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SECTION I 

INTRODUCTION 

An analysis of Soviet rocket nozzles,  which was made openly available 

to the West during the last few years,  has shown that they are consistently 

shorter and of a higher area ratio than similar US designs.    This initiated 

the development of two new design approaches for increasing nozzle per- 

formance: 

(1) The truncated nozzle method,  which is used throughout the rocket 

industry. 

(2) The more recent kinetically optimized nozzle technique,  whieh is 

based on finite rate chemistry. 

The second method potentially exhibits great promise of extending our 

ability to devise shorter, higher performing nozzles.    Noticeable perform- 

ance increases have been achieved analytically by using the actual non- 

equilibrium flow chemistry in the design process (References 1-5).    This 

increased performance can primarily be attributed to specie recombina- 

tion,  which governs the amount of thermal energy release.    To avoid 

"freezing" the flow,  the finite-rate nozzle contours do not generally expand 

as rapidly as do isentropic nozzles.    This permits the release of additional 

thermal energy that can be converted into directed kinetic energy for 

increased performance.    Due to their complexity, these analytical models 

can be most effectively applied when there is sufficient knowledge of the 

range of operating conditions for which significant kinetic losses are 

incurred.    Application of the models in this range thereby maximizes their 

usefulness and their ability to predict contours that can convert a perform- 

ance loss into an overall performance gain.    Based on this fact,  a study 

was conducted to determine the kinetic performance of a 15° conical nozzle 

and numerous Bell nozzles for a wide range of engine operating and geo- 

metrical conditions.    The bipropellant chosen for the study was tl e high- 

energy storable liquid,  nitrogen tetroxide and monomethylhydrazine, 

_   ^k. 



NTO/MMH.    This report summarizes the program's attempts to evaluate 

significant reaction mechanisms and provide guidelines for inputting 

subsequent finite-rate nozzle design models. 
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SECTION II 

APPROACH 

Computations of the kinetics losses for specific operating conditions 

can be made by employing the computer models and methodology suggested 

by the JANNAF Performance Standardization Working Group.    The com- 

puter model used was the Two-Dimensional Kinetic Reference Program 

(TDK) (Reference 6) with the options for the One-Dimensional Kinetic 

(ODK) codes. 

1.     Method 

The method employed is the one outlined in the JANNAF 

Simplified Procedure (Reference 7) assuming a single zone case with 

completely vaporized combustion gases at the throat plane.    The engine 

kinetic efficiency can be expressed as 

^Isp 
EKL 

Isp /l*P 
ODK /     ODE 
(0/F)Avg/        (O/F) Avg 

(1) 

The corresponding engine specific impulse kinetics loss is then calculated 

by applying the relation 

'•V=K^(V  ) (2) 

EKL) 

The kinetic lods associated with the nozzle,  or that which could be 

recovered in the nozzle region, is slightly different in magnitude than the 

engine kinetic loss calculated previously.    This is due to kinetic losses 

which occur in the convergent transonic region upstream of the throat. 



i.iLV car;   n.  «.i'liiinated by usin<; the following relations: 

isp 

/isp v /Isp \ //Isp \ 
I     ODK )    - 1    ODK I       /(     ODE I 
\     (O/F) Avg/r       \   (O/F) Avg/TH/\    (O/F) Avg/i 

/Isp \ 
I     ODE ) 
\    (O/F) Avg/ 

TH 

(3) 

nul 

isp 
NK1. 

'Isp 
ODE 
(O/F) Avg/e 

|    - ( SODE |       (,1Isp    | 
L      \    (0/F)Avg/_,T\  NKL/ 

(4) 

This .shjjil  uioiiific dlion ot equations  1 and 2 is necessary because the 

nuzzle dfrii^n tt'thniques mentioned in References   1-5 start their recon- 

touring  downstriam of the ttiroat region.    Therefore,  we need to know only 

the magnitude of the kinetic loss in the nozzle region,   which is what 

equations 3 and 4 will give. 

1.      Test  Matrix 

Two b.ihii  nozzle designs,  a IS    cone and various Bell shaped 

luiituurs,   were considered to determine the kinetic losses of NTO/MMH 

using a wide range of engine operating conditions.    Table 1  summarizes 

tin' matrix over winch they were exercised.    The conical contour was the 

baseline configuration; the design point at each thrust level was a 2. 5 

mixture ratio,   100 psia chamber pressure and 25/1 area ratio.    Contour 

throat  radius specifics are given in Figure 1 and Table 2.    The Bell 

contours were designed using an isentropic method of characteristics 

solution and are i onstrained to the same axial length as the conical nozzles. 

The normalized axial and radial coordinates and other pertinent data are 

jiiven in Tables  i and 4. 
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TABLE 1 

VARIABLE MATRIX OF NOZZLE KINETICS ANALYSIS USING NTO/MMH 

STUDY 

Variable Name 

1-15° CONE 

I                             Variable Range 

Area   Ratio  -  £ 25,   50,   75,   100 

Mixture Ratio (Ox/Fu)  - MR 1.5,   i.0,  2.5,   3.0,   3. 5 

Chamber Pressure (psia) - Pc 50,   100,   300,   500 

Thrust (Ibf) - T 300,   3000,   18000 

Normalized Downstream Radius 
of Curvature -  Re 0.5 

STUDY 2-15° CONE 

Area Ratio - E 1. 0 -   100 (12 steps in between) 

Mixture Ratio (Ox/Fu) - MR 2.5 

Chamber Pressure (psia) - Pc 50,   100,   300,   500 

Thrust  (Ibf) -  T 300,   3000,   18000 

Normalized Downstream Radius 
j of Curvature -  Re 

STUC 

1.0,   2.0,  2.0,   5.0,  8.0,   10.0,  25.0 

»Y 3 -  BELL 

Area Ratio - E 
1 

36,  40,   45,   52,   74,  83,  94 

Mixture Ratio (Ox/Fu) - MR 2.0,   2.5,  3.0 

Chamber Pressure (psia) - Pc 50,   100,   300,   500 

Thrust (Ibf) - T 300,   3000 

Normalized Downstream Radius 
of Curvature - Re 0.5 

% Bell 80,   75,   70,  65 

.' 



N 

W 
J 
CQ 

< 

_ »M •* 
>PH <o ■* o 

O i^ oo oo ** .\j o oo l- If. • in 
IT» in , cr- . t^ 

*- 
B 

— in N nj m 

(M 

3 
1^ 

r~ m f\J t o o ro (M in 00 

h 
!    at 

o oo ■* in rj ro , in , en , r-' — in N m rrt 

^                1 a- ^■ o aa^ in oo to                j o o •* in • in N o o 00 in in o <e • • •■• *• , o , 0^ 
ao — in (M m in                 1 

oo m "I 
MM a- 00 o 

o >o NO r- •* 
\T\ oo *r\ in <T- o* •                i • f . 9- • &• 

in rj — r- m 

in ** O >o fO o N^ oo ^j f- o 
IT 

00 • in 
in f<\ • in • 

*» 
in (N) m — a> 

f- ■ ^0 00 r~ m 
3 o »r> <^ m INJ •G 

2 
o 00 ■* m in • • vO 

0 
i-t 

H v^ in M* m — d 
% •♦ 

H o o 00 vO o vO                       1 
o <^ in r- mm OO 

< 
2 

o o 00 in m • m X                  1 
■ ■^ " f vO , • 

m in (S " M ff- 
NO in o^ 

« o (M o iM in o 
in 00 ro in ■ IM ff> u . ■* • m • • 

in N m o »• H o^ U r 
o 

<r 00 00 o 

Q >* oo f 1- o 
00 

in 
in •* • 1*1 « 

h -• m N o d "*                 1 
< 
0 

M t-      ^ 

5 O •0 po 
00 

00 IM 

« o 
«1 * s in r~ l*< 

1 — m N d o — 
h ^, 

(M 
IM s 

U O o <M in * ■♦ (M 
O o 00 in in N OO «*» 
<o ~* ■f , • — m N fj o -' 

i»> r- 
N sO o- (M O- 

0 o •* vO 9- m 
\r\ 00 ro in ^ mm f» 

2 f * • • • 
" in IM •"t "• "* 

\  

« ^» 
ifv • 
ii « 

■ 
0. 

] 

Ul 

u 

U 
>• 1 

IN» • 
• 

/ 

1 

«1 

0 

> 
0 0 

Mi £ 
• •E 

/ 
'ü ••* • 

i 
41 

• 
3 ■*              1 

/ «1 
• 3 

* / 0 U 

2 
h H 

/ 
U So 

U   V 
< C6 ^         ! 

/ ■ 4  ■ H 4 / 9 h -». ■ 0 0 • 
/ M 

X JS 5 Z 
JS 

* 1          J 
/ 

H u S H H 

10 



CM 
C 

8 n 

a."» 

X 

s 
o 
H 
2 
v 
a 
00 
a 
w 
« 
3 
M 

H 
=*: 
O 
O 

3 
00 

1 1 s 
N > » 

N n 
oc OC oc 
^1 ^ ^ 

11 



TABLE 3 

BELL NOZZLE CONTOURS IN SAME LENGTH AS 
A 25/1,   ISO CONICAL NOZZLE 

80 To 

X/Rt 

0. 4S74 

Bell 

Y/Rt 

75% Bell 70% Bell 65% Bell           \ 

X/Rt Y/Rt X/Rt Y/Rt X/Rt Y/Rt     1 

1. 1724 0.4894 1.1943 0.5283 1.2220 0.5825 1.2623 

0.6603 1.2824 0.7153 1.3219 0.7835 1.3725 0.8802 1.4470 

0.9009 1.4159 1.2891 1.6531 1.4360 1.7633 1.6469 1.9263 

1.4726 1.7337 1.9910 2.0488 2.6898 2.4773 2.6019 2.4949 

2.1432 2.0933 3.2456 2. 7002 4.2397 3.2555 4.3547 3.4269 

2.9012 2.4743 4.7337 3.3753 6.0731 4.0481 6.4801 4.3920 

4. 1999 3.0600 6.4478 4.0459 8.1842 4.8288 8.9681 5.3528 

5.6860 3.6418 9.0770 4.9062 11.4186 5.8241 12.8357 6.5889 

7.9520 4.3875 12.0877 5.7065 15.0631 6.7318 15.0631 7.1935 

10.5343 5.0803 15.0631 6.3512 €= 45.32 C= 51.75 

1 12.6734 5.5571 € = 40.34 eE = 12. 6° eE = 14. 3°                i 

15.0631     6.0072 

€- 36.09 

0E - 9. 76° 

em = 25.520 

0E-n. 
em = 26. 

1° 

43° 

em = 27. 42° em = 28. 62° 

/ 

E A 
^ \ 

EXIT AREA RATIO 

12 



T ■»-r 
«« 

TABLE 4 

BELL NOZZLE CONTOURS IN SAME LENGTH 
AS A 50/1,   15° CONICAL NOZZLE 

80% B ell 75% Bell 70% Bell 

X/Rt Y/Rt X/Rt Y/Rt X/Rt Y/Rt      i 

0. 5605 1.2457 0.3679 1.1350 0.6568 1.3201 

0. 8408 1.4163 0.9194 1.4779 1.0159 1.5558 

1.5601 1.8589 1.7349 1.9944 1.9508 2.1660 

2.4522 2.3847 2.7522 2.6059 3.1338 2.8874   i 

4.0793 3.2472 4.6331 3.6081 5.3445 4.0684 

6. 0439 4.1403 6.9233 4. 6462 8.0643 5.2930   j 

9.1704 5.3200 10.5966 6.0193 12.4591 6.9159 

12.8621 6.4456 14.9585 7.3317 17.7122 8.4701    { 

17.1037 7.4882 18.6708 8.2553 22.7924 9.6949 

22. 7924 8.b841 22.7924 9. 1150 « = 93.99 

€ = 73.69 t  = 83.Of 1 eE = i2.40 

eE = 9. 55° 

i      *      = 28. 15 o 

oE = 10. 

em = 29. 

95° 

05° 

em =300 

13/14 
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SECTION III 

MODEL INPUT 

The TDK computer code requires input data in basically four 

catfuories.    The first two include the engine's geometrical configuration 

and operating conditions.    They have been discussed in the previous 

Sccticm.    The la.->i  tuo categories are the chemical bipropellant used and 

the subsequent chemical .-eactions which take place in the engine. 

1.      Propellant Considered 

The sturable bipropellant used for this study was NTO/MMH. 

This combination was chosen because of its possible use in future engine 

systems such as in upgraded Agena or the Space Tug.    Further,  this 

combination is one hvcl higher on the performance scale than most cur- 

rent operating       .,ic;.... that employ a liquid storable bipropellant.    The 

propellant  spei itU s are as follows: 

NITROGEN TETROXIDE 

Chemical Formula:    N2< 1822 O^ 33^ H0# 01,1 

Heat of Formation @ 298. 150F (Cal/mole):   -5.481 

Molecular Weight:    100 

MONOMETHYLHYDRAZ1NE .     'H 

Chemical Formula:   CH,N?H, 

Heat of Formation @ 298. 150F (Cal/mole):    13, 104 

Molecular Weight:   46.075 

2.      Chemical Reactions 

The basic phenomenological relationship describing chemical 

reaction rates is provided by the law of mass action (Reference 8).    This 

law forms the relationship between the rate of production of a chemical 

species and its concentration (Mj) and stoichiometric coefficient (v.). 

15 



This can be expressed as 

n .« 
Rate of reaction = K,  TT     (M.)   J (5) 

]= 1       ] 

where the forward reaction rate constant K, depends only on the tempera- 

ture. The reaction rate constant is an empirically determined coefficient 

and has the form 

Kf = B Tx exp (-E/RT). (6) 

The frequency factor B, the exponential x, and the activation energy E are 

all unique to the specific reaction being considered.    Table 5 lists the 

twenty-four reactions considered for this propellant system and the appro- 

priate coefficients which were used to define their chemical interaction. 

The values given in columns two, three and four of Table 5 were taken 

from Reference 6 

16 



TABLE 5 

REACTION RATE DATA 

Reaction Rate Reaction Rate 
Parameter j     Parameter 

1                       Reactions 

_,    cm6-0K0 

mole   -sec 
|   E (K    ,/mol) cal 0 

i          Third Body Reactions 

CO 4 O + M = CO2 + M 

OH ^ H 4 M = H,0 + M 

C-tO + M = CO + M 

0.1 x 1017 3.5 0.0 

0.1 xlO20 0.0 1.0      I 

0.3 x 1017 0.0 0.5 

H -( H 4 M = H2 + M 

N + N 4 M = N2 + M 

|   N+O4M = N0 + M 

19 
0. 75 x 10  ^ 0.0 1.0         1 

0. 10 x 1019 0.0 1.0 

0.60 x 1017 0.0 0.5         ! 

0 + H+M = OH + M 0.20 x 1019 0.0 1.0 

O + O + M = O    + M 
1                                                                          b> 

Binary Exchange Reactions 

0. IV x 1017 0.0 0.5         j 

3  1,0 
E Cm  "K 

mole-sec 
E (kal/mole) Q           ! 

1    OH + CO = CO2 + H 

02 + CO = CO2 + 0 

1   H2 + OH = H20 + H 

OH 4 OH - H2O 4 O 

CO2 4 C = CO 4 CO 

1    OH 4 C = CO 4 H 

0.31 x 1012 0.6 0.0 

0.35 x 1013 51.0 0.0 
12 

0.60 x 10 

0. 10666 x 1014 

5.0 

0.96671 

-0.5         | 

0.0134 

0. 105 x lO1^ 6.9949 -0.5 

0.53 x 1012 5.6278 -0.5 

NO + C = CO 4 N 0.53 x 1012 8.3025 -0. 5         1 

CO2 4 N - NO 4 CO 

i   O2 + c = CO 4 0 

OH 4 H = H2 4 O 

OH 4 OH = H2 4 O2 

NO 4 N = N2 4 0 

j    NO 4 NO = N2 4 O2 

OH 4 N = NO 4 H 

0. 105 x 1012 59.616 -0.5 

0.53 x 1012 6.5518 -0.5        j 

0. 14 x 1013 5. 19 0.0        j 

0.14127 x 1014 

0. 15 x 1014 

49.2644 

0.0 

0.015 

0.0         | 

0.10 x 1014 

0.53 x 1012 

79.488 

5.6278 

0.0 

-0.5        j 

O2 4 N - NO 4 0 

OH 4 O = 02 4 H 

0. 18 x 109 6.001 -1.5 

0.32 x 1012 0. 10 -4.7        j 

17/18 



SECTION IV 

RESULTS 

The results from Study 1,  which are summarized in Figures 2-13 and 

Tables 6 and 7,  reveal a number of interesting observations. 

1. Mixture Ratio Effects 

First, the greatest performance loss due to kinetics for the 15 

conical nozzle occurs at a mixture ratio of 2. 5, the maximum temperature 

condition.   This condition occurs because at this point the maximum 

energy is available for dissociating the gaseous moelcules and radicals. 

Important as well are the specific reactions that take place anc the energy 

it takes to dissociate the constituents in those reactions.    Second, there is 

a definite slop '. change in the kinetic loss curves as one goes from a fuel 

to an oxidizur rich condition.    This is caused by a change in the primary 

reaction mechanism as the mixture ratio increases past the stoichiometric 

point. 

2. Chamber Pressure Effects 

As can be seen in Figures 2-13, the magnitude of kinetic loss 

decreases as the chamber pressure increases.    The primary cause of this 

relationship is the decrease in gas residence time with increased chamber 

pressure.   Though this gives less time for recombination, the amount 

dissociated initially is dramatically decreased. 

3. Engine Thrust Effects 

Another parameter which has a significant impact on kinetic 

performance is engine thrust; the kinetics loss decreases with increased 

thrust.    This decrease can be attributed to small nozzle area ratio gradients 

dA/dx in the higher thrust engines.    The gas travels farther in a high thrust 

engine to reach the same area ratio than it does in a lower thrust, geome- 

trically similar engine.    This distance increase can be converted into a 

time increment or an increase in specie recombination time before the 

19 
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flow is essentially chemically frozen.    The net result is greater 

performance for the higher thrust engine. 

4. Area Ratio Effects 

Increasing the area ratio from 25 to 100 also affects the magni- 

tude of the kinetic performance of a nozzle.    The results shown in Tables 

6 and 7 show that kinetics loss increases with a corresponding increase in 

area ratio.    This would be expected since nozzle recombination takes place 

most rapidly at the near throat region,  decreasing quite rapidly as the 

area ratio increases.    Since recombination does take place throughout the 

nozzle,  but at a decreasing rate,  nozzle kinetics losses will increase 

area ratio. 

5. Radius of Curvature Effects 

The primary purpose of Study 2 was to vary the downstream 

normalized radius of curvature of a 150/1 area ratio conical nozzle and 

determine if a kinetic gain could be realized.    The results summarized in 

Tables 8 and 9 and Figures 14 and 15 illustrate some of these data.   These 

results seem to indicate that varying the radius of curvature has little 

potential in reducing the kinetics loss for the conditions considered.    This 

is true for one basic reason.    The increased nozzle length required to 

achieve the kinetics gain causes a correspondingly higher weight penalty 

and thus an overall performance loss.    For this propellant combination at 

any of the operating conditions used,  a radius of curvature ac small as 

possible should be used to minimize nozzle length or maximize nozzle 

area ratio for the given length. 

6. Bell Nozzle Kinetics Losses 

The third study used a number of Bell type contours which had the 

same axial lengths as both a 25/1 and 50/1 conical nozzle.    The results are 

interesting because the overall performance is much greater than that of a 

15    conical nozzle,  but the kinetic losses incurred by unrecombined species 

are also larger.   An example of this is illustrated in Figure 16; other Bell 

nozzle data are summarized in Table 10.   From these data we find that a 
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15° cone is kinetically much mere efficient than a typical Bell nozzle but 

lacks the overall higher performance of the Bell.    A worthwhile endeavor 

would be to try to achieve the same kinetic efficiency in a Bell nozzle as 

is present in the 15° conical nozzle, thereby increasing the overall speci- 

fic impulse of a Bell nozzle by 6 seconds.    This could be done, for 

example, by changing the Bell nozzle contour in the near throat region but 

still expanding the gases to the higher Bell area ratio. 

s 

21/22 

i  



SECTION V 

CONCLUSIONS 

A number of conclusions can be reached from the data presented: 

(1) As shown in Figure 2 kinetics losses can be as large as 20 

di > ondts lsp with NOT/MMH at certain operating conditions,   such as low 

thrust,   low chamber pressure,  and stoichiometric mixture ratio. 

(2) The following variables,  listed in decreasing order of influence, 

affect kinetic losses:   MR,  Pc, £,   THRUST,   and Rc. 

(3) Kinetics losses reach a maximuni at the stoichiometric point. 

(4) Kinetics losses decrease with increasing chamber pressure. 

(5) Kinetics losses increase with increasing area ratio. 

(6) Kinetics losses decrease with increasing throat size. 

(7) Kinetics losses decrease with increased downstream radius of 

curvature. 

Other efforts that would have added immeasurably to this study but could 

not be undertaken due to lack of time: 

(1) Obtain a correlation function for determining the kinetics losses 

of engines for which the range of variables considered in this study apply. 

(2) Determine the point at which the gas flow is essentially chemi- 

cally frozen for the variables considered in this study. 

f3)     Determine the primary chemical reactions which take place as 

mixture ratio is varied. 

(4)     Construct a Bell contour that will have essentially the same 

kinetic efficiency as a 15° cone but also increase overall performance by 

maintaining other performance levels. 
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CHAMBER PRESSURE (KIA) 

; . 7C/1     15° Conical Nozzle 
Figure 2.   Kinetics Los» of * "M.  1* t">n 8 Operating at 300# Thrust 
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CHAMBER PRESSURE (PSIA) 

Figure 3.    Kinetics Loss of a 25/1,   15° Conical Nozale 
Operating at 3000# Thrust 
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CHAMBER PRESSURE IPSIA) 

600 

Figure 4.    Kinetics Loss of a 25/1,  15    Conical 
Nozzle Operating at 18000# Thrust 
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500 

Figure 5.    Kinetics Loss of a 50/1,   15    Conical 
Nozzle Operating at 300# Thrust 
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CHAMBER PRESSURE (PSIA) 

Figure 6.    Kinetics Loss of a 50/1,  15° Conical 
Nozzle Operating at 3000# Thrust 
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50 100 200 300 

CHAMBER PRESSURE (PSIA) 

Figure 7.   Kinetics Loss of a 50/1,  15° Conical 
Nozzle Operating at 18000# Thrust 
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Figure 8.    Kinetics Loss of a 75/1,  15    Conical 
Nozzle Operating at 300# Thrust 
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Figure 9.    Kinetics Loss of a 75/1,   15   Conical 
Nozzle Operating at 3000# Thrust 
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Figure 10.    Kinetics Loss of a 75/1,   15    Conical 
Nozzle Operating at 18000# Thrust 
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CHAMBER PRESSURE 

Figure 11.    Kinetics Loss of a 100/1.  15° Conical 
8 Nozzle Operating at 200# Thrust 

33 

.' 



lii 
CO 

O 

z 
2 

50      100 200 300 400 

CHAMBER PRESSURE (PSIA) 

BOO 

Figure 12.    Kinetics Loss of a 100/1,  15    Conical 
Nozzl* Operating at 3000# Thrust 
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Figure 13.    Kinetics Loss of a 100/1,  15    Conical 
Nozzle Operating at 18000# Thrust 
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Figure 15.    Influence of Nozzle Geometry 
on Kinetic Performance 
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Figure 16.    Kinetics Loss Comparisons Between 
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