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ABSTRACT 

A multicomponent reliability system In which each com- 
ponent Is either up (I.e., working) or down (l.e, failed) In 
accordance with an alternating renewal process Is considered. 
For arbitrary structures the following quantities are derived. 

(1) The average rate of system failure. 

(11) The average uptime of the system. <    ' 

(111) The average downtime of the system. 

Further results are also obtained In the special case where 
the system structure Is either series or parallel. 

IV 
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MULTICOMPONENT RELIABILITY SYSTEMS 

by 

Sheldon N.  Ross 
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I.  INTRODUCTION 

Consider an n-component reliability system having the property that at 

any time each of its components is either up (i.e., working) or down (i.e., 

being repaired). Let 

(1    if 1 
{i(t) " 10    othe 

fat. 

component is up at time    t 

otherwise 

We suppose that    {X.(t),t^0}  ,  i ■ 1,  ..., n , are independent alternating 

renewal processes.    That is,  for each   1 , there exist random variables   U    , 

D.  , J >. 1 , such that 

1    if    t < U^ 

X^t) 
0    if    uj < t < uj + DJ 

1   if   uj + DJ < t < uj + DJ + uj 

0    etc. 

The random vectors    (u.,D. I  ,  j ^ 1 , are assumed to be independent and identically 

distributed.    Let 

F1(t) - P|UJ < t| 

G1(t) - P|DJ < t| 

DO 

Ul    '   J     tdFi(t) 

0 
00 

v1 - J tdG1(t) 

_. 
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and suppose that 0<y1<<», 0<v. <», fAO)  ■ 0.(0) - 0 . 

We suppose that whether or not the total system Is working at time t 

depends only on X{t)  - (X-U), ..., X (t)) . In particular, letting 

X(t) 
11 If the system is working at time t 

10 otherwise 

we assume that there exists a nondecreasing binary function $ such that 

X(t) - (HX.U), .... xn(t)) l        n 

It follows from the Independence of components that    P{X(t) - 1} » E[(ti(X(t))l 

Is a function of    E[X1(t)],   .... ElX (t)]    and we write i n 

P{X(t) - 1} - hWMt)], .... E[X (t)]) i n 

I 

■ 

The function h is called the reliability function of the system. In words, 

h(p,, ..., p ) represents the probability that the system will function when 

th 
the 1     component  (Independently of other components) functions with probability 

P.,   .    Assuming (as we do throughout) that the distribution of    U. + D..    is not 

lattice,    1 ■ 1,   •••• n ,  It follows from known alternating renewal process re- 

sults that 

E[X.(t)] *  x— 1 lx /J      y4 + v. as    t -♦■ » 

and thus, from the continuity of h (which is easily shown), we obtain that 

(1.1) P{X(t) - 1} -*■ h(—JJi—, ....  ^L_ | = h/—H—\ 
Vl + vl     \ + v       V-^-l 

a result first noted by Esary and Proschan [3].    The function   P{X(t) ■ 1}    is 

referred to in the literature as the availability at time    t  , and thus 

Equation (1.1) states that the limiting availability 
18-te) 

- '    • ' Mb 
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2.    REGENERATION POINTS 

One unpleasant feature of the reliability process defined In Section 1 Is 

that it does not necessarily have any regeneration points.    That Is, there 

need not be any time points at which the process "probabilistically starts 

over again."    This is unfortunate as the theory of regenerative processes 

and the associated theory of renewal reward  (or cumulative) processes yield 

elegant results concerning not only the existence of limits, but also the 

equality of different types of limits such as almost sure limits and limits 

in expectation.    However, there are certain special cases for which the pro- 

cess is regenerative.    One of these being if for each    i ■ 1,   ..., n , either 

F.    or    G.    is a mixture of an exponential and some other distribution.    That 

is,  if for each   1 , either    F (t)    or   G,(t)    is of the form 

(21) >1(l - e    i ) + (1 - P1)Hi(t) 

■ 

x 

where    0 < p. < 1 , and    H.     is a distribution function,  then the process is 

regenerative with a finito mean regeneration cycle ;   the regeneration times 

being those times at which the "exponential parts" of ea-.h component are in 

effect.    In fact since the    p.    in Equation (2.1) can be arbitrarily small 

(though positive) it follows that any set of distributions    ^J»0*»  1 ■ 1.  ...» n} 

can be approximated arbitrarily closely by one of the forms  (2.1).    As a result, 

we shall assume that our reliability process is a regenerative process with fi- 

nite mean regeneration cycle.    In fact since our results will only depend on 

y.    and   v.  , 1 ■ 1,  ..., n ,  and as any   F.    (or   G.)    can be arbitrarily 

closely approximated by a distribution of the form (2.1) it is intuitively 

obvious that our results hold in the general case.    (In fact,  it would seem 

that appropriate applications of the ergodic theorem yields the same existence 

and equality of limit results as does the assumption of regeneration points; 

thus proving our results in the general case.) 

The finite mean regeneration time follows from the result that a finite state 
Markov chain has no null recurrent states. 

ii    • ■ "*- 
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3.     RATE OF SYSTEM BREAKDOWN 

We say chat component    1    causes a breakdown at time    t    If 

(1)    X^t ) - 1 

(il)    X^t) - 0 

(ill)    X(t") n 1 

(iv)    X(t) - 0 

Let    N (t)    denote the number of breakdowns caused by    i    in    [0,t]   . 

Notation: 

Let    P ■ (P.,   ..., P )   .    Define - x n 

(IJI^)   ■   v'j»   •••i     i-i'   •   i+l'   •'•»     n' 

^.P) - (?1,   ....  Pi.pO.P^,   .... Pn) 

Proposition 3.1; 

(a) With probability 1, 

N1(t) E 
11m —-— ■ 11m — 
t-H» t-x» 

[^(t)]      h(1i^) " h(0i'i^) 
U      +   V vi     1 

(b) EtN^t + a) - N^t)] -^-J' 
"^j - *(°i-£)] 

vi + vi 

Proof; 

From the theory of renewal reward processes It follows that, with 

probability 1, 

■ 

N^t) EfN^t)] 
11m —-— - lim r  

E[Number of breakdowns caused by 1 in a regeneration 
cycle]/EtTlme of a regeneration cycle] 

• 
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Define 

li * 

1    if the J      breakdovm of    1    causes a system breakdown 

0   otherwise 

Now, again by the theory of renewal reward processes It follows that, with 

probability 1, 

(3.1) 
I    + ... + I                Ed. + ... + I. ] 

11m — ;  - 11m ; =- 

- E[Number of breakdowns caused by    1    In a regeneration 
cycle]/E[Number of breakdowns of    1    In a regeneration cycle] 

However,  from the Independence of components. It follows that 

(3.2) ^>-h(1i>rH)-h(0i'7^) as J 

This Is true since the j  failure of 1 will cause a system failure If the 

state vector x at that time Is such that (ji(l.,x) ■ 1 , ^(O ,x) = 0 . We 

then obtain (3.2) since P{*(l1,X(t)) - M^X^)) - 0} - P{(f(li,X(t)) • 1) 

- P{(j»(0 ,X(t)) - 1} . Thus from (3.1) and (3.2) we see that, with probability, 

I1+...-f Ik 

\ 1 u + v/  \ 1 y + vj 

N.U) 
Now, since 11m —-— exists with probability 1, it: follows that 

N (t)     N (time of k  breakdown of 1) 
11m -^r— - lim — rr  
t** it*«. time of k  breakdown of 1 

lim 
k 

I1 + ... + Ik 

time of k  breakdown of 1 

■'"•*-'*'-" 

- i - - ■ " **"■ 
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ih&)-i°.±) 
u1 + v1 

Part  (b)  follow« from (a) since Blackwell's Theorem (of renewal theory) holds 

for renewal reward processes (see  [  ]). | j 

Letting   N(t)    denote the number of breakdowns in    (0,t)   , we obtain, 

from Proposition 3.1 

Corollary 3.2; 

(a) With probability 1, 

lim m.^mm.£ (Ui + v-[h(ll>lfe)-„(o,^ 

o.) E(N(t +.) - N(t)i *. ^ (p,+v^vzii) - h(°i-iii)] 

Proof: 

(a) The nonlattice assumption implies that E[N(t)] ■ ü v-i + o(t) 

4nd so (a) follows.  (It should be noted that N(t) j* I  N. (t) since 
1 1 

more than 1 component can be given credit for a breakdown at time t.) 

(b) Follows from (a) since Blackwell's Theorem holds for renewal reward 

processes.|| 

We say that component    i   causes an uptime at time   t    if 

(1)    X^t ) - 0 

(ii)    X^t) - 1 

(iil)    X(t") - 0 

(iv)    X(t) - 1 

N 

-   -^  .    i i **- 
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Let N.Ct) denote the number of uptimes caused by i In [0,t] . By a proof 

completely analagous to that of Proposition 3.1 we can prove 

Proposition 3.3; 

(a) With probability 1, 

(b) 

11m 
Nj(t) 

lim 
t 

ElN^t)] ■(^Hvife) 
"i+'i 

Li        1 J        vi + v^^ 

Remark! 

It is interesting to note that the proportion of downtimes (i.e., breakdowns) 

caused by component i is equal to the proportion of uptimes that it causes. 

S 

• ■ "^ - ^^m 
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4. UPTIMES AND DOWNTIMES 

Let U(t) denote the cumulative amount of uptime In [0,t] . From the 

theory of renewal reward processes It follows that, with probability 1, 

^^ - P{X(t) - 1} ■♦' 0 as t ->■ - 

and thuSj from Equation (1.1), 

(A.l) mi* Wi as t -^ (with probability 1). 

The reliability system will alternate between periods in which the system 

is up and periods in which it is down. Let us denote by U. the length of 

the i  up period, 1 ■ 1 , and by D , the length of the i  down period.  It 

should be noted that the U. , i •> 1 (and similarly, the D ) are neither inde- 

pendent nor arc they identically distributed random variables. However it does 

follow from results presented in [2] that 

U. + ... + U 
11m -*  - Um E[U. + ... + U ]/n - E[U ] 
rrx»     n In« 

and 

D. + ... + D 
11m -=  - lim Elu. + ... + D ]/n - E[D ] 
n-H»     

n In» 

where Um (D)    Is a random variable whose distribution is the limiting distrl- 

butlon of U (D ) . 
n  n 

Moreover from Equation (4.1) we note that 

n 
I "i 

1-1 
n n 
I ^ + K 
1 1 

fe) 
as n ■*■ 

,„*»-K*«M*^  ■" 

-       '  "  ^ 



or, equivalently 

wz 

E(U 1 

Finally, as    11m 
n   I ("i + v 

1-1    1     I 

■ gig .      -^D .    represents the average rate at 

which breakdowns occur, we obtain from Corollary 3.2 

Proposition 4.1; 

ElU 1 
[Whr 

lml <"! + v'Mvüfe)" h(0r 

1 - "^ 
E(D_) 

Tv^H^^H 

■■-. 

\ 
\ 
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5.     SPECIAL CASES 

5.1    Series Structure 

The reliability system is said to be a series system it. in order for it 

to be up it is necessary that all of the components be up.    Hence, for a series 

system 

n 
h(P) -    n    P, 

i-1    1 

Hence, from Corollary 3.2, we obtain that the rate of breakdowns of a series 

system is given by 

(5.1) llaNiti.;_y    tt 

1    j-i V
J • -j i-i 

u.       n 

while the average length of up and down periods is 

EtüJ 

1-1        1 

(5.2) 
n 

i - n 

E[DJ ■1-1 ^.1^ 
n w. 
n    r?- 

j-l MJ + VJ  1-1 
I   1/Ui 

Remark: 

n' ■ [| V*]'1 If all component uptime distributions were exponential then    E[U 

for all   n .    It is Interesting to note that this is also the average of system 

uptimes for arbitrary distributions.    (This result was also obtained in [1] where 

the model considered was series but with the provision that when the system failed 

the remaining components did not age but were held in a state of suspended 

■ 

■ • MHUMSMU" " 

^k. 
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animation until the failed component was repaired.) Furthermore, when the 

uptime distributions are exponential then D-.D.. ... are independent and 

identically distributed and thus 

> n   p i 
E[D ] - EtD 1 - - 

n     •   n   u 
n 

i - n 

for all n . 
n 

hr I ^i j-i ^j   'j i-i 

It is interesting to note that this result (in the exponential component uptimes 

case) seems to be difficult to prove directly.| 

Additional insight Into the length of uptime periods is obtained by the 

following heuristic reasoning. Given that (the fixing of) component 1 has 

Just caused an uptime period it is intuitive that the remaining uptime of com- 

ponent j , j ^ 1 , should be given by the equilibrium distribution F  (x) , 
J »e 

where 

la-Ts (x))dx 
F. (x) - 

Hence, as the proportion of uptimes that are caused by component 1 equals 

lim 
Nj(t) 

n , It follows upon conditioning that 

I    N.(t)   ll/v 
J-l J j 

(5.3)    P{Uee > x) - M VvA       I   ^-(1 - F^x)) n (1 - F.  (x)) 
\J-1   7  1-1 ^1    1    jj*l     J'e 

represents the limiting distribution of U . Another interpretation of (5.3) 

is that it represents the proportion of uptime periods that are of length greater 
OB 

than x . If Equation (5.3) is Indeed valid then, as E[UJ - f P{U > x}dx , 
oo    «r     OD F 

0 

\ 
'■"■' ■*'' ■ '■,■*■'''■-: '■ 

■ ■  "*- itaM 
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Jn    , 
y   —- (1 - F, (x))    11    (1 - F      (x))dx    to equal 1 

0 i-1 Wl 1 Jfl 3,e 

We now verify this. 

Proposition S.l; 

f n   1 - F, (x) 
I    -*    n    (1 - F.     (x))dx - 1 . 

1-1 ^1       tfi i'e 

Proof: 

The above appears difficult to verify analytically, but there Is a simple 

1 - F (x) 
probabilistic proof. Noting that  dx ■ dF  (x) we see that the above 

integral is equal to 

M n (i - F. o(x))dF.  (x) J,e     l,e 

Letting X,, ..., X  be Independent random variables, with X. having distrl- 
i      n i 

butlon F  (x) we note by a simple conditioning argument that 

P{X. - smallest of (X., ..., X )} - I n (1 - F. (x))dF.  (x) 
1 1      n   1^     j,e    l.e 

and thus, summing over all 1 fields the desired result. 

Remark: 

It also follows from Equation (5.3) that if each F  has a DFR distribu- 

tion; that is, if 1
1"_

F^tt 
B^ + t for all s , then the distribution of U^ 

is also DFR. This follows from the 3 facts 

(1) Mixtures of DFR distributions are themselves DFR. 

• 

_^k 
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(11) If F is DFR Chen F  Is also DFR (this follows from (1) using e 

results about the equilibrium renewal process, It can also be 

shown directly), 

(ill) A series system made up of Independent DFR component lifetimes, has 

a DFR lifetime distribution. 

In fact the same argument shows that U  is DFR for all n . 

Another quantity of Interest is the remaining uptime of a system that Is 

up at time t (t large). Again, heuristic reasoning yields that 

n 
(5.4) P{addltlonal uptime > x] -    n    (1 - F^    (x)) 

J-l J,e 

and thus 

E[addltlonal uptime] 
7* 
I   n   (i - 
I J-i 

F.     (x))dx 

1 - F.     (x) /I - F. 

n •L»e 

n     (1 - F,     (x))dx 
1*1 

J.e' 

.      I (1 - F4     (x))dF. (x) 
l.ej j^ J.ev l,e,ev 

f ?x2dF (x) 
where   W,  a - J xdF      (x) -J —=-  .    Hence, l.e    ^        l.e J0     2v1 

E[additlonal uptime] - v.    ?{X. ^     - smallest of    (X.        ,X,    ,  .... X     )} 
i,e  x,e,e x,e,e ^,e      n,e 

\ 

where X- ^ ^ , X. ä, 1 > 2 , are Independent and X,   ~ F,    and x,ete   x,e   — x,e,e   x,e,e 

*± e~ *l e> 1 > 2 •    In the special case where all the component uptime 

\ 
■ 

- i ■• I^AI ^^^ 
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distributions are identical and the distribution is IFR (that is, 

1 T  PA  + t   for a11 8) lt follows that the expected additional system 

uptime of a series system that is up at time Infinity satisfies the following 

inequality 

I x2dF(x) 
E[additional uptime] > 'l.e  0 

2ny 

This Inequality is reversed if F is DFR. The above inequality follows from 

the fact (proven below) that if F is IFR then so is F . 

It again follows that if each F  is DFR then the distribution of addi- 

tional life as given by Equation (5.4) is also DFR. Moreover if each F  is 

IFR then it follows that the additional life distribution is also IFR. This 

follows from the fact that a series system of independent IFR components Itself 

has an IFR life distribution upon application of the following proposition. 

Proposition 5.2; 

If F is an IFR distribution with finite mean, then F  is also IFR where 

Fe(t) 'Ml - F(y))dy/J (1 - F(y))dy/I (1 - F(y))dy 

"O 0 

Proof: 

The failure rate function of F  is given by 

xe(t) 
1 - Fe(t) 

1-1 

[f i - F(y) dy i - P(t) dy 
-l 

• 

• ■ *W mam 
■ 
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[I 1 - F(t)  a* 

-1 

■ 1/E(additional life of a t year old item 
having life distribution F] 

and the result follows since F IFR implies that the denominator of the above 

term Is decreasing in t . | | 

It should be noted that it has been shown in [4] that if all component 

uptime and downtime distributions are exponential then both the limiting dis- 

tribution of system uptime U  and of the additional uptime of a system that 

is up are both mixtures of exponential distributions and are thus DFR. These 

results hold for Markovlan (i.e., exponential) systems having an arbitrary 

structure (that is, they need not be series). 

5.2 Parallel Structure 

The reliability system is said to be a parallel system if it is up whenever 

at least one of its components is up. That is, 

\ 

•\ 

h(P) - i - n (i - p ) . 
i 

In other words it is down if and only if all of its components are dnm. Thus 

we see that by regarding down as up the parallel system is transformed into a 

series system and so all of the results of Section 5.1 are immediately trans- 

latable into results about parallel systems. For example, from Equations (5.1) 

and (5.2) we see that, in the parallel case. 

E[D] 1^ 
n  v. 

i - n 

ECUJ 3-1 yJ^ 
n   v 
n J: J. ""t n-l 'fj  lil 

^WMfi*.«**.***»»»****** 

Ate 
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lim 
'        3-1 vi * vl J-l -   1 

5.3   The k-out-of-n Structure with Identical Component Distributions 

Series and parallel systems are both special cases of the k-out-of-n system 

which is up if at least    k   of the   n    components are up. Let us consider such 

a system along with the additional assumption that    y.  = w , and   v.  = v , 

i ■ 1,   ..., n .    For this case we obtain that 

-ME) - -(vifc) 

. /n-iv_1L_v-ij^"-k 

Thus, from Corollary 3.2 we note that 

lim N(t) 
.                   k-1 n-k nl u v 

(n-k)!(k-l)! (y + v)n 

and from Proposition 4.1 

""j ■(n - WzP i fV'""1 

nlwK V *      i-0 \l/ 

■: 

< 

_> i ■ ^'t- AMMI^ ürt 
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