAIN (NOT (MARRIED .'ERSON PERSONÄ2))

(NOT (MARRIED PERSONA) PERSON«))
(NEQ (SEX PERSONA))

(SEX PERSON)))
(ASSERT (MARRIED PERSON PERSONA)])

(CONSTRAINTOOO)
ILAMBDA (PERSON)
(PROG (PERSONA) PERSLNÄ2)

(NOT (AND (MARRIED PERSON PERSONA))
(MARRIED PERSON PERSLNÄ2J)

(CONSTRAINTO002
UAMBDA (PERSON)

(PROG NIL
(NOT (MARRIED PERSON PERSON])

(INFERENCEOOO)
[LAMBDA (PERSON PERSON«)

(PROG NIL
(IS (MARRIED PERSON PERSONA))

(THEN (ASSERT (MARRIED PERSONS) PERSON)))
(ELSE])

(INFERENCEC002
(LAMBDA (PERSON)

(PROG NIL
(IS (GT UJUMßER (NETKORTH PERSON *))

)OOOOCO)
(THEN (ASSERT (WEALTH PERSON RICH)))
(ELSE1)

J

T^T
^

CONCLUSION

Althouah a wealth of problems remain unsolved (and undiscovered), a clear

direction has been established. Oomaln-1ndependent automatic programming has been

divided Into two partsJ dialogue-driven acquisition of the domain semantics, and

translation of ill-defined specifications Into a precise form. Work is focusing on

creating a core system for experimentation and on explicating the transformations In

the Domain Acquisition dnd Model Completion modules. The implementation has been

started and the Interpreter. Data Base Handler, and Precise Model form are all well In

hand. An initial knowledge representation has been selected.

Despite the early stage of the project, several technical contributions h*ve

emerged In addition to the overall approach outlined above. AP/1 supports the

Intermixing of patterns to be Instantiated and expressions to be evaluated.

This greatly simplifies program control structure by obviating the need for explicit

low-level search and control mechanlsirs- Knowledge has been highly structured

through the strong use of types and the use of constraints on the arguments of tuples.

Finally, techniques have been described for convertlna constraints and Inferences,

as well as actions. Into procedures and for using procedures In both a goal-directed

and applicative manner.

17

.^v l^M^te^^-_HM rift

-'s
^

18

REFERENCES

Bdl2er, R. M., Aototrattc Prooramwi ng. USC/Inforrrat I on Sciences Institute RR-73-J,
September 1972, (draft).

Balzer, R. M., "A Global View of Automatic Proqramvi nn," Proceedings of the Third
International Joint Conference on Artificial InteI 11nence. Stanford University.
Auqust 20-23, 1973, pp. UK-MS?.

Project MAC Progress Report X^ July 1972-July 1973, The Massachusetts Institute of
Technoloqy, Cambridge, Mass, 1973, ppT FM-176.

Filmore, C. J., "The Case for Case", In Universals and LInqui stlc Theory. E. Bach
and R. T. Harmes (eds.). Holt, Rlnehart, ^rd Winston, 1968, pp. f^88.

Balzer, R. M., Human Use of World Knovledoe, USC/Informatlon Sciences Institute.
RR-73-7 , March 197^"

Balzer, R. M., AP/1 - A Language for Autonvitlc Programm!ng. USC/Information
Sciences Institute, RR-73-13 (In proarevsll

Teitelman, W. . j. G. Bobrow, A. K. Hdrtley, and D. L. Murphy, BBN-L1SP TENEX
Reference Manual, Bolt Beranek and Newman Inc., July 1971.

McDermott, D. V. a'id G. J. Sus;man, Son of Conni ver. The Conni ver Reference
Manual, Version II, The Massachusets Institute of Technology, Cambridge, Mass.,
1972.

Reboh, R., and E. Sacerdotl, A Prellmlnary OLISP Manual, Stanford Research
Institute, Art.ficlal Intellinence CenterTlechnica I Note 81, August 1973.

»

y

^-k. i - '"*-

