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ABSTRACT

, A multicomponent reliability system in which each com-
ponent is either up (i.e., working) or down (i.e, failed) in
accordance with an alternating renewal process is considered.
For arbitrary structures the following quantities are derived.

L (1) The average rate of system failure.

(14) The average uptime of the system. ' )

(111) The average downtime of the sys:em.

Further results are also obtained in the special case where
the aystem structure is either series or parallel.




MULTICOMPONENT RELIABILITY SYSTEMS

by

Sheldon M. Ross

1. INTRODUCTION

Consider an n-component reliability system having the property that at
any time each of its components is either up (i.e., working) or down (i.e.,

being repaired). Let

1 if ith component is up at time ¢t

xi(c) = {

0 otherwise

We suppose that {Xi(t).t'z 0} ,1i=1, ..., n, are independent altcraating

renewal processes. That is, for each 1 , there exist random variables U; "

D} » J 21, such that

1 1f <]
0 if vle<t<ul+pl
1 tUp Dy
S 1 4f vteptce vt +pt 4+t
1t 2 1¥0 + 0,
0 etc.

The random vectors (U;,D;) » J > 1, are assumed to be independent and identically

1istributed. Let




s i

and suppose that 0 < Hy< @ 0 < vy <, Fi(O) = Gi(O) =0,

We suppose that whether or not the total system is working at time ¢t

depends only on X(t) = (xl(:), 0o Xn(t)) . In particular, letting

1 1if the system is working at time ¢t
X(t) =

0 otherwise
we assume that there exists a nondecreasing binary function ¢ such that
X(t) = ¢(x1(t)' ey xn(t))

It follows from the independence of components that P{X(t) = 1} = E[¢(X(t))]

is a function of E[xl(t)l, B E[xn(t)] and we write

The function h 1s called the reliability function of the system. In words,
h(pl, sesy pn) represents the probability that the system will function when

the ith component (independently of other components) functions with probability
i i

Py . Assuming (as we do throughout) that the distribution of Ul + D1 is not
lattice, i =1, ..., n, it follows from known alternating renewal process re-
sults that

u
i
E[Xi(t)] + —-—ui vy, as t -+

and thus, from the continuity of h (which is easily shown), we obtain that

(1.1) P{X(t)-1}+h—u-]'— ). i
* u1+v1’ ""un+vn - y+v

a result first noted by Esary and Proschan [3]. The function P{X(t) = 1} is

referred to in the literature as the availability at time t , and thus

Equation (1.1) states that the limiting availability is h L ) .

u+v




2.__REGENVERATION POINTS

One unpleasant feature of the reliability process defined in Section 1 is
that it does not necessarily have any regeneration points. That 1is, there
need not be any time points at which the process '"probabilistically starts
over again." This is unfortunate as the theory of regenerative processes
and the associated theory of renewal reward (or cumulative) processes yield
elegant results concerning not only the existence of limits, but also the
equality of different types of limits such as almost sure limits and limits
in expectation. However, there are certain special cases for which the pro-
cess is regenerative. One of these being if for each i =1, ..., n, either
F, or G

i i
is8, if for each 1 , either Fi(t) or Gi(t) is of the form

is a mixture of an exponential and vome other distribution, That

-Ait

(21) pi(l -e ) + (1 - pH, (t)

where 0 < Py <]l , and H1 is a distribution function, then the process is
regenerative with a finite mean regeneration cyclef; the regeneration times
being those times at which the "exponential parts" of ea:h component are in
effect. In fact since the Py in Equation (2.1) can be arbitrarily small

(though positive) it follows that any set of distributions {Fi,G { =il s 0}

i’
can be approximated arbitrarily closely by one of the forms (2.1). As a result,
we shall assume that our reliability process is a regenerative process with fi-
nite mean regeneration cycle. In fact since our results will only depend on

and v

i=1, ,.., n, and as any F, (or Gi) can be arbitrarily

Hy 1° 1
closely approximated by a distribution of the form (2.1) it is intuitively
obvious that our results hold in the general case. (In fact, it would seem
that appropriate applications of the ergodic theorem yields the same existence

and equality of 1limit results as does the assumption of regeneration points;

thus proving our results in the general case.)

+The finite mean regeneration time follows from the result that a finite state
Markov chain has no null recurrent states.




3. RATE OF SYSTEM BREAKDOWN

We say that component 1 causes a breakdown at time ¢t if

(1) xi(c’) -1
(1) X (t) =0
(111) X(t7) = 1

(1v) X(t) = 0

Let Ni(t) denote the number of breakdowns caused by 1 in [O0,t] .

Notation:

Let P = (Pl' olely Pn) . Define
(lit_P_) = (Pll L ] Pi'l,l’Pi"‘l’ OO Pn)
(oi"P') - (Pl’ LAL | Pi_1i09Pi+19 ssoy Pn)

Proposition 3.1:

(a) With probability 1,

B\ B
N, (t) E[N, (t)] h(li’yr_\') h(oi’m)
m = lim -
S too

t u, + v

|
)\ u
alh(li,m) h(oi,u_t!]
ui + vi

(b) E[N;(t +a) - N, (t)] +

Proof:

From the theory of renewal reward processes it follows that, with

probability 1,

N, (t) E[N, (t)]
1 = 1im 1

lim 5 ——

= E[Number of breakdowns caused by 1 in a regeneration
cycle]/E[Time of a regeneration cycle]




- T T -

Define

I

{1 if the jth breakdown of 1 causes a system breakdown
* =

0 otherwise

Now, again by the theory of renewal reward processes it follows that, with

probability 1,

(3.1) lim

= E[Number of breakdowns caused by 1 1in a regeneration
cycle)/E[Number of breakdowns of 1 1in a regeneration cycle]

However, from the independence of components, it follows that

(3.2) E(Ij) -+ h(li’u—']:'_\;) - h(oi,——.':_—-;) as j -+ =

This is true since the jth failure of 1 will cause a system failure if the
state vector x at that time is such that ¢(11,3<_) =1, ¢(01,5) =0 . We
then obtain (3.2) since P{¢(11,§(t)) - 1,¢(Oi,§(t)) =0} = P{¢\(1i,l{_(t)) =1}

- P{¢(Oi,g{_(t)) =1} . Thus from (3.1) and (3.2) we see that, with probabilirty,

Il + ... + Ik u 7
k g h(l:l’u + v) - h(oi’u + v)

exists with probability 1, i1 follows that

N, (t)

Now, since lim

Ni(t) N, (time of kth breakdown of 1)

1in - 11y - =
to k* time of k= breakdown of 1

11+°"+Ik Kk

= 1im T

k k time of kt breakdown of i




Part (b) follows from (a) since Blackwell's Theorem (of renewal theory) holds

for renewal reward processes (see [ ]).|]|

Letting N(t) denote the number of breakdowns in (0,t) , we obtain,

from Proposition 3.1

Corollary 3.2:

(a) With probability 1,

1im

Lo

N(ttz - E[Nt(tl] .
t

n

!

i=1

n

(b) E[N(t +a) - N(t)] »a ]

Proof:

n
(a) The nonlattice assumption implies that E[N(t)] = E[ Z Ni(t{] + o(t)
i=1

n

and so (a) follows. (It should be noted that N(t) ¢ | Ni(t) since
1

more than 1 component can be given credit for a breakdown at time t.)

(b) Follows from (a) since Blackwell's Theorem holds for renewal reward

processes. | |

We say that component 1 causes an uptime at time t if

(1)
(11)
(111)
(iv)

xi(t') -0
xi(t) =1
X(t7) =0
X(t) = 1

i=]1

- u
(g +vy) [h(li'_Lw) - hé)i’uTv)] ’

-1 Y u
(uy +vy) [h(li'u + v) = h(oi’u + v)]




*
Let Ni(t) denote the number of uptimes caused by { in [0,t] . By a proof

completely analagous to that of Proposition 3.1 we can prove

Proposition 3.3:

(a) With probability 1,

N CH M
N (e) EIN (£)) h(li’m) h(°1'y_+!)
1lim : = 1im t - TR
t t 17V
T H
[*( 3 )] i[h(li’“*"’) h<°1'—*"-)]
(b) EIN,(t + a) - N, (¢t)]~ =
i i ui + vy

Remark:

It is interesting to note that the proportion of downtimes (i.e., breakdowns)

caused by component 1 is equal to the proportion of uptimes that it causes.




4, UPTIMES AND DOWNTIMES

Let U(t) denote the cumulative amount of uptime in [O,t] . From the

theory of renewal reward processes it follows that, with probability 1,
B pixee) =11+ 0 as £

and thus, from Equation (1.1),

(4.1) H%l + h( :v) as t + » (with probability 1).

The reliability system will alternate between periods in which the system

is up and periods in which it is down. Let us denote by U, the length of

i
the ith upperiod, i =1, and by D1 , the length of the ith down period. It

should be noted that the U, , 1> 1 (and similarly, the D,) are neither inde-

1 ’

pendent nor ure they identically distributed random variables. However 1t does
follow from results presented in [2] that
Ul + e e + U

lim = = 1im E(U; + ... + U ]/n = E[U]
es n 1 n

and

Dl+ eee *+D
1lim n

n-)@

= ldm E(uy; + ... +D_1/n=E[D ]

vhere U (D@) is a random variable whose distribution is the limiting distri-
bution of U_ (D) .
nn

Moreover from Equation (4.1) we note that

n

i=1 +h(u as n + o




or, equivalently

E(U_]
[ J - h Y
E(u_ ) + E[D_] <E + v>

n = 1l
Finally, as 1lim = E[U.] - E[D,] represents the average rate at

n
(u, +0,)
121 i 1

which breakdowns occur, we obtain from Corollary 3.2

Proposition 4.1:

E[U,) = — -




5. SPECIAL CASES

5.1 Series Structure

The reliability system is said to be a series system if in order for it
to be up it is necessary that all of the components be up. Hence, for a series

system

n
h(®) = 1 P,
11

Hence, from Corollary 3.2, we obtain that the rate of breakdowns of a series

system 1s given by

(5.1) 11n X&) . n ——-1— ) 1/u,
i=1 .1 Yy 1m1

while the average length of up and down periods is

(5.2)

Remark:
n -1
If all component uptime distributions were exponential then E[Un] = Z 1/ui
1

for all n . It is interesting to note that this is also the average of system
uptimes for arbitrary distributions. (This result was also obtained in [1] where
the model considered was series but with the provision that when the system failed

the remaining components did not age but were held in a state of suspended

L




w_'——"_v".

11

animation until the failed component was repaired.) Furthermore, when the

" uptime distributions are exponential then Dl'DZ’ +++ are independent and

identically distributed and thus

.
L 4
gt n u
1- 1 —d—
" =1 7Y
[Dn] = E(D ] = = e = for all n .
To—dem ] U

=1 %37 V) 1m1

It is interesting to note that this result (in the exponential component uptimes

case) seems to be difficult to prove directly. ]|

Additional insight into the length of uptime periods is obtained by the
following heuristic reasoning. Given that (the fixing of) component 1 has
just caused an uptime period it is intuitive that the remaining uptime of com-
ponent j , j ¥ 1 , should be given by the equilibrium distribution Fj,e(x) ,

where

z(l - Fj (x))dx

My

Fjoe(") -

Hence, as the proportion of uptimes that are caused by component 1 equals

* 1

lim - » 1t follows upon conditioning that
I N ] 1/u,

j=1 1

n -1 n 1
(5.3) P{U_> x} = ( ) lluj) ) ARG T A-F ()

{=1 1=1 "4 M ]
represents the limiting distribution of Un + Another interpretation of (5.3)
is that it represents the proportion of uptime periods that are of length greater

o
than x . If Equation (5.3) is indeed valid then, as E[U_] = _‘.P{U°° > xldx ,
0




—

vl
I = @Q-F@)) 1 (1-F

(x))dx to equal 1.
J# jle

it would be necessary for } o
0 1i=]1 "4

We now verify this,

Proposition 5.1:

n 1l- Fi(x)
] — 1" 1 a-F

(x))dx = 1 .
5 i=] ¥y irn j,e

Proof:

The above appears difficult to verify analytically, but there is a simple
1- Fi(x)

probabilistic proof. Noting that '———TI_-—dx = dF

e(x) we see that the above
i

i,
integral is equal to

n
) I 1 (1-F, (x))dF, (x) .
1=1 3#1 ire it

Letting Xl, 00gp Xn be independent random variables, with X1 having distri-

bution Fi e(x) we note by a simple conditioning argument that
’

e(x))dFi’e(x)

P{X, = smallest of (X., ..., X )} -} n (L~-F
b | 1 n oj*i 3,

and thus, summing over all i fields the desired result.ll

Remark:

It also follows from Equation (5.3) that if each Fi has a DFR distribu-

tion; that is, if 1;—_’&‘%’1 t t for all s , then the distribution of U_

is also DFR. This follows from the 3 facts

(1) Mixtures of DFR distributions are themselves DFR.
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(11) If F 4is DFR then Fe is also DFR (this follows from (i) using
results about the equilibrium renewal process, it can also be
shown directly).

(111) A series system made up of independent DFR component lifetimes, has

a DFR lifetime distribution.

In fact the same argument shows that Un is DFR for all n .,
Another quantity of interest is the remaining uptime of a system that is

up at time t (t large). Again, heuristic reasoning yields that

n
(5.4) P{additional uptime > xJ = NI (1 - F, (x))
jml Jre
and thus
T n
E[additional uptime] -f I (1-F, (x))dx
5 §=1 Je
T1- Fl e(x)
=¥ e ——l—ul.e 121 - Fj'e(x))dx

0

= "1.ef a- Fj.e(x))dFl’e’e(x)
) 1

7 xzdFl(x)
where ul,e = xdFl e(x) - . Hence,

0 ’ 0 1
E[additional uptime] = "l,ep{xl,e.e = gmallest of (xl’e’e,xz’e, SGE xn,e)}
where xl,e,e ’ xi,e, i> 2, are independent and xl,e,e~ Fl,e,e and

X, ~ Fi e 12 2 . In the special case where all the component uptime
1
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distributions are identical and the distribution is IFR (that is,

-—i%%;%zfygl + t for all s) it follows that the expected additional system

uptime of a series system that is up at time infinity satisfies the following

inequality

f xzdF (x)
ul,e 0
n

E[additional uptime] > - 2nu

This inequality is reversed if F 1s DFR. The above inequality follows from
the fact (proven below) that if F i1s IFR then so is Fe .

It again follows that if each Fi is DFR then the distribution of addi-
tional life as given by Equation (5.4) is also DFR. Moreover if each Fi is
IFR then it follows that the additional life distribution is also IFR. This

follows from the fact that a series system of independent IFR components itself

has an IFR life distribution upon application of the following proposition.

Proposition 5.2:

If F 1s an IFR distribution with finite mean, then Fe is also IFR where

F(t) = ] (1 - F(y))dy/ f (1 - F(y))dy
0 0

Proof:
The failure rate function of Fe is given by

-1 - F,(t) at

A(t) =
e
dt F (¢)

-1
) fl ~F(e) 9

2

e SR T | " ‘
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1

1 - F(¢)

u -
- ".1 - P(t + x) dx
0

= 1/E[additional 1life of a t year old item
having life distribution F]

and the result follows since F IFR implies that the denominator of the above

term 1s decreasing in t .||

It should be noted that it has been shown in [4] that if all component
uptime and downtime distributions are exponential then both the limiting dis-
tribution of system uptime Un and of the additional uptime of a system that
is up are both mixtures of exponential distributions and are thus DFR. These
results hold for Markovian (i.e., exponential) systems having an arbitrary

structure (that is, they need not be series).

5.2 Parallel Structure

The reliability system is said to be a parallel system if it is up whenever
at least one of its components is up. That is, !
n
1
In other words it 1s down if and only if all of its components are dovm. Thus 1
we see that by regarding down as up the parallel system is transformed into a
series system and so all of the results of Section 5.1 are immediately trans-

latable into results about parallel systems. For example, from Equations (5.1)

and (5.2) we see that, in the parallel case,

1
E[D] = IT/T;

s
3= M"Yy :
E[U,) = n v

n -~
n —i- I /v 1
n=1 uj+vj i=1 1 A




v

1n 8O o p —:-1-— 7 /v, .
N S R IR e

5.3 The k-out-of-n Structure with Identical Component Distributions

Series and parallel systems are both special cases of the k-out-of-n system
which is up if at least k of the n components are up. Let us consider such
a system along with the additional assumption that Hy =y, and vy v

i=1, ..., n. For this case we obtain that
N B
“(li'm) "(°1’m)
. nil n-1 ( ” )1( v )n-l-:l i nil -1 ’ i : )n—l-i
{uk=1\ 1 u+v u+v {=k 4 H+v u+v
] -1 i k-1 v n-k
k-1 u+v H+vV

Thus, from Corollary 3.2 we note that

14p NCE) n! uk-]'vn-k

e ¢ (n=-Kk!(k-=~1)

P+ ot

and from Proposition 4.1

m=-!k-11 %™ 1n-1
E(U,] = = BV
nluk 1vn k :I.Zk(i)

k=1 /n
(n - k)!(k - 1)! i n-1
E[D,} = x u
k1K 120 () v

e s i a ;—-—-—g

LU,
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